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Abstract

The study is motivated by applications to near-wall shear flow (i)
as a longitudinal wall shaping starts, (ii) around a surface obstacle,
or (iii) through a pipe bend. All are shown to be governed, at rel
atively high flow rates, by essentially the same theoretical problem.
This concerns three-dimensional nonlinear longitudinal vortex-like mo
tion under a prescribed displacement which continues to increase with
distance downstream. Symmetry-plane solutions are obtained mainly
through forward marching computation followed by analysis of the
far-downstream response. The behaviour far downstream is found
to involve either a strengthening attachment or an increasing three
dimensional separation (lift-off) with no backflow.

1 Introduction

The motivation for the present study comes from three main fluid-flow appli
cations, described as (i) to (iii) below, all of which involve the generation of
longitudinal vortices in reality and are found to lead to essentially the same
mathematical problem. These are on a near-wall shear flow: (i) as a longi
tudinal shaping of the wall begins (there is practical interest in streamwise
corrugated-surface effects ahead of a trailing edge), (ii) around a surface
obstacle (e.g. a roughness element) and (iii) through a pipe bend. More
generally, (i) covers the start of any dent and/or rise in the surface shape,
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and (ii) covers the flow skirting around the side of any highly pressurised
area.

Background experiments, visualisation, theory and computations for (i)
to (iii) can be found in [1-10]. The generation or mechanisms of strong
horseshoe vortices remain largely unexplained physically, despite numerous
computational and other results.

Here we investigate steady laminar three-dimensional motion at large
Reynolds numbers. Section 2 describes the contexts (i) to (iii) in greater de
tail and their common governing equations, which correspond to a non-linear
vortex system with an imposed displacement that amplifies downstream.
Solutions are derived numerically in sections 3 and 4 for symmetry-plane
flow with varying degrees of either increasing or decreasing displacement.
The analysis in section 5 then concentrates on the flow properties far down
stream. Further comments and a discussion are presented in section 6,
including note of other applications.

2 The physical problems and governing equations

The three main applications of this work are to (i) the shear flow near the
start of a gradual longitudinal dent or hump on a solid wall (e.g. as on a
corrugated surface), (ii) the motion induced to the side of a surface-mounted
obstacle and (iii) the flow through a bent or cornered pipe. See figure 1.

The application (i) is described in terms of Cartesian coordinates
x*, y*, z*, representing the streamwise, normal and spanwise directions
respectively, and the corresponding velocity components u*, v*, w*. The wall
shape of concern is assumed to lie deep inside the surface boundary layer (or
other oncoming shear flow) and is so localized that the undisturbed surface
appears flat and of indefinite length (in the x*-z* plane). The fluid appears
to be of semi-infinite extent in the normal direction, with a uniform incident
shear flow u* = A*y*, where A* is the prescribed slope of the incident velocity
profile at the surface. The only geometric length scales of direct relevance
are those imposed by the wall shaping itself. We take typical streamwise
and spanwise distances L * and l* of the wall shaping as the characteristic
length scales for x* and z* respectively. Similarly, as there is no velocity
scale implied directly we choose the characteristic velocity scale to be A*
multiplied by l*. The associated Reynolds number based on the near-wall
flow field is chosen as Rew == (A*l*) l* /v*, where v* is the kinematic viscosity
of the incompressible fluid, the density of which is p*. Here Rew is assumed
to be large.
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Figure 1: The three main applications that involve the generation of lon
gitudinal vortices: (i) as a longitudinal wall shaping begins, (ii) around a
surface obstacle or pressurised area and (iii) through a pipe bend.

Suppose that the wall shaping is closely aligned with the incident shear
flow, in the sense that l* « L *, and that the typical height variation is
given by 1*. Such alignment is expected to provoke an interaction be
tween the incident shear motion, which emphasises the streamwise direc
tion, and the most rapid shape variation, which is in the spanwise direction.
Close to the surface, a three-dimensional viscous layer is induced, of y*
scale (1/* L* / >..*)1/3 from the inertial/viscous balance of u*8/ 8x* ("'" >..*y* / L *)

against 1/*82/ 8y* 2 ("'" 1/* / y* 2) . The layer is also nonlinear, thus allowing
for three-dimensional separations for example, provided that the viscous
y* scale derived above is comparable with 11*1. Hence the wall shape has

3



1* prescribed as <5*B(x,z), where <5* = (1*2L*/Rew )1/3, y* = <5*(Y + B),
while [u*,v*,w*] is >'*<5* [L*u,<5*(v+uBx +wBz ),I*w]/L* and the dimen
sional pressure p* is written as p* (>.*<5*1* / L*)2p. The viscous layer is thin
provided that (v*L*/>.*)1/3« l*, i.e. (l*/L*) is much greater than Rew - 1 .

Indeed, all the physical assumptions implicit above are valid as long as
the length-to-~idthratio of the wall shaping is much greater than Rew -1,
but still small. The viscous wall layer is then controlled by the nonlinear
wide-vortex or slender three-dimensional boundary-layer system, in nondi
mensional form,

au av aw
0, (1)ax + ay + az =

(a a a) a2u
(2)uax + vay + w az u = °+ ay2'

(a a a) ap a2w
(3)u ax + v ay + w az w = - az + ay2 '

with the unknown pressure term p(x, z) being independent of Y due to the
normal momentum balance. The streamwise pressure gradient is negligible
because of the different velocity scales u*, w* inferred from the continuity
balance. The boundary conditions here are

u,...., Y +B(x,z) as Y -t 00, (4)
w ex: y-1 as Y -t 00, (5)

u=v=w=O at Y=O, (6)

(u, v, w,p) -t (Y, 0, 0, 0) as x -t -00, (7)

from matching with the outer flow solution, from the no-slip constraint and
from merging with the undisturbed incident shear flow far upstream at fixed
z, respectively. Condition (4) is, in fact, that of zero outer displacement (in
other words, condensed flow [11, 12]) because of the Prandtl-transposition
coordinate (Y + B). In (1) to (7), the scaled velocity components u, v,
w are unknown functions of x, y, z and the scaled induced surface pres
sure p(x, z) is to be found, whereas the negative displacement (or forcing)
function B(x, z) is prescribed.

The application (ii), to flow beside an obstacle or, more generally,
beside an area of typical dimensional pressure variation 1T* say, stems from
[6, 7], the latter paper suggesting it as an origin for horseshoe vortices.
Next to the area of imposed pressure (of length scales L*, l* again) the
largest distinct region has y* ,...., 1* and there an inviscid three-dimensional
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(8)

linearisation of the incident shear flow applies, with the induced streamwise
pressure gradient again being negligible. The constraints on the motion are
that as the surface is approached the pressure perturbation is prescribed
within the pressurised area, and zero around it, while at sufficiently large
distances the pressure perturbation decays to zero. The normal velocity
component is also zero at the surface outside the pressurised area, whereas
the streamwise and spanwise components are nonzero in general, yielding a
slip velocity there. The flow solution [7] there gives the result

fj2 B = _.!.(PV) 1° 8
3
ir(x, ry) dry

8x2 7f -00 8ry3 (z - ry)

for the double streamwise derivative of the scaled strea.mwise slip velocity
B, where (PV) denotes the principal value and the scaled imposed pressure
ir (ex: 7f*) is supposed to decay sufficiently fast upstream as x -t -00 for z
fixed. Closer to the flat surface the viscous layer provoked by the induced
slip velocity B(x, z) then satisfies (1) to (7) exactly.

The change in role of B, from a prescribed slip velocity produced in the
outer inviscid region to a prescribed displacement effect in the inner viscous
sublayer, is the three-dimensional companion of the change described in [13]
and, as there, it arises because of the pre-existing linear velocity profile as
opposed to a uniform profile near the surface. The change is significant in
that it allows the surface pressure p to adjust and, in particular, any flow
reversals are encountered in a regular fashion rather than with a classical
singularity; the same comment applies to the other applications (i) and (iii).
On top of this, for application (ii), the maximum influence of the imposed
pressure ir on the flow next to the pressurised area tends to come at first from
positions of enhanced ir variation, particularly through high values of the
third derivatives of ir in the spanwise direction. However, this is countered
by the property that a double streamwise integration is required to obtain
the displacement B itself. This last property indicates an immediate and
substantial historical influence in the motion (ii), due to (8), an influence
which is absent in the other two applications (although distinct historical
effects common to all three applications are discussed later). These en
hanced spanwise and streamwise influences, in the pressure-feedback mech
anism from the pressurised area, are three-dimensional features which are
distinct from those examined previously and arise essentially from the near
alignment of the incident near-surface shearing motion with the longitudinal
edge of the pressurised area.

When the pressurised area is a low obstacle on the surface, [7] shows
how ir(x, z) is determined by the complex flow behaviour on the obstacle;
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see also [6] and appendix A. The forcing B then follows from (8). Below
we will examine representative B functions which typically grow linearly far
downstream and so allow for the effect of the derivatives in (8).

The application (iii) is very similar to (i). This is due to equations (1)
to (3) applying in a relatively thin layer near the solid surface, which is the
inner wall of the pipe in the case of (iii). With x defined as the axial distance
down the pipe, (4) and (5) follow from applying the Prandtl transposition
again to the pipe bend. Periodicity in z, i.e. around the pipe cross-section,
is required however here.

All the applications, then, essentially yield the same problem (1) to (7).
The negligible influence of the streamwise pressure gradient in (2), e.g. due
to the slender wall shape, causes the wall-layer system to be parabolic in
the positive streamwise direction provided that u remains positive. The
following work addresses the flow properties in a symmetry plane. The
physical relevance of this is clear in the applications (i) and (iii), whereas
for (ii) it serves more as a guideline to the possible realistic flow features.

3 Symmetry-plane analysis

For guidance, we examine the solution close to a symmetry line. Thus, for
small z, the expressions

8U 8V W
0, (11)-+-+ =8x 8y

U
8U +V

8U 82U
(12)= 8y2'8x 8y

U
8W

V
8W

W 2 82W
(13)-+ -+ = -P(x) +-

8x 8y 8y2 '
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to leading order, with boundary conditions

(U, V, W,P) =
(U, V, W) =

(U,W) ""'

(y,O,O,O) at x::;;; 0,

(0,0,0) at y = 0,

(Y+A(x),o(y-l)) as y-+ 00.

(14)

(15)

(16)

Despite the simplifications, the solution to the nonlinear symmetry-line
problem (11) to (16) must still be found numerically. The parabolic nature
of the governing equations enables the solution to be marched forward in
the x direction (so long as no flow reversal occurs) and, here, a quasi-linear
iterative process is used to determine the values at successive streamwise
locations. Resolving the flow field is made difficult by the linearly growing
slip velocity (16), which necessitates a large grid in the y direction, and
the absence of a streamwise pressure gradient, which creates only a loose
coupling between the slip velocity and unknown pressure. So, a stretched
grid y = ,eny -, is employed to capture the algebraic decay of Wand to
enable (16) to be imposed at a suitably large y. Some solutions are strongly
dependent on grid height Ymax and grid spacing; the parameters , and n
are used to control near-wall and far-field grid spacings.

4 Numerical results

The numerical scheme was used with the slip-velocity

which provides a necessary smooth start in the vicinity of x = °(see ap
pendix B) but tends rapidly to the required asymptote (10). Numerical
results for various values of (5 are presented in figures 2 to 6. The results
contain plots of the scaled streamwise skin friction Tx = au/ ay Iy=O' the
scaled spanwise skin friction Tz = aWjayly=o, the pressure P(x) and the
downstream streamwise and spanwise velocity profiles. Grid checks show
that results for the larger values of (5 positive are strongly dependent on
Ymax' The effect can be observed in figure 2, where Tz is computed for
(5 = +0.5 with the y -+ 00 condition (16) imposed at different Ymax values.
For smaller values of Ymax the near-wall spanwise velocity appears to be
increasing in strength far downstream. However, as Ymax is increased, Tz

seems to approach a constant value, in agreement with the asymptotic anal
ysis of the next section. By adjusting the grid parameters, and n to make
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Figure 2: Spanwise skin friction for the case cr = +0.5, where the Y -7 00

boundary condition is imposed at different maximum Y values. For each
plot shown this boundary condition is imposed at (a) Ymax = 15.7, (b)
Ymax = 29.5, (c) Ymax = 47.8, (d) Ymax = 71.2, (e) Ymax = 98.0 and (f)
Ymax = 115.2. The arrow shows the trend of increasing Ymax·

the grid height as large as computationally possible (whilst maintaining a
fine enough grid at the wall), these grid effects are minimised in all the other
results presented.

For the cases where cr > 0, the initial smooth growth of the slip velocity
is unable to prevent the almost immediate creation of a sharp favourable
pressure gradient in the direction oflarge 14 This pressure gradient, in turn, .
induces an equally large spanwise acceleration of near-wall fluid outwards
away from the symmetry line at z = 0, a feature observable in figure 5. As
x increases further and A(x) attains its asymptotic form (10), the pressure
gradient weakens slightly before appearing to level out at an almost constant
value as the flow proceeds further downstream. As mentioned above, figure
5 indicates that Tz also tends to approach a constant value. The streamwise
skin friction in figure 3 rises steadily as the slip velocity increases, leading to
a strongly attached velocity profile downstream as expected (figure 6). The
growth of the streamwise skin friction appears slightly slower than linear.

When cr < 0 we should perhaps expect reversal of the near-wall fluid
downstream. The dependence on Ymax is much less here, incidentally, and
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Figure 3: Streamwise skin friction on the symmetry line for different values
of a as labelled.
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Figure 4: The symmetry-line pressure contribution P(x), which dictates the
induced spanwise pressure gradient, for different values of a as labelled.
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values of (j as labelled.
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Figure 6: Downstream streamwise and spanwise velocity profiles computed
on the symmetry line at X = 12 for (a) (j = +0.5 and (b) (j = -1.5.
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this can be explained by comparing (see section 6) the asymptotic structures
of both attached and separated cases derived in the next section. In accor
dance with linear theory (appendix B), close to x = 0 a sharp adverse pres
sure gradient in the direction of large Izl appears, which pulls fluid inwards
spanwise towards the symmetry line. Together with that, the streamwise
skin friction in figure 3 begins to drop smoothly as if anticipating separa
tion. However, this initial behaviour does not persist far downstream, as
within an 0(1) distance from the origin, fully nonlinear effects for the larger
lal cases change the character of the flow response entirely. For instance, the
original sharp adverse pressure gradient weakens sharply before becoming
instead a modest favourable pressure gradient in the direction of large Iz I.
This favourable pressure gradient continues far downstream and abruptly
decelerates the spanwise influx of ·fluid towards the symmetry line. For the
a = -1.0 and -1.5 cases, the deceleration is so strong that eventually the
spanwise flow reverses close to the surface (figure 5) and near-wall fluid be
gins to be expelled outwards away from the symmetry line. The streamwise
skin friction in figure 3 at this point stops decreasing and even begins to rise
again at larger values of x, suggesting that streamwise flow reversal never
occurs downstream, despite the linearly decreasing slip velocity; separation,
in the sense of lift-off, does occur however. For the strongest separated
case, a = -1.5, the streamwise velocity in figure 6 starts to take the form
of an increasingly detached sharply inflected profile that nevertheless has
no flow reversal at all. The respective spanwise velocity profile W with its
two changes in sign, and an examination of the vertical velocity (not shown
here), suggest the formation of vortical structures lifting off downstream for
the strong a < 0 cases.

5 Far-downstream analysis

The flow structure far downstream is assumed initially to consist of two
regions: an outer inviscid region (region 1) and an inner viscous region
below (region 2). A diagram is shown in figure 7(a).

Region 1 is assumed to grow in height linearly as x -+ 00 in order to
balance the two components of the outer boundary condition U ,...., y + ax.
So, we change coordinates from (x,y) to (x,'f/), where'f/ =~, and write

[U, V, W, P] = [xUo('f/), xVo('f/), WO('f/), qo] + .... (17)

The leading-order powers of x are chosen to fit condition (16) and to balance
terms in (11) to (13); thus we ensure a fully three-dimensional response.

11
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(a) Attached (T > 0 (b) Separated (T < 0

Figure 7: Sketch of the flow structure far downstream with the various flow
regions labelled.

Substitution into the governing equations produces the following inviscid
system to leading order,

Uo(".,) - ".,U~(".,) + V~(".,) + Wo("")

Uo(".,) [Uo("") - ".,U~(".,)] + Vo("")U~(",,)

and - ".,Uo(".,)W~(".,) + Vo(".,)W~(".,) + W5(".,)

- 0,

= 0,

= -qo·

(18)

(19)

(20)

The no-slip conditions from (15) are to be satisfied in region 2 below. In
region 1, only the outer conditions (16), along with the no-penetration con
dition for Vo at the surface from (15) apply, requiring

(Uo, Wo)

and Vo =
("., + cr, 0) as"., -+ 00,

o at"., = o.
(21)

(22)

To solve, first we eliminate Vo and Wo using (18) and (19) to express them
in terms of Uo. Thus,

UJ TXT UJU~
VO = - U~ + ""Uo and vr 0 = - (U~)2 .

12
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Then, substitution into (20) and putting H(t) = dUo/d1], t = l/Uo (assum
ing Uo is a monotonically increasing function of 1]), gives the equation

(24)

Hence, there is an eigenvalue problem to solve for the pressure term qo. Any
solution for qo > 0, which satisfies (21), has the restriction that Uomust tend
to a constant at 1] = 0, yielding Vo i- 0 at 1] = 0 from (23) and violating
(22). Therefore, qo ~ O. Applying (21) then leads to

(25)

as the solution to region 1, with a single arbitrary parameter Iqol.

5.1 Increasingly attached: a > a
For the case of increasingly attached flow, the pressure term qo can be fixed
uniquely. The no-penetration condition (22) requires from (23) that Uo -T 0
as 1] -T 0, other forms being unmatchable. Hence, qo is determined by the
integral equation

100 (1- (~)) dUo = a.
o cosh UO(1/)

(26)

(27)

Calculating the solution to this integral equation numerically for a = 0.2
yields the value qo = -0.033 and for a = 0.5 yields the value qo = -0.20 to
two significant figures, which agrees encouragingly with the forward marched
solution of the pressure term (figure 4).

Also, from (23) and (25),

Wo~ Iqoll/2 tanh Cq~:/2) .
Figure 8 shows the Uo and Wo asymptotic profiles calculated for a = 0.5.

The viscous region 2 underneath can be shown [14, Chapter 7] to have
constant thickness, y'" 0(1), with the expansions

[U, V, W, P] = [l:xu(y) ,v(y) ,w(y) ,-qo] + .... (28)
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Figure 8: Asymptotic profiles Uo(Tf) and WO(Tf) predicted for the a = +0.5
case.

Here, the secondary velocities V and W dominate the flow field, the stream
wise leading-order flow being smaller by a factor O(l;x)' From substitution
of (28) into (11) and (13), V and W satisfy the well-known equations gov
erning steady viscous flow approaching a forward stagnation point [15, pp.
231-233]. Moreover, the leading-order streamwise velocity predicts that the
streamwise skin friction Tx grows at a slower rate than linear, namely as
O(1r~x) at large x, in agreement with the behaviour observed in the numer
ics (see figure 3).

5.2 Increasingly separated: a < 0

The two-layered structure above fails in the case a < O. Instead, four zones
are involved. A sketch of the new structure is given in figure 7(b).

In region 1, where Tf = TU1x > 1, consideration of (25) implies that qo =°
and the solution becomes two-dimensional to leading order,

[U, V, W, P] = [ lalx(Tf - 1), lal 2x(Tf - 1), 0, 0] + .... (29)

Thus, both the pressure and spanwise flow decay as x --+ 00, unlike in the
increasingly attached case where they remain constant far downstream.

As the position y = lalx is approached, there is a dramatic change in
vorticity between the inviscid solutions in regions 1 and 3, which is smoothed

14



out by the action of viscous forces [16, 17] within region 2. There y =
lalx + x1/3(, with ( ,..." 0(1) and

[U, V, W, P] = [x1/3F((), lalx1/3F(() + x-1/3C((), x-2/3H((), x-4
/ 3q]

+ (30)

Substitution into (11) to (13) then produces the system

l [F - (F'] + C' + H = 0, ~ [F - (F'] + GF' = F",

and - ~FH -l(FH' + CH' + H 2 = -q + H", (31)

with the upper condition

F(() ,..." ( as ( -7 00, (32)

to match to the solution in region 1. The lower condition as suggested by
the detailed analysis of [14, Chapter 7] is

[F((), G(), H((J] _ [31~11~12, _1011 1
/
21(1, -1011 1

/
2] + ... , (33)

indicating that the G-term overtakes the F-term in the expansion for V (30)
inside the shear layer. So the streamwise velocity U, on approaching region
3 becomes negligible by a factor O(l;x)' resulting in a flow field dominated
below the shear layer by the secondary velocities V and W.

In the second inviscid region, region 3, the domain is 0 < 'fJ < 1 and the
expansions

[

1/3 ]_ x - 1/3 - -2/3 - -4/3 A[U, V, W,P,] - lnx U('fJ) , lalx V('fJ) ,x W('fJ) ,x q + ... (34)

hold. These expansions, when substituted into (11) to (13), confirm that
the secondary velocities V and W just dominate the solution here, leaving
the balances

V' + W = 0, VW' + W2 = Iql. (35)

The matching to region 2 above requires V('fJ) ,..." +lqI1/2('fJ -1) and W('fJ) ,..."
-lqI1/2 as 'fJ -7 1-; the solution obtained has

15



This predicts one change of sign occurring in the spanwise velocity, which
is in keeping with that observed in the downstream numerics (figure 6); any
other change of sign presumably occurs either in the shear layer or in the
higher-order solutions to region 1.

On approaching the wall at 'f/ = 0+, the flow solution (36) takes the form

(37)

fluid is now being pushed downwards and outwards from the symmetry
line. Viscous forces become significant in a wall layer of thickness O(x1/ 3),

defining region 4. There, as in the attached case, the equations modelling
flow towards a forward stagnation point [15, pp. 231-233] apply. Regarding
the behaviour of the streamwise velocity below the shear layer, U remains
positive and satisfies a linear equation in region 4 which, under the action
of viscosity, reduces the velocity smoothly to zero at the wall.

6 Further comments

Connections between the asymptotics (section 5) and numerics (section 4)
need mentioning first. For increasingly attached flows, where the slip velocity
increases linearly, there is encouraging agreement between the computations
and the downstream asymptotic structure. Difficulties due to strong grid
dependence (section 4) prevent further comparisons involving cases where
(J > 0.5. The cause of these difficulties is evident in the asymptotic struc
ture, where clearly a grid height Ymax » O((Jx) is required to satisfy the
outer boundary condition (16), with the downstream asymptote (10), to
any suitable degree of accuracy. In any case, the analysis indicates that far
downstream a strongly attached streamwise flow is formed which, in turn,
generates a constant favourable spanwise pressure gradient and a constant
spanwise mass flux outwards from the symmetry line. Historical effects on
the flow are dissipated in higher-order eigensolutions.

In the increasingly separated cases, where the slip velocity decreases lin
early, agreement between the asymptotic structure and the computations
exists, although it is less obvious. Indeed, the asymptotics predict less de
pendence on grid height in this case due to the fact that the outer boundary
condition downstream, given by (16) with (10), is satisfied to leading order
directly above the shear layer (y '" 1(Jlx); in other words, an accurate numer
ical result can be expected if the grid height Ymax lies above this shear layer
for all resolved x. The computations fail to resolve the flow sufficiently far
downstream for the expansion terms in the asymptotic structure of section
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(i)

x

x

Figure 9: Sketch indicative of the predicted longitudinal vortex flow down
stream, when the constant (j is negative. (i) Near symmetry plane z = 0,
the velocity vectors in the cross plane (solid-headed arrows) and in the x
direction (open-headed arrows): note that all are directed forward in x. (ii)
More widely in z, the implied particle paths, especially between the dis
placed shear flow and the wall. All particles move forward in x. The size of
the vortex in the cross section increases linearly with downstream distance
x (indicated by the dashed lines).
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5 to become significantly different in magnitude. For instance, the factor
O(l;x) makes numerical confirmation of the asymptotics a challenging fu
ture problem. Again, questions remain on the uniqueness of the pressure and
the effects of flow history. The absence of backflow in this three-dimensional
separation or lift-off is however most noteworthy.

Horseshoe Vortices. The numerical and asymptotic approaches together
tend to confirm the existence of a complex flow structure far downstream,
with the formation of a pair of horseshoe-type vortices (vortical structures)
being a likely feature of the flow. This is evident both in the numerical
description at the end of section 4 and in the asymptotic solution for region
3, in section 5.2, which generates a pair of linearly growing horseshoe-type
vortices between the wall and the lifting-off shear layer. Of course this is
tentative, as only a symmetry-line solution has been explored in the present
work. A further numerical computation for z of 0(1) beyond the symmetry
line would be required to fully confirm their existence (see figure 9). Mean
while, it is worth noting again the applications (section 2 and figure 1) to the
three main configurations given in the title of this paper, for each of which
downstream horseshoe vortex generation is predicted. On the application
(ii), examples of other pressurised configurations concern flow around an
entire three-dimensional obstacle, motion beside a floating body, branching
flow, motion induced by a suction or injection hole and two-fluid configu
rations such as at the side of a lake. The flow within the pressurised area
may be complex, but the nature of the relation (8) allows fairly represen
tative forcings B to be deduced. The result (8) also matches back to [6]'s
quasi-planar work (their equation 5.7d) upstream around an obstacle. On
the application (iii), the ability to control the strength of the horseshoe
vortices, through the design of a pipe junction for example, is of great inter
est. This control may be possible if the leading-order pressure contribution
fjx-4/ 3 present far downstream is not determined uniquely for the separated
(J' < 0 cases (unlike for the cases (J' > 0).

It is a pleasure for us to dedicate this article to Hendrik Hoogstraten.
Thanks are due to Prof. Susan Brown and the referees for comments and
EPSRC and DERA for financial support.

Appendix A: Further points on flow due to an ob
stacle

If the obstacle or roughness has steep edges [6] with an extensive flat top,
then the flow over it is of most interest at the spanwise outermost edge
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where there is near-alignment with the incident shear motion. The flow
above this edge is nonlinear and two-layered in the normal direction y*, for
the application (ii), whereas on the flat top surface the flow is single-layered
but is aware only of the change in surface height, not of the detailed edge
shape. The outer layer has a characteristic pressure level7r* and the spanwise
velocity w* is of order (7r* / p*)1/2. So conservation of mass suggests that u*
is represented by (7r* / p*)1/2L* /l*. Comparing this with the representative
value )..*y* due to the incident shear flow fixes the y* thickness scale as
(7r* / p*)1/2L* /(l* )..*). The same scale is expected for the typical roughness
height F* at the steep edge, because of nonlinear interaction, and so the
typical streamwise slope of the edge is given by

F* (l* ) 5/6
_ rv _ Re-1/ 6 .
L* L* W

(AI)

The streamwise slope thus lies between the orders Re~1/6 and Re~l here.
Similarly, the typical spanwise slope F* /l*, which is of the order (l*Rew / L*)-1/6

from (AI), lies between the orders unity and Re~1/6.
The governing equations in the outer layer are (1) to (3) again but with

out the viscous terms, and ir replaces p, while the boundary conditions are
in effect u rv Y + F(x, z), w -+ 0 at large positive Y, along with v -+ 0 as
Y -+ 0 for attached motion. The scaling behind Y, F here is as in (AI). The
above governing equations and constraints, coupled with upstream starting
conditions on u, v and w, are to determine the pressure variation ir(x, z)
(and hence B from (8)). As a consequence of the solution behaviour as
Y -+ 0+ (which involves square roots), the inner viscous nonlinear layer is
quasi-planar in the cross-plane; see in [7]. The streamwise velocity responds
linearly and passively. Again, at larger Izl values the outer and inner layers
merge into one on top of the roughness [7], while outside the edge there is
no nonlinear upstream influence apart from that from ir via (8) and that
produced sideways by momentum spillover downstream [6, 7].

A further discussion of the edge flow solutions that determine ir can be
found in [6, 7] or is available from the authors. An approximation for a
nearly straight edge is

ir=_~jJ2F2, (A2)

where jJ is the angle between the tangent to the roughness planform and the
incident stream direction. This expression matches with properties in [6] for
lower roughness heights. Clearly the major variation in ir occurs within the
edge region according to (A2). This quasi-planar solution can be extended
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to allow for separated eddy flow further downstream (of the roughness) by
regarding F as F -effective, defined as the edge height whenever the motion is
attached but the eddy height whenever the motion is separated [6, 12]. Here
F -effective could be taken to be nearly uniform, consistent with a nearly
uniform eddy pressure from (A2). Marginal stability is also mentioned in
[7] in connection with these flows.

Appendix B: Linearised analysis

At positions (such as near x = 0) where the boundary-layer displacement
on a symmetry line -A(x) is small, a linearised analysis of the system
(11) to (16) can be performed. Writing A(x) = ca(x), where E « 1, the
analysis yields for the pressure contribution P(x) and the surface shears
Tx = 8U/8y\y=o and T z = 8W/8yly=o the solutions

P(x) = E 8 1i: al/(~)(x - 0-2/3d~,

Tx -1 = E 82 iXoo a'(~)(x - ~)-1/3d~,

Tz = E 8 3 iXoo al/(~)(x - ~)-1/3d~,

where the constants

The linearised solution indicates that unless a smooth start with al/(x) con
tinuous is imposed, singular behaviour in both P(x) and Tz ofthe form x- 2/ 3

and x-1/ 3 is predicted.
If a(x) ,...., (}X as x -t 00, then the flow field will become fully nonlinear

further downstream where x = C 3/ 2X with X of 0(1). A, U, V, W, P and
yare rescaled by Em, m = -1/2, -1/2, 1/2, 1,2 and -1/2 respectively and
the governing system becomes (11) to (13) with boundary conditions (14)
to (16); A(x) is already in its asymptotic form (10).
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