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Abstract

This paper presents a new taxonomy of sublinear (multiple) keyword pattern matching
algorithms. Based on an earlier taxonomy by Watson and Zwaan [WZ96, WZ95], this new
taxonomy includes not only suffix-based algorithms related to the Boyer-Moore, Commentz-
Walter and Fan-Su algorithms, but factor- and factor oracle-based algorithms such as Back-
ward DAWG Matching and Backward Oracle Matching as well. In particular, we show how
suffix-based (Commentz-Walter like), factor- and factor oracle-based sublinear keyword pat-
tern matching algorithms can all be seen as instantiations of a general sublinear algorithm
skeleton. In addition, we show all shift functions defined for the suffix-based algorithms to be
in principle reusable for factor- and factor oracle-based algorithms. The taxonomy is based
on deriving the algorithms from a common starting point by adding algorithm and problem
details, in order to arrive at efficient or well-known algorithms. Such a presentation provides
correctness arguments for the algorithms as well as clarity on how the algorithms are related
to one another. In addition, it is helpful in the construction of a toolkit of the algorithms.
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1 Introduction

The (exact) keyword pattern matching problem can be described as “the problem of finding all
occurrences of keywords from a given set as substrings in a given string” [WZ95, WZ96]. This
problem has been frequently studied in the past, and many different algorithms have been sug-
gested for solving it. Watson and Zwaan (in [WZ95, WZ96], [Wat95, Chapter 4]) derived a set
of well-known solutions to the problem—including prefix-based Knuth-Morris-Pratt [KMP77] and
Aho-Corasick [AC75] and suffix-based Boyer-Moore [BM77], Commentz-Walter [CW79a, CW79b]
and variants of these four algorithms—from a common starting point, factoring out their common-
alities and presenting them in a common setting to better comprehend and compare them. Other
overviews of keyword pattern matching are given by Crochemore & Rytter [CR03], Apostolico &
Galil [AG97], and many others.

Although the taxonomy contained a large number of variations on these four basic algorithms,
some efficient variants were not included. Among these are the single and multiple keyword
Boyer-Moore-Horspool algorithms ([Hor80, NR02]). Most importantly however, a new cate-
gory of algorithms—based on factors instead of prefixes or suffixes of keywords—has emerged
in the last decade. This category includes algorithms such as (Set) Backward DAWG Matching
([CCG+94, NR00]) and (Set) Backward Oracle Matching ([ACR01, AR99]). Cleophas (in [Cle03])
extended the existing taxonomy to include these algorithms and their derivations. In this paper,
we focus our attention on the part of the new taxonomy containing (multiple) keyword pattern
matching algorithms that have potentially sublinear matching time; that is, the number of symbol
comparisons may be sublinear in the length of the input string.

Figure 1 shows the new taxonomy of sublinear keyword pattern matching algorithms. Nodes in
this taxonomy graph represent algorithms, while edges are labeled with the algorithm or problem
detail they represent.

1.1 Related work

The original taxonomy of keyword pattern matching algorithms is presented in Watson’s PhD the-
sis [Wat95, Chapter 4], while the part representing sublinear keyword pattern matching algorithms
is described in Watson & Zwaan’s [WZ95, WZ96]. Subsections 3.1 through 3.7 and Subsection 3.9
of this paper are modified versions of corresponding parts of those publications. They have been
included here to present a complete overview of the (new) taxonomy and reduce the number of
external references in this paper. A section on the precomputation of functions (including shift
functions) needed by the various algorithms is included in both papers. We do not discuss such
precomputation here. The additions to the original taxonomy to form the new taxonomy are
described in Cleophas’s MSc thesis [Cle03, Chapter 3].

An implementation of most of the algorithms in the (new) taxonomy in the form of the SPARE

Time (String PAttern REcognition) toolkit has been made. The implementation is based on the
algorithm representations that are part of the taxonomy. SPARE Time is discussed in more detail
in [Cle03, Chapter 5]. Benchmarking and performance tuning of this toolkit is currently being
performed and will be discussed in a future paper. The toolkit will be available for non-commercial
use from http://www.win.tue.nl/fastar.

1.2 Taxonomy construction

According to the Merriam Webster’s Collegiate Dictionary, a taxonomy is:

[An] orderly classification of plants and animals according to their presumed natural
relationships. [Mis93, p. 1208]

Although this definition is somewhat biology oriented, we can create a classification according to
essential details of algorithms or data structures from a certain field as well. In our case, such a
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classification takes the form of a (directed acylic) taxonomy graph1.
The main goal of constructing a taxonomy is to improve our understanding of the algorithms

in a problem domain, and their interrelatedness, i.e. what their commonalities and variations are.
The process of taxonomy construction is preceded by surveying the existing literature of algo-

rithms in the problem field, in order to see what algorithms exist. Based on such a survey, one
may try to bring order to the field by placing the algorithms in a taxonomy.

The various algorithms in an algorithm taxonomy are derived from a common starting point by
adding details indicating the variations between different algorithms. The common starting point
is a näıve algorithm whose correctness is easily shown. Associated with this abstract algorithm
are requirements in the form of a pre- and postcondition, an invariant and a specification of
(theoretical) running time and/or memory usage, specifying the problem under consideration.
The details separating the various algorithms each belong to one of the following categories:

• Problem details involve minor changes to pre- and postconditions, restricting in- or output

• Algorithm details are used to specify variance in algorithmic structure

• Representation details are used to indicate variance in data structures used, internally to an
algorithm or influencing the representation of in- and output as well.

• Performance details are about variance in running time and memory consumption.

As the goal of constructing our keyword pattern matching algorithm taxonomy is to improve
our understanding of the algorithms solving the problem, problem and algorithm details are most
important. They are the details forming the taxonomy graph edges. Representation and per-
formance details on the other hand will not be considered that explicitly, although they will be
considered2.

The choice of details—including their granularity—and of how to structure a taxonomy depends
on a person’s understanding of the algorithms in a domain. A taxonomy therefore is a taxonomy
of a problem field, but not the taxonomy of the field, and taxonomists may end up with different
taxonomies for the same field, depending on their understanding of and preference for emphasizing
certain details of algorithms. Taxonomy construction is often done bottom-up: initially one may
start with as many single-node taxonomies as there are algorithms in the problem domain literature
(each taxonomy corresponding to a single algorithm), and as one sees commonalities among the
algorithms, one may find generalizations of them which allow combining multiple taxonomies into
one larger one with the new generalization as the root. Once a taxonomy has been completely
constructed, it is presented in a top-down fashion.

Looking at taxonomy construction as a top-down process, the addition of problem, algorithm
or representation details to an algorithm results in a new algorithm solving the same or a similar
problem. As a side effect of such detail additions, performance details may change as well. The
goal of adding details to algorithms is to (indirectly) improve algorithm performance or to arrive
at one of the well-known algorithms appearing in the literature. Associated with the addition
of a detail, correctness arguments are given that show how the more detailed algorithm can be
derived from its predecessor. To indicate a particular algorithm and to form a taxonomy graph,
we use the sequence of details, in order of introduction. In some cases, it may be possible to derive
an algorithm in multiple ways through the application of some details in a different order. This
causes the taxonomy to take the form of a directed acyclic graph instead of a directed tree.

The type of taxonomy development and program derivation we use here has previously been
used for garbage collection algorithms [Jon83], finite automata construction and minimization
algorithms [Wat95, Wat04], graph representations [BS02] and other problem fields.

1One might say that our classifications are not strictly taxonomies, as the choice points or nodes in our taxonomies
are not necessarily single-dimension choice points.

2Since the goal of taxonomy construction is to broaden our understanding of a particular domain, we are less
interested in practical performance. The focus of a toolkit builder constructing a toolkit based on such a taxonomy,
on the other hand, will be more on practical performance aspects.
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1.3 Notation used

Since a large part of this paper consists of derivations of existing algorithms, we will often use
notations corresponding to their use in existing literature on those algorithms. Nevertheless, we
tried to adopt standard conventions for naming variables, functions and sets whenever possible.
We use A and B for arbitrary sets, V for the alphabet and V ∗ for words over the alphabet, P ,
Q and R for predicates, M for finite automata and Q for state sets. Symbols a, b, . . . , e represent
alphabet symbols from V , while p, r, . . . z represent words over alphabet V . States are represented
by q, while we use δ for automata transition functions. Symbols i, j, . . . , n represent integer values.
We use the symbol ⊥ (‘bottom’) to denote an undefined value.

Sometimes functions, relations or predicates are used that have names longer than just a single
character. Subscripts, superscripts, prime symbols etc. are sometimes used as well.

We use predicate calculus in our derivations [DF88, DS90] and present our algorithms in an
extended version of Dijkstra’s guarded command language [Dij76]. The extensions that we use
are:

• as b → S sa as a shortcut for if b → S [] ¬b → skip fi

• for x : P → S rof for executing statement list S once for each value of x initially satisfying P

(assuming that there is a finite number of such values for x), where the order in which values
of x are chosen is arbitrary. The for-rof statement forms a non-deterministic repetition. It
is taken from [vdE92].

Most of the definitions used are formally defined in Appendix B, unless their use is very local,
in which case they are defined in the main text when they are needed. Algorithm and problem
details used will be introduced in the course of the text, but a list of the details plus a short
description is available in Appendix A as well.

1.4 Overview

Section 2 presents a formal definition of the exact keyword pattern matching problem, as well as
the first, most abstract solutions to it that appear at the top of the taxonomy graph, up to and
including the general sublinear algorithm skeleton. In Section 3, suffix-based algorithms such as
the Commentz-Walter and Boyer-Moore algorithms are considered. Section 4 discusses algorithms
based on factors instead of suffixes, such as (Set) Backward DAWG Matching. The same is done
for factor oracle-based algorithms in Section 5. Section 6 gives some concluding remarks and
observations about the work reported in this paper, as well as directions for possible future work.
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2 The problem and some high-level solutions

In this section, we start out with a näıve solution to the problem and derive more detailed solutions
from it. By the end of this section, we arrive at the generalized algorithm skeleton for sublinear
keyword pattern matching.

Formally the keyword pattern matching problem, given an alphabet V (a non-empty finite set of
symbols), an input string S ∈ V ∗, and a finite non-empty pattern set P = {p0, p1, . . . p|P |−1} ⊆ V ∗,
is to establish (see Appendix B for an explanation of our notation for quantification)3

R : O =
(
⋃

l, v, r : lvr = S ∧ v ∈ P : {(l, v, r)}
)

that is to let O be the set of triples (l, v, r) such that l, v and r form a splitting of S in three parts
and the middle part—v—is a keyword in P .

A trivial (but unrealistic) solution to the problem is

Algorithm 2.1()

O :=
(
⋃

l, v, r : lvr = S ∧ v ∈ P : {(l, v, r)}
)

{ R }

The sequence of details describing this algorithm is the empty sequence (sequences of details are
introduced in Subsection 1.2 and Figure 1).

Two basic directions in which to proceed while developing näıve algorithms to solve this prob-
lem are, informally, to consider a substring of S as “suffix of a prefix of S” or as “prefix of a
suffix of S”. We choose the first possibility (the second leads to mirror images of the algorithms
obtained this way) as this is the way that the algorithms we consider treat substrings of input
string S.

Formally, we can consider “suffixes of prefixes of S” as follows:
(
⋃

l, v, r : lvr = S ∧ v ∈ P : {(l, v, r)}
)

= { introduce u : u = lv }
(
⋃

l, v, r, u : ur = S ∧ lv = u ∧ v ∈ P : {(l, v, r)}
)

= { nesting }
(
⋃

u, r : ur = S :
(
⋃

l, v : lv = u ∧ v ∈ P : {(l, v, r)}
) )

A simple non-deterministic algorithm is obtained by applying “examine prefixes of a given string
in any order” (algorithm detail (p)) to input string S. It results in

Algorithm 2.2(p)

O := ∅;
for (u, r) : ur = S →

O := O ∪
(
⋃

l, v : lv = u ∧ v ∈ P : {(l, v, r)}
)

rof{ R }

This algorithm is used as a starting point in [Cle03] and [Wat95] to derive prefix-based algorithms
(such as the Aho-Corasick and Knuth-Morris-Pratt algorithms and the Shift-And/-Or algorithms).
These algorithms—although very efficient for a number of situations—are not discussed in this
paper, as their behaviour is not sublinear.

3Note that lvr is used for the concatenation of l, v and r. Also note that the problem definition is slightly different

but equivalent to that used in [WZ95, WZ96, Wat95], where R : O =
(
⋃

l, v, r : lvr = S : {l} × ({v} ∩ P ) × {r}
)

is used. As a result, the algorithms given in this text will be slightly different in structure but equivalent in meaning
to the algorithms of the same name in those texts.
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The update of O in the repetition of the preceding algorithm can be computed with another
non-deterministic repetition. This inner repetition would consider suffixes of u. Thus by applying
“examine suffixes of a given string in any order” (algorithm detail (s)) to string u we obtain the
following algorithm:

Algorithm 2.3(p, s)

O := ∅;
for (u, r) : ur = S →

for (l, v) : lv = u →
as v ∈ P → O := O ∪ {(l, v, r)} sa

rof
rof{ R }

Algorithm (p, s) consists of two nested non-deterministic repetitions. We could have combined
the as statement with the inner for-loop, but do not do so in anticipation of algorithm detail
choices to be made. Each repetition can be made deterministic by considering prefixes (or suffixes
as the case is) in increasing (called detail (+)) or decreasing (detail (−)) order of length. Since
the algorithms we want to consider in order to achieve sublinear behaviour examine string S from
left to right, and the patterns in P from right to left, we focus our attention on:

Algorithm 2.4(p+, s+)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε 6∈ P → O := ∅ f i;
{ invariant: ur = S ∧ O =

(
⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)

}
do r 6= ε →

u, r := u(r↿1), r⇃1; l, v := u, ε;
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: u = lv }
do l 6= ε →

l, v := l⇂1, (l↾1)v;
as v ∈ P → O := O ∪ {(l, v, r)} sa

od
od{ R }

This algorithm has running time Θ(|S|2), assuming that computing membership of P is a Θ(1)
operation.

To arrive at a more efficient algorithm, we try to strengthen the guard of the inner loop
(l 6= ε). In [WZ96, WZ95, Wat95], the guard was strengthened by adding cand (l↾1)v ∈ suff(P )
(see Notation B.4 for cand and Definition B.9 for the definition of suff, pref and fact). A
more general strengthening is possible however. Suppose we have a function f ∈ P(V ∗) → P(V ∗)
satisfying

P ⊆ f(P ) ∧ suff(f(P )) ⊆ f(P )

then we have (for all w, x ∈ V ∗) w 6∈ f(P ) ⇒ w 6∈ P (application of the left conjunct) and
w 6∈ f(P ) ⇒ xw 6∈ P (application of right followed by left conjunct and definition of suff). We
may therefore strengthen the guard to l 6= ε cand (l↾1)v ∈ f(P ):

Algorithm detail 2.5. (gs). (guard strengthening). Strengthening the inner repetition guard
l 6= ε to l 6= ε cand (l↾1)v ∈ f(P ) for function f ∈ P(V ∗) → P(V ∗) satisfying P ⊆ f(P ) and
suff(f(P )) ⊆ f(P ).

This leads to the following generalized algorithm skeleton4:

4We use the term generalized to indicate that the skeleton can be instantiated with various functions f, in
contrast to the algorithm skeleton used in [WZ96, Wat95] where a skeleton using function suff is treated.
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Algorithm 2.6(p+, s+, gs)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε 6∈ P → O := ∅ f i;
{ invariant: ur = S ∧ O =

(
⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)

}
do r 6= ε →

u, r := u(r↿1), r⇃1; l, v := u, ε;
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: u = lv ∧ v ∈ f(P ) }
do l 6= ε cand (l↾1)v ∈ f(P ) →

l, v := l⇂1, (l↾1)v;
as v ∈ P → O := O ∪ {(l, v, r)} sa

od
{ l = ε cor (l↾1)v 6∈ f(P ) }

od{ R }

Observe that v ∈ f(P ) is now an invariant of the inner repetition. This invariant is initially
established by the assignment v := ε since P 6= ∅ and thus ε ∈ f(P ).

Several choices for f(P ) will turn out to be allowed, of which we mention the following:

• suff(P ). This choice will be discussed in Section 3.

• fact(P ). We discuss this choice in Section 4.

• factoracle(PR)R. Function factoracle returns a superset of fact. An implementation of
this choice using a kind of automata called factor oracles is discussed in Section 5.

• A function that returns a superset of suff(P ). This could be implemented using sufforacle,
i.e. the function defining the language recognized by a suffix oracle [ACR01, AR99] on a set
of keywords. We will not explore this option here.

Direct evaluation of (l↾1)v ∈ f(P ) is expensive. Instead, the transition function δR,f,P of a finite
automaton recognizing f(P )R is used—where we use the reversal operator R since suffixes of u are
read in reverse—such that δR,f,P has the following property:

Property 2.7 (Transition function of automaton recognizing f(P )R). The transition func-
tion δR,f,P of a (weakly deterministic) finite automaton5 M = 〈Q, V, δR,f,P , q0, F 〉 recognizing
f(P )R has the property that

δ∗R,f,P (q0, w
R) 6= ⊥ ≡ wR ∈ f(P )R

and we assume δ∗R,f,P (q, ε) = q

Note that Property 2.7 requires pref(f(P )R) ⊆ f(P )R, i.e. suff(f(P )) ⊆ f(P ). Also note that
wR ∈ f(P )R ≡ w ∈ f(P ). Since we will always refer to the same set P in the remainder of this
document, we will use δR,f instead of δR,f,P . Transition function δR,f can be computed beforehand,
as in [WZ95, WZ96, Section 4.1]6.

By making q = δ∗R,f(q0, ((l↾1)v)R) an invariant of the inner repetition of the algorithm, we can
now use the following algorithm detail:

5Finite automata and δ∗ are introduced in Definitions B.17 and B.18.
6In [WZ95, WZ96], the transition function is called τP . It is called τP,r in [Wat95] to distinguish it from the

forward trie function. We generalize the function by means of a parameter f and make it into a transition function
on automata.
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Algorithm detail 2.8. (egc). (efficient guard computation). Given a finite automaton rec-
ognizing f(P )R and satisfying Property 2.7, update a state variable q to uphold invariant q =
δ∗R,f(q0, ((l↾1)v)R). The guard conjunct (l↾1)v ∈ f(P ) then becomes q 6= ⊥.

This algorithm detail leads to the following algorithm skeleton:

Algorithm 2.9(p+, s+, gs, egc)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε 6∈ P → O := ∅ f i;
{ invariant: ur = S ∧ O =

(
⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)

}
do r 6= ε →

u, r := u(r↿1), r⇃1; l, v := u, ε; q := δR,f(q0, l↾1);
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: u = lv ∧ v ∈ f(P ) ∧ q = δ∗R,f(q0, ((l↾1)v)R) }

do l 6= ε cand q 6= ⊥ →
l, v := l⇂1, (l↾1)v;
q := δR,f(q, l↾1);
as v ∈ P → O := O ∪ {(l, v, r)} sa

od
{ l = ε cor (l↾1)v 6∈ f(P ) }

od{ R }

The particular automaton choices for this detail will be discussed together with the corresponding
choices for detail (gs) in Sections 3 through 5. Note that guard v ∈ P can be efficiently computed,
i.e. computed in Θ(1), in this and following algorithms by providing a map from states of the
automaton to a boolean.7

2.1 A change leading to smaller automata

In practice, the multiple-keyword algorithms using automata often use automata recognizing
f(P ′)R where P ′ = {v : v ∈ pref(P ) ∧ |v| = lminP} (where lminP =

(

MIN p : p ∈ P : |p|
)

)
instead of f(P )R. Informally, an automaton is built on the prefixes of length lminP , in order to
obtain smaller automata.

Algorithm detail 2.10. (lmin). The automaton used in algorithm detail (egc) is built on f(P ′)
where P ′ = {w : w ∈ pref(P ) ∧ |w| = lminP} instead of on f(P ).

As a result of using algorithm detail (lmin) with Algorithm 2.9 (p+, s+, gs, egc), after
assignment l, v := l⇂1, (l↾1)v in the inner loop, v ∈ f(P ′) holds (instead of v ∈ f(P ) as before). Due
to Property 2.7, in case |v| = lminP (i.e. v ∈ P ′) we need to verify any matches v(r↿i) ∈ P for
i ≤ lmaxP − lminP (where lmaxP =

(

MAX p : p ∈ P : |p|
)

). Since there is a longest keyword,
we do not need to increase i past the mentioned maximum value. This leads to the following
algorithm skeleton (where details (gs) and (egc) still need to be instantiated):

Remark 2.11. Note that this algorithm detail could be applied to any of the pattern matching
algorithms in the taxonomy shown in Figure 1.

7The construction of such a map may require quite some precomputation time. We do not consider the relative
precomputation times of the various algorithms, since they are both relatively hard to compare in terms of O
notation and are assumed to be relatively small compared to the time taken to perform the actual pattern matching
(i.e. the text on which the matching is performed is assumed to be relatively long).
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Algorithm 2.12(p+, s+, gs, egc, lmin)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε 6∈ P → O := ∅ f i;
{ invariant: ur = S ∧ O =

(
⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)

}
do r 6= ε →

u, r := u(r↿1), r⇃1; l, v := u, ε; q := δR,f(q0, l↾1);
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: u = lv ∧ v ∈ f(P ′) ∧ q = δ∗R,f(q0, ((l↾1)v)R) }

do l 6= ε cand q 6= ⊥ →
l, v := l⇂1, (l↾1)v;
q := δR,f(q, l↾1);

od;
{ l = ε cor (l↾1)v 6∈ f(P ′) }
as |v| = lminP →

w, s := v, r;
as w ∈ P → O := O ∪ {(l, w, s)} sa;
do |w| 6= lmaxP ∧ s 6= ε →

w, s := w(s↿1), s⇃1;
as w ∈ P → O := O ∪ {(l, w, s)} sa

od
sa

od{ R }

This algorithm has Θ(|S|) running time, assuming P (and thus
(

MAX p : p ∈ P : |p|
)

) to be
constant.

Remark 2.13. It is possible to improve the efficiency of the last part of this algorithm by in-
troducing a forward trie function (as in [Wat95, Section 4.2.2]), assuming that the initialization
to δ∗(q0, v) in the forward trie is a Θ(1) operation. This can be achieved for example by having
a mapping between each element of f(P ′) of length lmin and the corresponding state of the for-
ward trie. Since |v| = lminP always holds when the forward trie is used, it might be possible to
only construct the parts of the trie of depth lminP or greater. We do not further discuss this
option.

The use of algorithm detail (lmin) has the following effects:

• Reduced size of automaton: Since lminP might be less than |pi| for some i, the automaton
might have less states and less transitions. This gain may (partially) be offset by the time
spent executing the new as |v| = lminP → . . . sa statement, or by the space and time spent
when introducing the forward trie as in Remark 2.13.

• Reduced maximal shift distances with detail (ssd)8: Since |v| might be less than |pi| (for
i such that |pi| ≥ lminP ), there is less information from v that can be used. Hence shift
distances might be smaller, leading to a larger total number of shifts.

• Reduced number of character comparisons: Let P consist of keywords pi, pj, such that pj 6= pi

and pj ∈ pref(pi). In this case, using detail (lmin) it will take less comparisons to verify a
match of both keywords. Originally, for an occurrence of pi in S, |pi|+ |pj | comparisons are
needed to detect both matches. Using detail (lmin), lmin+(|pi|− lmin) = |pi| comparisons
are needed.

8To be introduced in the next subsection.
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• Increased number of character comparisons: Let there be an occurrence of u ∈ f(P ′) in S

such that u 6∈ f(P ), |u| + 1 character comparisons will be made (assuming that au 6∈ f(P ′),
with a the next character in S following the occurrence of u). When not using detail (lmin),
less than |u| + 1 comparisons will be made.

The effects thus depend on the set of keywords P and the text S.

2.2 A generalized sublinear algorithm skeleton

Starting from Algorithm 2.9 (p+, s+, gs, egc)9, we derive a generalized sublinear keyword pattern
matching algorithm skeleton forming the basis of a family of sublinear algorithms. The basic idea
is to make shifts of more than one symbol. This is accomplished by replacing u, r := u(r↿1), r⇃1
by u, r := u(r↿k), r⇃k for some k satisfying 1 ≤ k ≤

(

MINn : 1 ≤ n ∧ suff(u(r↿n)) ∩ P 6= ∅ : n
)

.
The upperbound is the distance to the next match, the maximal safe shift distance. Any smaller
number k satisfying the equation is safe as well, and we thus define a safe shift distance as:

Definition 2.14 (Safe shift distance). A shift distance k satisfying

1 ≤ k ≤
(

MINn : 1 ≤ n ∧ suff(u(r↿n)) ∩ P 6= ∅ : n
)

is called a safe shift distance.

Algorithm detail 2.15. (ssd). Replace assignment

u, r := u(r↿1), r⇃1

in Algorithm 2.9 (p+, s+, gs, egc) by assignment

u, r := u(r↿k), r⇃k

using a safe shift distance k.

Since shift functions may depend on l, v and r, we will write k(l, v, r).
We aim at approximating the maximal safe shift distance from below, since computing the

maximum safe shift distance itself essentially amounts to solving our original problem. To do
this, we weaken the predicate suff(u(r↿n)) ∩ P 6= ∅. This results in safe shift distances that are
easier to compute than the maximal safe shift distance. In the derivation of such weakening steps
in Sections 3 through 5, the u = lv ∧ v ∈ f(P ) part of the invariant of the inner repetition in
Algorithm 2.9 will be used. By adding l, v := ε, ε to the initial assignments of the algorithm, we
turn this into an invariant of the outer repetition. This also turns l = ε cor (l↾1)v 6∈ f(P )—the
negation of the guard of the inner repetition—into an invariant of the outer repetition. Hence, we
arrive at the following algorithm skeleton:

Algorithm 2.16(p+, s+, gs, egc, ssd)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε 6∈ P → O := ∅ f i;
l, v := ε, ε;
{ invariant: ur = S ∧ O =

(
⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)

∧ u = lv ∧ v ∈ f(P )
∧

(

l = ε cor (l↾1)v 6∈ f(P )
)

}
do r 6= ε →

u, r := u(r↿k(l,v,r)), r⇃k(l,v,r); l, v := u, ε; q := δR,f(q0, l↾1);
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: q = δ∗R,f(q0, ((l↾1)v)R) }

9One could start from Algorithm 2.12 (p+, s+, gs, egc, lmin) as well.
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do l 6= ε cand q 6= ⊥ →
l, v := l⇂1, (l↾1)v;
q := δR,f(q, l↾1);
as v ∈ P → O := O ∪ {(l, v, r)} sa

od
od{ R }

Using this algorithm skeleton, various sublinear algorithms may be obtained by choosing appro-
priate f(P ) and shift functions k(l, v, r). The next three sections consider the choice of suff(P ),
fact(P ) and factoracle(PR)R for f(P ) respectively.

In [Wat00], an alternative algorithm skeleton for (suffix-based) sublinear keyword pattern
matching is presented, in which the update to O in the inner loop has been moved out of that loop.
This requires the use of a precomputed output function, but has the potential to substantially
reduce the algorithms’ running time. This alternative skeleton is not considered in this paper.

12



3 Suffix-based sublinear pattern matching

We now derive a family of algorithms by using the set of suffixes of P , suff(P ), for f(P ) in
Algorithm 2.9, i.e. instantiating f with suff. We introduce

Algorithm detail 3.1. (gs=s). (guard strengthening = suffix). Strengthen the guard of the
inner repetition by adding conjunct (l↾1)v ∈ suff(P ).

As indicated in Section 2, direct evaluation of (l↾1)v ∈ suff(P ) is expensive and a reverse suffix
automaton is used with algorithm detail (egc): given a finite automaton recognizing suff(P )R

and satisfying Property 2.7, update a state variable q to uphold invariant q = δ∗R,suff
(q0, ((l↾1)v)R).

The guard conjunct (l↾1)v ∈ suff(P ) then becomes q 6= ⊥.10

Algorithm 3.2(p+, s+, gs=s, egc=rsa)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε 6∈ P → O := ∅ f i;
{ invariant: ur = S ∧ O =

(
⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)

}
do r 6= ε →

u, r := u(r↿1), r⇃1; l, v := u, ε; q := δR,suff(q0, l↾1);
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: u = lv ∧ v ∈ suff(P ) ∧ q = δ∗R,suff

(q0, ((l↾1)v)R) }

do l 6= ε cand q 6= ⊥ →
l, v := l⇂1, (l↾1)v;
q := δR,suff(q, l↾1);
as v ∈ P → O := O ∪ {(l, v, r)} sa

od
{ l = ε cor (l↾1)v 6∈ suff(P ) }

od{ R }

Assuming set P and (as a result)
(

MAX p : p ∈ P : |p|
)

to be constant, the algorithm has Θ(|S|)
running time.

We can introduce the safe shift distance, i.e. instantiating f with suff in Algorithm 2.16:

Algorithm 3.3(p+, s+, gs=s, egc=rsa, ssd)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε 6∈ P → O := ∅ f i;
l, v := ε, ε;
{ invariant: ur = S ∧ O =

(
⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)

∧ u = lv ∧ v ∈ suff(P )
∧

(

l = ε cor (l↾1)v 6∈ suff(P )
)

}
do r 6= ε →

u, r := u(r↿k(l,v,r)), r⇃k(l,v,r); l, v := u, ε; q := δR,suff(q0, l↾1);
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: q = δ∗R,suff

(q0, ((l↾1)v)R) }

do l 6= ε cand q 6= ⊥ →
l, v := l⇂1, (l↾1)v;
q := δR,suff(q, l↾1);
as v ∈ P → O := O ∪ {(l, v, r)} sa

od
od{ R }

10These two algorithm details are equivalent to the introduction of algorithm detail (rt) in [WZ95, WZ96, Wat95],
where the first detail (the strengthening of the guard) is introduced implicitly. We replaced it by two separate
algorithm detail names here as part of the generalization of guard strengthening and efficient guard computation
that was discussed in Section 2.
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Based on this algorithm skeleton, various shift functions will be obtained in the remainder of this
section. This will lead to the Commentz-Walter, Fu-San and multiple keyword Boyer-Moore and
Boyer-Moore-Horspool algorithms11.

3.1 No lookahead at the unscanned part of the input string

As indicated in Section 2.2, we aim at an approximation of the maximal safe shift distance that
is easier to compute, but may not always result in the maximal safe shift distance (although it
will never exceed that value). We first derive an approximation that does not depend on r and
that will be a starting point of most of our further derivations. In terms of algorithms this means
that we refrain from looking ahead at the symbols of r, the yet unscanned part of the input
string (algorithm detail (nlau) (no lookahead at unscanned part of the input string)). This is in
accordance with most of the algorithms we are aiming at. One symbol lookahead at the unscanned
part of the input string is discussed in Subsection 3.9. Taking the upperbound of Definition 2.14
as a starting point, we derive

(

MINn : 1 ≤ n ∧ suff
(

u(r↿n)
)

∩ P 6= ∅ : n
)

= { domain split n ≤ |r| ∨ n > |r|, r↿n = r if n ≥ |r| }
(

MINn : 1 ≤ n ≤ |r| ∧ suff
(

u(r↿n)
)

∩ P 6= ∅ : n
)

min
(

MINn : |r| < n ∧ suff(ur) ∩ P 6= ∅ : n
)

≥ { 1 ≤ n ≤ |r| : r↿n ∈ V n, monotonicity of suff and ∩}
(

MINn : 1 ≤ n ≤ |r| ∧ suff(uV n) ∩ P 6= ∅ : n
)

min
(

MINn : |r| < n ∧ suff(ur) ∩ P 6= ∅ : n
)

= { r ∈ V |r|, monotonicity of suff and ∩ : suff(ur) ∩ P 6= ∅ ⇒ suff
(

uV |r|
)

∩ P 6= ∅ }
(

MINn : 1 ≤ n ≤ |r| ∧ suff(uV n) ∩ P 6= ∅ : n
)

≥ { enlarging domain }
(

MINn : 1 ≤ n ∧ suff(uV n) ∩ P 6= ∅ : n
)

Since the last formula is to be the starting point of our further derivations we will from here on
aim at shift functions k being dependent only on u, i.e. on l and v (recall u = lv as in the invariant
in Algorithm 3.3). We will write k(l,v) instead of k(l,v,r).

3.2 Restriction to one symbol lookahead

In all derivations in this and following subsections we assume

u = lv ∧ v ∈ suff(P ).

Restriction to one symbol lookahead (l↾1, the last symbol of u scanned in the inner loop) leads
to the algorithm by Fan and Su [FS93, FS94]. It is obtained by weakening the predicate in the
domain of the approximation of the upperbound in Subsection 3.1 in the following way:

suff(uV n) ∩ P 6= ∅

= { u = lv }

suff(lvV n) ∩ P 6= ∅

⇒ { l = (l⇂1)(l↾1), l⇂1 ∈ V ∗, monotonicity of suff and ∩}

suff
(

V ∗(l↾1)vV n
)

∩ P 6= ∅

11With the exception of the multiple keyword Boyer-Moore-Horspool algorithm, which is described in [Cle03],
these were previously described in [WZ95, WZ96] already, where the algorithm skeleton is called (p+, s+, rt, ssd).
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= { suff(A) ∩ B 6= ∅ ≡ A ∩ V ∗B 6= ∅ }

V ∗(l↾1)vV n ∩ V ∗P 6= ∅

= { property B.16 }

V ∗(l↾1)vV n ∩ P 6= ∅ ∨ vV n ∩ V ∗P 6= ∅

Notice that we have obtained a weaker predicate solely by discarding any information on l⇂1. The
only information on l that is still taken into account is l↾1 being either empty or consisting of one
symbol. In the latter case we say to have one symbol lookahead. Observe that the symbol is the
last symbol of u scanned in the inner loop and that it is a non-matching symbol. After substituting
the weaker predicate we obtain shift distance kopt(l,v) where kopt ∈ V ∗ × suff(P ) → N is defined
for x ∈ V ∗ and y ∈ suff(P ) by

kopt(x, y) =
(

MINn : n ≥ 1 ∧
(

V ∗(x↾1)yV n ∩ P 6= ∅ ∨ yV n ∩ V ∗P 6= ∅
)

: n
)

.

Function kopt can be expressed as follows

kopt(x, y) =

{

dopt(x↾1, y)min dsp(y) x 6= ε

di(y)min dsp(y) x = ε

where dopt ∈ V × suff(P ) → N is defined by

dopt(a, y) =
(

MINn : n ≥ 1 ∧ V ∗ayV n ∩ P 6= ∅ : n
)

(a ∈ V, y ∈ suff(P )),

dsp ∈ suff(P ) → N is defined by

dsp(y) =
(

MINn : n ≥ 1 ∧ yV n ∩ V ∗P 6= ∅ : n
)

(y ∈ suff(P )),

(function d2 in [CW79a, CW79b]), and di ∈ suff(P ) → N is defined by

di(y) =
(

MINn : n ≥ 1 ∧ V ∗yV n ∩ P 6= ∅ : n
)

(y ∈ suff(P )),

(function d1 in [CW79a, CW79b]). Functions dopt and di account for occurrences of ay and y,
respectively, within some keyword (i.e. as infix of some keyword), whereas function dsp accounts
for occurrences of suffixes of y as proper prefixes of some keyword.

Calculating the shift distance in this way is referred to as algorithm detail (opt) and results in
algorithm (p+, s+, gs=s, egc=rsa, ssd, nlau, opt). We arrived at this algorithm not knowing
it had already been described by Fan and Su in [FS93, FS94]. From their informal description
it undoubtedly follows that they describe the same algorithm though their formal treatment of
the algorithm and, especially, the precomputation is rather involved. Finally, notice that to store
function dopt one needs a two dimensional table, whereas functions di and dsp only need one
dimensional tables. In the following subsections we derive shift functions giving shifts smaller
than kopt that are expressed solely in functions needing one dimensional tables for storage.

3.3 Lookahead symbol is mismatching

We derive an approximation from below of dopt that yields an algorithm that is the common
ancestor of the multiple keyword generalization of the Boyer-Moore algorithm [BM77] and the
Commentz-Walter algorithm [CW79a, CW79b]. Essentially, the resulting shift function is not
based on the identity of the lookahead symbol l↾1 but only uses the fact that the lookahead
symbol is mismatching, as is done in the Boyer-Moore shift function. In this way one might say
that the recognized suffix and the (mismatching) lookahead symbol have to some extent been
decoupled.

We start by weakening the predicate from dopt. Assume l 6= ε and (l↾1)v 6∈ suff(P ). We derive
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V ∗(l↾1)vV n ∩ P 6= ∅

= { v ∈ V |v|, monotonicity of ∩, duplication }

V ∗(l↾1)V |v|+n ∩ P 6= ∅ ∧ V ∗(l↾1)vV n ∩ P 6= ∅

⇒ { (l↾1)v 6∈ suff(P ), so l↾1 ∈ { a | a ∈ V ∧ av 6∈ suff(P ) }, definition MS }

V ∗(l↾1)V |v|+n ∩ P 6= ∅ ∧ V ∗
(

V \ MS(v)
)

vV n ∩ P 6= ∅

where MS ∈ suff(P ) → V is defined by

MS(y) = { a | a ∈ V ∧ ay ∈ suff(P ) } (y ∈ suff(P )).

The first conjunct will lead to a shift component based on the identity of the lookahead symbol
that is identical to a component of the Commentz-Walter shift function. The second conjunct will
lead to a shift component—based on the recognized suffix and the fact that the lookahead symbol
is mismatching—that is identical to a component of the Boyer-Moore shift function. Replacing
the range predicate of dopt by the last predicate of the preceding derivation we proceed

(

MINn : n ≥ 1 ∧ V ∗(l↾1)V |v|+n ∩ P 6= ∅ ∧ V ∗
(

V \ MS(v)
)

vV n ∩ P 6= ∅ : n
)

≥ {MIN with conjunctive range }
(

MINn : n ≥ 1 ∧ V ∗(l↾1)V |v|+n ∩ P 6= ∅ : n
)

max
(

MINn : n ≥ 1 ∧ V ∗
(

V \ MS(v)
)

vV n ∩ P 6= ∅ : n
)

= { change of bound variable: m = |v| + n; definition dvi (after derivation) }
(

MINm : m ≥ |v| + 1 ∧ V ∗(l↾1)V m ∩ P 6= ∅ : m − |v|
)

max dvi(v)

≥ { enlarging domain }
(

MINm : m ≥ 1 ∧ V ∗(l↾1)V m ∩ P 6= ∅ : m − |v|
)

max dvi(v)

= { l 6= ε, definition of charcw (after derivation) }

charcw(l↾1, |v|)maxdvi(v)

where dvi ∈ suff(P ) → N is defined by

dvi(y) =
(

MINn : n ≥ 1 ∧ V ∗
(

V \ MS(v)
)

vV n ∩ P 6= ∅ : n
)

(y ∈ suff(P ))

and charcw ∈ V × N → N is defined by

charcw(a, z) =
(

MINn : n ≥ 1 ∧ V ∗aV n ∩ P 6= ∅ : n − z
)

(a ∈ V, z ∈ N).

This results in shift distance kbmcw(l,v) where kbmcw ∈ V ∗ × suff(P ) → N is defined by

kbmcw(x, y) =

{ (

charcw(x↾1, |y|)max dvi(y)
)

min dsp(y) (x ∈ V +, y ∈ suff(P ))
di(y)min dsp(y) (x = ε, y ∈ suff(P )).

Notice that we have

kopt(x, y) ≥ kbmcw(x, y) (x ∈ V ∗, y ∈ suff(P )).

Approximation from below of kopt by kbmcw is referred to as algorithm detail (bmcw). We chose
this name to reflect that essential ideas from both the Boyer-Moore and Commentz-Walter algo-
rithms are introduced. In the next two subsections these algorithms are derived from the algorithm
presented in this subsection and characterized by detail sequence (p+, s+, gs=s, egc=rsa, ssd,
nlau, opt, bmcw).

16



3.4 The multiple keyword Boyer-Moore algorithm

We proceed by deriving the multiple keyword generalization of the Boyer-Moore algorithm [BM77]
from the algorithm in Subsection 3.3. It only differs from the algorithm there in the way the
lookahead symbol is taken into account. Assuming l 6= ε we derive

charcw(l↾1, |v|)

= { definition charcw }
(

MINn : n ≥ 1 ∧ V ∗(l↾1)V n ∩ P 6= ∅ : n − |v|
)

≥ {V ∗(l↾1)V n ∩ P 6= ∅ ⇒ V ∗(l↾1)V n ∩ V ∗P 6= ∅ }
(

MINn : n ≥ 1 ∧ V ∗(l↾1)V n ∩ V ∗P 6= ∅ : n − |v|
)

= {P 6= ∅, V ∗(l↾1)V |p|+1 ∩ V ∗p 6= ∅ for all p ∈ P , nonempty domain }
(

MINn : n ≥ 1 ∧ V ∗(l↾1)V n ∩ V ∗P 6= ∅ : n
)

− |v|

= { l 6= ε, definition of charbm (after derivation) }

charbm(l↾1)− |v|

where charbm ∈ V → N is defined by

charbm(a) =
(

MINn : n ≥ 1 ∧ V ∗aV n ∩ V ∗P 6= ∅ : n
)

(a ∈ V ).

It results in shift distance kbm(l,v) where kbm ∈ V ∗ × suff(P ) → N is defined by

kbm(x, y) =

{ (

(charbm(x↾1) − |y|)max dvi(y)
)

min dsp(y) (x ∈ V +, y ∈ suff(P ))
di(y)min dsp(y) (x = ε, y ∈ suff(P )).

Approximating kbmcw from below by kbm is referred to as algorithm detail (bm). It results in the
multiple keyword generalization of the regular Boyer-Moore algorithm [BM77]. The algorithm is
characterized by detail sequence (p+, s+, gs=s, egc=rsa, ssd, nlau, opt, bmcw, bm). The
regular Boyer-Moore algorithm can be obtained by restricting P to one keyword (problem detail
(okw) (one keyword)). Notice that we have

kbmcw(x, y) ≥ kbm(x, y) (x ∈ V ∗, y ∈ suff(P )).

Inequality can only occur if the lookahead symbol does not occur in any keyword except as the
last symbol.

The formula for the Boyer-Moore shift function given here differs from but is equivalent to the
ones given in [BM77] and [Aho90], as is shown in [WZ95, WZ96].

3.5 The Commentz-Walter algorithm

Instead of approximating charcw in kbmcw from below by charbm we now approximate dvi in kbmcw

from below by di. This results in the Commentz-Walter algorithm [CW79a, CW79b]. We derive

dvi(v)

= { definition dvi }
(

MINn : n ≥ 1 ∧ V ∗
(

V \ MS(v)
)

vV n ∩ P 6= ∅ : n
)

≥ {V ∗AvV n ∩ P 6= ∅ ⇒ V ∗vV n ∩ P 6= ∅ }
(

MINn : n ≥ 1 ∧ V ∗vV n ∩ P 6= ∅ : n
)

= { definition di }

di(v).
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This results in shift distance kcw(l,v) where kcw ∈ V ∗ × suff(P ) → N is defined by

kcw(x, y) =

{ (

charcw(x↾1, |y|)max di(y)
)

min dsp(y) (x ∈ V +, y ∈ suff(P ))
di(y)min dsp(y) (x = ε, y ∈ suff(P )).

Approximating kbmcw from below by kcw is referred to as algorithm detail (cw). It results in the
Commentz-Walter algorithm [CW79a, CW79b] that is characterized by detail sequence (p+, s+,
gs=s, egc=rsa, ssd, nlau, opt, bmcw, cw). Notice that we have

kbmcw(x, y) ≥ kcw(x, y) (x ∈ V ∗, y ∈ suff(P )).

Such a comparison can not be made between kbm and kcw as the following example shows.

Example 3.4 Let V ∈ {a, b, c, d}, P = {cababa}, and x ∈ V ∗. Shift functions kbm and kcw are
incomparable since

kopt(xd, a) = +∞min 6 = 6
kbmcw(xd, a) = (+∞max 4)min 6 = 6

kbm(xd, a) =
(

(6 − 1)max 4
)

min 6 = 5
kcw(xd, a) = (+∞max 2)min 6 = 6

and
kopt(xa, a) = +∞min6 = 6

kbmcw(xa, a) =
(

(2 − 1)max 4
)

min 6 = 4
kbm(xa, a) =

(

(2 − 1)max 4
)

min 6 = 4
kcw(xa, a) =

(

(2 − 1)max 2
)

min 6 = 2.

It also follows that in some cases kbmcw is smaller than kopt and that in some cases kbm and kcw

are smaller than kbmcw. �

It is not possible that both kbmcw(x, y) > kbm(x, y) and kbmcw(x, y) > kcw(x, y) hold for some
x ∈ V + and y ∈ suff(P ) since the first inequality implies charcw(x↾1, |y|) = +∞ and this in its
turn implies kbmcw(x, y) = dsp(y) = kcw(x, y).

3.6 Complete decoupling of recognized suffix and lookahead symbol

The derivations in the previous subsections effect an ever stronger decoupling of the recognized
suffix v and the lookahead symbol l↾1 in the subsequent shift functions. By approximating dvi

in kbm from below by di or charcw in kcw by charbm (or both in kbmcw) we obtain a complete
decoupling. It results in shift distance kdsl(l,v) where kdsl ∈ V ∗ × suff(P ) → N is defined by

kdsl(x, y) =

{ (

(charbm(x↾1) − |y|)max di(y)
)

min dsp(y) (x ∈ V +, y ∈ suff(P ))
di(y)min dsp(y) (x = ε, y ∈ suff(P )).

The algorithm can be characterized by detail sequences (p+, s+, gs=s, egc=rsa, ssd, nlau,
opt, bmcw, bm, cw) and (p+, s+, gs=s, egc=rsa, ssd, nlau, opt, bmcw, cw, bm).

3.7 Discarding the lookahead symbol

We weaken the predicate in the range of kopt by weakening its first disjunct to V ∗vV n ∩ P 6= ∅

due to V ∗(l↾1) ⊆ V ∗ and the monotonicity of ∩. This weakening step is referred to as discarding
the lookahead symbol l↾1. The shift distance corresponding to this weakening is knla(v) where
knla ∈ suff(P ) → N is defined by

knla(y) = di(y)min dsp(y) (y ∈ suff(P )).

Notice that this shift function can also be viewed as an approximation from below of kdsl. Pre-
computation of di and dsp is discussed in [WZ95, WZ96, Section 4.2]. Approximating kopt from
below by knla is referred to as algorithm detail (nla) (no lookahead at mismatching symbol) and
results in algorithm (p+s+, gs=s, egc=rsa, ssd, nlau, opt, nla).
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3.8 The multiple-keyword Boyer-Moore-Horspool algorithm

Here, we consider two particular weakenings of the range predicate suff(u(r↿n)) ∩ P 6= ∅ of
Definition 2.14:

V ∗vV n ∩ V ∗P 6= ∅

(used in algorithm detail (nla) discussed before) and

V ∗(l↾1)vV n ∩ V ∗P 6= ∅

(used in the derivation at the beginning of Section 3.2). We now further weaken the first predicate,
for the case v 6= ε:

V ∗vV n ∩ V ∗P 6= ∅

≡ { v = (v⇂1)(v↾1) }

V ∗(v⇂1)(v↾1)V n ∩ V ∗P 6= ∅

⇒ { v⇂1 ∈ V ∗ }

V ∗(v↾1)V n ∩ V ∗P 6= ∅

Weakening the second predicate, for the case v = ε, we get:

V ∗(l↾1)vV n ∩ V ∗P 6= ∅

≡ { v = ε }

V ∗(l↾1)V n ∩ V ∗P 6= ∅

Note the close resemblance between the two weakened predicates: the only difference is that the
first refers to (v↾1) (for case v 6= ε) whereas the second refers to (l↾1) (for case v = ε). Using these
predicates (depending on whether v = ε or v 6= ε) we get a practical safe shift distance. We show
the case v 6= ε (i.e. (v↾1) occurs in the predicate) here:

(

MINn : 1 ≤ n ≤ |r| ∧ suff(u(r↿n)) ∩ P 6= ∅ : n
)

≥ { weakening steps above }
(

MINn : 1 ≤ n ∧ (V ∗(v↾1)V n ∩ V ∗P 6= ∅) : n
)

= { definition of charbm }

charbm(v↾1)

To use charbm(l↾1) as a safe shift distance, we need l 6= ε to hold in case v = ε. Note that in
Algorithm 3.3 (p+, s+, gs=s, egc=rsa, ssd), l 6= ε does not hold initially. Assuming ε 6∈ P ,
we can solve this by changing the initialization to u, r := S↿lminP , S⇃lminP (where lminP =
(

MIN p : p ∈ P : |p|
)

). This results in shift distance kbmh(l,v) where kbmh ∈ V ∗ × suff(P ) → N is
defined by

kbmh(l, v) =

{

charbm(v↾1) if v 6= ε,
charbm(l↾1) if v = ε.

The use of shift function kbmh yields algorithm (p+, s+, gs=s, egc=rsa, ssd, nlau, opt, bmcw,
bmh)12, the Set Horspool algorithm [NR02, Section 3.3.2]. Adding problem detail (okw) leads to
the single-keyword Horspool algorithm [NR02, Section 2.3.2], [Hor80].

12The characterization of the algorithm is debatable, as it can be seen as a member of the algorithm family (p+,
s+, gs=s, egc=rsa, ssd, nlau, opt, bmcw) in case v = ε and as a further development of algorithm (p+, s+,
gs=s, egc=rsa, ssd, nlau, opt, nla) in case v 6= ε.
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3.9 One symbol lookahead at the unscanned part of the input string

In this subsection we consider looking ahead at the first symbol of the unscanned part r of the
input string. The first symbol of r will be taken into account independently of the other available
information. In this way we obtain stronger variants of all of the shift functions derived thus far.
Assuming r 6= ε and taking the upperbound on k given in Definition 2.14 as a starting point, we
derive

(

MINn : 1 ≤ n ∧ suff
(

u(r↿n)
)

∩ P 6= ∅ : n
)

= { domain split, 1 ≤ n ≤ |r|: r↿n = (r↿1)
(

(r⇃1)↿(n − 1)
)

, |r| < n: r↿n = r }
(

MINn : 1 ≤ n ≤ |r| ∧ suff
(

u(r↿1)
(

(r⇃1)↿(n − 1)
))

∩ P 6= ∅ : n
)

min
(

MINn : |r| < n ∧ suff(ur) ∩ P 6= ∅ : n
)

≥ { 1 ≤ n ≤ |r|: (r⇃1)↿(n − 1) ∈ V n−1, monotonicity of suff and ∩}
(

MINn : 1 ≤ n ≤ |r| ∧ suff
(

u(r↿1)V n−1
)

∩ P 6= ∅ : n
)

min
(

MINn : |r| < n ∧ suff(ur) ∩ P 6= ∅ : n
)

= { r 6= ε, r ∈ (r↿1)V |r|−1, suff(ur) ∩ P 6= ∅ ⇒ suff
(

u(r↿1)V |r|−1
)

∩ P 6= ∅ }
(

MINn : 1 ≤ n ≤ |r| ∧ suff
(

u(r↿1)V n−1
)

∩ P 6= ∅ : n
)

≥ { u ∈ V ∗, monotonicity of suff and ∩}
(

MINn : 1 ≤ n ≤ |r| ∧ suff
(

V ∗(r↿1)V n−1
)

∩ P 6= ∅ : n
)

≥ { enlarging domain, changing bound variable: m = n − 1 }
(

MINm : 0 ≤ m ∧ suff
(

V ∗(r↿1)V m
)

∩ P 6= ∅ : m + 1
)

= { suff(A) ∩ B 6= ∅ ≡ A ∩ V ∗B 6= ∅, nonempty domain }
(

MINm : 0 ≤ m ∧ V ∗(r↿1)V m ∩ V ∗P 6= ∅ : m
)

+ 1

= { definition charla (after derivation) }

charla(r↿1) + 1

where charla ∈ V → N is defined by

charla(a) =
(

MINn : 0 ≤ n ∧ V ∗aV n ∩ V ∗P 6= ∅ : n
)

(a ∈ V ).

Let M(u, r) denote the first expression in the preceding derivation as well as the first expression
in the derivation in Subsection 3.1, and let N(u) denote the last expression in the derivation in
Subsection 3.1. We then have

M(u, r)

= { property max }

M(u, r)maxM(u, r)

≥ { derivation in subsection 3.1, preceding derivation }

N(u)max
(

charla(r↿1) + 1
)

Since all shift functions derived in the previous subsections are approximations from below of
N(u) the preceding derivation shows that they all may be extended with max

(

charla(r↿1)+1
)

to
form a class of stronger shift functions of signature k(l,v,r) (algorithm detail (olau) (one symbol
lookahead at unscanned part of the input string)). The first derivation in this subsection shows
that it is also possible to couple the information on r↿1 with the information on l and v (u = lv).
We will not pursue that direction any further in this paper.
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4 Factor-based sublinear pattern matching

We now derive a family of algorithms by using the set of factors of P , fact(P ), for f(P ) in
Algorithm 2.9, i.e. instantiating f with fact. We introduce

Algorithm detail 4.1. (gs=f). (guard strengthening = factor). Strengthen the guard of the
inner repetition by adding conjunct (l↾1)v ∈ fact(P ).

As with (l↾1)v ∈ suff(P ) in Section 3, direct evaluation of (l↾1)v ∈ fact(P ) is expensive.
The transition function of an automaton recognizing the set fact(P )R is used instead (detail choice
(egc=rfa)). Using function δR,fact introduced in Section 2 and making q = δ∗R,fact(q0, ((l↾1)v)R)
an invariant of the inner repetition, the guard becomes

l 6= ε cand q 6= ⊥

Note that various automata exist whose transition functions can be used for δR,fact. One is the
trie built on fact(P )R, another is the suffix automaton or the dawg (for directed acyclic word
graph) on fact(P )R [CH97]. The use of algorithm details (gs=f) and (egc=rfa) leads to

Algorithm 4.2(p+, s+, gs=f, egc=rfa)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε 6∈ P → O := ∅ f i;
{ invariant: ur = S ∧ O =

(
⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)

}
do r 6= ε →

u, r := u(r↿1), r⇃1; l, v := u, ε; q := δR,fact(q0, l↾1);
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: u = lv ∧ v ∈ fact(P ) ∧ q = δ∗R,fact(q0, ((l↾1)v)R) }

do l 6= ε cand q 6= ⊥ →
l, v := l⇂1, (l↾1)v;
q := δR,fact(q, l↾1);
as v ∈ P → O := O ∪ {(l, v, r)} sa

od
{ l = ε cor (l↾1)v 6∈ fact(P ) }

od{ R }

This algorithm has Θ(|S|) running time, just as Algorithm 3.2 (p+, s+, gs=s, egc=rsa).
The use of detail sequence (gs=f, egc=rfa) instead of (gs=s, egc=rsa) has the following

effects:

• More character comparisons: In cases where (l↾1)v 6∈ suff(P ) yet (l↾1)v ∈ fact(P ), the
guard of the inner loop will still be true, and hence the algorithm will go on extending v to
the left more than strictly necessary.

• Larger shift distances with detail (ssd): When the guard of the inner loop becomes false,
(l↾1)v 6∈ fact(P ), which gives potentially more information to use in the shift function than
(l↾1)v 6∈ suff(P ). This aspect will be used in the derivations leading to algorithm detail
(nfs) in Subsection 4.1.

We can introduce the notion of a safe shift distance, as was done for suffix-based algorithms
in Section 3. This leads to:
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Algorithm 4.3(p+, s+, gs=f, egc=rfa, ssd)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε 6∈ P → O := ∅ f i;
l, v := ε, ε;
{ invariant: ur = S ∧ O =

(
⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)

∧ u = lv ∧ v ∈ fact(P )
∧

(

l = ε cor (l↾1)v 6∈ fact(P )
)

}
do r 6= ε →

u, r := u(r↿k(l, v, r)), r⇃k(l, v, r); l, v := u, ε; q := δR,fact(q0, l↾1);
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: q = δ∗R,fact(q0, ((l↾1)v)R) }

do l 6= ε cand q 6= ⊥ →
l, v := l⇂1, (l↾1)v;
q := δR,fact(q, l↾1);
as v ∈ P → O := O ∪ {(l, v, r)} sa

od
od{ R }

Since (l↾1)v 6∈ fact(P ) ⇒ (l↾1)v 6∈ suff(P ), we may use any of the safe shift functions derived for
the suffix-based sublinear algorithm family13. As these have all been discussed in Section 3, we
will not repeat them here.

4.1 The no-factor shift

We can do better than simply using the shift functions from Section 3, since (l↾1)v 6∈ fact(P ) is
stronger than (l↾1)v 6∈ suff(P ). Taking the predicate suff(u(r↿n)) ∩ P 6= ∅ from the domain of
the approximation of the upperbound on k given in Subsection 3.1, we derive:

suff(u(r↿n)) ∩ P 6= ∅

≡ { (⋆) }

suff(v(r↿n)) ∩ P 6= ∅

≡ { suff(x) ∩ P 6= ∅ ⇒ |x| ≥ lminP , |v(r↿n)| = |v| + n, duplication }

suff(v(r↿n)) ∩ P 6= ∅ ∧ |v| + n ≥ lminP (⋆⋆)

We now show that the step marked (⋆) is valid:

• case l = ε:

suff(u(r↿n)) ∩ P 6= ∅

≡ { u = lv, l = ε }

suff(v(r↿n)) ∩ P 6= ∅

• case l 6= ε (hence (l↾1)v 6∈ fact(P )):

suff(u(r↿n)) ∩ P 6= ∅

≡ { u = lv }

suff(lv(r↿n)) ∩ P 6= ∅

13Note that in doing so, we implicitly replace the suff(P ) part of their domain by fact(P ). This means that
precomputation of the functions changes. We do not further discuss this in this paper.
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≡ { Property B.7 }

suff((l⇂1)(l↾1)v(r↿n)) ∩ P 6= ∅

≡ { property of suff: suff(xay) = suff(x)ay ∪ suff(y) }
(

suff(l⇂1) (l↾1)v(r↿n) ∪ suff(v(r↿n))
)

∩ P 6= ∅

≡ { ∩ distributes over ∪ }
(

suff(l⇂1) (l↾1)v(r↿n) ∩ P
)

∪
(

suff(v(r↿n)) ∩ P
)

6= ∅

≡ { (l↾1)v 6∈ fact(P ) ≡ V ∗(l↾1)vV ∗ ∩ P = ∅, hence suff(l⇂1) (l↾1)v(r↿n) ∩ P = ∅ }

suff(v(r↿n)) ∩ P 6= ∅

Using the step marked (⋆), we also have suff(u(r↿n)) ∩ P 6= ∅ ∧ |v| + n ≥ lminP . Observe that
the left conjunct—suff(u(r↿n)) ∩ P 6= ∅—is the predicate used to derive safe shift distances for
suffix-based sublinear algorithms in Section 3. Let Weakening(suff(u(r↿n)) ∩ P 6= ∅) be any
weakening of that predicate. Then:

(

MINn : 1 ≤ n ∧ suff(u(r↿n)) ∩ P 6= ∅ ∧ |v| + n ≥ lminP : n
)

≥ { }
(

MINn : 1 ≤ n ∧ Weakening(suff(u(r↿n)) ∩ P 6= ∅) ∧ |v| + n ≥ lminP : n
)

≥ { Property B.2 }
(

MINn : 1 ≤ n ∧ Weakening(suff(u(r↿n)) ∩ P 6= ∅) : n
)

max
(

MINn : 1 ≤ n ∧ |v| + n ≥ lminP : n
)

= { }
(

MINn : 1 ≤ n ∧ Weakening(suff(u(r↿n)) ∩ P 6= ∅) : n
)

max (1 max (lminP − |v|))

We may thus use any shift function

(

MINn : 1 ≤ n ∧ Weakening(suff(u(r↿n)) ∩ P 6= ∅) : n
)

max (1 max (lminP − |v|)) .

It is clear that the left operand of the outer max corresponds to any safe shift function from
Section 3, represented by the various detail sequences given there. The right operand corresponds
to the shift in case (l↾1)v is not a factor of a keyword. We introduce shift function kssd,nfs(l, v, r)
where kssd,nfs ∈ V ∗ × fact(P ) × V ∗ → N is defined by

kssd,nfs(l, v, r) = kssd(l, v, r) max (1 max (lminP − |v|))

for any safe shift function kssd given in Section 3. We call it the no-factor shift, since it uses
(l↾1)v 6∈ fact(P ).

In particular, we may use shift distance 1 with the no-factor shift. Using this, we derive a new
shift distance:

1 max (1 max (lminP − |v|))

= { }

1 max (lminP − |v|)

This equals the shift distance used in the basic ideas for backward DAWG matching [NR02,
page 27] and—combined with algorithm detail (lmin) discussed in Section 2.1—set backward
DAWG matching [NR02, page 68]. The actual Backward DAWG Matching [CCG+94], [NR02,
page 28-29] and Set Backward DAWG Matching [CCG+94], [NR02, page 68] algorithms use an
improvement based on a property of DAWGs. We discuss this in Subsection 4.2.
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4.2 Cheap computation of a particular shift function

We now consider a different weakening of suff(u(r↿n))∩P 6= ∅ in the safe shift function predicate:

suff(u(r↿n)) ∩ P 6= ∅

≡ { see (⋆) in Subsection 4.1 }

suff(v(r↿n)) ∩ P 6= ∅

≡ { introduce last =
(

MAXm : 0 ≤ m ≤ |v| ∧ v↾m ∈ pref(P ) : m
)

}

suff((v↾last)(r↿n)) ∩ P 6= ∅

⇒ { r↿n ∈ V n, monotonicity of suff and ∩ }

suff((v↾last)V n) ∩ P 6= ∅

We now derive
(

MINn : 1 ≤ n ∧ suff((v↾last)V n) ∩ P 6= ∅ : n
)

= { property of suff: suff(A) ∩ B 6= ∅ ≡ A ∩ V ∗B 6= ∅ }
(

MINn : 1 ≤ n ∧ (v↾last)V n ∩ V ∗P 6= ∅ : n
)

≥ { last ≤ |v| as result of definition last, v↾last ∈ V last, monotonicity of suff and ∩ }
(

MINn : 1 ≤ n ∧ V last+n ∩ V ∗P 6= ∅ : n
)

≥ { Property B.2 }
(

MINn : 1 ≤ n : n
)

max
(

MINn : V last+n ∩ V ∗P 6= ∅ : n
)

= { definition of lminP }

1 max (lminP − last)

The last quantification depends on last =
(

MAXm : 0 ≤ m ≤ |v| ∧ v↾m ∈ pref(P ) : m
)

, which
seems to be rather difficult to compute. When using a DAWG to implement the transition function
δR,fact of algorithm detail (egc=rfa) however, we may use a property of this automaton to
compute last ‘on the fly’: the final states of the DAWG correspond to suffixes of some pR ∈ PR,
i.e. to prefixes of some p ∈ P . Thus, last equals the length of v at the moment the most recent
final state was visited.

We introduce shift function klskp where klskp ∈ fact(P ) → N is defined by

klskp = 1 max (lminP − last) .

Note that this shift function does not depend on l. It can therefore be seen as a variant of
algorithm detail (nla) discussed in Subsection 3.7. The shift function does not directly depend
on v either, but it indirectly depends on v due to its dependence on last. Calculating the shift
distance using klskp is algorithm detail (lskp). Using variable last and shift function klskp, the
algorithm becomes:

Algorithm 4.4(p+, s+, gs=f, egc=rfa, ssd, nlau, opt, nla, lskp)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε 6∈ P → O := ∅ f i;
l, v := ε, ε;
last := 0;
{ invariant: ur = S ∧ O =

(
⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)

∧ u = lv ∧ v ∈ fact(P )
∧

(

l = ε cor (l↾1)v 6∈ fact(P )
)

}
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do r 6= ε →
k := 1max(lminP − last);
u, r := u(r↿k), r⇃k; l, v := u, ε;
q, last := δR,fact(q0, l↾1), 0;
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: q = δ∗R,fact(q0, ((l↾1)v)R)

∧ last =
(

MAXm : m ≤ |v| ∧ v↾m ∈ pref(P ) : m
)

}
do l 6= ε cand q 6= ⊥ →

l, v := l⇂1, (l↾1)v;
q := δR,fact(q, l↾1)
as q ∈ F → last := |v| sa;
as v ∈ P → O := O ∪ {(l, v, r)} sa

od
od{ R }

This algorithm is a variant of the actual Set Backward DAWG Matching [CCG+94], [NR02,
page 68] algorithm, which is the same except for the addition of algorithm detail lmin: it can
be described as (p+, s+, gs=f, egc=rfa, lmin, ssd, nlau, opt, nla, lskp), while (p+, s+,
gs=f, egc=rfa, ssd, nlau, opt, nla, lskp, okw) describes single-keyword Backward DAWG
Matching.

Algorithm detail (nfs) is not included in either of these two detail sequences, since the no-factor
shift can never be larger than the shift according to klskp:14

lminP − |v|

≤ { last ≤ |v| }

lminP − last

= { definition klskp }

klskp

In addition, we note that the quantification
(

MINn : 1 ≤ n ∧ (v↾last)V n ∩ V ∗P 6= ∅ : n
)

in the
second line of the last derivation above equals dsp(v↾last) as defined in Subsection 3.2. It follows
that shift function klskp gives an approximation from below of that function.

14We do not include algorithm detail lmin in the detail sequence of the single-keyword Backward DAWG algorithm
either, since the addition of algorihm detail lmin does not influence the algorithm when combined with problem
detail okw.
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5 Factor oracle-based sublinear pattern matching

We now derive a family of algorithms by using factoracle(PR), the language of a factor oracle
on PR. A factor oracle is a deterministic finite automaton built on a set of words that recognizes
at least all factors of these words, but possibly more. In addition, if a word is recognized, all
suffixes of that word are recognized as well. In other words, a factor oracle recognizes a superset
of fact(PR) and is suffix-closed15. Even though the exact language recognized by a factor oracle is
not yet known, we can strengthen the guard of the inner repetition by choosing factoracle(P R)R

for f(P ), since P ⊆ factoracle(PR)R and suff(factoracle(PR)R) ⊆ factoracle(PR)R both hold.
The inner repetition guard now becomes

l 6= ε cand (l↾1)v ∈ factoracle(PR)R

Since the exact definition of factoracle independent of the factor oracle automaton is cur-
rently unknown, direct evaluation of (l↾1)v ∈ factoracle(PR)R is not possible. The transi-
tion function of the factor oracle (see [CZW04, CZW03], as well as [ACR01, AR99]) recogniz-
ing the set factoracle(PR) is therefore used. Using function δfactoracle(P R)

16 and making q =

δ∗
factoracle(P R)(q0, ((l↾1)v)R) an invariant of the inner repetition (algorithm detail (egc=rfo)),

the guard becomes
l 6= ε cand q 6= ⊥

The use of algorithm detail (egc=rfo) leads to

Algorithm 5.1(p+, s+, gs=fo, egc=rfo)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε 6∈ P → O := ∅ f i;
{ invariant: ur = S ∧ O =

(
⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)

}
do r 6= ε →

u, r := u(r↿1), r⇃1; l, v := u, ε; q := δfactoracle(P R)(q0, l↾1);
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: u = lv ∧ v ∈ factoracle(P R)R ∧ q = δ∗

factoracle(P R)(q0, ((l↾1)v)R) }

do l 6= ε cand q 6= ⊥ →
l, v := l⇂1, (l↾1)v;
q := δfactoracle(P R)(q, l↾1);
as v ∈ P → O := O ∪ {(l, v, r)} sa

od
{ l = ε cor (l↾1)v 6∈ factoracle(P R)R }

od{ R }

This algorithm has Θ(|S|) running time, just like Algorithm 3.2 (p+, s+, gs=s, egc=rsa) and
Algorithm 4.2 (p+, s+, gs=f, egc=rfa).

The use of detail sequence (gs=fo, egc=rfo) instead of (gs=f, egc=rfa) has the following
effects:

• Easier construction of and more compact automata: The factor oracle recognizing the words
in factoracle(PR) is easier to construct and may have less states and transitions than an
automaton recognizing fact(PR) (see [CZW04, CZW03, ACR01, AR99]).

15We prove this for the single keyword factor oracle in [CZW04, CZW03], and it is proven for the multiple keyword
version in [AR99]. Proofs for the single keyword version can be found in [ACR01] as well.

16Since it is possible that factoracle(P )R 6= factoracle(P R), we cannot use δR,factoracle to describe the
transition function of the automaton used. We therefore introduce the notation δfactoracle(P R), the transition

function of the automaton recognizing factoracle(P R).
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• More character comparisons: When (l↾1)v 6∈ fact(P ) yet (l↾1)v ∈ factoracle(P R)R, the
guard of the inner loop will still be true, and hence the algorithm will go on extending v to
the left more than strictly necessary.

Note that the effects of using (gs=fo, egc=rfo) instead of (gs=s, egc=rsa) are a combination
of the effects mentioned here and those described in Section 4 when comparing (gs=f, egc=rfa)
and (gs=s, egc=rsa).

We can again introduce the notion of a safe shift distance, as was done for suffix-based algo-
rithms and factor-based algorithms before. This leads to:

Algorithm 5.2(p+, s+, gs=fo, egc=rfo, ssd)

u, r := ε, S;
if ε ∈ P → O := {(ε, ε, S)} [] ε 6∈ P → O := ∅ f i;
l, v := ε, ε;
{ invariant: ur = S ∧ O =

(
⋃

x, y, z : xyz = S ∧ xy ≤p u ∧ y ∈ P : {(x, y, z)}
)

∧ u = lv ∧ v ∈ factoracle(PR)R

∧
(

l = ε cor (l↾1)v 6∈ factoracle(PR)R
)

}
do r 6= ε →

u, r := u(r↿k(l, v, r)), r⇃k(l, v, r); l, v := u, ε; q := δfactoracle(P R)(q0, l↾1);
as ε ∈ P → O := O ∪ {(u, ε, r)} sa;
{ invariant: q = δ∗

factoracle(P R)(q0, ((l↾1)v)R) }

do l 6= ε cand q 6= ⊥ →
l, v := l⇂1, (l↾1)v;
q := δfactoracle(P R)(q, l↾1);
as v ∈ P → O := O ∪ {(l, v, r)} sa

od
od{ R }

We derive

(l↾1)v 6∈ factoracle(PR)R

⇒ { factoracle(PR)R ⊇ fact(PR)R = fact(P ) }

(l↾1)v 6∈ fact(P )

Therefore any shift function may be used satisfying

(

MINn : 1 ≤ n ∧ Weakening(suff(u(r↿n)) ∩ P 6= ∅) : n
)

max (1 max (lminP − |v|))

as derived for factor-based algorithms in Section 4. In particular, both the safe shift functions for
the suffix-based algorithms as well as the no-factor shift introduced in Section 4 may be used.

The Set Backward Oracle Matching algorithm [AR99], [NR02, pages 69-72] equals our algo-
rithm (p+, s+, gs=fo, egc=rfo, lmin, ssd, nfs, one), while the single keyword Backward
Oracle Matching algorithm [ACR01], [NR02, pages 34-36], [CZW04, CZW03] corresponds to (p+,
s+, gs=fo, egc=rfo, ssd, nfs, one, okw).
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6 Final remarks

We presented a revised and expanded version [Cle03] of the original taxonomy of sublinear keyword
pattern matching algorithms [WZ95, WZ96, Wat95], giving new derivations for various algorithms
and placing them in the taxonomy. The use of formal techniques made it relatively easy to extend
and generalize the taxonomy.

In particular, we showed how suffix-, factor- and factor oracle-based sublinear keyword pattern
matching algorithms can all be seen as instantiations of a general sublinear algorithm skeleton.
In addition, we have shown all shift functions defined for the suffix-based algorithms to be in
principle reusable for factor- and factor oracle-based algorithms.

The algorithms described here could also be described using a generalization of the alterna-
tive Commentz-Walter algorithm skeleton presented in [Wat00], in which a move of the output
variable update out of a loop may substantially increase performance. In addition to changes to
the algorithms in the taxonomy to accomodate this idea, benchmarking would also need to be
performed to study the effects.

We have not considered precomputation of the various shift functions used in the algorithms
discussed in this paper. Precomputation of these functions for suffix-based algorithms was de-
scribed in [WZ95, WZ96], but extending this precomputation to factor- and factor oracle-based
algorithms remains to be done.

Although we have extended the original taxonomy of keyword pattern matching algorithms by
adding some algorithm variants and generalizing the suffix-based sublinear algorithm skeleton in
order to include factor- and factor oracle-based sublinear algorithms as well, there are still some
keyword pattern matching algorithms that we have not considered. Possible future work on the
sublinear part of the taxonomy includes:

1. Deriving the (Multi-)BNDM algorithm [NR00], a bit-parallel factor-based pattern matching
algorithm.

2. Deriving the Wu-Manber algorithm [WM94], a block (instead of single character) suffix-
based pattern matching algorithm that is often efficient in practice for multiple keyword
pattern matching (see [NR02, p. 74-76]).

3. Deriving Sunday’s variant of Boyer-Moore-Horspool [Sun90].

4. Looking into the possibility of a bit-parallel suffix-based pattern matching algorithm, i.e. a
bit-parallel version of (suffix-based) Commentz-Walter.
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A Algorithm and problem details

In this appendix we list the algorithm and problem details together with a short description.

p Examine prefixes of a given string in any order.

p+ Examine prefixes of a given string in order of increasing length.

s Examine suffixes of a given string in any order.

s+ Examine suffixes of a given string in order of increasing length.

gs=s Use guard strengthening to increment the length of a suffix only for as long as a
string which is a suffix of some keyword, preceded by a symbol is again a suffix of
some keyword.

gs=f Use guard strengthening to increment the length of a suffix only for as long as a
string which is a factor of some keyword, preceded by a symbol is again a factor of
some keyword.

gs=fo Use guard strengthening to increment the length of a suffix only for as long as a
string whose reverse is part of the language of the factor oracle on the reverse of
the set of keywords, preceded by a symbol is again part of that language.

gs=so Use guard strengthening to increment the length of a suffix only for as long as a
string whose reverse is part of the language of the suffix oracle on the reverse of the
set of keywords, preceded by a symbol is again part of that language.

egc=rsa Usage of automaton recognizing the reverse of the set of suffixes of the keywords
for efficient guard computation, i.e. to check whether a string which is a suffix of
some keyword, preceded by a symbol is again a suffix of some keyword.

egc=rfa Usage of an automaton recognizing the reverse of the set of factors of the keywords
for efficient guard computation, i.e. to check whether a string which is a factor of
some keyword, preceded by a symbol is again a factor of some keyword.

egc=rfo Usage of a factor oracle on the reverse of the keywords for efficient guard compu-
tation, i.e. to check whether a string which is part of the language of the factor
oracle, preceded by a symbol is again part of the language of that factor oracle.

lmin When using an automaton in one of the (egc) details, construct this automaton on
the prefixes of length equal to the length of the shortest keyword instead of on the
complete keywords.

ssd Consider any shift distance that does not lead to the missing of any matches. Such
shift distances are called safe.

one Use a safe shift distance of 1.

nlau No lookahead at the symbols of the unscanned part of the input string when com-
puting a safe shift distance.

olau One symbol lookahead at the unscanned part of the input string when computing
a safe shift distance.
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opt When computing a safe shift distance use the recognized suffix and only the imme-
diately preceding (mismatching) symbol, strictly coupled.

nla When computing a safe shift distance do not look at the symbols preceding the
recognized suffix.

lskp Use a property of the DAWG to maintain a variable representing the longest suffix
(of the recognized factor) that is a prefix of some keyword, and use this variable as
the basis for the safe shift distance.

bmcw When computing a safe shift distance on the one hand use the recognized suffix and
the fact that the symbol preceding it is mismatching, and on the other hand, but
strictly independent, the identity of that symbol.

bmh When computing a safe shift distance, use the first symbol compared against,
whether it is matching or not.

nfs When computing a safe shift distance, use the fact that the recognized factor pre-
ceded by the symbol preceding it is not a factor of any keyword.

okw (problem detail) The set of keywords contains only one keyword.

bm Lessen the contribution of the symbol preceding the recognized suffix to the shift
distance in case it does not occur in any keyword.

cw When computing a shift distance do not use the fact that the symbol preceding the
recognized suffix is mismatching (use the recognized suffix and the symbol preceding
it independently).

B Definitions

Notation B.1 (Quantifications). A basic understanding of the meaning of quantifications is
assumed. We use the following notation:

(⊕a : R(a) : f(a))

where ⊕ is the associative and commutative quantification operator (with unit e⊕), a is the dummy
variable introduced, R is the range predicate on the dummy, and f is the quantified expression.
By definition, we have:

(⊕a : false : f(a)) = e⊕

The following table lists some of the most commonly quantified operators, their quantified symbols,
and their units:

Operator ∨ ∧ ∪ min max +
Symbol ∃ ∀

⋃

MIN MAX Σ
Unit false true ∅ +∞ −∞ 0

Property B.2 (Conjunction and disjunction in MIN quantifications). For predicates P ,
Q and integer function f we have

(

MIN i : P (i) ∧ Q(i) : f(i)
)

≥
(

MIN i : P (i) : f(i)
)

max
(

MIN i : Q(i) : f(i)
)

(

MIN i : P (i) ∨ Q(i) : f(i)
)

=
(

MIN i : P (i) : f(i)
)

min
(

MIN i : Q(i) : f(i)
)
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Definition B.3 (Nondeterministic algorithm). An algorithm is called nondeterministic if the
order in which (some of) its statements can be executed is not fixed, or if the guards in a selection
statement are not mutually exclusive.

Notation B.4 (Conditional conjunction/disjunction). We use cand and cor for condi-
tional conjunction and conditional disjunction respectively. A conditional conjunction (disjunc-
tion) is one in which the second operand is evaluated if and only if this is necessary to determine
the value of the conjunction (disjunction).

Definition B.5 (String reversal function R). Assuming alphabet V , we define string reversal
function R recursively by εR = ε and (aw)R = wRa (for a ∈ V , w ∈ V ∗). We will use R on sets
of strings as well.

Definition B.6 (String operators ↿, ⇃, ↾, ⇂). Assuming alphabet V , we define four infix
operators ↿, ⇃, ↾, ⇂ ∈ V ∗ × N → V ∗ as follows:

• w↿k is the k min |w| leftmost symbols of w

• w⇃k is the (|w| − k)max 0 rightmost symbols of w

• w↾k is the k min |w| rightmost symbols of w

• w⇂k is the (|w| − k)max 0 leftmost symbols of w

The four operators are pronounced ‘left take’, ‘left drop’, ‘right take’ and ‘right drop’ respectively.

Property B.7 (String operators ↿, ⇃, ↾, ⇂). For string operator ↿, ⇃, ↾ and ⇂,

(w↿k)(w⇃k) = w

(w⇂k)(w↾k) = w

Example B.8 (String operators ↿, ⇃, ↾, ⇂). (hers)↿3 = her, (hers)⇃1 = ers, (hers)↾5 = hers

and (hers)⇂10 = ε.

Definition B.9 (Functions pref, suff and fact). For any given alphabet V , define pref ∈
P(V ∗) → P(V ∗), suff ∈ P(V ∗) → P(V ∗) and fact ∈ P(V ∗) → P(V ∗) as

pref(L) = (∪x, y : xy ∈ L : {x})
suff(L) = (∪ y, z : yz ∈ L : {z})
fact(L) = (∪x, y, z : xyz ∈ L : {y})

Informally, pref(L) (suff(L), fact(L)) is the set of all strings which are (not necessarily proper)
prefixes (suffixes, factors) of strings in L.

Notation B.10 (String arguments to functions pref, suff and fact). For string w ∈ V ∗,
we will write pref(w) (suff(w), fact(w)) instead of pref({w}) (suff({w}), fact({w})).

Property B.11 (Idempotence of pref, suff and fact). pref, suff and fact are idempotent.

Property B.12 (Relationship between fact and suff, pref). Function fact can also be
defined in terms of the functions suff and pref:

fact(L) = pref(suff(L))

and
fact(L) = suff(pref(L)).

Proof: We will prove only the first equality. The proof of the second is similar.
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y ∈ pref(suff(L))

= { definition of pref }

(∃z :: yz ∈ suff(L))

= { property of suff }

(∃z :: (∃x :: xyz ∈ L))

= { nesting }

(∃x, z :: xyz ∈ L)

≡ { definition of fact }

y ∈ fact(L)

Property B.13 (Duality of pref and suff). Functions pref and suff are each other’s duals.
This can be seen as follows:

x ∈ pref(LR)

≡ { property of pref }

(∃y :: xy ∈ LR)

≡ { property of operator R }

(∃y :: yRxR ∈ L)

≡ { change of bound variable: y′ = yR }

(∃y′ :: y′xR ∈ L)

≡ { property of suff }

xR ∈ suff(L)

≡ { property of operator R }

x ∈ suff(L)R

Property B.14 (Symmetry of fact). Function fact is symmetrical. This can be seen as follows:

fact(LR)

≡ { Property B.12 }

pref(suff(LR))

≡ { (dual of) Property B.13 }

pref(pref(L)R)

≡ { Property B.13 }

suff(pref(L))R

≡ { Property B.12 }

fact(L)R
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Definition B.15 (Prefix and suffix partial orderings). Partial orders ≤p, <p, ≤s and <s

over V ∗ × V ∗ are defined as
u ≤p v ≡ u ∈ pref(v)
u <p v ≡ u ∈ pref(v)\{v}
u ≤s v ≡ u ∈ suff(v)
u <s v ≡ u ∈ suff(v)\{v}

Property B.16 (Language intersection). If A and B are languages over alphabet V and
a ∈ V , then

V ∗A ∩ V ∗B 6= ∅ ≡ V ∗A ∩ B 6= ∅ ∨ A ∩ V ∗B 6= ∅

V ∗aA ∩ V ∗B 6= ∅ ≡ V ∗aA ∩ B 6= ∅ ∨ A ∩ V ∗B 6= ∅

Definition B.17 ((Deterministic) Finite Automaton). A (deterministic) finite automaton
is a 5-tuple M = 〈Q, V, δ, q0, F 〉 where

• Q is a finite set of states.

• V is an alphabet.

• δ ∈ Q × V → Q is a transition relation.

• q0 ∈ Q is a start state.

• F ⊆ Q is a set of final states.

Definition B.18 (Extending transition relation δ). We extend transition relation δ ∈ Q ×
V → Q to δ∗ ∈ Q × V ∗ → Q defined by

δ∗(q, ε) = q

δ∗(q, wa) = δ(δ∗(q, w), a)
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