
 

Vertical ray shooting and computing depth orders of fat
objects
Citation for published version (APA):
Berg, de, M., & Gray, C. M. (2008). Vertical ray shooting and computing depth orders of fat objects. SIAM
Journal on Computing, 38(1), 257-275. https://doi.org/10.1137/060672261

DOI:
10.1137/060672261

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1137/060672261
https://doi.org/10.1137/060672261
https://research.tue.nl/en/publications/4e9bb785-5361-4e83-b89e-d2a20594a344


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 38, No. 1, pp. 257–275

VERTICAL RAY SHOOTING AND COMPUTING DEPTH ORDERS
FOR FAT OBJECTS∗

MARK DE BERG† AND CHRIS GRAY†

Abstract. We present new results for three problems dealing with a set P of n convex constant-
complexity fat polyhedra in 3-space. (i) We describe a data structure for vertical ray shooting in P
that has O(log2 n) query time and uses O(n log2 n) storage. (ii) We give an algorithm to compute in
O(n log3 n) time a depth order on P if it exists. (iii) We give an algorithm to verify in O(n log3 n)
time whether a given order on P is a valid depth order. All three results improve on previous results.
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1. Introduction.
Motivation. Many algorithms and data structures developed in computational

geometry have a rather poor worst-case performance. This behavior is often caused
by sets of objects in very intricate configurations, such as many long and thin objects
packed closely together. For example, the worst-case running time of the best known
general motion-planning algorithm is Θ(nf ), where f is the number of degrees of
freedom of the robot, because for certain configurations of obstacles the free space
has complexity Θ(nf ). The configurations that determine the worst-case behavior,
however, are usually rather artificial constructions; one would expect that in practice
the input is much more well behaved, and that better performance is possible than
the worst-case analysis suggests.

These considerations have led to the study of geometric problems in so-called
realistic input models [9]. Here one places certain restrictions on the shape and/or
distribution of the input objects, so that hypothetical worst-case examples are ex-
cluded. The hope is that this will enable proving much stronger theoretical results
than are possible for arbitrary inputs, while the results are still general enough for
practical applications. One of the most widely studied realistic input models assumes
that the input objects are fat, that is, they are not arbitrarily long and skinny—
see the next section for a formal definition. For motion planning this has proved to
be quite successful: the free space for a not-too-large robot moving amidst a set of
fat obstacles has only linear complexity [26], which has enabled the development of
motion-planning algorithms with near-linear running times in this setting [25].

In this paper we study two problems arising in computer graphics in the context of
realistic input models: the vertical ray-shooting problem and the depth-order problem
for fat polytopes in R

3.
Problem statement and previous results. Let P be a set of n disjoint objects in

R
3.
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258 MARK DE BERG AND CHRIS GRAY

The first problem we study is the ray-shooting problem: preprocess the set P such
that ray-shooting queries (i.e., what is the first object in P hit by a query ray?) can be
answered efficiently. Ray-shooting queries are important for realistic image synthesis:
they form the basis of ray-tracing algorithms and can be used in radiosity methods
to approximate form factors. Hence, data structures for ray shooting have received
ample attention, in both computer graphics and computational geometry; the book
by De Berg [5] and the survey by Pellegrini [24] discuss many of the (computational
geometry) solutions. As for the motion-planning problem, the worst-case bounds that
have been obtained for the general ray-shooting problem are rather disappointing.
For ray-shooting queries with arbitrary rays in a collection of n disjoint triangles, for
example, the best known structures that achieve O(log n) query time use O(n4+ε)
storage [5, 23], and the best structures with near-linear storage have roughly O(n3/4)
query time [3]. For vertical ray shooting in a collection of disjoint triangles the
situation is still not very rosy: to obtain O(log n) query time one needs O(n2+ε)
storage, and with near-linear storage the query time becomes roughly O(

√
n) [5].

Given the prominence of the ray-shooting problem in computational geometry and
the fact that general inputs do not seem to admit very efficient (near-linear) solutions,
it is not surprising that ray shooting has already been studied from the perspective
of realistic input models. In particular, the vertical ray-shooting problem—here the
query ray is required to be vertical—has been studied for fat convex polyhedra. For
this case Katz [19] presented a data structure that uses O(n log3 n) storage and has
O(log4 n) query time. (In fact, Katz’s solution works for polygons whose projections
onto the xy-plane are fat, but it is not difficult to see that it works for fat three-
dimensional polytopes as well.) Using the techniques of Efrat et al. [17], it is possible
to improve the storage bound to O(n log2 n) and the query time to O(log3 n) [20].
Recently De Berg [6] presented a structure with O(log2 n) query time; his structure
uses O(n log3 n(log log n)2) storage.

The second problem we study is the depth-order problem: compute a depth order
for the set P, that is, an ordering P1, . . . , Pn of the objects in P such that if Pi is
below Pj , then i < j. Here we say that Pi is below Pj , denoted by Pi ≺ Pj , if there
are points (x, y, zi) ∈ Pi and (x, y, zj) ∈ Pj with zi < zj . In other words, a depth
order is a linear extension of the ≺-relation. Since there can be cycles in the ≺-
relation—we then say there is cyclic overlap among the objects—a depth order does
not always exist. In that case the algorithm should report that there is cyclic overlap.
Depth orders are useful in several applications. For example, they can be used to
render scenes with the Painter’s algorithm [18] or to do hidden-surface removal with
the algorithm of Katz, Overmars, and Sharir [21]. Depth orders also play a role in
assembly planning [1].

The depth-order problem for arbitrary sets of triangles in 3-space does not seem
to admit a near-linear solution; the best known algorithm runs in O(n4/3+ε) time [11].
This has led researchers to also study this problem for fat objects. Agarwal, Katz,
and Sharir [2] gave an algorithm for computing the depth order of a set of triangles
whose projections onto the xy-plane are fat; their algorithm runs in O(n log5 n) time.
However, their algorithm cannot detect cycles—when there are cycles it reports an
incorrect order. A subsequent result by Katz [19] produced an algorithm that runs
in O(n log5 n) time and that can detect cycles. In this case though, the constant of
proportionality depends on the minimum overlap of the projections of the objects that
do overlap. If there is a pair of objects whose projections barely overlap, then the
running time of the algorithm increases greatly. One advantage that this algorithm
has is that it can deal with convex curved objects.
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Our results. First, we present a new data structure for vertical ray shooting in a
collection of n convex constant-complexity fat polyhedra1 in R

3. Our structure uses
O((1/β)n log2 n) storage and has O((1/β2) log2 n) query time. Compared to Katz’s
structure [20] it has a better query time (while the storage is the same) and compared
to De Berg’s structure [6] it has a better storage bound (while keeping the same query
time).

Second, we present a new algorithm for computing a depth order on a collec-
tion of n convex constant-complexity fat polyhedra in R

3. Our algorithm runs in
O((1/β3)n log3 n) time, improving the result of Agarwal, Katz, and Sharir [2] by two
logarithmic factors. Like their algorithm, our algorithm unfortunately does not detect
cyclic overlap. Hence, we also study the problem of verifying a given depth order. We
give an algorithm that checks in O((1/β2)n log3 n) time2 whether a given ordering
for a set of fat convex polyhedra is a valid depth order. This is the first result for
this problem. Until now, the only algorithm for verifying a given depth order was an
algorithm for arbitrary triangles [11], which runs in O(n4/3+ε) time.

2. Preliminaries. In this section we introduce some basic definitions and ter-
minology.

For a three-dimensional object o, we use vol(o) to denote the volume of o and
we use proj(o) to denote the vertical projection of o onto the xy-plane. For a two-
dimensional object, we use area(o) to denote its area. We use the following definition
of fatness [9].

Definition 1. An object o in R
d is defined to be β-fat if for any ball b whose

center lies in o and that does not fully contain o, we have vol(b ∩ o) ≥ β · vol(b).
(For convex objects—the case considered in this paper—this definition is equiva-

lent, up to constant factors, to other definitions of fatness that have been proposed.)
It is not hard to show that the projection of a fat object is also fat, as proved by De
Berg [6] and made precise in the following lemma.

Lemma 1 (see [6]). If an object P is a β-fat object in three dimensions, then
proj(P ) has fatness Ω(β) in two dimensions.

Define the size of an object o, denoted by size(o) to be the radius of its smallest
enclosing ball. Note that the size of a ball is simply its radius.

Finally, we need a result that will allow us to stab a set of relatively large fat
objects that all intersect some region R using only a few points. Similar results have
been proved earlier [7].

Lemma 2. Let R be a bounded region in the plane, and let c be a constant with
0 < c ≤ 1. Then there is a collection Q of O(1/(cβ)2) points with the following
property: any β-fat object o with size(o) ≥ c · size(R) that intersects R contains at
least one point from Q.

Proof. Let U be a bounding square of R, and let Û be the square twice the size
of U and with the same center. Consider a β-fat object o with size(o) ≥ c · size(R)

that intersects R. Then area(o ∩ Û) ≥ c′cβ · area(Û) for a suitable constant c′ (cf.

Van der Stappen’s thesis [25, Theorem 2.9]). Hence, a regular grid on Û with �M	2
cells, where M = 2/(c′cβ), must have at least one grid point inside P , because the

area of any convex object missing all grid points is less than 2 · area(Û)/M .
The following lemma was proved in a more general setting by Van Kreveld [22].

1Though results are presented in terms of fat polyhedra, all our results also work in the more
general setting of objects that project to fat polygons.

2This is an improvement over the O(n log4 n) bound that we had in the preliminary version of
the paper [8], which was published in SODA 2006.
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However, his definition of fatness is different from ours. Therefore we have proved it
independently using our definition. The proof can be found in the appendix. In the
lemma below, an α-fat triangle refers to a triangle all of whose angles are at least α.
(Such a triangle is α′-fat, according to Definition 1, for some α′ = Ω(α).)

Lemma 3. Let P be a β-fat convex polygon with n vertices. There is a set T of
α-fat triangles that cover P , where |T | = O(n) and α = Θ(β).

We will also need the following lemma.
Lemma 4. Let P1 and P2 be simple polygons. Let e1 be an edge of P1 and e2 be

an edge of P2. If P1 intersects P2 so that there is no vertex of P1 inside P2 and no
vertex of P2 inside P1, then there is an intersection of edges e3 of P1 and e4 of P2

such that e3 
= e1 and e4 
= e2.
Proof. Let e of P1 and e′ of P2 be edges that intersect. If e 
= e1 and e′ 
= e2, then

we are done. If e 
= e1 and e′ = e2, then there must be an intersection between e and a
different edge of P2 (since there are no vertices of P1 inside P2), meaning that we have
found an intersection between e and some edge e′′ 
= e2, and we are done. Similarly,
we are done if e = e1 and e′ 
= e2. Finally, suppose e = e1 and e′ = e2. Since e1 enters
P2, it must exit it, and that implies that there must be an intersection between e1

and some edge e′′ 
= e2. This puts us in the previous case, so we are done.

3. Vertical ray shooting. Let P = {P1, . . . , Pn} be a collection of n constant-
complexity convex β-fat polyhedra that we wish to preprocess for vertical ray shooting.
We start by studying the simpler case where all the objects are intersected by a
common vertical line. After that we will show how to use this structure to obtain an
efficient solution to the general problem.

Agarwal, Katz, and Sharir [2] already described a data structure for the case
where all objects are intersected by a common vertical line and project to triangles.
We observe that it is possible to apply fractional cascading to their structure to obtain
the following result.

Lemma 5. Let P = {P1, . . . , Pn} be a set of n disjoint convex constant-complexity
β-fat polyhedra that are all stabbed by a vertical line � and that all project to fat
triangles. Then there is a data structure such that vertical ray shooting queries on
P can be answered in O(log n) time. The structure uses O((1/β)n log n) storage and
can be built in O((1/β)n log n) time.

Proof. As stated above, all we need to do is apply fractional cascading to the
structure of Agarwal, Katz, and Sharir [2]. For completeness, we briefly describe
their solution and explain how to apply fractional cascading.

The structure is a balanced binary tree T with the objects in the leaves, sorted
by their position along �; the lowest object is in the leftmost leaf, the second lowest
object in the next leaf, and so on. Since the objects are nonintersecting and convex,
this ordering is well defined.

For a node ν, let P(ν) denote the set of objects stored in the leaves of the subtree
rooted at ν. At each nonleaf node ν of T , we store the union U(ν) of the projections
of the objects in P(ν). We preprocess U(ν) for point-enclosure queries, that is, queries
that ask whether a point q in the xy-plane lies inside U(ν), as follows. Let p� be the
point where � intersects the xy-plane. Then all projections contain p�, and since they
are convex, U(ν) is star-shaped with p� in the kernel. Hence, if we partition the plane
into cones by drawing half-lines from p� through all breakpoints on the boundary
of U(ν), then a point-enclosure query can be answered in O(1) time after we have
determined in which cone the query point lies.

To perform a query with a vertical ray starting above all objects, we walk down
the tree as follows. Suppose we reach a node ν. When the point p where the ray hits
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the xy-plane lies inside the union of the right child of ν, we proceed to the right child;
otherwise we proceed to the left child. The leaf we reach must store the first object
hit (if any object is hit at all). When the starting point of the ray does not lie above
all objects, things are more complicated. However, Agarwal, Katz, and Sharir have
shown that a query can still be answered by walking down the tree, although now up
to four nodes per level may be visited. In any case, we visit O(log n) nodes in total,
and at each node we have to do a point-enclosure query. As explained above, a point-
enclosure query can be answered in O(1) time after we have determined in which cone
the query point lies. Finding the right cone can be done in O(log n) time by binary
search, but this can be made faster: using fractional cascading [13, 14], finding the
cones can be done in O(1) time, except for the search at the root. Since the application
of fractional cascading is completely standard in this setting, we omit further details.

To build the structure, we sort the objects along � in O(n log n) time, and then we
construct the unions to be stored at each node in a bottom-up fashion. Hence, when
we arrive at a node ν, we have to merge the two unions of the children of ν. Because the
unions are star-shaped with respect to the same point, computing the union of these
unions boils down to merging the two circularly sorted lists of breakpoints. Hence, this
can be done in linear time. The total time to construct all unions is therefore equal to
the total size of the data structure, which is

∑
ν O(|P(ν)|) = O(n log n). Adding the

additional pointers for the fractional cascading does not increase the preprocessing
time or the amount of storage asymptotically.

Now consider the general case, where the objects in P are not necessarily stabbed
by a vertical line. We can cover each object by O(1) subobjects whose projections
are fat triangles using the technique of Lemma 3, so we can assume without loss
of generality that all objects project to fat triangles. We shall make use of bal-
anced aspect ratio trees (BAR-trees). BAR-trees are a special type of binary space
partition (BSP) trees for point sets. They were introduced by Duncan, Goodrich,
and Kobourov [15, 16], who showed that BAR-trees have excellent performance for
approximate range searching and approximate nearest-neighbor searching. A BSP
tree T for a set S of points contained in some bounding square σ is a recursive
partitioning of σ by splitting lines, such that the final cells of the subdivision do
not contain any points in their interior. Each node ν of T corresponds to a region
region(ν) ⊂ σ, which is defined recursively as follows. The region region(root(T )) is
the whole square σ. Furthermore, if the splitting line stored at a node ν is �(ν), then
region(leftchild(ν)) = region(ν) ∩ �(ν)−, where �(ν)− is the half-plane below �(ν).
Similarly, region(rightchild(ν)) = region(ν) ∩ �(ν)+, where �(ν)+ is the half-plane
above �(ν).

The special properties of BAR-trees that are relevant for us are the following.
First, a BAR-tree on a set S of points has depth O(log |S|) and size O(|S|). Further-
more, the regions corresponding to a node in a BAR-tree have bounded aspect ratio,
which implies they are c-fat for some constant c. It has been shown by De Berg and
Streppel [12] that this implies the following.

Lemma 6 (see [12]). Let o be a β-fat object. Then there is a set G(o) of 12
points—we call these points guards—such that for any BAR-tree region R that in-
tersects o but does not contain a guard from G(o) in its interior we have size(o) =
Ω(size(R)).

De Berg and Streppel [12] used this to design a so-called object BAR-tree: this
is a BAR-tree that can be used for approximate range searching in a set of objects
rather than in a point set. Our ray-shooting structure combines BAR-trees and the
lemma above in a different way, as described next.
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Let P = {P1, . . . , Pn} be a set of n constant-complexity β-fat polyhedra. Let
Gi = G(proj(Pi)) be a set of guards for the projection of Pi, as in Lemma 6. Our
data structure for vertical ray shooting on P is defined as follows.

• The main tree T is a BAR-tree for the set G = G1 ∪ · · · ∪Gn.
• Let ν be a node in T . We say that an object Pi is large at ν if (i) proj(Pi)

intersects region(ν), and (ii) region(parent(ν)) contains a guard from Gi in its
interior, but region(ν) does not. Note that Lemma 6 implies that size(Pi) =
Ω(size(region(ν))) if Pi is large at ν. Let P(ν) ⊂ P be the subset of objects
that are large at ν.
Let Q(ν) be a set of points such that for any Pi ∈ P(ν), there is a point
q ∈ Q(ν) with q ∈ proj(Pi). By Lemma 2 there exists such a set Q(ν) of
size O(1/β2). Assign each object Pi ∈ P(ν) arbitrarily to one of the points
q ∈ Q(ν) contained in its projection. Let P(q) denote the set of objects
assigned to q. We store the set P(q) in a data structure T (q) for vertical
ray shooting according to Lemma 5. Thus each node ν has |Q(ν)| associated
structures.

Let us first see how to answer a vertical ray shooting query with this structure.
Lemma 7. A vertical ray-shooting query can be answered in O((1/β2) log2 n)

time.
Proof. Let p be the point where the line through the query ray intersects the

xy-plane. Search with p down the tree T . At every node ν on the search path,
perform a query in the associated structure T (q) of each q ∈ Q(ν). A query thus
takes O(log n · log n · (1/β2)) time, that is, the length of every search path, times the
query time in the associated data structures along the search path, times the size of
Q(ν).

To prove the correctness, it suffices to argue that any object Pi whose projection
contains p must be large at one of the nodes on the search path of p. To see this, we
observe that region(root(T )) contains all guards from Gi, while the leaf regions do
not contain any guards in their interior. It follows that when we follow the path of p,
the object Pi must become large at some node.

We can now prove our final result on vertical ray shooting.
Theorem 1. Let P be a collection of n convex disjoint constant-complexity β-fat

polyhedra in R
3. Then there is a data structure such that vertical ray-shooting queries

on P can be answered in O((1/β2) log2 n) time. The structure uses O((1/β)n log2 n)
storage and can be built in O((1/β)n log2 n) time.

Proof. The correctness of the query procedure and the query time have been
shown in Lemma 7.

It remains to prove the bound on the construction time; the storage bound then
follows trivially. Computing the guards for each object takes constant time per object,
and constructing the BAR-tree takes O(n log n) time [16]. We claim that an object
Pi is large at O(log n) nodes. Indeed, any guard is contained in the regions of the
nodes on a single path down the tree, and an object can be large at a node only if
the parent region contains one of its guards. Hence,

∑
ν |P(ν)| = O(n log n). We can

generate the sets P(ν) in O(n log n) time by filtering the objects down the tree T .
The set Q(ν) can be constructed in O(|Q(ν)|) time, and associating the objects with
the points in Q(ν) can be done in a brute-force way in O(|Q(ν)| · |P(ν)|). Finally,
constructing the associated structures of ν takes time

∑
q∈Q(ν)

O((1/β)|P(q)| log |P(q)|) = O((1/β)|P(ν)| log |P(ν)|)
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by Lemma 5. Hence, the overall construction time is∑
ν O(|P(ν)| · (|Q(ν)| + (1/β) log |P(ν)|))

= O((1/β)n log2 n + (1/β2)n log n)

= O((1/β)n log2 n).

4. The size of the transitive reduction of depth-order graphs. Let P =
{P1, . . . , Pn} be a set of disjoint objects in R

3. Recall that we say that Pi is below
Pj , denoted by Pi ≺ Pj , if there are points (x, y, zi) ∈ Pi and (x, y, zj) ∈ Pj with
zi < zj . We define the depth-order graph of P to be the graph G(P) = (P, E), where
(Pi, Pj) ∈ E if and only if Pi ≺ Pj . Hence, a depth order for P corresponds to a
topological order on G(P).

In general it is too costly to compute G(P) explicitly, since it can have Ω(n2) arcs.
When computing depth orders for segments in the plane, this can be circumvented by
looking only at pairs of segments that “see” each other, that is, that can be connected
vertically without crossing another segment. For objects in 3-space, however, the
number of pairs that see each other can be quadratic, even when the objects are
fat. In this section we therefore study the size of the transitive reduction of depth-
order graphs, since the transitive reduction is the smallest subgraph that is sufficient
to topologically sort a graph. The main result is that the number of arcs in the
transitive reduction of the depth-order graph of a set of fat objects is linear. Then in
the next section we will compute a superset of the arcs in the transitive reduction.

We define the separation of two nodes in the depth-order graph, denoted sep(Pi,
Pj), to be the length of the longest path from Pi to Pj . Notice that if the graph
contains cycles, sep(Pi, Pj) can be infinite. We define G(1)(P) = (P, E(1)) to be
the subgraph of the depth-order graph G(P), where (Pi, Pj) ∈ E(1), if and only if
sep(Pi, Pj) = 1 in G(P). In other words, (Pi, Pj) ∈ E(1) if there exists a vertical line
that intersects both objects, and every such line does not intersect any other object
between Pi and Pj .

Lemma 8. If G(P) is acyclic, the transitive closure of G(1)(P) is the transitive
closure of G(P).

Proof. We have to prove that there is a path Pi � Pj in G(P) if and only if there
is a path Pi � Pj in G(1)(P). The “if” part is obvious since G(1)(P) is a subgraph of
G(P). We prove the “only if” part by induction on sep(Pi, Pj).

If sep(Pi, Pj) = 1, the arc (Pi, Pj) exists in G(1)(P) by construction. Now assume
there is a path in G(1)(P) between all nodes with separation m. Take Pi and Pj in
G(P) which have separation m + 1. Then there is a node x such that sep(Pi, x) = 1
and sep(x, Pj) = m. By the induction hypothesis, we then have a path Pi → x � Pj

in G(1)(P).
For arbitrary triangles in 3-space, the number of arcs in G(1)(P) can still be

Θ(n2). For some special classes of objects, however, the number of arcs is linear. For
example, one can show that this number is linear for a set of disjoint polyhedra whose
projections form a set of polygonal pseudodisks [10]. Here we concentrate on the case
where the objects in the given set P project onto fat convex objects. We show that
in this case the number of arcs is also linear. Since fat convex objects project to fat
objects, showing this also shows that the number of arcs in G(1)(P) is small if the
input is a set of fat objects. We start with an auxiliary lemma.

Lemma 9. Let Pi ∈ P be an object and let P+(i) be the subset of objects Pj ∈ P
that are above Pi and where sep(Pi, Pj) = 1. Then the projections proj(Pj) of the
objects Pj ∈ P+(i) are pairwise disjoint.
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ρ
p

ρ
2ρ

proj(Pi)

Fig. 1. Illustration of the packing argument.

Proof. Suppose the projections are not pairwise disjoint. Then there are ob-
jects Pj , Pk ∈ P+(i) such that proj(Pj) ∩ proj(Pk) 
= ∅ and sep(Pi, Pj) = 1 and
sep(Pi, Pk) = 1. Since proj(Pj) and proj(Pk) intersect, they must share at least
one point, so there must be an arc between Pj and Pk in G(P). Therefore, either
sep(Pi, Pj) > 1 or sep(Pi, Pk) > 1, either case being a contradiction.

Theorem 2. Let P be a collection of n disjoint objects in R
3 that project to

convex β-fat objects. Then the number of edges in G(1)(P) is O(n/β).
Proof. We will charge each arc in G(1)(P) to an object and then use a packing

argument to show that the number of arcs in G(1)(P) charged to each object is O(1/β).
We project all objects onto the xy-plane, making them convex fat objects. In

this setting, we say that one object is above another if the original objects satisfy this
relationship.

Recall that for a planar object o, its size is defined as the radius of its smallest
enclosing disk. Consider an arc (Pi, Pj) in G(1)(P). We charge the arc to the smaller
of the two objects. That is, we charge the arc to Pi if size(proj(Pi)) < size(proj(Pj))
and to Pj otherwise. We claim that any object is charged O(1/β) arcs. To prove this,
take an arbitrary object Pj such that (Pi, Pj) is charged to Pi. Let ρ = size(proj(Pi)).
If there is an arc in G(1)(P) between Pi and Pj , then proj(Pj) intersects proj(Pi).
Let p be a point in this intersection. Then a circle centered at p with radius ρ is
centered in proj(Pj) and does not fully enclose proj(Pj), or else proj(Pj) would have
a smallest enclosing circle that is smaller than or equal to that of proj(Pi). Thus,
this circle contains at least βπρ2 units of area of proj(Pj) by the definition of fatness.
Also, this circle is completely enclosed in a circle of radius 2ρ centered at the center
of the smallest enclosing disk of proj(Pi). This is illustrated in Figure 1.

Since all objects proj(Pj) where Pj is above Pi and sep(Pi, Pj) = 1 must be
disjoint by Lemma 9, and because each must have at least βπρ2 units of area inside
a disk that has 4πρ2 units of area, there can be only 4/β edges of G(1)(P) charged to
Pi. We must double this number to account for objects Pj below Pi such that (Pj , Pi)
is charged to Pi. Therefore, we get an upper bound on the number of arcs charged to
Pi of 8/β. Finally, since there are n objects, G(1)(P) can have at most 8n/β edges,
which is O(n/β).
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Fig. 2. A projection of a polyhedron with witness edges added.

5. Computing depth orders. We now present the algorithm for finding the
depth order of a set P = {P1, . . . , Pn} of n disjoint β-fat convex polyhedra. In contrast
to the proof of Theorem 2, we require the complexity of the projection of each object
to be constant.

Witness edges. One of the basic steps that we need to perform repeatedly in our
algorithm will be to find polyhedra that are above a query polyhedron. To facilitate
this, we will add so-called witness edges inside the projection of each Pi. They are
defined as follows.

Let β′ be defined so that each member of {proj(Pi)|Pi ∈ P} is β′-fat. By Lemma 1
we know that β′ = Ω(β). Also let C = {0, α, 2α, . . . , cα}, where α = (β′π)/8 and
c = �2π/α�. We call the directions in C canonical directions. We require the witness
edges to have the following properties. Let Wi and Wj be the sets of witness edges
constructed for Pi and Pj , respectively.

(i) Each witness edge has one of the canonical directions.
(ii) For any pair of polyhedra Pi and Pj , we have that proj(Pi) intersects proj(Pj)

if and only if at least one of the following is true:
• A vertex of proj(Pi) is inside proj(Pj), or a vertex of proj(Pj) is inside
proj(Pi).

• A witness edge in Wi crosses a witness edge in Wj .
The construction of the set Wi of witness edges for Pi is done as follows. For each
edge e = vw of proj(Pi) we add to Wi two witness edges e′ and e′′ that are incident
to v and w, respectively, extend into the interior of Pi, and form a triangle with e.
The directions of the witness are chosen from the canonical directions, such that the
angles that e′ and e′′ make with e are minimal; see Figure 2. We claim that if we
add the witness edges in this manner, they have the required properties. The first
property holds by construction, so it remains to prove the second property. We first
argue that the witness edges lie completely inside proj(Pi), which implies that the
“if” part of the second property holds.

Lemma 10. The witness edges in Wi lie completely inside proj(Pi).
Proof. Let e be the edge for which we are adding witness edges. Let p be the

midpoint of e and consider the circle C with center p and diameter equal to the length
of e. Suppose an edge of proj(Pi) intersects the region bounded by e′ and e′′. Note
that this region must be inside the lighter region in Figure 3 by the minimal-angle
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e
α

|e|/2 sin 2α

p

C

e′ e′′

Fig. 3. No edge of the polygon may enter the light gray region.

condition which implies that the angles that e makes with e′ and e′′ are at most
α. Then, by convexity of proj(Pi), we know that proj(Pi) ∩ C must be completely
inside the union of the triangular wedges in Figure 3. These wedges have area at
most β′π|e|2/8 inside C. Hence, area(proj(Pi) ∩ C) < β′π|e|2/4, contradicting our
assumption that proj(Pi) is β′-fat.

The following lemma, which follows directly from Lemma 4, finishes the proof
that the witness edges have the required properties.

Lemma 11. If proj(Pi) intersects proj(Pj) and proj(Pi) does not contain a
vertex of proj(Pj) or vice versa, then a witness edge from Pi intersects a witness edge
from Pj.

The algorithm. The general idea of our algorithm is as follows. By Lemma 8
it is sufficient to find all pairs of objects Pi, Pj of separation 1 in the depth-order
graph. Such a pair of objects must, of course, intersect in the projection. Thus,
ideally we would like to find among all pairs Pi, Pj whose projections intersect the
pairs of separation 1. Our algorithm does not quite achieve this—it will find more
pairs, but the number of extra pairs we find will be small. Lemma 11 suggests that
the task of finding the intersecting pairs of projections can be broken into two parts:
finding pairs for which there is a vertex of the projection of one polyhedron inside the
projection of another and finding crossing pairs of witness edges.

Below we give a more detailed description of the algorithm. The algorithm will
find a set A of arcs—a superset of the arcs (Pi, Pj) for objects of separation 1—and
then topologically sort the graph G∗ = (P, A). Initially A is empty.

1. For every vertex v of each object Pi ∈ P, find the objects P b(v) and P a(v)
that are directly below and above v, respectively, and add the arcs (P b(v), Pi)
and (Pi, P

a(v)) to A.
2. Sort the objects by decreasing size so that size(proj(P1)) ≥ · · · ≥ size(proj

(Pn)), and define Si = {P1, . . . , Pi}.
3. For every witness edge e associated with each Pi, find a set P(e) consisting

of objects Pj ∈ Si−1 with the following properties:
(P1) Each Pj ∈ P(e) has a witness edge that intersects e.
(P2) Each Pj ∈ P(e) is above Pi.
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(P3) Each Pj ∈ Si−1 with sep(Pi, Pj) = 1 that satisfies (P1) and (P2) is a
member of P(e).

For each Pi, add the set of arcs {(Pi, Pj) : Pj ∈ P(e) and e is a witness edge
of Pi} to A.

4. Repeat step 3 with “below” substituted for “above” and the directions of the
arcs added reversed.

5. Topologically sort the graph G∗ = (P, A) and report the order.
Lemma 12. The order reported by the algorithm is a valid depth order for P if a

depth order exists.
Proof. Assume a depth order exists for P. It follows directly from the construction

that every arc added to the set A is also an arc in the depth-order graph G(P). It
remains to argue that A is a superset of the set of arcs in the graph G(1)(P).

Consider an arc (Pi, Pj) in G(1)(P). If there is a vertex of proj(Pi) in proj(Pj)
(or vice versa) then, because sep(Pi, Pj) = 1, that vertex is directly below Pj (resp.,
above Pi). Hence, the arc is found in step 1. By Lemma 11, the remaining case is
that a witness edge of proj(Pi) intersects a witness edge from proj(Pj). Without loss
of generality, assume Pi is smaller than Pj . Hence, Pj ∈ Si−1. Since (Pi, Pj) is an arc
in G(1)(P), sep(Pi, Pj) = 1. By condition (P3), the arc will be found in step 3 or 4,
depending on whether Pj is above or below Pi.

Step 1 can be carried out efficiently using the ray-shooting data structure pre-
sented in the previous section. Hence, it remains to describe step 3 in more detail.
This step will be performed as follows. We will treat each P2, . . . , Pn in order. When
we have to handle Pi, we will make sure we have a data structure available that we
can query with each witness edge e of Pi and that will then report the set P(e). After
having queried with all witness edges of Pi, we insert Pi into the data structure and
proceed with Pi+1. Next we describe this data structure.

The witness-edge-intersection data structure. Consider the set of all witness edges
of the objects in Pi−1. These witness edges have canonical directions, so we can
partition them into |C| subsets depending on their directions. The query segment e
has one of the canonical directions as well. Hence, we construct for each subset |C|
different data structures, one for each query direction. We now describe the structure
for one such subset, call it W , and a fixed query direction.

Assume without loss of generality that the witness edges in W are all horizontal,
and that the query edge e is vertical. The structure is a multilevel data structure
defined as follows.

• The top level of the data structure is a segment tree T on the projections of
the edges in W onto the x-axis. Note that each node ν in T corresponds to
a vertical slab in the plane.

• Let W (ν) denote the edges in W whose projection is in the canonical subset
of ν. Such an edge crosses the slab of ν but not the slab of the parent of ν.
We store the edges in W (ν) in a balanced binary tree T (ν), ordered according
to their y-coordinates. We call this the “slab tree.” So far our structure is
just a standard two-level tree to perform intersection queries with vertical
segments in a set of horizontal segments in the plane [10].

• Let μ be a node in T (ν). Let P(μ) denote the subset of objects that have a
witness edge in the subtree rooted at μ. The node μ represents a rectangular3

region R(μ) that is bounded by two slab boundaries and the topmost and

3This is only true because we assumed the edges in W are horizontal and the query edge is
vertical. In general, μ will represent a parallelogram, but this does not influence the arguments.
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bottommost edge stored in the subtree rooted at μ. We associate with μ a
reduced subset P(μ) ⊂ P(μ) of the objects, in the following way: Pj ∈ P(μ)
if and only if Pj ∈ P(μ) and size(proj(Pj)) ≥ size(R(μ))/2

√
2.

By Lemma 2 we can find a set Q(μ) consisting of O(1/β2) points such that

the projection of any object Pj ∈ P(μ) is stabbed. We arbitrarily assign each

Pj ∈ P(μ) to one of the points q it contains, and we associate a balanced
binary search tree T (q) with each point q on the associated objects, where
the sorting order is defined by the height of the objects along the vertical line
through q.

This finishes the description of the data structure. Next we describe the algorithms
to query the structure and to insert an object.

Lemma 13. With the structure described above, we can find the set P(e) referred
to in Step 3 of the depth-order algorithm in O((1/β3) log3 n) time. Furthermore, the
set P(e) contains O((1/β3) log2 n) objects.

Proof. Recall that we actually have to query |C| = O(1/β) different versions of
the structure. We focus on the time spent in one of these structures.

To perform a query with a witness edge e belonging to an object Pi, we search
with e in the first two levels of the tree in the standard way. This gives us O(log2 n)
nodes μ whose subtrees contain exactly those edges that intersect e. At each node
μ, we use the trees T (q) for q ∈ Q(μ) to find the lowest object that is above Pi. We
can search in T (q) since Pi is known to intersect all objects in P(q) in the projection.
Hence, at μ, we find |Q(μ)| objects in O(|Q(μ)| log n) time in total. The query time
and the bound on the size of P(e) follow.

It remains to argue that the reported set has the required properties. Properties
(P1) and (P2) follow immediately from the definition of the data structure and query
algorithm. Furthermore, when we query a tree T (q) we can indeed restrict our atten-
tion to the lowest object that is above Pi, because the other objects Pj will either be
below Pi or have sep(Pi, Pj) > 1. Hence, to prove (P3) it is sufficient to argue that
any Pj satisfying (P1) and (P2) and with sep(Pi, Pj) = 1 will be a member of one of

the sets P(μ). We know that the object will be a member of P(μ) for a visited node
μ.

Suppose for a contradiction that Pj 
∈ P(μ). This means that we must have
size(proj(Pj)) < size(R(μ))/2

√
2. This can happen only when size(proj(Pj)) is less

than d/2, where d is the distance between the top and bottom edges of R(μ), because
Pj crosses the slab of which R(μ) is a part. On the other hand, when we reach a node
μ in the slab tree by querying with a witness edge e of Pi, we have size(proj(Pi)) ≥
length(e)/2 ≥ d/2. This contradicts that when we query with a witness edge e of Pi,
all objects Pj in the data structure have size(proj(Pj)) ≥ size(proj(Pi)).

Lemma 14. An object Pi can be inserted in O((1/β) log2 n(log n + 1/β2)) time
into the structure.

Proof. Each of the O(1) witness edges of Pi has to be inserted into |C| = O(1/β)
structures. To insert a witness edge, we first find each node μ in a slab tree whose
canonical subset contains the witness edge. We test if size(Pj) ≥ size(R(μ))/2 and, if
so, find a point q ∈ Q(μ) that is contained in proj(Pi) and insert Pi into the tree T (q).
This takes O(log2 n(log n + 1/β2)) time per structure, thus O((1/β) log2 n(log n +
1/β2)) time in total.

From Lemmas 13 and 14, we see that steps 3 and 4 of the depth-order algo-
rithm can be performed in O((1/β3)n log3 n) time in total. We get the following
theorem.
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Theorem 3. Let P be a collection of n disjoint constant-complexity β-fat convex
polyhedra in R

3. Then we can compute a depth order for P in time O((1/β3)n log3 n)
if it exists.

6. Verifying depth orders. In order for our algorithm to be complete, it should
output the correct depth order if one exists, but it should also not output an incorrect
depth order if no depth order exists. Unfortunately the algorithm of the previous
section does not necessarily detect cycles in the ≺-relation. Hence, we present an
algorithm for checking whether a given order is correct.

We use the general approach by De Berg, Overmars, and Schwarzkopf [11] for veri-
fying depth orders. Let L=P1, . . . , Pn be the given order. Define L1 = {P1, . . . , P�n/2�}
and L2 = {P�n/2�+1, . . . , Pn}. We first check if any object in L1 is above any object
in L2. Clearly, if the answer is “yes,” then the given ordering is not valid. Otherwise,
we verify the lists L1 and L2 recursively. If T (β, n) is the amount of time to check the
objects in L1 against those in L2, then the overall algorithm takes O(T (β, n) log n)
time. We shall see that T (β, n) = O((1/β2)n log2 n), so the algorithm for verifying
the depth order takes O((1/β2)n log3 n) time. Next we describe how to check the
objects in L1 against those in L2.

First we introduce a new type of witness edge. The difference from the witness
edges in section 5 is that the new witness edges will have canonical directions in
three dimensions, rather than in the projection. In order to achieve this we need the
following lemma from Aronov, De Berg, and Gray [4].

Lemma 15 (see [4]). Let σ := �54
√

3/β	. For any convex β-fat object o in R
3,

there exist concentric axis-aligned cubes C−(o) and C+(o) with C−(o) ⊆ o ⊆ C+(o)
such that

size(C+(o))

size(C−(o))
= σ .

Assume we are given C−(o) and C+(o) for object o. We partition each face of
C+(o) into squares with side length equal to the side length of C−(o). For each facet
f of C−(o) and each square on the corresponding facet of C+(o), we sweep f so that
it coincides with the square; see Figure 4(i). The sweeping directions form the set of
canonical directions. There are at most σ2 different directions that a facet of C−(o)
can be swept in, so we have O(1/β2) canonical directions. We denote an arbitrary

member of this set of directions by 	d. Note that the set of canonical directions thus
obtained does not depend on o, only on the value σ, which is specified by the fatness
factor β.

For each Pi we construct a set Wi of witness edges as follows. First, we add the
edges of C−(Pi) to Wi. Second, for each silhouette vertex v of Pi (a silhouette vertex
is a vertex whose projection is a boundary vertex of the projection of Pi), we add an
edge ev that connects v to one of the facets of C−(Pi). This edge is allowed to be
in any of the canonical directions as long as it reaches a facet of C−(Pi). We can be
certain that at least one direction works for v since there must be at least one pair
consisting of a facet f of C−(Pi) and a square on a facet of C+(Pi) such that v is hit
when sweeping f to that square.

We also add some vertices to Pi that we call witness vertices as follows (see
Figure 4(ii)). For each witness edge e, we add the intersection point of proj(e) and
∂ proj(C−(Pi)), lifted back to e, to the set of witness vertices for Pi. Moreover, if the
projected witness edges of two consecutive silhouette vertices intersect, then we lift
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(i)
C+

C−

(ii)

C−

f(e)
e

Fig. 4. (i) One of the canonical directions. (ii) Projection of the new witness edges and witness
vertices.

those intersection points to either of the witness edges and make the resulting point
a witness vertex. Finally, we add the vertices of C−(Pi) to the set of witness vertices.

Lemma 16. The witness edges satisfy the following properties.
(i) Each witness edge has one of the canonical directions.
(ii) For any pair of polyhedra Pi and Pj, we have that proj(Pi) intersects proj(Pj)

if and only if at least one of the following is true:
• A projected witness or silhouette vertex of Pi is inside proj(Pj), or a

projected witness or silhouette vertex of Pj is inside proj(Pi).
• A projected witness edge in Wi crosses a projected witness edge in Wj.

Proof. Property (i) is satisfied by construction. Also, if one of the two conditions
in property (ii) is satisfied, then the projections of Pi and Pj must intersect since they
share a point. Therefore, we will concentrate on proving that a projected witness edge
in Wi crosses a projected witness edge in Wj assuming that proj(Pi) ∩ proj(Pj) 
= ∅,
and that no projected witness or silhouette vertex of Pi is contained in proj(Pj) (or
vice versa).

Since proj(Pi) intersects proj(Pj) and no projected silhouette vertex of one is
inside the projection of the other, there must be silhouette edges of proj(Pi) and
proj(Pj) that cross. Take one such pair of edges and call them ei and ej . Consider
the arrangement induced by the projections of the silhouette edges and the witness
edges of Pi, and let f(ei) denote the (bounded) face in this arrangement with ei on
its boundary; see Figure 4(ii). Define f(ej) similarly for the arrangement induced by
the projections of the silhouette edges and the witness edges of Pj . By Lemma 4,
there must be an intersection between a pair of edges from f(ei) and f(ej), neither
of which is proj(ei) or proj(ej). Hence, there must be an intersection between two
projected witness edges.

It follows from Lemma 16 that there is an object from L1 below an object from L2

when at least one of the following conditions holds for some pair Pi, Pj with Pi ∈ L1

and Pj ∈ L2: a witness or silhouette vertex of Pi is below Pj , or a witness or silhouette
vertex of Pj is above Pi, or a witness edge of Pi is below a witness edge of Pj . To
test for the first condition, we construct a data structure for vertical ray shooting
on the objects in L2 and query it with upward rays from the witness and silhouette
vertices of the objects in L1. The second condition can be tested similarly, namely,
by constructing a data structure for vertical ray shooting on the objects in L1 and
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querying it with downward rays from the witness and silhouette vertices of the objects
in L2. By Theorem 1 and the fact that the total number of witness and silhouette
vertices is O(n), this will take O((1/β2) log2 n) in total. To test the third condition
we proceed as follows. Let W (L1) and W (L2) denote the set of all witness edges
defined for the objects in L1 and L2, respectively. We will preprocess W (L2) into a
data structure for querying with witness edges from W (L1), according to the following
lemma.

Lemma 17. We can preprocess the set W (L2) in O((1/β2)n log n) time into a
data structure of size O((1/β2)n log n) such that, for any witness edge e ∈ W (L1),
we can determine in O((1/β2) log2 n) time whether any witness edge from W (L2) is
above e.

Proof. Let W�d(L2) ⊂ W (L2) denote the subset of witness edges of canonical

direction 	d. Note that
∑
�d

|W�d(L2)| = |W (L2)| = O(n).

Define W�d(L1) similarly. For each pair of directions 	d1, 	d2 we build a data structure
on W�d1

(L2) for querying with edges from W�d2
(L1). (In fact, the structure can be

queried with any segment with direction 	d2.) Assume without loss of generality that
	d1 is parallel to the x-axis and 	d2 is parallel to the y-axis. The structure is a multi-
level data structure similar to the structure of section 5. The first two levels are
exactly the same as for the structure in section 5: the first level is a segment tree on
the x-ranges of the witness edges, and the second level is a balanced binary search
tree on their y-values (in section 5 this was called the slab tree). For each canonical
subset of a node in the slab tree, we store its highest witness edge. Note that the
concept of “highest” is well defined since the witness edges in the canonical subset all
have the same direction and the query edge will have a fixed direction as well.

A query with a witness edge e ∈ W�d2
(L1) can be answered in O(log2 n) time,

as follows: query with the x-coordinate of e in the segment tree; for each node ν on
the path, query with the y-range of e in the associated slab tree T (ν); and for each
selected node μ in T (ν), check if the witness stored there is above e.

When we are querying with an edge e, we actually have to query in the sets
W�d(L2) for each canonical direction 	d. Since there are O(1/β2) canonical directions,

this means that the total query time is O((1/β2) log2 n).

Building the structure on W�d1
(L2) for a given query direction 	d2 can be done

in O(|W�d1
(L2)| log |W�d1

(L2)|) time. This is because the associated structures of the
segment tree (the slab trees) can be built in linear time if we presort the witness
edges by y-coordinate. After that we compute the highest edge for each node in a
slab tree in a bottom-up fashion (the highest edge for a node is the higher of the
highest edges of its two children) in linear time. Hence, the overall preprocessing time
is the same as the amount of storage, which is O(|W�d1

(L2)| log |W�d1
(L2)|). Overall,

the preprocessing is therefore

∑
�d1,�d2

O(|W�d1
(L2)| log |W�d1

(L2)|)
= O(1/β2) ·

∑
�d1
O(|W�d1

(L2)| log |W�d1
(L2)|)

= O((1/β2)n log n).

Putting everything together, we get the following theorem.
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Theorem 4. We can verify whether a given order on a set of n disjoint convex
constant-complexity β-fat polyhedra in R

3 is a valid depth order in O((1/β2)n log3 n)
time.

7. Concluding remarks. We have presented new and improved solutions to
three problems on fat convex polyhedra in 3-space: vertical ray shooting, computing
depth orders, and verifying depth orders. One open problem is to see if the results
can be extended to fat nonconvex polyhedra or fat curved objects.

Our algorithm for verifying depth orders uses a collection of witness edges that
have canonical directions in three dimensions and allow us to capture (together with
a certain set of points in the objects) the above-below relation between the objects.
It would be interesting to investigate if these witness edges can be useful for other
problems on convex fat objects as well.

Appendix. This appendix contains a proof that was omitted.
Lemma 3. Let P be a β-fat convex polygon with n vertices. There is a set T of

α-fat triangles that cover P where |T | = O(n) and α ≥ β/128.
Proof. Recall that for triangles, we use the definition that the fatness is given by

the smallest angle in the triangle.
Let S be the largest possible square contained in P . Any convex subset of P that

contains all of S is at least β′-fat, where β′ = Θ(β), by Lemma 19 below.
We extend the edges of S until they intersect P and add vertices to P at the

intersection points (see Figure 5). We let Pa denote the part of P above the (extended)
top edge of S, let Pb denote the part below the bottom edge of S, let Pc denote the
part to the right of the right edge of S, and let Pd denote the part to the left of the
left edge of S. We will show how to cover Pa. The three other parts of P are covered
similarly, and S is covered with two triangles that each have a fatness of 45◦.

Pa

Fig. 5. One of the subpolygons of P induced by S.

An ear of a polygon P consists of two consecutive edges of P that have the prop-
erty that a straight edge connecting the first and last vertex of the edges stays com-
pletely inside the polygon. In a convex polygon, any two consecutive edges are ears.

We cover Pa by choosing an arbitrary ear from it (except any ear that also contains
the top edge of S), covering it using Lemma 18, and then replacing P by P with that
ear removed. Since no part of S is ever removed, P remains fat. Thus we keep
removing ears from Pa until it exactly coincides with the extended edge of S.
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Since we cover the ears that we remove using the procedure from Lemma 18, we
add a constant number of triangles to T per vertex, implying that |T | = O(n). The
exact bound on α is given by combining Lemmas 18 and 19.

Lemma 18. An ear of a β-fat polygon P can be covered with at most four α-fat
triangles that all stay inside P where α = (βπ)/16.

Proof. In a convex polygon, an ear is a triangle formed by three consecutive
vertices. Consider the ear defined by vertices vi−1, vi, and vi+1. Let φi−1, φi, and
φi+1 be the angles at the respective vertices—see Figure 6(i). Because P is β-fat, we
know that the angle between any two adjacent edges of P , and in particular the angle
φi, is at least β/(2π). There are three possibilities for the other two angles, φi−1 and
φi+1: either they are both at least α, they are both less than 2α, or one is larger than
2α and one is smaller than α. Note that these cases overlap.

Case (i). φi−1 ≥ α and φi+1 ≥ α. In this case, the ear is trivial to cover: it is
already an α-fat triangle that can be covered by a copy of itself.

Case (ii). φi−1 < 2α and φi+1 < 2α. First, we add triangles to the edges vi−1vi
and vivi+1 where the angles of the edges of the triangles with respect to the boundary
edges are at least 2α. By Lemma 10, these triangles must stay inside P as long as
α ≤ (βπ)/16. However, it is clear that the nonboundary vertex of these triangles
must be outside the ear that we are covering. Therefore, we can place a triangle at
the middle vertex of the ear with two sides that correspond to the sides of the two
triangles that we just added and whose third side is the edge of the ear that goes
between these two edges. This triangle completes the covering of the ear.

(i)

vi−1

vi

vi+1φi−1
φi φi+1

(ii)
vi−1

vi

vi+1ϕ1
ϕ2

φi ϕ3 ϕ4

φi+i

vj

Fig. 6. (i) Case (ii). (ii) Case (iii).

Case (iii). φi−1 > 2α and φi+1 < α (or the symmetric case). See Figure 6(ii). In
this case, we add an edge between the vertex that is at the large angle (vi−1, without
loss of generality) and the edge across from it, making vertex vj . This splits φi into two
angles ϕ1 and ϕ2. We place vj such that ϕ1 is exactly α. Thus, ϕ3 = α + φi+1 > α.
By assumption, ϕ2 > α. Thus, we can cover the triangle vi−1vivj with a copy of
itself. Triangle vi−1vjvi+1 can be covered according to the procedure outlined for
Case (ii) above. Note that in all cases, we have covered the ear with at most four
α-fat triangles.

Lemma 19. Let P be a convex β-fat polygon in R
2 and S be the largest square

contained in P . Then any convex subset P ′ such that S ⊆ P ′ ⊆ P is β′-fat where
β′ ≥ β/(8π).

Proof. By the results of section 3.2.1 of Van der Stappen’s thesis [25], the side
length of S is at least βρ/(2

√
2), where ρ is the diameter of P .

Let d = p1p2 be the diameter of P ′. Let S′ ⊆ S be the largest square contained
in S that has an edge parallel to d. The side length of S′ is at least

√
2/2 times the

side length of S. Let p3 and p4 denote the midpoints of the sides of S′ parallel to d;
see Figure 7.

We will make two triangles: p1p3p4 and p2p3p4. By convexity, both of these
triangles must be completely inside P ′. The sum of the area of these triangles is not
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dp1 p2

S

S ′

p3

p4

P ′

Fig. 7. P ′ must be fat.

dependent on the placement of S′—it is always d · s/2, where s is the side length of
S′.

Since P ′ is convex, the fatness of P ′ is determined by a circle placed at p1 with
radius d [25]. The area of that circle is πd2. Thus the fatness of P ′ is

β′ =
d·s
2

πd2
=

s

2dπ
≥ βρ

8dπ
≥ β

8π

since d ≤ ρ.
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[3] P. K. Agarwal and J. Matoušek, On range-searching with semi-algebraic sets, Discrete
Comput. Geom., 11 (1993), pp. 393–418.

[4] B. Aronov, M. de Berg, and C. Gray, Ray shooting and intersection searching amidst
fat convex polyhedra in 3-space, in Proceedings of the 22nd Annual ACM Symposium on
Computational Geometry, 2006, pp. 88–94.

[5] M. de Berg, Ray Shooting, Depth Orders and Hidden Surface Removal, Lecture Notes in
Comput. Sci. 703, Springer-Verlag, Berlin, 1993.

[6] M. de Berg, Vertical ray shooting for fat objects, in Proceedings of the 21st Annual ACM
Symposium on Computational Geometry, 2005, pp. 288–295.

[7] M. de Berg, H. David, M. J. Katz, M. Overmars, A. F. van der Stappen, and J. Vleugels,
Guarding scenes against invasive hypercubes, Comput. Geom., 26 (2003), pp. 99–117.

[8] M. de Berg and C. Gray, Vertical ray shooting and computing depth orders for fat objects, in
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
2006, pp. 494–503.

[9] M. de Berg, M. Katz, F. van der Stappen, and J. Vleugels, Realistic input models for
geometric algorithms, Algorithmica, 34 (2002), pp. 81–97.

[10] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geom-
etry: Algorithms and Applications, 2nd ed., Springer-Verlag, Berlin, 2000.

[11] M. de Berg, M. Overmars, and O. Schwarzkopf, Computing and verifying depth orders,
SIAM J. Comput., 23 (1994), pp. 437–446.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VERTICAL RAY SHOOTING AND COMPUTING DEPTH ORDERS 275

[12] M. de Berg and M. Streppel, Approximate range searching using binary space partitions, in
Proceedings of the IARCS Conference on Foundation Software Technology and Theoretical
Computational Science (FSTTCS), 2004, pp. 110–121.

[13] B. Chazelle and L. J. Guibas, Fractional cascading: I. A data structuring technique, Algo-
rithmica, 1 (1986), pp. 133–162.

[14] B. Chazelle and L. J. Guibas, Fractional cascading: II. Applications, Algorithmica, 1 (1986),
pp. 163–191.

[15] C. A. Duncan, Balanced Aspect Ratio Trees, Ph.D. thesis, The Johns Hopkins University,
Baltimore, MD, 1999.

[16] C. A. Duncan, M. T. Goodrich, and S. Kobourov, Balanced aspect ratio trees: Combining
the advantages of k-d trees and octrees, in Proceedings of the Tenth Annual ACM-SIAM
Symposium on Discrete Algorithms, 1999, pp. 300–309.

[17] A. Efrat, M. J. Katz, F. Nielsen, and M. Sharir, Dynamic data structures for fat objects
and their applications, Comput. Geom., 15 (2000), pp. 215–227.

[18] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics. Principles
and Practice, 2nd ed., Addison-Wesley, Bonn, Germany, 1990.

[19] M. J. Katz, 3-D vertical ray shooting and 2-D point enclosure, range searching, and arc
shooting amidst convex fat objects, Comput. Geom., 8 (1998), pp. 299–316.

[20] M. J. Katz, personal communication, 2005.
[21] M. J. Katz, M. Overmars, and M. Sharir, Efficient hidden surface removal for objects with

small union size, Comput. Geom., 2 (1992), pp. 223–234.
[22] M. van Kreveld, On fat partitioning, fat covering and the union size of polygons, Comput.

Geom., 9 (1998), pp. 197–210.
[23] M. Pellegrini, Ray shooting on triangles in 3-space, Algorithmica, 9 (1993), pp. 471–494.
[24] M. Pellegrini, Ray shooting and lines in space, in Handbook of Discrete and Computational

Geometry, J. E. Goodman and J. O’Rourke, eds., CRC, Boca Raton, FL, 1997, pp. 599–614.
[25] A. F. van der Stappen, Motion Planning Amidst Fat Obstacles, Ph.D. thesis, Utrecht Uni-

versity, Utrecht, The Netherlands, 1994.
[26] A. F. van der Stappen, D. Halperin, and M. H. Overmars, The complexity of the free space

for a robot moving amidst fat obstacles, Comput. Geom., 3 (1993), pp. 353–373.


