

Functional object-types as a foundation of complex
knowledge-based systems
Citation for published version (APA):
Lucardie, G. L. (1994). Functional object-types as a foundation of complex knowledge-based systems. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Built Environment]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR431412

DOI:
10.6100/IR431412

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR431412
https://doi.org/10.6100/IR431412
https://research.tue.nl/en/publications/cf9794f6-afc9-4a33-b252-00b6a3347d7f

Punctional Object-Types as a Foundation of

Con1plex Knowledge-Based Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor

Technische Universiteit

op gezag van de Rector Magnificus .. prof.dr,

\'Oor een commissie aangewez.en door

Dekanen in het openbaar te

donderdag december 1994 om l

door

GEORGE LARRY LUCARDIE

geboren te Rheden

de

van Lint

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. H.J.P. Timmermans

en

prof.dr. H. Koppelaar

CJP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Lucardie, G.L.

Functional object-types as a foundation of complex

knowledge-based systems / G.L. Lucardie. - Rijswijk :

TNO Bouw. - Ill.

Thesis Eindhoven. With ref. - With summary in Dutch.

ISBN 90-6743-350-0

Subject headings: knowlcdge-based systems.

Copyright © 1994 by G.L. Lucardie

All rights reserved. No part of this book may be reproduced, in any form by

print, microfilm or other means, without prior permission of the autbor.

Printed in the Netherlands.

PRE:FACE

This thesis gives an account of the conceptual and mathematica] foundations of
knowledge-based systems. As such, it is of interest for computer scientists who work
in the field of Artificial Intelligence or Database Technology. Since many results of
the research have practical implications. it is also of interest for organisations that
already use knowledge-based systems to manage and control their valuable
knowledge resources or for organisations that intend to do so in the near future.

I have attempted to make the study self-contained by including elementary
definitions when necessary. The only prerequisites are some familiarity with software
engineering, especially conceptual modelling, and a certain mathematica! maturity.

Many people contributed to this thesis. I would like to thank my supervisors Harrie
Timmermans (Technica) University of Eindhoven) and Henk Koppelaar (Technica]
University of Delft) for their stimulating and fruitful comments. Furthermore, I am
grateful to the members of the Knowledge-Based Systems Group of the Netherlands
Organiz.ation for Applied Scientific Research (Building and Construction Research):
to Adriaan Huijsing, Cuno Duursma, Hans van Keulen and Johan de Gelder. In many
ways they contributed to the results of the thesis. I would also like to acknowledge
Carla and Bert Mathlener for preparing the drawings.

Then, I would like to thank Frank Dignum (Technica! University of Eindhoven),
Paul Hendriks (Catholic University of Nijmegen), Theo Arentz.e (Technica!
l.Jniversity of Eindhoven), Ton van der Smagt (Catholic University of Nijmegen) for
theîr valuable comrnents and sharpening the ideas. Furthermore. I am grateful to
Marcel Groosrnan (Netherlands Organization for Applied Scientific Research) and Jan
Stark (Netherlands Organization for Applied Scientific Research) who provided me
with the opportunity to spent some time on writing the thesis. 1 would also like to
acknowledge Mandy van Kasteren (Technica] University of Eindhoven) and Peter van
der Waerden (Technica! University of Eindhoven) for their help.

Finally, 1 am grateful to Jan Baltussen for significantly improving the English. Most
of all, I am grateful to bis daughter Miriam Baltussen for her unconditional support.

CONTENTS

CHAPTER 1. MODELLlNG KNOWLEDGE .. 1

L l BACKGROUND.•....................... " .••.•.•..••.•.•.•••.••........ 1

l.2 PROBLEM STATEMENT.. ~

.. " •.... " .••.•• " ••••• "." .•.•..• ~1

1.2. l Confusion of and Knowledge Reprcscntation Formalisrm ... 4

L<.ick of Adequate Theory of the Nature of Knowledge 6

Lm;k of an Forma! Language " ... "" ... "." .. " .. " 9

l.3 RESEARCH ISSUES .. " " 9

l .4 OUTLINE ... " " .. " " .. " .. " 10

CHAPTER THE KNOWLEDGE LEVEL .. 13

INTRODCCTION " ". ". " " " " " .. " ".13

THE NOTION OF COMPUTER SYSTEMS LEVELS " J4

2.3 THE KNOWLEDGE LEVEL." """ """" " "." .. " ... l.'i

2.4 DISCUSSION """ " .. """."""""" " .. """ " "." 18

2.4. l Claimed Advantages of the Level""" .. "." .. "" 19

2.4.2 Claimed Dis<.rdvantages of the Knowledge Level ..

2.S CONCLUSION AND DISCUSSION ."" .. """.""" .. "."

" ... " ... " .. "21

................ "27

CHAPTER 3: STRATEGIES FOR Il\TEGRATING ARTlFJCIAL

INTELLIGENCE AND DATABASE TECHNOLOGY ... 31

3.1 n.,;TRODUCTION " " " " 31

3.2 SY:VIBOL LEVEL STRATEGIES " 32

Kl'\OWLEDGE LEVEL STRATEGIES 39

:u.1 Universa41

3.3.2 l\1athen:iatica1 Prelin11narie~ for a Knowledge Cnivcr~c ... " 41

3.3.3 The Main of Knowledge Uni.verse " .. "43

3.3.4 The Reconstrnction of a Knowledge Cniverse: Sti.tic Constraints " 51

:'l.3 . .'i The Modification of a Knowledge Uni verse: Dynamic Constrnints ""63

:'.3.6 Knowledge from a Knowlcdge Uni verse through Functions ." 63

3.4 A KNOWLEDCE LEVEL INTECRAT!ON

A VIEW OF DATJ\BASES FROM THE KNOWLEDGE LEVEL ".65

3.5 CONCLUS!O>J AND DISCUSSION ... " """"" """" """"" 70

CONTENTS

CHAPTER 4: FUNCTIONAL OBJECT-TYPES POR RECONSTRUCTING

KNOWLEDGE UNIVERSA " " ... 73

4.1 THE CONCEPTUAL BASIS OF RECONSTRUCTING AND

REPRESENTING KNOWLEDGE UNIVERSA "."."""".""""."""""."."""" .. ".73

4.2 BASIC TERMINOLOGY OF CONCEPTS: TERMS, OBJECT-TYPES AND

OBJECTS ."""" """"."."."" " """""."""""""" "" .. ".".".".".75

4.3 VIEWS ON THE NATURE OF OBJECT-TYPES " .. """." .. ".""." " .. """" .. 78

4.4 FUNCTIONALOBJECT-TYPES" .. "."" ... " """"".""."."""" .. " """""."80

4.4.1 The Nominal Definition .. """""".".""""""""""""."."".".""""""""""""80
4.4.2 The Real Definition: Context-dependencies ".".""" .. """""".""" .. ""."" ... 82

4.4.3 The Real Definition: Objects ""."""""""."""""""""".""."""""""""""".84
4.4.4 The Real Definition: Interaction between Object-types and Objects""."".86

4.4.5 Functional Equivalence "."." "" " .. "" .. """"."""" .. " .. " .. "."""."."".".88

4.5 THE CURRENT PRACTICE OF RECONSTRUCTING OBJECT-TYPES"."". 91

4.6 A FUNCTIONAL EVALUATION OF RECORD-BASED

REPRESENTATION FORMALISMS""."""""."".""" " .. "" .. "."" ... " 102

4.7 CONCLUSION: IMPLICATIONS AND PERSPECTIVES "."""" ... ".""."."."."109

CHAPTER 5: DECISION TABLES AND PROLOG AS A CONCEPTUAL

MODELLING LANGUAGE FOR FUNCTIONAL-OBJECT-TYPES """" ".113

5.1 INTRODUCTION ."" """".""""."" " "."."""""""" .. "." """".113

5.2 DECISIONTABLES ... """"" .. "."" " """."""""" " .. """ .. """"""" ... 114

5.2.1 Forma! Background "".""."."."""" .. "" " .. ""."."""."" ... "" """115

5.2.2 Functional Object-types and Decision Tables""."."""""""""""".""""""135

5.2.3 Conclusion ".""""""" " .. """"."""""""""" .. " .. """"".""."" ""." ... 137

5.3 PROLOG "" .. ""." .. " " .. ""."."".""".""".".""" .. " .. """"""" .. "" """""""139

5.3.l Forma! Background".""" ""."" " "." "." " ... ".".""."""""""139

5.3.2 Functional Object-types and Prolog"""""""""""".""""".""".""".".""".163

5.3.3 Conclusion""""""""."."."" "." .. """""." .. """""" .. " ".""".".".""." .. 165

5.4 CONCLUSION .""."" "" ".""""" .. """." " .. """""".""."."""" ... " .. " .. "".166

CHAPTER 6: THE ADVANCED KNOWLEDGE TRANSFER SYSTEM .".""""169

6.1 INTRODUCTION """""""."""""" .. "."""" " .. ""."."."" .. " .. """"""""" .. """"169

6.2 MAIN FUNCTIONS OF AKTS """".".""""""""."""""""."""."""""""""""""169

6.3 RECONSTRUCTING A KNOWLEDGE UNIVERSE """"".""" .. """.""""".""171

6.3.1 Reconstruction Facilities: The Graphical Decision Table Editor "."." .. "".171

6.3.2 Validation Facilities: The Integrity Control Sub-System """ ... """"."".""176

6.3.3 Reduction Mechanisms """."."" .. " .. """."" .. ""."".".""."""." .. ".""""."."182

- II

CONTENn'

6.3 .4 Reconstructing in Pro log ... 186

6.3.5 Navigating through a Knowledge Uni verse .. 187

6.4 DESIGNING A KNOWLEDGE UNIVERSE ... 187

6.4.1 Designing Decision Tab les .. 188

6.4.2 Designing Parameters .. 188

6.5 SIMULATING A KNOWLEDGE UNIVERSE .. 191

6.5.l The Inference Machine ... 191

6.5.2 Performing What-If Analyses ... 193

6.5.3 Debugging a Knowledge Universe ... 195

6.5.4 Tracing a Part of the Knowledge Universe ... 195

6.5.5 Explanation Facilities .. 195

6.6 CONCLUSION AND DISCUSSION .. 196

CHAPTER 7: CHEMICAL DEGRADATION AND RESTORATION OF

ANCIENT BRICK MASONRY WALLS ... 199

7.1 INTRODUCTION .. 199

7.2 GENERAL DESCRIPTION ... 199

7.3 FUNCTIONAL OBJECT-TYPES (KNOWLEDGE LEVEL ANALYSIS) 201

7.4 KNOWLEDGE-BASED SYSTEMS (SYMBOL LEVEL ANAL YSIS) 210

7.4.1 Knowledge of Objects ... 213

7.4.2 Knowledge of Object-types ... 225

7.4.3 Knowledge of Object-types and Objects Reduced to the Symbol Level.. .. 233

7.5 CONCLUSION ... 235

CHAPTER 8: EPILOGUE ... 237

8.1 INTRODUCTION .. 237

8.2 PRINCIPAL CONCLUSIONS ... 237

8.3 QUANTITATIVE OBJECT-TYPES ... 239

8.4 IMPLICATIONS .. 240

REFERENCES .. 243

APPENDIX A .. 253

SUMMARY ... 263

SAMENVATTING .. 269

CURRICULUM VITAE .. 275

- III -

CHAPTER 1

MODELLING KNOWLEDGE

Ll BACKGROUND

Knowledge-based systems cntcrcd the computing scene in the seventies as the first
practical products of the Artificial Intelligencc laboratories. Since then numerous
knowledge-based systems have been developed in various areas of science, space
traveL business, planning, architecture, banking and medicine. Today,
they have attained a permanent and secure rok in industrial and commercial settings.
In comparison to other technologies such as robotics or vîsion systems, knowledge
based systems experience a rapid dîffusion and uptake in \Vorld economy (Hayes-Roth
& Jacobstein. 1994).

What is the nature of these systems? Knowledge-based systems are computer
programs that embody knowledge to solve problems ordinarily addresscd by humans.
They derivc this problern-solving eompetence from the they contain about
a domain of discourse. This attribution of the power of knowledge-based systems to
knowledgc is laid down in the know/edge principle:

'Knowledge Principle: A system exhibits intelligent undc1~
and action at high level of competence primarily

because of the specific knowledge that it contains about its
domain of endeavour.' (Feigenbuum, 1989, p.5)

The contcnts of the knowledge principle may seem obvious to the reader. Yet, in the
sixties the view prevailed that logica] structures with a purpose
rcasoning engine form the cornerstone of intelligent action. In contrast, a corollary of
the knowledge principle is that processcs are too weak and are not the
source power that leads to high level compctenee. The knowledge principle simply
states that if a knowledge-bascd system is to perform well, it should know a great deal
about the world in which it operates. Without knowledge, reasoning will not help. The
knowlcdge principle furthcr indicatcs that knowledgc-bascd systems are knowledge
processing machines that generale solutions to problcms which on the one hand

significant human expertise and on the othcr hand rcquirc computer based
with knowledge.

To givc a further irnprcssion of the significance and nature of knowledge-based
systems, we revert to an of space trnvcl. At the Kennedy Space Centre,
NASA devcloped a knowledge-based system, namcd LES, to monitor the
behaviour of a small but complex control system. The function of this contra! systcm
is to follow the of liquid oxygen onto a space shuttle 6 to 8 hours before takc
off. The space shuttlc's fuel tank carries 140,000 gallons of liquid oxygen which are

- 1 -

CHAPTERJ MODELLING KNOWLEDGE

loaded into the shuttle from a storage tank several miles away through a system of
pipes. A battery of sensors along the path keeps engineers informed about the
progress of the loading operation. At any time, one of these sensors may indicate an
alarm suggesting that some part of the proeess has failed. As long as nothing is going
wrong, LES just 'watehes' the dials. At the first sign of trouble LES alerts the operator
and creates pictures and schematics including plumbing and electronic circuits from
its knowledge (Figure l). LES also has diagnostic capabilities. For a given sensor
discrepancy, for example, it can classify each object involved as being the cause, or
incapable of being the eau se, or as being susnect.

(Source: Lafferty, 1988, p.19)

(A) (B)

Figure 1.1: (A) Shuttle Display with Rectangular Box around Malfunctioning Area at
Centre Bottom (B) Expanded View of Malfunctioning Area

The main motivation to develop LES has been the growing awareness of NASA that
knowledge about loading liquid oxygen onto a space shuttle is an essential commodity
that should be carefully managed. A failure in this process could lead to the abortion
of a shuttle flight with significant loss of money and time. LES is considered
beneficial because it improves the availability and the speed of accessibility of
knowledge:

'By virtue of their extensive knowledge of the 'wiring diagram'
of the loading system, NASA scientists can check other data
and can usually make a determination within a few minutes.
There are some 200 pages of schematics of the system, which
contains some 300 sensors and has thousands of replaceable
components. The scientists must quickly isolate the particular
segment of the system in question, look over the schematic,
check the readings for consistency, and then make their
determination. The first problem is speed. However, another
problem begins to arise as systems of this kind grow older.
The experts who built these mechanisms and who understand

2 -

CliAPFER 1

their intricate workings are usually no longer available.'
(Lafferty, 1988, p.17)

MODELLING KNOWLEDGE

The quotation tells us that LES has been developed to cope with the volume and
complexity of knowledge involved in process monitoring and fault location: extem,ive
knowledge is needed about the wiring diagrams, the number of schematics, sensors
and the number of replaceable components. Complex knowledge is needed to
understand the intricate mechanisms involved. By putting this knowledge at the
disposal of operators, LES enables them to accelerate the decision-making process.
Between 10 and 40 seconds are currently required for the man-knowledge-based
system combination to make a diagnosis which would otherwise take at least a few
minutes.

The story of LES is not unique. In genera!, the prediction is that knowledge-based
systems wîll become vita! applications of the workplace in many organisations to
improve the availability and accessibility of knowledge (Cohen, 1989, p.22; Smith,
1986, p.3). This expectation is based on the growing recognition that knowledge is an
essential commodity for effective and efficient functioning of trade and industry
(Beerel, 1987; Wiig, 1988). As a growing number of companies see knowledge, from
cost and quality considerations, as an important, but difficult to manage economie
factor, we think that knowledge-based systems will become essential tools for
improving knowledge management. In this respect, knowledge processing machines
are expected to shape the pattern of cornputer-applications in the nineties and beyond.

1.2 PROBLEM STATEMENT

The most important challenge in the construction of knowledge-bascd systems that
can indeed come up to these high expectations, is to provide these systems with
capabilities to process and communicate knowledge in close and transparent
interaction with humans. Unfortunately, the technology underlying knowledge-based
systerns is far from adequate to meet this challenge. Despite growing investments,
operational knowledge-based systems are still few and far between. Many projects
yield a prototype system and more than once the extension to an operational system
appears to be such an extremely difficult step that many systems simply do not come
into use.

Why is the development of operational knowledgc-based systems so difficult? One
cause is that, initially, it always appears so easy that time and other resources are
routinely underestimated. Other possible causes are unrealistic expectations,
inadequate use of tools and techniques for modelling knowledge, Jack of involvement
of experts, imperfect collaboration between experts and knowledge engineers, lack of
embedding knowledge-based systems in organisational structures and problems with
the technica! infrastructure of these systems.

This thesis deals with a more fundamental problem: the process of modelling
knowledge for implementation purposes. Modelling knowledge is a fundamental
phase in the development of knowledge-based systems. In this phase, knowledge

- 3 -

CHAPTER 1 MODl::.LL!NG KNOWLEDGE

about the application domain is collected, structured and documented. Modelling
knowledge is frequently cited as the major bottleneck in building a knowledge-based
system (see for instance C!ancey, 1985; Neale, 1988; Welbank, 1983). Why is
modelling knowledge so difficult? Attributing the difficulties of modelling knowledge
to the use of inadequate modelling methodologies and techniques is a step in the right
direction. The observation that the difficulties are due to the complex nature of
knowledge also contains elements of truth. However, these considerations are rather
supe1ficial and do not provide guidelines to deal with the complexities of modelling
knowledge.

The goal of this thesis is to identify the main dimensions that underlie the problem
of modelling knowledge and to seek solutions to each of them. The thesis reveals the
following dimensions:

l. Confusion of knowledge and knowledge representation formalisms
2. Lack of an adequate theory of the nature of knowledge
3. Lack of an adequate forma! language

An important claim is that finding the right way of dealing with these dimensions
significantly advances our approach towards modelling knowledge and provides a
substantial basis for systematically developing knowledge-based systems.

1.2.1 Confusion of Knowledge and Knowledge Representation Formalisms

Confusion of knowledge and knowledge representation formalisms manifests itself by
focusing almost exclusively on the pros and cons of a particular representation
formalism. One representation formalism offers multiple inheritance and cancellation,
another provides demons and rules, another again is considered versatile because of
its efficiency in computational processes. Even the process of modelling knowledge is
often performed by using a system's representation formalism. Tuis approach leads to
many problems: mapping knowledge onto the representation formalism is difficult or
impossible, poor validation facilities, bad maintenance and poor explanation facilities.
In brief, it can be said that focusing exclusively on knowledge representation
formalisms and applying these formalisms to modelling knowledge obstructs our
conception of knowledge and unnecessarily complicates its modelling.

Special attention ought to be paid to mathematica! logic. The appropriateness of
mathematical logic as a representation formalism has been debated by computer
scientists for a long time. Opinion on this topic varies. As an example of this Israel
(1983) mentions McCarthy's and Minsky's disagreement. McCarthy (1980) believes
that a knowledge-based system should reason according to the well-worked-m1t
languages of mathematica! logic, whether or not this is the way people actually think,
whereas Minsky (1982) is convinced that we should try to get a knowledge-based
system imitating the way the human mind works, which is, he thinks, almost certainly
not with mathematica! logic. McCarthy's and Minsky's conflicting views are not about
the usefulness of mathematica! logic -on this point they are of one mind- but revolve
around the degree of difference between mathematica! logic and common-sense

- 4 -

CHA!'/U{I MODF! f.IN(i KN0'J7UJ>GE

knowledge. Considering the of mathematica! logic in many fields of
computer science it is obvious that its role should be clcarly defincd.

Judging from the previous, what we seem to need is a disentanglement of
knowledge and knowledge represcntation formalisms and a clear description of the
role of mathematica! logic plays. A cohesivc proposal to disentangle knowledge from
knowledge rcpresentation and to allocate a clear role to mathematica! logic is Newell's
introduction of the knowfedge level (Newell, 1981). The lmowledge level is a separate
computer systems level to definc the nature of knowledge. Newel! claims that a sharp
distinction of the knowledge level and the symbol level (the level of representation

leads to a comprehcnsive and consistent view of knowledgc and
knowledge representation and helps in assigning mathematica! logic its proper role.

Newell introduccs the knowledge level as a solution coming from the practice of
Artificial Intelligencc. Before Newell proposed the knowledge level, Woods (1975),
for in~tance, had alrcady written an article entitled What's in a link'1. Woods found
that many tcchniqucs used in semantic networks are not appropriatc for
knowlcdgc. To expose the confusion of knowledge and knowledgc representation
formalisms, several othcr scientists posed the 'What's in a representation forrnalism'
questîon. Claneey's (1983) question was 'Whafs in a rulc?'. Pointing out the
wcakncsses of production rules, Clancey observed that a lot of knowledgc lies outside
the production rule formalism and that appealing to thîs knowledge enhances the
capability for understanding and modifying a knowledgc-bascd system. Brachman's
analysis of the definitional capabilities of frames serves similar purposcs concerning
frames (Brachman, 1985).

From a knowledge level perspective a special role is reserved for mathematica!
logic. lt has been suggested as a basis fora knowledge level analysis to specify what a
knowledge-based system does and knows (Clancey. 1985; Kowalskî, 1979; Kowaiski,
1985; Newell, 1981). Mathematica! logic just viewed as another rcpresentation
formalisrn with the extra twist that it is appropriate for the analysis of knowledge. It
provides a convenient formalism for studying classica! knowledge modelling
problems assoeiated with a wide range of knowlcdge-based systems such as
knowledge systems (Walker. 1987), expert systems (Lueas & Van Der Gaag, 1991)
expert database systems (Smith, 1986), semantic databases (De Broek. 1989),
dcduetive or Iogic databases (Das, 1992; Gallaire, Minker, & Nicolas, 1984) and
decision support systems. A system of mathematica! functions norrnally specifies or
underlies the of these systems. We call sueh a forma! description of
knowledge a

Disünguishing the knowledge level clarifics a great deal of the controversy bctween
McCarthy and Minsky. McCarthy is right when he strcsses the importance of
mathematica] logic for representing knowledge, but mistakcnly thînks that common
sensé' knovvledge can be adequately captured by running a sound theorem prover over
mathematica! logic. Cornmon-scnse knowledge is a knowledge level issue that
rcquirc3 much more than just mathematica! Iogic. Mînsky is right when he statcs that
mathematica! logic has major weaknesses because it is not the knowledge itself.
Minsky, however, is not right, when he tries to clarify an important weakness of
mathematica! logic by referring to Joe the well-known bird that cannot fly because he
is dead, an ostrich, a penguin or because he bas bis feet set in concrete. The problcm

5 -

('HAPTEN 1 MODEUJNG KNOWLEDGE

that Joe is viewed as an exception because of being a bird that cannot fly is a
knowledge level issue that cannot be solved by mathematica! logic, but by a theory of
the nature of knowledge. This observation takes us to the second dimension.

1.2.2 Lack of an Adequate Theory of the Nature of Knowledge

Though the distinction of the knowledge level may be helpful, it does not suffice.
Newell's description of the knowledge level is a theory describing the knowledge
level, but it is not a theory of the nature of knowledge. Newell's theory gives such a
theory its proper place in computer science, for the knowledge level is a separate level
to define the nature of knowledge for implementation purposes.

A theory of the nature of knowledge should help us to get a clear and consistent
view of knowledge. Such a view advances the choice of techniques, methods and
methodologies to model knowledge. At this moment, however, there are divergent
and often conflicting views of knowledge. An example of such conflicting views can
be obtained by comparing the view of Wiederhold (1984) and that of Brachman &
Levesque (1986). While Wiederhold makes a sharp distinction between knowledge
and data, Brachman and Levesque consider both knowledge and data as types of
knowledge. A satisfactory theory of the nature of knowledge that provides us with a
clear and consistent view of knowledge and that helps to deal with cases like Joe, the
exceptional bird, seems to be missing.

In many theories of the nature of knowledge concepts play an important role as
classificatory and storage mechanisms for mathematica] functions that define a
knowledge universe. A concept has an intension and an extension. The intension of a
concept is a set of constraints (or conditions) that should be satisfied by an object to
belong to the class covered by the concept. The intension refers to an object-type. The
extension of a concept consists of the set of objects complying with the object-type.
Object-types and objects are the two sides of the same coin. The notion of concept
includes both.

This distinction between object-types and objects helps to characterise what a
knowledge-based system does and helps to analyse the problem of modelling
knowledge. From LES and other knowledge-based systems, we can abstract that these
knowledge processing programs perform a matching task: they all apply constraints
(the object-type) toa set of real-world referents (the objects) to obtain a match. An
object matches if it can be classified as an object-type.

LES, for instance, contains an object-type which we may call adequate monitoring
andfault detection system. The object-type consists of a set of constraints that defines
what an adequate monitoring system is and does. The set also includes constraints that
enable LES to process an alarm and to propose solutions to the operators. To apply
these constraints to the monitoring and fault detection system, which is its only object,
LES also needs knowledge about the attributes of the monitoring and fault detection
system. An alarm indicates that the actual state of the monitoring and fault detection
system is changed. A match means that the monitoring system is indeed a monitoring
system that functions well or that an alarm is adequately dealt with.

6-

CHAf'TER 1 MODELLL"iG l>'llfOWU:.D!,T

Another illustration can be taken from robotics. A satisfactory use of a robot in a
production environment requires an object-type adequate robot consisting of
constraints that keep a robot from producing faulty products. To see whether the
robot, the object, matches these constraints, we have to know a number of attributes of
the robot such as type, velocity and the positioning movements it is capable of
executing. A match means that the robot shows the desired behaviour or that deviating
behaviour is dealt with.

Abstraction
Mechanisms

Figure 1.2: Matching Object-types and Objects

Set of
Attributes

î
Abstraction
rvtechanisms

Matching is a complex activity (see also Goel, Soundararajan, & Chandrasekaran,
1987). Object-types usually have a complex nature. The same is true for objects
(Siebes, 1990). In this thesis, we view the problem of modelling knowledge as the
problem of describing or reconstructing the complex nature of object-types and
objects. We intentionally use the word reconstruction, because a computer scientist
has to reconstruct the object-types and objects as they oecur in reality. Just as a traffic
accident or a crime that happened in reality, are reconstructed, we reconstruct object
types and objects to enable a knowledge-based system to perform matches. Matching
requires the use of abstraction mechanisms to adequately describe the complexities of
object-types and objects (Figure 2).

Characterising the competence of knowledge-based systems as a capacity to
perform matches, explains the recognition that integrating Artificial Intelligence and
Database Technology constitutes an essential step toward developing knowledge
based systems (Jarke & Vassiliou, 1984; Murdoch & Johnson, 1990; Smith, 1986).
This recognition is mainly fuelled by the idea of complementarity, i.e. the idea that
Artificial Intelligence eoncentrates on complex object-types, whereas the focus of
Database Teehnology lies with complex objects. For some time now, this recognition
has been inducîng major research actîvities exploring the relationships between both
computer technologîes.

These activities, however, suffer from the same confusion mentîoned before. The
main thrust of research concentrates on transferring data structures and processing
techniques from Artîficial Intelligence to Database Technology or vice versa. The use
of records to store production rules (Herwijnen, Houten, Houtsma, & Romkema,
1990), the use of frames to store relational data (Chow, 1987), or the addition of rule
processing algorithms to databases (Stonebraker, 1984) are all examples of research
conducted at the symbol level.

7-

Cll4l'TBR J MODELL!NG J<.NOW"LEDGE

Recently, many researchers from both computer sciences apply Newell's distinctîon
and emphasise the appropriateness of studying the relationships between Artifieial
Intelligenee and Database Teehnology at the knowledge level (Braehman &
Levesque, 1986: Kent, 1979; Twine, 1989). A knowledge level integration explicitly
foeuses on the semantic structure of a knowledge-based system and does not bother
about representation formalisms or systems that are well-known in Artificial
Intelligence and Database Teehnology. The concern is explicitly with the knowledge
of a knowledge-based system.

Even when one follows a knowledge level strategy, the reconstruetion (modelling)
of object-types and objects presupposes a well-founded theory. Since the existence of
objects closely depends on object-types (Martin & Odell, 1992), these theories
eoncentrate on the complexities of object-types. Several basic theories on how to
reeonstruct the object-type of a concept can be distinguished. Characteristic for the
classical theory is the presupposition that an object-type consists of a univocal set of
necessary and sufficient conditions. Because classification of objects as object-types
is less univocal and more complex than the classica! theory accounts for, alternative
approaches have been developed. One of them, the probabilistic theory, subscribes to
the classica! idea that an object-type is a set of sufficient and necessary conditions, but
exclusively on a theoretica! level. The probabilistic approach assumes that all s011s of
random disturbances at the empirica! level cause problems in the delineation of the
extension (fuzzy sets). By utilising mathematica! measures of similarity between
objects defined over an essentially apriori given set of attributes, the probabilist tries
to eliminate the random disturbances, so that univocal criteria can be proved to
underlie the fuzzy extension at the theoretieal level (Stepp & Michalski, 1986, p.4).

In the prototypical or stereotypical theory, object-types are described by means of a
prototype. A prototype shares many attributes of objects so it reflects a central
tendency category of objects. The description of a prototype consists of so-called
necessary conditions. Since no object will satisfy all the necessary conditions, the
question whether an object belongs to the extension of an object-type depends on the
degree of resemblance with the prototype. Probabilistic and prototype
conceptualisation methods have much in common and prevail in Artificial
Intelligence (Brachman, 1985) and Database Technology.

In the theory ojfunctional classifications, the reconstruction of an object-type takes
place through a goal- or function-oriented process in which functional equivalence
constitutes the basis for classification (Hendriks, 1986; Lucardie, 1992; Reitsma,
1990; Van Der Smagt, 1985; Van Der Smagt & Lucardie, 1991). The centra! notion is
that at a theoretica! level we cannot univocally define an object-type. In this respect
the functional theory corresponds with the probabilistic and prototype theory. What is
different is that the functional theory offers a totally different explanation of
fuzziness. In contrast to the probabilistic and prototype theory, the functional theory
emphasises that fuzziness has a systematic character. The solution of fuzziness is
sought neither in the elimination of random disturbances (such as measuring errors),
nor in the comparison of objects with a prototypical object-type. The functional
solution is typified by the systematic identification of several object-types. These
object-types originate throughfunctional equivalence: the phenomenon that objects,
possibly differing in many respects, are equivalent in achieving a nominally specified

- 8

CHAPTHR 1 !vlODEJ UNG KNOWLJ:J)(;E

function in a certain context. This leads to the rejection of abstracting object-types on
the basis of extensions and of the possibility of describing an object-type through
stereotypes.

We argue that the theory of functional classifications offers promising perspectives
to improve the development of knowledge-based systems, because it accounts for
fundamental concerns of reconstructing object-types and objects. This theory of the
nature of knowledge requires a formal language that supports the functional
reconstruction of object-types and objects. This takes us to the third dimension.

1.2.3 Lack of an Adequate Formal Language

The specification of the knowlcdge of a knowledge-based system in a knowledge
universe or a conceptual model requires a formal language of modelling the
complexities of application-domains according to the functional theory. The question
is what language to choose.

Mathematica! logic is an obvious candidate languagc. It permits unambiguous
description of knowledge. It has the disadvantage, however, that for many people it is
too complex as a result of which only restricted modelling and validation is possible.
Furthermore. mathematica! logic does not tell us how to model functional object-types
nor does it offer facilities to simulate their behaviour.

So, the language to be selected should display the strong points of mathematica!
Iogic without displaying its weak points. Such a modelling language should further
provide appropriate facilities for validating a conceptual model as well as for
simulating its behaviour (Loucopoulos & Karakostas, 1989; Twine, 1989).

Some authors claim that the joint application of Decision Tables and Prolog meets
these requirements, because both have a firm basis in mathematica! logic and together
offer a range of powerful formalisms and techniques that allow a formal unambîguous
description of real-world phenomena that is close to natura! understanding (Reilly,
Salah, & Yang, 1987. p.30).

1.3 RESEARCH ISSUES

The characterisation of modelling knowledge as an activity of reconstructing complex
object-types and complex objects, explains the need to integrale Artificial Intelligence
(to deal with complex object-types) and Database Technology (to deal with complex
objects). The three previously described dimensions that interfere with the
reconstruction of object-types and objects lead to the following research issues:

1. What are the advantages of integrating Artificial Intelligence and Database
Technology at the knowledge level compared to symbol level integration?
Does a knowledge level integration contribute to the process of modelling
knowledge?

9

CHAPTER 1 MODELLJNG KNOWLEDGE

II. Does the theory of functional classifications constitute a conceptual advance
for realising a knowledge level integration, and, if so, in what respects? Does
the theory help to define object-types and objects to enable knowledge-based
systems to perform matches?

III. Can the joint application of Prolog and Decision Tables be considered as an
adequate knowledge level language for describing functional object-types?
That is, does it comply with the general requirements applied to modelling
languages and the particular requirements for functional object-types?

Perhaps the most difficult part of this thesis is to show that the analytical framework
offered by functional object-types provides a substantial basis for developing
knowledge-based systems and making them suitable for application communities
from physicians to geneticists and civil engineers.

1.4 OUTLINE

Each research issue is tackled in several chapters.
The first research issue concerns the value of a knowledge level integration of

Artificial Intelligence and Database Technology relative to a symbol level integration.
It requires reviewing the notion of computer systems levels with special emphasis on
the implications of distinguishing the knowledge level from the symbol level (Chapter
2). Subsequently. we characterise symbol level strategies and discuss associated
disadvantages of following them. To clarify knowledge level strategies, we introduce
a system of mathematica! functions that assesses knowledge in a knowledge uni verse.
The research issue is rounded off with an exemplification of a knowledge level
integration: a view of databases from the knowledge level (Chapter 3).

The second research issue concerns the value of the theory of functional
classifications as a pivot for a knowledge level integration of Artificial Intelligence
and Database Technology. It requires explaining the role of concepts as organisation
principles for a knowledge universe and describing their main components: terms,
object-types and objects. The evaluation of the theory of functional object-types takes
place by comparison with the prevailing prototypical and probabilistic theories. We
argue that, compared to these competing theories, the theory of functional object
types offers promising perspectives, because it accounts for fundamental concerns of
reconstructing functional object-types (and objects) and constitutes a knowledge level
integration of Artificial IntelJigence and Database Technology (Chapter 4).

The third research issue concerns the value of the integrated application of
Decision Tables and Prolog as a forma! language for functional object-types. It
requires examining the potentials of Decision Tables and Prolog as two related and
complementary conceptual modelling languages for formalising functional object
types. This examination is based on the formal background of Decision Tables and
Prolog (Chapter 5). Next, we report on the Advanced Knowledge Transfer System

- 10 -

CfHP'J't:R 1 KNOWl.FDGE

(AKTS) that offers extensive facîlities for working with Decision Tables and Prolog
(Chapter 6).

A case-study in the domain of the chemica! degradation of brick masonry walls
serves as an example of developing a knowledge-based system according to the
theory of functional object-types using AKTS (Chapter 7). An epilogue ties up the
thesis. It contains the principal conclusions, the relation between functional object
types and quantitative object-types and the potential implications of (reconstructing)
functional object-types including the role of AKTS (Chapter 8).

- 11

CHAPTER2

THE KNOWLEDGE LEVEL

2.1 INTRODUCTION

Before ascertaining the advantages of a knowledge level integration of Artificial
Intelligence (Al) and Database Technology (DBT), the first research issue of the
thesis, we must describe the knowledge level and ascertain its utility. Newell
introduced the knowledge level in his presidential address to the American
Association of Artificial Intelligence (AAAI) as a new and deviating computer
systems level (Newell, 1981).l

The impetus to propose the existence of the knowledge level was threefold. First,
Newell points to the emphasis on knowledge representation issues in AI as if they
were the real locus of intelligence. Second, Newell mentions the stereotype that logic
is not useful for AL This stereotype, Newell explains. is a consequence of the
disappointment caused by a rnachine-oriented formulation of first-order logic called
the resolution principle, which proved not powerful enough to display the expected
intelligent behaviour. Third, Newell observes that there is a web of conflicting
opinions about knowledge representation. He refers to a Special Issue on Knorvledge
Representation by Ron Brachman & Brian Smith (Brachman & Smith, 1980) in which
the answers of a large questionnaire on knowledge representation issues were
analysed. The main result published in the Special Issue displayed an overwhelming
diversity of opinions in which no consensus on any substantial knowledge
representation issue could be found.

According to Newell, these three items -too much attention on knowledge
representation, the minor role of logic and the Jack of consensus on any question of
substance in knowledge representation- sufficiently indicate that the prevailing views
in AI of knowledge and knowledge representation are inadequate. Newell claims that
the distinction of the knowledge level leads to a eomprehensive and consistent view of
knowledge and knowledge representation and helps to assign to mathematica] logic
the role it deserves.

The main objective of this chapter is to investigate this claim. As the knowledge
level is a computer systems level, the first thing to do is to review the notion of
computer systerns levels (Section 2.2). Then, we characterise the knowledge level as a
computer systems level with specific, deviating properties (Section 2.3). Next, we
!mild on this characterisation and ascertain the advantages and disadvantages by
discussing research done at the knowledge level (Section 2.4). Finally, we articulate a

Also published in Artijîcial lntellififllCc 18 (1982). pp.87-127.

- 13

CHAPTER2 THE K.lVOWLEDGB LEVEL

number of conclusions rcgarding the utility of the knowledge level for integrating AI
and DBT (Section 2.5).

2.2 THE NOTION OF COMPUTER SYSTEMS LEVELS

The notion of computer systems levels occurs through computer science with varying
degrees of utility and precision (see for instance: Tanenbaum, 1976). A useful and
precise stratification of computer systems levels is the one introduced by Bell &
Newell (1971). A computer systems level in their stratification can be described as
follows:

'A level consists of a medium to be processed, components
that provide primitive processing. laws of composition that
permit components to be assembled into systems and laws of
behaviour that determine how system behaviour depends on
the component behaviour and the structure of the system.'
(Newell, 1981, p.5)

(Source: Newell, 1981, p.5)

Figure 2.1: Defining Aspects of the Register-Transfer Level

Examples of computer systems levels in Bells & Newell's stratification are the device
level, the circuit level, the register-transfer level and the symbol level. Figure 2.1
shows the aspects of the register-transfer level. The medium to be processed is bit
vectors, the components consist of registers. The relations between the registers come
into existence by transfer paths and the logical operations that operate upon the bit
vectors in the registers (for instance: send register 4 bits 14 to 18). In this way, the
aspects of the register-transfer level form a digital system.

Another computer systems level that lies above the register-transfer level is the
symbol level. Figure 2.2 shows the aspects of the symbol level. Now, the medium to
be processed is not bit vectors but symbolic expressions and processes. The
components are memories which are connected by associative laws. The behaviour of
this symbol system can be characterised as a problem solving process.

There are many instantiations of each level, e.g. many circuit systems at the circuit
level, many digital systems at the register-transfer level and many symbol systems at

- 14 -

the symbol level. Examples of symbol systems are rule-based systems, record-based
systems, frame-based systems and so on.

(Source: Newell, 1981)

Figure 2.2: Defining Aspects of the Symbol Level

The definition of each level can take place in two ways. First, each level can be
described autonomously without any reference to any other level. Secondly. we can
reduce each level to the level below ît Every aspect of alevel, medium, components,
laws of composition and laws of behaviour, can be defined in terms of systems below
them. In Section 2.5 such a reduction is described.

Computer systems levels vary in each of the aspects, but share common features.
Newell mentions four common features (Newell. 1981, p.5). First, the specification of
a system at alevel always completely determines a definite behaviour for the system
at that level (given initia! and boundary conditions). Second, the behaviour of the total
system results from the local effects of each component of the system processing
medium as its input to produce its output. Third, the immense variety of behaviour is
obtained by system strueture, by the variety of ways of assembling a small number of
component types (though perhaps a large number of instances of each type). Fourth,
the medium is realised by state-like properties of matter, which remain passive until
changed by the components. These common features are necessary to understand the
special character of the knowledge level.

2.3 THE KNOWLEDGE LEVEL

Bell & Newell's stratification is extended by Newell (1981). Newell proposed a new
and distinct computer systems level lying just above the symbol level which he called
the knowledge level (Newell, 1981). The knowledge level is a true computer systems
level, but it has a number of deviating properties.

The introduction of the knowledge level is prirnarily intended to have a separate
level to de.fine the nature of knowledge. The abstract definition of knowledge that is
often employed views knowledge as a competence to select actions for realising goals
(Newell, l 981; Schreiber, 1992; Stepp & Michalski, 1986). This competence is
accomplished by an intelligent system residing at the knowledge level. This system,

15 -

CHAl'ïlR2 THE KNOWIEDGE LEVEL

called the agent, is composed of knowledge. The structure of an agent is extremely
simple. First, the agent has a set of goals. The set of goals is just another form of
knowledge with the distinction that an agent explicitly strives to realise these goal
components. Second, the agent has a set of actions out of which it will choose
according to the Principle of Rationality. Third, the agent has knowledge relating
goals to actions.

From this abstract definition of knowledge, it follows that relations between goals
and actions are the basic components of knowledge. The Principfo of Rationality
structures the relations between goals and actions and controls the agent's behaviour.
More precisely, it is formulated as follows:

'Principle of Rationality: If an agent has knowledge that one
of its actions will lead to one of its goals, then the agent will
select that action.' (Newell, 1981, p.8)

The law is a simple form of rationality referring to an action leading to a goal. It will
only be effective under certain simple conditions. In many situations the Principle of
Rationality is not suited for determining behaviour. Auxiliary principles can cover
some of these situations. For instance, in case multiple actions are involved the
Principle of Rationality is extended with the auxiliary Principle of Equipotence of
Acceptable Actions asserting that every action leading to a goal is equally acceptable
from the viewpoint of the goal itself. A second auxiliary principle, covering situations
in which actions are connected to multiple goals, is the Preference of Joint Goal
Satisfaction: 'For given knowledge, if goal Gl has the set of selected actions {Al.i}
and goal G2 has the set of selected actions { A2.j}, then the effective set of selected
actions is the intersection of {Al.i} and {A2.j}.' (Newell, 1981, p.9).

Notwithstanding the utility of these extensions, on many occasions, Newell states
that they fail to provide effective guidelines for predicting the agent's behaviour. Even
after the introduction of other auxiliary principles accounting for goal preferences,
risk and uncertainty, the elementary extensions of the centra! Principle of Rationality
are not sufficient to cover all situations. Knowledge level models describing the
environment, do not contain encompassing principles which state that multiple goals
need to be compatible or which solvc incompatibility. The failure to determine
behaviour uniquely, the probabilistic elements and the incapability to describe the
entire range of behaviour all indicate that knowledge level models are approximations
of reality. In this respect the behaviour of the knowledge level deviates from other
computer systems levels which display a deterministic behaviour. The usefulness and
theoretica! status of these knowledge models regarded as approximations are
discussed in Chapter 4.

Figure 2.3 shows the defining aspects of the knowledge level. As might be
expected, the agent is the system and knowledge is the medium at the knowledge
level. The components are goals, actions and bodies. Bodies constitute the relations
between goals and actions. The law of behaviour is the Principle of Rationality.

The knowledge level is reducible to the symbol level. In this sense, it is a true
systems level. But we can single out characteristics of the knowledge level that
deviate significantly from the common features of computer systems levels. First, the

16 -

CHAPJ'ER2 THE KNOW'LEDGF LEVl:.l

agent is not a deterministic machine. Many situations are not describable at the
knowledge level. Thus, as emphasised before, it is an essential aspect of this level to
accept the presence of probabilistic elements. Second, the behaviour of the agent
contrasts with the behaviour of systems at other levels. At the knowledge level. there
is no composition law that connects the components. The behaviour of the agent is
governed by one centra! principle whereas the behaviour of systems at other levels is
determined by the local processing of components. Third, at the knowledge level there
is a complete absence of significant structure in the agent. Fourth, knowledge is not
realised by state-Iike properties of matter, but remains an abstract competence-like
notion.

Medium

(Source: NewelL 1981)

Figure 2.3: Defining Aspects of the Knowledge Level

The third point needs additional explanation. It appears that the absence of significant
structure in the agent causes confusion among researchers as it seems to conflict with
the reconstruction of knowledge level models. For a good understanding, please note
carefully that the third point does not state that there is no structure at the knowledge
level, hut that the agent's eomponents, goal, actions and bodies, are structurally
identical to each other! The agent may lack a significant structure, hut the knowledge
contained by the agent indeed has structure and is positively open to rnodelling
activities: knowledge level descriptions are not about structures in the agent but about
structures of know led ge!

An indispensable part of Newell's proposal is the existence of a symbol level.
Knowledge, viewed from a knowledge level perspective as a cornpetence to select
goal-related actions, is reduced at the syrnbol level to structures and processes. At the
symbol level, data structures with particular properties and associated processes carry
out problem solving to realise a goal-oriented functionality. The data structures
contain knowledge and the processes provide access to the captured knowledge. The
following well-known equation illustrates the idea of a representation formalism:

Representation = Knowledge + Access

Newell (198 l, p.14). explains this equation as follows:

- 17 -

CHAPTER2

'The represemation consists of a system for providing access
to a body of knowledge, i.e. to the knowledge in a form that
can be used to make selections of actions in the service of
goals.'

THE KNOWLEDGE LEVEL

The symbol level describes how knowledge processing systems arrive at actions by
searching problem spaces and databases. There are a lot of symbol level systems, such
as frame-based systems, rule-based systems, record-based systems and graph systems.
Each system bas its own data structures and operations acting upon them.

OBSERVER AGENT

······~

(Source: Newell, 1981. p. lO)

Figure 2.4: The Interaction between Humans and Knowledge-Based Systems

Figure 2.4 shows the situation that involves an observer and an agent. The observer
treats the agent at the knowledge level, i.e. ascribes knowledge of goals, actions and
of the relation between goals and actions to it. What the agent really bas is a symbol
system for reasoning of what actions it will take. The picture is not as trivial as it may
seem at first sight. lt points out the importance of understanding the interaction
between the capabilities of humans and knowledge-based systems and helps to
configure the dyad of the observer and the agent in such a way that an optima)
functionality of the man-knowledge-based system interaction can be attained. An
explicit decision on the division of tasks is helpful to effectively exploit the specific
capabilities of humans and knowledge-based systems. Chapters 6 and 7 exemplify
these types of decisions.

2.4 DISCUSSION

So far, we have described the knowledge level as a computer systems level that allows
us to deal with knowledge independent of particular symbol level systems. The
knowledge level brings some clarity in the relation between knowledge and the
symbol level systems representing that knowledge. lt disentangles what a knowledge
based system knows from how it knows this. Our initial description of the knowledge

- 18 -

level seems to confirm Newell's claim that the identification of the knowledge level
leads to consistent and comprehensive views of knowledge and knowledge
representation and helps to assign to mathematica! logic its proper place.

For further investigation of this claim, we have to look at how other computer
scientists view Newell's proposal and deal with it. Newell's theory has, on the one
hand, stimulated many scientists to turn the knowledge level to technica! use for
instance: Berg-Cross & Price, 1989; Brachman & Levesque, 1986; Bylander &
Chandrasekaran, 1988; Clancey. 1983; Clancey, 1985; Clancey, 1992; Levesque,
1984; Schreiber, 1992; Steels, J 990; Steels, 1992), the knowledge level has, on the
other hand, also been criticised, for instance. by Fox (1986) and Sticklen (1989).

2.4.1 Claimed Advantages of the Knowledge Level

Computer scientists advocating the knowledge level point to a number of advantages
referring to the (a) reconstruction of knowledge level models, (b) assessment of the
role of representation formalisms, (c) evaluation and comparison of representation
formalisms and finally to the (d) specification of the role of mathematica! logic.

A. Reconstruction of Knowledge Level Models
Modelling knowledge refers to a fundamental phase in the development of
knowledge-based systems in which knowledge about the application domain is
collected, structured and documented. A knowledge model is of extreme importance.
lts purpose is to contain a complete description of what a knowledge-based systems
does and serves as a basis for the design and implementation of a knowledge-based
system. Levesque (l 984) formulates the advantage of reconstructing knowledge level
models as follows:

·rn terms of system design, the main reason for distinguishîng
between the knowledge level and the symbol level, is to allow
the functionality of a system to be treated independently of its
symbolic implementation. In particular, it allows us to
consider new operations on a knowledge base (that can be
explained in terms of existing ones) without necessarily
committing ourselves to any particular implementation style.'
(Levesque, 1984, p.206)

The citation underlines the advantage related to rnodelling knowledge without being
biased by symbol level issues which can confuse the views of knowledge. In genera!,
having a clear view of knowledge is experienced as a distinct advantage of the
knowledge level. Brachman & Levesque (1986, and Twine (1989, p.125) also
emphasise that a knowledge level analysis leads to knowledge level models, free of
inadvertent implementation biases.

Other scientists draw attention to the advantages related to the availability of such
implementation-free models. Mesequer (1992) uses knowledge level models for

19 -

CHAPTE/?2 THE KNOWLEDGE LEVEL

validation and design purposes. According to Steels (1992) and Clancey (1983; 1985)
a knowledge level perspective permits the development of deep models enabling the
realisation of robust systems. These systems are capable of providing -when
compared with explanation facilities in traditional systems which are simple replays
of used data structures- more subtle and sophisticated justifications of conclusions.
David & Krivine (1990) have shown this by improving reasoning facilities through
the construction of knowledge level models. Another example of enhanced
explanations by using knowledge level models is provided by Neches, Swartout, &
Moore (1985).

What to think of these advantages? We can agree on the advantage of
implementation-free knowledge level models. We also commit ourselves to the
advantages related to the availability of such models. However, we miss the
observation mentioned in research at the knowledge level that the knowledge level is
a separate level that allows us to define the nature of knowledge. We miss serious
attempts to define this nature ofknowledge.

B. Role of Representation F ormalisms
Smith (1982) made a contribution to assessing the role of knowledge representation
components in his knowledge representation hypothesis:

'Any mechanically embodied intelligent process will be
comprised of strnctural ingredients that a) we as cxtcmal
observers naturally take to represent a propositional account of
the knowledge the overall process exhibits, and b)
independent as such semantica! attribution, play a forma! but
causa! and essential role in engendering the behaviour that
manifests that knowledge.' (Smith, 1982, p.33)

Smith's hypothesis indicates that knowledge representation components of a
knowledge-based system have to comply with two constraints: (a) it must be possible
to interpret them as propositions representing the knowledge of a knowledge-based
system so that we are able to assess their knowledge level import and (b) the
components must play a causal role in the intelligent behaviour of a knowledge-based
system. This causal role should agree with our understanding of these components as
propositions representing knowledge. The behaviour of the knowledge-based system
should be understandable as if the knowledge-based system believes these
propositions. A critica! component of a knowledge-based system is a set of
representation structures that we can interpret as sentences representing what the
system knows.

It is worth noticing in Smith's hypothesis that the two constraints imposed are in
potential conflict with each other. The constraint that a representation formalism
should have a causa! effect in the behaviour of a knowledge-based system seems
reasonable. However, it may conflict with the constraint that it must be possible to
assess the knowledge level import of a representation formalism. Production mies, for
instance, have as causa! effect in the behaviour of a rule-based system, but are not

20

CHAPTER2 THE K1'!0W/J'fJ(,'F 1.HVEL

easy to interpret. A good understanding of what knowledge is present in the set of
production rules, requires a well-reconstructed knowledge level model. This model
should be described by means of a formalism that facilitates the assessment of its
knowledge level import. In Chapter 5 we extensively discuss a formalism to
understand the knowledge level import.

C. Evaluation and Comparison of Representation Formalisms
Furthermore, the knowledge level provides a vantage point to compare and critically
examine the properties of representation formalisms. These comparisons and
examinations should relieve developers of computer systems of the burden of having
to mould each problem to suit their implementation tools. They continue to hold no
matter what symbol level decisions are made. Another advantage of the knowledge
level is its use as a vantage point to evaluate and compare representation formalisms
(Brachman & Levesque, 1986). Chapters 3, 4 and 7 give examples of evaluations and
examinations of representation formalisms from a knowledge level perspective.

D. Role of Mathematica[Logic
There has been much arguing about the role of mathematica! logic in problem solving.
McCarthy (1980) believes that a knowledge-based system should reason according to
the well-worked-out Janguages of mathematical logic whereas Minsky is convinced
that we should try to get a knowledge-based system imitating the way human minds
work which, he thinks, îs certainly not with mathematica! logic.

The distinction of the knowledge level brings some clarity into this area. From a
knowledge level perspective mathematica! logic is a representation formalism similar
to many other formalisms with the twist that it is especially appropriate for the
analysis of knowledge. We can not only apply mathematica! logic directly in the
reconstruction of knowledge level models, but we can also use mathematica! logic to
analyse the knowledge level content when using other representation formalisms. The
latter is possible, because mathematica! logic can also be used to model other
representation formalisms (sec Chapter In this sense, mathematica! logic is not just
a representation formalism.

\Vhether knowledge represented through mathematica! logic is really comparable to
the way the brain works is beside the point. In many respects knowledge impaited to a
computer differs from knowledge in human brains. Working at the knowledge level
we refer to knowledge in computers. Thus we do not have to pursue psychological
realness, but are satisfied with the artificial knowledge present in our knowledge
based system.

2.4.2 Claimed Disadvantages of the Knowledge Level

Newell's claim has not gone unchallenged. It has attracted Fox's (1986) and Sticklen's
(1989) criticism. Fox's main objection is that the knowledge level does not provide an
adequate foundation to study the competence of distributed or multi-agent systems,

21 -

CHAPTER2 THE KNOWLEDGE LEVEL

because it focuses on a single agent. Fox grounds his observation on an examination
of three knowledge-based systems to identify their database requirements: Rl for
computer configuration, ISIS for job-shop scheduling and Callisto for engineering
project management. These systems were found in need of (1) access to one or more
databases by a single knowledge-based system (2) one or more knowledge-based
systems accessing the same database, and (3) multiple knowledge-based systems co
operating to solve a single problem.

(Source: Fox, 1986, p.460)

Figure 2.5: Defining Aspects of the Organisational Level

Fox is convinced that problems requiring distribution of problem sol ving, for instance
when multiple, conflicting goals are involved, cannot be solved at the knowledge
level. Therefore, he introduces the organisational level. The defining aspects are
displayed in Figure 2.5.

The system at the organisational level is an organisation. The components are
agents or other organisations. In Fox's view, agents can be split up, for instance, into
decision-making agents and agents that only retrieve information. The medium to be
processed consists of transactions and the law of composition is formed by contracts.
There are many behaviour laws. Finally, there is another aspect that measures the
costs involved in realising goals.

What to think of Fox's proposal and his criticism of the knowledge level?
According to Fox, the aspects defining the organisational level for problem-solving
competence of multi-agent systems are needed to deal with issues concerning the:

• Impact of knowledge partitioning
• Impact of incomplete and inconsistent knowledge
• Relationship between the number of agents and problem solving competence
• Impact of conflicting goals ,
• Impact of resource contention

If we view Fox's approach as a signal that a smooth communication between agents in
a multi-agent system requires knowledge that should also be modelled, we agree. We
note, however, that modelling knowledge to arrange, for instance, communication
paths is a regular knowledge level issue. In our view, the distinction of a separate

22-

CJ!Ai'Tl:R2 1HF KNOW!LJJ(/E tRVJ;ï

level on top of the knowledge level adds nothing. There is no reason to deal with the
partitioning of knowledge or the impact of multiple goals at a new level. Rather, the
occurrence of multiple goals and other issues related to multi-agent systems, indicates
that the Principle of Rationality and Newell's other first principles have to be
extended. These extensions should form a theory of the nature of knowledge. One
should not forget that the knowleclge level is explicitly meant to provicle a separate
level to define the nature of knowledge. Newell's first principles only give the initia!
impetus to the formulation of such a theory. Thus, we prefer working on a theory of
the nature of knowledge in stead of distinguishing aclditional levels.

Sticklen's criticism (1989) is more fundamental. A centra! objection is that the
iclentification of the knowledge level supports the retrospective analysis of the
behaviour of a problem-solving agent but does not help to yield predictive and
empirically verifiable statements about that behaviour. Sticklen exemplifies his
objection by referring to Clancey's knowledge level description of heuristic
dassification (Figure 2.6). Sticklen concludes that heuristic classification is unable to
yield verifiable predictions of the problem-solving behaviour of an agent.

(A) (B)

Figure 2.6: (A) Heuristic Classification (B) Example of Heuristic Classification

The second component of Sticklen's argument is the observation that each well
established scientific theory must make verifiable predictions. This view is, as
Sticklen states, broadly accepted within the scientific community. Subsequently,
Sticklen inclicates two ways of making such predictions and exemplifies them with
examples from physics. First, predictions can be obtained by working out a closed
form solution of some mathematica! expression. Sticklen refers to Newton's
gravitation theory which helps to predict the forces that two point masses wil! exert on
each other and the trajectories the masses will follow. Second, predictions can be
made by using mathematica) equations which have no closed form solutions, as a
basis for a numerical simulation. The results of a numerical simulation are
predictions. Sticklen points out there are two types of knowledge necessary to obtain
this second kind of prediction: knowledge of the mathematica! equations and
knowledge of how to perform a numerical simulatîon based on these equations.

- 23

CHAPTER2 iHE Iu'VOWLEDGE LEVEL

On the basis of these two components -Clancey's knowledge level description and
the view that a theory must make verifiable predictions- Sticklen draws the conclusion
that the knowledge level as it currently stands is incomplete.

Figure 2.7: Multiple Heuristic Matches

How to react to Sticklen's criticism in the light of our description of the knowledge
level? When we go through Sticklen's attack on a heuristic classification in the
MYCIN system, it is rather surprising that the scheme (Figure 2. 7) showing that
immunosuppressed could be indicative for the disease-category gram-negative
infection but also for leukaemia without giving a decisive answer on which inference
we should expect in a certain problem-solving situation, brings Sticklen to the
conclusion that Newell's knowledge level cannot make predictions and therefore is
incomplete. The conclusion surprises us for three reasons.

Firstly, the heuristic classification scheme is no more than an abstract display of
knowledge present in the MYCIN-system. lt is imaginable that if the details of the
knowledge were displayed instead of the abstract scheme, it would be quite possible
to see under what circumstances immunosuppressed leads to gram-negative infection
or to leukaemia. Criticising the knowledge level, because it does not engender
predictions of the behaviour of an agent, seems like looking at a graphical display of a
database scheme (for an example see Chapter 7) and concluding that database models
are incomplete, because many types of relations cannot be expressed. Just as a
graphical display of a database scheme should omit relations, the abstract display of
the heuristic classification example should omit certain details, too.

Secondly, Sticklen considers Clancey's approach as a typical knowledge level
analysis that 'is pervasive across knowledge-based systems' (Sticklen, 1989, p.234).
From the perspective of many knowledge level adepts this may be true, but from our
perspective it is disputable whether Clancey's heuristic classification is indeed
representative of research at the knowledge level. Newell is very clear when he states
that the knowledge level is a separate computer systems level to define the nature of
knowledge. Newell himself formulated the first principles that can lead to such a
theory: the Principle of Rationality and extensions to it such as the Principle of Joint
Goal Satisfaction and the Principle of the Equipotence of Acceptable Actions. The
question is whether Clancey's heuristic classification can be understood as a theory of
the nature of knowledge. Evidently, heuristic classification provides a useful

- 24 -

CHAPTER2 THE KNOWI f.DGE LEVEL

methodology for modelling knowledge, but does it, for instance, explain the
complexities of knowledge, does it thoroughly deal with the fundamental nature of
abstractions such as generalisations, specialisations and aggregations and associations,
does it add important principles which are in accordance with the Principle of
Rationality? Chapter 4 presents a theory of the nature of knowledge and deals with
these questions.

Thirdly, the knowledge level is a framework for developing theories of the nature of
knowledge and for exclusively dealing with knowledge and it is not meant to make
predictions. A theory of the nature of knowledge helps to develop a concrete
knowledge level model of a certain domain (Lucardie, 1992). A knowledge level
model can be constructed to realise predictions in accordance with the first principles
formulated by Newell. If the model is valid and reliable, the agent will be capable of
making predictions. If a knowledge level model cannot predict reality, it is just a
reflection of human capabilities. Just like us, a knowledge-based system cannot
predict which team will win a football game. This is not a critica! note addressed to
the knowledge level, but rather it is a fact of reality that we have to accept. lt seems
that Sticklen does not distinguish between the knowledge level, a theory of the nature
of knowledge and a concrete knowledge level model constructed according to a
theory. The question now is: what is the object of Sticklen's attack: (1) the mere
conception of a separate computer systems level that exclusively deals with
knowledge, or (2) the first principles described by Newell that form an initia! impetus
to a theory of the nature of knowledge or (3) knowledge level descriptions he knows
about such as the Clancey's heuristic classification or some combination of these three
items?

Sticklen's remark that a scientific theory is commonly accepted to make empirically
testable predictions contains elements of truth. However, Sticklen does not inform the
reader what empirically verifiable precisely means. It is rather surprising that Sticklen,
while unfolding his argumentation, does not refer to the scientific research of the
Logica! Positivists and simply passes by essentially epistemological discussions. The
Logica! Positivists (1925-1936) were empiricists who built their scientific theories on
the Verification Principle: to understand a non-logica! and non-mathematica!
statement that p, means in principle to be able to specify under what empirica!
circumstances p is true, that is to be able to specify how p can be empirically verified
(the Logica! Positivists recognised that logica! and mathematica! statements are
analytica!, have an a priori character and do not have any empirica! pretensions;
therefore, these statements are not subject to the Verification Principle). Sticklen has
no eye for the problems the logica! positivists encountered because of the Verification
Principle. Even they could not maintain the Verification Principle and had to adjust it
into the Confirmation Principle which is less constraining.

Another point Sticklen skips and that, all the same, is important for his
argumentation is that explaining and predicting have the same logica! structure for the
logica! positivist. The forma! structure of the Hempel-Oppenheim explanation model
(Hempel & Oppenheim, 1948) can be used to illustrate this. The Hempel-Oppenheim
model consists of explanans sentences and explanandum sentences. The explanans
sentences contain at least one lawlike statement and a number of preconditions. The

- 25 -

CHAP1'ER2 THE KNOWl.EDGE LEVEL

explanandum sentence describes an individual event. The explanandum sentence can
be inferred from the explanans sentences. For example:

(1) heat causes iron to expand
(2) this wire is made of iron
(3) this wire is heated
(4) this wire is expanded

(explanans sentence 1: lawlike statement)
(explanans sentenee 2: empirical precondition 1)
(explanans sentenee 3: empirical precondition 2)
(explanandum sentence)

The structural identity of this explanation model with a prediction model is
remarkable: if we can logically infer the explanandum sentence from the explanans
sentences, then we can, if we know in advance the lawlike statements and the
empirica! preconditions, predict the explanandum, on the same deductive basis. The
same remarks can be made for other explanation models such as the inductive
statistical model (Hempel, 1962). Note that accepting the Hempel-Oppenheim model
and the inductive-statistical model does not automatically imply a logic positivist
position. Karl Popper described and accepted the model, though he was one of the
greatest opponents of the logic positivists.

If Sticklen does have reasons to distinguish prediction from explanation, he should
make them explicit. If he does not, hls own remarks would also refer to retrospective
explanations at the knowledge level. Then, Sticklen might observe that the heuristic
match step from immunosuppressed to leukaemia lacks explanatory power because it
has little utility for assessing under what circumstances this is true.

The great interest Sticklen attaches to verifiable predictions seems inversely
proportional to the profoundness with which he handles the notions of verification and
prediction. Furthermore, Sticklen easily skips essential scientific epistemological
issues such as verification, confirmation, corroboration, falsification and the
occurrence of several types of facts that are related to verification and prediction.

Apart from these epistemological issues, if Sticklen intends to test the validity of
Newell's proposal as a scientific theory, he should not test the possibility of making
predictions, but test the validity of Newell's claim: he should examine whether we are
indeed able to distinguish knowledge from its representation formalisms and whether
the role of representation formalisms and mathematica! logic is defined more clearly
by using a knowledge level perspective. Furthermore, he should test the tenability of
the first principles of Newell. This would be a very fruitful way of working.
Unfortunately, Sticklen hangs his entire criticism on the capacity to make predictions.

Sticklcn phrases bis criticism by proposing an extension of the knowledge level: the
knowledge level architecture:

'If a problem solving agent may be decomposed into the co
operative efforts of a number of sub-agents, the larger agent
can be understood at the knowledge level by giving a
knowledge level description of the sub-agents and specifying
the architecture the composition follows.' (Sticklen, 1989,
p.243)

26-

CHAPTl:.'R2 THJ;' KNO'W'l.EDGE LEVEL

Just Jike in Fox's proposal, the knowledge level architecture explicitly accounts for
multiple agents. In the view of Sticklen, decomposing an agent into sub-agents and
setting up communication paths and message protocols between these sub-agents,
enables us to build simulators for making predictions. Sticklen has in mind the kind of
predictions that needs two types of knowledge. Therefore, Sticklen needs multiple
agents. We think, however, that the mere fact that we can differentiate knowledge and
that we can model dependencies between several knowledge modules suffices to
attain such a functionality. Decomposing agents therefore is unnecessarily
complicating.

Part of Sticklen's criticism focuses on representing control of knowledge level
models. We note, however, that the distinction of the knowledge level enables us to
concentrate explicitly on knowledge independent of types of knowledge. Thus
pointing at a supposed omission of a type of knowledge is somewhat odd. In addition,
in Clancey's definition of the knowledge level competence of heuristic systems this
type of knowledge (level control) is important and 'knowledgeable' (Clancey, 1985).

Finally, in Sticklen's view knowledge level models do not provide direct guidelines
for the development of knowledge-based systems. Therefore they are computationally
inadequate and have a non-operational character. Typical of this part of Sticklen's
criticism is that for the greater part it fulminates against what is generally viewed as
the greatest advantage of the knowledge level: the avoidance of implementation biases
by describing the functiona!ity of a knowledge-based system without any commitment
toa particular implementation style. Also in traditional ways of developing computer
systems, numerous arguments are mentioned that implementation-free descriptions of
a system, often called a functional specification or requirements specifications, are
essential fora system to be successful (Davis, 1988).

However, the knowledge level is more than an implementation-free level: it helps to
define theories of the nature of knowledge. The distinction of the knowledge level
provides an adequate entry point for the analysis of the nature of knowledge. Such an
analysis (or theory of knowledge) permits us to understand, explain and predict
behaviour without the need to construct an operational model of the implied process.
A theory of knowledge strongly influences the conceptual modellîng process
(Lucardie, 1992). In Chapter 4 we go into this in more detail.

2.5 CONcu;sION AND DISCCSSION

Computer systems levels provide ways of describing computer systems: they do not
provide ways of describing their environments. The identification of the knowledge
level as a new and separate level on top of the symbol level, is based on the
assumption that a clear conception of knowledge should be logically prior to that of
representation. At the knowledge level we are bent on describing the knowledge a
knowledge-based system contains. Knowledge used in the service of goals includes
semantic issues (about the functionality of a system), but it completely excludes user
interface aspects (how to present the functionality of a system to users) as well as
implementation aspects (how to encode the functionality). Knowledge corresponds

- 27

Cl!APTER2 THE KNOWLEDGE LEVEL

with data structures and processes at the symbol level. Knowledge exists by virtue of
symbol systems (Figure 2.8):

'The entire field of Artificial Intelligence is, in a sense,
devoted to discovering the symbol-level mechanisms that
permit a close approximation to the knowledge level.'
(Newell, 1990, p.80)

Newell's theory has served as a guideline for many researchers (Brachman &
Levesque, 1986; Bylander & Chandrasekaran, 1988; Schreiber, 1992; Steels, 1990;
Steels, 1992). However, we should remember that research at the knowledge level did
not arise with the advent of Newell's theory. Long before Newell launched his theory,
questions we now classify as knowledge level problems, have been the subject of
extensive studies. Furthermore, much research explicitly focusing on knowledge is
not presented, and not classified, as knowledge level research.

Broadly speaking, we can identify two lines of knowledge level research. In the first
approach, there is an explicit focus on decomposition and distribution of tasks,
inference strategies, and models. Examples of this approach are the KADS
methodology (Schreiber, 1992) and the Components of Expertise (Steels, 1990;
1992). In the second approach a strong focus can be seen on classification (Clancey,
1983; Clancey, 1985; Goel, Soundararajan, & Chandrasekaran, 1987).

(Source: Newell. 1981)

Figure 2.8: The Reduction of the Knowledge Level to the Symbol Level

What can we gain from this knowledge level perspective? We think that the utility of
the knowledge level is clear enough and that Newell's claim can be confirmed. We
found advantages which are not trivial. These advantages relate to the analysis of the
nature of knowledge, the reconstruction of implementation-free knowledge level
models (or conceptual models), the specification of the role of mathematica! logic and
to the examination and comparison of representation formalisms.

Furthermore, it appeared that much of the criticism raised against the knowledge
level can be rejected. In a sense, Sticklen's criticism is illustrative of critics of the
knowledge level. Our analysis and ultimate rejection of Sticklen's observations against
the knowledge level help to expose a number of misconceptions. An important
misconception is the view that the knowledge level is purely an attempt to shift the
emphasis away from representational issues towards implementation-free descriptions
of problem solving. If this were true, the knowledge level would not bring us any

- 28 -

CH!lP1'JfR2

further than the realisation that an implementation-free functional specification is
necessary for developing computer systems. The proposal of the knowledge level
encompasses much more. It is a separate computer systems level that paves the way
towards developing theories of the nature of knowledge. Newell's theory of the
knowledge level itself is not a theory of the nature of knowledge, but a theory that
identifies the knowledge level. Newell's theory sets preconditions by providing the
framework for developing and analysing theories of the nature of knowledge. Such an
analysis has been performed by Braehman (1985). In it he fulminates against the
prototypical theory of the nature of knowledge. In Chapter 5 we discuss the
prototypieal theory and its relation with other theories of the nature of knowledge.
The differences between the knowledge level, a theory of the nature of knowledge and
the modelling activities which are based on a certain theory of the nature of
knowledge often are not recognised. This arouses the confusion and the criticism
Sticklen and others display. We think that Sticklen'f' observations are somewhat odd
and misplaced. The lack of predictive power is, as we argued, no real issue.

Though t\ewell's ideas have an impact on information technology,
there is still great confusion between the knowledge level and the symbol level.
Brachman (1985), for instance, points to the problems encountered by Fahlman,
Touretzky and Van Roggen (1981) when they tried to ascertain the meaning of thcir
inheritance mechanism and could not find a consistent interpretation; they could not
assess the knowledge level import of their mechanism. Conversely, semantic issues
are often mixed up with symbol level or implementation concerns. When discussing
the functionality of a system. notions of inheritance mechanisms, frames and similar
ideas often erop up.

Though Newell's knowledge level theory is an important step forward, much work
remains to be done, Especially, two points should be addressed. The first point is that
we should attempt to shift the emphasis away from representation issues and redirect
it to knowledge. The second point refers to the role of mathemalical logic as a
representation formalism that is appropriate for the of knowledge. In the next
chapters we elaborate on these two points within the scope of integrating AI and DBT,
which is the first research issue of the thesis.

- 29 -

CHAPTER3

STRATEGIES FOR INTEGRA TING ARTIFICIAL INTELLIGENCE

AND DATABASE TECHNOLOGY

3.1 INTRODUCTION

The integration of AI and DBT is being studied in a variety of ways. Some
researchers stress the similarities of both research fields such as the common logica!
basis (Jones, 1991). Others point to differences such as the deductive proof-theoretic
inferencing of AI-systems versus model-theoretic query evaluation of DB-systems
(Brodie & Jarke, 1986) or emphasise the complementary nature of these systems
(Risch, Reboh, Hart, & Duda, 1988). Despite this variety, we can distinguish two
basic strategies.

The main thrust of research addressing relationships between AI and DBT is
conducted following a symbol level strategy. Typical of this strategy is the
concentration on the transfer of representation structures and associated processing
techniques from AI to DBT and vice versa. At the symbol level a clear distinction
exists between AI-systems and DB-systems. This distinction is made up by the
different representation formalisms both types of systems employ. ln AI-systems rules
and accompanying inference mechanisms are widely used, while in DB-systems
records and query evaluations constitute an important representation formalism.

An alternative strategy to address the relationships between AI and DBT is
exclusively concerned with the knowledge of a knowledge-based system. In this
knowledge level strategy, the distinction between AI-systems and DB-systems is non
existent. In terms of what knowledge is present, as opposed to representation
structures and processing techniques encoding that knowledge, both types of systems
are simply collections of knowledge elements serving representational ends
(Brachman & Levesque, 1986; Twine, 1989).

The purpose of this chapter is to show that a knowledge level strategy opens up new
perspectives and is more fundamental than a symbol level strategy. As mathematica!
logic plays a key role in a knowledge level strategy, a related purpose is to survey the
strengths and weaknesses of mathematica] logic.

The structure of this chapter is as follows. First, we characterise the symbol level
strategy and discuss the implications of following it (Section 3.2). Second, we
describe the knowledge level strategy by the reconstruction of a knowledge universe
through mathematica] logic (Section 3.3). To illustrate one of the advantages of the
knowledge level strategy, we use mathematica! logic as a knowledge analysis tool to
perform a knowledge level evaluation of record-based representation formalisms
(Section 3.4). To conclude this chapter and to set up preconditions for the next one,

- 31 -

CHAPTER3 STRATEG!ES FOR JNTEGBATJNGART!FICJAL INTEUIGENCE AND DATABASE TECHNOLOGY

we not only summarise the utility of the knowledge level strategy, but also point out
an important weakness of mathematica] logic (Section 3.5).

3.2 SYMBOL LEVEL STRATEGIES

The prevailing view within research regarding the integration of AI and DBT is that
each research field can contribute to the other by the transfer of data structures and
processing mechanisms. Examples of such symbol level contributions are the use of a
DB-system to store facts and rules of an AI-system (Abarbanel & Williams, 1986;
Deering & Faletti, 1986; Herwijnen, et al., 1990; Monarchi & Smith, 1992/1993), the
use of frames to store relational data (Chow, 1987) or the addition of rule processing
algorithms to databases (Stonebraker, 1984). This focus on representation formalisms
is a typical trait of the symbol level strategy, but does not completely characterise it.

To obtain a more precise characterisation, we take a closer look at the work of
Herwijnen, et al. (1990). Their point of departure is that the implementation of a
knowledge-based system by using a database management system is not only
possible, but even yields many important advantages. To illustrate this point, they
mention the extensîve recovery facilities of a database management system that
prevent a system from ending up in an inconsistent state. Further, they point to the
query optimisers that take care of an efficient access to large amounts of data. In
addition, Herwijnen, et al. (1990) enumerate facilities of database management
systems such as screen definition tools and report generators.

(Source: Herwijnen, et al., 1990, p.19)

Figure 3.1: The Attribute Table

What strikes one most is their claim that a database management system facilitates the
process of modelling knowledge. Herwijnen, et al. (1990) account for this claim by
emphasising that rules and data are modelled into a dedicated data model that enables
them to model at a higher level of abstraction. They exemplify their argumentation by
discussing the functîonality of a knowledge-based system that is intended to support

- 32

CHAPTER3 S1RATEfi!l'.S FOR INTEGRA T!NG AR71FIC!AL J,\f IELLJCl}\'CEAND DAT>tBASH TECJINOLOG'r-·

users who advice their customern about government regulations that apply to them.
Stated more precisely: The task of the system is to find, departing from the attributes
of clients, all government regulations that apply to them, and to find, departing from a
government regulation, all clients to whom this regulation is possibly applicable.'
(Herwijnen, et al., 1990, p.17). A regulation is considered applicable from the
standpoint of a client, if that particular dient complies with the conditîons of the
regulation. A client is considered relevant from the standpoint of a regulation, if the
client complies with the conditions of that regulation. To perform this task, a
knowledge-based system should know the attributes of clients and the conditions of
regulations.

The attributes of clients are modelled into three database tables. The Client table
contains the individual clients, the Client-attribute table contains the values of each
attributc of these clients. The Attribute table holds both attributes of clients and
conditions of government regulations (Figure 3.1).

The conditions of the government regulations are modelled into four database
rabies. Each regulation is composed of one or more condition-parts. The table
Government-regulation relates a regulation to its constituent condition-parts. A
condition-part consists of regulation-attributes which are connected through the
logica] operators and and or. Herwijnen, et al. (1990) provide an example of a
regulation (we will refer to it as regulation X) that demands that a person is of age, not
pensionable, is manied or has at least one child. A person is considered not
pensionable, if this person is not older than 60 years in case of a woman and not older
than 65 years in case of a man. According to Herwijnen, et al. (1990) the conjunctive
normal form of regulation X consists of four condition-parts. The condition-parts 2, 3
and 4 each have two regulation-attributes:

1. AND
2. ((sex female) OR (age<60)) AND
3. ((sex= male) OR (age<65)) AND
4. ((civil state married) OR (number of children>Ü))

The table Condition-part relates the condition-parts to the constituent regulation
attributes. The table Regulation-attribute models these simple regulation-attributes.
Finally, the table Attribute-domain contains the possible values of attributes. The
complete dedicated data model of the system consists of six tables and is clisplayed in
Figure 3.2.

The principle task of the knowledge-based system is to match object-types (relevant
dient or applicable regulation) to objects (clients or regulations). It therefore
searches through the complete database. The values of the client's attributes are
compared to the conditions of the regulations. If, for instance, a solution must be
obtained for a client, the system, starting from the client's attributes, searches through
all the available regulations and compares the occurring conditions with the values of
the client's attributes to obtain a match.

The research briefly described above is a classic example of a symbol level
strategy. It shows a combination of two important characteristics of such a strategy.
The first characteristic is the focus on representation formalisms and system facilities

- 33

CH4PTER3 STRA. TEGIES FOR !1VTEGRATING ARTIF!ClAl INTELllG'ENCE AND DATABASE TECHNOLOGf

built around them. The majority of the advantages Herwijnen, et al. (1990) put
forward, concern a favourable symbol level system i.e. a database management
system offering facilities related to the record-based representation formalism.

relation conditions of regulatîons

(Source: Herwijnen, et al., 1990, p.18)

Figure 3.2: Tab/es of the Dedicated Data Model

The second charactelistic is that the researchers do not adduce relevant arguments
concerning the nature of knowledge to motivate (a) the choice of the representation
formalism and (b) the way knowledge is represented in the tables. In our opinion, the
claim that a record-based database management system supports the process of
modelling knowledge cannot be understood as a valid knowledge level argument.
What plays a centra! role in the substantiation of this claim is the idea of a standard
clause: a condition-part that refers to only one attribute. In their line of reasoning
standard clauses facilitate the process of modelling knowledge, because an expert can
easily define standard clauses in the dedicated data model. Next, on the basis of these
standard clauses, an expert can define a regulation. According to Herwijnen, et al.
(1990), the task of the knowledge engineer is largely limited now to familiarising
experts with the way the representation formalism is used. They state that experts find
it easy to model their knowledge following this approach and conclude that this way
of knowledge modelling is in keeping with the way experts think and work.

We do not doubt that experts find it easy, at least in the beginning, to insert
knowledge into the tables of the system through standard clauses, but the question is
whether the use of standard clauses is really helpful in the process of modelling
knowledge and indeed is in keeping with the way experts think and work.
Furthermore, we think that it is debatable whether the step from standard clauses to
regulations and from a single regulation to a system of regulations can be easily taken
by using this dedicated record-based data model.

Let us explain these objections by a short analysis of regulation X. The first thing
worth noting is that in this analysis attributes are shown to have several
classifications. The attribute age, for instance, as a first classification, has the
following three categories: (1) <18, (2) 2:18 and <60 and (3) 2:60. The second
classification of age also bas three categories: (1) <18, (2) :?::18 and <65 and (3):?:: 65.
These classifications of age have a conditional nature. They depend on the attribute
sex: the first classification refers to females and the second classification to males.

- 34

Cf/t1l"!EN3

The second observation is that the relevance of attributes is conditional as wel!. For
instance, whether the attribute children is relevant, depends on classifications of age.
sex and civil state. Further, the relevance of the attribute civil state depends on sex,
age and children.

Can standard clauses cope with conditionaL flexible classifications and conditional
relevance of attributes? We are very doubtful about this. Standard clauses only
account for one category of an attribute and ignore other categories and the influence
of other attributes. An argument in their defence might be that other and
attributes will be incorporated in the remaining condition-parts of a regulation. We do
not reject this possibility, but think that this way of modelling is error-prone. The
previous conjunctive normal form of regulation X showing a part of a table built of
standard clauses illustrates several problems that may easily emerge. The second
condition-part ((sex= female) OR states that a person should be a female or
younger than 60 years, whereas the third condition-part ((sex= male) OR (age<65))
states that a person should be a male or younger than 65 years. The conjunction of
these two condition-parts embodies the knowledge that a person should be a female or
younger than 60 and be a man or younger than 65. Nowhere in this representation of
regulation X, is it made explicit, that if a person is a man, and thus complies with the
second condition-part, it is not possible that the same person can comply with the
thîrd condition-part by being a female. Nowhere in this representation of regulation X,
is it made explicit, that if a person is younger than 60. and thus complies with the
second condition-part, the same person automatically passes the third condition-part.
Whether a client is a female or a male is not important in this specific case.

What we are stating is that the of each classification of an attribute
should be mutually exclusive and that the interdependence between attributes should
be made explicit in a model. Both classifications of age we presented above have
mutual exclusive categories. This implies that the language in which the model is
expressed should provide validation facilities to prevent errors that are a consequence
of non-exclusiveness or ignoring interactions between attributes. An example of such
an error is displayed in the conjunctive normal form that reflects a part of the
condition-part entity of the dedicated data model. The second condition-part now
states that a person should be a female or be younger that 60. But what probably is
meant that if a person is a female, she should be younger than 60 to qualify for
regulation X! A similar remark applies to the third condition-part. The right
conjunctive normal probably is:

l. AND
2. female) AND (age<60)) OR
3. male) AND (age<65))) AND
4. ((civil state= married) OR (number of children>OJ)

Standard clauses not only seem to Jack structuring facilities dealing with relations
between of an attribute, but also seem to have the disadvantage of difficulty
in the influence of other attributes on this particular attribute. The
representation formalism forces every standard clause to be constructed in strict
isolation! If one continues to think in the same line, one will understand the problems

- 35 -

CHAPTER3 STRA TEGIES FOR INTEGRA TING AR11FICIAL INTELLIGENCE AND DATABASE TECHNOLOGY

in entities such as the Attribute table. No facilities are present to survey and deal with
flexible, conditional classifications and conditional relevance. For instance, the
conditional relevance of civil state cannot be modelled in this table. Connected with
this is the problem of validation. Experts are not enabled to validate the knowledge
represented because of the fact that the representation formalism does not allow
insight in flexible and conditional classifications.

relationship view of table structure

entity (1. N) cardinality

(After: Monarchi & Smith, 1992/1993, p.50)

Figure 3.3: An Entity-Relationship Representation of Rules

We conclude that flexibility and conditionality of classifications cannot adequately be
accounted for in standard clauses and this easily leads to incomplete, inconsistent or
incorrect knowledge. Standard clauses may be effective for very simple regulations in
which no dependencies between attributes exist, but regulations of this type are rarely
found. A survey of the complexities of regulations due to flexibility and conditionality
in classifications and the need for structuring facilities to deal with them is extensively
described by Overhoff & Molenaar (1991).

A similar approach using a record-based representation formalism can be found in
the work of Monarchi & Smith (1992/1993). They show how production rules can be
represented in a simple entity-relationship structure by designing a number of
relational tables and implementing a simple inference engine in the relational database
language SQL. Monarchi & Smith (1992/1993) adduce arguments similar to those of

- 36 -

CllAPJJ;,'R 3 S'TRA Tl:G/ES FOfl INTFGRA TING ARHFIC/AL !Nï ELLJGENCE AND DATAHASF TECHNOLO(,'V

Herwijnen, et al. (1990). They point to the facilities of a database management system
for concurrent processing and for setting up multi-user environments. Furthermore,
they point to the security and referential integrity components.

Pursuing the representation of knowledge using a record-based formalism Monarchi
& Smith (1992/1993), just like et al. (1990), have to decompose and
distribute rules over several tables of a data model. Their model, displayed in Figure
3.3, shows that the table Dimensions holds the name or description of the occurring
dimensions (variables). The '#' denotes sequence numbers. The table D_values
contains the values of the dimensions. The Facts table contains the atomie units
together with accompanying factors (CFs). The Antecedent and Consequent
tables respectively contain the conditions and conclusions of production rules. The
Rules table contains the names of the rules.

Though the data model of .Yl.onarchi & Smith (199211993) looks somewhat
different, our previous remarks also apply here. Consider the example of Monarchi &
Smith (1992/1993) in which they represent the following rules in a database
management system:

1. If Fl or F2, and F3, then F5 and F6.
2. If Fl and F2, or F3, then F6.
3. IfFl and F2, orF3 and F4, then F7.

The representation of the rules in the tab les of the data model looks as follows:

Facts

- 37

CHAPTER3 STRA TEG!ES FOR JNTEGRAT!NG ARTIFIC!AL !NTELL!G'ENCE AND DA1:ABASE TECHNOLOGY

3 3 3 2 2
~-1-~~~~~~;

3 4 3 2 2

(Source: Monarchi & Smith, 1992/1993, p.53)

(Dimensions are omitted for clarity)

Figure 3.4: The Entity-Relationship Representation of Rules of Monarchi & Smith

To reconstruct a rule, one has to start in the Rules table to find a unique identifier of a
specific rule. Subsequently, keeping the uni que identifier in mind, the tab les
Antecedents and Consequents have to be consulted to 'see' one complete rule. Again
no facilities are provided that help to get an insight into possible interactions between
attributes and conditional relevance.

In general, independently of the data model, the record-based data model does not
supply structuring, survey and validation facilities to model knowledge that is
characterised by conditional relevance and flexible classifications. Kent (1979) made
remarks similar to the ones we are making here against the record-based
representation formalism. Kent directs his criticism mainly at the lack of structuring
and representing facilities to cope with heterogeneous objects that require flexible and
conditional descriptions. Kent states that the basic assumptions behind record
structures are not adequate to model and represent these types of objects. In Chapter 4
we discuss Kent's criticism more in detail.

Favouring particular symbol level structures and proccsses is not wrong by
definition and does not automatically imply a symbol level approach. We would like
to add, however, that preference for a representation formalism should be justified by
knowledge level considerations. For at the knowledge level, as we will extensively
argue in this thesis, well-founded choices for representation formalisms can be made.

- 38 -

CHAPFH:3 l:\'ft'LllGENCi:. ,JND DA 'J'AH11.\F TECHA'O/DGY

The last advantage mentioned by Herwijnen, et al. (1990). namely that record-based
formalisms support the modelling of knowledge, cannot be understood as a
knowledge level argument justifying their implementatîon choice. Rather, it is an
attempt to force knowledge into an a priori chosen representation formalism. With
regard to knowledge acquisition the approach of Henvijnen, et al. (1990) is a transfer
approach: the extraction and modclling of knowledge in the form of the
representation formalism a system offers, without any attention to knowledge level
considerations. This brings us to the second characteristic of a symbol level
strategy: as far as knowledge is involved its role is limited to that of filling-material
for already chosen represemation formalisms. The nature of knowledge influences
neither the choice nor the use of a specific formalism.

The transfer approach is subject to scvere critici sm. Schreiber (1992) points to
problems related to the transfer approach: difficult (or impossible) mapping of
knowledge onto the required representation, bad maintenance and poor explanation
facilities. For instance, a maintenance problem in the approach of Herwijnen, et al.
(1990) occurs through the fact that they represent a regulation, which is virtually a
simple mie, in four tables. When inserting new rules or modifying existing ones
integrity constraints are easily endangered. Another problem is that the process of
modelling knowledge gets probably more complicated through the fact that we have
to model knowledge using a representation formalism without having any knowledge
level arguments for applying it in this way.

The main cause underlying these problems is not distinguishing carefully between
the knowledge a knowledge-based system contains (or should contain) and its
knowledge representation components carrying that knowledge. Smith (1980) made a
contribution to describing this difference by fonnulating constraints for representation
formalisms in his knowledge representation hypothesis (Chapter 2). If representation
formalisms do not match these constraints, i.e., if the gap between knowledge and the
target representation formalism is too wide, an intermediary and structured description
of knowledge permitting us to conduct a knowledge level analysis, is needed.

To make our position quite clear we ought to state that we do not deny that AI and
DBT can help each other at the symbol level, but emphasise that integration at this
level without understandîng fundamental issues at the knowledge level leads to
serîous difficulties. Too much concern with representation mechanisms at the expense
of knowing what function a system is computing already led to disadvantageous
implementation biases. All too often, discussions about the utility of representation
techniques such as inheritance taxonomies, production mies and connection graphs
Jack correct understanding of what, if anything. these symbol structures indicate
(Berg-Cross & Price, 1989; Brachman, 1983; Etherington & Reiter, 1983).

3.3 KNOWLEDGE LEVEL STRATEGIES

From the previous discussion, it follows that for the integration of AI and DBT we
should carefully distinguish between the knowledge of a know1edge-based system
(this might be an AI-system, a DB-system, an integration of both types of systems or

- 39 -

CllAP1ER3 ST!?ATEG/ES FOR /NTEG/?ATJNG ARTIFJCJAL JNTELLlGENCE AND DATABASE TECHNOIOGY

whatever) and the knowledge representation formalisms putting that knowledge to
work. When we focus on the knowledge of a knowledge-based system and thus
follow a knowledge level strategy, we are, initially, neither interested in knowledge
representation structures that might exist in the knowledge-based system, nor in the
processes operating over these structures. How knowledge is represented and made
available toa knowledge-based system is of a secondary, symbol level concern. At the
knowledge level the only relevant issue is what knowledge is present.

Following a knowledge level strategy bas important consequences. The first
consequence of a knowledge level strategy is that AI-systems and DB-systems both
are simply considered as computer programs containing knowledge. Distinctive
symbol level features in processes such as the deductive proof-theoretic inferencing of
AI-systems versus the model-theoretic query evaluation of DB-systems and structures
such as production rules versus records, are ignored in exchange for an explicit focus
on knowledge. As both types of systems simply represent knowledge, no differences
can be detected. On the contrary, instead of stressing differences, a knowledge level
integration emphasises a deep and significant commonality stemming from
fundamental concerns about knowledge.

Another consequence of a knowledge level strategy is the reduced role of
knowledge representation formalisms. Though indispensable, they do not exclusively
occupy centre stage. Since knowledge should be a logica! implication of the content
of the representation formalisms and since determining knowledge might require
simple retrieval capabilities and inferenee of some sort, the role of representation
formalisms is limited insofar that they should, aecording to the eonstraints mentioned
in Smith's knowledge representation hypothesis (Chapter 2), enable us to assess their
knowledge level import.

The third consequence is the key role that is reserved for mathematieal logic. From
a knowledge level perspective mathematical logic is a knowledge representation
formalism that is uniquely appropriate for the analysis of knowledge. Even when
other representation formalisms are applied, the determination of what knowledge is
contained in them requires the use of mathematica} logic. Though logic may not be
useful as an implementation language due to computational disadvantages, there is
nothing against viewing mathematica! logic as a knowledge representation language
that is extremely useful for the analysis of knowledge of knowledge-based systems
such as knowledge systems (Walker, 1987), expert systems (Lucas & Van Der Gaag,
1991), expert database systems (Smith, 1986), semantic databases (De Broek, 1989),
deductive or logic databases (Das, 1992; Gallaire, et al., 1984) and decision support
systems. A system of mathematica] functions normally specifies or underlies the
knowledge of these systems. We call such a formal description of knowledge a
knowledge universe.

Attention should be paid to the fact that we use mathematica} logic to describe
knowledge for implementation purposes: we do not use mathematical logic to
describe human knowledge, hut only to describe 'artificial knowledge' which will be
represented in a knowledge-based system. In Chapter 4, we discuss the differences
between human knowledge and 'artificial knowledge'. These differences need
adequate understanding for us to be able to estimate the possibilities and limitations of
knowledge-based systems. In this thesis, mathematical logic is applied to refleçt the

40

C!-!APTER3 STRATEG!ES POR INTEGRA11NG ART!PIC!AL !NTELL!Gl:NCE AND DA JABASJ:· TECHNOLOGY

knowledge of a knowledge-based system. This is fully compatible with the notion of
computer systems levels. Each of these levels provides ways of describing computer
systems, not the structure of their environment.

3.3.1 Knowledge Universa

In Chapter 1 we viewed knowledge as a competence to match object-types and
objects. To obtain a match a knowledge-based system requires descriptions of object
types or objects. These descriptions can be collected, structured and documented in a
knowledge universe. Various more or less synonymous terms are used to denote a
knowledge universe: knowledge level model (David & Krivine, 1990; Schreiber,
1992), conceptual model (Di Battista, Kangasallo, & Tammasia, 1989; Oxborrow,
1989) and data base universe (De Broek, 1989). Some of these terms are also used to
denote a graphical display of a knowledge universe. Figures 3.2 and 3.3 are examples
of graphical displays of knowledge universa. These displays, though providing a
survey, cannot be considered as real knowledge universa. Usually, real knowledge
universa are forma! and much more detailed descriptions of object-types and/or
objects. Before defining a system of mathematica! functions to describe real
knowledge universa, we present a number of basic definitions related to set theory.

3.3.2 Mathematica! Preliminaries for Describing a Knowledge Universe

We suppose that the elementary definition of a set as a whole of separate parts is
known to the reader. A set does not know any order or duplicates. Thus:

{3, -1, 2, 4, 3}= {-1, 2, 4, 3}= {-1, 2, 3, 4}

A set can be described by describing the properties of its elements:

S1 = {x 1 x is a real number and is the root of the equation x 2 = 1}

Another possibility to describe sets is the enumeration of its elements:

S1 ={-1,1} Finite set

S2 ={-1,1,2, ... } Infinite set

A number of numerical sets is often used:

N = {1, 2, 3, ... } Natura! numbers (excluding 0)

N 0 ={O,1, 2, 3, ... } Natura! numbers (including 0)

- 41 -

CHAPTER3 STRAIEGIES FOR JNTEG'RAT!NG AR11FIC!Al. IN11iUIGElVCEAND DATABASE TECHNOLOG}~

Real numbers1

z {0,±1,±2,±3, ... } lntegers

z+={l,2,3, ... } Positive integers

(jJ = {x
a

1 a E Z and b E N}
b

Rational numbers

We make use of the following notation:

D

D

There is an element x of A for which counts:

then and only then if

by definition then and only then if

by definition

We also have to define standard operations for the manipulation of sets. The
following definition refers to set-inclusion (a up to c) and to the union (d), the
intersection (e), the difference (t) the Cartesian product of two sets (g) and finally the
powerset of a set (h). The last definition refers to the union of a set of sets (i). If A and
B are sets, then:

D
(a) Aç;;;B <==> 'v'xEA:xEB

D
(b) B-;;J.A <==> Aç;;;B

D
(c) AcB Aç;;;BandA:;t:B

D
(d) AuB = { x 1 x E A or x E B}

D
(e) AnB { x 1 x E A and x e B}

D
(f) A B { x 1 x E A and x 1i!O B}

D
(g) AxB {(x;y)lx E A and y EB}

D
(h) P(A) {X!Xç;;;A}

D
(i) uw {xl3A E Wand x EA}

---·····

To these numbers beloog: (a) all finite decimal fractions including integers and (b) all infinite repating decimal
fractions and (c) all finite non-repeating decimal fractions.

42 -

CHA!'THR3 STRATE(//E~· FOR !NTEGRAT!NGAR't1HCIA!. INTELLIGHNCEAN1JDATABA.'ff nxHNOLOfiY

The forma] definitions to be presented will also make use of the following symbols:

..... __ Sync..:1.::.b.::.o:....l __ ...i-....... :::~~:::..:_c=:=.::.::.=c:.__ ________ ______ _

r
f

1r

0

î

the restriction of a function to the specified part of its domain

the restriction of a function to the not specified part of its
domain
the restriction of a set of functions with equivalent domains toa
specified part of their do mains
function composition for modification of a single function

function composition for modification of a set of functions

the natura! join

tours of a relation

3.3.3 The Main Components of a Knowledge Universe

The main components of a knowledge uni verse to be defined are:

A. Knowledge Elements
B. Knowledge Tables
C. Knowledge States

Many forma! definitions concerning these components are derived from De Broek
(1989). A number of definitions have been assigned other names or are otherwise
modified. The definitions are exemplified with examples which are mainly taken from
the field of fire-safety.

A. Knowledge Elements
A knowledge element can be taken as a basic element of knowledge. A knowledge
element is a means-end relationship that is needed to classify an object as an object
type. A knowledge element can be described by a mathematica! function. A formal
and precise definition of a function is:

Definition 3.1: Function

D
fis a function 0 fis a set of ordered pairs and

'\/(x;y)Ef:'v'(x'; f:îf x=x'theny y'

•
As we can see from this definition, a function is a set of ordered pairs with specific
properties. An ordercd pair with x as first eo-ordinate and y as second co-ordinate is
noted as follows: (x; y). Conversely, if pis an ordered pair, we can designate the first

- 43 -

CHAPTER3 STRATEG!t"S FOR JN11SGRATING ARTIFJCIAL !NTELLIGENCEAND DATABASE TECHNOLOGY

co-ordinate of p with n 1(p) and the second co-ordinate with n2(p). The domain of a
function fis the set of first co-ordinates of the ordered pairs off The range of a
function fis the set of second co-ordinates of the ordered pairs off If fis a set of
ordered pairs (i.e., the order of the ordered pairs is not relevant and there are no
duplicates). and for every domain element x off exactly one y exists (i.e. the same x
cannot have different y's, but the same y could be connected to several x's), thenfis a
function. An example of a function is:

kl = {(wall identifier; 123), (thermal insulation; 25), (irradiance; 35)}

The domain of klis:

dom(kl) {wall-identifier, thermal insulation, irradiance}

The range of kl is:

range(kl) {123, 25, 35}

The set kl consists of three ordered pairs. Every domain-element is linked to exactly
one value. It follows that kl complies with definition 1. Thus, a mathematica! function
kl is a recipe that adds to each element from the set dom(kl) exactly one element of
the set range(kl). Another example of a function is:

k2={(wall-identifier;124), (thcrmal insulation; 25), (irradiance; 24)}

Semantically, kl and k2 are knowledge elements each containing three attributes of an
object. In this particular situation the object is a wall. In a well-defined knowledge
universe these attributes should be helpful in the process of classifying the relevant
walls (objects) as object-types. A possible object-type could be afire-resistant wall.
Then, seeing whether a specific wall belongs to the extension of this object-type and
thus is fire-resistant, requires knowing the relevant attributes of a wall. These
attributes are described in the previous functions.

We say that kl is a function over { wall-identifier, thermal insulation, irradiance}.
The funetion k2 is also a function over {wall-identifier, thermal insulation,
irradiance}. The formal definition of a funetion over a set is:

Definition 3.2: Afunction over a set

If A is a set then:
D

fis a funetion over A <:=:> fis a function and dom(f) = A

•
Because not all functions are in the form we want them, we have to define some other
operations to modify functions. One of them is the restriction of the domain of a

- 44

CHAPTl:R3 STRATEGIES FOR JNTFGRATING ARTIFIC/AL JNTEUJGENCE AND DATABASE 11:'CHNOLOGY

functionfto a set B. The restricted and the remaining part off are respectively defined
as:

Definition 3.3: Restriction

(a) frB={(x;y)EflxEB}

(b) f f B = {(x; y) E f 1 x il B}

•
An example of a restriction: If B = {wall-identifier, thermal insulation} then:

(a) kl r B = {(wall- identifier; 123), (thermal insulation; 25)}

(b) klfB={(itradiance;35)}

Restrictions on functions are necessary to formally relate chunks of knowledge.
Another operation that serves similar purposes, is the function composition of a
function into another function. The forma] definition is:

Definition 3.4: Function composition

If f and g are functions then:

go f = {(x; g(f(x))) 1 x E dom(f) andf(x) E dom(g)}

•
Suppose we have:

h1 = { (wall - identifier; component - identifier)}

k5 = {(component- identifier; 123), (part- identifier; 2765), (number; 2)}

Then:

(a) k5 o h1 = {(wall- identifier; 123)}

(b) h1 o k5 = 0 (because there is no x E dom(k5) and k5(x) E dom(h1))

Restriction is a special kind of function composition:

fr A= f oid(A)

ld(A) is the identical function. The identical function on A adds to each element of A
the element itself.

- 45 -

CJL4PTER3 STRA TEGIES FOR INTEGRA TING ARTIFIOAL Ii\TELLIGENCE AND DATABASE TECllNOLOGY

B. Knowledge Tables
If knowledge elements are functions over the same set, they can be grouped into a
knowledge table. A knowledge table is a set of functions in which each function has
the same domain. Kl and K2 are knowledge tables. Kl is a knowledge table over
{ wall-identifier, thermal insulation, irradiance} and K2 is knowledge tab Ie over
{ component-identifier, product-identifier, number}. KI and K2 respectively contain
four and two knowledge elements:

Kl = {kl, k2, k3, k4}

kl = {(wall- identifier; 123), (thermal insulation; 25), (irradiance; 35)}

k2 {(wall-identifier; 214), (thermal insulation; 35), (irradiance; 45)}

k3 = {(wall - identifier; 329), (thermal insulation; 20), (irradiance; 25)}

k4 {(wall - identifier; 491), (thermal insulation; 25), (irradiance; 35)}

K2 {k5,k6}

k5 {(component- identifier; 123), (part-identifier; 2765), (number; 2)}

k6 {(component identifier; 214), (part- identifier; 2778), (number; 2)}

The formal definition of a knowledge table is:

Deflnition 3.5: Knowledge table

If A is a set then:
D

Kis a knowledge table over A <=:> Kis a set and

'rik E K: kis a function over A

•
We can raise the previously defined operation for restricting the domain of one
function to the level of a set of functions and thus also to the level of knowledge
tab les:

Deflnition 3.6: Restriction of a set of functiom

If F is a set of functions and B is a set then:

Fff B {f f Blf F}

•
Now a set of functions can be dealt with in one go:

46-

CHAPTERJ

Kl lf {thermal insulation, irradîance} =
{

{(thermal insulation; 25), (irradiance; 35)}, {(thermal insulation: 35), (irradiance; 45)}.

{(thermal insulation; 20), (irradiance; 25)}, {(thermal insulation; 25). (irradiance; 35)}

In a similar manner, we can extend the definition of a function composition to let it
operate upon a set of functions.

Definition 3. 7: Punction composition fora group of functions

If Gis a set of functions andf is a function then:
D

G 00 f {::::} {kof 1 k EG}

•
Example:

K2 = {(wall - identifier; component identifier)} {{(wall - identifier; 123)},

{(wall - identifier; 214)}}

The following operation is called the natura[join:

Definition 3.8: Natura[join

If F and F' are sets of functions then:

F N F' = {f u f' 1 f E F andf' E F' andf u f' is a function}

•
We quantify thus over all pairs (f x f') Fx F' in the sense that every union off and

f' yields another function. If the union of two functions produces a new function the

original functions are joinable.

Example:

If is a function with the following definition:

h;. (wall identifier) = component - identifier

h;. (x) x for each x E {part - identifier, number}

Then:

- 47

CHAPTER3

KI t><1 K2 00 /ii
{

STRA Tt;GIES FOR LlVTEGRATING AR11FJCIAL INTELLIGENCE AND DATABASE TECHNOLOGY

{(wall- identifier; 123), (thermal insulation; 25), (irradiance; 35),

(part - identifier; 2765), (number; 2)},

{(wall - identifier; 214), (thermal insulation; 35), (irradiance; 45),

(part - identifier; 2778), (nurnber; 2)}

}

The first set of the composition and the natural join express the knowledge that walt
123 has a thermal insulation of 25 and an irradiance of 35 and consists of at least two
components (products). The second set of the composition and the natura! join express
the knowledge that walt 214 has a thermal insulation of 35 and an irradiance of 55
and consists of at least two components (products).

The restriction, composition and join operations apply to sets of functions. We
have, however, a special interest, as will be shown, in using them for the modification
of knowledge tables.

C. Knowledge States
Another important class of functions, necessary for the definition of knowledge states,
is found in the set-valuedfunctions. Every domain-element of a set-valued function is
connected toa set. S1, for instance, is a set-valued function with two ordered pairs.

s, =
{

(wall

(component

; {wall - identifier, thermal insulation, irradiance }),

; {component-identifier, part-identifier, number})

The format definition of a set-valued function is:

Deflnition 3.9: Set-valuedfunction

D
S is a set valued function <=> S is a function and

'<ix E dom(S): S(x) is a set

•
The knowledge of K1 en K2 can be represented by a function KS so that:

KS(wall) K1 and

48

CHAPTER 3 STRA JEGIES FOR IN rtY,RATING ARTIHCJAL INTEl.UGENCE AND DATA.BASE JECHNOLOCY

KS(component) K2

We call KS a knowledge state over S1. In our example, S1 connects objects to thcir
relevant attributes:

S\(wall)

S1 (component- parts)

= {wall identifier, thermal insulation, irradiance}

= {component- identifier, part - identifier, number}

The formal definition of a knowledge state is:

Definition 3.10: Knowledge state

If Sis a set- valued function then:
D

KS is a knowledge state over S q KS is a function over dom(S) and

•

Vx E dom(S): KS(x) is a knowledge table

over S(x)

A knowledge state is a function with a domain which is equivalent to the domain of
the set-valued function S. The range of a knowledge state is a set of knowledge tables.
Knowledge tables can have several connections with other knowledge tables. These
connections can also be described by functions.

Definition 3.11: Connection

If h is a function and K and K' are sets of functions then:
D

h connects K with K' q K lf dom(h) ç; K' 00 h

•
Two alternative definitîons are:

D
(1) h connects K with K' q {k [dom(h) 1 k E K} {k' oh 1 k' E K'}

D
(2) h connects K with K' Ç:} 'dk E K: -:3k' K': k f dom(h) k' oh

h is called a variable transformation. If we have the following variable transforn1a
tion:

h1 = {(wall - identifier; component identifier)}

then:

49

CJlAPTER3 STRA.TEGJES FOR INTEGRATJNG ARTJFJCIAL JNTELUGENCE AND DATABASE TECHNOLOGY

h1 connects KS(wall) with KS(component)

Figure 3.5: The Variable Transformation h1 Connects KS(wall) with KS(component)

When we view KS(wall) and KS(component) as tables, this connection can be
displayed graphically (Figure 3.5). The restriction of each function of KS(wall) to
{ wall-identifier} is a subset of the restriction of KS'.component) to {component
identifier}. In the second restriction the component-identifier is substituted by a wall
identifier. The variable transformation h1 adds the corresponding attribute of
KS(component) to every relevant variable of KS(wall). The connection between
KS(wall) and KS(component) expresses the knowledge that every wall with thermal
insulation and irradiance attributes, is a component composed of products.

There are many different types of connections to express several types of
abstractions which will be dealt with in the next section. In some situations we do not
speak of inclusion but of equivalence. In these situations we use another definition.

Definition 3.12: Bilateral connection

If h is a function and K and K' are sets of functions then:
D

h connects K with K' bilaterally <=> K lf dom(h) = K' oo h

•
By the function h we can see how knowledge elements are related to each other. We
can express this also in an association:

- 50

STRA tHG!l:-'S fOR INTEGRA r!NG ARTIFICIAL !Nï Hl IGtNCEAND DAT48ASE TJ::CHNO! OGY

Definition 3.13: Association

If K and K' are sets of functions and h is a function then we call:

{(k; k') E K x K'lkrdom(h) = k' oh}

the association on K x K' induced by h

•
Using the definition of a knowledge state, we can define a knowledge universe :

Definition 3.14: Knowledge universe

If Sis a set valued function then:
D

KU is a knowledge uni verse over S 8 KU is a set of knowledge states over S

•
The set-valued function Sis a knowledge schema. A domain-element of Sis the name
of an object-type or an object. An element of a knowledge uni verse K U is a
knowledge state conformable to KU. In the next section and the next chapters a
number of knowledge universa will be discussed. First, however, we will deal with
the logica! reconstruction of a knowledge universe.

3.3.4 The Reconstruction of a Knowledge Universe: Statie Constraints

In the previous sub-section we explained what a knowledge universe is. In this sub
section we describe how a knowledge universe can be reconstructed. The
reconstruction of a knowledge universe passes through five phases. These five phases
correspond with the determination of the:

1. Knowledge Schema
2. Variable Constraints
3. Inter-variable Constraints
4. Knowledge Table Constraints
5. Knowledge Universe Constraints

(KSCH)
(VC)
(IVC)
(KTC)
(KUC)

These phases are logica! phases. They do not necessarily correspond with phases in
time-order. The phases 2 up to 5 aim to assess statie constraints. These statie
constraints together form a hierarchical system of mathematica] functions that define a
knowledge universe.

51 -

CHAPTER3 STRA TEGIES FOR INTEGRA T/NG ART!FIC/Al /NTELLIGENCE AND DATABASE TECHNOLOGY

1. Knowledge Schema (KSCH)
A knowledge schema relates the name of a knowledge table to the variables occurring
in it. Conceptually, a knowledge schema may link object-types to their descriptive
conditions or link objects to their relevant attributes. Logically, a knowledge schema
can be described by a set-valued function. The domain of this function consists of a
set of names and its range represents sets of variables that are relevant for the
corresponding object-types or objects. An example of such a set-valued function is S2:

(component

(component - parts

(basic component

(wall

}

; {component - identifier, type, basic component}),

; {component- identifier, part- identifier, number}),

; {basic component- identifier, type, buying price,

selling price, profit, stock}),

; { wall - identifier, thermal insulation, irradiance})

S2 is a set consisting of four ordered pairs. Every domain-element represents a name
of an object. Every name is linked to exactly one value which is a set. S2 contains
knowledge of names and their variables such that:

S2 (component)

S2 (component - parts)

S2 (basic component)

S2 (wall)

; {component - identifier, type, basic component}

; {component - identifier, part - identifier, number}

; {basic component - identifier, type, buying price,

selling price, profit, stock})

; {wall- identifier, thermal insulation, irradiance}

The schema reflects a hypothetical application in which components of spaces are
described. Of every component, the component-identifier, the type of the component
and whether a component is a basic component is assessed. Of every part of a
component a component-identifier, a part-identifier and the number of constituent
parts are assessed. Furthermore, we need to know the basic component-identifier, the
type, the buying price, the selling price, the profit and the stock of each basic
component. Of every wall a wall-identifier and the attributes thermal insulation and
irradiance are assessed.

2. Variable Constraints (VC)
Variable constraints specify the allowed values of variables. They apply to variable
values per variable per object. For every knowledge table KS(x) -where x is an
element of dom(S) and S represents a knowledge schema- the constraints which
should be met by the elements of KS(x) can be described by a set-valued function over
S(x). This set-valued function establishes the set of allowed values for every variable a

- 52 -

CHAPTER3 STRATEG/t:S FOR IN7EGRA TIN(; ART!FICIAJ. !N1ELL!GENCI:.' AND DATABASE TECHNOLOGY

of KS(x). Before determining the variable constraints, we introduce the concept of a
row.

Definition 3.15: Row

If n E Nthen:
D

ris a row with length n <=? ris a function and dom(r) = [0, .. " n-1]

•
Rows are important when the order of objects is relevant as in character rows.
Examples of rows:

r 1 {(0; 37), (l; 29), (2; 37)}

r 2 = {(0; 29), (!; 37), (2; 37)}

1'3 = {(0; 29), (l; 37), (2; 37), (3; 29)}

Among other things, rows can be used to define the domains of text-variables:

Definition 3.16: Sets of character strings viewed as rows

Chs(n) (r 1 k E [0, ... , n]: ris a row with length k and range(r) ç C}

where C is here a yet unspecified set of characters .

•
Now, we can specify the variable constraints:

vccomponent =
{

(component - identifier

(type

(basic component

}

vccomponent parts =
{

(component identifier

(part - identifier

; [l, .. " 103]),

; {ceiling, wall, floor, window, door,

window frame, door frame}),

no})

; [l,. "' 10
3

]),

; [l, .. " 103
]),

- 53

CHAPTERJ

(number

vcbasic component =

{

(basic component - identifier

(type

(buying price

(selling price

(profit

(stock

}

vcwall

{

(wall - identifier

(thermal insulation

(irradiance

}

STRA TEG!ES FOR !NTEGRA 11NG ART/F!CJAL INTELUGENCE AND DATABASE TECHNOLOGY

; [l" .. , 103
])

; [1, ... , 103
]),

; Chs(6)),

; [1, ... , 106 1),

;[l, ... , 104]).

; [1, ...• 104)).

; [1 •... ' 104]

; [1, ... ,103
]),

; [1, ... ,103
]),

; [1, ... ,103
])

These set-valued funetions are variable constraints describing object characterisations
(Remmen, 1982) or object descriptions or object-types. The use of these set-valued
functions specifying the variable constraints becomes clear when we define TI(F):

Definition 3.17: TI

If Fis a set valued function then:

TI(F) {f 1 fis a function over dom(F) and 'ïlx E dom(F): f(x) E F(x)}

•
TI(F) operates upon a set-valued function. The set defined by TI(F) is a set of
functions and every function of the set has the same domain. This domain is
equivalent to the domain of the set-valued function F upon which TI operates. Every
function 'chooses' its range trom the range of F. As Fis a set-valued function the
range of Fis a set. In this way, the number of allowed knowledge elements can be
limited. To see whether a knowledge state KS complies with the constraints
mentioned above, we only have to check whether:

KS(component) ç;:;; TI(vccomponent)

- 54 -

Cf!AJ"FER3 !NTE!.l!GFNCE AND DA1ABASl:' JELJINOLOGY

KS(component- parts)

KS(basic component)

KS(wall)

Example:

If:

KS(component)

ç; II(vccornponent parts)

ç; II(vcbasic component)

II(vcwall)

{(component identifier; 123), (type; wall), (basic component; no)},

{(component identifier; 214), (type; wall), (basic component; no)}

}

Then:

KS(component) n (vccomponent)

3. lnter-variable Constraints (IVC)
Inter-variable constraints limit the combinations of values of different variables. They
further limit the set of knowledge elernents by allowing us to impose additional
demands on combinations of variables. Suppose we want to express the knowledge
that:

(IVCI)

(IVC2)

(lVC3)

(IVC4)

(IVC5)

a component cannot have itself as part in its structure

the selling price of a basic component is at least twice as much as the
buying price

the profit on a basic component is the selling price minus the buying price

the stock of basic components is less or equaJ to 2 or the stock multiplied
by the buying price is smaller than 106

a certain value of the thermal insulation of a wall implicates a higher value
for irradiance

This can be done as follows:

ivccomponent =

{k E II(vccomponent - parts) 1

k(component - identifier) =F k(part - identifier)} (lVCl)

- 55 -

CHAPTER3 STRATEGIES FOR lfllTEGRATING AR11FIC!Al INTELUGENCE AND DATABASE TECIINOLOGY

ivcbasic component =

{k E Il(vcbasic component) 1 k(selling price) ~ 2 * k(buying price) and (IVC2)

k(profit) = k(selling price) k(buying price) and (IVC3)

k(stock) $ 2 or k(stock) * k(buying price) $106
} (IVC4)

ivcwall =
{k E Il(vcwall) 1 if k(thermaI insulation) = X then

k(irradiance) < X + Y} (IVC5)

Observe that IVCI is not strong enough to guarantee that a component cannot have
itself as part of its structure. It only accounts for situations wherein a direct part of a
component cannot be the component itself. Indirect parts can yet be the component
itself. To deal with this problem, an additional knowledge table constraint, as we will
see, is required.

4. Knowledge Table Constraints (KTC)
Knowledge table constraints apply to a complete knowledge table. When we have a
set of allowed knowledge elements Y, then the set of permitted knowledge tables is a
subset of P(Y) (see Sub-section 3.3.2 on the mathematica! preliminaries). The
definition of a set of permitted knowledge tables is based on a subset of the domain of
the knowledge elements that serves as a unique identifier of a knowledge table. Thus,
before specifying knowledge table constraints, we have to define under what
circumstances a set B is uniquely identifying a knowledge table K:

Definition 3.18: Unique identification

If B is a set then:
D

Bis unique identifying in K ~ 'ifk e K: 'ifk' e K: if k r B = k' 1 B then k k'

•
Now, we can express the k:nowledge that:

(KTCl) the variable component-identifier of a component is a unique identifier

(KTC2) the variables component-identifier and part-identifier together uniquely
identify a component

(KTC3) a component cannot have itself as part in its structure

(KTC4) the variable basic component-identifier of an object is unique in the total
set of objects which are basic components

56 -

CHAPTER J STRATEG!ES FOT? L'ltTEGRATING ART JNC!AL JNT!:.'Ll!CENCE AND DATABASE TECHNOLOGY

(KTCS) the total selling value of the stock is the product of the number of stock
products and the buying price

(KTC6) the variable identifier of a wall is a unique identifier

The forma! specifications are:

ktccomponent {K ivccomponent 1

{component identifier} is unique identifying in K} (KTCl)

ktccomponent parts

{K ç ivccomponent parts 1

{component identifier. part- identifier} is unique in K and (KTC2)

{k(component identifier); k(part - identifier) 1 k E K} is acyclic} (KTC3)

ktcbasic component =
{K ç ivcbasic component 1

{basic component identifier} is unique identifying in K and

(''i.k E K: k(stock) k(buying price)):::; 108
}

ktcwall

{K ivcwall I {identifier} is unique identifying in K}

(KTC4)

(KTCS)

(KTC6)

KTC3 not only incorporates IVCl, but also is an extension on IVCl. In contrast to
IVCI, KTC3 also prohibits situations wherein an indirect part of a component is the
component itself. Understanding the complete effect of KTC3, requires an
explanation of the acyclic set. For this reason, we must define how to make a tour of a
relatîon and the transitive closure of a relation:

Definition 3.19: Tour of a relation

If n EN and R is a relation then:

RÎn {(r(O);r(n))lrisarowof n+l and

Vi E (0, .. " n-1]: (r(i); (r(i + 1)) ER}

•
We illustrate this definition with an example from De Broek (1989, p.18).

RI {(l; 2), (2; 3), (3; 4), (l; 4), (3; l)}

The graphical display of Rl is:

57

CHAPTER3 STRA. TEGIES FOR JNTEGRA TING ART!FlCJAL INTEUIGENCE AND DATABASE TECHNOLOGY

4 3

/î
2

Figure 3.6: A Graphical Display of Rl

From definition 3.19 and Figure 3.6 we infer that:

Rl Î 2 {(l; 3), (2; 4), (2; 1), (3; 2), (3; 4)} and

Rl Î 3 = {(l; 4), (1; 1), (2; 2), (2; 4), (3; 3)} and

Rl Î 4= RI

R Î n is the set of pairs of tours of exact n steps that are possible in the graphical dis
play of R. The transitive closure of R is the set of tours of R that are not empty. The
transitive closure is denoted by Tcl(R).

Definition 3.20: Transitive closure

If R is a relation then:
D

Tcl(R) = U{R Î nln EN}

•
Ris cyclic if real tours of R are possible. Otherwise Ris acyclic.

Definition 3.21: Cyclic and acyclic

If R is a relation then:

D
(a) Ris cyclic <=> 3(x; y) E Tcl(R): x = y

D
(b) Ris acyclic <=> V(x; y) E Tcl(R): x *- y

•

58 -

S1 RA.U.GJES FOJ? !NTEGRA. TJN(r AH! !FICJAI. JNTELUGE.NCEAND DATABASE Fl:.UINOLOGY

5. Knowledge Universe Constraints (KUC)
Using the previously defined constraints, the determination of a knowledge universe
is reducible to formulating constraints on a set consisting of different sets of object
types or objects. They are called knowledge universe constraints; they define
connections between different knowledge states. First, we need an auxiliary function
which we call a knowledge charactedsation (KC):

KC

(component

(component parts

(basic component

(wall

}

; ktccomponent),

; ktccomponent - parts),

; ktcbasic component),

; ktcwall)

A KC is a set-valued function. Every element of range(KC) is a set of knowledge
tables. With KC the knowledge universe can be defined using, for instance, the
following constraints:

l) every part of a component is a component

(KUC2) every basic component is a component

(KUC3) every wall is a component which has a thermal insulation and an
iITadiance variable

(KUC4) the price of a wall is at least the sum of all cost prices of the possible
direct parts

Kll

{KSIKS TI(KC) and

{ (component - identifier. part - identifier)} connects

KS(component - part) with KS(component) and

{(basic component - identifier; component - identifier)} connects

KS(basic component) bilaterally with

{k E KS(component) 1 k(basic component)= yes} and

{(wall- identifier; component- identifier)} connects KS(wall)

bilaterally with {k E KS(component) 1 k(type) = wall} and

Vp E KS(basic component):

(:L k E KS(component - part) L><J (KS (wa!D = h 2) and

- 59

(KUCl)

(KUC2)

(KUC3)

CHAPTER3 STRATEG!ES FOR JNTEGRATING ARTJFJCL4L !NTEWGEVCE Al'VD DATABASE I'ECHNOLOGY

k(component- identifier) p(basic component-identifier): p(price) *
k(number)):::; p(buying price)} (KUC4)

where:

h2 = { (component-identifier; wall-identifier)}.

The connections between the knowledge rabies of the knowledge universe can be
displayed graphically. In Figure 3.7 KUC4 is not displayed, but it refers to
KS(component), KS(wall) and KS(basic component):

Figure: 3.7: A Graphical Overview of the Knowledge Universe

There are different types of connections. The dominant form is:

(Al) h connects KS(S) with KS(E)

A stronger alternative form, used less frequently, is:

(A2) h connects KS(S) bilaterally with KS(E)

(Bl) Sometimes additional constraints have to be specified for the knowledge
elements of KS(E):

h connects KS(S) with {k E KS(E)I <p(k)}

<p(k) is a necessary condition which should be met by a knowledge element of
E in order to have associated knowledge elements of S. <p(k) often has the
form k(a) = v0 •

(B2) h connects KS(S) bilaterally with {k E KS(E) 1 <p(k)}

<p(k) exactly indicates for which knowledge elements of KS(E) knowledge
elements of KS(S) exist. If <p(k) has the form k(a) = v0 , a is called the
inspection variable of E and v0 is called the inspection-value for S. From
KUC2 it appears that basic component is an inspection variable of
KS(component) and that yes is an inspection-value for KS(component). From

60

STRATEGJE5 FON. IN'!EGRAT!NG AR11J-1CJAL INTiJJJCENCE AND DATABASE: f'l::CHNOLOGY

KUC3 it appears that type is an inspection variable of KS(component) and that
wal! is an inspection-value for KS(wall).

Knowledge universe constraints enable us to express fundamental abstraction
mechanisms such as aggregations, generalisations, specialisations and associations.

Address

(A) Graphical Notation

ADDRESS IT ((STREET ;
(CITY
(ZIP
}

(B) Mathematica[Notation

Figure 3.8: An Object-type Constructed with Aggregation

Aggregation denotes the consolidation of object-types/objects into a new object
type/object. For instance, it allows us to focus on the abstract notion of address while
ignoring its component parts. An aggregation is a composite object-type/object
constructed from other object-types/objects. Figure 3.8 provides an example of an
aggregation in a graphical notation often used in semantic database modelling and in a
mathematica! notation using Il .

/
Medic~'

;;;;: non medical worker}

worker worker

(A) Graphical Notation (B) Mathematica/ Notation

Figure 3.9: Generalisation and Specialisation

- 61

Cl!APTERJ STRATEG!ES FOR JNTEGRA rING ARTJF/C!AL JNTELIIGENCE AND DATA.BASE TECHNOLOGY

Generalisation!specialisation points to particular supertype/subtype relations between
object-types/objects. For instance, in a hospital employees may be a generalisation of
workers and specialists. Workers, in turn could be a generalisation of medical and
non-medical workers. Figure 3.9 shows a graphical and a possible mathematical
notation.

Association involves, as does aggregation, the consolidation of object-types/objects
into a new object-type/object. Association is used to build sets of elements of an
existing object-type/object. The difference from aggregation is that the omission of
one of the constituting elements does not lead to the disappearance of the association.
Mathematically, association is a finitary powerset. For instance: P(LANGUAGE)
where LANGUAGE is a definition.

Figure 3.10: Logica[Phases in the Reconstruction of a Knowledge Universe

Figure 3.10 depicts the logica! phases. The arrows in Figure 3.10 denote 'used-in'
relationships.

• KSCH = {(N1; dom(VC1)), (N2 ; dom(VC2)), •• " (N11 ; dom(VCn))}

• IVC; ç;; II(VC;)

• KI'C, ç, P(IVC1)

• KC = {(N1; KTC1),(N2 ; KI'C2),.", (N11 ; KTCn) and

• KU ç, II(KC)

62 -

CHAPT!:'RJ

3.3.5 The Modification of a Knowledge Universe: Dynamic Constraints

The previous constraints used in the reconstruction of a knowledge universe are statie
constraints. Statie constraints assess the knowledge states that are formally allowed.
Statie constraints, however, do not constrain the transitions between knowledge
states. For this purpose we need dynamic constraints. Dynamic constraints specify the
permitted transitions from a knowledge state toa new version of that knowledge state.
Dynamic constraints are eonstraints on changes in pieces of knowledge. The set of
permitted transitions can be assessed by a subset R of KU x KU with the intuitive
meaning (De Broek, 1989):

(KS; KS') ER ~ the direct transition from KS to KS' is allowed

An element of KU x KU is called a transition and a set of permitted transitions is
called a transition relation on KU. If KU is a set of knowledge states then:

Definition 3.22: Transition and transition relation

D
(a) p is a transition within KU ~ p E Kll x KU

D
(b) Ris a transition relation on KU RçKUxKU

•
An example of a transition relation is:

KUR= {(KS; KS')l(KS; KS') KUx KU and

Vk E KS(basie component): Vk' E KS'(basic component):

k(buying price) s k'(buying price)}

The transition relation expresses the knowledge that the buying price of a basic
component cannot be reduced.

3.3.6 Retrieving Knowledge from a Knowledge Universe through Functions

We can retrieve knowledge from a knowledge universe by defining functions over it.
In DBT such functions are called queries. The nom1al approach in DBT is to represent
(complex) objects in a knowledge universe and then define queries containing object
types. In this way, it is possible to classify objects as object-types. The same
functions, however, can also be defined in for retrieving the constraints of
an object-type. Queries, for instance, can be added to an AI-system that has been
implemented in Prolog by the incorporation of Prolog-definitions. Yet, for reasons of
convention, we wil! adhere to the name 'query' in this thesis.

63

CHAPTER3 STR4. TEG!ES FOR INTEGR4. TING ARTIFICIAL INTELLIGENCE AND DATABASE TECHNOLOGY

Deflnition 3.23: Query

If U is a set, then:
D

q is a query over KU <=> q is afunction over KU

•
A query that retrieves knowledge from our previously defined knowledge universe is:

l.KS E ktcwall: l{k E KSI k(thermal insulation) ~ 30 and k(irradiance) ~ 30}12

The query represents an object-type. A successful answer to this query should yield
the number of walls that meet the constraints of the object-type. This implies that both
insulation properties exceed 30 minutes.

Other classes of queries:

(a) l.KS E KU: KS(wall)

This query stands for the question: 'Give all values of the knowledge state wall'

(b) l.KS E KU : KS(wall) lr {identifier}

This query stands for the question: 'Give all identifier values of the knowledge
state wall'

(c) ÀKS E KU: {k E KS(wall) 1k(identifier)-:f.123}

This query stands for the question: 'Give all values of the knowledge state wall
except the wall that is identified by 123'

(d) ÀKS E KU: {k E KS(components) 1 k(component- identifier) ~
{k'(component- identifier) 1

k' E KS(basic component)}lr {basic component - identifier}
This query stands for the question: 'Give all identifier values of all components
that are not a basic product'

Queries can be very complex when they have to gather knowledge from several
knowledge tables. These queries can be formulated by using the natural join and
(bilateral) connections. Examples of these more complex queries are provided in
Chapter 7.

If queries are applied repeatedly, it might be useful to name them and to use that
name instead of continually having to specify the query. A named query is called a
view.

2 If Ais a set, then IAI is the number of elements of A. The notation ÀCE WW: Ux in which Ux is an expression in x, is
shorthand for {(C; Ux)ICEWW}.

- 64 -

CHAPTER.3 STRA TEG!ES FOR !NTEGRAT!N(; !IRTIPJC!AJ. /JVTELU(;ENCE IL.NIJ DATABASE TECHNOLOGV

Definition 3.24: View

If U is a set, then:
D

p is a view on KU {cc;} p is an ordered pair and

rc2 (p) is a query over KU

•
If p = (n; q) then n is called the name of the query and q is called the definition of p.
In Chapter 7 an extensive view is given. When we have a set of views, we can gather
them in a function. This can only be done if the names of the query are different. Such
a set of views is called a view-system.

Definition 3.25: View-system

If U is a set, then:
D

Vis a view - system on KU {cc;} Vis afunction and

Vp E V: pis a view on KU

•

3.4 A KNOWLEDGE LEVEL INTEGRATION: A VIEW OF DATABASES FROM
THE KNOWLEDGE LEVEL

A knowledge level integration of AI and DBT is characterised by a shift in emphasis
away from pure representational issues to knowledge. This concern often becomes
manifest through a rather intensive use of mathematica! logic serving as a tool for the
analysis of knowledge. In this way, mathematica! logic supports the evaluation of
representation formalisms as to their adequacy in representing knowledge. When we
discussed the approaches of Herwijnen et al. (1990) and Monarchi & Smith
(199211993). we performed such an evaluation.

Here, we will conduct a similar, but more technica! evaluation that is based on the
system of mathematica! functions that describe a knowledge universe. In succession,
the knowledge characterisation, the variable constraints and the inter-variable
constraints were assessed:

{

(component

(component parts

(basic component

; {component - identifier. type, basic component}),

; {component identifier, part- identifier, number}),

; {basic component - identifier, type, buying price,

- 65

CHAPTER3

(wan

}

vcwall =

{

(wall - identifier

(thermal insulation

(irradiance

}

ivcwall =

STRA TEGJES FOR JNTEGRA 17NG AR11F!CIAL IN1F.l.F!GEJ\fCE AND DA 7'ABASE TECTlNOl.OGY

selling price, profit, stock}),

; {wall identifier, thermal insulation, irradiance })

; [1, ... , 103
]),

;[l, ... ,103
]),

; [l" .. , 103])

{k E Il(vcwall) 1 if k(thermaJ insulation) = X then k(irradiance) < X + Y}

If KS(wall) = {kl, k2} and:

kJ {(identifier; 123),(thermal insulation; 25),(irradiance; 35)}

k2 = {(identifier; 214), (thermal insulation; 35), (irradiance; 45)}

then KS(wall) complies with the definition of a knowledge table. KS(wall) is an
example of a knowledge table representing part of the building regulations for
construction and industry. It is composed of a set of functions with an explicit concern
for selecting fire-resistant walls to limit the spread of fire. Virtually, KS(wall) is a
knowledge table that is an element of an allowed set of knowledge tables:

KS(wall) E ktcwall

From a symbol level perspective knowledge table KS(wall) could be represented as a
table of a database over { identifier, thermal insulation, irradiance} with exactly two
elements. Each element of KS(wall) corresponds to a tuple of a table. As every
element of KS(wall) is a function, a tuple can be described by a function over the
relevant set of field names (Figure 3.11). A second option is the implementation of the
elements of KS(wall) as production rules. Then KS(wall) forms a set of production
rules (Figure 3.11). The two types of representation structures, records or production
rules, employ search in quite distinct ways. The underlying search mechanism for
extracting knowledge from tables is a form of query evaluation and the fundamental
access mechanism of a rule-based knowledge base boils down to a sort of deductive
inferencing (Brodie & Jarke, 1986, pp.191; Smith, 1986, pp.8-12).

The example shows that a component described by means of mathematica! logic to
facilitate the assessment of its knowledge level import bas several representation
options at the symbol level. But this does not imply that the choice of a representation
formalism should take place at the symbol level. On the contrary, as we argued and
will be arguing again, only at the knowledge level well-founded evaluations and

- 66-

CHAPTER3 STRATEG/ES FOR JNTEGRA11NGARTIF!CIAL INTELLIGENCEAND DATABASE TECHNOLOGY

choices of representation formalisms can be made. One of the advantages of working
at the knowledge level, mentioned in the previous chapter, is the availability of a
separate, implementation-independent level from which representation structures and
access mechanisms can be analysed. An example of such an analysis is the view of
databases from the knowledge level as described by Brachman & Levesque
(Brachman & Levesque, 1986). They state that it is possible after some theorem
proving to assess that one of two conditions is truc without saying which one (using
disjunction) or to state that an object satisfies a certain condition without saying what
that phenomenon is (using existential quantifiers).

Walls: a record-based database

Figure 3.11: Two Symbol Level Representation Structures

A solution to this intractability problem is to limit the uncertainty expressible in an
implementation language. Because record-based data bases are restricted in precisely
this way, they can be considered as knowledge-based systems of a limited form. A
data base can be compared to the knowledge representation component of a
knowledge-based system3. To illustrate a view of databases from the knowledge level
we increase the number of functions of the previous example to four.

kI ={(wal! identifier; 123), (thermal insulation; 25), (irradiance; 35)}

k2 {(wall - identifier; 214), (thermal insulation; 35), (irradiance; 45)}

k3 = {(wall-identifier; 329), (thermal insulation; 20), (irradiance; 25)}

k4 = {(wall-identifier; 491), (thermal insulation; 25), (irradiance; 35)}

This produces the following table of Figure 3.12.

The range of uncertainty in these functions is quite limited. Disjunctions, negations or
existential quantifiers are not present. A consequence of the limitations in

3 'A knowledge based system is any system that uses an explicit knowledge base in some capacity. The knowledge
representation component is the patt of the overall system that manages the knowledge base.' (Brachman & Levesque,
1986, p.72).

67 -

CHAPTER3 STRA.TEGIFS POR JNTEGRATJNG ARTIFICIAL !NTEUJGENCB AND DATABASE TECHll/OLOGY

expressiveness is a lack of knowledge. This becomes elear when we rephrase the
question How many walls meet the fire-safety requirements concerning fire for
limiting the spread of fire? It appears that the knowledge expressed by the logic
functions is not sufficient to answer this question. For example, we also need to know
in what way the two heat insulation variables of walls are related to fire-resistance.
Assume, that we possess the knowledge that a wall meets the minimal fire-resistanee
requirements if the heat insulation properties both exceed 30 minutes. These
requirements together form the object-type fire-resistant wall. As this object-type is
not modelled in the knowledge universe, it can be formulated in a query. Then, the
forma] query to successfully answer the question should be:

À KS E ktcwall: 1 {k E KSI k(thermal insulation) 2 30 and k(irradiance) 2 30}1

Walls

Figure 3.12: A Table about the Fire-resistance of Walls

The computation of the answer should result in a match implying that objects that can
be classified as an object-type fire-resistant wall will be selected. But it is still not
certain that the query yields the right answer. It is possible that the list of functions is
incomplete, so that relevant walls might be lacking. Incompleteness can be solved by
explicitly naming the positive instances of the present walls. Therefore, to reinterpret
the question as the question originally posed, additional knowledge is needed.

V[wall(x)::::>x=123vx 214vx=329vx=491]
(universa! quantifier naming explicitly the positive instances)

Another problem might be that different identifiers refer to the same wall. For
instance, one wall could be denoted by the identifiers 123 and 491. However, this is
impossible here. In every permitted knowledge table KS(wall), the set {identifier} is
unique identifying. This guarantees that every tuple represents a unique object.

Because of the extra knowledge, no reasoning is necessary to find out how many
walls are present. Inference is simply reduced to calculation. All the system has to do
is count how many appropriate tuples appear in the wal! relation. It does not have to
reason by cases or contradiction. But suppose that the objeet-type fire-resistant wall is
modified by covering the relation between exterior walls and the minimal required
fire-resistance. Suppose that the minimal required irradiance for exterior walls is 30
minutes This implies that the fire-resistance requirements for exterior walls are less
stringent than for interior walls: the attribute thermal insulation is not relevant for

- 68

CHi1PTJ:,'R3 SJR4TEGIFS FOR JNTl:GRATINGA.R11nOt11, IN7ELL!GENCEA.ND DA'.lAR4SE TJ:'CHNOLOGI'

exterior walls and, under certain circumstances, this might yield a higher fire
resistance for exterior walls. Before formulating queries and computing answers, we
first have to change KS(wall) by adding the attribute wall-type:

ki {(wall- identifier; 123), (thermal insulation; 25), (irradiance; 35),

(wall - type; exterior)}
k2 = {(wall - identifier; 214), (thermal insulation; (irradiance; 45),

(wal! type; interior)}
k3 = {(wall identifier; 329), (thermal insulatîon; 20), (irradiance; 25),

(wall - type; interior)}
k4 {(wall- identifier; 491), (thermal insulation; 25), (irradiance; 35),

(wall- type; interior)}

The modified formal query now becomes:

ÀKS E ktcwa\l : 1 { k KS 1 if k(wall - type) = exterior then k(irradiance) ?'. 30 or

if k(wall - type) interior then k(thermal insulation) ?'. 30

and k(irradiance) ~ 30}1

Now, the previous conclusion that there is one fire-resistant wall should be replaced
by the inference that two walls are fire-resistant. The wall identified by 123 can still
be classified as a fire-resistant wall. The example can be made more realistic by
incorporating more attributes of walls and by introducing concepts defining
conditional relationships between fire-resistance requirements and different types of
spaces adjoining the walls represented in the database. Once again other conclusions
will be reached !

This example illustrates that a view of data bases from a knowledge level
perspective permits the assessment of the semantic consequences of adding
knowledge. We know, for example, that we cannot simply add universally quantified
statements without caring about their knowledge level or computational import.
Assessments like these enable us to make decisions about the symbol level trade-off
between tractability and expressiveness. Actually, the example denotes a more
universa! problem caused by a symbol level approach: the difficulties occurring while
querying a database (De Jonge, Bruijning, Schoernaker, & Otten, 1988; Remmen,
1985; Riet, 1990). One of the specific advantages of following a knowledge level
approach is the optimisation of query evaluation based on knowledge which is needed
for interactive access to databases (Gallaire, et al., 1984).

- 69 -

CHAPTER3 STRA.TEGIES POR /NTEGRA11N6' ARTIF!ClAL /Nl'ELLIGENCEAND DATABASE 1ECHNOL()(;y

3.5 CONCLUSION AND DISCUSSION

In this chapter we dealt with strategies for integrating AI and DBT. Specifically, we
investigated the advantages of a knowledge level strategy for integrating AI and DBT
in comparison with a symbol level strategy.

It appeared that a symbol level strategy leads to serious difficulties. The process of
modelling knowledge is more complicated because of the fact that representation
formalisms are used without having any knowledge level arguments for applying
them this way. This often yields difficult (or impossible) mapping of knowledge to the
chosen representation formalisms, bad maintenance and poor validation facilities.

The observed advantages of a knowledge level strategy form a mirror image of the
disadvantages of a symbol level strategy. These advantages refer to an improved
process of modelling knowledge which can be attributed to an explicit concentration
on k:nowledgc. Levesque (1984) describes the advantagcs of this approach as follows:

'In particular, a knowledge level view allows us to consider
new operations on a knowledge base (that can be explained in
terms of existing ones) without necessarily committing
ourselves to any particular implementation style.' (Levesque,
1984, p.206).

In this chapter the concentration on knowledge took place by the reconstruction of a
knowledge universe using a hierarchical system of mathematica] functions. Sueh a
knowledge universe reflects the knowledge of a system more clearly and provides us
with arguments for making choices at the symbol level.

Fortunately, knowledge level strategies are spreading rapidly in certain specialised
research fields in AI and DBT. In AI integration is studied in the field of expert
database systems (Abarbanel & Williams, 1986; Brachman & Levesque, 1986; Brodie
& Jarke, 1986; Deering & Faletti, 1986; Fox, 1986; Smith, 1986; Zaniolo, 1986). The
counterpart in DBT is the field of semantic database modelling (Hull & King, 1986).
Although, these research fields have a somewhat different formulation of their goals,
both are interested in similar conceptual constructs aiming at the reconstruction of
knowledge universa.

The spreading of knowledge level strategies in the field of expert database systems
as well as in the field of semantic database modelling is not surprising, since there is
no difference between AI-systems and DB-systems at the k:nowledge level. We are
aware, however, that not everyone agrees with this. At least one view states that AI
systems describe and operate on classes of objects rather than on individual objects
and that DB-systems represent and manage facts (see for an example of this view
Wiederhold, 1984). Al-systems are said to contain knowledge in the form of material
implications and DB-systems contain data in the form of ground atomie assertions.
But such differences are rather shallow and it is not even clear whether these are real
differences. Many AI-systems deal with material implications as well as with
individuals and statistica! DB-systems deal almost exclusively with classes of objects.
It is also hard to see why a material implication is any less factual than a ground

- 70

CHAI'TER3 SJHA J'EG!HS FOR INTEGRA 'f'!NG ART!F!CJAJ, JN rI:IJ!GENCHAA'D DATABASE TECH/1/0LO(, V

atomie assertion. In both types of systems objects and/or object-types need to be
incorporated to obtain a match.

In a knowledge level strategy mathematica! logic plays a key rolc. Though there is
no consensus on the exact value of mathematica] logic and its relation to real-world
knowledge and common-sense-reasoning, as indicated by the discussion between
McCarthy and Minsky, the distinction of the knowledge level helps to assign
mathematica! logic its proper role. At the knowledge level mathematica] logic is an
important tool for the analysis of knowledge. We have attempted to cover its use for
studying knowledge modelling problems. We have shown how logic applies to the
description of object-types and objects by the intensive use of a system of
mathematica] functions for the reconstruction of a knowledge universe.

This does not automatically imply that mathematica! logic can be used as an
implementation language. There are many limitations to using mathematica] logic as
an implementation language, but this is an entirely different issue. For our purposes
mathematica! functions were used to describe the relevant attributes of objects and
conditions of object-types. We have also used mathematica) logic to analyse
knowledge represented in a record-based formalism.

Knowledge can be written down in such a way that implementation-independent
assessment of knowledge is facilitated. Not surprisingly, mathematica! logic has
already been used in Al for the analysis of deductive manipulations of small sets of
facts. In the field of DBT it has been applied for the analysis of integrity constraints,
database schemas and query languages (Gallaire, et al., 1984).

But while mathematica] logic is a convenient formalism to describe knowledge, it
does not provide guidelines for modelling knowledge. It does not help to determine
the relevant attributes nor does it help to identify relevant constraints (see the problem
described by Kent (l 979)). It does not tell us what to keep and what to rid of.
Logic is nota theory of knowledge, it is just a representation formalism wîth certain
properties that are useful for the analysis of knowledge. The only requirement is that
mathcmatical logic is kept in its proper place. We agree with Israel (1983) when he
states the following:

'Before we spend too much time worrying about the adequacy
of a particular representation formalism, we should have some
better idea about what we want to represent. The more self
consciously and systematically we set out to make explicit
those beliefs about the world we usually take for granted -the
ones too obvious even to mention- the more we are to
see that the real problem facing us is to figure out how to find
and apply those parts of our common sense that are especially
relevant to the task at hand.' (Israel, J 983, p.41)

To acquire 'some better idea about what we want to represent' Newell's theory does
not suffice. Newell's description of the knowledge level is a theory describing the
knowledge level, but it is not a theory of the nature of knowledge. The formulation of
such a theory is in line with Newell's remark that his knowledge level hypothesîs
requires a technica! elaboration. A thcory of the nature of knowledge is needed for

71

CJMPTER3 S'TRATEGJES POR /NTEGRAT/NG ART/F!C!Al /NTELL!GENCEAND DATA.BASE TECHNOWGY

identifying the conditions of object-types and the relevant attributes of objects and
should help to understand the complexity of knowledge and the mechanisms behind
complexity. In brief, the theory should support the reconstruction of a knowledge
uni verse by organising the mathematica} functions that assess a knowledge uni verse.

- 72

CHAPTER4

FUNCTIONAL OBJECT-TYPES FOR RECONSTRUCTING

KNOWLEDGE UNIVERSA

4.1 THE CONCEPTUAL BASIS OF RECONSTRUCTING AND REPRESENTING
KNOWLEDGE UNIVERSA

The point of departure of this chapter has been laid in the previous chapters. To deal
with the problem of modelling knowledge we argued in these chapters that an
integration of AI and DBT should preferably take place at the knowledge level. This
implies an explicit focus on knowledge: the competence of matching object-types and
objects (Chapter 1 and Chapter 2). Furthermore, we argued that mathematical logic is
indispensable for the systematic description of object-types and objects in a
knowledge universe (Chapter 3). However, mathematica! logic does not automatically
lead toa well-defined knowledge universe. On the contrary, one of the main causes
underlying the failure of knowledge-based systems is a not well-defined knowledge
universe. A knowledge universe is not only indispensable for the design and
implementation of knowledge-based systems, but also for their validation,
modification, maintenance and enhancement. Experience indicates, however, that in
many cases reality is not well reflected in a full-fledged knowledge universe. Even if a
knowledge universe is formally described and even when we keep in mind that a
knowledge universe 'only' needs to be an approximation of reality (Chapter 2), it
appears that a knowledge universe is seldom an acceptable model of reality. Defects
in a knowledge universe such as omissions and inconsistencies are by no means
exceptional (Davis, 1988, p. I 099).

Due to the significance and difficulties of defining a knowledge universe,
requirements of a knowledge universe have been specified in the ISO
Conceptualisation Principle (Van Griethuysen, 1982). The Conceptualisation
Principle prescribes that a knowledge universe should only include conceptually
relevant aspects of that part of reality about which we want to communicate
knowledge. In addition, the principle emphasises that this part of reality, aften
denoted as the Universe of Discourse, should be described excluding user presentation
and implementation issues.

A valuable element in the principle is the recognition that the specification of a
knowledge universe is a conceptual exercise equivalent to the formation of concepts
or conceptual modelling. However, apart from lacking instructions how to define a
knowledge universe, the ISO Principle does not specify clea:-ly what a well-defined
knowledge universe is. The prescription 'conceptually relevant' is not specified and
remains unsatisfactorily vague. Falkenberg's attempt (1982) to improve on this by

- 73 -

CHAPTER4 FUNCE70NAL OBJECT 1YPES FOR RECONS11WCTING KNOWLE1>GE VNJVERSA

addîng that conceptual relevant aspects should exclusively refer to the Universe of
Discourse, neither yields sufficient specification of what is conceptually relevant nor
of what is not.

What is systematically lacking in the ISO principle and in prevailing
conceptualisation methods needed for the definition of a knowledge universe, is not
the recognition that concepts are important acquisition and classificatory mechanisms
responsible for the organisation of the layered system of mathematica! functions that
define a knowledge uni verse (Goel, Soundararajan, & Chandrasekaran, 1987). Rather,
it is the structural lack of a well-developed theory of knowledge that underlies
conceptualisation methods in AI and DBT: a theory that precedes the process of
forming meaningful classifications and that precedes the specification of a knowledge
universe. In spite of the genera! acknowledgement of the importance of concepts,
theories underlying classifieation procedures quite remarkably have not received
much attention from the Al- and DBT-communities.

Until now, conceptualisation methods are sometimes explicitly but often implicitly
based on the probabilistic assumption that, in essence, all conditions necessary for
creating a classificatîon, are provided initially and can easily be revealed by utilising
mathematica! measures of similarity. Another frequently occurring prototypical
assumption is that necessary conditions are sufficient to create a classification.
Furthermore, it is assumed that the categories of conditions are a priori fixed and
unconditional. The fact that conceptualising takes place without any explicit
background knowledge about goals of classifications and contextual influences and
the fact that categorisations have an unconditional status are largely ignored in these
classification approaches.

Reccntly these basic assumptions have been severely criticised. Theoretica!
advances in AI state that relevant descriptive attributes are not necessarily a priori
given but should be acquired through knowledge about goals of classifications and
about contexts (Stepp & Michalski, 1986). It is also argued that an explicit concern
for necessary conditions will not suffice for capturing the dynamics of reality.
Furthermore, theoretica! advances put forward that a goal- and context-oriented
strategy leads to the reconstruction of new attributes and categorisations with a
dynamic status (Van Der Smagt, 1985). Besides this theoretica! criticism,
accumulating empirica! evidence contributes to the critica! discussion by indicating
that unconditional categorisations insufficiently account for the dynamics of reality
(Carapuça & Fiadeiro, 1988).

The purpose of this chapter is to place both the theoretical criticism and the
conflicting empirica! evidence in an explanatory knowledge level framework. This
conceptual framework will be based on the theory of functional classifications. This
theory touches upon fundamental problems computer systems have in the field of
classification. We think that this theory can be perceived as a fundamental revision of
the way we should address the specification of a knowledge universe and deal with
the integration of Al and DBT. Logically, the theory also provides a vantage point to
evaluate and compare representation formalisms that should depict a knowledge
universe (De Gelder, Van Gorp, & Lucardie, 1993).

The structure of this chapter is as follows. First, we explain three aspects of
concepts: terms, object-types and objects (Section 4.2). After a description of several

- 74 -

f.HAP'fLR4 FUNCTJONAl. OBjE(J.nT'FS FOR RECONSJRU<'TlNC Kl\'OWJ,FDGE UNi\fJ;Jt\A

views on object-types (Section 4.3), we discuss the main elements of the theory of
functional classifications referred to as the functional view or as the theory of
functional object-types (Section 4.4). Since the practical implications of functional
classifications are largely unexplored, we will systernatically relate the theory of
functional classifications to the current practice of reconstructing a knowledge
universe (Section 4.5). To illustrate the fruitfulness of analysing representation
formalisms from a functional level point of view, we discuss the pros and
cons of record-based representation formalisms (Section 4.6). We conclude the
chapter by discussing implications and perspectives of the functional view (Section
4.7).

4.2 BASIC TERMINOLOGY OF CONCEPTS: TERMS. OBJECT-TYPES AND
OBJECTS

The reconstruction of a knowledge universe consists of defining concepts of a
problem domain. Computer scientists are often struck by the extreme difficulties of
defining concepts. rn writing and analysing the Mycin knowledge-based systern this
happened to Clancey (l 985) in connection with concepts such as compromised host
and immunosuppression. In daily life, humans do not have any problems when they
have to cornmunicate not (well-) defined concepts, The circumstances under which
concepts are comrnunicated and the flexibility of humans to process these
circumstances in an effortless mental operation provide virtual definitions that are
sufficiently clear and self-explaining. However, when we are dealing with definitions
for the reconstruction of a knowledge universe, are quite different. Making
definitions accessible fora computer, requires a process of formalisation
in which mathematica! logic plays a key role. thb process the meaning of a
concept often appears to become less clear and less self-explaining. Even apparently
simple definitions can be surprisingly fuzzy then. Zadeh (1975) formulates thîs as
follows:

'It may be argued rather persuasively that most of the concepts
encountered in various domains of human knowledge are, in
reality, much too complex to admit of or precise
definition. This is true. for example, of the concepts of
recession and utility in economics; schizophrenîa and arthritis
in medicine; stability and adaptivity in system theory;
sparseness and stiffness in numerical
and meaning in linguistics; performance measurement and
correctness in computer science; truth and in
philosophy; intelligence and creativity in and
obscenity and insanity in Jaw.' (Zadeh, 1975, p.147)

A scheme that helps to clarify fuzziness, is the one outlined by Ogden & Richards
(1946). Ogden & Richards's triangle, depicted in Figure 4.1, shows that a concept can
be 'unravelled' into three basic components: (1) term, o~ject-type and (3) object.1·.

- 75 -

CHA.PTER4 Fl!NCTIONAL OBJECT-TYPES FOR Rl:'CONSTRUCTIIVG KNOWLEDGE UNIVERSA

The left angle of the meaning triangle stands for a term with the synonyms symbol,
word or predicate. The top of the triangle stands for an object-type. Other words for
object-type are intension, connotation or meaning of a concept. Finally, the right
angle stands for objects, the extension, denotation, or the referents of a concept.

Ogden & Richards' scheme illustrates that we must distinguish a term of a concept
from its object-type (depicted on the left side of the triangle) and its object-type from
its objects (depicted on the right side of the triangle). The relation between a term and
an object-type is that a term is merely a label that denotes an object-type. Normally,
we use terms to avoid repeating lengthy and complex object-types. The object-type of
a concept is a set of conditions establishing its meaning.

A term, an object-type and objects constitute three sides of the same concept.
Example: the term diagnosis is only a label that designates the object-type diagnosis.
The object-type diagnosis should be a clear description of what it takes to be a
diagnosis: it consists of a set of constraints defining under what circumstances an
object belongs to the class diagnosis. Processes or activitîes complying with these
constraints are objects (instances or referents) of the object-type diagnosis and thus
belong to the extension of the object-type diagnosis.

(Adapted from: Ogden & Richards, 1946)

Figure 4.1: The Basic Components of a Concept

The relation between an object-type and its objects is that objects are referents that
should comply with the object-type. Objects are the real-world counterparts, if
existent, of the world of an object-type. Objects are anything to which object-types
apply and need not be physical phenomena. Objects may also be formed, as in the
example, by a sequence of activities. Other examples of objects are an aeroplane, a
mechanism in a robot device, a building or the process of writing this line. An object
type stands for a category of objects, whereas an object may be an instance of that
object-type.

When an object-type is empirica!, the reference is direct. When an object-type is
abstractly defined the reference to objects is indirect and passes through one or more
levels of more concrete descriptîons of object-types and/or objects. Epistemologically,
relationships between a theoretica! object-type (for instance an electron) and objects
in reality are called correspondence rules, co-ordination rules or bridge principles
(Derksen, 1980, p.33). Eventually, we need a relation with concrete object-attributes
to assess class membership.

- 76-

CH/IPTER.fJ FVNC T!ON/IL OBJFCl-TYPl:'S POR RECONSJRUCJ1l\'G K.NOWLEDGE UN!FFl<SA

From Ogden & Richards's we can derive that computer scientists have to
tackle two problems to avoid descriptions of object-types. The first problem, the
terminological problem, is located at the left side of the triangle where the relation
between terms and object-types is depicted. The problem involves the fact that hardly
any term is univocal: all terms are polysemie, thus endowed with several meanings or
object-types. The terminological problem stems from the confusion of these object
types. This hardly creates a problem when object-types of a term fall into different
disciplinary fields or can otherwise be distinguished. That canis applies to a
constellation in astronomy and to a dog in zoology and that terminal can apply to a
computer terminal or an airport terminal is no matter of concern. Still, in the majority
of cases, subtle but essential differences between object-types exist. For instance, the
term diagnosis might indicate many 'slightly' different object-types of diagnosis. In
this respect, Kuhn and Feyerabend (Kuhn, 1970, p.266) frequently point to the term
mass that is supposed to have another meaning in Newtonian dynamics than in
relativistic dynamics. While the relativistic mass is dependent on other quantities, the
Newtonian mass is an attribute of an object and independent of the behaviour of the
object in a co-ordinate system. Kuhn and Feyerabend (Kuhn, 1970, p.266) state that
the meaning of a term with a shift from one theory to another often changes in a ~ubtle
way. It will be evident that ignoring shifts in meanings of terms is likely to introduce
fuzzy elements in the description of an object-type. To state things clearly, the
terminological problem does not refer to the multiplicity of object-types that can be
related to each term, but to the entanglement or confusion of these object-types.

The second problem is located at the side of the meaning triangle where an
unclearly specified object-type yields a set of objects. This problem, designating
the occurrence of vague object-types and therefore of vague extensions, is called the
denotational problem. It addresses the question of how to find the conditions that
should be incorporated in an object-type. An object-type that is not adequately defined
and that Jacks denotative power necessarily obtains unbounded or fuzzy objects.

Having identified two conceptual problems that underlie defects in a knowledge
universe, the terminological problem and the denotational problem, the question is
how to cure these problems. Dîsambiguating the relation term-object-type is relatively
simple, but essential. By utilising a nominal or declarative definition we can eliminate
the ambiguity caused by confusing object-types of one term. Such a definition can be
circumscribed as follows:

'The simplest and most correct notion of a definition is a
proposition declaratory of a rneaning of a word: namely, either
the rneaning which it bears in common or that
which the speaker or writer. .. "intends to annex to it.' (Mill,
1898, p.6)

In the recofötruction of an object-type the nomina! definition should solve the
terminological problem concerning the question which object-type is annexed to a
term. In this respect the nomina! definition is a convention that asserts the functions to
be fulfilled by objects. Another use of a nominal definition is that it, if necessary,
designates other object-types that are needed in the description of the target object-

77

CHAPTER4. PUlVCT!ONAL OBJECT~ nTES FOR RECONSTRUCTJNG KNOWLEDGE UNIVERSA

type. A nomina! defînition of diagnosis in medicine may be the following: the
determination of the main attributes of a type of disease. Another nomina! definition
of diagnosis may also focus on the causes of the disease. This wil! lead to a quite
different object-type diagnosis and, as a consequence, to another extension.

The denotational problem concerns the question how to describe the meaning
annexed to a term. The reconstruction of an object-type in a denotational sense is
equal to defining a knowledge universe. The nomina] defînition is only necessary as a
preparation for the denotational or real definition. Denotationally assessed object
types, on their part, provide computers with the competence to assess class
membership of objects. This very function is vita! for the reasoning and problem
solving capacities of knowledge-based systems. Since objects are realised in virtue of
object-types and do not exist in their own right, it is not surprising that the modelling
of object-types counts as a fundamental issue in object-oriented analysis and design
(Martin & Odell, 1992). In AI and DBT object-types such as diagnosis, planning,
monitoring, simulation, employee, building, organisation, department, etc" are
intensively studied. Of similar importance as the observation that object-types are
ccntral in describing a knowledge universe, is the question how object-types can be
reconstructed. To answer this question, we will now take a closer look at different
views on the nature of object-types.

4.3 VIEWS ON THE NATURE OF OBJECT-TYPES

There are several basic views on how to reeonstruct the object-type of a concept (Van
Der Smagt, 1985, pp.26-29). Characteristic for the classical view is that it presupposes
that an object-type consists of a univocal set of necessary and sufficient conditions.
Consequently, classification of an object has a simple all-or-nothing character. One
assumes that establishing whether an object is or is not an object-type is a simple
operation that presents no problems. For instance, the classification of an animal as a
bird, is not considered a problem in the classica! view.

Because classification of objects as object-types is less univocal and more complex
than the classica! view accounts for, alternative approaches have been developed. One
of thern is the probabilistic view. This view subscribes to the classica! idea that an
object-type is a set of sufficient and necessary conditions, but exelusively on a
theoretical level. The probabilistie approach assumes that all sorts of (random)
disturbances at the empirica! level cause problems in the delimitation of the extension.
In this connection we speak of 'fuzzy sets'. By utilising mathematica! measures of
sirnilarity between objects, defined over an essentially apriori given set of attributes,
the probabilist tries to eliminate the random disturbances, so that at the theoretica!
level univocal criteria can be proved to underlie the fuzzy extension (Stepp &
Michalski, 1986, p.4.). Often. the mathematica! techniques are not used to test the
validity of a reconstructed object-type, but to inductively reconstruct an object-type
on the basis of an apriori assumed similarity of objects. Object-types are considered
equivalent if their corresponding extensions have the same objeets. Object-types are
identified by their members. Then, the line of reasoning is that: 'if it is true that

78

(_'HA/!'fEK4 FUNCTIONAl O!ijFCT-TYPE\ FOR RF.C(Ji\'S';1:UCTJNG KNOWL!JJGE l!NiVl:RSA

identical object-types have the same extension, then the reverse, that identical
extensions have identical object-types, will also be true·.

In contrast to the classica! and probabilistic views, the prototypical or stereotypical
view denies the possibility to exactly assess an object-type by necessary and sufficient
conditions. Instead of using these conditions, object-types are described by means of a
prototype. A prototype shares many attributes of objects that toa category. It
reflects a centra! tendency category of objects. Prototypes are typical object-types: a
typical bird, a typical elephant, a typical building. The description of a prototype
consists of so-called necessary conditions. For instance. a typical elephant could be
described by the necessary conditions grey, mamma], four legs and a trunk. Since no
object will satisfy all the necessary conditions, the question whether an object belongs
to the extension of an objecHype depends on the degree of resemblance it has with
the prototype. The best that can be reached is a sort of family resemblance. lnevitably,
the delimitation of the extension is fuzzy, but this vagueness is not ascribed to
empirica] disturbances as in the probabilistic view, but to reality which does not Jet
itself be categorised univocally.

Probabilistic and prototype conceptualisation methods go hand in hand and have
much in common. The probabilistie relation between an inductively derived object
type and its extension is much the same as the family resemblance relation between a
prototype and its extension. Both conceptualisation methods prevail in AI and DBT
research. This becomes manifest in the knowledge acquisition techniques used to
define a knowledge universe. A survey of knowledge acquisition teclmiques is
provided by Reitman Olson & Rueter (1987), Kim & Courtney (1988) and Neale
(1988). The majority of knowledge acquisition techniques, including those used in
machine learning, neural networks and fuzzy logic, are sealing or sorting techniques
such as multidimensional sealing, repertory grid analysis and matrix techniques.
These techniques lead to additive or multiplicative models that speeify the
reconstructed object-types. These knowledge acquisition techniques are highly
probabilistic and prototypical: the inductive approach delivers a prototypical object
type and the assignment of objects to this object-type is not univocal but typified by

of family resemblance or by probabilities. ln bath cases weights and error
terms are used to define object-types.

The centra! notion in the fimctional view is that an object-type cannot be defined
univocally on a theoretica] level. In this respect the functional view corresponds with
the prototypical view. What is different is that the functional view offers a
different explanation of fuzziness. In contrast to the probabilistic and prototype
the functional view emphasises that fuzziness has a systematic character. The solution
of fuzziness is neither sought in the elimination of random disturbances (such as
measuring errors), nor in the comparison of objects with a prototypical object-type.
The functional solution is typified by the systematic identification and reconstruction
of several object-types instead of one single object-type. These object-types originate
from functional equivalence: the phenomenon that objects perhaps differing in many
respects are equivalent in achieving a nominally specified function within a certain
context. This leads to the rejection both of defining object-type~ based on extensions
and of describing object-types by means of prototypes.

79

CHAPTER4 FUNCTIONAL OBJECT-TYPES FOR RECONSTRUCTING KNOWLEDGE UNIVERSA

4.4 FUNCTIONAL OBJECT-TYPES

In the description of objeet-types computer scientists should solve terminological
fuzziness by means of a nominal definition and denotational fuzziness by means of a
real definition. The functional view on object-types ean be elaborated upon these two
conceptual levels.

4.4.1 The Nominal Definition

Reeonstrueting object-types is a matter of classification and relies on finding good
descriptive conditions. These conditions should help us to determine whether objects
have the required attributes to belong to the extension of an object-type. However, the
reconstruction of an object-type is nota univocal activity. Normally, it leaves us with
an enumeration of seemingly intractable conditions.

Illustrative is the description of the object-type water. An indefinitely large number
of conditions potentially qualifies for incorporation in the object-type water. Think for
instance of:

(a) at sea level water boils at 10ooc
(b) the saturation pressure of water at 60C is 0.6 cm mercury
(c) water is a liquid with a refraction-index for sodium light of 1.33299 (at 200C)
(d) liquid water has its maximum density at 3.980C
(e) the viscosity of water vapour at 2ooc is 9.6 x 10-3 cP
(f) the specific heat of normal ice at ooc is 2.061/gOC
(g) water is a set of H20 molecules
(h) water is a set of T 20 molecules
(i) water is a set of D20 molecules
(j) water is an easily flowing liquid
(k) water is transparent,
(l) water is capable of dissolving many substances
(m) water is able to become ice when temperature gets lower
(n) water is chemically pure
(o) water is an elementary element of the uni verse

This enumeration gives rise to the question of how to describe water. Is water H20 or
is it an easily flowing liquid? Should we perhaps describe water by its isotopes T 20 or
D20? Water is by no means the only object-type that displays an overwhelming
number of conditions. Diagnosis, simulation, organisations, employees, persons are
just a few other object-types for which an infinite number of conditions is eligible to
delimit their extension. In fact. all object-types are describable by a virtually infinite
number of conditions.

Using subsets of these conditions we can produce an infinite number of different
but equally meaningful candidate object-types. The possibility of a multitude of
object-types implies that objects may be instances of several object-types. This
phenomenon is called multiple classification. Multiple classifieations indicate that for

- 80 -

CHA/'TL'R4 FUNCTIONAI OBJECT TYPES FOR RFCONS'J'/WCl1NG KNOWU:DGE UNIVERSA

every arbitrary set of objects it can be shown that they are (dis-)similar concerning an
infinite number of attributes. Well-known examples are the geometrical diagrams of
Popper (1934). These diagrams vary in many respects such as form, size, content,
location and so on. Multiple object-types (and thus multiple classifications of objects)
are possible: object-types may be based on particular conditions such as the same
form, size, content, or they may be reconstructed on the basis of an arbitrary
combination of these conditions. The similarity of the diagrams X and Y depends on
which object-type is actual.

Popper postulates that the similarity of objects (and thus the distinction of object
types) always presupposes the adoption of a point of view: the geometrical diagrams
are similar from a certain point of view, but may be dissimilar from another point of
view. The reconstruction of an object-type therefore requires a selection-principle that
directs abstraction: it governs which conditions will be accepted as relevant and which
will be ignored. The selection-principle is the first step to prevent terminological
entanglement of object-types. Without a selection-principle classification would just
be an undifferentiated chaos.

In the functional approach the operationalisation of a selection-principle takes place
by assuming a goal or function of classification (Stepp & Michalski, 1986). An
important aspect of this approach is the emphasis on the role of functions (or goals or
uses) that should be performed by objects. These functions direct the selection of
conditions of an object-type and consequently determine the relevant attributes of
objects. Every description of an object-type has a functional and intentional status. A
weapon, for example, is anything that can serve to inflict injury. Whether a concrete
object belongs to the extension of the object-type weapon, depends on the attributes of
the object that provide it with the capacity of inflicting injury. Another example of a
functional (nomina!) definition may be the following description of an intelligent
object: the capacity to solve new and unexpected problems. Every object that is able
to solve new and unexpected problems and thus complies with the constraints, can be
classified as an intelligent object.

In the field of machine learning Stepp & Michalski (1986) showed the utility of the
availability of (a network of) goals in classification processes. They illustrate that
knowledge of goals is indispensable for the reconstruction of meaningful and useful
object-types. Consider the object-type train. The goal 'find simple geometrical
regularities' leads to the incorporation of conditions involving the number of different
shapes, car shape, engine shape and cargo shape. When other goals underlie the
classification, for instance securing safe transport, the content of the object-type train
changes significantly. The same applies to the object-type water. We can introduce
goals such as 'quench one's thirst' or 'produce H2S04 '. Whereas the first goal requires
attributes describing the drinkability of water, the second goal requires the evaluation
of the object attribute H20 (T 20 or D20).

Though goal-orientation is an important element of the functional approach, it does
not completely characterise the functional approach. It is just one aspect of the
functional view, though an important one, that helps to solve the terminological
problem by showing that variability in the goals of classification may yield several
object-types. These object-types, which should be systematically distinguished from
each other, may even be incommensurable: a person who is intelligent1 need not be

- 81 -

CHAPTER4 HJNC110NAL OBJECT-- 1YPES FOR RECONSTRUCTING KNOWLEDGE UNIVERSA

intelligent2 and a sample of a liquid that is object-type water, necd not be watery. An
object that can be classified as a wal! for fire-safety reasons (Chapter 3) need not to
have common attributes with another object that is a wall that is not susceptible to
chemical degradation (Chapter 7). Distinct object-types may be incommensurable.
Incommensurability occurs when there is no reason why the two object-types (water)
should have common descriptive attributes. The goal-orientation is also a partial
answer to the question why fuzziness has a systematic character in the functional
view. Different goals lead to different object-types with varying contents. Ignoring
these differences by gathering knowledge in one single object-type leads to fuzziness
and validity errors.

Note that goal-orientation is an elaboration of the argument against inductive,
extensional derivation of object-types of probabilistic conceptualisation methods.
Assessing similarity of objects and abstracting object-types requires a selection
principle consisting of knowledge of goals or functions:

'Functional concepts are not derived from phenomena that are
observably similar (look like each other) but from phenomena
that are functionally similar (fulfil the same function). The
intension never inductively results from (statistica!) analysis
of observably simiiar phenomena but from rational arguments
about functionally equivalent phenomena.' (Van Der Smagt &
Lucardie, 1991, p.296)

An important implication for the reconstruction of a knowledge universe is that it
should show the flexibility to cope with several, possibly incompatible, goal
dependent object-types. In the following sections we will further analyse fuzziness
and argue that even when goals are fixed the distinction of several object-types is
often inevitable.

4.4.2 The Real Definition: Context-dependencies

lt is true that we can classify objects by their capacity to perform a certain nominally
described function. Y et, the actual realisation of that function is also conditional upon
the circumstances. The reconstruction of an object-type is indissolubly connected with
the whole of circumstances we will from now on call the context. Think, for instance,
of the object-type train in the context of a traveller, a railway engineer, a train-spotter,
or in the context of securing safe transport. In the first context the object-type will
probably incorporate conditions describing the eapability of an object to transport a
traveller by rail from one place to another within a certain time. In the last context the
object-type train probably will include quite different conditions such as radio
activity, corrosivity, explosiveness, flammability and the carrying of toxic chemicals.
The remaining two contexts will likewise lead to other object-types train. Putnam
(1975) appeals here to the sphere of interests; in some cases impuritics are of
importance, in other cases they are irrelevant. So in some contexts 'water may mean

- 82

CHAPT1::R4 FUl\'CJ1(JNJiL OBJECT nn:s HJR R!ff.'ONS/RUCï1NG KNOWLFDGF UNl\/l:RSA

chemically pure water, while in another, it may mean the stuff in the Lake Michigan'
(p. 239).

To Putnam's observation must be added that chemically pure water is not something
that stands on its own. As we devise more clever purification techniques, we will
discover more chemically pure waters. Thus, identifying contexts and incorporating
thcm in the object-type is an intellectual activity that keeps going on even when one
context is fixed. We should not decide too quickly that an object-type is universally
valid over different eontexts. In the diseussion about object-types, besides context
dependencies, thought-experirnents with possible worlds are popular. The stipulation
of another world presupposes that object-types are valid in our 'known' world (in all
contexts), but may need modification in another world. Though it is not completely
clear, how to teil a possible world from a context. it rnay appear that what originally
seerns valid in a possible world, is also valid in a certain context in our world! The
statement that temperature has an absolute zero of J 50C seems true independent
of a context. Only in a stipulated world lower temperatures are attainable. In 1930
every physician would have agreed with this statement, but now a physical system
consisting of magneto-spins may well have a temperature of -3000C (Van Brakel,
1986, p. !01). What ternperatures (objects) can be classified as the absolute zero
depends on, for instance, the available series of techniques that keep hydrogen atorns
under control and gradually strip their kinetic energy (Van Calrnthout. 1993). Almog
(198 l) recommends to talk about other contexts in stead of other worlds. We can add
numerous examples (compare the scientific discussions that marked the shift from the
Aristotelian geocentric system to the Galilean heliocentric system) that show that the
definition of object-types and the classification of objects are conditional upon
circumstances that need not be immediately known. Whether an object-type is valid,
depends on the circumstances under which objects have to perforrn functions.

Recognising the existence and influence of a context implies that an object-type
should include a description of the context. Van Brakel (1986) illustratcs this point in
his essay on the definition of water. A preliminary object-type water could be defined
by attributes mentioned in the previous example. Note that the context is partly
included. A number of conditions are only effective at sea level, at a certain
temperature and so on. The context, however, is not always mentioned. In (c) up to (f)

pressure is not mentioned, while it certainly plays a decisive role in the effectiveness
of the associated conditions. Furthermore, (b) is only valid for water vapour with a
flat surface. Thus, there are several contexts wherein (a) up to (f) are not truc. When
these contexts are detected, we have to add them in the definition of the object-type.

Hendriks (1986) exhaustively and systematically describes how we have to account
for contexts in the reconstruction of object-types. Object-types establi&hed through a
concrete interactive relation with a context are called relational. As an example
Hendriks (1986) describes a relational object-type dangerous work. Hendriks stresses
that it is not possible to classify a specific activity as dangerous work, even when it is
nominally described, without concrete references to a context. The context can be
formed by the knowledge a person has. Depending on this knowledge, some activities
will be classified dangerous and others will not. A member of the explosives disposal
services will not consider his daily work dangerous. When he is defusing a bomb, he
exactly knows the meaning of blue and green wires. This changes when the same

83 -

CH4PTER4 FVNCT/ONAL OBJECT~ TYPES FOR RECONSTRUCT!NG KNOWLEDGE UNIVERSA

member is working in a transformer station. Then a green and a blue wire are exactly
the same to him. The example indicates that the real connotation of an object-type is
relative. The question whether an object is able to perform a nominally assessed
function and therefore is an object-type cannot be answered by exclusively looking at
the attributes of the object, because an adequate answer requires a systematic account
of the context. Variability in contexts will lead to variability in the contents of object
types.

The conclusion is that there may be all kinds of contexts in which object-types vary
and have different references. The nomina! definition is necessarily relative compared
with the ceteris paribus conditions of the contexts we know about and thus relative
compared with the real definition. Conditions of object-types become particularly
fuzzy when one views them from another perspective, because it is expected that the
circumstances under which the conditions are relevant are known. In contrast to daily
speech and communication, vaguely specified context-dependencies present a
knowledge-based system with problems. A knowledge-based system should exactly
know the influence of a context on the content of an object-type. Otherwise, it is not
inconceivable that if someone begs for water, a knowledge-based system would
advice to direct a stream of steam to a person or throw the person into the sea because
both substances are sets of H20 molecules. Not only the distinction of a goal, but also
the distinction of a context can lead to incommensurable object-types.

4.4.3 The Real Definition: Objects

Objects are anything in which we have a special interest. This interest is expressed in
an object-type. Since objects are things to which an object-type applies, they are
subject to the question whether they belong to the extension of an object-type. We
have already argued that classification of objects solely by their attributes is
impossible. Yet, the attributes of objects play an essential role. They are co-decisive
in the assessment whether an object is an instance of an object-type or not. According
to a functional view. to be a referent of a certain object-type, objects should have
properties that are functionally required in a certain context.

This section addresses the question of how to determine whether an object is an
instance of an object-type and how to pass from the conditions of an object-type to the
attributes of the object. A simple way of bridging this gap is direct reference. Once
we know the (concrete) conditions of an object-type and the object's attributes and
know that the attributes of a certain object match these conditions, direct reference is
realised. The required properties correspond with the properties of the object so that
we can legitimately view the object in question as an instance of the object-type.

A complication on the level of direct reference is that hardly any objects are
completely pure instances and that, consequently, it is not clear what belongs to the
extension of an object-type and what does not. Referring to the object-type water,
Zemach (1976, p.121) noticed that further developments in science may lead to the
discovery that not all H20 molecules are similar, but that certain H20 molecules have
a deviating structure and are essentially different. Zemach therefore views water as a
genera! term that encompasses all kinds of water. From this observation he comes to

84-

CH,-IPTERi FUNCJJONAL 0BjECl~n7'ES FOR RECONSTRUCT!N(; KNOWLFDGE UN!VFRSA

the conclusion that the natura! kind of water (in our terminology the object-type
water) does not exist.

From a functional perspective it is not surprising that the object water needs a
conditional description and is not always a set of H20 molecules, not because of the
fact that we, indeed, know that 1120 molecules are not necessarily similar, but because
of the explicit recognition in the functional view that descriptions of objects can
significantly vary under the influence of a goal and a context. In a situation in which a
chemist is charged with the task to prepare H2S04 (goal) in interaction with 503

(context), the description of an object as a set of H20 molecules will be adequate. Ina
context. however, in which we want to refer to chemically pure water, it is not
permitted to describe water as H20. Then H20 and D20 are dissimilar substances.
Nevertheless, the conclusion should not be, as Zemach states, that there is no object
type water. Rather, we should draw the conc\usion that vaiious object-types exist due
to variation in goals and contexts. The existence of several object-types leads to the
necessity of accounting for various descriptions of objects.

Direct reference is excluded when the description of an objects is not sufficient to
see whether an object belongs to the extension of an object-type. We have to bridge
the gap by adding more knowledge to the object-type. Knowledge that can be used to
ir!fer whether fil1 object is an object-type. Let us exemplify this by considering indirect
reference in more detail. Suppose a knowledge-based system has knowledge of an
initia] description of objects, for instance in terms of their physical attributes, along
with a goal of classification and a context. The functîonally required properties need
not necessarily be present as initia] descriptors (note that this conception is in contrast
with one of the centra! probabilistic assumptions mentioned earlier). In that case, we
should equip the knowledge-based system with additional knowledge so that it can
logically and stepwise infer new and functionally relevant descriptors of objects from
the ones initially given.

The derivation of new descriptors can be performed in two ways. First, it is possible
to apply cross-referential knowledge. This type of knowledge is often horizontally
organised by humans and is connected with multiple classification. Objects can
belong to the extension of different object-types. Once it is known that an object is
object-type X it can be inferred that it wil! also be object-type Y. The assignment of an
international bank director to X and of wealthy people to Y can serve as an example.
The assignment may yield a universa[quantifier that states that if a person is a bank
director, that person is also wealthy. Of course, the inference that an X is a Y has no
absolute value and will normally be conditional. Just as not all birds are able to fly, a
bank director need not be rich in all conceivable circumstances. He can be arrested for
corruption, be left penniless after a divorce, be blackmailed and so on. The
specification under what conditions it is legitimate to infer that bank directors are
wealthy and that birds can fly should be of a functional nature.

Applying knowledge that is hierarchically organised is another way of deriving new
attributes. This vertical organisation of knowledge takes place by gencralisation: the
transition from a specific to a more genera! object-type occupies centre stage.
Consider the following abstraction steps describing this process (Van Der Smagt,
1985, p.36):

- 85 -

CHAPTER4 FUNCTIONAL OBJECT· TYPES FOR RECONSTRVCTING KNOWLEDGE UNIVERSA

(4.l) ((T20 A S03) v (D20 A S03))-? H2S04

(4.2) ((T20vD20)AS03)-c>H2S04

(4.3) (H20 A S03)-? H2S04

As stated before, it is legitimate to abstract from the differences between the isotopes
T20 and D20 as long as S03 constitutes the (interaction) context. The one-level
inference chain from T20 or D20 to H20 is permitted and valid, because T20 and
D20 are functionally equivalent and can, under precisely specified conditions, be
perceived as a set of H20 molecules, though, when a goal or context requires the
definition of pure water, D20, T 20 and H20 are essentially different.

In discussions about the characterisation of objects the term dispositional attribute
often emerges. A dispositional attribute is an attribute that reveals itself only when
certain conditions are fulfilled. For example, the solubility of sugar manifests itself
when one sprinkles sugar into water and that the fact that glass is breakable manifests
itself when we throw it on the floor.

Is it possible to describe objects through dispositional attributes? From a functional
perspective the answer is negative. The explanatory power of a dispositional term is
of Iittle importance. If you classify a person as an intelligent person, because he shows
intelligent behaviour under certain circumstances, you do not give sufficient
explanation of his intelligence. It is merely a replacement for a genuine explanation
which would be given if the functional object-type intelligent person was explicitly
described. The obvious analysis is that dispositional attributes need a definition that
specifies the relations between goal-achieving capacities of objects and the
circumstances under which these capacities will be revealed. Dispositional terms of
themselves have limited application.

4.4.4 The Real Definition: Interaction between Object-types and Ob,jects

There is a continuous interaction between an object-type and objects, so that the
distinction between an object-type and objects diminishes and they correct each other
mutually. In principle, there is no difference between specifying conditions of an
object-type and describing attributes of objects. Object-types and objects
interdependently determine the content of an object-type.

Let us assume we have a nomina! goal-oriented definition of the term intelligent
person. Suppose furthermore, that we have at our disposal an initia! sketch of the
object-type iutelligent person containing one single condition brilliant university
student. If the object in question is A. Einstein we encounter the problem that our
object does not match the condition. A. Einstein was a moderate student and therefore
we cannot classify him as an intelligent person. This is at variance with the classic
picture we have of A. Einstein. In other words, our object-type faits to refer. The
manoeuvre we perform in this (and similar situations) consists in adapting the object
type and incorporating the condition brilliant scientist. This modification suffices to
secure A. Einstein's membership of the object-type intelligent person.

86

FUNCTlONAL 08/J;'Cf-TYPI:S FOR RECONSTRUC r!NG KNOW7.EDGIO UNIVERSA

What happened here, is that a potential referent adapted the content of the object
type. Putnam (1975) calls this operation 1a procedure for preserving reference across
theory change' (p.181). Putnam and Kripke (1972) have elaborated the influence of
referents on the content of the object-type in their theory which states that the
extension of an object-type is not assessed by the content of the object-type, but by
the fact that we are causally linked to referents that determine the object-type. It is
important to note here that in the causa] reference theory l) the content of an object
type is assessed by means of reference and 2) that the referent itself dctermines what
other objccts are intelligent too. Note also that the meaning of the object-type fish is
also governed by the intemal structure of the old fish (Derksen, 1980, p. 278).

We can obtain another solution for our Einstein-classification problem by
identifying a student-context and a scientist-context in the reconstruction of intelligent
person. Now, A. Einstein will belong to the extension of intelligent personw·imtist' but
not to the cxtension of intelligent person,mulrnt· We can view this switch to context as
another indicatîon that objects as wel! as contexts together and interchangeably
determine the content of an object-type in a goal-directed classification process.

The interaction of and the fading distinction betwecn object-types and objects is an
important point of application for the knowledge level integration of AI and DBT: the
distinction between knowledge of constraints (often called knowledge and often
represented in AI-systems) and knowledge of objects (often called data and often
represented in DB-systems) is a tentative one. lt explains why there is a shift in DBT
from relational to semantic database systems (Hull & King, 1987) and why expert
systems evolve to expert database systems (De Broek, 1989).

(Source Hendriks, 1986)

(A) Accounting fora Context

The original conception of functional object-types as formulated by Van Der Smagt
(1985) and Hendriks (1986) stresses the significance of a context in the reconstruction
of the object-type. Figure 4.2 (A) shows Hendriks's schema of functional object-types.
The schema is a one-sided matching-model. Only the context influences the content of

87 -

CllAP'lER4 FUNCTJONAL OBJECT-TYPES FOR RECONSTRUCr!NG KNOWLEDGE UNIVERSA

the object-type. In correspondence with the causal reference theory, Lucardie
(1988;1989) points to the potentials of objects to influence, together with the context,
the contents of the object-type. Tuis matching-model is two-sided (Figure 4.2.(B)). To
prevent misconceptions, we state that our view on functional object-types does not
approve of the theory of causal references as long as it does not account for the
influence of goals and contexts.

conceptual relation

condition/ attribute of object<; I context<;

(B) Accounting for Context and Objects

Figure 4.2: Schemas for Concept Analysis

4.4.5 Functional Equivalence

Object-types come into existence in close interaction with a context and with objects
which strive to realise/perform a goal/function. According to the functional view an
object-type of a concept is established by a goal-oriented reconstruction process in
which a disjunction of conjunct sets is modelled. In the treelike schema of Figure 4.3
such a disjunction is pictured. This disjunction consists of three conjunct sets all
leading to goal 1 :

1. {(i1;a),(i2 ;k)},
2. {(i1; b), (i2 ; r)} and
3. {(ii; b), (i2; s), (i3; y)}

- 88 -

CHAPTF.R4 FUNCl!ON,.-!L OBJECT" TYPE\. FOR Rt'CONSTIWC!!NG JGVOWI.FDGE UNJVfW;'."1

An element of a conjunct set is an inus-condition: an Insufficient but Necessary part
of the conjunct set which is Unnecessary but Sufficient for the result. Within a con
junct set an inus-condition is indispensable for achieving a goal, but the conjunct set
itself, to which the inus-condition belongs, is replaceable by other conjunct sets.

As an object must satisfy one of the conjunct setsI of an object-type in order to be
long to the extension of a concept, the example, though greatly simplified, shows
some interesting features of the functional approach. For instance, it is possible for ob
jects, which at first sight are different, to be identical with respect to a goal and a
context. Or, in other words, object;; having different attributes, but matching with a
conjunct set of an object-type in functionality. are equivalent. An example of two
'different' but functionally equivalent objects is formed by an object 1 characterised by
the attributes {(i1; a), ; k)} and an object 2 ha ving the attributes
{(i1; b), (i2 ; s), ; y)}. In the context of goal 1 both objects are similar. Here, the no
tion offunctional equivalence is essentîal: objects are identical, fall in the same con
cept or are similar if they possess even quite different- attributes to perform the same
function. Three mechanisms are responsible for the fact that a or a function is at
tainable by quite different strategies. We will illustrate these strategies by examples
taken from the fire-safety regulations, one of the most complex parts of the building
regulations, in the Netherlands.

The first strategy of functional equivalence is the mechanism by which, under
certain conditions, other attributes (descriptors) may become important for
determining class mernbership. In the thi.rd conjunct set {(i3 : y J} becomes a descriptor
if {(i1; b), (i2 ; s)}. This mechanism is effective in the fire-safety regulations limiting

the extension of fire. These fire-safety-requirements for walls are influenced by the
conceptualisation of rooms adjacent to the walls. Fire-compartments, bath rooms,
lavatories and traffic-rooms) are all examples of various types of rooms which lead to
different fire-resistance requirements. Therefore, it is important to have adequate
definitions of these rooms at one's disposal. If we look at the conceptualisation of a
fire-compartment, we can see that quite 'different' rooms can be classified as a fire
compartment: both a heating room and a technica) room can function as fire
compartments. But the technica] room should have a user surface exceeding 50 m2.
The user surface attribute is virtually a new descriptor, which is only useful for the
conceptualisation of fire-compartments in case we are dealing with technica! rooms.

The second important mechanism is the fact that categorisations of attributes of
objects influence each other. This phenomenon is called conceptual interaction. In
Figure 4.3 conceptual interaction manifests itself in the mutual influence of the
categorisations of the first attribute and the second attribute. If {(i1; a)}. the
classification of the second attribute is (k, l). On the other hand, if {(i1; b)} the
classification of the second attribute is (r, s). Referring again to the conceptualisation

is an lnus~ct>ntlilion
condition
The definition

for some X
of (Pand X),

p.50)

- 89

follows: 'A
and suffîcîcnt
1965, p.246).

u1L1:,~cc11><Hmm of a result P if and
of P. and A is a

..:onditlon of P.' (Denise,

CHAPTEN.J FUNCTIONAl OB}ECl~ nrPES FOR RECONSTRUC11NG KNOWll"DGE UNIVERSA

of fire-compartments conceptual interaction is present between the type of room and
the user surf ace. If we are dealing with an enclosed room, the adequate categorisation
of user surface is~ 500 m2 or> 500 m2, because the user surface of an enclosed room
should not exceed 500 m2. However, if we are dealing with a technical room, the
categorisation of user surface is ~ 50 m2 or > 50 m2. To be classified as a fire
compartment, the user surface of a technica! room should exceed 50 m2.

/

(Source: Lucardie, 1992, p. l 05)

Figure 4.3: A Disjunction of Three Conjunct Sets

The third mechanism refers to the situation that objects may have different attribute
values, but that this variation is limited to, or falls within, a goal-constructed category.
Two objects characterised by the same i 1, but with different k-values -object 1 and
object 2 respectively have the values k1 and k2 with k1 and k2 both falling in category
k- are functionally equivalent. For instance, a technical room with a user surface of 55
rn2 and a technica} room with a surface of 60 m2 are functionally equivalent in the
context of defining a fire-compartment.

Of course, reality is much more complex. Our example only concerns limiting fire
extension. It is easy to see that more attributes play a role: external walls, internal
walls, therrnal insulation, irradiance, fire-compartments, technica) rooms, enclosed
rooms, traffic rooms and so on. Furtherrnore, the definitions of different types of
rooms also yield different attributes. For instance, the definition of a technica! room
states that it is an enclosed room for the installation of equiprnent necessary for the
functioning of a building. This definition yields at least two extra attributes.

- 90

CHAPTER4 !'UNC! !ONAJ, OBJECT- TYNS FOR RECONSTRUC17NG l<JVOWLED<iE UNffl'.'RSrl

What can we gain from the previous analysis? Functional equivalence shows that
no a priori defined concepts are allowed to describe a knowledge level model, but
only goal-constructed concepts. From a functional viewpoint, it is a prerequisite that a
knowledge level model should avoid describing its application domain by a priori
fixed categorisations. Rather, a knowledge level model should avoid these reifications
by accounting for goal-based dynamic, flexible categ01isations of the environment.
Under the influence of varying goals and changing contexts continuously differing
descriptors will be needed to assess class membership. Creating a classification solely
by the attributes of objects is practically impossible because objects that are in the
same functional class can be vastly different. Not the object propertics as such are
relevant. but the functionally required properties. Functional equîvalence stresses the
structural heterogeneity of objects in the sense that in many situatîons, the
presumption that objects are describable by fairly stable characteristics will be a
misconception.

Functional equivalence significantly deviates from family resemblance. Just like
members of one family, objects that show family resemblance can significantly differ
from each other on many attributes. It is even possible that none of the objects share
all attributes that lead to family resemblance. Family resemblance between objects
can exist without one attribute being necessary or sufficîent. Descriptions of objects
that are classified on the basis of family resemblance contain overridable attributes.
Stegmüller (1973) seems to advocate the notion of family resemblance. Brachman
exposes the dangers of this prototypical approach:

The lesson here is that in order for a knowledge
representation system to be able to handle any reasonable
range of descriptions - even the simplest composites
constructed from natura! kind-Jike concepts-some type of
definitional (i.e., compositional-not of the "typical" kind) -
structuring capability is necessary. To form descriptions of a
very common sort, necessity and sufficiency are demanded.'
(Brachman, 1985, p.87)

4.5 THE CURRENT PRACTICE OF RECONSTRUCTIN"G OBJECT-TYPES

From the previous exposition on functional object-types. it will be clear that adopting
the theory of functional classifications and accepting the occurrences of functional
equivalence will have great impact on the reconstruction of an object-type. The
primary focus of this section is on analysîng the current practice of reconstructing
object-types from a functional viewpoint. Since prototypical and probabilistic
approaches prevail in Al and DBT. we will turn our analysis to the mathematica]
techniques that play a centra! role in these approaches.

A multitude of techniques is available to reconstruct object-types (Kim & Courtney,
1988; Neale, 1988; Reitman Olson & Rueter, 1987). These techniques range from
direct techniques such as protocol analysis and interruption-analysîs to indirect

- 91 -

CHAPTER4 FUNCTIOIVAL OB]ECT-1YPES FOR RECON5TRUCTJNG KNOWLEDGE UNIVERSA

techniques such as multiple regression, multidimensional sealing and cluster analysis.
The indirect techniques pass through a series of intermediary steps, while the direct
techniques follow amore straightforward path to reconstructing object-types. Since
especially the indirect mathematical techniques display a number of common features
that typify the probabilistie and prototypical approaches, we will take a closer look at
these approaches.

By means of multiple regression it is possible to study the relation between a
dependent variable and a linear combination of independent variables. The centra}
question is how variation in a dependent variable can be traced back to variation in
(combinations of) independent variables (Knippenberg & Siero, 1980). The relation
between a dependent variable and a set of independent variables is described by an
algebraic model of the following form:

The model relates an dependent variable Û to the variables X1 to Xk. b1 to bk are
regression coefficients by which the independent variables are weighted. a is the
intercept that denotes the value of the independent variable if each independent
variable is zero. e is the error-term that should account for measuring errors. The
model can be conceived as a description of an object-type. It could, for instance, stand
for the object-type fire-safe wall. Then, Û represents the degree of fire-safety and X1

to Xk represent the attributes of a wall such as thermal insulation and irradiance that
influence the degree of fire-safety.

Û is an estimated variable. The estimation is based on the dependent variables, their
regression coefficients (or weights) and the intercept. The value of the variable in
reality is denoted by the symbol U. Commonly, there is a difference between Û and
U. For example, the predicted degree of fire-safety of a wall, denoted Û, can deviate
from the degree of fire-safety in reality denoted U. The difference is called the residue
of U. It represents the part of U that cannot be explained by û.

(4.5) U Û +residu of U

The part of U that can be explained by a linear combination of independent variables
is expressed in a multiple correlation coefficient. Tuis coefficient that relates U to the
independent variables X1 to Xb is denoted by the syrnbol R. Often, the square of Ris
used:

(4.6) R2
u.1,H.k = .66

A R2 of .66 means that 66% of the variation of U is explained by the model.
Independent variables can also be correlated to each other. If two variables are

correlated, after the variation in the two variables that can be explained by a third
variable has been aecounted for, we call the correlation a partial correlation. The
partial correlation between two variables X and Y is denoted as follows:

- 92

FUN< f!<lNAr OB_/ECT~TYPES FOR RHCONS'/RUC!J.!V(; K./'lOW7~H>CP !JN!Vf.NSA

(4.7) Rxr.z

where Z is a dependent variable that explains part of the variation in X and Y.
The reconstruction of an object-type multiple regression takes place by

measuring variables of objects and subsequently estimating the b-weights. The b
weights are estimated in such a way that the differenee between Û and U is as small as
possible. The least-square criterion affords a test for determining the distance.

(4.8) is minimal (the least - square criterion)

N denotes the number of objects observed. A regression model with calculated
weights could look as follows:

The model in (4.9) shows that variable has a low weight and thus contributes little
to the dependent variable. The individual contribution of independent variables can
also be assessed by a stepwise introduction of each variable. This is called a stepwise
multiple regression. Every time that a variable is incorporated in the model, the
change of R2 can be ascertained. This change of R2 can be interpreted as a measure of
the importanee of the newly incorporated variable.

After having reconstructed the model, the calculated multiple correlation
coefficients and the regression coefficients should be tested. This can be donc by
formulating a null-hypothesis. A null-hypothesis might be: R2 0. The significance of
R2 can be determined using the F-statistic:

(4.10) F D1 = k and DF
11

= N - k -1

After calculation of the F-value, the significance of R2 can be looked up in an F-table.
The higher the multiple correlation coefficient R2, the F-value and the significance,
the bctter the reconstructed model will perform. An elaborate description of multiple
regression can be found in Pedhazur (1982).

When cluster analysis or factor analysis is used, the reconstruction of an object
type usually starts with a matrix of objects and their attributes. Such a matrix is
displayed in (4.11).

(4.11) x =
(11Xp)

- 93

CHAPTER4 FUNCTJONAL OBJECT-TYPES FOR RECONSTRUCTJNG KNOWLEDGE UNll'ERSA

in which x ij represents the value of the jth variable for the ith object, n represents the
number of objects and p the number of variables. The aim of cluster techniques is to
determine on the basis of the a priori defined variables whether the objects can be
classified as object-types. In most cases the extensions of these objects-types
E2 , ... , E11 are such that:

(4.12)

Sîmilarîties

Cluster T;,,
analysisf

Groups of
indîvidual objects

{pxp)

Factor \
analysisf

Groups of
varîabtes

(Source: Everitt, 1983, p.232)

0 and U E; is the complete set of objects
i

Figure 4.4: Basic Steps in the Reconstruction of Object-types

While cluster analysis is concemed with the grouping of rows (i.e. the objects), factor
analysis is concerned with the grouping of the columns (i.e. the variables). Cluster
analysis and factor analysis do not directly operate on the raw data matrix X, but on a
matrix derived from X, giving a measure of similarity or dissimilarity between each
pair of objects (cluster analysis) or between each pair of variables (factor analysis).
Figure 4.4. illustrates the basic steps that are involved in the reconstruction of object
types using cluster analysis or factor analysis.

In cluster analysis, the values of a similarity matrix P are calculated by using
coefficients such as the simple matching coefficient or Jaccard's coefficient (Everitt,
1983). Instead of a measure of similarity it is also possible to use dissimilarities or
distances. The most familiar of these is the Euclidean distance, which is given by:

1

(4.13)
,z

X;k) t
2

J

In (4.13) the Euclidean distance is measured between two individual objects i and j.
For calculation of the distances between groups of objects summary statistics are
needed. The most simple way is to calculate a mean value of a group and then use the

- 94 -

CHA!'THR4

Euclidean distance of these rneans. Obviously, if the variation between objects of one
group is great, this procedure is not appropriate. Then, the distance between objects
belonging to different groups rnay not be well reflected by this measure. A measure
that accounts for this problem is:

(4.14)

where xA and xB are the mean vectors of the two groups and Wis a P x P matrix of
pooled within-groups sums-of-squares and cross-products for the two groups.

Finally, clustering techniques and algorithms are used to group the objects into
classes or extensions of object-types. A number of clustering teclmiques is
available. A basic algorithm is as follows:

(a) Let e = n and "." E11 each contain a single object
(b) Find the nearest pair of distinct clusters, say E1 and
(c) Merge E; and Ei, delete Ei and decrcase e by one
(d) If e 1 stop, otherwise go to START

In cluster analysis the extensions that are reconstructed in this way, are conceived as if
they point to an object-type that underlies the extension. In factor analysis it is not
groups of objects but groups of variables that are reconstructed. Such a group, called a
factor, forms part of the description of an object-type.

For some time now, the assumptions underlying these algebraie mode Is have
attracted strong criticism (Timmermans & Van Der Heijden, 1987; Van Der Smagt &
Lucardie, 1991). There are good reasons for this critica! discussion. Let us take a look
at a number of these assumptions. First, ît is assumed that the variables or conditions
to describe object-types and objects, are commonly known and defined in advance.
The relevant conditions or attributes of objects are provided beforehand and are
considered sufficient to reconstruct object-types (multiple regression) or extensions
(cluster analysis). Likewise, these techniques do not take into account any
oriented principle that seems to underlie many human classification proeesses and that
helps to relevant conditions. The goal-oriented and conditional relevance of
conditions or variables is lacking.

The second assumption is that an object-type can be reconstructed inductively.
While the mathematica! techniques in essence are intended for testing purposes,
are often employed inductively to discover knowledge. The dangers of this
probabilistie approach are obvious, when we think of the three mechanisms bebind
functional equivalence. The descriptions of objects used in the inductive
reconstruction process, do not account for conditional relevance, conceptual
interaction and goal-limited variations of attributes. In contrast to these a priori
definitions of objects. the functional view states that descriptions of objects should be
defined in a goal-oriented way and should account for functional equivalence. This
implies that objects that are similar as to the recorded variables, rnay be dissimilar
when other, functionally relevant variables, are used. When functional equivalence is
established by 'heterogeneous' objects, a sirnilarity matrix or a matrix with Euclidean

95

CHAP1'ER4 FUNC1JONAL OBJECT- TYPES FOR RECONSTRUCTJNG l<NOWLEDGE l.NVWERSA.

distances is not of much use. In the mathematical techniques discussed we find no
recognition of the fact that objects exist by virtue of object-types and that distinct
object-types may have identical extensions. Note that the induetive adaptation of
weights in multiple regression when other variables in the description of objects are
involved, has nothing to do with conceptual interaction. The adaptation of weights
and the use of an error theory, are solutions that should compensate lack of
knowledge, part of which is caused by not accounting for functional equivalences.

The third assumption is that the individual contribution of variables to an object
type can be assessed independently (think of the partial correlations in multiple
regression) and may be compensatory. This assumption confücts with our INUS
analysis which states that many variables can only in conjunction be effective in the
realisation of a certain goal. Fire cannot be originated in the absence of oxygen or
combustibles or an ignition. Nor it is possible to cornpensate a lack of oxygen by extra
combustibles or to compensate the absence of an ignition by the addition of oxygen!

The mathematica! techniques are representative for the probabilistic and
prototypîcal methodologies. In many fields of AI and DBT such as machine learning
and the discovery of knowledge from databases, these techniques form the
cornerstonc ofknowledge acquisition (Frawley, Piatetsky-Shapiro, & Matheus, 1991).
From a functional perspective, the assumptions of the techniques are, however,
inherently limiting, not always valid and lack flexibility. This has far-reaching
consequences for the validity of descriptions of object-types and objects.

Let us illustrate this observation by taking a global but more concrete look at the
algorithms applied in neural network research. A possible starting point for the use of
these algorithms is depicted in the matrix of Figure 4.5. lt shows that an arbitrary
object-type X has three subtypes: X 1, X2 or X 3• Three conditions are considered
relevant in the reconstruction process of object-type X. The categorisation of every
condition is exhaustive and exclusive. Every conceivable value of a condition can be
placed in exactly one category. The condîtions are input-units (I;), whereas the
subtypes are output units (O;). The matrix reveals that a number of hypothetical
objects are already classified by these conditions. When an object simultaneously
matches an input-unit and an output-unit the corresponding cell-category is raised by
one. Often the resulting matrix of frequencies is displayed in a network of connected
nodes.

The learning procedure passes through three phases (Rosch, 1978). First, the cue
validities are determined. A cue-validity is a conditional probability that a specific
output-unit will be made active if input-unit l; is active. This conditional probability is
a relative frequency that is calculated by dividing the frequency of I; (F;) being active
during the learning procedure by the frequency of O; being active (F") at the same
time.

(4.15)

Example of a cue-validity:

- 96

CHAPTER4

(4.16)
7

1111=1)= 0.233
30

Figure 4.5: Matrix of Frequencies

Figure 4.6: Matrix of Cue-validities (Prototypical Cue- Validities m !talies and
Prototype-Validity in Bold)

All cue-validities are depicted in Figure 4.6.

- 97 -

CHAPTER4 FUNC170N'AL OB]ECT~TYPES FOR RECONSTRUCnNG Kf\/OWLEDGE UNJVERSA

The second step consists of assessing the largest or prototypical cue-validities of
every condition for every output-unit. Subsequently, the prototype-validity is
calculated. The prototype-validity is the summation of the prototypical cue-validities
of every condition per output-unit. Both validities are represented in Figure 4.6.

Finally, the weights are computed by dividing the prototypical cue-validities by the
associated prototype-validities.

Cue-
(4.17)

Prototype - validity j

Figure 4.7 depicts the matrix of weights. When the network is fed with more objects
and an input-unit and an output-unit are simultaneously activated the frequencies and
thus the weights are raised. Consequently, the weights between this input unit and
other output units are lowered. The adaptation of weights runs along lines similar to
those in multiple regression.

Figure 4.7: Matrix of Weights

These and other network algorithms are similar to the mathematical techniques
discussed previously. The same restrictive assumptions form the basis for the
reconstruction process. The assumption that we know approximately what conditions
are important for the description of an object-type underlies Rosch's algorithm and
other neural network algorithms. They assume that necessary conditions are provided
beforehand. The acquisition of conditions is not considered a problem. This sharply
contrasts with the functional view. The functional view stresses that conditions are not
a priori provided but should be acquîred through reasoning about goals of

- 98 -

CHilf"IER4 Fl!NCJJONAL OHJL'C1'- !Yf'ES FOR kEC0NSJRUC'1JN<i KJVOWTFDGE WViVfRSA

classification. We have explained that goals can significantly influence the relevance
of conditions and that a slight variation in goals may lead to different conditions. It is
doubtful whether the initial assessment of conditions preceding the reconstruction
process is goal-oriented. However, of more importance is the observation that the
learning procedure itself Jacks the flexibility to account for (an alteration in) goals. As
soon as the learning procedure starts, the possibility of attending selectively to
functîonally required conditions is excluded.

When we continue the evaluation by analysing how the learning procedure copes
with the three mechanisms behind functional equivalence other objections are raised.
Consider a set of objects that is typified by the following object data: C1 = F and C2 =

K and C, 0. Suppose that because of these attributes, the objects are instances of
object-type X1• When the objects are being classified the algorithm raises the frequen
cies, the cue-validities and weights of C1 (F) and C2(K) of X1• The interpretation of this
proeess is that C 1(FJ and C2(K) are important for the description of objecHype X1. lt
is not recognised that this importance is conditional upon the interaction between ob
ject-types and objects that are expected to perform certain funct.ions within certain
contexts, for reasons of simplicity, expressed in Cx 0. The reconstruction process
does not allow the incorporation of this 'new' descriptor into the object-type.

Another objection relates to conceptual imeraction. Rosch's algorithm 'tackles'
conceptual interaction through an extensional adaptation of weights. This replacement
of conceptual interaction by statistica] interaction implies that the influence of
conditions is assessed independently. It is not possible to have the models include that
categories of conditions are dynamic, influence each other and are effective only in
conjunction. Categmies of conditions are a priori fixed. The learning procedure
assesses the contribution of these categories independently of other categories. This
excludes conceptual interaction. Since conceptual interaction is abundantly present in
human classification processes. we think this a weak point in the reconstruction
procedure. The learning procedure seems to deal adequately only with variability that
is limited to certain categories. However, this can be solely assessed on the condition
that the algorithm is capable of classifying objects with attributes like C1F, where F; is
an element of F.

Furthermore, the functional view states that classification should account for
contextual influences. Even when a goal and a context is given, it still appears very
difficult for human experts to find the conditions. How can a neum! network learn
what the content of the object-type water is for implementation purposes when
scientists are hardly able to provide an adequate definition for normal communication.
How then can a neural network do this job 'without a teacher'? In Chapter 7 we
describe an example of the classification of walls which displays the problems met by
neural networks in their learning procedures.

We conclude that the derivation of object-types is probabilistic in the sense that the
abstraction of object-types is extensional. Since objects can be instances of several
object-types (multiple classification) and since object-types need not have common
attributes (incommensurability), we think that inductive derivation has inherent
dangers. As different object-types may have identical sets of objects (co-extensive
object-types) the inductive elimination of random disturbances leads to invalid object
types. As we will see, these disturbances are eliminated by adaptations of weights,

- 99

CHAPTER4 FUNC110l'/AL OBJECT. TYPES T-OR RECONSTRUCT!NG KNOWlEDGE UNIVERSA

error-terms and correction factors (Lucardie, 1989). Of course, one can object that
representative conditions are applied in the reconstruction process and that
consequently the picture is not so bad as presented here. Our objection, however, is
that what is representative, is not made explicit in a functional manner. This
automatically leads to the necessity of adapting weights and error-terms to
compensate for lack of knowledge.

How does one assess that an object belongs to the extension of an inductively
derived object-type? The classification of objects using Rosch's algorithm consists in
measuring with what object-type the objects show the greatest degree of resemblance.
The input-unit that corresponds with the attributes of the object will be made active
for each object. To see whether an object is an instance of an object-type two steps are
necessary. First, for every output-unit the input Ij is calculated by multiplying the
weights of every activated U, by activation-values (1 or 0) and by totalling up the
products:

(4.18)

Secondly, the activation value of the output-units is determined. The activation-value
indicates whether an object-type is eligible for an object: l eligible and 0 = not
eligible.

(4.19)
1

1, fj > Tj and IJ wins the competition (Tj is threshold)
A-

' - 0, fj s Tj or fj loses the competition (Tj is threshold)

T1 is an arbitrary threshold. Of all eligible object-types, the object-type with the
highest ~ wins the competition. Suppose, we have an object that bas the attributes: G,
Land Q. This means that the fi, 15 and / 8 are activated. Using (4.18) 11 becomes 0.417,
12 becomes 0.650 and 13 becomes 0.685. h wins the competition if T3 0.650.

In AI and DBT it is common (prototypical) practice to use a continuum of degrees
of membership to classify objects as object-types. In fuzzy logic, for instance,
membership is assessed through a membership or compatibility function (Zadeh,
1965). A membership function operates upon a set and attaches to each element of
this set a compatibility measure which represents the grade of membership. If we have
a set U (4.20) and a membership function (4.21), we obtain afuzzy set A (4.23 and
4.24). The integral sign (4.22) stands for the union of the elements of U after the
compatibility function bas been applied. A fuzzy set is a collection of ordered pairs
which expresses the degree of membership of an element of that set. These elements
originate from U. From (4.24) it is clear that the element c does not belong to the
fuzzy setA.

(4.20) U {a,b,c}

(4.21) D(omain)µA = U and R(ange)µA = [O, ll

100-

CHA!'f't'N 4 FUNCIJONA!, OB}EC"l~ !'YPES POR RHXJNST'RU(,"'/JNG KNDW'l UXiE UNIVERSA

(4.23)

(4.24) A = 0.3 / a + 0. 8/b+û1 c

Techniques such as multiple regression and algorithms like Rosch's are based on a
prototypical approach. Over the past years the notion of a 'prototype' has caught on in
knowledge representation research (Brachman, 1985). A reconstructed object-type is
viewed as a stereotype or a prototype. Normally, this prototype is described by
necessary conditions. lnstances should show sorne sort of family resemblance with
the prototype. Apparently, an object-type viewed as a prototype differs from a
functional object-type. Not INUS conditions, but necessary conditions assess the
prototype. Not functional equivalence, but family resemblance deterrnines whether an
object is an instance of an object-type.

Because it is difficult to hold that all conditions are valid for all instances of the
prototype in all conceivable circumstances, these necessary conditions inevitably have
a default status. Due to this vagueness and due to the fact that universa! quantified
statements are wanted, the necessary conditions of a prototype need to be interpreted
as default conditions which can be overridden or cancelled. So, these necessary
default conditions can often be elirninated from the description of the prototype.
While dealing with the problem of classifying reality. the prototype approach focuscs
on overridable default conditiom;.

From a functional perspective it is explainable why a prototype cannot hold for all
instances. The three rnechanisms of functional equivalence clarify why an object-type
cannot be represented through necessary conditions. Objects may be instances of
object-types in that they meet one of the conjunct sets that define an object-type. The
prototype solution to interpret all conditions as defaults that are cancellable is
therefore not adequate. Within a conjunct set none of the conditions is cancellable.
The prototype-approach undermincs the definitional capabilities needed to model
complex object-types. Systems that are built on prototype assumptions, cannot
prevent users from mutilating conjunct sets of INUS-conditions. The supposed need
for representing exceptions such as three-legged elephants or birds that cannot fly has
led to an underestimation of the importance of well-defined object-types by means of
necessary and sufficient conditions (Brachman, 1985). But necessary conditions are
certainly not sufficient for being an instance of an object-type. The prototype
proponent strongly beliefs that no combination of properties is sufficient to capture an
object-type or to define natura! kinds of concepts (Putnam, 1977).

Furthermore, in probabilistic and prototypical approaches the process of assessing
class membership is reversed. Typically defining properties are not used to see
whether an object belongs to the extension of an object-type. On the contrary. objects
should be classified as instances and then it is derived that an instance possesses the
necessary conditions. For example, a description of an object-type KS(X) that is not
explicitly defined by means of necessary conditions Ci will be like this:

lOl -

CHAPTER4

(4.25)

FUNGT!ONAl OB]ECT-1YPES FOk RECONSTRUCTING KNOWLEDGE U.VJVERSA

\:/x E KS(X): CÎ F ç dom(x) where:
(l) F ç {C1, C2 , ... , C"}

(2) x is a function representing an object

The degree of resemblance depends on the ratio between C and F. In the prototype
approach an object-type is not applied to recognise instances. Note that this reverse
form of reasoning leads to problems. An object that is a bird need not be able to fly.
The conditions that define a bird are by no means identical to the conditions that
define flying objects. The object-type bird and the object-type flying object have
different contents and need to be distinguished! Many birds being able to fly only
implies that objects that are birds also comply with the requirements of the object-type
flying object. Technically, we can say that when an object complies with one of the
conjunct sets (and therefore is an instance of a bird), it is not legitimate to infer that it
will also comply with the other conjunct sets of the disjunction (and therefore be able
to fly). Viewing objects that are birds as flying objects is a form of reification.

Knowledge acquisition based on probabilistic and prototypical assumptions prevail
in AI and DBT-research for instance in the 'discovery' of quantitative laws (see for
instance: Zytkow & Baker. 1991). Though the demands made on computers can be
diminished by letting computers perform rediscoveries instead of discoveries
(Koppelaar, 1990), there are other ways of coping with the limitations of the
assumptions underlying this type of research. First, we should avoid a purely
inductive approach. The dangers of a purely inductive approach are generally known,
but not always recognised. Second, the variables that play a role in the process of
knowledge acquisition should be of a compensatory nature, that a reduction in the
value of one variable can be compensated by raising the value of another variable.
Third, conceptual interactions should not occur, because an algorithm can hardly
detect them, this is especially difficult when conceptual interaction involves more
than two variables. In Chapter 7 we describe an example of conceptual interaction and
the learning problems of a neural network algorithm in a particular domain of the
building and construction industry. Fourth, it is desirable that a supervisor should be
present to guide the learning process. Obviously, this supervisor should have
functional knowledge at his disposal.

4.6 A FUNCTIONAL EVALUATION OF RECORD-BASED REPRESENTATION
FORMALISMS

Among other things, the distinction of the knowledge level provides computer
scientîsts with an explicit perspective from which to evaluate knowledge
representation formalisms. Clancey (1985) undertook such an evaluation concerning
production-rules and Brachman (1985) did the same for frame-based representation
formalisms. There is an important difference, though, between Clancey's analysis and
Brachman's. Clancey intended to uncover the knowledge that lies bebind the
production rule structures, while Brachman's goal was to show that a frame-based

- 102-

CHA/>TER.f OB]l:.Cf", TYPJ:.'S FUN !?.i:.CONS rRUCTJN(, KNOWLFDG!: UNJVHHSr1

knowledge representation formalismjorces a knowledge engineer to work according
to a disadvantageous prototypical approach. The interesting thing is not that
Brachman, just like Clancey. is aware of the importance of distinguishing the
knowledge level, but that he evaluates a theory -in this case the prototypical theory- of
the nature of knowledge. In his analysis Brachman acknowledges the precondition
that a theory defining the nature of knowledge is essential. The preceding sections of
this chapter fulfilled this precondition by explaining the theory of functional
classifications and comparing it with eompeting theories. The central purpose of this
section is to investigate, from a functional viewpoint, the advantages and
disadvantages of representation formalisms that are based on record-structures and
processes.

Records are widely accepted as representation formalîsms. Most commercial
database management systems, applied on a large scale in trade and industry. are
implementations of record-based struetures. On the one hand, record-structures are
generally considered useful due to their efficiency and simplicity, on the other hand,
we notice that the basic assumptions behind record-structures are subject to severe
criticism. Kent (1979), for instance, points at the limiting assumptions of vertical and
horizontal homogeneity that underlie record-based models. By records from a
functional perspective we contribute to the critica] discussion from a somewhat
different angle. The questions which arise are: How can records represent an object
type defined in a goal-oriented way? and: How can records cope with fimctional
equivalence which underlies a goal-oriented d€finition of an object-type?

A record is a fixed sequence of field values, conforming to an object
characterisation (sec Chapter 3) usually contained in catalogues or programs. The
object characterisation consists mainly of a name, length and type of each field. Every
description defines a record-type (or, in relational terms a relation or

Functional equivalence also includes situations in which objects indeed have similar
attributes for performing a certain task. In many cases, however, a set of objects each
matching the definition of an object-type, shows considerable variation in the
attributes relevant to each individual in that set. Objects may vary in whatever
attributes, but if they match one of the conjunct sets of a goal-constituted object-type,
they are all functionally equivalent. So, functional equivalence implies that objects
may need different (combinations of) attributes to meet the description of an object
type (Van Der Smagt & Lucardie, 1991). We can illustrate this by an example.
Suppose we want to describe an object-type X. Suppose also that the conjunct sets
below describe object-type X. Together these conjunct sets indicate that a
considerable heterogeneity may exist in the attributes of objects in order to belong to
an object-type.

(2) {(B1;V4),(B2;

(3) {(C1;V7),(C2;

), (B3 ; V6)}~ X

),(C3 ;V9)}~X

- 103 -

CHAPTER4 Fl!NCTIONAL OBJECT-ITPES FOR RECONSTRUCTING KNOWLEDGE UNIVERSA

When such a goal-dependent variation exists over a population of objects, there are
certain techniques for accommodating this variability in a record-based database
design (Kent, 1979). One solution is to include all the relevant attributes defining an
object-type in a single table multi-field design. In this design not all fields will have
values in every record. Many records can even have null-values in many fields. The
definition of the knowledge scheme of this design can be assessed in a function S. The
domain of this function is the name of the object-type and the range represents the
relevant attributes:

A selection of the corresponding knowledge table of a knowledge state KS over Sis:

KS(X)=

{

{(A1; Vu), (A2 ; V21), (A3 ; V31),(B1;null), (B2 ;null), (B3 ;null), (C1; null), (C2 ;null),

(C3 ; nul!)},

{(A1; nul!), (A2 ; null), (A3 ; nul!), (B1; V41), (B2 ; V5_1), (B3 ; V61), (C1; null), (C2 ; nul!),

(C3 ; null)},

{(A1; Vu), (A2 ; V2.i), (A3 ; V3.i), (B1; null), (B2 ; null), (B3 ; null), (C1; V7), (C2 ; V8),

(C3; V9)}

}

Figure 4.8: A Record-Type with Multi-Attribute Objects

Figure 4.8 shows that a database design in which all attributes are represented in
multiple fields of one record-type, is likely to have many records with null-values in
many fields. There are many interpretations of a null-value, e.g. not permitted, to be
stored, undergoing change, missing etc. However, formal treatment of null-values
usually includes the meanings 'not applicable for this object' and 'applicable but value
at present unknown'. These two types seem to capture all other interpretations.
reasonably welt An approach that handles both types of null-values is described by
Vassiliou (1979). Codd (1979) describes extensions of the relational algebra for
dealing with the 'value at present unknown' type. Null-values especially pose
problems when we would like to use corresponding fields for identifieation purposes,
which is a fairly common situation. Not surprisingly, the database designer is very
careful to prevent the appearance of null-values with specialised schema constructions

104-

FUNCTJONAL OH]FCT-1T!'ES FOR RECONSrf?UC!1NG KNOWLEDCE UNWl:JiSli.

and strict rules goveming modifications of record values. It appears, however, that
such an approach is inappropriate in a number of cases.

Another serious problem of our first database is that the (explicit)
description of an object-type is lost. The conditional relevance of attributes is
obscured in patterns of attribute values which exist independently of each other and
which do not reflect the underlying conceptual structure of object-type X. As this
limited relevance is not defined in the system, no system-facility is likely to be present
that will enforce a correct input. Validation gets complicated and this means that the
multi-field format endangers the integrity of the model.

Sticking to the single table multi-field design, we can also allow the use of genera!
fields. Taking our example as point of departure, we can have separate fields to store
values for A 1, B 1 and C 1 in different records. In this design the same field is allo wed to
have different meanings. A drawback of this approach is that every field-value has the
same meaning for the system. Besides, the field names become unintelligible, because
they have to accommodate considerable variety. The records within this design do not
convey any meaning. It is only in the buried sernantics of application programs that
the significance of field values can be made clear. This is in contradiction with the
ISO 100% Principle that prescribes that a knowledge universe should explicitly
contain all relevant statie and dynamic rules and Jaws of the Uni verse of Discourse so
that a knowledge universe cannot be held responsible for aspects described elsewhere,
in pa1ticular, those described in application programs (Twine, 1989).

To preserve the semantic structure and to decrease the number of null-values we
can switch to another design. In this new design we discern (multi-field) record-types
for objects which are instances of an object-type. Each record-type represents objects
which match a specific conjunct set of an object-type. The corresponding knowledge
scheme is then:

5(X1)={A1, ,A3 }

S(X2)={B1,B2 ,B3 }

S(X3) {C1,C2 ,C3 }

The knowledge state(s) operating over this scheme, describe(s) the distinct record
types:

KS(X1) =
{

(Ai; Vu), (A2; V21), (A3; V3),

(A1; V1J, (A.i; V2J, (A3; V31),

(A1; V12), (A2 ; V23), (A3 ; V31)

}

- 105 -

CRAPTII/14 FUNCTJONAL OBJECT~ TYPES FOR RECONSTRUCTING KNOWLEDGE UNIVERSA

KS(X2)=

{

(B1; v4.l), (Hz; V5.i), (B3; v6.I),

(B1; V4.1), (Bz; V5 2), (B3; v6.l),

(Bi; V4.1),(Bz; V5,),(B3; v6.2)

}

KS(X3)

{

(C1; V71), (Cz; Vs1), (C3; V9.1),

(C1; V72),(C2 ; V8.2),(C3 ; V92),

(C1 ; V7.1), (C2; Vs.2), (C3; V 9 2)

}

Figure 4.9: A Multi-Record Multi-Field Design

x ·1

1

1

1

iil

V1.1 1 Vs.1 V9.1

v7.2 1 Vs.2 V9.2

V7.1 1 Vs.2 V9.2

At first sight, the multi-table design seems appropriate. The semantic structure is
preserved and null-values have disappeared (Figure 4.9). Yet a number of
disadvantages are associated with this design. Instead of going to one table to retrieve
knowledge of objects which are object-types, a user has to know the name of every
tablc and be prepared to interrogate each of the tables. Interrogation, however, is not
simple. Because names of record-types and field names are only place bolders, a
database management system cannot provide ways to deliver answers that are field or
table names. Records can only supply knowledge by extracting field-values. This
normally suffices for the system for matching keys or sequencing, but for representing
(functional) knowledge field names table and field names should convey something
intelligible. A second disadvantage is that one object may appear in different record
types. Validation and modification still are problems. Again, integrity pitfalls
endanger the suitability of this design.

To extend the previous design, we can aggregate the objects involved into a limited
number of 'supertypes' giving them a new identifier. In contrast to the previous
design, the states (record-types) are linked now to each other through these new
identifiers (Figure 4.10). Each of these additional identifiers needs to be assigned new
values which should be recognised in various contexts. This can be formally assessed
in the following three knowledge universe constraints (Chapter 3):

106-

CHAPtER<i FUNCT'l0Nr1L OHJJ:CT· 71'!'/:S FO!l NEC()N>, !JUX: lL"/G KN(JWLEDGE L:\'J'/J:RSA

; Id)} connects KS(X.1) bilaterally with {k E KS(X.0) 1 k(Tvpe) Xi}

; Id)} connects KS(X2) bilaterally with {k E KS(X0) 1

{(X3 ; Id)} connects KS(X3) bilaterally with {k E KS(X0) 1 k(1\pe) X3}

Attribute Type is the inspection attribute of X0 and:

(1) the value X1 is the inspection value for KS(X1)

(2) the value X2 is the inspection value for KS(X2)

(3) the value X3 is the inspection value for KS(X3)

The function KS also needs extension:

KS(X0) =

{

(Id; x 1), (Type; X1),

(Id; x 2), (Type; X2),

(Id; x 5), (Type; X 2)

A drawback of the 'supertype' approach is the very nature of functîonal classifications
(Figure 4.10). Objects get classified one way to belong to a certain object-type and
another way for another (sub-)object-type. Each object-type is potential ground for
other supertypes. Important to note is that we are not dealing with a simple nesting of
super- and subtypes: all objects (for instance employees) are an object-type X (for
instance people), but some of them also belong to other object-types (for instance
customer and stoekholder) and others do not. Nor are sub-types mutually exclusive.
But to fit into a record-based discipline, the subtypes need to be perceived as if they
are not overlapping, distinct objects.

We have seen that one of the advantages of working at the knowledge level is the
possibility to analyse representation forrnalisrns at the symbol level. When we
exarnine the basic properties of record-based information models from a functional
viewpoint. we gain some interesting insights. If the essential configuration of the
conjunct sets leading to the same goal is characterised by identical attributes, each
attribute having the same kind of values. records are excellent representation and
processing tools. If, on the other hand, these conjunct sets are characterised by
heterogeneity caused by having to classify objects in a goal-oriented fashion
accounting for different descriptors and new conceptual intcractions, records are not
appropriate (Kent, 1979; Murdoch & Johnson, 1990). The more a domain deviates
from homogeneity, the less appropriate the record configuration is. Unfortunately,
each of these designs has its drawbacks. In short, we can state that all these record-

107

CHAPTER4 FUNC770NAL OB]ECT-JYPES FOR RECONSTRUCTING KNOWLEDGE UNIVERSA

based solutions of coping with heterogeneous but functionally equivalent objects,
remain makeshifts. The three basic design configurations of record structures
discussed here cannot sufficiently reflect the semantic structure of functional object
types when considerable variation exists. The remarks made here apply to any model
based on record-constructs. This includes the hierarchical, network, relational and
entity relationship models. Semantic models are also included. In DBT, in the sphere
of modelling, semantic models are often used. When working towards implementation
the semantic models are converted into record-based relational models. An example
of this practice is described by Huil & King (1987).

·Ll(fl .. • n· · 1 ype•

~ X1
xz X1

~··~>LLL .,,,,, """ .;,iii{n" . ,L\lf2 L re n1~1·•
- ..

1 •• ,,,.,..z·n HLD'l'Fn!

XJ V1.1 V2.1 V3.1 x5 V4.1 Vs.J V6.I x9 V7.1 v8.1 V9.1
x2 V1.2 V2.1 V3.1 X6 V4.1 Vs.2 V6.I XJQ v7.2 Vg.2 v9.2

x3 V1.2 Vz.3 V3.1 x7 V4.1 Vs.1 v6.2 XJJ V7.1 v8.2 V9.2
X4 V1.1 V2.1 v3.2 xg v4.3 Vs.1 V6.I XJ2 V1.4 v8.1 V9.1

V.· EV. 1.J 1

Figure 4.10: A Multi-Record Multi-Field Design with Super/Subtyping

The evaluation of records was not very stringent because of the fact that we used as
point of departure a situation in which the description of an object-type was available.
However, the majority of practical situations is less ideal. Often, the Jack of an
explicit functional definition of an object-type leads to continuous modification and
design activities. As stated before, these activities increase the probability of integrity
violations. Many record-structures need to be modified and redesigned which is, as
stated before, a difficult thing to do.

To preserve flexibility the definitions of view-systems are often proposed as
solutions. Departing from a genera! conceptual schema in DBT view-systems can be
defined for specific interpretations of a knowledge universe. This is misleading as far
as the suggestion is amused that it concerns functional object-types. A view-system
consists of nothing more than selections from basic tables (see Chapter 3 and 7). In
the majority of cases, the object-types represented in the tables are not functionally
reconstructed.

- 108 -

CHA!'TFR4 FUNCTJ()NAJ O!Jj[CFTYJlfl. FOR RECONS!7N/CTL'1tG KNOW! J::DGL l:NJVF!öA

4.7 CONCLUSION: IMPLICATIONS AND PERSPECTIVES

This chapter emphasised that the reconstruction of knowledge universa boils down to
the reconstruction of object-types. Despite acknowledgement of the
importance of object-types and despite the fuzziness that emerges when object-types
have to be reconstructed, theories of the nature of object-types are quite rem<ukably an
under-exposed issue in AI- and DBT-communities. This chapter addressed two
fundamental questions about the sources of fuzziness:

How do terms relate to object-types ?

How do object-types relate to objects ?

With respect to answering these questions, probabilistic and prototype theories are
dominant in Al and DBT. In these approaches the reconstruction of an object-type
appears to be based on extensions. The result of this inductive procedure is an object
type that has the theoretica! status of a prototype which is described by ovenidable
necessary conditions. The allocation of objects to object-types takes place by the
degree of similarity objects show with a prototypical object-type. In both approaches
measures of similarity are goal- and context-free: that is the similarity of two objects
A and B depends solely on a priori assessed attributes. The choice and mutual
influence of attributes is not intluenced by an object-type that accounts for goals and
contexts.

The functional attempts show that both theories have some quite serious tlaws.
They make one crucial type of object-type impossible to model: that of composite
descriptions through necessary and sufficient conditions retlecting functional
equivalence. From this perspective, it is not surprising that the results of a prototypical
approach are very difficult to interpret. This is true, for instance, for the classes that
are reconstructed by using cluster analysis (Everitt, 1983). Rather than to group
entities on the basis of similarity, the functional approach makes classifications on the
basis of functional equivalence. If our main concern is with the reconstruction of a
knowledge universe the proper framework is functional2 rather than probabilistic or
prototypical.

A functional perspective does not automatically imply a decline of object-
type (model), it just points to the limited value of many genera! object-types. The line
of reasoning is often as follows: 'The best way to reconstruct an object-type with
genera! validîty is to look mainly at real objects and to incorporate the neccssary
conditions. If a genera! object-type is eventually available then the object-type can, if
necessary, be adapted for special goals. The model of a building, for instance, can be
modified for fire-safety purposes, energy-consumption and so on'. The inductive
abstraction of a genera! object-type on the basis of a priori given attributes of

2 The fat:t thal the term ha~ several connotations in
reader. At thrcc connotations can be discerned.
functional das:..ifkation whîch rcfcr:-. to goal- or funttlon-based conccprua11sa11011'
a functional which may
rcprcsent2tion ,·nnmn•M•n1

functional
part,. The

109

CR4.PTER4 FUNCTJONAL OBJECF!YPES FOR RECONSTRUcnvc KNOWLEDGE UNIVERSA

available objects, is problematic from a functional perspective. As explained before,
deriving object-types from an extension can lead to object-types that are not valid for
certain goals and eontexts. The methodology in which the object-type is reconstructed
as a prototype will be rejected from a functional point of view as well. Cancelling
attributes to deal with exceptions are indications that knowledge of goals or contexts
is not included in the genera! model. A description of an object-type building,
reconstructed to deal with fire-safety issues, will differ from a description of an
object-type building that should serve to design energy-saving buildings. There is no
reason to suppose that these object-types will have common (classifications of)
attributes. On the contrary, since the concepts that play a role in fire-safety domains
(irradiance, thermal insulation, fire-compa1tments) are quite different from the ones
that are important for energy-savings (emission of materials, supply of raw materials,
recycling), the expectation is that these object-types may be incommensurable.

The second implication of the theory of functional classification is the acceptance
that there is a continuous interaction between object-types and objects so that the
distinction between object-types and objects fades away and they mutually correct
each other. By this, the knowledge universe accounts for a unified approach of
integrating AI and DBT.

The third implication refers to the suitability and the choice of a language that can
be used to reconstruct functional object-types. This language should not only offer
facilities for the reconstruction of functional object-types, hut also for their validation
for properties such as completeness, consistency and correctness. Further, the
language should provide facilities for simulating the behaviour of functional-object
types when they are implemented.

The theory offers perspectives for new fields of AI and DBT such as object-oriented
analysis & design and semantic database models. What is interesting in object
oriented analysis & design is that the world is modelled in terms of object-types and
objects. The theory of functional classifications helps to systematically distinguish
object-types and objects. Semantic models were introduced primarily as design tools
for conceptual models. Centra! bas been the development of abstraction mechanisrns
to represent the structural aspects of objects. These rnechanisms are comparable to
those selected in AI research. In recent years the attention has been turned toward
incorporating dynamic aspects in the semantic models. The primary components of
semantic models are the explicit representation of objects, attributes, relationships
among objects, type constructors, 'is-a' relationships and derived schema components
(Hull & King, 1987). Object-types can be modelled as abstract, printable or
constmcted and can be defined using 'is-a' relationships. Conceptual representation of
an object-type once required is possible, but not adequate for maintenance and
modification. It is not easy to get to grips with the flexibility of object-types. In this,
functional object-types can help to make clear what bas to be modelled by the tools
and abstraction mechanisms offered.

Besides theoretica! perspectives, the theory also offers practical perspectives.
Reitsma (1990) developed a Decision Support System for the Shanxi-provence in
China on the basis of the theory. Lucardie, et al., (1994) developed a computer-based
tool to specifically deal with functional object-types. We discuss the tool in Chapter 6.

- 110-

FUNCI !ONAL OBjé'CT-'JYVtS FOR REC0,VSTRUC!1l\I(,' f,',\'0\'(ff.EDG'E UNllL/öA

Functional object-types are very fruitful, but reconstructing them is an arduous task
that requires Jong inference chains of knowledge elements and complex
expressions. Therefore, we have to invest in methods, techniques and tools to enhance
the functional acquisition of knowledge and to simplify these complex logic
expressions. Especially, we should pay attention to aformal language to reconstruct
knowledge level models. A forma! language should support the validation as well as
the simulation of a functional knowledge level model. The importance of a forma!
language is stressed in Cooke (1992) and Balder & Akkermans (1992). Chapters 5
and 6 discuss such a structural investment.

- 111 -

CHAPTER5

DECISION TABLES AND PROLOG AS A CONCEPTUAL

MODELLING LANGUAGE FOR FUNCTIONAL-OBJECT-TYPES

5.1 INTRODl..:'CTION

In Chapter 1 we stressed the importance of integrating the theory and practice of AI
and DBT for modellîng knowledge. In Chapter 2 the knowledge level and the symbol
level were discussed as two computer systems levels at which this integration can take
place. In Chapter 3 we argued that an integration of AI and DBT should be realised at
the knowledge level rather than at the symbol level. In addition, we explained that a
knowledge level integration requires (1) a theory of the nature of knowledge and (2) a
language to analyse, represent and simulate knowledge. After proposing, in Chapter 4,
the functional view on object-types as a theory of the nature of knowledge, in the
present chapter the question remains what modelling language to choose.

Such a language should comply with a number of requirements. It should not only
offer adequate expressive power for modelling real-world knowledge, but also
provide validation and simulation facilities (Loucopoulos & Karakostas, 1989). For
our purposes, the modelling language should not only offer facilities for the
representation and reconstructîon of functional object-types, but also for their
validation on completeness, consîstency and correctness. Furthermore, the language
should supply facilities to simulate the behaviour of functional object-types (Lucardie,
De Gelder, & Huijsing, 1994).

Mathematica! logic is an obvious candidate language. As explained. it is suited to
the formal and unambiguous specification and representation of functional object
types. For many people. however, mathematica! logic may have the disadvantage of

too complex and, consequently, of restricting modelling and validation
possibilities. Another disadvantage of mathematica] logic is that there are no facilities
for simulating the behaviour of functîonal object-types. What we need is a language
that preserves the strong points of mathematica! logic without displaying its weak
points: a language that allows logic representation, permits easy inspection and offers
facilities for the simulation of already specified functional object-types.

The joint application of Decision Tables (DT's) and Prolog seems to meet these
requirements. Both have a firm basis in mathematica! logic. Some authors claim that,
together, they offer a range of powerful formalisms and techniques allowing a
formally unambiguous description of real··World phenomena that is close to natura!
understanding (Reilly, Salah, & Yang, 1987, p.30). DT's are a method for organising
and documenting knowledge in a logica! manner that permits easy înspection and

113 -

CHAPTEJl5 DECJSJON TAB LES AND PRO LOG AS A CONC/:.JJTUAL MODELJJN'G UNGUAGE FOR Fl!NCT!ONAl OBJECT" TYPES

analysis. Prolog can be viewed as a logica! specification language that admits
simulation of specified knowledge (Lazarev, 1989).

The research issue of this chapter is to investigate in more detail whether the joint
application of DT's and Prolog indeed possesses the necessary characteristics to act as
a language for the representation, reconstruction, validation and simulation of
functional object-types.

The organisation of the chapter is as follows. From the perspective of the previous
requirements, we first discuss the potentials of DT's as a modelling language on the
basis of forma! definitions of DT's (Section 5.2). Then, the capabilities of Prolog as a
modelling language are explored by referring to its forma! background in predicate
logic (Section 5.3). Finally, we round off the chapter with a number of conclusions
concerning the utility of the joint application of DT's and Prolog as a modelling
language (Section 5.4).

5.2 DECISION TABLES

DT-work began over three decades ago. Much of the literature is devoted to the
applicability of DT's in all phases of the software engineering life cycle from
conceptual modelling (through design, implementation, testing, modification and
documentation) to maintenance. The advantages of DT's for software engineering
purposes are expresscd by Reilly, Salah & Yang:

'".the ubiquitous use of DT's within the life cycle has
conferred on them a reputation for compactness, self
documentation, modifiability handling complex logic,
redundancy and completeness checking, high degree of non
procedurality, and automatic conversion to code.' (1987,
p.191)

We can observe this 'software engineering bias' not only in early literature on DT's
(Cantrell, King, & King, 1961; Grad, 1962), but also in more recent publications
(Metzner & Barnes, 1977; Mors, 1993; Reilly, et al., 1987; Subramanian, Nosek,
Raghunathan, & Kanitkar, 1992; Vanthienen, 1988; Verhelst, 1980). Yet, through the
history of DT's, the emphasis on their use in a specific software engineering phase has
been subject to change.

After a short period in which DT's were studied as struetured alternatives for the
classica! flowcharts, DT-work soon concentrated on the process of automatically
converting DT's into computer programs. A great deal of energy has been spent on
algorithms that produce optima) programs (Bayes, 1973; Ganapathy & Rajaraman,
1974; Lew, 1978; Pollack, 1965; Reinwald & Soland, 1966; Reinwald & Soland,
1967; Shwayder, 1971; Verhelst, 1972). The algorithms generally fall into two
categories: (i) those attempting to minimise the expected execution time of the
program generated from the DT and (ii) those seeking to minimise the storage space
required by the generated program.

114-

DEOS'JON T4BILS AND PROUJ(,' A \ 11

During the last fifteen years research interest for the use of DT's in the
implementation phase has gradually faded. On the one hand, this was related to the
emergence of structured programming because of which DT's became Iess necessary
for reducing the complexity of programs. On the other hand, DT's were increasingly
recogms:ed as means for communicating complex logic, the applicability of which is
not restricted to implementation purposes. Furthermore, practical experience indicated
that it cannot be taken for granted that well-reconstructed DT's will be available which
was the point of departure for much implementation research. Rather, practice
revealed that the reconstruction of DT's is a complicated task that should be the
centra! focus in DT-research. For these reasons, attention shifted from converting
existing DT's to computer programs, to the effective reconstruction and validation of
DT's. By this shift, DT-research was focused on the first stage of software
engineering, namely that of conceptual modelling.

The renewed interest for conceptual modelling corresponds with the centra! theme
of this section: the investigation of the potentials of DT's as a conceptual modelling
language for (functional) object-types. This section is structurcd as follows. First. we
providc forma! dcfinitions of DT's (Section Then, wc invcstigate the potentials
of DTs for the reprcsentation, reconstruction, validation and simulation of functional
object-types (Scction 5.2.2). Finally, the section is rounded off with a nurnber of
conclusions and a discussion concerning the potcntials of DT's as a modelling
Janguage for functional object-types (Section

5.2.1 Format Background

A DT can be inforrnally dcfincd as:

' ... a table that represents the exhaustive whole of mutually
exclusive conditional statements wîthîn an a priori defined
problem domain.' (Verhelst, 1980, p.9)

An example of a DT is prescnted in 5.1. The tablc named Abstract, refen; toa
fictitious domain. The component to the left of the double vertical line is called tbc
stub. The first part of the stub, the part that is locatcd abovc the double horizon tal line,
contains condition subjects. The second part of the stub, Jocated below the double
horizontal line, contains action subject~. The component to the right of the double
vcrtical line displays six conditional statements about our fictitious domain. These
statements are called Decision Rules (DR's). They are pictured by means of columns.
DR's describc the connection bctween condition subjects and action subjccts. Abovc
the double horizontal line the DR's contain a condition alternative for each condition
subject. Below the double horizontal line the DR's contain an action alternative for
each action subject. According to Verhelst's definition a DT must be exhaustive and
exclusive. Exhaustivencss means that, within the domain of the DT, every possiblc
cornbination of condition altcrnatives should be accounted for. Exclusiveness means
that no situation is permitted to be described in more than one DR.

115

CHAPTER5 DEC/SION TAB LES AND PRO LOG AS A CONCEPTUAL MODJ:.'LLING lANGUAGE FOR FUNCT!ONAL OBJECT, TYPES

A B c
D E D E D E

x x x
Rl R2 R3 R4 R5 R6

Figure 5.1: A Graphical Sketch of a Decision Table

Verhelst's definition designates the most important characteristics of a DT. A
drawback, however, is that it is an informal definition. Since in the past, informa1
definitions of DT's led to DT's which are inappropriate in some ways, we need amore
formal statement to apply DT's adequately and to evaluate their potentials. An
important reaction against informal definitions is the report of the Codasyl Decision
Table Task Group A Modern Appraisal of Decision Tables (Beitz, Buck, Jorgensen,
Larson, Maes, Marselos, et al., 1982). The Task Group's theoretica! foundations
explained in this report provide definitions to identify various DT components and
form an important stimulus to more formal definitions of DT's. The Task Group
eonsiders a DT as a tabular presentation of the triplet of a condition set C, an action
set A, and the relations between the eondition and action set R:

DT= (C, A, R)

In the following, we present formal definitions (5.1 up to 5.14) for each component of
the triplet, which are mainly based upon definitions of A Modern Appraisal of
Decision Tables. For this purpose, material of Chapter 3 is employed. As a
supplement to this, we also make use of indexed sets to denote families of sets. An
indexed set has the form S = {S; 1 i E /} where Sis a family of sets and where I is a set
of (numerical) indices. An alternative way to describe a family of sets is:
S = {S1 .S2 ,S3, ... , Sn}.

Conditions (C)
A condition consists of a condition subject and an accompanying set of condition
altematives. We can describe a condition as an ordered pair. Por the first condition of
our example DT, denoted Cl> we obtain:

C1 = (Condition Subject l; {A, B, C})

The first co-ordinate of C 1, denoted n:1 (C1), is condition subject 1. It represents the
name or the subject of the first condition. The second co-ordinate of Ci. denoted

- 116

UlA!'JLR5

n:2 (C1), is the set of altematives of the first condition: {A, B, C}. Each alternative
itself is a set of values. For instance, if n1 (C1) stands for temperature altemative ,4
might stand for all temperatures between 0 and 80. This is the interval (0, ... , 80). If
n:1 (C1) stands for colour, alternative A might stand for the colour blue. This is the set
{ blue}. The formal definition of a condition set C is given below. C11",,, just like in
other definitions, the number of conditions.

Definition 5.1: Condition

C { C; 1 i [1, ... , C1111m] and each C; is an ordered pair that consists of a

condition subject CS; and a set ()f condition a/tematives CA1}

•
C is an indexed set. The set [1, ... , C" 11"'] is the set of numerical indices. Applying the
definition of a condition set to the DT Abstract, we get:

C {(Condition Subject 1; {A, B, C}), (Condition Subject 2; {D, E})}

Using the numerical indices, we get:

C1 (Condition 1; {A, B, C})

(Condition Subject 2; {D, E})

The definition of a set of condition subjects is:

Definition 5.2: Condition subjects

es= {CS; 11E11" .. , land each CS; is a condition subject}

•
Applying this definition to the DT i1bstract, we get:

CS ={Condition Subject 1, Condition Subject 2}

Using the numerical indices, we get:

CS1 =Condition Subject l

CS2 = Condition Subject 2

The definition of a set of condition alternatives is:

117

CHAPTER5 DEC/SJON TABLES AND PROLOG AS A CONCEPTUAL MDDEHINlJ L4.NGl14GE FOR FUNCTJONAL OBJECT-TYPES

Definition 5.3: Condition alternatives

CA = {CA1 1 i E [l, ...• Cnuml and each CA; {CA;k 1 k E [1, . .. , n1]} and

n; is the number of conditions alternatives of condition i}

•
Applying the definitions of CA to the DT Abstract, we get:

CA = {{A, B, C}, {D, E}}

With the numerical indices:

CA1 = {A, B, C}

CA11 = A

CA12 = B

CA13 = C

CA2 = {D, E}

CA21 = D

CA22 = E

Every condition has a domain. The domain is the set of all possible values that can be
attained by that condition. When, for instance, a condition stands for temperature the
domain could be: (0, ... , 120). The definition is as follows:

Definition 5.4: Domain of a condition

CD = {CD; 1 i E [l, ... , Cnum] and CD1 is the domain of condition i}

•
The condition alternatives of CA; are subsets of CD1• If, for instance, CS;. stands for
temperature and CD1 = (0"." 120) CA;1 could be (0"."40], CA;2 could be [40"",80)
and CA13 could be [80" .. ,120). We can view the condition alternatives of CA; as
partitions, classifications or categorisations of CD1• The precise relation between the
domain of a condition and its alternatives will be explained later in this chapter.

Another important definition concerning the conditions of a DT is that of a
condition space denoted as SP ACE(C):

- 118 -

CHAPT1:R5 DEC/SJON TABLPSAND l'ROlOG AS A CONCE!'TVAL iifODFILJN(; Li.VGUA r;E FON FUNCrtONAL O!UECT· !'Yf'FS

Definition 5.5: Condition space

SP ACE(C) CA1 x CA2 x ...

•
For the DT, Abstract SPACE(C) is:

SPACE(C) = D}, {A, E}, {B, D}, {B, E},{C, D}, {C, E}}

An element of SPACE(C) is referred to as a Table Condition Entry (TCE}. The
condition domain of a table Abstract, denoted as DOM(Abstract), is a subset of
SPACE(C) such that each element of the subset appears as a TCE in Abstract. We can
succinctly specify cornpleteness for Abstract as DOM(Abstract) = SP ACE(C) and
incompleteness as DOM(T) c SP ACE(C). lf any rule is deleted frorn a complete
table, it becornes incomplete. Note that sorne condition entries can be filled by a 'don't
care'. The 'don't care' is not a condition altemative in the normal sense. It defines a
composite rule obtained by merging all the rules that are formed by filling in the
possible condition altcrnatives at the place of the 'don't care'.

To account for exhaustiveness and exclusiveness, the following two constraînts
must be fulfilled for each CAi of a DT:

Definition 5.6: Exhaustiveness

•
Definition 5.7: Exclusiveness

(2) ncAi 0

•
The two constraints respectively employ the generalîsed union and the generalised
cross-section operating upon sets of sets (see Chapter 3). The first constraint states
that the union of C4i should be equivalent to CDi (exhaustiveness of the condition
alternatives). Applied to Abstract this constraint implies that the union of A, B and C
should be identical to CD1 and that the union of D, E should be identîcal to CD2 . The
second constraint states that the (sub-)sets of C4; must be disjunct: the cross-sections
of the (sub-)sets must be empty (exclusiveness of the condition altematives). Applied
to Abs1ract this means that every cross-section of A, B and C should be empty. The
same applies to the cross-section of D and E.

119 -

CHAPTER5 DE'GS!ON T ABLES AND PRO LOG AS A CONCEPTUAL lv!ODHLING lANGUAGE FOR FUl'fCTlONAL OBJECT" TYPES

In the following we define the action set. To an important degrce this happens
analogously to the definition of the condition set with the difference that actions need
not to be exhaustive or exclusive. Anum is the number of actions.

Actions (A)

The forma) definition of action set A is:

Definition 5.8: Actions

A {A; 1 i E [O, Anum] and each A1 is an ordered pair that consists

of an Action Subject AS; and a set of action alternatives AA1}

•
The following applies the definition to the DT Abstract: t

A = {(Action Subject l; {X, -})}

Every aetion consists of an aetion subject AS; and a set of action alternatives AA;.

Their definitions are given be low.

Definition 5.9: Action subjects

AS= {AS1 1 i E [l, ... , Anum] and each AS; is an action subject}

•
Definition 5.10: Action alternatives

AA {AA; 1 i E [l, ... , Anum J and each AA1 = {AA1k 1 k E [l, ... , n;]} and

n1 is the number of action alternatives of action i}

•
Another important definition conceming the actions of a DT is that of an action space
denoted as SPACE(A):

Note that in case only one condition or action is present in a DT, SPACE(C) and SPACE(A) yield an empty set
according to the definition of the Cartesian product (Chapter 3). The intention in these cases. however, is that
SPACE(C) 1s a set consisting of sets where each set contains one of the condition altematives. Accordingly
SPACE(A) l8 a set consisting of sets where each set contains one of the action alternatives. Apart from this, il is
doubtful whether a DT containing one condition is very useful.

- 120 -

CliAPTER 5

Definition 5.11: Action space

SPACE(A) = AA1 x x."

•
Applying the definition of SPACE(A) to Abstract, we obtain

SPACE(A) = {{X}.

An element of SPACE(A) is called a table action entrv (TAE).

Relations between conditfons and actions (R)
A relation is a set of ordered pairs. A DT is a relation that is specified using the sets
SPACE(C) and SPACE(A). Every element ofthis relation corresponds toa DR.

Definition 5.12: DT as a relation

DTç {(TCE: 1 TCE E SPACE(C) and TAE E SPACE<A)}

•
This definition, however, has a disadvantage. It does not specify that a TCE can only
be related toa TAE. This means that the occurrence of inconsistencies (several
TAE's related to one TCE) in a DT is not excluded. To ensure a consistent DT, the
following constraint should be matched:

De.finition 5.13: Consistency of a DT

V(TCE;TAE) DT: V(TCE';TAE')E DT: if TCE TCE' then TAE TAE'

•
The constraint makes clear that it is preferable to view a DT as a function rather than
as a relation.

Definition 5.14: A DT as afunction

D
T is a DT <=> T {(TCE; TAE) 1 'ï/TCE E SPACE(C): 3 TA.E E SPACE(A)} and

T is a function

•

121

CHAPTER5 DEC/SION TABLES AND PROLOG AS A CONCEPTUAL MODELL!NG l.ANGUAGE FOR FUNCTIONAL OBJECT-TYPES

The domain of the function T is equivalent to SPACE(C) and is also equivalent to
DOM(T) when T is a complete table. Range(T) = {TAE 1 (TCE; TAE) ET}. An
element of T is an ordered pair that represents a DR. As before, a DR relates a TCE to
aTAE.

There are some advantages to viewing DT's as functions. First, the definition
incorporates completeness. Each element of SP ACE(C) is related to an element of
SPACE(A). Secondly, since each TCE has a unique TAE, the view implies
consistency of a DT: the occurrence of several T AE's for one TCE is excluded.

Goal 1

CS1 a b

CS2 k 1 r s

CS3 - - - y not

Goal! x - x x -

Figure 5.2: Conceptual Interaction

New and Modified Definitions
Though useful, the previous terminology and definitions which are mainly based on
research of the Codasyl Decision Table Task Group do not account for conceptual
interaction: the phenomenon that a condition can have several classifications due to
interdependence with other conditions (Chapter 4). On the one hand, this flexibility is
needed to model conditions that can only be effective in conjunction with other
conditions. On the other hand, conceptual interaction is needed to avoid combinations
of conditions that never arise in practice or are impossible. In relation to a DT,
conceptual interaction may manifest itself in two ways. First, the classification of a
condition can be flexible and may vary under certain conditions. For instance, the
classification of condition C2 of the DT of Figure 5.2 is k and l if C 1 is a. However, if
C1 is b, the classification is rand s. An interpretation that illustrates this case is: C2 =
temperature, k::;; 20, l > 20, r < 30, s :2: 30. Secondly, conceptual interaction may imply
that the domain of a condition varies. This occurs when the domain, the set of
potential values of a condition, depends on other conditions. An illustrative
interpretation may be: C1 =type of fruit and C2 =colour of fruit, k = yellow, l =green,
r = red and s = orange. This interpretation designates that not all colours apply to all
kinds of fruit. Therefore, the domain is conditional upon the condition altematives of
C1.

To deal adequately with conceptual interaction, we introduce new definitions and
modify a number of definitions that have already been introduced. First, we view a
DT as a number of rules depicted by the following set of functions:

- 122 -

CH!l/'11'R5 DEC!SWN JAU/.l:.SAND PROLOG.A'IA CONCEI'TL~11. iHO!H~LlJNG lAJVCUAGH J.OR /'UNCTf(),l\i:,tL (!/ljB:l~!Yl'ES

RL

.tm1111.um Subject I; A), (Condition Subject 2; D), (Action Subject I; X)},

{(Condition Subject l; A), (Condition Subject 2; Subject l; -)},

{(Condition Subject l; B), (Condition Subject 2; D),

{(Condition Subject 1; B), (Condition Subject 2;

Subject I;

Subject I; X)},

{(Condition Su~ject 1; C), (Condition Su~ject 2; D), (Action Subject l; X)},

{(Condition Su~ject l; C), (Condition Subject 2; E), (Action L-)}

Looking at RL, we might be tempted to define a DT as follows:

Definition 5.15: A DT as afunction over a set of conditions and actions

D
RL is a DT over set A P RL is a set and V DR RL: DR is a function over

A whcre A is the set of conditions and actions

•
The ruleset of a DT Abstract can be denoted by RL(Abstract) Sincc the definition
disregards exclusiveness, exhaustiveness and conceptual interaction. it is not complete
yet and requires extension. The first step to be taken yet is assessing the tree structure
that underlies every DT and that accounts for conceptual interaction. A tree is a
special kind of graph. A graph is defined as fellows (Lew, 1985, p.141):

Dejïnition 5.16: A graph

D
Gis a graph P G = (S; R) where Sis a non empty set and

R is a relation such that R S x S

•
The rnernbers of S are called nodes (or vertices) and the members of R are called
branches (also edges or arcs). An of a graph is G1:

G1 = ({a, b, c, d}; {(a; a), (a; b), (b; (d; d)})

Graphs have a convenient pictorial representation. Figure 5.3 shows this by displaying
the directed graph G 1• As the directions of the branches of G 1 are relevant, G 1 is a
directed graph (or digraph).

123

CHAPTER5 DEC/SION J:ABLFS AND PRO!.OG ASA CONCEPTUAi, MODEL!JNG l.AIVGUAGE POR FUNCT/ONA.L OBJECT-TYPES

Figure 5.3: The Directed Graph G1

We formally define a set of paths PS of length kina directed graph G = (S; R) as a
finitc row of k branches (see Chapter 3 for the definition of a row):

Definition 5.17: The paths of a graph

If G (S; R) then:
D

PS is a set of paths of Jength kin G {::::} {((r(O); r(l)), (r(l); r(2)), .. " (r(k l); r(k))) 1

r is a row with length k and Vx E r : x E R}

•
We say that k+I nodes {r(O), r(I), r(2),"" r(k)} are traversed by the path from node
r(O) to node r(k). In G1, ((a; b), (b; c)) is a path oflength 2 from node a to node c; it
traverses the nodes a, band c. A path from anode to itself is called a cycle.

A tree is a graph with certain properties. It is a rooted digraph containing a
distinguished node, the root, that does not have a predecessor. Unlike the root node,
every other node of a tree has exactly one predecessor. Thus, a tree does not have
cycles. In other words, there is no path in which the same node occurs twice.
Following Das (l 992, pp.27-28) the forma! definition that captures these specific
properties of a graph is:

Definition 5.18: A graph as a tree

D
A graph Gis a tree{::::} Gis a rooted directed graph with a structure (S; R):

Vx ES: Vy E S:exactly one path exists

•
TRR denotes a tree with root R. Anode adjacent to Ris called a child of R. Each child
of R, say x, is the root of a subtree induced by the set of nodes reachable from x. TR,
is also a tree with root x, hence x rnay have children too. The children of x and these
children's children, and so forth, are called the descendants of x. The height of a tree is

124

UDl!'!U?5 DECiSJ(JV rwl J;S AND PRO!!)(, "1 ~ ,; (

the length of the path in the tree. ln thi:-: chapter we only consider
balanced trees: the subtrees of a node all have equal The ol a not1e is
the number of its children. A tree is t·ary if the of it-; nodcs is at most t. The
depth of a node x in a !ree is the length of a path from root R 10 the node: d(R.x).
When we represent the DT Abstraci as a (binary) tree, we ohtain the following
notation:

O; Abstract);

((Condition Subject O; Abstract);

((Condition Subject O; Abstract);

""'"rum Subject I; A)),

l)n.mr;rnn Subject l; H)),

Subject l; C)).

((Condition Subject 1; A); (Condition Subject 2; D)),

((Condition Subject I; A); (Condition Subject 2; E)),

((Crmdition Subject l; B); (Condition 2; D) J.

Subject 1; B); (Condition Subject 2; E)),

I; C); Subject 2; D)),

2; E)).

((Condition Subject 2; D); (Act ion l; X)),

Subject 2;E); (Action Subject I;-))

TRr condition Suhif'Ct o: Abstrocl) is a set of orde red pairs. Each of thcrn represents a branch
of the tree. fü1ch ordered pair itself is cornposed of two ordered pairs which represent
the nodes of a branch. Thus, anode is an ordered pair. The first co-ordinale is a condî·
tion subject and the second co-ordinate is the associated alternatîve. As a DT does not
contain a root node, wc have added an ordered (Condition O:

that represents a root node. TR(Collllitiou Subje< 1 o: !ifotmct) indeed
if, for every DR of the DT. the tree contains exactly one path that contains the sarnc
knowledge as the DR. This implies that not all paths possible in the tree are allowed.
For instance, an illicit path is:

/((Condition Subject l; A); (Condition Subject 2; D)). \

\((Condition Subject 2; D); (Acrion Subject l: /

To check whether reflects the rules of RL. we first have to define the set of
paths of a certain tree without the root node:

125

CHAPTER5 DEC/SION TABLES AND PROLOG AS A CONCEPTUAL MODELUNG LANGVAGE FOR FUNCTJONAL OBJECT·lYPES

Deflnition 5.19: A tree without a root

PSTRn,",-mot = {P' 1 Pis a path of length kin TRRoot where kis the number of conditions

andactionsandP' P- (((x;root);(y;z)))}

•
We had to remove the root node from the paths, because RL does not contain the root
node either. Now, we can match RL(Abstract) and T~ Condition subject o; Abstract)·

VDR E RL(Abstract) exactly one path P E PSrR AbanurAbstract exists such that

DR = {x, y, ... , e} and P {(x; y), (y; z), ... , (a; b), (b; e)}

Note that a DR is a set of traversed nodes of a path. When RL(DT) is the ruleset of a
table named DT and TRvr represents the tree structure underlying the ruleset, we can
define exhaustiveness and exclusiveness as follows:

Deflnition 5.20: Exhaustiveness

D
TR is exhaustive ~ 'v'TR(es. CA l: TRc es. CA) is a tree of height 1 in TR

(eS0 ;DT) " 1k " 1k (CS0 ; DT)

•

and i E [O,.", cnum-il and k E [O, .. " N;] where

N; is the number of alternatives of c, and

U(CA;+i,k· I (CS;+1; CA1+i,k') is a child of (CS;; CA,k)} = CDi+l,J

where j denotes the relevant domain of es,+ 1

Deflnition 5.21: Exclusiveness

If A is a set the elements of which are sets:
D

n A <:::> {x 1 x E A; and x E Aj : A, E A and A j E A and A, * Aj} and
D

TR is exclusive ~ VTR(es. CA l : TR(es . CA) is a tree of height 1 in TR
(CS0 ;DT) · '' •k '' •k (eS,,;DT)

andi [0, ... ,Cnum-iJandk [O" .. ,N;]where

N, is the number of alternatives of C; and

n{CA;.,. 1,k' l(CS;.,_1; CA;+1,k') is achild of (CS;; CA,k)} = 0

•
As Figure 5.4 displays, these tree-based definitions describe exhaustiveness and
exclusiveness by focusing on the subtrees of height 1 discernible in a DT. Because

126-

CHAPTER5 DEC/SJON TABLESAlllD PROLOG ASA CONCEPTUAL MODELLING LANGUAGE POR FUNCTJONAL OB}EC1'..TYPES

actions do not have to be checked on exhaustiveness and exclusiveness, subtrees that
have nodes with a depth >Cnum-1 as their roots are excluded. To ensure
exhaustiveness, the union of the second co-ordinates of the children of each of the
trees should be equal to the relevant domain of the relevant condition. Note that
conditions can have several domains due to conceptual interaction. The definition of
exhaustiveness denotes a domain of one condition through j. Since both definitions
operate upon the subtrees of a DT. they also account for flexible classifications of
conditions. To ensure exclusiveness, the second co-ordinates of the children (the
condition alternatives) of each of the trees should be disjoint.

trees to be checked on exhaustiveness and cxclusiveness

Figure 5.4: Trees of a Decision Table with Height 1

Checking exhaustiveness and exclusiveness, we have to deal with 'don't care' values,
AND- and OR-statements, negations and ELSE-statements appearing as condition
alternatives. A 'don't care' value in CS;counts for ni condition alternatives CAik under
CA;.Jj where CA;.1J is the parent of the condition alternatives. For this reason, a 'don't
care' must always appear as the only condition alternative that, on its own, takes care
of exhaustiveness and exclusiveness! The arguments of an AND- and an OR
statement must be treated as separate condition alternatives. A negation and an ELSE
statement are equivalent to all remaining, not yet represented, alternatives permitted in

127 -

CIM1'!ER5 DEC/SION 1/fBLESAND PROLOfi ASA CONCEP1'UAL MODELUNG LANGl!AGE FOR FUNCT/ONAL OBJECT-TYPES

the actual subtree. There are, however, subtle differences. A negation implies that a
condition subject has exactly two condition alternatives, the negation itself and its
antonym. Conversely, an ELSE-statement indicates that a condition subjeet has at
least two alternatives.

Exhaustiveness and exclusiveness are essential eharaeteristies of a DT. Through
these constraints many problems are prevented. Think, for instanee, of redundant and
overlapping DR's and inconsistencies (Jones, 1991, pp.177-180; Montalbano, 1974,
pp.80-91). These problems can completely devaluate the potentials of DT's.

Applying the tree-based definitions to the DT of Figure 5.2, we will see that the
union of condition alternatives k and lof C S2 should be equal to CD2 and that the
cross-section of these alternatives should be empty. In the same way, the union of
condition alternatives rand s of CS2 should be equal to CD2 and these alternatives
should be disjoint. The tree-definitions do not demand that condition alternatives of
the same condition subjects, but belonging to different trees, should be involved in the
verification process for exhaustiveness and exclusiveness. They exclude the
possibility of combining a condition alternative of one (sub-)tree with a condition
alternative that belongs to another subtree. Condition alternative a of C Si. for
instance, cannot be combined with r or sof CS2 . What is conceptually impossible is
now accounted for.

Due to conceptual interaction, we must adapt the definitions of C, CA and CD.

Definition 5.22: Adapted definition of conditions

C = { C1 [l ~ i ~ n and where n is the number of conditions and each C; is an

ordered pair that consists of a condition subject CS; and

a set of sets of condition alternatives CA;}

•
Applying the definition of C to the DT of Figure 5 .2, we may get this result:

C= {(CS1; {{a, b}}), (CS2 ; {{k, l}, {r, s}}), (CS3 ; {_,{y, not y}})}

Using the numerical indices, we obtain:

C1 = (CS1; {{a, b}})

C2 = (CS2 ; {{k, /}, {r, s}})

C3 =(CS3 ;{_,{y,not y)})

The second co-ordinate of every ordered pair is now a set the elements of which are
sets of condition alternatives:

128 -

C!f11PT1:'1<5

Definition 5.23: Adapted definition of condition alternatives

CA {CA1 1iE[l, .. " l and where each CA; = 1 j E [J, · ·, 511"m]}

is the number of a set of condition alternatives of condition i

where each CAu Ik E [!,..., 11;]}

n; is the number of condition alternatives of condition i of set}}

•
Applying the definition of CA to the DT of Figure

CA = {{{a, b}}, {{k, {r. s }}, {{_ }, not y}}}

Using the numerical indices, we obtain:

CA2 = {{k, /},{r. s}}

= {r, s}

CA221 = r

we obtain:

Definition 5.24: Adapted definition of the do main of a condition

CD= {CD; 1 i E [l, ... , Crwml and each CD1 {CD1i 1 j E [1. ... , D,wm]}

where Dnum is the number of the dornain of condition i}

•
Applying the definition of CD to the DT of

CD= {{{a, b }}, {[b" .. , tl}, {{p. q. r}. {x, y,

Using the numerical indices. we obtain:

CD3 = {{p, q. r), {x, y,

CD31 {p. q. r}

5.2. we obtain:

We should also adapt the definitions of SPACE(C). If we calculate the Canesian
product accounting for every alternative of CS2 , SPACE(C) will become very large.
The calculation of SP ACE(CJ also problems in this case, because impossible
combinations would be generated: not all colours apply to all types of fruit. Note that
conceptual interaction can extend to more than two conditions. So conceptual

129 -

CHAPTE!i5 DJ::CJS!ON tABlES AND PIWLOG AS A CONCEPTUAL MODELUNG l.ANGUAGE FOR FUNCTIONAL OBJECT~'lYPES

interaction leads to inefficient configurations of SP ACE(C) when the terminology and
definitions of the Codasyl Decision Table Task Group are maintained. Tuis causes
differences between SPACE(C) and DOM(T) and thus leads to incomplete DT's. To
solve the completeness problem Vanthienen (1988, p.918) suggests incorporating
'impossible' TCE's in SPACE(C) and denoting them in a special way. We think,
however, that this solution pays too little attention to conceptual interaction and can
lead to unnecessarily large DT's. So the definition of SPACE(C) has to be modified
too, in the sense that the Cartesian product operates only upon condition alternatives
whose combination is pernütted. These combinations can be detected in the tree
structure of a DT. Then, for the DT ofFigure 5.2, we obtain:

SPACE(C) = {{a, k, p}, {a, k, q}. {a, k, r}, {a, l, p}, {a, l, q}, {a, l, r},

{b, r, y}, {b, r, not y}, {b, s, y}, {b, s, not y}}

Decision Table Systems
For most applications a single DT is not sufficient. In the majority of cases we need a
DT-system: a set of at least two DT's in which each DT is linked to another table
belonging to the same system. We can distinguish two types of links. The first type of
link is established by the phenomenon that a condition subject with at least one of its
alternatives of one DT occurs as an action subject with corresponding action
alternatives in another DT. The first table is then called a head table, the second table
is called a condition subtable. The second type of link is established by the
phenomenon that an action subject and one of its alternatives of one DT occurs in the
same form in another tab Ie. The first table again is ealled a he ad table, the second
table is now called an action subtable. Usually, the aetion subject in question, in this
action subtable, is further specified by means of other action subjects. Figure 5.5
displays an example of a DT-system containing a head table, a condition subtable and
an action subtable.

A B c
C2 Condition Subject 2 D E D E D E

A 1 Action Subject J x x x
Rl R2 R3 R4 R5 R6

(A) A Head Table

- 130 -

CHAPILR5 DLCJSJUN TABU;S AND PRO LOG AS A COlVCEl'TUA!, MODEU !NG U'VGUA<.;J; FOR Flf1'1CTION11!, f)IJ]ECF-J'YPES

Condition Subject 1

Cl Condition Subject 1.1

C2 Condition Subject l .2 p

Al Condition Subject l A B B A

Rl R2 R3 R4

(B) A Condition Subtable

Action Subject 1

Cl Condition Subject 3 s T

C2 Condition Subject 2 v w

Al Action Subject 1.1 H

A2 Action Subject 1.2

A3 Action Subject 1

(C) An Action Subtable

Figure 5.5: A Decision Table System

Before formally defining a DT-system we first describe, as an example, the head table
Abstract and the condition subtable Condition Subject 1 as a set of DR's in which each
DR is a function:

RL(Abstract) = {DR1, DR2 , DR3 , DR4 , DR5 , DRr,} where:

DR1 = {(Condition Subject l; A), (Condition Subject 2; D), (Action Subject l; X)}

DR2 = {(Condition Subject l; A), (Condition Subject 2; E), (Action Subject l; -)}

DR3 = {(Condition Subject l; B), (Condition Subject 2; D), (Action Subject l; -)}

DR4 ={(Condition Su~ject I; B), (Condition Subject 2; E), (Action Subject I; X)}

DR5 ={(Condition Subject l; C), (Condition Subject 2; GJ, (Action Subject I; X)}

DR6 = {(Condition Subject I; C), (Condition Subject 2; F), (Action Subject 1; -) }

RL(Condition Subject 1) {DR1, DR2 , DR3, DR4 } where:

DR1 = {(Condition Subject 1.1; K), (Condition Subject 1. 2; P), (Condition Subject 1; A)}

DR2 = {(Condition Subject L 1; K), (Condition Subject 1. 2; Q), {Condition Subject l; B)}

131

CHAP'f'ER 5 DEC/SION 1'ABLES AND PRO LOG AS A CONCEPJVAL"-WDELL!NG LANGIJAGE FOR FUNCl!Olv'AL OH]!:. CT-TYPES

DR3 {(Condition Sul~ject 1.1: L), (Condition Subject 1.2; P), (Condition Subject 1; B)}

DR4 {(Condition Subject 1.1; L), (Condition Subject 1. 2; Q), (Condition Subject 1; A)}

To specify the link between the head table and the condition subtable, we also need an
identical function h1:

h1 {(Condition Subject l; Condition Subject 1)}

Now, we can formally desctibe the link using the definition of a (bilateral) connection
Chapter 3 fora formal description).

h1 connects RL(Condition Subject l) with RL(Abstract)

The connection states that the restriction of the sets of RL(Condition Subject 1) to
dom(h1) is a subset of the restriction of the sets of RL(Abstract). Because it is not
necessary that every (action) alternative of the condition subtable occurs as a
condition alternative in the head table, as Figure 5.5 illustrates, we deliberately did not
define the connection as a pure bilateral connection. Whereas the head table should
contain all the alternatives of the relevant condition, the subtable does not have to
contain all the alternatives. Since exhaustiveness constraints only apply to conditions,
the exhaustiveness of the condition subtable is not endangered by the omission of one
or more alternatives.

We can describe the link between a head table and an action subtable analogously.
The notation of the action subtable, then, is as follows:

RL(Action Subject 1) = { DR1, DR2 , DR3 }

DR1 {(Condition Subject 3; S), (Condition Subject 2; V), (Action Subject L l; H),

(Action Subject 1.2; M), (Action Subject l; X)}

DR2 = {(Condition Subject 3; S), (Condition Subject 2; W), (Action Subject 1. l; /),

(Action Subject l. 2; N), (Action Subject l; X)}

DR3 {(Condition Subject 3; T), (Condition Subject 2;-), (Action Subject 1.1; J),

(Action Subject 1. 2; 0), (Action Subject l; X)}

To describe the relation between the head table and the action subtable, we again need
an identical function. We call this function h2 and define it as follows:

lti = {(Action Subject l; Action Subject 1)}

Action subject 1 and its alternative X occur in the action subtablc. They should also be
present in the head table with the usual difference that the head table contains more
alternatives related to the same action-subject. To ensure this, we make use of a
connection:

- 132 -

CO/VCEP'/VAL M(JDfil !NG J.tlNGf.f/lGl::. HJR H':W'l10NI!.

h2 connects RL(Action Subject 1) with RL(Abstract)

The connection states that the restriction of the sets of RL(Actio11 Subject]) to
dom(h2) is a subset of the restriction of the sets of RL(Abstract). Here, we did not use
the bilateral connection either. It is true that the action alternative of the action
subtable must occur in the head table. but the head table usually contains more action
alternatives. Instead the action subtable usually contains other action subjects (l. l and
1.2 in our example) that further the relevant action subjects.
~ot everyone would incorporate the action subject and an associated alternative yet

to be specified, in the action subtable. Many designers of an action subtable would
leave out action subject 1 of our example and only incorporate action subject 1.1 and
action 1.2. We think, however, that such an approach is not recornmendable.
When the action subject and the associated alternative are excluded from the action
subtable, it is left to the analyst studying the DT structure to see the link between the
head table and action subtable. such a link requires extra knowledge. In this
way not the surveyability of the DT structure at hand is potentially reduced, but
we also risk the action subtable less understandable. ln addition. ornitting
an action subject and the associated alternatives deprives us of the possibility to
formally describe the link between the head table and the subtable in a neat way. Note
that in DBS links between relations are assessed by primary and foreign keys
following the same principle as here. As we are working predorninantly at the
knowledge level at which no distinction exists between Al- and DB-systems, this
observation the idea that omitting an action subject and an alternative to
be specified, is not advisable.

When we apply the terminology of 3 to DT-systems we can easily see that
the domain of the knowledge schema is <l set of goals. The conditions and actions
needed to model these goals form the range of the knowledge schema. The following
set-valued function describes the knowledge schema of our example system:

Knowledge Schema(Ahstract) =

{(Abstract

\Condition

(Action Subject l

1, Condition 2,

Action

; {Condition Suhiect 1.1, Condition Subject J. 2,

Condition Su~ject l}),

; {Condition Subject 3, Condition Subject 2,

Action Subject 1.1,

Action Su~ject l. 2, Action Subject 1})}

The DT-system a function over the domain of the Knowledge Schema(Abs1ract).
The range of the function is a set of DT's or knowledge tables. Calling this function
KS, we obtain:

- 133

CH4PTER5 DECISION TAB LES AND PRO LOG AS A CONCEPTUAL MODEUING LANGVAGE FOR FUNCTJONAL OB]J::'CT TYPES

KS(Abstract) = RL(Abstract)

KS(Condition Subject 1) = RL(Condition Subject 1)

KS(Action Subject 1) = RL(Action Subject 1)

KS -and thus our DT-system- is a knowledge state. The DT's or knowledge tables are
linked by means of eonneetions using the attribute-transfonnations h1 and h2•

Figure 5.6: Two Connections in a DT-system

Regarding the integration of AI and DBT, it is possible to derive from the previous
formal definitions, that DT's and DT-systems have much in common with DBS. The
definitions reveal that a DT can be viewed as a relation (or table) of a DBS. A relation
is defined by De Broek (1989, p.2) as follows:

Definition 5.25: Table

If A is a set then:
D

T is a table over A {::? T is a set and

'v' t E T : t is a function over A

•
Set A eontains the fields of a relation. In DT-terminology set A corresponds with the
stub of a DT. A tuple tof a relation corresponds with a DR of a DT. The conditions
form the independent fields. Together, they compose the primary key of the relation.
The aetions of a DT are the dependent fields of a relation. From this, we can conelude
that DT's comply with the definition of a relation. Salah (1986) and Vanthienen
(1988) also point to the possibility of viewing a DT as a DB-relation.

Besides exhaustiveness and exclusiveness, the most essential characteristics of a
DT, imply that a DT is a relation that meets several types of DB-constraints. To a
large extent. they take care of the fulfilment of the attribute constraints (constraints
that should be met by the values of the particular attributes of a relation), the tuple
constraints (constraints that should be met by eombinations of attribute values of each

- 134

CJIAPTER5 DEC/SJON 1 A.HU:.'SAND PRO/_OG AS A COi\ICJ:YJ'U4l l140DF!_UNG L4NGUACR POR FUNC TJONAL OB]FC:i~ TVNS

tuple of a relation) and the table constraints (constraints that should be met by
combinations of tuples of one relation). For instance, exhaustiveness and
exclusiveness guarantee that the conditions of a DT meet the table constraint of
unique identification (see Chapter 3). Every rule of a DT is unique, otherwise a table
is nota DT! Another example of a table constraint that is automatically met is, that a
relation is not allowed to be cyclic. Because a DT is a tree, cycles are excluded.

The links between the relations of a DB-system can be assessed by means of
connections in a similar way as is done to asses the links between DT's in a DT
system. The different types of connections (see Chapter 3) make it possible to assess
different types of links between relations. Remember that connections are formalised
by subset requirements: the foreign key of a relation of a DB-system, for instance, is
an example of a subset requirement. Note that a foreign key is equivalent to a
condition occurring as an action in a condition subtable.

Usually, DT's are associated with expert systems. The possibîhty of viewing a DT
and a DT-system as a relation and as a system of relations respectively accentuate that
DT's are representation techniques approaching the knowledge level. As DT's are
abstractions of mathematica! logic, this is not surprising.

5.2.2 Functional Object-types and Decision Tables

In this sectîon we analyse the possibilities of representing, reconstructing, validating
and simulating functional object-types using DT's. For this purpose, we should bear in
mind that a discussion about functional object-types can be reduced to a discussion
about functional equivalence.

Representation
We return to Figure 5.2 displaying a DT-format of a tree introduced in Chapter 4. We
used this tree to clarify the three mcchanisms underlying functional equivalence: the
conditional relevance of conditions, conceptual interaction and the variation of values
of conditions falling within a goal-eonstructed category. DR4 and DR5 illustrate the
mechanism of new conditions becoming important under certain circumstances. If CS1

attains a value that belongs to b and if C52 takes a value that belongs to 5, it is
important to know the value of CS3• However. if CS1 attains a value belonging to a,
there is no reason to consider the value of CS3. Conceptual interaction, the second
mechanism of functional equivalence, also occurs in the DT of Figure 5.2. It shows
the mutual influence of CS1 and CS2 on each other's categ01isations. The classification
of condition CS2 is k and l if CS1 is a. However, if CS 1 is b, the classification is rand
s. Also the third mechanism occurs. Different values, say s 1 and s2 for condition
subject C52, do not interfere with the realisation of goal 1 if CS1 is b, because both
values are limited to the goal-constructed category s.

From the previous, it is clear that the DR's of a DT form a disjunction of conjunct
sets able to represent functional equivalence. However, DT's also have disadvantages
in the representational realm. For instance, Vanthienen points to the limitations of
DT's by stating that the representation of iterations in DT's do not lead to a better

- 135 -

CHAPTER5 DEC/SJON TABLl::."'SAND PRO!.OGASA CONCEPTUAL A!ODELLING LANGUAGE POR FU1VCTIONAL OBJECT~'JTPES

surveyability than eonventional structuring techniques (Vanthienen, 1988, p.916).
This does not imply that it is not possible to represent iterations, recursions or other
repeat struetures in a DT. De Gelder & Lucardie (1993) showed the possibility of
modelling a functional object-type Steel structure connection in a single DT using a
(rather complex) repeat structure. However, they also experienced the difficulties of
incorporating repeat-structures into DT's.

Reconstruction
Besides observing that a DT is capable of representing functional equivalence, it is
important to answer the question whether the systematic design of a DT accounts for
the reconstruction of functional equivalence. The establishment of the stub of a DT is
an essential step in the design of a DT. The stub is structured by first assessing a goal
(an action subject) and then finding a relevant condition subject that describes part of
the circumstances under which the goal will be realised. This condition subject must
be classified in such a way that its alternatives are exclusive and exhaustive. Then a
second condition subject is incorporated and classified into alternatives. When
conditions are interdependent, this normally leads to a re-categorisation of the first
condition subject. This re-categorisation also influences the categorisation of the
second condition subject. When a third condition subject is introduced, a re
categorisation of both former condition subjects may prove to be necessary. So it
appears that in the design of a DT the modelling of conceptual interaction is explicitly
accounted for. Since a condition subject of a DT need not be effective under all
circumstances, conditional relevance is also guaranteed. This indicates that
somewhere in the DT 'don't cares' are necessary. When too many condition subjects
with 'don't care' values appear in a DT or when the DT becomes too large, one should
consider redesigning the DT and developing new (sub-)tables. As the condition
categorîes of a DT are goal-constructed, the final mechanism of functional
equivalence is also aceounted for in the design of the DT. We can therefore conclude
that the reconstruction of DT's is goal-oricnted and takes care of functional
equivalence.

Validation
DT's offer extensive opportumtles to validate a functional object-type on
completeness, consistency and correctness. We previously defined completeness as
DOM(T) = SPACE(C) and incornpleteness as DOM(T) c SPACE(C). However,
our definition assessing the cxhaustiveness of a tree automatically accounts for
completeness. This is a consequence of the fact that the union of all condition
alternatives of every subtree with height 1 starting from a (root-)node that is not an
alternative of the last condition subject, should be equivalent to the relevant dornain of
the condition subject. The DT-format permits easy inspection on completeness: we
only have to verify whether all the alternatives are present. We can also have it
checked by a computer program provided that the domains of the condition subjects
are defined adequately (see Chapter 6).

In a DT two types of inconsistencies can occur. The first type refers to the situation
that identical TCE's have different TAE's. This kind of inconsistency, also called

136-

DEC!SlO!\/ 1;1BLES AN!J PROLOG AS A CONCFPTl~-4.L MO!JHUJNG L4NGUr1GE FOR FUNC/'IONAL OBJhC/' 'JYPl!S

intra-column inconsistency, can easily be detected by a computer program viewing a
DT as a function. It is taken care of by our exclusiveness definition which states that
every branch is unique. The second type, inter-column inconsistency, pertains to the
situation that one or more TCE's are impossible. This type is harder to detect by a
program and usually requires inspection of the DT by a human expert. As to this, it is
worth noting that the DT-format considerably facilitates the visual inspection of inter
column inconsistency. The easy-reference presentation of complex logic in a DT
helps to correct the knowledge and supports the removal of inconsistencies for
this topic also Montalbano, 1974, pp.85-87).

Finally, we must be able to verify correctness. A DT which is complete and which
does not contain any inconsistencies is not by definition correct. Checking correctness
using a DT simply comes down to investigating whether every individual DR is
correct (Verhelst, 1980, p.18).

Simulation
One can perform a simulation of functional object-types represented in a DT by
starting at a (action subject) in a DT and tracing the condition subjects and their
alternatives in order of appearance. What one actually does is traversing a path of the
tree underlying a DT. One can also simulate easily what happens under varying
circumstances by several paths of a tree. In this way what-if analyses can
be conducted. In case of a DT-system, one needs to consult various condition and
action subtables. In these rabies the same procedure can be performed repeatedly so
that a DT-system allows simulations by hand. The situation changes somewhat when
one has to deal with non-trivia! DT-systems that contain many layers of (complex)
tables. Soon, one will come across a great number of practical dîfficulties when
attempting to navigate through the tables of the system. Then, a clear insight in the
structure of the DT-system is preconditional to being able to assess efficiently the
knowledge contained in the DT-system.

5.2.3 Conclusion

To analyse the suitability of DT's as a conceptual modelling language for functional
object-types, we formally defined DT's as tree structures. Though the definitions
presented here deviate from those provided in the Codasyl Report, it is not really
unusual to view DT's as tree structures. Tree structures are of fundamental importance
in any approach to formalising intelligent processes and have a multitude of
applications (Jones, 1991; Lew. 1985). Our tree-based definitions considerably
improve the formal assessment of exhaustiveness and exclusiveness which are the two
most basic characteristics of a DT.

Our analysis shows that to an important DT's are appropriate as a conceptual
modelling language for functional object-types. lt appears that DT's are capable of
representing functional object-types and that there is a close relationship between the
design ('.f DTs and the reconstruction of functional Because DT's vividly
show the combinations of conditions which have been anticipated (Metzner, 1977,

137

CHAPTER5 DEl1SJON TAB LES A.1\JIJ PRO LOG AS A CONCEPTUAL MODELLING LANGUAGE FOR FUNCTJONAL OB]ECT-1YPES

p.15), they are also suitable for validation on completeness, consistency and
correctness. Finally, the goal-oriented, close and precise grouping of knowledge
avoids error-prone (What-if)-simulations. However, if many levels of DT's are
involved in the simulation process and one needs to traverse paths through these
levels, simulation by hand soon becomes intractable.

Besides these potentials which are specific to functional object-types, we have
ascertained that exhaustiveness and exclusiveness enable us to view a DT and a DT
system as a relation and as a system of relations of a DB-system, meeting respectively
several types of DB-constraints. Tuis is caused by the fact that a DT is a tree structure
and tree structures comply by definition with, for instance. tuple constraints (see Sub
section 5.2.l). Thus, a DT may be viewed as a relation which complies additional
requirements. As DT's are normally associated with expert systems, this view shows
the Jack offundamental differences between AI- and DBT-systems. This strengthens
the argument that a DT is a symbol level technique that resides close to the knowledge
level. At the knowledge level no distinction exists between AI- and DBT-systems.

Research shows that DT's in many applications outperform other modelling
techniques. Lafleur (1971) compared DT's with flowcharts and concluded that DT's
have distinct advantages over them. Jones (1991) found benefits of DT's relative to
truth tables and Veitch-Kamaugh maps (K-maps). Van Der Smagt & Lucardie (1991)
discussed a number of advantages of DT's over decision plan nets. Palvia & Gordon
(1992) observed the advantages ofDT's relative to trees and formulas when applied to
the analysis of decision problems. The majority of advantages refer to the clear
representation of knowledge and (the speed of) checking knowledge for completeness,
consistency and correctness). In addition, the fact that we can interpret conditions of
DT's as dimensions, factors, causes, causa! factors, variables, parameters and so on,
and action subjects as goal dimensions from a diagnostic, an interpretation or a
monitoring field underlines the broad applicability of DT's. Therefore, it is not
surprising that they are used in almost every area of society.

However, DT's do still have drawbacks. For instance, modelling knowledge into
DT's remains difficult. Modelling knowledge requires a theory of knowledge,
intensive training and experience. In this thesis the theory of functional object-types is
proposed as a genera! approach to mitigating this problem to some extent. Other
drawbacks of DT's are:

1. DT's are not fully appropriate for functional object-types that require a
frequent use of recursions, iterations or other repeat structures. Also when
object-types are extremely simple, DT's are not very effective.

2. Simulation by hand, when dealing with functional o~ject-types, is possible,
but nota task which can be undertaken easily. DT's do not generale prototypes
that can facilitate simulation processes (Davis, 1988, p.1113).

3. DT's do not pro vide automated checking facilities (Davis, 1988, p.1113).
4. Drawing DT's is a very time-consuming and difficult process. As long as no

advanced graphical tools are available to support the complex drawing of
DT's, the acceptation of DT's will be retarded.

138

C11APTER5 DHUS!ON '1:4lJLi:S AND J'lfOLOr; AS il CO/\'CEPTUA!. MODFLLJNG JANGUA<;E FOR FUNCT/ONAL OBjl:.'Cl~ !YPES

The third section searches a solution for the first drawback. The remaining problems
are dealt with in the next chapter.

5.3 PRO LOG

Under the influence of Kowalski's ideas on logic and theorem proving, Prolog was
designed around 1970 by A. Colmerauer of the University of Marseilles. lnitially the
use of Prolog was limited, but during the last ten years the number of Prolog
applications has been growing rapidly due to the construction of efficient compilers
and improved programming environments. Another explanatory factor of Prolog's
growing popularity, is that it is a programming language of a conceptual nature. This
is not a coincidence since Prolog has been developed from the idea that a good
programming language is a powerful conceptual tool for organising, expressing,
communicating and executing knowledge.

Why is it that we can regard Prolog as a conceptual language? One of the reasons is
revealed by the name. Prolog is an abbreviation of PROgramming in LOGic. Prolog
allows users to program by description. We can read Prolog programs of a good style
almost always as logica] statements. However, an adequate use of Prolog as a
conceptual modelling language is not a straightforward matter. In this respect authors
such as Das (1992), Kowalski (1979;1984;1985) and Lloyd (1984) emphasise the
importance of a proper insight in the forma! background of Prolog in Logic
Programming.

In this section we have a particular interest in Prolog as a conceptual language for
functional object-types. A related point of interest is how Prolog performs in
comparison with DT's. To find answers to these questions, we first discuss Prolog's
forma! background in Logic Programming (Section 5.3.1). Then, Prolog's potentials
as a conceptual language for functional object-types are reviewed (Section 5.3.2).
Finally, we formulate a number of conclusions regarding Prolog as a conceptual
language and Prolog's relation to DT's and round off with a short discussion (Section
5.3.3).

5.3.1 Formal Background

Logic Programming is based on the idea that instead of learning human thinking in
terms of operations of the computer, the computer should learn to execute instructions
that are easy for us to provide. Logic Programming is highly declarative and in this
respect it has strong relations with its sister approach functional programming. Logic
Programming began in the early 70s as an outgrowth of automatic theorem proving
and artificial intelligence. The development of Logic Programming is governed by the
fundamental idea that logic is not only a specification language, but can also be used
as a programming language. In the early 70s this idea was quite revolutionary,
because until 1972, logic was only used as a specification (or declarative) language in
computer science. Chapter 3 demonstrated this declarative use by specifying a

139 -

C'HAPTER5 DEOSION TABLES AND PROLOGASA CONCEP11JALMODELLlf'lG' LANGUAGE POR Fl!NCTlOlVA.L OBJECT-TYPES

complete knowledge universe through mathematica) logic. Logic as a specification
and a programming language is expressed by the equation of Kowalski (1979):

Figure 5.7: The Logic Programming Paradigm

Figure 5.7 shows that a Logic Programming system bas two components: a logic
component and a control component. The distinction of a logic part and a control part
disentangles what the computer knows from how the computer uses it. Using
mathematica! logic, the user develops the logic component that contains the
knowledge. In functional programming the logic component is specified by function
declarations (Hudak, 1989; Kowalski, 1985; Turner, 1985); in Prolog it is defined by
logic expressions.
The control component determines the way this knowledge can be used to arrivc at a
solution. The two components of a Iogic program correspond with two types of
semantics a logic program can have: declarative semantics and procedural semantics.
As both types of semantics help to evaluate Prolog's potentials as a conceptual
modelling language, we discuss each of them thoroughly, before considering Prolog.

The Declarative semantics of Logic Programs: First Order Predicate Logic (FOPL)
Mathematica! logic, particularly first order predicate logic (FOPL), is essential in a
logic programming system. FOPL is a part of mathematica! logic. Another part of
mathematica! logic is propositional logic. In propositional logic, knowledge is
specified by indivisible propositions which are true or false. The expressive power of
propositional logic is therefore limited. FOPL overcomes these limitations by logic
notations such as terms, predicates and quantifiers.

Declarative semantics of FOPL refers to a syntactic aspect and a semantic aspect.
The syntactic aspect is concerned with well-formed formulas admitted by the
grammar as well as deeper proof-theoretic issues. The semantic aspect is concemed
with the meanings attached to symbols in well-formed formulas.

To clarify the syntactic aspect, we start with the definition of an alphabet. An
alphabet consists of seven classes of symbols:

Definition 5.30: An alphabet

(a) variables
(b) constants

- 140 -

CH11PTER5 Dt:CJSION l/.lfJl.l:'SAiVD PRüLOG AS A COJVC!:'PTUAL MOD!:'LUNG LANGUAGE FOR IL'N(lïONAL O!lji:CT-TYPES

(c) functions
(d) predicates
(e) connectives
(f) quantifiers

punctuation symbols

•
Classes (a) to (d) may vary from alphabet to alphabet, while classes (e) to (g) are the
same for every alp ha bet. The classes (b) and (c) may be empty for an alphabet.
Variables are denoted by the letters x, y, z, x1, y1, z1. Constants are denoted by
a, b, c. a1, b1, c1• Functions of various arities >Û are denoted by the letters

, h", f{', g!', . Predicates of various aritîes 20 are denoted by the letters
P", Q", R11

, P;'. Qf, R;'. The connectives are:

-, (negation)

/\. (conjunction)

v (disjunction)

-7 (implication)

H (bi implication)

The quantifiers are:

V (Universa! Quantifier: Vx means for all x)

(Existential Quantifier: 3x means there exists an x)

The scope or range in Vx(F) and in is F. A variable is bounded if it occurs
within the scope of a quantifier, otherwise it is a free variable. In the formula
VxP(x, A Q(x) the first two occurrences of x are bound, while the third occun-ence
is free. A formula is closed if it contains no free variables.

The punctuation symbols consist of commas and parentheses. To avoid cluttering of
formulas with brackets the following precedence hierarchy wil! be used:

v

/\.

Now, we can define terms.

- 141 -

C!IAPTER5 DEC/SION TABLES.AND PROLOG AS A CONCEPTUAL MODELUNG LAfilGVAGE FOR FUNCT!ONAL OB]ECT~TYPES

Definition 5.31: Terms

(a) A variable is a term.
(b) A constant is a term.
(c) If f is an n-ary function and t1, ••• , tn are terms then f (t1 , •.• , tn) is a te1m .

•
A first order language consists of the set of all well-formed formulas constructed from
the symbols of the alphabet. A well-formed formula is defined as follows:

Definition 5.32: Well-formedfonnula

(a) If P is an n-ary predicate and t1, ••• , tn are terms then P(t1, •• • , t
11

) is an atomie
formula (or atom). An atomie formula or its negation, is also called a literal.

(b) If Fis a formula and x is a variable then '<:/x(F) and 3x(F) are formulas.
(c) If F and Gare formulas then -.F, F v G, FA G, F ~ G, F HG are formulas .

•
Examples of well-formed formulas are:

P(a) A Vx(P(x)---+ ::Jy(P(y) /\ Q(x, y)))
Q(a) A V'x(Q(x)---+ Q(R(x)))

Definitions 5.30 to 5.32 covered the syntactic aspect. It will be clear that a system of
well-formed formulas based upon these definitions is meaningless, since we cannot
determine the truth-values of the formulas. Therefore, it is necessary to attach some
meaning to each of the symbols of the formulas. This brings us to the semantic aspect
of FOPL. The various quantifiers, connectives and punctuation symbols have a fixed
meaning, but the meaning attached to variables, constants, functions and predicates
can vary. In other words, we have to interpret formulas. This requires a structure.

Definition 5.33: Structure

Stmcture S is a tuple of the following form:

(D, Ut : D" ~ D, }, {P;m : Dm ---+ {true, false}}). n and m 2 0. S has the following

properties:

(1) ~the domain of S, is a non-empty set of elements.

(2) {fl_: Dn ~ D} is a set of functions defined on D. n 2 0.

(3) {P;m : Dm ---+ {true, false}} is a non-empty set of predicates from Dm to the set

of truth values. m :::0: 0 .

•
- 142 -

CH!lPFtR.5 DECJSJON TABLESAND I'ROlIJG AS A CONCEPTUAL MODELLlNG IANGUAGE FOR FUNCrIONAL OH}l:"CT-TY!'i:S

The basic elements of a structure must be assigned to constants, function-symbols and
to predicate-symbols. However, when a (meaningless) set of formulas, a structure S
and the assignments mentioned are available, we still cannot assess the truth values of
the formulas as long as the occmTing variables are not assigned a value. Thus, the
interpretation of the formulas in a structure S boils down to:

(1) an assignment ofvariables ranging over D.
(2) an assignment of each individual constant to a fixed element of D and of an n

ary function with domain D11 and range D to eaeh n-ary function symbol of S.
(3) an evaluation whether a formula evaluates to true or false. This includes:

a. assignment to each n-ary predicate symbol of an n-ary relation in D
b. evaluation of the connectives in combination with formulas
c. evaluation of 3 in combination with formulas
d. evaluation of \;/ in combination with formulas

The forma! definition of an interpretation of a set of formulas in structure S under a
variable assignment v (notation: !;')is:

De.finition 5.35: lnterpretation

(1) /~ v(x,). Several variable assignments are possible within one strucrure.

(2) I,:(f['(t1,".,t11)) JI'U~(t1),""I;:(t11)) in which f;' is the function that is

associated in S with J;" (including constants) .

•
Finally, the tmth value of a formula in a structure under an interpretation and under a
variable assignment is assessed:

(1) 1i(P;m(t1, ••• ,t111)) P;11 U;,(t1), ••• ,I;'.(tm)): this means that an atom

P1m (t1,.", tm) is true in structure S under interpretation /~ and variable

assignment v if and only if Pt (J~ (t 1)"." !;~ J) is true.

(2) If the truth values of F and G are determined, the truth values of
F, F v G, F /\ G, F -t G, F HG are detennined according to the table

below:

- 143

CHAPTER 5 DEl1S/ON TABlES AND PRO LOG AS A CONCEPTUAL MODELLJNG LANGUAGE FOR FlWC110NAl OBJECT-n~PES

(3) 3x(F) is true under v if there is a v' which only differs in x from v, such that F
is true under v.

(4) Vx(F) is true under v if for every v' which only differs in x from v, it is true
that F is true under v.

To clarify the previous forrnal aspects of an interpretation, we revert toa simple well
forrned formula F:

F = 3x(P(x) ~ Q(x))

For the interpretation of F wc can make use of the strueture S and the variable
assignments v1 and v2:

(
{123, 214}, {Fireproof(l23) = True, Fireproof(214) False,)

S=
Fire resistant(l23) True, Fire resistant(214) False}

We can have the following interpretation and evaluation of the predicates Pand Q:

lv' (P(x)) = P(l: (x)) = Fireproof(123) = True and
1 1

1:
1
(Q(x)) = QU;, (x)) Fire resistant(123) = True

Under this interpretation and valuation v1 F is true. Under valuation v2 F is false,
because the predicates do not both evaluate to true:

I;'., (P(x)) = P(/;
2
(x)) Fireproof(214) True and

1;;~ (Q(x)) = Q(l;'.
2
(x)) Fire - resistant(214) = False

The truth value of a closed forrnula does not depend on the variable assignment. Note
that G is false with respect to S:

G = \fx(P(x) ~ Q(x))

At this point, we can introduce the concepts of model, satisfiability and logica!
consequence.

144 -

DECIS!ON TAB LES AND PRO IOC AS A CONCEPTU4T MODELLli\'G LANGUAGE FOR FUNCJWNAL OBJECT. TTPJ:S

Definition 5.36: Model

(1) A model of a closed formula is an interpretation under which the formula is
true.

•

If S is a set of closed formulas, then an interpretation 1 is a model for S if 1 is a
model for each formula of S .

In our previous example I;:, is a model of the closed formula F. !;'., is not a model of

F.

Defi.nition 5.37: Satisfiability of formulas

A set of formulas S is satisfiahle if S has a model. S is unsatisjïahle if it has no
models .

•
Definition 5.38: Logica[consequence

A closed formula Fis a logica/ consequence of a set formulas of S, if for every
interpretation of 1 of S, I is a model of S implies that I is a model of F.

•
So F is logical consequence of S if and only if S u {-,F} is unsatisfiable. Thus, in
genera!, the basic problem is to show that S u {-.F} is unsatisfiable and to assess F.
According to the definition this implies showing that every interpretation of S u {-.F}
is not a model. This is a considerable problem. However, it so happens that there is a
much smaller and more convenient class of interpretations being all that needs to
show unsatisfiability: the Herhrand lnteipretations.

Definition 5.39: llerbrand universe

Let L be a first order language2. The Herbrand Universe l]i is the set of all ground
terms (ground terms are terms that do not contain variables), which can be formed out
of the constants and functions appearing in L. In case, there are no constants, we add a
constant, a .

•

2 Afïrst order languc1ge consisb of the wcll~formed formubs of a first order theory, A jirst order theory consists of an
alphabcL a first order languagc, a set of axioms and a set ofinfcrence mies.

145 -

CRAPTER5 DEC!SION TABLESAND PROLOG ASA CONCEPTUAL MODELLJNG UNGUAGE FOR FWVCTIONAL OBJECT*m'ES

Definition 5.40: Herbrand basis

Let L be a first order language. The Herbrand Basis BL for Lis the set of all ground
atoms (ground atoms are atoms that do not contain variables), which can be formed by
using predicates from L with ground terms from U Las arguments .

•
Consider the formulas:

P(a) <r-

P(x) <r- Q(f(x), G(x))

R(y) <r-

the Herbrand Universe UL is:

{a, f(a), g(a), f(f(a)), f(g(a)), g(f(a)), g(g(a)), ... }

and the Herbrand Basis BL is:

{P(a), Q(a, a), R(a), P(f(a)), Q(a, f(a)), Q(f(a), a), Q(f(a), f(a)), R(f(a),."}

When we return to our example program:

Fireproof (123) <r- Fire - resistant(I23)

the Herbrand Universe UL is:

{123}

and the Herbrand Basis BL is:

{Fireproof(l23), Fire - resistant(l23)}

The reader can obtain more information about the Herbrand Universe and the
Herbrand Base in Lloyd's Foundations of Logic Programming (Lloyd, 1984) and in
Sterling's and Shapiro's The Art of Prolog (Sterling & Shapiro, 1986).

146 -

(:f-/Af'TU?5 DECt'>!ON JilBLES AND PRO LOG AS A CONCl:J>il~4L MODJ:LJJl\'C !.ANGU,Ud'. FO!l FWVCJIONAL UIJ/ECT-ITPES

Definition 5.41: llerbrand interpretation

Let L be a first order language. An interpretation for L is a Herbrand Interpretation if
the following conditions are satisfied:

(a) The domain of the interpretation is UL.

(b) Constants in L are assigned to themselves.

(c) If f is an n-ary function in L, the f is assigned to mapping from (U L Y' into
UL defined by (t1,"" t11) f(t 1,"" tn) .

•
Definition 5.42: Herbrand model

Let L be a first order language and Sa set of closed formulas of L. A Herbrand rnodel
for Sis a Herbrand Interpretation for L which is a model for S .

•
A good deal of the theory of logic programming is concemed only with clauses which
are a special kind of formulas, and for them, Herbrand lnterpretations suffice. If there
is a model then there is a Herbrand model.

The Procedural Semantics of Logic Programs: SLD-derivations
Until now, we discussed the declarative semantics of logica) formulas expressed in
FOPL. The declarative semantics helps us to ascertain whether a formula is a logica!
consequence of a set of formulas. An alrernative way to ascertain a logica!
consequence is to apply inference rules or deduction rules. A well-known example of
an inference mie is the resolution principle. This principle is a machine-oriented way
of viewing modus ponen.1' (from F and F ~ G follows G). The resolution principle
operates upon clauses:

Definition 5.43: Clause

A clause is a formula of the form:

v -.B1 v ... v-.B
12

)

where each A1,"., and B1" •• , B11 are atoms and where Vx1".Vx,. are all the

variables occurring in these atoms .

•
Because clauses are so common in Logic Programming, it is convenicnt to adopt a
special clausal notation. Therefore, we rewrite the clause

- 147

CHAPTE/15 DECJSJON TAS LES AND PRO LOG AS A CONCEPTUAL MODELL!NG lANGlJAGE FOR FUNCTJONAL OBJECT-TYPES

to the equivalent clause

The clausal notation of this clause then is:

Thus, in clausal notation, all variables are assumed to be universally quantified, the
commas in A,, ... , A, denote disjunction and the commas in B,, ... , B" denote

conjunction.

Definition 5.44: Program clause

A program clause is a clause of the form: A ~ B1,"" B11 • The positive literal A is
called the head and B1, ... , B

11
is called the body .

•
Definition 5.45: Unit clause

A unit clause is a program clause with an empty body. It has the form: A ~ . . So a
unit clause is an unconditional clause .

•
Definition 5.46: Logic program

A logic program is a finite set of clauses .

•
Definition 5.47: Definition of clauses

The set of all program clauses with the same predicate P in the head is called the
definition of P .

•

- 148

IJFC!SJON fAHl.ES AND PRO!.OG AS A CONCEPTUAI,MODELLJN(; LANGUAGE FOH FUNCTIONAI. OH]ECJ'. '/YfllS

Definition 5.48: Goal clause

A goal clause is a clause of the form ~ B1 •...• Bn. It is a program clause with an
empty consequent. Each element B; (i 1, ... , n) is called a subgoal.

•
If y1 , ••. , y11 are the variables of the goal clause. then

~ 81, .• " B"

is shorthand for:

or an equivalent of

Definition 5.49: Horn clause

A Horn clause is either a program clause or a goal clause .

•
Another important type of clause is the empty clause:

Definition 5.50: Empty clause

An empty clausc denoted by is a clause with an empty consequent and an empty
antecedent. Such a clause is to be understood as a contradiction .

•
Resolution on clauses works as follows. Suppose we have a set of logica] formulas S.
Attempting to determine whether F is a logica) consequence of S is equivalent to
proving that Su{-,F} is unsatisfiable. Resolution on Su{-.F} proceeds as follows:
first, it is checked whether S u contains the empty clause D. If this is the case,
S u {-,F} is inconsistent and we can assess that F is a logica! consequence of S. If
S u {-.F} does not contain the empty clause the resolution principle selects an
appropriate pair of clauses and tries to derive a new clause according to the following
procedure:

If we have two clauses C 1 and C2 and if a positive literal Q
occurs in C1 and the negation of Q occurs in then a new
clause C1 v C2 follows in whîch Q and -,Q are eliminated.

- 149

CHAPTER5 DEC/SION TABLES .4.ND PRO LOG AS A CONCEPTUALMODELUNG LA1VGUAGE' POR FUNCT!ONAL OBJECT-TYPES

The new clause C1 v C2 , obtained by resolution, is called the
resolvent. The clauses C 1 and C2 are the parent clauses of the
resolvent.

The elimination of a literal L from a clause C can be noted down as follows: C \ L.
Every clause that can be derived from a pair of clauses is added to the set of formulas
S u {-,F} and there is a new check to see whether this new set contains the empty
clause D. This process continues until the resulting clauses contain the empty clause
D. To show the resolution principle we ean examine the following three clauses. The
predicates do not contain variables:

Cl : P~Q

C2 : Q (--- S (equivalent to -,Q v S)

C3: S

From the parent clauses C1 and C2 we obtain the resolvent by eliminating Q from the
antecedent in the first clause and from the consequent in the second clause:

P (--s

The genera} form of resolution is:

procedure Resolution(S)

clauses f- S;

while the empty clause ~ S do

{c1, c) f- SelectResolvable(clauses);

resolvent f- Resolve(c1, c J);

clauses (--- clauses u resolvent

end

end

(Source: Lucas & Van Der Gaag, 1991. p.58)

Figure 5.8: The Genera! Form of Resolution

Since resolution is a syntactical operation, it is less simple to derive new clauses in
case variables occur in the clauses. The solution of this problem consists of making a
literal of one clause identical to the negation of this literal in another clause by some
appropriate substitution for their variables. This operation is known as unification.
Unification is a genera! method that compares clauses and that determines, if possible,
the substitution necessary to make clauses syntactically identical. For a proper

- 150 -

CHAl'TER5 Dl:;t !SJON TAB US AND ?ROLOG AS A CONCEV!'UA!. tifUDElJJNG L-HVGU.4GE FOR FV.t..'CJ'JONAJ OBJECT-TYPl:X

understanding of unification. we need to define substitutions, expressions.
compositions and unifiers.

Definition 5.51: Substitution

A substitution e is a fini te set of the form {v1 / t1, ••• , v
11

I t11 } where each v; is a
variable, each ti is a term distinct from e and the variables v1, ••• , v11 are distinct.
Each element V; I ti is called a binding for e. e is called a ground substitution if the
t; are all ground terms. e is called a variable-pure substitution if the t; are all
variables .

•
Definition 5.52: Expression

An expression is either a term, a literal or a conjunction or disjunction of literals. A
simple expression is either a term or an atom .

•
A substitution can be applied to an expression, so that we obtain a new expression
E8.

Definition 5.53: Composition

Let e {u1 I sl•••H u,,, /sm} and (J I f1····· vn / tn} be substitutions. Then the
composition ea of e and (J is the substitution obtained from the set
{u1 f s1 cr , urn I s111 <J, v1 I t1, •.•• v n I tn} by deleting any binding U; IS; (J of which
u1 = S/'J and deleting any binding vj/ t

1
for which vj E {u1 , ...• u"J

•
Definition 5.54: Most genera[unifier

Let S be a finite set of simple expressions. A substitution e is called a unifier for S if
se is a singleton. A unifier e is called a most genera! unifier (mgu) for S, if for each
unifier a for S, there exists a substitution y such that () "'"' ey .

•
The unification-algorithm takes a finite set of simple expressions as input and returns
an mgu if the set is unifiable. Otherwise, it reports that the set is not unifiable. When
the unification-algorithm attempts to unify two simple expressions, it puts two
imaginary pointers at the two leftmost symbols of these expressions. If these symbols
are identical, both pointers move to the right. But if these symbols are different, the
unification-algorithm attempts to unify these sub-expressions by making a
substitution. If the attempt is successful, the process is continueel with the two sub-

151 -

CHAPTER5 DEC/SION TABLESAND PROLOG ASA C0NCEPTU4L MOl>ELLlNG IANGUAGE FOR FUNCI10NAL OBJECT-TYPES

expressions obtained by applying the substitution. If not, the sub-expressions are not
unifiable. If the pointers reach the end of the two expressions, the composition of all
the substitutions made is a mgu of the two expressions.

An important notion to properly understand unification is the disagreement set of S.

Definition 5.55: Disagreement set

Let S be a finite set of simple expressions. The disagreement set of S is defined as
follows. Locate the leftmost syrnbol position in which not all expressions in S have
the same syrnbol and extract frorn each expression in S the sub-expression beginning
at that syrnbol position. The set of all sub-expressions is the disagreement set.

•
A forma! definition of the unification-algorithm is given below.

Definition 5.56: Unification-algorithm

(1) Put k = 0 and a 0 e (the empty substitution).
(2) If Sak is a singleton, then stop; ak is mgu of S. Otherwise, find the

disagreement set Dk of Sak.
(3) If there exist v and t in Dk such that v is a variable that does not occur in t,

then put ak+I = ak {v / t}, increment k and go to 2. Otherwise, stop; Sis not
unifiable .

•
Logic programming systems use resolution as the only inference rule. Resolution is
mostly applied as refutation: the derivation of an empty clause from a set of
unsatisfiable formulas. Suppose we want to prove that the formula

is a logica] consequence of logic program P. As resolution theorem provers are refuta
tion systems, the negation of the formula to be proved is added and a contradiction is
derived. The negation of our example clause is added to P and thus we obtain the
goal:

The logic programming system derives successive goals. If the empty clause is
eventually derived and the system has obtained a contradiction it inferences that

- 152 -

(,'HAPTE!? 5 DU "/5JO,V TABLL'.'l :tND PROIDG AS A CONCl:'PTIJAL MOf>FLLlNG LAN<t'UACE FOR FllNC110:\'AL OIJ)ECT-TYPES

indeed is a logica] consequence of the program P. From a theorem proving point of
view the only interest is to demonstrate logica! consequence. From a programming
point of view we are much more interested in the bindings that have been made,
because they provide us with the output of an executed logic program.

There are several forms of resolution. Most widely used is a variant of the linear
resolution: the SLD-resolution. Prolog is based on a limited form of the SLD
resolution. SLD stands for: Linear Resolution with Selection function for Definite
Clauses. The word linear designates the form of the graphical display of an SLD
derivation.

Definition 5.57: Computation rule

A computation rule is a functîon from a set of goals to a set of atoms, such that the
value of the function for a goal is always an atom, called the selected atom, in that
goal.

•
Definition 5.58: Derivation

Let G; be f- A1 " .• , • "" Ak, be Af- B1 "". Bq and R be a computation rnle.
Then is derived from G1 and C;+J using mgu ()H via R, if the following
conditions hold:

(a)
(b)
(c)

•

Am is the selected atom given by the computation rulc R.
Am8i+l AB;+J (that is, B;+i is an mgu of Am and A).

G;+i is the goal f-(A1"",Am_ 1,B1, •• "Bq,Am+-1•""Ak)8;+i·
resolvent of and C;,,_ 1 •

Definition 5.59: SW-derivation

is the

Let P be a program, G a goal and R a computation rule. An SLD-derivation of
P u {G} via P consists of a (finite or infinite) sequence of G0 G, G1 .•. , a sequence
C1, C2 , ... of variants of program clauses of P and a sequence 81, 82 , ••. of mgu's,

such that each Gi+l is derived from G, and ei+! using ()i+I via P .

•
SLD-derivations can be finite or infinite. A finite SLD-derivation can be successful or
it can fail. A successful SLD derivation is one that ends in an empty clause. It is just a
refutation.

- 153

CHAPTER5 !JECJS!ON TAB LES AND PRO LOG AS A CONCEPTUAL MODELL!NG UNGUAGE FOR FUNCTJONAL OBJECT-1YPES

Definition 5.60: SW-refutation

AnSLD-refutation of Pu{G} via Ris a finite SLD-derivation of Pu{G} via R
which has the empty clause c as the last goal in the derivation. In G; = o the
refutation has length n .

•
Definition 5.61: R-computed answer substitution

Let P be a program, P a goal and R a computation rule. An R-computed answer
substitution 8 for P u { G}, is the substitution obtained by restricting 81 " .. , 6n to the
variables of G, where 61, ••. , On is the sequence of mgus used is an SLD-refutation of
Pu{G} viaR .

•
Definition 5.62: SW-tree

Let P be a program, G a goal and R a computation mie. Then, the SLD-tree for
P u {G} via Ris defined as follows:

(a) Each node of the tree is a goal (possibly empty).
(b) The root node is G.
(c) Let f- A1 " .• , Am "", Ak (k ~ 0) be anode in the tree and suppose that Am is

the atom selected by R. Then this node bas a descendant for each input clause
A f- Bi, ... , Bq such that Am and A are unifiable. The descendant is
f- (Ai"", Am-1 • B1····· Bq, Am+i ""' Ak)6
where 8 is an mgu of Am and A.

(d) A node which is an empty clause has no descendants .

•
Definition 5.63: Search rule

A search rule is a strategy for searching SLD-trees to find success branches. An SLD
refutation procedure is specified by a computation rule together with a search tree .

•
We will demonstrate the resolution principle including a computation rule and a
search rule by looking at Prolog's search engine.

PRO LOG
The declarative and procedural semantics of FOPL having been explained, it is a
small step to evaluate the significance of Prolog as a conceptual modelling language.
Knowledge modelling in Prolog comes down to the formulation of knowledge in a

- 154 -

CE!APHR5 Df.C!JlON TABU:.SANV P/WlOG AS A CONCEPJ UAL]';fODHLlNG f ANGUAGE FOR fUNCTIONAL OBJECT- TYPES

syntax acceptable to Prolog and in such a way that the inference engine makes the
deductions. We already know that Prolog-systems use the SLD-resolution with

the computation rule that selects the leftrnost axiom and with the search ru\e that
works depth-first. What remains to be described is Prolog's syntax and a number of
extra-logica! features of Prolog. We first introduce the syntax of Prolog for dealing
with normal Prolog-programs and goals:

(1) Constants, functions and predicates begin with a lower-case letter or may
comprise any string of characters enclosed in single quotes.

(2) Variables begin with at least one upper-case letter or the underline symbol' '
(3) The translation of the FOPL-connectives into the syntax of Pro log is:

Disjunction

Implication

(4) Arithmetic function symbols (for example + - * /) may be written in their infix
form (for example 3+2 rather than +(3,2).

(5) Arithmetic assignment is achieved by the predicate is.
(6) The unification of two terms is performed using the symbol =.

(7) A special data structure is the list. The list is an ordered sequence of elements
that can have any length. A list with the three constants a, b and c is denoted
through [a, b. c]. A list has a head and tai!. The tail is always a list.
[Hl T] = [a, b. c] evaluates to H a and T = [b, c].

As an example the clause in the syntax of FOPL:

Fire-resistant(walt)~ -,Jnterior(wall) J\ Thermal - lnsulation(ivall, sufficient).

is expressed in Prolog-syntax as:

),

Let us now consider a Prolog-program, a Prolog search-tree, a Prolog-trace and a
computed answer substitution in order to combine the declarative and procedural
semantics of Prolog. The Prolog-program contains seven Horn clauses:

C1 . fiL"e

üre 1)

- 155 -

Cf!AP1'ER5 lJECJSJON TAB LES AND PRO LOG AS A CO.VCEPTUAL MODELL!NG LANGUAGE POil Fl!NlllONAL OBJECT-TYPES

fire_resistant(Wall) :~

inter.ior(Wa.Z 1), thermal~ insulation(Wall, sufficient),

i rradiance(Wal 1, suf f icient).

C4 . exterior(123).

interior(124).

thermal insula tion(124, sufficient)~

irradiance(124, sufficient).

The Prolog search-tree based on the Herbrand interpretations and the SLD-derivation
is displayed in Figure 5.9. A search-tree describes the search space of a goal in rela
tion toa given program. The goal G; represents the question which walls are fire-resis
tant. The leftmost branch shows that C1 is the atom that is first selected by Prolog's
computation rule. The mgu ei+! of G i and C 1 is {X/ l 2 3}. C101+1
fire_resistant(123). This yields a contradiction and thus leads to success. The
computed answer substitution is {X/123} which is the first answer to the question
originally posed to the Prolog-program. So the first branch of the tree is a successful
SLD-derivation. If we indicate that we want more answers, Prolog will construct the
second branch of the tree. Now the head of C2 , the atom fire_resistant(Wall), is
selected by Prolog's computation rulc. The mgu O;+i' of G 1 and the head of C2 is
{Wall/X}. The resolvent of G 1 and C 2 using ei+i' is rexterior(X),
thermal_insulation(X, sufficient) Applying the substitution 01+2 ' = {X/123} to
exterior(X) yields exterior(123). This leads to refutation and therefore to success. The
resolvent of Gi+i' and C4 using 8;.,. 2' is r thermal_ insulation(l23, sufficient). Tuis
resolvent, however, fails. Then Prolog tries, by means of backtracking, to find another
conclusion for exterior(X), but this second attempt fails and Prolog has to traverse the
third branch. The resolution process is identical to that in the second branch with the
difference that now a refutation is eventually realised delivering the answer
substitution {X/124}.

To develop complex Prolog-programs one often uses a search tree together with a
Prolog-trace. The trace is a report of the inference process of Prolog. It provides
information that for a part is complementary to the search-tree. Whereas a search-tree
should be reconstructed and drawn by a user, the trace is a product of a Prolog-system
running a logic program. A number of words occurring in the trace have special
meanings:

WORD

CALL <Goal>

EXIT <Goal>

REDO <Goal>

FAIL <Goal>

_<Number>

MEANING

Trying to solve <Goal>

<Goal realised>

Backtrack to <Goal>

<Goal> failed

Variable

156 -

UN!FY Substitution

Bi+ 1' = (WaliJX~ C2

G1;1:

•"" ivmiC'
Gr+2:

Failure

Figure 5. 9: .4 Prolog-search Tree

For our example the trace looks as follows:

:Eire~:r-esistant (_ .. 881)

1 0 123

ire resistant{123\

ire resistant(12J\

call exterior(_8811

1 '._881 0 123]

exit exterior(l23}

call ;::-1ernal~ies'._j_laticn (12

fail :hernal icsv:ation(

rede exterior{123)

fail exterior{_881)

3 [l

call interior

UNI~Y 1 [_881 124]

157

1-""'Î'
Gt+2·:

{r7
D

Success

CHAPTER5 DECISION TABLES AND PROLOG AS A CONCEPTUAL MODELLING LANGUAGE FOR FUNCTIONAL OBJECT-TYPES

exit interior(124)

call thermal_insulation(124, sufficient)

UNIFY 1 []

exit thermal_insulation(124, sufficient)

call irradiance(l24, sufficient)

UNIFY 1 []

exit irradiance(124, sufficient)

exit fire_resistant(124)

redo fire_resistant(124)

redo irradiance(124, sufficient)

fail irradiance(124, sufficient)

redo thermal_insulation(l24, sufficient)

fail thermal_insulation(124, sufficient)

redo interior(124)

fail interior(_881)

fail fire_resistant(_881)

The computed answer substitutions representing a set of fire-resistant walls, are
reported in the trace as follows:

N°1 X ~ 123

N°2 X 124

No more solutions

What makes Prolog valuable is the incorporation of recursion search within a
deductive framework. We can illustrate recursion search by the representation of a
graph in Prolog, shown in Figure 5.10.

Figure 5.10: A Graph

The representation in Prolog is:

- 158 -

CH/if'TER 5 DECJSJON 1'/tBLEf.AND PROLOGASA CONCE!'1U41, MODELLING LANGUAGE FOH FU11lCTJONAJ_ OBJJ::CT-TYPJ:'S

connected J,40).

Nodelist, [Nodel], 0).

pa ner.v],

(connected(Nodel, , Distance) i connected(Node2,

path(Node2, [Node2 ! lVodelist], Nev1 ...

New--~ d.istancel _i Distance + Ner:,.f _dis

We can ask the system whether there is path between the nodes e and j, and if so,
which nodes are located between these nodes and what is the distance between e and
j. The question becomes:

? i st,

The system generates the following answers:

N°1 ~ [e, d, C, '1 J,

Nodeli [e, i_, d, a, j]

NOJ Nodelist [e, i; h é C, 165 ", L «

N°4 t i, h, f1 d, j],

a, ,, J, 1.15

- 159

CHAPTER5 DECJSJON TABLES AND PROLOG AS A CONCEPTUAL MODELUNG lANGUAGE FOR FVNCT!ONAl OBJECT-TYPES

N°8 Nodelist d, f, c, J, Distance 115

N°9 Nodelist d, h, f, c, j], Distance

N°10 Nodelist [e, d, a, c, j] 1 Distance

No solutions

The observation that Prolog is able to represent graphs is not trivial. Bakker (1987)
stressed the importance of graphs for the representation and structuring of knowledge.
Since a DT is a special kind of graph, this implies that functional object-types can also
be captured in graph-structures. Besides this, it is important to focus on the fact that
Prolog allows graph-representations to be defined recursively as is shown in the
example graph. The reader should note that this is one of the weak points of DT's.

From the above, we are inclined to draw the conclusion that Prolog has
considerable representational power. But not everyone will completely agree with that
observation. Butrick (1987) and Deville (1990) point to a number of limitations of
Pro log:

• Prolog is incomplete. The following program displays this:

path(a,b).

path(c,b).

pa

path(X,Y)

pa tll(x, z J. pa th(z, Y J.

patll(Y,Z).

It is obvious that path(a, c) is a logical consequence of this logic program.
There is a successful derivation for the goal path(a,c), but Prolog will never
find it. Generally a logic programming language with a depth-first search rule
is incomplete. To obtain completeness a breadth-first rule is necessary. From a
programming point of view a breadth-first rule is too restrictive because of its
ineffectiveness. So it is in the nature of any practical logic programming
system to be incomplete. Another aspect of incompleteness is illustrated
be low:

q(a) r(a).

q(a) not r(a).

r(x) r(f (x)).

Independent of the computation and search rules, there is no successful
derivation of q(a), while q(a) obviously is a logical consequence. In order to
derive r(X) Prolog has to search an infinite derivation tree. This is a
consequence of the undecidability of FOPL: the derivation of p will not

160 -

CHAl'TER5

•

DEC/SION JAELES AND PRUUIG ASA CONG'PTUAJ, A10Df:'/JJNG LANGUA(,f, FOR FUt..'CTIONA!, 011]1:,CT" TYPES

always terminate
in such cases.

is not a logical consequence. lncompleteness can occur

Prolog is unfair. lf an existentially quantified variable occurs in a logica!
consequence. Prolog is required to succeed and to compute values for that
variable. With a depth-first rule not all the possible values will necessarily be
found. Such behaviour is called unfair. Consider the following program:

appe11d([,

appenà([Hf

,List4} :

t1 1 List2 1 List5) 1

t3~List:z1J.

The program shows the implementation of the relation append/3 which
appends two lists (the first two arguments) toa new list (the third argument).
It also contains the relation append/4 which concatenates three lists (the first
three arguments) to a new list {the fourth argument). The tab Ie of Figure 5. l l
presents the sequence of successive instantiations of the goal append(List l,
List2,[2]. where List! and List2 and List4 are implicitly existentially
quantified.

Listl

t
[]
lJ
[]

__ Ll
[]

[J

[_984]

[_984, _9îl§1

f_984, _988, _992J

[_984, _988. _992. 99_Q]

__1_98~. 21

-~984, _988. 2]

_988. _992. 21

_988, _99_b_ 996. 2]

Figure 5.11: Unfairness in a Prolog Execution

•

List! is always the empty list, while other correct instantiations exist. Just like
incompleteness, unfairness can be solved by applying a breadth-first search
rule. As a breadth-first search rule is too inefficient. unfairness is standard in
the nature of a practical logic programming language.

Prolog is unsound. Unsoundness occurs when there is a successful
computation of a goal which is not a logica! consequence of a program. Many
Prolog-implementations use a unification algorithm without occur check. This

161 -

CHAPTER5

•

•

•

•

DEC/SION TAB LES AND PRO LOG AS A CONCEPTUAL MóDEll!NG lANGUAGE FOR FUNCT!ONAL OBJECT· TYPES

means that when testing whether or not a variable X unifies with a term t,
Prolog does not check whether X occurs in t. A goal p(X, X) leads to success
when a program p(Y,j{i')) is present. As p(X, X) is nota logica) consequence,
soundness is destroyed. When a Prolog-implementation does not work with an
occur check the goal append([], List, [21List]) will unfortunately succeed.

Prolog uses negation as failure inference rule. The idea of the negation as
failure is to infer -.q when q cannot be derived. Tuis leads to the phenomenon
that Prolog computes -.q while -.q is not a logical consequence of a logic
program. Butrick (1987, p.31) proposes a number of solutions to handle
negative information. The negation-by-failure is also called the closed-world
principle.

Prolog needs control information to reduce the search space during the
execution of a logic program. The cut, denoted by ('!'), is the main control
primitive. Tt allows derivation trees to be pruned. Misplaced cuts can therefore
lead to incompleteness and unfairness.

Prolog needs extra logica[features just like any other programming language .
Besides the cut, we can mention input- and output-primitives and assert(a),
retract(a), bagof, setof and univ. They are outside the scope of FOPL, but are
useful from a pragmatic point of view.

Prolog is not completely multi-directional. It is often claimed that a Prolog
definition can be used in more ways than one. What is meant by multi
directionality is that arguments of a predicate can be used as input and/or
output results. For instance, for our first path program we can formulate a goal
containing the begin- and end nodes of a path and ask whether this path exists,
what nodes make up this path and what the length of this path is. The first two
arguments thus function as input arguments. The third and the fourth argument
will contain the results of a SLD-derivation (by computed answer
substitutions) as we have seen previously.

? - path(e,j,Nodelist,Distance).

It is also possible to formulate a goal in which the nodes are variables:

? path(Nodel, Node2 ,Nodelist, Distance).

But now the Prolog-systems comes with an unwanted answer substitution:

X =_884,Y = 884,Nodelist [_884),Distance = 0

Tuis can be repaired by incorporating a check, e.g. var(Nodel) on the type of
the arguments in the first statement of path/4. But there are two more

- 162 -

CHAPTER5 DEC/SION TAB LES AND PRO LOG AS A CONCEPTU.41 MODELIJlVG LlNGUAGE FOR FUNC110NAL OBJECT-JYPES

fundamental restrictions on multi-directionality: efficiency and undecidability.
Suppose that p(X, Y) is a relation where X is an integer of the domain of a
function that decomposes X into its prime factors. So, if X serves as input the
predicate will compute/(x) = y. But if Y serves as input the logic program has
to compute the inverse function y = f(x) from a given one! Computations like
these are usually too inefficient or are undecidable.

This list of items underlines the gap between the declarative and procedural
semantics. If we wish to use Prolog as a conceptual modelling language for the
representation of knowledge, more specifically for the representation of knowledge
contained in functional object-types, we will have to understand this gap.

5.3.2 Functional Object-types and Prolog

In this section we analyse the possibilities to represent, reconstruct, validate and
simulate functional object-types using Prolog. As before, we reduce the discussion
about functional object-types toa discussion about functional equivalence.

Representation
We revert again to the DT of Figure 5.2 displaying functional equivalence. The DT
can be captured in the following Prolog-clauses

(X)

goall (x)

goa11 (x)

csl(a),cs2(k).

cs1(b),cs2(r)

csl(a), (s), (y).

The statements of the definition correspond with the DR's of the DT. Another
example in which functional equivalence as a form of conceptual interaction occurs
is:

fire .compartment (SPACE(Sp)) :

(SPACE(Sp), enclosed_room),

surface(SPACE(Sp),

Su 500.

fire_compart.ment (SPACE{Sp) !

is_a!SPACE(Sp), technical_room),

surf ace (SPACE (Sp!, Su),

Su 50.

The programs show that it is possible to represent functional equivalence by Prolog.
In the previous section, we noticed that DT's were also able to represent functional
equivalence. However, there is no reason to think that DT's and Prolog have the same
representational power in this respect. There are a number of differences between
Prolog and DT's.

- 163 -

CHAPTER5 DECJSlON TABLES AND PRO LOG ASA CONC.EPTU4L MODELLJNG UNGUAGE FOR FUNCTJONAL OBJECTw7YP/Z5

The first difference is that in Prolog a condition that is not relevant for the
realisation of a goal can simply be omitted. In the Prolog-program with the head
goal(x) CS3 does not occur in the first two clauses, but only in the third clause. In a
DT such a condition occurs in the stub as a condition subject with 'don't cares' at the
appropriate places in SPACE(C). It is possible to get rid of a condition in a DT by re
arranging the knowledge in a different DT-system, but eventually almost always 'don't
cares' are needed. In Prolog these 'don't care' conditions need not be mentioned. The
second difference is that Prolog is very suitable for effectively representing complex
repeat structures. Especially recursion makes Prolog very powerful.

Reconstruction
To what extent does Pro log support the reconstruction of functional equi valence? The
first thing to mention is that the conceptualisation of knowledge by Horn clauses in
most cases wil! start with the assessment of a goal. Reverting to a previous example a
goal could be the determination whether a certain space, say SPACE(SP), is a
fire_compartment.

fire~compartment ' } .

The definition of the functional object-type fire_compartment requires knowledge of
constraints. From the goal we can find out that the space in question should be an
enclosed room and that its surface should be equal to or larger than 500 (m2). The
Prolog program now is:

f_ire_compa.rtmen t) : -

.is_a 1 SPACE (Sp) , enclosed_room),

surface(SPACE(Sp) ,Su),

Su >= SOO

Other, functionally equivalent possibilities, may be captured in the following piece of
program:

fire_compartment (SPACE i Sp))

is_a (SPACE , techni cal_room),

surf ace !SPil.CE(Sp), Su),

Su 50.

So, the head of a Prolog-definition is a goal. 1he reconstruction of the body supports
the goal-oriented classification of conditions. Each element of the body of a Prolog
program represents a classification of a condition that is useful regarding a goal.
Prolog stimulates this, because the elements of the body are gathered in relation to the
head. What should be noted is that Prolog does not help to reconstruct conceptual
interaction. The mutual influence between a type of room (technica! or enclosed) and
required surface is hard to detect, because the categorisations of these conditions are
spread over the various statements of Prolog definitions. The same is true for the
conditional relevance of a condition. In a Prolog-program we only have to incorporate

164 -

5.3.3

C!IAPTER 5 DFOS!ON 'CARJ ES AND I'l?Ol OG AS A CONCl:l'ï"UAL MODFUJN(; IANGUAGP FOJ? i UNC110NA!. OHJF;CI~ tfP!;'.1>

a condition in a statement when it is relevant. This prevents the occurrence of 'don't
cares' in the program.

Validation
Validating a functional object-type represented in Prolog requires a fundamental
insight in the declarative and procedural semantics of Prolog. Only then, the
knowledge level import of a piece of Prolog code can be assessed. However, Prolog
does not provide (non-computational) facilities to perform checks on completeness.
correctness and consistency. This is reinforced by the phenomenon that
programs often suffer from what we call the sliver in which isolated lines of
code are difficult to relate. In this respect it is not strange that it is often proposed to
carry out the valîdation of a conceptual model by using the extensive computational
facilities Prolog offers for these purposes for such a proposal for instance
Loucopoulos & Karakostas, 1989, pp.92-93).

Thus simulation is an important basis for validation. We can, for instance, gather a
variation of objects and check them against the definitions of the Prolog program. ln
the fire-compartment example we can check all kinds of spaces to see whether they
indeed are instantiations of the object-type fire-compartment. When a 'scenario'
illegitimately succeeds or fails, tracing of the if desired in combinatîon
with a search tree, will usually reveal the defect and the conceptual model can be
modified. Usually, a large number of tests of of abstraction should be
canied out. Pro log has proved to be invaluable for these types of validations.

Simulation
Simulation in Prolog comes down to formulating an object-type in Prolog-syntax (the
declarative semantics) accounting for the procedural semantics (SLD-resolution +
search rule + computation mie). In the previous section we discussed the use of
simulations for validatîon purposes. Another use is the consultation of knowledge of a
functional object-type by formulating goals fora Prolog program as we did before. A
precondition to take into account the non-logica! elements of the Prolog language.

Conclusion

Prolog's declarative semantics is claimed to be ideally suited to the analysis of
knowledge, while Prolog's procedural capabilities are well suited for software
implementation by making a specification 'executable'. Especially in the area of
executable specifications and rapid prototyping, Prolog is regarded as an attractive
tool for software engineering purposes (Davis, l 982; KowalskL 1984; Lazarev, 1989).
Kowalski (1985) formulates this as follows:

sufficiently blurs the distinction between program and
,,1",..,'"'"'·'""'"' that many programs can just as well be regarded
as executable specifications. On the one hand, this can give
the impression that Logic Programming Jacks a programming
methodology; on the other. it may that many of the

165

CHAPTER5 DEC/SION TABLESAND PROLOG AS A CONCEPTUAL MODELlJNG LANGUAGE FOR FfJNCTJONAL OBJECT-TYPES

software engineering techniques that have been developed for
conventional programming languages are inapplicable and
unnecessary for logic programs. (Kowalski, 1985, p.23)

Concerning the goal of this section we should conclude that Prolog is capable of
representing functional object-types. Prolog's representational power is impressive
and can add a lot to the representational potentials of DT's. This explains why it is
fairly easy to represent DT's in Prolog (Reilly, et al., 1987). However, the
transformation of definitions represented in Prolog to DT's is not always possible.
Especially when definitions are recursive difficulties arise. However, the
representational power of Prolog is only adequately employed if we account for the
gap between the declarative and procedural semantics.

Unfortunately, Prolog does not impose a methodology for reconstructing object
types and lacks facilities for the reconstruction of functional object-types.
Programming in Prolog requires much discipline. Therefore, Deville (1990) describes
a methodology how to use Prolog. On the other hand, Prolog admits the execution of
specified knowledge and thus provides facilities to validate and consult (functional)
object-types. Validation of functional object-types, however, is to an important degree
limited to the simulation facilities offered by Prolog.

Furthermore, we can argue that Prolog-based systems subsume DB-systems with
databases containing mies as well as explicitly stored data. This logically fits with the
observations of the previous chapters. FOPL and Prolog reside close to the knowledge
level and at that level no distinction exists between knowledge-based systems and
DB-systems! Another attractive feature of Prolog is that it allows metalevel
programming so that it can be augmented relatively easily (Sterling & Shapiro, 1986).

A potential solution of Prolog's mentioned weak points is to add techniques to
Prolog that intercept the Jack of structuring capabilities. Ideally, these techniques
should not conflict with the use of Prolog as a conceptual tool. In the next chapter we
will study such a solution in relation to DT's.

5.4 CONCLUSION

The centra! question of this chapter was to investigate whether the joint application of
DT's and Prolog possesses the necessary characteristics to act as a language for the
representation, reconstruction, validation and simulation of functional object-types.
The question can be answered positively. We have seen that DT's and Prolog jointly
form a powerful conceptual modelling language that is compatible with the functional
view.

DT's and Prolog can serve as a pivot fora conceptual integration of AI and DBT.
Both are strongly related by their common descent from mathematical logic. To
understand the step from mathematical logic (FOPL) to Prolog and to acquire
fundamental insight in the use of Prolog as a conceptual language, requires
understanding Prolog's declarative and procedural semantics. Therefore, both types of
semantics are extensively explained. Analysing these two types of semantics, Prolog

166-

CHAPTER5 DEC/SION TAB LES AND PRO LOG AS A CONCEPTUAL MODELLING IANGUAGE FOR FUNC110NAL OBJECT· TYPES

appears to be a logic programming language that admits of simulation of specified
knowledge. One of Prolog's weak points is that it does not compel the user to structure
knowledge (functionally). Fortunately, it seems that this weak point of Prolog, can be
compensated by using DT's which deliver a method for organising and documenting
knowledge in a logica! manner that permits easy inspection and analysis. The forma!
definitions of the Codasyl Decision Table Task Group and our modifications of these
definitions, help to see that DT's are goal-oriented and stimulate the modelling of
functional categorisations. A disadvantage of DT's is that they do not offer efficient
facilities to incorporate knowledge into a conceptual model requiring recursive or
small definitions for its assessment. In these cases Prolog scores considerably better.

The general conclusion is that DT's and Prolog are complementary and that their
joint application yields a powerful modelling language, especially for functional
object-types. However, the language does not meet all the requirements rnentioned in
Section 5.1: DT's lack automated validation and automated simulation facilities and
essential graphical facilities for drawing DT's are lacking. The next chapter addresses
the remaining drawbacks.

167 -

CHAPTER6

THE ADV ANCED K~OWLEDGE TRANS:FER SYSTEM

6.1 INTRODUCTION

In spite of the high complementarity of DT's and Prolog as conceptual to

functionally reconstruct knowledge, the analysis in the previous chapter also revealed
that their joint application still yields a language which has certain limitations. This
language does, for instance, not offer facilities for automated validation and
automated simulation when DT's are employed. Furthermore, essential graphical
facilities for drawing DT's are lacking.

To overcome these limitations, the Netherlands Organization for Applied Scientific
Research (TNO), five years ago, started the development of a computer-based tool
that, besîdes taking advantage of the complementarity of DT's and Prolog to
functionally reconstruct knowledge, was to extend the language with validation,
sîmulation and drawing facîlitîes. The entîre development of this tool, from
specîfication up to implementation and maintenance, is based on the theoretica]
findîngs of the previous chapters. By now, these efforts have led to the emergence of a
tool called AKTS: the Advanced Knowledge Transfer System.

This chapter aims to describe the functionality of AKTS to see (1) to what extent ît
exploîts the complementarîty of DT's and Prolog to functionally reconstruct
knowledge and (2) to what extent it overcomes the limitations observed. The chapter
first provides an overview of the main functions of AKTS (Section 6.2).
Subsequently, each main function is described in more detail (Sections 6.3 up to 6.5).
We round off the chapter with a number of conclusions and a brief discussîon of the
performance of AKTS relative to other tools, the performance of AKTS in the daily
practice of reconstructing, designing and simulatîng knowledge universa and. finally,
of the future perspeetives of AKI'S (Section 6.6).

6.2 MAIN l<'UNCTIONS OF AKTS

AKTS offers main functions to:

• reconstruct a knowledge universe
• design a knowledge universe
• simulate a knowledge uni verse

These functions are accessible through a menu bar (Figure 6.1).

- 169 -

CHAPTER6 THE ADVANCED KNOWLEDGE TRANSFER SYSTEM

5 Knowledge Base Table Edit Design Consult EHtra

.t.

Figure 6.1: The Menu Bar and the Main Functions of AKTS

The reconstruction function of AKTS helps to build a knowledge universe. To fully
exploit the complementarity of DT's and Prolog, AKTS supports an integrated use of
DT's and Prolog for reconstructing a knowledge universe. To a large extent, a
knowledge universe is reconstructed graphically. During the reconstruction process,
AKTS provides validation facilities and facilities to remove redundant knowledge
elements. In addition, AKTS helps to survey (parts ot) the knowledge universe
already reconstructed (The reconstruction function is discussed in Section 6.3).

The design function of a knowledge universe is an intermediary function that
involves the incorporation of additional information in a reconstructed knowledge
universe to simulate that knowledge universe. The information is added in the form of
properties of DT's and of conditions and actions. Strictly speaking, AKTS does not
really need this information, but the information helps AKTS to make simulation
more user-friendly and smooth (The design function is discussed in Section 6.4).

The simulationfunction refers to consulting a reconstructed and (possibly) designed
knowledge universe. It gives users immediate access to the knowledge present in a
reconstructed knowledge universe. AKTS has facilities to simulate parts of a
knowledge universe. Furthermore, AKTS offers several possibilities for performing
What-if analyses. To be able to perform these simulation functions AKTS is equipped
with a powerful inference machine (The simulation function is discussed in Section
6.5).

Figure 6.2 shows the main functions of AKTS together with the paths along which
one can traverse from one function to another (see also Huijsing, 1992). lt should be
pointed out that these functions reflect the main steps that are to be taken in each
software engineering process. In AKTS these functions are tailored to developing
knowledge-based systems.

Figure 6.2: Scheme of AKTS' Main Functions and the Paths between Them

170-

CHAl'TER6 THf: ADVAN<:NJ KNOWI I::DGE TRANSFER SYSTEi'vJ

6.3 RECONSTRUCTING A KNOWLEDGE UNIVERSE

In this section we discuss the reconstruction facilities offered by the Graphical
Decision Table Editor, the validation facilities offered by the Integrity Control Sub
system, the reduction mechanisms of AKTS and the interaction between Prolog
models and models reconstructed in DT-systems. Finally, AKTS' facilities to provide
surveys of a knowledge uni verse are dealt with.

6.3.1 Reconstruction Facilities: The Graphical Decision Table Editor

To take full advantage of the structuring facilities of DT's, AKTS stimulates a user to
start the reconstruction of a knowledge uni verse with the creation of a DT-system and
not with the creation of a Prolog model. In the previous chapter we, however,
observed that the adoption of DT's is retarded because of the fact that drawing and
modifying tables is a complicated and time-consuming process. This is mainly due to
the fact that the modification of a part of a DT often has consequences for other parts
of the DT, so that the complete DT has to be redrawn. Even a slight modification may
require redrawing a complete DT.

To intercept this problem, AKTS is equipped with a DT-editor that provides a
multitude of convenient graphical facilities. This editor has a carefully designed
multi-window, menu-driven mouse-oriented interface for optima! communication
with users. It allows users to quickly reconstruct and modify a complete DT-system.
The editor shows 'intelligent behaviour': it knows what a correct table looks like and
applies this knowledge to support the user in the drawing process of a DT. The editor
also knows how to obtain a DT that occupies a minimal amount of space. This
knowledge is used, if necessary, to calculate the measures of a minimal table after
each user's action.

When AKTS receives a command to create a DT, the Graphical Editor displays a
window on the screen and draws the four quadrants of an empty DT in this window: a
quadrant for the stub with action subjects, a quadrant for the stub with condition
subjects, a quadrant for the condition space and finally a quadrant for the action space
(see Chapter 5 for information on these quadrants). Figure 6.3 displays the creation of
a DT the content of which is discussed in Chapter 7. Initially, the quadrants leave
room for one action subject (goal) and for one condition. An edit-box is automatically
positioned in the action part of the empty DT to stimulate a goal-oriented strategy. A
user can simply insert a goal by typing the name of the goal in the edit-box and
clicking the mouse outside the DT but within the window. The Graphical Editor
calculates whether the name of the goal fits in the quadrant and draws, if necessary,
new quadrants. Consequently, a user can move the mouse-pointer to the condition
stub and click once. An edit-box is then opened in the condition stub and the name of
a condition can be typed in. Following similar procedures, condition alternatives and
action alternatives can be inserted. When one condition alternative is inserted, the
editor automatically adds space for a second condition alternative and positions an
edit-box in it. The editor does this because it knows that each condition has more than

- 171 -

CHAPTER6 rHEADVANCED KNOWLElJGE TRANSFER SYSTEM

one condition alternative. There is one exccption: if a condition alternative is a 'don't
care', no other alternatives are allowed.

Select !lill
Show All
Hlde llff

1 Gypsum as biruler 1

fable Namt> IC! 1

!Al IJ
Make Subtable il€M
Find Subtable il€F 1 RI

Table Tree

Widths & Fonts
layout Settings ~

Figure 6.3: Creating a Decision Table

Of course, a DT consisting of one condition and one action will not suffice. Three
functions are available to add other conditions, condition alternatives and actions.

Add Condition
adds an empty row in the condition stub below the condition already inserted.
An edit-box is automatically opened in the condition stub. 'Don't cares' are
automatically placed in the corresponding parts of the condition space. The
user can type in the name of the condition and its condition alternatives by
using the edit-box. When an edit-box is already active in the condition stub or
in the condition space, the empty row is added below the row in which the
edit-box is active.

Add Condition Altemative
adds space for entering a condition alternative to the right of the position of an
active edit-box. The edit box is moved to this new condition alternative.
Below the condition alternative 'don't cares' are automatically filled in for the
conditions beneath the actual condition. Actually, a complete branch of a tree
is added! In Figure 6.4 R3 is added this way. Obviously, using this function
requires an active edit-box in the condition space. AKTS alerts the user if the
function is called for with no active edit-box in the condition space.

AddAction
adds an empty row in the action stub below the actions already inserted. If an
edit-box is active already in the action stub or in the action space the empty
row is addedjust below the row in which the edit-box is active. An edit-box is
opened in the action stub of the new row to allow the user to type in the name

- 172 -

CHAP1ER6 1 HL ADi,'.4.NCJ:'D I<NOWLEDGE 1 R!INSH~R SYSTEM

of the action subject. 'Don't cares' are automatically placed in the
corresponding parts of the action space.

These functions enable users to draw a DT much more quickly than when using a
drawing program. Yet, we decided to equip the editor with a few other functions to
improve the of the drawing process. Currently, the Graphical Editor also offers
powerful editing functions to Select, Cut, Copy, Paste and Clear the following
components of a DT: text, condition and condition alternatives, subtrees and finally
actîons and action alternatives. The effect of these functions is similar to the effect of
an average word processor, but the effect of every function differs for every
component of a DT. The first component that can be handled by these functions is a
piece of text that occurs in a DT. An edit-box can be opened by in an
arbitrary part of a DT. Then, the user can selecta piece of text by the mouse
over the text. The text is marked by a colour. The text can also be added to design
dialogues Section 6.4). Reversibly, text from these dialogues of AKTS or from
other computer programs, can be copied and pasted into a DT.

6 psum as binder

Optimize Table

Prolog Model

Shom Clipboar!I

Figure 6.4: Adding a Condition Alternative with AKTS

A condition can be selected by positioning the cursor in the corresponding part of the
condition stub and dragging the mouse pointer horizontally over the double vertical
line. The condition subject and its alternatives will consequently be selected (Figure
6.5). If one moves the pointer upward or downward crossing horizontal lines more
conditions wil! be selected. The Clear command removes the selected condition(s).
Every split in the DT caused by the selected condition alternatives is removed! The
DT becomes less <leep and less wide. Of every split only the first one remains.

Condition alternatives can be selected by clicking in a condition alternative and
dragging the mouse to the right or to the left. alternative that is (partly) covered
by the marqui and that belongs to the same subtree is marked by a colour. Clear
removes the condition alternatives. The subtrees of which a selected condition

173

CHAPTER6 THEADVANCED KNOWLEDGE TRANSFER SYSTEM

alternative is a root will disappear. By Copy and Paste the selected condition
alternatives are first copied into a clipboard and then pasted to the left of an active
edit-field. Below the condition alternatives an empty column appears. This column
consists of apart of a table condition entry and of apart of a table action entry.

Gypsum as binder 1

Cl type of mortar join1ing mortar rendering mortar

C2 type of inside binder gypsum lime hydraulic lime gypsum lime

C3 type of outside bind~'.!.: : ·······:.:······· gypsum lime

Al gypsum "" binder yes llD yes yes llD

R1 R2 R3 R~ R5 R6

Figure 6.5: Selecting a Condition and lts Alternatives for Editing

If a user clicks in a condition alternative and drags the mouse downward, the subtree
whose root is the condition alternative, will be selected. When the mouse is moved to
the left or to the right adjacent subtrees are selected. Clear deletes the subtrees.
Through Copy and Paste subtrees can be added into a DT. Figure 6.6 provides an
example of selecting, copying and pasting a subtree. Precondition is that the height of
the subtree corresponds with the available space at the insertion point!

The functions Select, Cut, Copy, Clear and Paste operate for actions and action
alternatives in much the same way as with conditions. There is one difference.
Actions do not show the ramifications that are usually present in trees. Thus, the
functions cannot operate upon these structures concerning actions.

Besides speed, another argument induced us to develop these functions: the
Graphical Editor should behave in such a way that a user can intuitively operate it
with minimal use of a manual (see for instance Figure 6.6). Since many software
packages, for instance word processors, make use of similar functions, they are
generally known. There is a difference: the functions of the Graphical Editor operate
on components of DT's and not on, for instance, pieces of text. Practical experience of
the last two years clearly indicates that the Graphical Editor is satisfactory in every
respect. The Graphical Editor even allows a user to employ his own language. The
only prerequisite is that the user is consistent in naming conditions and actions.

The editor not only focuses on a single DT but also supports the reconstruction of a
complete system of hierarchically and logically related DT's. A condition subtable is
created by opening an edit-box of a condition subject and entering (by means of a
menu item) the command Make subtable. Then, the Graphical Editor creates an initia!
condition subtable. The condition subject in question appears as an action subject in

- 174 -

CHAPTER6 THE Al>VANCED KNOWLEDGE TRANSFER SYSTE.M

the new table and the condition subtable can be finished following the procedures just
explained. From this condition table, other condition tables can be reconstructed. The
creation of an action subtable is done in an analogous way. By the creation of
condition and action tables, one can very easily set up a complete DT-system with
several levels within a few minutes !

Design Consult EH
Undo il€Z

Cut ti!:H

Paste ilW

rende ring
Clear il€B

morw
Copy Table

Add Condition ti!:H
Add Cond. Altematiue ti!:I
8dd Action iltJ

Optlmlze Table
~---------------

Show Cllpboard

(A) Selecting a Tree Structure in a Decision Table and Copying It into the Clipboard
ofAKTS

joîrl:ti.ng mo:rtw: :renderil'\g monat

,.. no no

R3 R4 R5 R6 R?

Clear

Copy Table

Consult EH

illlH
11€(

11118

Add Condition il€H
Add Cond. Alternatlue 11€1
Add Actlon il€J

Optlmlze Table

Show Cllpboard

(B) Clicking in the 4th Alternative of C2 (see A) and Pasting the Copied Tree
Structure from the Clipboard into the Decision Table

Figure 6.6: Graphically Editing (Tree Structures of) Decision Tables. The Entire
Operation Only Takes 2 or 3 Seconds

The variety of (bilateral) connections can easily be represented by such a system of
DT's. This indicates that AKTS permits users to deal in a graphical way with
generalisation, specialisation, association and aggregation. The meaning and necessity
of these abstractions in the process of modelling knowledge are explained in Section
3.3.4. To guarantee the integrity of a DT-system, AKTS also offers facilities to

175

CHAPTER6 THE ADE4.NCED KNOWl.EDGE TRANS FEi?. SYSTEM

control the (bilateral) connections. These facilities help to keep the represented
knowledge valid. They are explained in the next section.

6.3.2 Validation Facilities: The Integrity Control Sub-System

AKTS also offers validation facilities. They fall under the topic of integrity contra/.
Integrity control is a notion that predominantly originates from DBT. It involves the
verification of so-called integrity constraints. Integrity constraints are properties that
the data of a database are required to satisfy and they are expected to be satisfied after
each transaction performed on the database (Das, 1992, p.276; Grefen & Apers, 1993,
p.188). lntegrity constraints exist in all shapes and sizes, but most of them have
already been discussed as statie constraints. We forrnally defined the following types
of statie constraints: variable constraints, inter-variable constraints, knowledge table
constraints and knowledge universe constraints.

The Integrity Control Sub-system of AKTS is responsible for rnaintaining integrity
of a knowledge universe. It deals with all statie constraints by providing possibilities
to check (1) the exhaustiveness and exclusiveness of every DT of the knowledge
universe and (2) the forrnal links between head tables and subtables. The
exhaustiveness and exclusiveness integrity constraints are based on the formal
definitions of exhaustiveness and exclusiveness eoncerning trees (Chapter 5). The
integrity constraints for links are based on the forrnal definitions of (bilateral)
connections (Chapter 3).

Checking Exhaustiveness and Exclusivetiess
Checking the exhaustiveness and exclusiveness of a DT requires the dornains of the
condition subjects in the table to be known. As explained, a domain is a set that
describes the allowed values for a subject. Domains are inserted using the design
function of AKTS (See Section 6.4). To enable AKTS' Integrity Control Sub-systern
to verify several types of condition subjects, the domain of a condition subject must
be one of the following types:

•Text
• Enumeration
•Interval

A dornain of the type Text is specified as a set in which each element is a string of
letters of a specified maximum length. The domain is denoted by Chs(n). Chs(3)
denotes the set of all strings that belong to some alphabet with a maximum length of
3: a, why and yes are 3 elements of this set. This type of domain helps to simulate a
knowledge universe by, for instance, enabling AKTS to deal with names of objects
which cannot be known in advance. This means that it is not possible to enumerate the
elements of the domain of the condition subject that should represent one of these
names. The only possible way to define the domain is to restrict the lengths of the

176-

strings. These strings can be used to personalise messages in a consultation session or
to retrieve information frorn a database or a formula.

A domain of the type Enumeration is a set of elements that are enumerated one by
one. An element can be of type word, an integer or a real. Often, enumeration
domains only have words as possible elements. We have introduced the type integers
and reals to deal with specific situations în which a condition subject bas a limited
number of values that are discontinuous integers or discontinuous reals, so that
intervals cannot be used. Possibly these condition subjects should be used in formulas.
A few condition subjects and their enumeration domains are described through in the
following ordered pairs:

(transport; {car, vehicle. bycicle, plane}) (word)

(distances to be run; {5, 10. 21}) (integer)

(widths; {l.12, 2.24, 3.36}) (real)

A domain of the type Interval is a set the elements of which are not enumerated, but
indicated by an interval. The element are reals or mtt>crt>ro

y

green orange green

Figure 6. 7: Two Classifications of One Condition Subject To Be Checked

As stated previously, the exbaustiveness and exclusiveness checking procedures
should operate upon the nodes of each subtree that can be distinguished in a DT. The
subtrees to be checked have a height 1 and their nodcs have a depth >C"11111-1. This
tree-approach implies that several classifications of one and the same condition
subject should be subject to control. The genera! checking principle works as follows.
Figure 6. 7 graphical ly displays two subtrees of a tree. The first half of each chi Id of
the subtrees in the tree contains the well-known forma! indication of a condition
alternative. The second half contains the literal condition alternative. To check the
exclusiveness and exhaustiveness of a DT, AKTS evaluates each second half of a
node of a relevant sub tree to a set. For instance, red is evaluated to the set {red}.
Remember that according to the forma! definitions of the previous chapter the union
of all nodes of a subtree should equal the relevant domain to ensure exhaustiveness
and that the cross-section of all nodes of a subtree should be empty to ensure
exclusiveness.

177

CllAl'TER6 THE ADVANCED KNOWLEDGE TRANSFER SYSTEM

Suppose we have a condition C; with CD;= {red, orange, yellow, green}. Then we
can see, in Figure 6.7, that the first classification of this condition below node X is
exhaustive and exclusive, because:

U{{red}, {orange}, {yellow}, {green}}= CD; and

n{{red}, {orange}, {yellow}, {green}}= 0

However, the second classification below node Y is not exhaustive and not exclusive,
because:

U{{green}, {orange}, {yellow}, {green}} -:f. CD; (red is lacking) and

n{{green}, {orange}, {yellow}, {green}}* 0 (green occurs two times).

In both cases, the Integrity Control Sub-system alerts the user that the integrity of the
knowledge universe is endangered. So far, integrity control seems to function
reasonably well. It may be clear, however, that many cases show much more
complexity. Complex cases may emerge as a consequence of using OR, AND, NOT
and ELSE as operators in the condition alternatives of a DT. The following example
displays the condition height that is supposed to have the following interval domain of
integers: [O, ... , 50}. Suppose that the condition is the first condition in the DT, so that
we do not have to display a tree structure. The displayed situation containing an OR
operator is not accepted by AKTS, because the values [10"." 14] are lacking. The
lntegrity Control Sub-system of AKTS classifies the DT as being not exhaustive:

evaluates to:
[O, ... , 5)

Figure 6.8: A Non-Exhaustive Condition

evaluates to:
[20" .. ,50)

The eonnective AND can only be used for multi-valued variables. A multi-valued
variable can attain several values at the same time. The verification of multi-valued
variables is not supported by the lntegrity Control Sub-system for two reasons. First,
practical experience does not indicate a need for automatic support for the verification
of multi-valued variables. Second, the verification procedures for multi-valued
variables are of a tremendous complexity and have limited value because they are
only able to perform simple logical checks.

The NOT-operator can be used in a condition altemative to cover values that cannot
be used elsewhere. The range of the NOT-operator often contains the OR-connective.

- 178 -

CHAPTER6 THE ADVANCED K1VOWLEDGE TRANSFER SYSTHM

Below, we present two examples containing the NOT-operator. The first example
refers to a condition subject colour with the domain {red, yellow, green}. The second
example refers to the condition subject height again with the domain: [0, ... , 50]. Both
situations are not accepted by AKTS. The first situation is not exclusive because
green occurs twice. The second situation is not exhaustive because of the absence of
15.

r
evaluates to:

{Red}
evaluates to: evaluates to:

{Yellow, Green} {Red, Green}

Figure 6.9: A Non-Exclusive Condition with NOT-operators

evaluates to:
[0,".,5)

evaluates to:
[5,"., 14]

evaluates to:
[16,""50]

Figure 6.10: A Non-Exhaustive Condition with NOT-operators

The Integrity Control Sub-system of AKTS also deals with ELSE and 'don't cares'.
ELSE always evaluates to the remaining values of the domain that are not yet present
in a DT, whereas a 'don't care' always equals the complete domain. An example with
ELSE is displayed by Figure 6.11. Apart from the evaluation of ELSE to {Yellow,
Green}, AKTS does not accept this condition, because Blue does not match the
relevant variable constraint.

evaluates to: evaluates to:
{Red} (Yellow, Green}

Figure 6.11: A Condition Containing One Condition Alternative with ELSE

179

CHAPTER6 THEADVANCED KNOWLEDGE TRANSFi:tR SYSTE\1

The integrity constraints that are covered by the exclusiveness and the
exhaustiveness constraints are deferred constraints. The user determines whether and
when these eonstraints are verified. lmmediate constraints, on the contrary, have to be
satisfied after every user action. The constraints referring to the formal eonnections
between levels of DT's are immediate constraints. They are explained in the next
seetion.

Abstract 1

Cl Condition Subject l A B c
C2 Condition Subject 2 D E D E D E

Al Action Subject 1 x - x x -

RI R2 R3 R4 R5 R6

(A) A Head Table

Condition Subject l

Cl Condition Subject 1. 1 K L

C2 Condition Subject l.2 p

Al Condition Subject 1 A

Rl

(B) A Condition Subtable

Action Subject l

Cl Condition Subject 3

C2 Condition Subject 2

Al Action Subject 1.1 H

A2 Action Subject l.2 M N 0

A3 Action Subject 1 x x x
Rl R2 R3

(C) An Action Subtable

Figure 6.12: A Decision Table System

180

CHAPTER6 J'J/J:.' ADVA.NCED KNOWl.EDGE FRANSFJ::R SYSI1JW

Checking Format Connections in a Decision Table System
The facilities that check the hierarchical connections occurring in a DT-system rely on
the forma! definition of (bilateral) connections as given in Chapter 3 and applied in
Chapter 5. We revert to the following example of Figure 6.12. The forma!
definition of this DT-system is:

RL(Abstract) {DR1, DR2 , DR3 DR4 , DR5 , DR6 } where:

DR1 {(Condition Subject l; A), (Condition Subject 2; D), (Action Subject 1; X)}

DR2 {(Condition Subject I; A), (Condition Subject 2; E), (Action Subject l; -)}

DR3 {(Condition Subject l; B), (Condition Subject 2; D), (Action Subject l; -)}

DR4 ={(Condition Subject 1; B), (Condition Subject 2; E), (Action Subject I; X)}

DR5 = {(Condition Subject l; (Condition Subject 2; G), (Action Subject l; X)}

DR6 ={(Condition Subject l; C), (Condition Subject 2; F), (Action Subject l; -)}

RL(Condition Subject 1) = { DR1, DR2 • DR3 , DR4 } where:

DR
1

{(Condition Subject 1.1; K), (Condition Subject l. 2; P), (Condition Subject 1; A)}

DR2 {(Condition Subject 1.1; K), (Condition Subject 1. 2; Q), (Condition Subject 1; B)}

DR3 ={(Condition Subject 1.1; L), (Condition Subject l.2; P), (Condition Subject l; B)}

DR4 = {(Condition Subject L l; L), (Condition Subject 1. 2; Q), (Condition Subject 1; A)}

RL(Action Subject l) {DR1, DR2 , DR3 }

DR1 {(Condition Subject 3; S), (Condition Subject 2; V), (Action Subject l. l; H),

(Action Subject l. 2; lvl), (Action Subject l; X)}

DR2 = {(Condition Subject 3; S), (Condition Subject 2; W), (Act ion Subject 1.1; /),

(Action Subject 1. 2; N), (Action Subject 1; X)}

DR3 {(Condition Subject 3; T), (Condition Subject 2; (Action Subject 1.1; 1),

(Action Subject 1.2; 0), (Action Subject l; X)}

Further:

h1 { (Condition Subject 1; Condition Subject 1)} and:

h1 connects RL(Condition Subject l) with RL(Abstract)

The connection states that the restriction of the sets of RL(Condition Subject 1) to
dom(h 1) is a subset of the restriction of the sets of RL(Abstract). To describe the
relation between the head table and the action subtable, the identical function h2 is
defined as follows:

h2 {(Action Subject I; Action Subject l)} and

- 181

CHAPTER6 THE AD VANCED KlVOWLEDGE TRANSFER St'STEM

hz connects RL(Action Subject 1) with RL(Abstract)

There are several ways in which a user might, unintentionally, break off a connection
between two tables. First, the user may change the name of parameters involved in the
connection (conditions and actions are collectively called parameters). When this
happens, the Integrity Control Sub-system of AKTS immediately asks the user
whether breaking off the connection is indeed intcnded. Second, the user may add or
delete parameter alternatives involved in the connection. Adding alternatives only in a
head table or only in a subtable, in case of a bilateral connection, is not allowed. If, on
the contrary, in both tables the same alternative is added or deleted the bilateral
connection remains intact, so no immediate danger is caused. Adding an alternative
only to a head table is allowed in case of a non-bilateral connection, whereas deleting
an alternative only in the head table is not allowed if it concerns an alternative that is
an action alternative in the connected subtable. For instance, when a user deletes
condition altemative A from the DT Abstract, the subset relationship is broken off. As
long as alternatives are added that also oceur in the head table to only a subtable,
adding is allowed in case of a non-bilateral conneetion. In this situation deleting
alternatives in the subtable and adding and deleting in both types of tables is also
allowed as the subset relation remains intact.

6.3.3 Reduction Mechanisms

AKTS also has a facility to optimise DT's. The optimisation facility is based on the
phenomenon that identical goal-pattems in a DT are reducible to common condition
alternatives. This occurs when:

a. neighbouring rules have identical goal patterns and the similarity of these
patterus is reducible to common condition alternatives

b. neighbouring groups of rules have identical goal pattems and the similarity of
these patterns is reducible to common condition alternatives

There are several reduction possibilities. Figure 6.13 shows a first reduction possibili
ty. The first tree represents a DT with four DR's each containing two conditions and
one action. The actions show two patterns: 00 and 11. The first pattern is reducible to
the second condition. The pattern indicates that there is no functional difference be
tween the condition alternatives CA21 and CA 22 • Since both alternatives are
functionally equivalent, (the reduction module of) AKTS removes the differences,
assuming that CA21 and C A22 are exclusive and exhaustive, by replacing the
alternatives by a 'don't care'. In this way the first two rules are automatically reduced
to one.

Almost the same procedure can be applîed to the second pattern 11. This pattern is
reducible to the differenees between CA12 and CA 13 • A difference with the previous
reduction is that the condition alternatives causing differences are located at another
level. Another differenee is that now it is not allowed to replace CA 12 and CA 13 by a
'don't care', beeause another alternative, CA l 1' is present. For this reason AKTS

182 ~

CliAPTHR.6 '/!JE ADVANCED Kl'ofOW'LED<iE TRANSFER SYSTt'lh'

applies the OR-operator and reduces two rules to one rule. The complete operation
yields a reduction of 50%.

Figure 6.13: Reduction of Neighbouring Rules Using 'Don't Cares' and the OR
Connective

Figure 6.14 displays another type of reduction. It shows that groups of patterns are
present. The first group of patterns is 01 and 01. This pattern is redueible to the
condition alternatives C,421 and CA 22. Since AKTS assumes that the condition subject
to be reduced is exhaustive and exclusive, it replaces these alternatives by a 'don't
care'. The operation yields a reduction of two rules. The second pattern is 10 and 10.
The repetition of patterns is reducible to CA 12 and CA 13 . As there is again a third
condition alternative, AKTS uses the OR-connective and reconstructs the condition
alternative B OR C. This operation also yields a reduction of 50%.

A quite different type of reduction is exemplified in 6.15. It should be
noticed that the first pattern 00 cannot be reduced, because the first 0 belongs to
another subtree of the first condition. But note that the first rule and the fou11h rule are
exactly the same except for condition 1. AKTS can autornatically merge these rules
by combining the relevant alternatives CA 11 and CA 13 through an OR-connective. This
reduction operation deletes one rule. AKTS is now in a position to discover another
reduction possibility. Two patterns emerge: 01 and 01 which are reducible to
differences between CA 12 and CA 14. AKTS again uses the OR-connective. The
complete procedure again reduces the number of rules by 50%.

Note that a tree is reduced from below, so that also subtrees which are dissimilar in
shape but logically equivalent, are reduced. Figure 6.16 dernonstrates a reduction with
the OR-conneetive in practice. The domain is discussed in Chapter 7.

- 183

CHAPTER6 THEADVANCED KNOWLEDGE TR4AISPER S'YSTEM

Figure 6.14: Reduction of Neighbouring Groups of Rules Using 'Don't Cares' and the
OR-Connective

- 184 -

CHA!'TER6 FHFADVANt 1-D KNOWU:lJGl TRA1VSFFR SV'"iTEA1

Tabk3

\~
\ ·~

c

/\ /\

0

Figure 6.15.· Reduction ofNon-Neighbouring Groups of Rules

psum as bind~F

(A) A Decision Table in AKTS Before Reduction

lli!1W Design ton\'.Ult f.u
1 Untlo !!2

Cu!
Copy
Paste
C.lear 6 psum as binder

Copy Table

Add Condition :JJ:H
Hdd Cond. AltematiUe 3€.I
fldd Rttïon :1t:J

t:;pe of U:l.Zide Dmder gyp~'JTü linJ.e OR
J;.;rhauliclime

type wf oi.1.tz:ide bindu

Prolog Model

'Show Clîpboard

(B) A Decision Table After Reducrion

Figure 6.16: Reduction in Practice

185 -

/

x

CHAPTER6 THEADVANCED KNOWLEDGE TRANSFER SYSTEM

Part of the knowledge universe can be specified through Prolog. For didactic
reasons, we postpone the discussion of using Prolog in AKTS to the next section
dealing with the design of a knowledge bank using AKTS.

6.3.4 Reconstructing in Prolog

The lack of structuring capabilities of Prolog imposes much discipline on the
modeller. This weak point of Prolog can be circumvented in two ways. First, the
modeller in Prolog should be trained to develop skills to reconstruct a(n executable)
knowledge universe in Prolog. Second, formal techniques can be added to provide the
necessary structuring facilities. The two ways are complementary and reinforce each
other. The skills needed to reconstruct knowledge universa in well-styled Prolog
models can be gained by practice together with consultation of specific textbooks on
this topic.

In AKTS the second way is implemented by taking advantage of the structuring
capabilities of DT's. The reconstruction of a (part of a) knowledge universe in Prolog
predominantly takes place from a reconstructed DT-system: when the option of DT's
is not effective anymore, part of the knowledge universe can be modelled in Prolog.
This Prolog model can be inserted in AKTS. A call to this model takes place from (1)
a DT property or a (2) a parameter property. Such a call can be used to retrieve the
answer to the question whether a certain wall is susceptible to the formation of a
chemica! product. This example is elaborated in Chapter 7.

susceptible _to(! Wall ! , ! Chemica] Product!, !Answer !).

Input arguments and output arguments are placed between exclamation marks. Input
and output respectively means input and output for the Prolog model. Thus the
variable Wal! may be a parameter that occurs in a DT or in another Prolog model.
When the call is made, Wal! should already be instantiated. The variable Chemica!
Product and Answer could be output variables that return values from the Prolog
model. A Prolog model representing the object-type susceptible to ettringite might
look as follows:

susceptible_to (Wall, 'the_formation_of_ettringi te, yes)

contains(Wall,gypsum),

contains(Wall,hydrated_calcium_aluminates),

contains(Wall,moisture).

Using Prolog's inference engine (Chapter 5) Chemica! Products can be bound to
ettringite and Answer to yes. These values can subsequently be used to proceed the
problem solving process.

- 186 -

THf ADV:i..!\'CED KNOf<lil:.D(:J·: TRAJV'SF!:'R SYSTEM

6.3.5 Navigating through a Knowledge Unîverse

AKTS also provîdes facilities to survey the structure of the knowledge universe.
Figure 6.17 shows two surveys of parts of a knowledge universe. The knowledge
universe belongs to a knowledge-based system that is currently being developed. It
contains knowledge coming from several European experts; with it damage to a
building caused by deterioration processes can be diagnosed. In Chapter 7 we discuss
this knowledge-based system in relation to functional object-types.

Gypsum as binder

Moisture

(A) Survey of the Knowledge Universe 'Brick Masonry Susceptible to the Formation of
Ettringite'

Pyrite

Wettingrain

(B) Survey of the Same Knmvledge Universe. Now the Survey Zooms in on 'Gypsum as
an in Situ Product of a Chemica! Reaction'

Figure 6.17: Two Sun1eys of the Structure of a Know{edge Universe.

6.4 DESIGNING A KNOWLEDGE UNIVERSE

When a knowledge universe is reconstructed using DT's and Prolog, it should be
designed. Normally, the design phase is an intermediary step that should preferably be

187 -

CHAPTEil6 THE ADVANCED KNOWLEDGE TRA!VSFER SYSTEM

executed before a knowledge universe is implemented into a knowledge-based
system. The design step focuses on the design of the architecture, the modules to be
built, the user interface and on the design of the implementation formats of a
knowledge-based system.

For our purposes design looks somewhat different. In AKTS the design phase
implies adding extra information to the reconstructed knowledge universe. This
information is useful for simulating the knowledge universe. It refers to properties of
DT's and to properties of conditions and actions of DT's.

6.4.1 Designing Decision Tables

We can specify three properties of a DT. A designer can type in a text that explains
the reason of existence of the DT and that clarifies the domain for which the DT is
reconstructed. This is the Remarks property. Furthermore, a designer can specify a Do
Before property and a Do After property. A designer can mention an already specified
Prolog model as the value of these properties. Do Before and Do After then imply the
execution of the Prolog model respectively before or after executing the DT. These
properties can be applied to give a message to a user, to query a database, to conduct
calculations and so on.

E11tra

:!CU
Parnmeter Properties S€Y

Table Name; Restored britk masonry wall susceplîllle to
degradittion due 10 the formation of
ettringite

Remarks: 1

D:o Bl!'fore: writenl('The followlng quesUons are meant
to decide whether the restored brî.ck
ma:sonry wa:ll is susceptible to degn1d11tion
due to .. ~.~!. formallon of eHrlnglte')

Oo Rfter:

D lt Module

Figure 6.18: Designing Decision Tab/es

6.4.2 Designing Parameters

A designer can also assign values to parameter properties. A parameter can have
several properties. Explanation is a piece of text that serves as clarification of the
parameter. If necessary, the text can be shown on the screen during the execution of a
knowledge uni verse. The value of the Prompt property is text representing a question.
This question can be posed to a user so that the user can provide AKTS with a value
for the parameter. The When Needed property is a Prolog command or the name of a
Prolog model. At this moment AKTS has the following predefined (Prolog system
predicates are always present) Prolog commands available:

- 188

CliAFil:'R6 THE AOVANCED KNOWLHDGE TRANSFER Sf STEM

do_table(<tablename>)
The table name filled in as an argument will be executed.

repeat_table
The actual DT or the most recently executed DT will be executed.

reset(<parameter>)
The parameter mentioned will lose its value if it has received one.

reset([<parameterlist>])
The parameters mentioned will lose their values if they have received one.

reset_all
All parameters with values wil! be reset.

reset_conditions
All conditions of the actual DT or of the last DT executed lose their value~.

resetJrom(<parameter>)
All parameters that received a value since the tracing of the parameter mentioned will
lose their values if they have received one.

show _picture(Resource file, ResourceNumber, Window, Top, Left, Depth, Width)
Displays a picture from the specified resource file in the graphical window with the
specified size.

show _picture(Resou ree file. ResourceNumber, Window)
Displays a picture from the specified resource file in the window.

value(Parameter, Value)
Retrieves the value of a parameter. The first argument of this predicate is a parameter.
The second argument is the value of that parameter.

Together these Prolog commands form an important extension for using DT's in the
knowledge modelling process.

To specify a Prolog model a special window is available. A Prolog model may
contain formulas. These formulas can be used to calculate, for instance, the stiffness
of a column. The When Needed property can also function as a demon. Before a
parameter is evaluated, AKTS checks the When Needed property of the parameter.
The value of the When Found property is executed after that the relevant parameter
has received a value. The value of the Default property is the default value of the
parameter. The default value wil! be assigned to the parameter when no ways are open
anymore to find the value of a parameter.

189

CllA.PTER6

." , ... ,_Consult EHtra
Table Properties

Parameters i.ICU , , .

1'HEADVA1v"CED KlVOWLEDGE TRANSFER SYSTEM

Parameter : type of binder

Ettplanation; The binder is the compommt of the mortar
that binds together the inert purticles like
1umd grainsi

Prompt : tllhst type of binder is used ln the mortar

Wtum
Needed

WMn
rnund

Of-the wall?

Default : gypsum

database.(!wall ld!,!type or

Oomain : {gypsum, time, hydraulït limeJ

0<1ma1n Type:

Olettt ®Word
® EnumoraHon O Integer

O ln1ernal 0 Re11I

0 MulUUtlilUed

0R'!:kfirst

0Goal

Figure 6.19: Designing Parameters

i Enumeration {a.b.c.d) Single Values from closed single

(single-valued) Domain eventuaUy

connected with OR

(a.b.c,d} too complex Multiple Values closed

(with And and Or)

open not applicable on domain

open not applicable on domain

Figure 6.20: A Sample of Domain Properties of Conditions and the Way They Are
UsedbyAKTS

The Domain Type property assesses the allowed values of the parameter involved. It
can, as already discussed, have the following types: text, enumeration, interval. A text
parameter is a parameter the value of which is a string of text of a certain length. An
enumeration parameter is a parameter the possible values of which are enumerated in
a set ealled the domain of the parameter. The difference between a text parameter and
an enumeration parameter is that the text parameter can attain every potential value
that is a string of text with a limited length, while an enumeration parameter can only

- 190 -

GlAPTt'R6 THE ADE4NCED KN"OW'LEDGt:: TR4iVSFER SYSTE}ff

attain values that are specified in the domain. Text parameters do not play a role in the
realisation of a goal of a DT. An application of AKTS may need a text parameter for

messages with a personal flavour. For instance, the name of a person can be
used to 'personalise' messages. The parameter name then is a text parameter.
Enumeration parameters can be single- or multi-valued. The meaning of interval will
be clear. Parameters of type Enumeration or Interval can have integers or reals as their
values Figure 6.19).

The Ask first property denotes that the user must be asked first about the value of
the parameter. Finally, the property Goal denotes whether the parameter is a main
goal of the knowledge-based system-application. If a parameter has a Goal property
we call it a goal parameter. Every application must have at least one goal parameter.
Goal parameters are placed in the goal stack. When AKTS starts the execution of a
knowledge universe. AKTS begins tracing the of the goal stack.

6.5 SIML'LATING A KNOWLEDGE UNIVERSE

If a knowledge universe is reconstructed AKTS offers several facilities to simulate the
knowledge universe. For this purpose AKTS posscsses an inference machine (a meta
interpreter) that takes care of the execution of the knowledge uni verse.

6.5.1 The Inference Machine

The inference machine of AKTS is goal-oriented. It departs from a list of goal
parameters. The inference machine attempts to trace these goal parameters in order of
appearance. Tracing a parameter is the process of trying to find a value for a
parameter. The inference machine of AKTS uses a backward chaining strategy,
though it is possible to influence the inference machine. During this inference process
parameters that are not goal parameters also must be traced. These non-goal
parameters are relevant for tracing the goal parameters. There are several ways to find
a value fora parameter; they are described below.

1. lf the parameter to be traced has an Ask first property, its value is simply
asked. Whether the user has to make a selection out of a list of possible values
or type in the exact value of the parameter depends on the Type property of
the parameter (see Figure 6.19). lf the value of the parameter can be found in
other DT's, the user has the option of indicating that he does not know the
answer.

2. Another way of finding a value for a parameter is provided by the When
Needed property. The When Needed property is often used if the va]ue of a
parameter has to be calculated and the necessary formulas are available in the
form of the When Needed property value. Another use of this property is to

191 -

CHAPTER<l 11-lEADVANCED KlVOW;LE!JGE ~!\/SFER SYSTEM

design a query to a database as a When Needed property value. The calculation
of the query then returns the value of the parameter.

3. The value of a parameter can also be found by tracing DT's. AKTS then tries
to look for a DT that contains the parameter to be traced as an action
parameter. The value of the aetion parameter depends on the condition
parameters of the DT. In order of appearance the condition parameters are
traced until the value of the action parameter is found. When the condition
parameters are traced again other DT's can be searched through. In this way a
whole system of DT's can be traced by the inference machine of AKTS.

4. If still no value is found the inference machine uses the Default property if
present. The value of the Default property becomes the value of the parameter.

5. If the above strategies fail, the user is finally asked (again) to provide a value.
But now the user is forced to provide an answer and does not have the
possibility to answer 'Don't Know'.

When one of the ways succeeds the inference process for the parameter stops. The
parameters that receive values during the inference process, the so-called facts are
stored in a list. The user can modify this list by explicitly resetting these parameters.
Prolog commands can also be used to change the list of facts.

The inference machine of AKTS applies four basic strategies: the determination of
parameter values, the inference of values, the evaluation of a DT and the execution of
Prolog models (Figure 6.21). These strategies interactively co-operate with each other
to realise a genera! and efficient reasoning process.

Reasoning strategy 1: Determining a Value of a Parameter
Figure 6.21 (A) shows a genera! overview of the strategy of determining a value of a
parameter. The point of departure is that there is a parameter to be traced. If its value
is known, the inference machine of AKTS has finished its work. Otherwise, the
inference machine checks whether the parameter has an Askfirst property. By means
of assigning Ask first properties to parameters and adding subtables, AKTS asks the
value and checks, if necessary and possible, whether the value belongs to the domain
of the parameter. If the value cannot be asked or if the answer is not right, AKTS
proceeds by checking whether there is a task and, if so, attempts to execute it. If this
procedure does not lead to success, AKTS attempts to infer the value (Figure 6.21
(B)). If inferring does not yield a value either, AKTS searches fora possible default
value. If all these possibilities do not yield a value, AKTS, as a last resort, (again)
asks the user for a value.

Reasoning strategy 2: lnferring a Value
To infer the value of a parameter, AKTS searches through the database of DT's to find
a table that contains the parameter as a goal. If AKTS is not able to find such a table,
it appeals to other reasoning strategies. If, on the contrary, a table is found, AKTS
verifies whether a Prolog model is associated and, if this is the case, it executes this

- 192 -

CHAP1ER6 THE ADVANCl:D KNOWLEDGE TRANSFER SYSïEM

model (Figure 6.21 (D)). Subsequently, AKTS evaluates the table that was found
according to the evaluate a DT strategy (Figure 6.21 (C)). Finally, AKTS again
checks whether a Prolog model is associated with the table and, if this is the case, it
executes this model (Figure 6.21 (D)).

Reasoning strategy 3: Evaluating a Decision Table
For evaluating a DT, AKTS first selects a condition. If the selected condition is a
'don't care', the inference machine of AKTS jumps to the next available condition in
the table. If the selected condition is nota 'don't care', AKTS attempts to determine
the value of the parameter and, if possible, selects a subtable that contains the
parameter in question as a goal (Figure 6.21.A). If no condition is available the right
action value is selected. If there is a Prolog model associated with the action
alternative that model is executed.

Reasoning Strategy 4: Executing a Prolog Model
One of the first things AKTS does to execute a Prolog model, is to verify whether the
model contains parameters that have to be traced first. Parameters that constitute an
input for the model are selected. Since their values should be used in the model, their
values are traced using the strategies just explained. Subsequently, the Prolog model
is executed according to the Prolog inference machine as explained in Chapter 5.
Normally, the execution of Prolog models is used to retrieve knowledge from
databases, to use the knowledge of object-types that require recursive definitions, or
to access formulas.

6.5.2 Performing What-If Analyses

Using the inference machine, What-if analyses can be performed. When a user is
simulating a knowledge universe and has already given at least one answer, AKTS
offers the possibility to review the answers. A parameter that has received a value can
be selected (Figure 6.22). Next, the associated answer can be made visible and
changed. If the user indicates that the simulation should be continued (by clicking the
button Reconsult, see Figure 6.22), AKTS retracts the values of the parameters that
logically follow the parameter the answer of which has been changed by the user.
Since the parameters that now follow the changed parameters may be different, other
parameters may be traced. This may imply that (a) parameters that already have
attained values are not useful anymore and (b) parameters that have been passed in a
previous 'round' can yet be asked or otherwise traced for their value.

By means of the What-if facility, AKTS offers the possibility to study the
consequences of changing one (or more) parameters if the values of the other
variables are fixed. Since, AKTS deals with functional equivalence, the What-if
analyses are in accordance with the theory of functional object-types. This means that
the influence of changing an INUS-condition within a conjunct set can be assessed. It
is also possible to check the influence of a changed conjunct set. In this way. complete
functional analyses can be performed.

- 193 -

CHAPTEP.6 THZADVAlVCED KNOWLEDGE TRANSFER SYSTEM

ready ready

lnferring a Value of a Parameter

yes ~

(C) Evalaating a Deciswn Tàble ready (D) Executing a Prowg Model

Figure 6.21: The Inference Machine of AKTS

194 -

CHAPTER6

E11tra
Reset fr consult 11!~N

Consult

!lsked Questions:

type of mortar
type of inside binder
type of binder

vetting rai:n

THEADZ4NCED KNOWLJ::DCif:' 1R4NSFER SYSTEM

capillary flov from groOlld vater

Parameter :J€G
Model

Settings

Open Consultation
Saue Conrnltation

[Done '!

Figure 6.22: AKTS Supporting Exploration of a Knowledge Universe via 'What-if
Analyses

6.5.3 Debugging a Knowledge t:niverse

A knowledge universe can be debugged, Tuis implies that AKTS, when asked, shows
the complete reasoning process in a special consultation window, Search trees that are
built are displayed by indents. The depths of the indents corresponds with the depths
of the traversed tree, AKTS tells the user whether a parameter value has been asked,
inferred (i.e. found in other tables), determined by performing a task (for instance
accessing a database or a formula) or by default

6.5.4 Tracing a Part of the Knowledge Uni verse

In order to prevent a user from being continuously obliged to simulate a complete
knowledge uni verse, it is possible to selecta parameter and let the inference machine
find a value for it. Then, AKTS by means of its inference machine only uses
knowledge needed to find a value for the requested goal parameter. Another way to
trace apart of the knowledge universe is to selecta non-goal parameter and ask AKTS
to trace it The procedure that is followed is similar to the procedure for tracing goal
parameters (see the menu in Figure 6.22).

6.5.S Explanation Facilities

During simulation, the user has the possibility to ask for explanation. Two types of
explanations are shown then; first, the text inserted as the Remarks property of the DT
and second, the text that belongs to the Explanation property of the parameter in
question. These pieces of text can help a user to give an answer. A third explanation

- 195

CHAPTER6 THE ADVANCED KNOWLEDGE TRANSFER SfäTEM

------- -------

possibility is to ask AKTS to display the DT to which the parameter belongs. By this,
a user is able to see the background of AKTS asking the value of a particular
parameter.

6.6 CONCLUSION AND DISCUSSIONt

The conclusion is justified that, to a considerable degree, AKTS takes advantage of
the complementarity of DT's and Prolog. AKTS not only uses the strong points of
DT's (their structuring capabilities, their well-organised representation of knowledge
permitting easy validation and simulation by hand, their goal-orientation and tackling
of functional equivalence), but also intercepts their weak points (lack of facilities for
automated simulation, lack of possibilities to incorporate object-types that require
small or recursive definitions) by using Prolog (see Chapter 5). By the integration of
DT's and Prolog AKTS offers facilities to represent, reconstruct, validate and simulate
functional object-types.

It is also justified to draw the conclusion that AKTS, in a convenient way,
overcomes the three limitations observed of jointly applying DT's and Prolog: lack of
facilities for automated validation and automated simulation and lack of facilities for
drawing DT's. Firstly, AKTS permits automated validation. By dealing with
exhaustiveness and exclusiveness and (bilateral) connections between DT's, the
Integrity Control Sub-system of AKTS helps to validate that the intended system is
specified. Together with the inference machine it also makes the validation that the
program code satisfies the model superfluous. Secondly, AKTS permits automated
simulation. The inference machine of AKTS provides extensive facilities to simulate a
reconstructed knowledge universe including facilities for conducting What-if
analyses. Thirdly, the Graphical Decision Table Editor of AKTS offers advanced
graphical support to quickly reconstruct and rnodify DT-systems.

Undoubtedly, the two previous conclusions will not prevent the reader of still
having at least a few questions. Por instance: 'How does AKTS relate to other
packages?' AKTS differs from tools that work with DT's such as PROLOGA
(PROcedural LOGic Analyser; see Vanthienen, 1988 and the DT-tool of Mors (1993).
In PROLOGA, the individual DR's of a DT have to be typed in. Only if every rule is
correct and the rules together form a tree, PROLOGA is able to draw a DT. If the
table bas to be modified, a user is forced to correct the individual DR's. Also in the
DT-tool, the tree structure is absent during the edit procedure leading to an error
prone reconstruction process. In AKTS this can be done graphically and much faster.
In cornparison with a tool such as TheME (Balder & Akkermans, 1992), AKTS is
much more direct and much easier to use. In contrast to TheME, AKTS offers, a high
level language that shields the user from the low level complexities of mathematica!
logic. For these reasons, and other reasons already clarified in Chapter 5, we think that
AKTS outperforms other packages.

A number of TNO-reports contain a detailed, format functional specification and technica! design concerning the
architecture of the modules. module descriptions and the data structures of AKTS. Also the Prolog code (a small piece
of 11 i5 displayed in Appendix A) is documented. These documents are, for understandable reasons. not available.

196

CHAPTF:R6 THE ADVANCl;J) KNOlf/l EDGE TRAN5FER SYSTEM

Another readers' question might be: 'How does AKTS perform in the daily practice
of reconstructing, designing and simulating knowledge universa?' By now, it appears
that the utility and ease-of-use of the representational power of AKTS have not pass
unnoticed in the building and construction industry (and beyond). Currently, AKTS is
operational in the following domains:

Checking designs of office building on the fire-safety regulations
Damage assessment ofbuildings (see Figure 6.23)
Diagnosis of humidity problems in houses
Diagnosis of Indoor Environments
Design of connections in steel structures
Matching office building profiles concerning location and quality for real
estate agents
Urban planning and architccture

Figure 6.23: AKTS in Full Operation with Knowledge about the Diagnosis of Brick
Masonry Walls (see Chapter 7). Bottom right: Parts of the Structure the
Knowledge Universe. Top Left: A Decision Table Containing Knowledge about
Rising Damp. Bottom left: Consultation Output. Middle: Consult Dialogue for
Questioning Uvers. The Wall and Diagram are Displayed Using the Graphical
Description Language of AKTS

- 197 -

CHAPTER6 THEADVANCED KNOWLEDGE TRANSFER SYSTEM

Besides this, new AKTS-projects are being set up to improve knowledge transfer in
many other fields such as that of environmental regulations and of insurance and
finance.

However, the near future will show how well the integration of DT's and Prolog
works in various knowledge domains. Many questions concerning the functional
combination of AKTS and the people using it, need to be answered. Is AKTS really
adequately equipped to model knowledge of the heterogeneous outside world? Does it
have the right validation facilities? Do people, working with AKTS, have the
discipline and the abilities to reconstruct DT's and to apply Prolog in the right way;
can they bridge the gap between the declarative and procedural semantics of Prolog?
To what extent are people capable ofmodelling their own knowledge using AKTS.

The first signs are positive. However, experience points out that modelling
knowledge still requires a theory of the nature of knowledge and explicit experience
and capacities for modelling knowledge. So, AKTS does not make knowledge
engineers superfluous, but facilitates and improves their activities. We think that
AKTS is a step forward in the development of knowledge-based systems. lt will not
surprise the reader that extensions on AKTS are intended to make it yet more
appropriate to serve its purpose: improving the process of modelling knowledge to
develop (complex) knowledge-based systems that will become vital tools on any
company's shop floor.

- 198 -

CHAPTER 7

CHEMICAL DEGRADATION AND

RESTORATION OF ANCIENT BRICK MASONRY WALLS

7.1 INTRODUCTION

To substantiate the central argumentation of the thesis we discuss a case-study. The
subject of it originates from the field of chemical degradation and restoration of brick
masonry walls. Specifically, the case-study deals with sulphate salt reactions causing
the formation of ettringite, a specific form of chemical degradation. We do not aim at
deepening our understanding of this field or to present a laborious case. Rather, this
chapter attempts to exemplify the three main methodological points at issue in this
thesis that deal with the problem of modelling knowledge: (1) the value of a
knowledge level integration of AI and DBT, (2) the value of the theory of functional
classifications to accomplish such an integration and (3) the value of applying DT's
and Prolog in the form AKTS makes them available as a modelling language for
functional object-types.

We first provide an overview of the construction materials that play a role in the
chemica! degradation and restoration of brick masonry walls (Section 7 .2). To attain a
knowledge level integration of AI and DBT, we reconstruct implementation-free
descriptions of object-types (delineating walls susceptible to the formation of
ettringite) and objects (referring to brick masonry walls). These descriptions, based on
the theory of functional classifications, are represented by means of DT's (and Prolog
in 7.4) using AKTS (Section 7.3). Then, we descend to the symbol level by
transferring the reconstructed object-types and objects to representation formalisms of
AI and DBT. To prevent a bias toward a specific representation formalism, we use
mathematica! logic to assess the technica! design of each of these representation
formalism (Section 7.4). We conclude the chapter by going through the three
methodological points again (Section 7.5).

7.2 GENERAL DESCRIPTION

The case-study is derived from the EC Environment-project entitled Expert Systemfor
Evaluation of Deterioration of Ancient Brick Masonry Structures (1992-1995). The
main goal of this project is to improve the availability and accessibility of knowledge
of ancient brick masonry structures by the development of a knowledge-based system.
This system should contain knowledge with regard to (a) the determination of types of

- 199 -

CHAPTER7 THE CHEMICAL DEGRADATION AND RESTO RA TJON OF ANC/ENT BRJCK MASONRY WAU.S

damage in the masonry walls of historical buildings and (b) the determination of
(environmental) causes of these damages.

The original construction materials play an essential role in determining the types of
damages due to chemical degradation. The construction materials originally used in
the masonry walls of historical buildings are (1) mortar composed of binding
materials and sands and (2) bricks and stones to be bound.

Binding materials and sands
Gypsum (CaS04 .2H20) is a binding material that is able to harden in the air when
mixed with water and sand. Because it can be washed away by rain water, gypsum is
used in the form of rendering mortar, mostly at the interim of a wall. It is also used in
the form of jointîng mortar to bind bricks and stones. Gypsum has a low strength, but
is easy to produce.

A binding material that is more difficult to produce, but possesses a higher strength,
is lime (Ca(OH)i). Lime hardens in the air when mixed with water. It also hardens
under water: lime has the property of becoming hydraulic when it is mixed with water
and natura} or artificial pozzolan or pozzolanic sand. That is, it is able to react with
the pozzolanic material in the presence of water to forma cementîtious binder. This is
called the pozzolanic activity of pozzolan sand. Lime that of its own has the ability to
harden under water independently of the presence of pozzolan sand is called hydraulic
lime.

Brick

/
Jointing mortar
(inside binder)

Rendering mortar
(out,ide binder)

Figure 7.1: Jointing and Rende ring Mortar in a Brick Masonry Wall

Bricks and stones
Bricks are obtained by firing clay previously shaped and dried. Bricks may contain
salts (e.g. sulphates) that are soluble in water. Water can penetrate the bricks, dissolve
salts and on evaporation, deposit the salts on the brick surface. Salty efflorescences
may occur if the brick is exposed to view and this may lead to the disjunction of
mortar. An even more serious deterioration may occur when the brick is coated with

- 200-

"

CHAl'TER 7 lllt: LHEMIC4L DEr.RADA. TION AND RESTO RA 110N OF 1INC!ENT liR!CK MASONRY WAJJS

rendering mortar that is able to react with the salts.
Stones do not show special problems as to the interaction with the binders originally

used in the construction of historica! buildings apart from the alkali-aggregate reaction
between the alkalis of the binder and some minerals reactively present in the stones
(Collepardi, 1990, p.84).

In masonry works (bricks and mortars) three types of degradation may occur: (1)
the reaction between alkalis supplied by the bricks and the reactive aggregate of the
mortar, (2) the reaction between the sulphates and the hydrated calcium silicates
(production of thaumasite) and (3) the reaction between the sulphates and hydrated
aluminates of the hydraulic limes. The latter reaction refers to the formation of
ettringite.

7.3 FUNCTIONAL OBJECT-TYPES (KNOWLEDGE LEVEL ANALYSIS)

An infinite number of attributes or descriptors of brick masonry walls are potentially
relevant for detecting degradation of and restoring masonry walls. Using these
attributes numerous classifications of masonry walls are possible. As stated in the
previous chapters, the process of forming meaningful classifications is a difficult task
which requires a theory underlying classification construction. We described the
theory of functional classifications as a theory for classification construction. A
centra! point of departure for the theory, is the assumption of a goal or function that
acts as a guiding principle to identify relevant attributes and to create meaningful,
functional classifications. For example, the goal 'find masonry wall that is susceptible
to chemica! degradation' helps to classify masonry walls according to all the possible
combinations of the available original materials of historie buildings: lime, gypsum,
hydraulic lime, stone, brick, etc. On the basis of these attributes, Collepardi (1990,
p.85) distinguishes 50 types of masonry walls; 20 of them are brick walls.

Figure 7 .2 is a tree that for reasons of economy is represented in a nested Pro log
list. The list is based on the S(tring)-expression notation (Lew, 1985, pp.181-184) and
represents 20 types of brick masonry walls. The codes in the terminal nodes of the
tree are the types of walls. The code Bmgl', for instance, denotes a brick masonry wall
(B) that is coated with rendering mortar (m) and that contains gypsum in the inside
binder (g) and lime and pozzolanic sand in the outside binder(/'), while the code Bmlg
denotes a brick masonry wall (B) that is coated with rendering mortar (m) and that
contains lime in the inside binder (l) and gypsum in the outside binder(g). Figure 7 .2
shows that 5 dichotomous attributes are used in the classification. In theory, this leads
to 25 types of brick masonry walls. However, if a wall has jointing mortar and thus is
exposed to view, no outside binder is present. In this case, the materials of the outside
binder are 'impossible' attributes. So the actual classification only yields 20 types of
brick masonry walls.

On the one hand, the proposed classification of Figure 7 .2 seems to be of a
completely functional nature. The classification criteria are derived from the materials
used and seem to be directly related to the chemica! degradation process. On the other
hand, the classification does not show any form of flexibility and lacks functional

- 201 -

CHAPTER7 THE CHEMJCAL DEGRADAT/ON AND RESTORAT/ON OF ANC/ENT BRICK MASONRY WALLS

equivalences. To evaluate the functional nature of the classification we focus on brick
masonry walls susceptible to chemica! degradation. One of the main chemica!
reactions that cause masonry degradation is the formation of ettringite. Therefore, we
concern ourselves with the reconstruction of the object-type Brick masonry walls
susceptible to the formation of ettringite. For the time being, we describe the context
as the circumstances under which no restoration has (yet) taken place. This context
indicates under what conditions the object-type is valid.

[Types_of_brick_masonry _ wall,
[jointing_mortar,

[gypsum_inside_binder, [ordinary _sand, [Beg]],
[pozzolanic_sand, [Beg']]],

[lime_inside_binder, [ordinary _sand, [Bel]],
[pozzolanic_sand, [Bel']]]],

[rendering_mortar,
[gypsum_inside_binder,

[ordinary _sand,
[gypsum_in_outside_binder,

[ordinary_sand, [Bmgg]],
[pozzolanic_sand, [Bmg'g']]],

[lime_in_outside_binder,
[ordinary_sand, [Bmgl]],
[pozzolanic_sand, [Bmgl']]]],

[pozzolanic_sand,
[gypsum_in_outside_binder,

[ordinary_sand, [Bmg'g]],
[pozzolanic_sand, [Bmg'g']]],

[lime_in_outside_binder,
[ordinary_sand, [Bmg'l]],
[pozzolanic_sand, [Bmg'l']]]],

[lime_inside_binder,
[ordinary _sand,

[gypsum_in_outside_binder,
[ordinary_sand, [Bmlg]],
[pozzolanic_sand, [Bmlg']]],

[lime_in_outside_binder,
[ordinary_sand, [Bmll]],
[pozzolanic_sand, [Bmll']]]],

[pozzolanic_sand,
[gypsum_in_outside_binder,

B = brick

[ordinary _sand, [Bml'g]],
[pozzolanic_sand, [Bml'g']]],

[lime_in_outside_binder,
[ordinary_sand, [Bml'l]],
[pozzolanic_sand, [Bml'I']]]]]]]

e = jointing mortar
l' = hydraulic lime

m = rendering mortar
l = lime
g = gypsum

g' = gypsum and pozzolanic sand

Figure 7.2: A Classification of Brick Masonry Walls

The object-type Brick masonry walls susceptible to the formation of ettringite is
pictured in the DT of Figure 7 .3. Rule 1 is a conjunct set containing three abstract

- 202 -

Ob1PTER7 !'HE UIFM!CA.L JJF.Cll-1D.-l 1WN AND RESTOl?AT!ON OFANUFN'f' BRIC!< MASONRV w~AJL~

INUS-conditions that play a role in the production of ettringite: (1) gypsum, (2)
nvnr,cir,;•n calcium aluminates and (3) moisture. Each condition on its own is
insufficient for the formation of ettringite. but within the conjunction each is
indispensable. The chemica] reaction underlyîng this conjunct set is (Collepardi 1990,
p.89):

gypsurn hydrated calcium
aluminates

Brick masonry walJ:... su::..ccptible to the formation of dtringite

rnoîsture ettringîte

gypsum present not present

hydrated cakium aluminéitcs

moisture

Brick masonry wafü. susceptible to the formatiun
of ettringite

present not present

pre::..ent not present

no no no

Rl R2 R3 R4

Figure 7.3: The Object-type 'Brick
Ettringite'

Walt Susceptible to the Formation

Gypsum 1

Cl

C2

Al

gypsurn as binder

gypsurn as an in situ product
of a chemica! reaction

gyp~um

yes no

110

present present not present

RI R2 R3

Figure 7.4: Gypsum as a Binder or as a Product of a Chemica! Process

Ad 1. Gypsum
The DT of Figure 7.4 shows that gypsum may be present in a wall as a binder) or
as a product of a chemica! process (C2). It is a condition subtablc rclated to the DT of
Figure 7.3. Viewing eaeh of these DT's as a set of knowledge elements (see Chapter
3), the formal link between the condition subtable and the head table is the following
subset-requirement:

id{gypsum} connects KS(gypsum) with

KS(brick masonry walls susceptible to the formation of ettringite)

The DT of Figure 7.5 describes the presence of gypsum as a binder. The DT displays

~ 203 -

CHAPTER7 THE CHEMICAL DEGRADAT!ON AND RESTO RA T!ON OF ANC/ENT BRICK MASONRY WALLS

the knowledge that if the type of mortar is rendering, gypsum may be present in the
inside or in the outside binder. If, on the contrary, the type of mortar is jointing
mortar, no outside binder is present. In this case, the availability of gypsum depends
solely on its presence in the inside binder. The forma! link between this table and the
table ofFigure 7.4 is the following subset-requirement:

id{gypsum as binder} connects KS(gypsum as binder) with KS(gypsum)

Gypsum as binder 1

Cl type of mortar jointing mortar rendering mortar

C2 type of inside binder gypsum lime OR hydraulic lime gypsum lime OR hydraulic lime

C3 type of outside binder gypsum lime OR hydraulic lime

Al gypsum as binder yes no yes yes no

Rl R2 R3 R4 RS

Figure 7.5: Gypsum As Binder

Gypsum as an in situ product of a

1
chemica} reaction

Cl type of salts sulphates chlorides OR nitrates
OR carbonates

C2 type of binder lime OR hydraulic lime gypsum

C3 moisture yes no -

Al gypsum as an in situ product yes no no no
of a chemica} reaction

Rl R2 R3 R4

Figure 7.6: Gypsum as an In Situ Product of a Chemica[Reaction

The DT of Figure 7.6 reflects the following chemica! reaction (Collepardi 1990, p.89):

sulphate lime moisture gypsum

The sulphate may originate from bricks which have been contaminated with pyrite
(FeS2) during the manufacturing process. Under specific circumstances pyrite can
change into sulphate. Sea water can also be a source of sulphate. These two sources
are not incorporated in DT's, but are shown in Figure 7.8. The forma! link between the
table ofFigure 7.6 and the table ofFigure 7.4 is the following subset-requirement:

- 204-

Cf!APTfR 7 THE CHEMfC,(L DFGRADAilONAND RE!:;TORA TJ()N OF 1INC!J::Nr BR!CK 111/t)ONRY W'AUS

id{gypsum as an in situ product of a chemica! reaction}

connects KS(gypsum as an in situ product of a chemica] reaction) with KS(gypsum)

Ad 2. Hydrated Calcium Aluminates
The second INUS-condition (Figure 7.3). hydrared calcium aluminates, is itself
described by two other conjunct sets as Figure 7.7 displays: (1) the presence of
hydraulic lime and (2) the presence of normal lime in conjunction with (natura! or
artificial) pozzolanic sands from the jointing or rendering mortar. The forma] link
between this table and the table of 7 .3 is the following subset-requirement:

id{hydrated calcium aluminates} connects KS(hydrated calcium aluminates) with

KS(brick masonry wall susceptible to the formation of ettringite)

Natura! pozzolan or artificial pozzolan (pounded earthenware) is capable of changing
an air-hardening lime into a lime with hydraulic properties. In gypsum-based mortars,
the difference between normal or pozzolanîc sand is unimportant as pozzolan can only
react with lime. However. the pozzolan in a gypsum mortar can react with the lime or
hydraulic lime of adjacent mortars.

calcium aluminates

hydraulic time lime gypsurn

C2 type of >and nonna!

Al hydratcd calcium alurninates present prcsGnt not present not present

Rl R2 R3 R4

Figure 7. 7: Hydrated Calcium Aluminates

Ad 3. Moisture
The third INUS-condition that plays a basic role in the chemica! reaction that
produces ettringite, is moisture. :'vloisture is not only involved in the chemica]
interaction under discussion, but it also exerts the function of carrying one component
of a wall towards another component by means of which (other) chemica! reactions
can take place. Capillary water, for instance, can take up salts and put them in contact
with a component of rendering mmtar. Generally, historica! buildings are only subject
to significant deterioration in the presence of moisture. Moisture can originate from
'wetting' rain or from the capillary flow of water.

7.8 displays an overview of the structure of the object-type Brick masonry
walls susceptible to the formation of ettringite represented by means of a system of
DT's. The reader should note that the identification of the object-type leads to a

- 205 -

CHAPTER7 rHE CHEMJCAL DE&'RADA 110N AND RESTO RA TJON OF ANC!El'VT BRlCK MASONRY WALLS

reclassification of the objects originally presented in Figure 7 .2. In principle two
classes of objects can be distinguished: walls that deteriorate due to the forrnation of
ettringite and walls that do not. Our object-type shows that every wall of the tree that
somehow manages to match the conjunct set at abstraction level IJ (Figure 7.8) is an
instance of the object-type and thus belongs to the class of objects that is susceptible
to the forrnation of ettringite.

These walls may differ a great deal. Some walls contain gypsum in the inside
binder, some contain gypsum in the outside binder. Other walls do not contain
gypsum, but contain lime in the inside binder or outside binder. In contrast, some
walls contain hydraulic lime, whereas others contain lime in their components
combined with pozzolanic sand. Whatever differences these walls may show, all of
them are functionally equivalent, because they somehow comply with the constraints
of the reconstructed object-type.

Let us assume that the INUS-condition of moisture is met. Then, a moist wall
complies with the conjunct set at level II if gypsum is directly present in the inside
binder and hydraulic lime is applied in the outside binder. The conjunct set of
hydraulic lime is replaceable by the combination of pozzolanic sand in the inside
binder and lime in the outside binder as is clearly shown in Figure 7.7. As the
differences between gl' and g'l are not functional, we can abstract from them and
reconstruct the following set of functionally equivalent walls:

FeC1 = {Bmgl', Bmg'l} 1

II III

UI

l FeC sumds for Functional Equivalence Class.

- 206-

CHAPTHR? THE CHEJ1-1JCAF DfJ,'R,WA TiON AND RESH JIM T!ON OF ,1NC1FNT BRICK MASONRY Wrll !5

!II IV

. Sulphate <
Lime

v
Pyrite

Seawater

Wètting rain

Capillary flow from
groundw.ater

Figure 7.8: An Overview the Object-type 'Brick Masonry Walt Susceptible to the
Formation of Ettringite' produced by AKTS

An alternative way of realising a match with the conjunct set at level II is by means of
the direct presence of gypsum in the outside binder walls if hydraulîc lime is applied.
As hydraulic lime is replaceable by the combination of Jime and pozzolanic sand, the
following set of walls therefore also matches the conjunct set at level II:

FeC2 = {Bmlg', Bml'g, Bml'g'}

A third way for a wal! to meet the conjunct set at level II is shown by Rule 2 of the
DT ofFigure 7.4. lt reveals that the absence of gypsum in the inside or outside binder
can be sompensated by the presence of gypsum as an in situ product of a chemica!
reaction. Rule l in the table of Figure 7.6 shows that the conjunct set: sulphates, lime
and moisture, leads to the formation of gypsum as an in situ product. Now. another
attribute is necessary: sulphate in bricks. Note that this attribute is lacking in the tree
of Figure 7 .2. To provide hydrated calcium aluminates the lime should be combined
with pozzolanic sand or it should be hydraulic itself. The following walls do not
possess gypsum as a binder, but may deteriorate all the same when gypsum is formed
through sulphate interacting with lime and moisture:

FeC3 ={Bel', Bmll', Bml'l, Bml'l'}

Many other functional classifications can be created. We can, for instance, use the
criteria Jime in inside binder or lime in outside binder, pozzolanic sand in inside
binder or in outside binder etc. The only relevant criterium, however, is the question
whether a wall complies with the conjunct set at level II. Later, we will see that the
precise mechanisms behind functional equivalence should also be known.

The complete class of functional equivalent objects that is susceptible to chemica!
degradation can be computed using the generalised union:

} = {Bmgl', Bmg'l, Bmlg', Bml'g, Bml'g', Bel', Bmll', Bml'l.

Bml'l'}

207 -

CHAPTERJ Tf!E CHEMICAL Dt:GRADATION ANI) Rl:."STORATJON OF ANCJENT BRJCK MASONRY WALLS

Though we recognise the utility of this object-type, we must not forget to point out, as
we did in the previous chapters, the relative validity of the object-type. This can be
illustrated by incorporating several types of restoration material in the object-type.
This addition changes the meaning of our initia] object-type. Knowledge about the
mechanisms behind functional equivalence becomes important to be able to describe
the interaction between the original materials and the restoration materials. The
condition-alternatives of the first condition of the DT of Figure 7.9 display the
following types of restorations: reparation by hydraulie binders (cement, hydraulie
lime, lime-pozzolan), reparation by non-hydraulie mortars (lime and ordinary sand)
and reparation by non-hydraulic mortars (gypsum). The DT illustrates what attributes
of walls (C2 up to C 4) may lead to deterioration if a certain type of restoration is
carried out (C 1). Conceptual interactions occur between C1 and C2• The type of binder
is conditionally classified: gypsum, lime OR hydraulic lime versus gypsum, lime,
hydraulic lime !

Other objects are instances of the object-type Brick masonry walls susceptible to the
formation of ettringite. New functional classifications of objects arise. If restoration is
carried out through hydraulic binders, all walls containing gypsum may degrade:

FeC4 ={Beg, Beg', Bmgg, Bmg' g', Bmgl, Bmgl', Bmg' g, Bmgg', Bmg'l, Bmg'l'}

If restoration is carried out by applying non-hydraulic mortars (lime and ordinary
sand), all walls containing gypsum and pozzolanic sand can deteriorate:

FeC5 ={Beg', Bmg'g, Bmg'g', Bmgl, Bmg'l, Bmlg', Bml'g'}

Restorated hrick masonry wall
degradation due to the fonnation

Cl restorarion cement OR hydraulic
marerial lime OR lime-pozzolan

C2 type of
binder

C3 type of
s:and

moisture

A 1 Restorated
brick ma
sony wall
susceprible
to fonna·
tion of
ettringite

gypsum lime OR
hydrau
lic lime

Rl R2 R3

limeAND
ordinary sand

gypsum lime OR gypsum
hydrau-
lic lime

natura! normal

R4 R5 R6 R7

Figure 7.9: A Shift to Another Context

208 -

gypsum

limc

natura) nonnal
pozzolan

OR

hydrau·
lîclime

yes no

x

R8 R9 RIO Rl l Rl2

lHAPTER7 THE CHEMICA!. DEGRADA TJON AND RESTO RA TJON OF ANC/ENT BRJCK MASONRY WAUS

If restoration is carried out by applying non-hydraulic mortars (gypsum), all walls
containing pozzolanic sand and (hydraulic) lime may deteriorate. In this situation, the
difference between lime and hydraulic lime is not relevant anymore, so we obtain the
following class of functionally equivalent objects:

FeC6 ={Bel', Bmgl', Bmg'l', Bmgll, Bml'g, Bml'l, Bml'l'}

The reader should note that a functionally reconstructed object-type underlines the
need for flexible classifications. Consequently, multiple classifications frequently
occur. For instance, a brick masonry wall that is exposed to view with lime and
pozzolanic sand in the inside binder (Bel') is an instance of the first object-type and
simultaneously an instance of the second object-type.

Object-type 1
(without restoration)

Î
instance of

instance of

Bel'

Figure 7.10: Multiple Classifications

Beg

Since the materials employed in the restoration work may internet negatively with the
original components of a wall, the differences between the two object-types should be
clearly understood. Collepardi (1990, p.92) points out the implications of the absence
of this knowledge.

'It frequently occurs that, after the first period of apparent
improvement due to the restoration and consolidation of
masonries, historica! buildings deteriorate even more severely
than before the intervention'.

This quotation underlines the importance of knowing object-types. The object-types
show that similarity of objects depends on other conditions that should be known for
effective classifications. Knowing these classifications implies knowing the object
types. The object-types described mainly serve illustration purposes. Though not
trivia! at this moment, the object-type will become more complex and additional
object-types are needed. Not only are there more forms of chemica! degradation and
more chemica! products, such as thaumasite, that lead to deterioration, but there are
also other causes of degradation, for instance degradation due to physical causes.
There are also more types of elements that should be bound such as stones. Finally,
we can also distinguish other functions. For instance, we can reconstruct object-types

- 209 -

CHAPTER7 THE CHEMJCAL DEGRADA110N AND RESTORA110N OF ANC/ENT BRJCK MASONRY WALLS

using the 'prevention of leaking' or 'washing away through rainwater' as modelling
purposes. Though an intellectually difficult and time-consuming process, the
reconstruction of functional object-types is a worthwhile and necessary activity as a
basic step toward the implementation of complex knowledge-based systems.

What do we gain from this knowledge level analysis? At any rate, it teaches us that
the reconstructed object-types are conducive to more functional classifications of the
walls. These classifications are conditional reclassifications of the classifications
originally proposed. The knowledge specified in the object-type not only assesses the
conditional relevance of attributes of brick masonry walls, but also identifies
conceptual interactions that occur between attributes. Therefore, this knowledge is
ideal for damage diagnosis purposes especially for the detection of chemica! reactions
leading to degradation. In addition, the classifications are needed to be able to
determine whether specific restoration materials will internet negatively with original
materials.

The implication of the functional view for neural networks is another thing that
requires attention. In Chapter 4 we critically discussed the competence of neural
networks from a functional perspective. From what we stated there and from the
contents of this chapter it is highly questionable whether a neural network is capable
of reconstructing functional classifications. Within the framework of this chapter we
could ask: How can a neural network learn from the 'different' objects Smg' l versus
Bel'?

7.4 KNOWLEDGE-BASED SYSTEMS (SYMBOL LEVEL ANALYSIS)

In the previous section we carne across two types of knowledge: (1) knowledge of
constraints and (2) knowledge of objects. Knowledge of constraints is contained in an
object-type. The constraints must be matched by objects in order to be instances of an
object-type. Knowledge of objects refers to the attributes of objects that need to be
known for this matching procedure. For instance, the object-type Brick masonry wall
susceptible to the formation of ettringite is a set of constraints that must be matched
by a brick masonry wall to be an instance of the object-type. If so, the object or wall
at issue is susceptible to the formation of ettringite.

Conventionally, object-types are perceived as knowledge and knowledge of objects
as data. Therefore, many computer scientists associate object-types with AI
representation formalisms and knowledge of objects with representation formalisms
of database technology. At the symbol level, they consider AI-formalisms -and the
systems built around these formalisms- appropriate for describing and operating on
object-types, whereas database formalisms and systems are considered effective to
represent objects. Consequently, AI- and DB-systems have traditionally been applied
to problems that are viewed as being different. Applying this view to the field of
chemica! degradation would mean that the object-types are represented in an expert
system and the objects (the data) in some kind of database system.

Roughly speaking, AI-formalisms are expected to represent object-types by means
of universa! quantified statements:

- 210 -

OMl'ï:t."'H.7 THE CJ!HM!CAL DEGRADAT!ON AND RFS !ORA.TIUN f !F/iNCI,"_NT BRJCK M11SONR'l 'W'.f!LL5

Vx(F(x) => G(x))

A universal quantified statement defining an object-type in the field of chemica!
degradation might be represented in a Prolog program clause.

Example J

The Prolog program clause is a universally quantified one statement definition of the
object-type walls susceptible to the formation of ettringite. The head is the conclusion
that a certain wal! is indeed susceptible to the formation of ettringite. The body
represent the constraints. The clause depicts the knowledge that every wal! with
gypsum, hydrated calcium aluminates and moisture. is susceptible to the formation of
ettringite. lt shows the kind of knowledge that Al-formalisms are presumed to
contain: intensional knowledge at a certain level of abstraction.

DB-systems, as opposed to are expected to contain knowledge of
objects at a lower level of abstraction as expressed by the following predicate
assertion:

F(x)

Expressed in Prolog program clauses with empty bodies, such a ground assertion
regarding the susceptibility to ettringite of two walls might look like:

Example 2
su.scep-cible_

uminates).

co1:.tains ('1N'all (identifer(2)),

The Prolog clauses tell us that the object wall (identified by 1) is susceptible to the
formation of ettringite and that the object wall (identified by 2) contains gypsum,
hydrated calcium aluminates and moisture. Generally. Prolog can be perceived as a
database language (Brodie & Jarke. 1986: Li, 1985; Rowe, 1988). The table of Figure
7. 11 describes the analogy between Pro log and Database concepts.

DB-systems are said to represent a collection of data representing objects. In
genera!, the objects represented by the data are assumed to be of the 1same' kind. This
view, distinguishing knowledge from data, aften goes hand in hand with an explicit
focus on representational issues. This is not strange, because only at the symbol level,
as stated in a previous chapter, can differences be seen. This view forms the basis for
much research studying the relationships between AI-systems and DB-systems (see
for instance Wiederhold 1984: Murdoch and Johnson 1990). A logica! consequence of

211

CHAP1'ER7 THE CHEMJCAL DEGRADATION A1VD RESTO RA TION OF ANC JENT BR!CK lvIASONRY WA!.LS

this view is that knowledge and data are stored separately in different systems. While
this is perhaps a sensible point from which to start considering how Al-formalisms
and systems relate to database formalisms and systems, our contention is that these
differences are rather shallow. The traditional distinction between universa! quantified
statements and ground atomie assertions may be relevant, but it is not a matter of
universa! quantified statements being knowledge and atomie assertions being data
(Brachman & Lcvesque, 1986, p.77). Obviously these types of knowledge are closely
intertwined. Both are legitimate forms of knowledge necessary to classify or
recognise objects as instances of reconstructed object-types. The falsehood of the
assumption that data is by definition homogeneous is another indication that the
difference between knowledge and data is rather shallow. The various functional
equivalence classes of the previous section showed that relevant attributes may
significantly vary (Figure 7.12) and may even be inferred one from the other. This
implies that complex abstraction mechanisms are also needed for the representation of
data! In the Prolog clauses representing walls also the clause of the first example is
needed to perform a match of attributes of objects to constraints {object-types)!

Qr()lllî~ÇI:iu_s_e~(F_a_ct~}-----l---B_a_s_e_R_el_at_io_n_T_u~p~le __ __,

J:>ft;~i<:;<iti:Argwne __ nt _____ +-__ A_ttri_._bu_te ____ _

Hom Clau~s~e-------+-- View Definition

Theorem Query

l.-Iyp<>th_e_s1_·s _______ -+ __ P_ro~g_ra_m ______ ~.

Assert/Re_t_ra_ct ______ ---1 __ I_ns_e_rt!D_e_le_te ____ ---1

Q11ery (Retumin True) Assertion (Constraint)

Predic_at_e ________ +--__ T_ri~gg~e_r ______ -1

Set Of Facts To Prove A Theorem Set Valued Query Result

(Source: Brodie & Jarke, 1986, p.198)

Figure 7.11: The Analogy between Prolog and Database Concepts

Knowledge is principally a complex form of object-type or concept matching (Goel,
Soundararajan, & Chandrasekaran, 1987). For this reason, descriptions of object-types
and descriptions of objects should explicitly be present in any knowledge-based
system. The descriptions influence each other. If an object-type is described in a
detailed way, the description of an object may be kept simple. The other way round, if
an object is extensively described by means of universa! quantified statements and by
means of ground atomie assertions, the description of the object-type becomes easy. It
is nota coincidence that AI and DBT are increasingly working on similar topics, as is
manifested, for instance, by the close relationship between semantic data modelling
and research on knowledge representation (Hull & King, 1987, p.212). Several
approaches can be distinguished. One approach stresses the complex
interrelationships between the attributes of objects; the other emphasises the

- 212 -

lHJ:: CJ!El'v!JCAL DEGRADATJON AiVD RJ::STORA iWN OF ANC/ENT BR!CK MASONRY W,4JJ.S

representation of object-types. Within AI as well as within DBT both approaches are
found. For instance, within AI the frame-oriented community is an exponent of the
first orientation and the rule-based community of the second.

Match
Indirect Nlatch
Mis Match

Figure 7.12: A Goal-oriented Object-type and Functional Equivalence

7.4.1 Knowledge of Object<>

Following an orientation toward attributes of objects, a computer scientist is focused
on representing the complex relationships between objects by rneans of their
attributes. Often, the relational data model is used for these purposes. The relational
model for formatted databases was conceived 25 years ago (Codd, 1970), primarily as
a tool to free users of having to deal with the clutter of storage representation details
(Codd, 1979, p.397). Even in semantic data ruodelling, which aims at capturing more
of the meaning of the data, while preserving independence of implementation,
conceptual data models are reduced to relational schemes and, in the end,
implemented in record-based representation formalisms. Because of its widespread
use in attribute-oriented approaches, we wil! use the relational data model and the
record-based representation formalism to represent objects and their attributes.

As indicated by the first object-type, at the highest level three attrîbutes of the
object wall should be incorporated to be able to determine the susceptibility of a wall
to ettringite: gypsum, hydrated calcium alurninates and moisture. These attributes are
necessary to see whether a certain wall matches the conjunct set at level II of the
object-type brick masonry wall susceptible to the formation of ettringite when no
restoration has been carried out yet. The reader should note that this knowledge is
absent in the original tree-structure of Figure 7.2 rcpresenting a number of attributes
of the walls. The first object-type clarifies the meaning of (the interdependence of) the
attributes! Apart from these main attributes, another attribute that serves as an unique
identifier for each wal! is required. The ordered pair W represents the object wall

213 -

CHAPTER 7 THE CHEMJCAL DEGRADATION A11/D RES1'0RAT/ON OF ANCIENT BRICK MASONRYWALLS

(n1 (W)) and the associated attributes (n2 (W)).

W = (wall; {wall identifier, gypsum, hydrated calcium aluminates, moisture,

susceptible to the formation of ettringite})

Jr1 (W) = wall and

Jr2 (W) = {wa11 identifier, gypsum, hydrated calcium aluminates, moisture.

susceptible to the formation of ettringite}

A nurnber of objects stored according to the ordered pair in a single relational table
are presented below. As indicated by the first object-type, the following functional
dependency must be present:

{gypsum, hydrated calcium aluminates, moisture}--+ { susceptible to

the formation of ettringite}

Figure 7.13: A Table in a Relational Model

For our first object-type this description will do. However, in at least two situations
additional knowledge is needed and the utility of this initial description is
qucstionable. The first situation refers to a user of our knowledge-based system who
has to fill the system with objects and who may not know whether a concrete wall
contains gypsum or hydrated calcium aluminates or moisture. In attempting to arrive
at values for these attributes, the user has to get a grip on the functional mechanisms
that conceptually operate behind the values: the user should know the conjunct sets
that underlie and determine the values. The conjunct sets at level III can help here to
fill in the right values for the object-attributes.

The second situation refers to restoration purposes as described in the second
object-type (Figure 7 .9). Masonry can be repaired by hydraulic binders such as
cement, hydraulic lime or lime-pozzolan. As we still need to know whether a wall
contains gypsum, the original description in the table is useful. However, if non
hydraulic binders (such as lime or ordinary sand) are applied for the restoration work,
it does not suffice for a knowledge-based system to know whether a wall contains
gypsum. In this particular situation, the system should not only know whether a wall

- 214

CHAf>rI:.'R 7 1 HE 01EMJCAL DFGRADA iWN AND RESTORAT!Ol\' OP ANC!i:}\·T HfifCk MASONRV W!UJS

contains gypsum, but also whether a wall is composed of pozzolanic sands or not.
This flexibility is made clear by the object-type reconstructed: on the condition that
enough moisture is present, ettringite can be formed and lead to the deterioration of
the wall after all. Another example of an unexpected degradation occurs when
gypsum is used for restoration purposes. Then, a masonry wal! may not be eomposed
of lime-pozzolan or hydraulic-lime mortars! Analogous to the first situation, a
knowledge-based system should have explicit knowledge of the mechanisms behind
chemical degradation due to the formation of ettringite.

Considering both object-types, the knowledge schema (in attribute-orîented
approach aften called database scheme) of the wall in our example might have thîs
form:

The Knowledge Schema
BlvfWSE=

{

(wall

(gypsum

(gypsum as binder

(inside binder

(outside binder

(gypsurn as an in situ product

of a chemica! reaction

(restored

(restoration materials

; {wall identifier, gypsum, hydrated calcium

aluminates, moisture, susceptible to the

formation of ettringite}),

; {wall - identifier, gypsum as binder, gypsum as

an in situ product of a chemica! reaction, gypsum}),

; {wall identifier, gypsum as binder},

; {wall - identifier, type of mortar, type of

inside binder}),

; {wal! - identifier. type of outside binder}),

; {wall identifier, type of salts, type of

binder, moisture, gypsum as an in situ product

of a chemica! reaction}

; {wal! - identifier, restored}),

; {wall- identifier, restoration materials})

The scheme resembles the structure of the DT's. That is, the name of a DT
corresponds with a domain element of the scherne and the set of conditions and
actions of a DT correspond with the range of the domain element. There are, however,
some deviations from the structure of the DT's. The scheme shows that the knowledge
of the DT gypsum as binder is spread over three tables. The table gypsum as binder
contains the genera! conclusion whether a wall has gypsum as a binder. The tables
inside binder and outside hinder respectively deal with the inside and the outside
binder of a wall. The distinction is motivated by the fact that only walls with

- 215

CHAPTER7 TllE CllEM!CAL DECRADAT/ON AND RESrOJ?A T/ON OF ANC/ENT BRICK MASONRY WALLS

rendering mortar have an inside and an outside binder, whereas a wall with jointing
mortar only has an inside binder. A design in which both objects are modelled as one
object, yields null-values (in the meaning of not applicable) for the type of outside
binder fields for every wall which has only jointing mortar. A second deviation is
displayed by the tables restored and restoration materials. They serve to store
knowledge of walls that have been subjected to restoration. As much of the
knowledge regarding restored walls, is assessed through connections with other parts
of the scheme, several conditions and actions occurring in the associated DT are left
out from the scheme.

In database theory a scheme like this one is called an object-type. This seems
misleading, but should be interpreted as just another indication that object-types and
objects are difficult to distinguish.

Variable Constraints (VC)
The following auxiliary function is needed to consider the binders as an aggregation
of binding material and sands (see the functions vcinside binder and vcoutside
binder). The aggregation is represented by means of nestings. Not all DB-systems can
cope with such nestings.

Fl

{

(binding materials

(type of sand

}

; {lime,hydraulic lime, gypsum}),

; {normal, pozzolan})

The variable constraints are described in the following set-valued functions

vcwall =

{

(wall- identifier

(gypsum

(hydrated calcium aluminates

(moisture

; [l, ... , 104]),

(susceptible to the formation of ettringite

; {present, not present}),

; {present, not present},

; {present, not present}),

; {yes, no})

}

vcgypsum =

{

(wall - identifier

(gypsum as binder

(gypsum as an in situ

; [l, ... , 104]),

; {yes, no}),

216 -

CHAPTER 7

product of a chemica! reaction

(gypsum

vcgypsum as binder

{

(wall - identifier

(gypsum as binder

vcinside binder =

(wall - identifier

(type of mortar

(type of inside binder

}

vcoutside binder

{

(wal! - identifier

(type of outside binder

}

THE CHEMICA!. DECRADA. T!ON AND RF.~ TORA TJON OF A.NOENT BR!CK Mt1SUNRV W'AU S

: {present, not present}),

; {present, not present})

; [L .. , 104
]),

; {yes, no})

; [l" "' 10
4

]),

; {jointing mortar, rendering mortar}),

; ;r(Fl))

; [l,.", 104
]),

; n(Fl)l

vcgypsum as an in situ product of a chemica) reaction =

{

(wall - identifier

(type of salts

(type of binder

(moisture

(gypsum as an in situ product of

a chemica! reaction

}

; [l"", 10
4

]),

; {sulphates, chlorides, carbonates}),

; {gypsum, lime, hydraulic lime}),

; {yes, no}),

; {present, not present})

217 -

CHAPTER1 THE CHEMJCALDEGRADATJON AND RESTOR4.T!ON OF ANlïENr BRICK MASONRY WALLS

vcrestored

(wall - identifier

(restored

vcrestoration material =

{

(wall - identifier

(restoration material

lnter-variable Constraints (IVC)

; [1, ... , 104
]),

; {yes, no})

; [l, .. " 104]),

; {cement, hydraulic lime, lime - pozzolan,

lime - ordinary sand, gypsum})

The inter-variable constraints are defined using the II that operates upon the variable
constraints:

ivcwaU {t Il(vcwall)I

if: t(gypsum) =present and

t(hydrated calcium aluminates) present and

t(moisure) =present

then: t(susceptible to the formation of ettringite) yes

else: t(susceptible to the formation of ettringite) no}

Furthermore:

ivcgypsum {t E Il(vcgypsum)I

if:

t(gypsum as an in situ product of a

chemical reaction) present or

t(gypsum as binder) yes

then: t(gypsum) =present and

else: t(gypsum) =no

ivcgypsum as binder= {t E Il(vcgypsum as binder)}

ivcinside binder= {t E Il(vcinside binder)}

- 218 -

THE CHf,}IlCAL DEGRAIJATION AND RE.'iTONAJ'JON OF ANUFNJ" !UUCK AMSON!ff WALLS

ivcoutside binder= {t E D(vcoutside binder)}

ivcgypsum as an in situ product of a chemica] reaction =

D(vcgypsum as an in situ product of a chemical reaction)

}

ivcrestored {t E D(vcrestored)}

ivcrestoration material = {t E 0(vcrestoration material)}

Knowledge Table Constraints (KTC)
The knowledge table constraints assess the space of allowed tables for each object:

ktcwall = {T ivcwall I {wall identificr} is unique identifying in T}

ktcgypsum = {T ivcgypsum 1 {wall - identifier} is unique identifying in T}

ktcgypsum as binder {t <;;;; II(ivcgypsurn as binder) 1 {wall - idcntificr} is

unique idcntifying in T}

ktcinside binder fT ç ivcinside binder 1 {wall identifier} is unique idcntifying in T}

ktcoutside binder {T ç ivcoutsidc binder 1 {wal! identificr} is uniquc identifying in T}

ktcgypsum as an in situ product of a chemica] reaction

{

T TI(ktcgypsum as an in situ product

of a chemica] reaction)

ktcrestored = {T ç ivccrestored 1 {wall identifier} is unique identifying in T}

ktcrestoration material = {T (ktcrestoration rnaterial) 1 {wall identifier} is

unique identifying in T)

Before defining the universe, an auxiliary function is necessary:

219 -

CHAPTE1<7 Tf/E Cf/EM!CAL DEGRADAT!ON AND RESTORA110N OF ANGïENT BRICK M4SONRY W,4LLS

HBMWE

(wall

(gypsum

(gypsum as binder

(inside binder

(outside binder

; ktcwall),

; ktcgypsum),

; ktcgypsum as binder),

; ktcinside binder),

; ktsoutside binder),

(gypsum as an in situ product of a chemica! reaction ; ktcgypsum as an in situ product

of a chemica! reaction),

(restored

(restoration materials

}

Knowledge Universe Constraints (KUC)
The knowledge universe then is:

UBMWE

{

; ktcrestored),

; ktcrestoration materials)

KSI KS E lI(HBMWE) and id({wall- identifier}) connects

KS(gypsum) with KS(wall) and

id({wall - identifier}) connects {k KS(gypsum as binder) 1

k(gypsum as binder)= yes} with

{k E KS(gypsum) 1 k(gypsum as binder) yes} and

id({wall identifier}) connects {k E KS(inside binder)!

k(type of inside binder)(binding materials) = gypsum} with KS(gypsum) and

id({wall - identifier}) connects {k E KS(outside binder)

k(type of outsîde binder)(binding materials) gypsum}

with {k E KS(gypsum)lk(gypsum as binder yes} and

id ({ wall - identifier}) bilaterall y connects KS (outside binder) with

{k E KS(inside binder)lk(type ofmortar) = rendering mortar}

(1)

(2)

(3)

(4)

(5)

id({wall - identifier }) bilaterally connects (6)

{k E KS(gypsum as binder)lk(gypsum as binder) yes}

with {k E KS(gypsum as an in situ product of a chemica! reaction)I

k(type of binder)= gypsum} and id({wall identifier}) bilaterally connects (7)

{k E KS(inside binder)1 k(type of inside binder)(binding materials) = lime}

with {k E KS(gypsum as an in situ product of a chemica! reaction)I

k(type of binder) lime} and

- 220

C/1/IPTER 7 THL' CJfEM!C4L DF.GRADATlON AND RFSTORATJON OFANCIENT BR!CK MASONRY W~,1/L'i

id({wall identifier}) bilaterally connects (8)

{k KS(inside binder) 1 k(type of inside binder)(binding materials)

hydraulic Iime} with {k E KS(gypsum as an in situ product of a

chemica! reaction) 1 k(type of binder) hydraulic lime} and

id({wall identifier}) bilaterally connects (9)
{k E KS(outside binder) 1 k(type of outside binder)(binding materials) = lime}

with {k E KS(gypsum as an in situ product of a chemica) reaction) 1

k(type of binder) Iime} and id({wall identifier}) bilaterally connects (JO)

{k E KS(outside binder) 1 k(type ofoutside binder)

(binding materials) = hydraulic lime} with

{k E KS(gypsum as an in situ product of a chemica! reaction) 1

k(type of binder) hydraulic lime} and

id({wall - identifier}) connects (11)

KS(gypsum as an in situ product of a chemica] reaction)

with KS(wall) and id({wal! - identifier}) connects KS(restored) with (12)

KS(wall) and id({wall identifier}) connects KS(restoration material) with (13)

{k E KS(restored)lk(restored) =yes} and

id({wall - identifier}) connects KS(restoration material) with KS(wall) (l4)

id({ wall - identifier}) connects KS(gypsum as binder) with KS(wall)

id({wall - identifier}) connects {k E KS(inside binder) 1

k(type of inside binder)(binding materials) = gypsum} with

{k E KS(gypsum as binder) 1 k(gypsum as binder yes} and

id({wall identifier}) connects {k KS(outside binder)!

k(type of outside binder)(binding materials) gypsum}

with {k E KS(gypsum as binder) 1 k(gypsum as binder yes} and

id({wall identifier}) connects KS(inside binder) with KS(wall) and

id({wall identifier}) connects KS(outside binder) with KS(wall) and

id({ wall identifier}) bilaterally connects

{K KS(gypsum as an in situ product of a chemica] reaction) 1

k(gypsum as an in situ product of a chemica! reaction) present} with

(15)

(16)

(17)

(18)

(19)

(20)

{k E KS(gypsum) 1 k(gypsum as an in situ product of a chemica! reaction =present}

Note that a variety of connections is used (See Chapter 3). Figure 7.14 is a graphical
display of the forma! connections between the knowledge tables.

Querying
Querying a database is the way to perform matches and to classify an object as an

- 221 -

f'JlAPTER7 THE CHEMJCA.l DEGRADAT/ON AND RES'T0Jl4 TION 01' ANC/ENT 8RICK MASONRY WALLS

instance of an object-type. A relevant query might be:

• 'Give the identification codes of the walls that do not contain gypsum as a
binder, yet are susceptible to the formation of ettringite'

Translated into a symbol level language, the logica! structure of the query might look
like:

À KSEUBMWE:

{

k r (wall-identifier) 1 k E {k' E KS(wall) 1 k'(susceptible to the formation of ettringite) yes}t><l

{k" E KS(gypsum as binder)! k"(gypsum as binder) no}

}

Figure 7.14: A Graphical Overview of the Knowledge Universe

Other structures are possible. For instance:

ÎL KSEUBMWE:

k r (wall identifier) 1 k E KS(wall) and k'(susceptible to ettringite) yes} and

3k' E KS(gypsum as binder): k'(gypsum as binder)= no and

k' r (wall-identifier) = k r (wall-identifier)

}

Another query could be:

• 'Give the identification codes of the walls that are exposed to view and that are

- 222 -

CI-14.l'TER 7 CHFAUCAL DEGRADATJON AND RESTORA110N OF ANCIDVT BRJCK MA/,ONRYWJ;zlIJ-'i

susceptible to the formatîon of ettringite'

À KS E UBMWE:

k r (wall - identifier) 1 k

{k' E KS(wall) 1 k'(susceptible to the formation of ettringite) yes} i><l

{k" E KS(inside binder) 1 k"(type of mortar) = jointing mortar}

}

The formulation of queries fora data base is nota trivial matter (Remmen, 1985). The
knowledge of the reconstructed object-types is essential for the adequate formulation
of a query. Suppose we want to know what walls are susceptible to the formation of
ettringite after restoration. If this question is frequently posed to a system, it will be
worthwhile to consider designing a view. A view is a named query. Logically, a view
is a function in which the first co-ordinates of the ordered pairs denote the names of
the queries and the second co-ordinates denote the queries (fora formal definition of a
view, see Chapter 3). In the present case, the formulation of a view not only requires
knowing what restoration materials have been applied, but also what possible negative
interactions may occur with rnaterials originally used in the walls. For these purposes.
the knowledge of the second object-type is essential. On the basis of the second
object-type, the view becomes:

View=

(susceptible after restorationl; Àks E UBMWE:

{p f (waJl - identifier) 1 p E

{k E KS(restored) 1 and k(restored) =yes} 1><1

{k E KS(gypsum as binder) 1 and k(gypsum as binder) yes} tx:

{k E KS(restoration material) 1 k(restoration material)

cement OR hydraulic lime OR lirne - pozzolan }),

(susceptible after restoration2; Àks E UBMWE:

{p r (wall identifier) 1 p E

{k E KS(restored) 1 and k(restored) =yes} 1><1

{k E KS(restoratîon materials) 1 k(restoration materials)

lirne - ordinary sand) l><I

{k E KS(gypsurn as binder) 1 and k(gypsum as binder) yes} 1><1

({k E KS(inside binder) 1 and k(insîde binder)(type of sand) =natura! or artificial pozzolan} OR

{k f (wall - identifier) 1 k E KS(type of inside binder) 1 and k(type of mortar) rendering

mortar and 3k' KS(outside binder):k'(outside binder)(type of sand) natura! or

artificial pozzolan and k' r (wall - identifier) k 1 (wall identifier)})),

- 223

CHAPTER7 THE CHEMJCAL DEGRADATION AND RESTORAT/ON OF ANCIENT BRJCK :1-fASONRY WALLS

(susceptible after restoration3; ÀKS E UBMWE:

{p f (wall - identifier) 1 p E

{k E KS(restored) 1 k(restored) =yes} txJ

{k E KS(restoration materials) 1 k(restoration materials) =

gypsum) txl

({k E KS(inside binder) 1 k(inside binder)(type of binder) lime} OR

{k f (wal! - identifier) 1 k E KS(type of inside binder) 1 k(type of mortar) rendering

mortar and 3k' E KS(outside binder): k'(outside binder)(type of binder) lime

and k' r (wall identifier) k r (wall - identifier)}) txl

({k E KS(inside binder) 1 k(inside binder)(type of sand) = natural or artificial pozzolan} OR

{k f (wall - identifier) 1 k E KS(type of inside binder) 1 k(type of mortar) rendering

mortar and 3k' E KS(outside binder) : k' (outside binder)(type of sand) = natural or

artificial pozzolan and k' r (wall - identifier) = k r (wall - identifier)})),
(susceptible after restoration4; AKS E UBMWE:

{p f (Wall - identifier) 1 p E

{k E KS(restored) 1 k(restored) yes} txl

{k E KS(restoration materials) 1 k(restoration materials) gypsum) txJ

({k E KS(inside binder) 1 k(inside binder)(type of binder) hydrauliclime} OR

{k f (wall identifier) 1 k E KS(type of inside binder) 1 k(type of mortar) = rendering

mortar and 3k' E KS(outside binder): k'(outside binder)(type of binder)= hydrauliclime

and k' r (wall identifier) = k r (wall - identifier)}))

}

Note that the four ordered pairs correspond with the four conjunct sets represented by
R 1, R4, R8 and Rl 1 of the DT named Restored brick masonry wall susceptible to
degradation due to the formation of ettringite.

In an orientation toward objects and their attributes, the reconstructed object-types
provide indications for designing an appropriate database scheme. This relates to
finding criteria to decide which relations should be base relations and which should be
derived relations (Gallaire, Minker, & Nicolas, 1984). Developing the scheme is nota
trivial task (De Broek, 1989, pp.92). Furthermore, the object-types provide an insight
into defining integrity constraints and finding more efficient means for the detection
of the violation of integrity constraints. Finally, they improve the formulation of
queries and views.

Search in a database supports a model-theoretic strategy (Brodie & Jarke, 1986,
pl91.). The scheme, also called the theory, is provided by the definition of data
structures and integrity constraints. A database state is an interpretation that must be a
model of the theory as expressed in the definition of the knowledge uni verse. A query
is a formula with free variables to be bound at runtime. Query evaluation is the

224 -

CHAPTER? THE CHEM/l.11l DEGRADA TION AND RESTO RAT/ON OF ANC/ENT BRJCK MASONRY W,4US

computation of a truth value for the formula over the current database state. The result
is a set of variable-free instantiations provable from the underlying structures.

7.4.2 Knowledge of Object-types

Production mies and fact sets on the one hand and the associated backward, forward
or hybrid chaining inference mechanisms on the other hand, constitute a popular
representation formalism for encoding knowledge of object-types.

A production rule has the structure:

IF < antecedent > THEN < consequent >

The antecedent of a rule is a conjunction of (one or more disjunctions of) conditions.
In the antecedent AND- and OR-statements connect the conditions to form
conjunctions or disjunctions. A condition is built from definite statements such as
same, notsame or less_than, about object-attribute-value triples or < o, a, v > triples.
An example of a condition is:

same < walt, gypsum, present >

Note that the objects of a < o, a, v > triple, are distinct from the objects that should
comply with the constraints of an object-type. The former are implementation
constructs or symbol level objects, whereas the latter are knowledge level objects.
Both types of objects are related though. Symbol level objects should represent the
knowledge level objects by means of a specific language of implementation.

The consequent of a rule has the form conclude < o,a, v >. An example of a
production rule is:

IF same < wall, gypsum, present > AND

< wall, hydrated calcium aluminates, present> AND

<wal/, moisture, present>

THEN conclude < wall, brick masonry walls susceptible to

the formation of ettringite, yes>

Production rules can also display a structure in which relational operators replace the
definite statements, and in which the objects and the conclude statement are left out
respectively from the < o, a, v > triples and the consequent. This yields:

IF gypsum = present AND

hydrated calcium aluminates present AND

moisture present

225

CRAPTER7 THE CHEMICAL DEGRADAT!ON AND Rl:STORA TION OF ANGENT BR!CK MASONRlTl.VALLS

THEN brick masonry walls susceptible to the formation of ettringite = yes

Af act set has the following structure:

F = {(gypsum; present), (hydrated calcium aluminates; present), (moisture; present)}

An inference mechanism selects and evaluates production rulcs from the rule base. If
the conditions of a selected rule are met, the inference mechanism will execute the
actions. Subsequently, the fact set is updated by adding, modifying or retracting facts.
Two basic forms of inference can be distinguished. Backward chaining or top down
inference starts with one or more goals. A goal may match with the conclusion of one
or more production rules in the rulebase. Each of the selected production rules is
applied by considering its conditions. These conditions are the new subgoals. A
conclusion can be satisfied by the facts of the fact set or by users answering questions
posed by the rule based knowledge base. If all conditions of a rule are met, its actions
will be executed. Forward chaining or bottom up inference, starts with one or more
facts which are matched against the conditions of the production mies. Again, if all
conditions of a rule are met, its actions will be executed and the fact set will adaptcd
accordingly. In case, both type of infcrence mechanisms are available, the inference
mechanism is called hybrid.

Structuring the production rules in such a way that a knowledge-based system is
able to display the desired problem solving behaviour, is a task with many
complexities. Therefore, in this section, the system of logic structures that organises
the production rules is extensively described. Successively, the following logic
structures and their relations wil! be dealt with (1) the knowledge schema, (2) the
variable constraints, (3) the inter-variable constraints, (4) the knowledge table
constraints and (5) the knowledge univcrse constraints.

The Knowledge Schema
The following set-valued function displays a part of the knowledge schema
underlying the first object-type. lt reflects the system of DT's that represent the first
object-type. In each case, the first co-ordinate of every ordered pair is the name of a
DT and the second co-ordinate is the set consisting of the conditions and actions of
the same DT. Moisture is an exception that can be derived from Figure 7.8.

BMWSE=

{

(Brick masonry wall susceptible to the formation of ettringite

{gypsum, hydrated calcium aluminates, moisture, brick masonry wall susceptible to

the formation of ettringite}),

(Gypsum

{gypsum as binder, gypsum as an in situ product of a

- 226

l'HF CHEMJCAL DEU<ADA TJON AND RFSTORA?lON OF ANCIEN r HNICK MASON!(V WALLS

chemical reaction, gypsum}), CGypsum as binder

{type of mortar, type of inside binder. type of outside binder, gypsum as binder}).

(Gypsum as an in situ product of a chemical reaction

{type of salts, type of binder, moisture, gypsum as an in situ product of a

chemica! reaction}),

(Hydrated calcium aluminates

{type of binder, type of sand, hydrated calcium aluminates}),

(Moisture

{wetting rain, capillary flow from groundwater, rnoisture})

Variable Constraints (VC)
For every element of every element of the range of BMWSE, attribute constraints are
defined. The variable constraints describe the dornains of conditions and conclusions
occurring in production rules. The variable constraints below, for exarnple, indicate
that gypsum, hydrated calcium aluminates and moisture can only attain the values
present or not present and that brick masonry wall susceptible to the formation of
ettringite can only attain the values yes or no.

vcbrick masonry wall susceptible to the formation of ettringitc

(gypsum

(hydrated calcium alurninates

(moisture

(briek masonry wall susceptible to the formation

of ettringite

: {present, not present}),

; {present, not present}),

; {present, not present}),

no})

Following similar lines. the other variable constraints are:

vcgypsum

(gypsum as binder no}),

(gypsum as an in situ product of a chernîcal reaction ; {yes, no})

(gypsurn : {yes, no})

}

vegypsum as binder=

(type of mortar : Uointing mortar, rendering mortar}),

- 227

CHAPTER7

(type of inside binder

(type of outside binder

(gypsum as binder

}

TRE CHEM!CAL DEGRADAT!ON AND RESTORATION OF ANC/ENT BRICKMASONRY WALLS

; {gypsum, lime, hydraulic lime}),

; {gypsum, lime. hydraulic lime}),

; {yes, no})

vcgypsum as an in situ product of a chemica! reaction =

{

(type of salts

(type of binder

(moisture

; {sulphates, chlorides, nitrates,carbonates}),

; {gypsum, lime, hydraulic lime}),

; {yes, no}),

(gypsum as an in situ product of a chemical reaction ; {yes, no})

vchydrated calcium aluminates =

{

(type of binder

(type of sand

(hydrated calcium aluminates

vcmoisture

(wetting rain

(capillary flow from groundwater

(moisture

}

Inter-variahle Constraints (IVC)

; {gypsum, lime, hydraulic lime}),

; {natural pozzolan, artificial pozzolan, normal

; {present, not present})

; {yes, no}),

; {yes, no}),

; {yes, no})

Inter-variable constraints do not have to be defined, because the mutual dependence of
variables is automatically included in the table constraints.

Knowledge Tabk Constraints (KTC)
If PS(TRBMWSE-Root) denotes the set of paths that do not contain the root node and
TRBMWSE is the exclusive and exhaustive tree (see Chapter 5) underlying the
corresponding DT, then:

WBMWSE

{

228

UIAPTER? THE CHEM!C1L DEGRADA TlON AND RHSTORA710N OFANCJEI>/T BRJCK MASO.Vl?Y W1ALLS

KT ç; IT(vcbrick masonry wall susceptible to the formation of ettringite)1

V PRE KT: exactly one path P E PS(TRstv!WSE-Root) exists and

VP E PS(TRBMWSE Root): exactly one PRE KT exists such that

PR {x,y, ... ,e}andP {(x;y),(y; ... ,(a;b),(b;e)}

}

An element of WBMWSE is a rule group. An example of an element of WBMWSE
expressed in mathematica! logic is:

RL(brick masonry wall susceptible to the formation of ettringite)

{

{(gypsum; present), (hydrated calcium aluminates; present), (moisture; present),

(brick masonry wall susceptible to ettringite; yes)},

{(gypsum; present), (hydrated calcium aluminates; present), (moisture; not present),

(brick masonry wal! susceptible to ettringite; no)},

{(gypsum; present), (hydrated calcium aluminates; not present), (moisture; -),

(brick masonry wal] susceptible to ettringite; no)},

{(gypsum; not present), (hydrated calcium aluminates;

(brick masonry wall susceptible to ettringite; no)}

(moisture; -),

The same example but now expressed in a typical rule language is:

IF gypsum present AND

hydrated calcium aluminates present AND

moisture = present

THEN brick masonry walls susceptible to thefomiation ofettringite yes

IF gypsum present AND

hydrated calcium aluminates present AND

moisture = not present

THEN brick masonry walls susceptible to the formation of ettringite no

IF gypsum present AND

hydrated calcium aluminates not present

THEN brick masonry walls susceptible to the fomwtion of ettringite =no

IF gypsum = not present

229

CHAPTER7 THE CHElVlICAL DEGRADA T!ON AND RESTO RA TJON OF AN Cl ENT BlllCK MASONRY WALLS

THEN brick masonry walls susceptible to the formation of ettringite =no

Because the demand is that each possible rule group is a representation of an
exhaustive and exclusive tree, other demands are already included and need not to be
repeated. For example, such a demand is:

{gypsum, hydrated calcium aluminates, moisture} is u.i. in KT

Similarly, the other rule groups can be defined.

lf PS(TRaypsum-Root) denotes the set of paths that do not contain the root node and
T~ypsum is the exclusive and exhaustive tree underlying the corresponding DT, then:

WGYPSUM

{

KT ç;;; TI(vcgypsum) 1 '\/PRE KT: exactly one path P E PS(TRaypsum-Root) exists and

VP E PS(TRGypsum-Root): exactly one PRE KT exists such that

PR {x,y, ... ,e}andP {(x;y),(y;z), .. "(a;b),(b;e)}

}

If PS(TRcypsum as binder-Root) denotes the set of paths that do not contain the root node
and TRcypsumasbinder is the exclusive and exhaustive tree underlying the corresponding
DT, then:

WGYPSUM AS BINDER

{

KT ç;;; TI(vcgypsum as binder)!

'\/PRE KT: exactly one path p E PS(TRGypsumasbinder-Root) exists and

VP E PS(T~ypsum as binder-Root): exactly one PRE KT exists such that

PR {x, y" .. , e} and P {(x; y),(y; z)"", (a; b), (b; e)}

}

If PS(TRGypsumasaninsituproductofachemicalreaction-Root) denotes the set of paths that do
not contain the root node and TRGypsum as an in situ product of a chemica! reaction is the exclusive
and exhaustive tree underlying the corresponding DT, then:

WGYPSUM AS AN IN SITU PRODUCT OF A CHEMICAL REACTJON

{

KT ç;;; TI(vcgypsum as an in situ product of a ehemical reaction) 1

'\/PRE KT: exactly one path p E PS(TRcypsumasan in situ product of a chemica! reaction-Root) exists and

VP E PS(TRGyp.mmasan in situproductofa chemica/ reactionwwwRoot); exaetly one PRE KT exists such that

- 230-

CllAPTt'R 7 Uil;MKAL Dl:'GR:WATJON AND RESTORA 110N OFANClFNT BR!t:K ,Vfr1SO:VRY WAi J ,~'

PR {x,y, ... ,e}andP {(x;y),(y;z)" .. ,(a;b),(b;e)}

If PS(TRHvdratedrnlciumalumi11me1-Ro<>1) denotes the set of paths that do not contain the
root node ánd TRHvdruted mlciwn aluminates is the exclusive and exhaustive tree underlying
the corresponding DT, then:

WHYDRATED CALCIUiWALUlv!INATES

{

KT ç;;; IT(vchydrated calcium aluminates) 1

V PR KT: exactly one path P E PS(TR11ydrated cnlcium alamiiwtes-Root) exists and

VP PS(TRHydratedcalcium

PR {x,y, ... ,e}andP

: exactly one PRE KT exists such that

If PS(TRMoisturc- 8001 J denotes the set of paths that do not contain the root node and
TRMoisuire is the exclusive and exhaustive tree underlying the corresponding DT, then:

WMOISTURE

KT ç;;; TI(vernoisture) 1

\:/PRE KT: exactly one path P E PS(TRMoisture-Root) exists and

VP E PS(TRMoisturc-Roor): exactly one PRE KT exists such that

PR y, ... ,e}andP {(x; z), ... ,(a;b),(b;e)}and

Knowledge Universe Constraints (KUC)
Before defining the knowledge universe constraints, an auxiliary function is required
that links each object to a space of knowledge tables or rule groups.

ABMWE=

(brick rnasonry wall susceptible to the

formation of cttrîngite

(gypsum

(gypsum as binder

(gypsum as an in situ product of a

chemica! reaction

- 231

; WBMWSE),

; WGYPSUM),

; WGYPSUM AS BINDER),

; WGYPSUA1 AS AN IN SITU PRO

DUCTOF A CHEMICALREACT/ON),

CHAPTER7

(hydrated calcium aluminates

(moisture

}

The knowledge universe then is:

BMWEU=

{

KS 1 KS E Il(ABMWE) and

THE CHEM/CAL DEGRADA TION AND RESTO RAT/ON OF ANCJENT BR/CK ,™SONRY WALLS

; WHYDRATED CALCIUM ALU

MINATES),

; WMOISTURE)

id({gypsum}) bilaterally connects KS(Gypsum) with KS(Brick masonry wall

susceptible to the formation of ettringite) and

id({hydrated calcium aluminates}) bilateraJly connects KS(Hydrated calcium aluminates)

with KS(Brick masonry wall susceptible to the formation of ettringite) and

id({moisture}) bilaterally connects KS(Moisture) with KS(Brick masonry wall

susceptible to the formation of ettringite) and

id({gypsum as binder}) bilaterally connects KS(Gypsum as binder) with

KS(Gypsum) and id({gypsum as an in situ product of a chemical reaction}) bilaterally connects

KS(Gypsum as an in situ product of a chemical reaction) with KS(Gypsum)

}

The system of logic structures for production mies representing the restoration object
type:

Knowledge Schema
RBMWSE=

{

(restored brick masonry wall susceptible to the formation of ettringite

{restoration material, gypsum, type of sand, type of binders, moisture}

}

Variable Constraints (VC)
VCRBMWSE

{

(restoration material

(gypsum

; {cement, hydraulic lime, Iime - pozzolan sand,

lime- normal sand}),

; {yes, no}),

- 232

CHAl'fHR 7 THE CHEMICA/, Dl:.'GRADA T'!ON AND RESTORATfON ()/ ANCJHNT BR!CK MASW'>'f?V WA.IJS

(type of sand

(type of binders

(moisture

; {pozzolan, nonna!}),

; {lime, hydraulic lime, gypsum}),

:{yes,no}

}

Inter-variable Constraints (IVC)
The inter-variable constraints need not be defined, because the mutual dependence of
variables is included in the table constraints.

Knowledge Table Constraints (KTC)
If PS(TRRBMWSE:>Roor) denotes the set of paths that do not contain the root node and
TRRBMWSE is the exclusive and exhaustive tree underlying the corresponding DT,
then:

WRBMWSE=

KT ç;;; TI(VC RBMWSE)IVPR E KT: one path P E PS(TRRllMWSE-Root) exists and

VP E PS(TRRBMWSE-Root): exactly one PRE KT exists such that

PR== {x, y, "., e} and P == {(x; y), (y; .", (a; b), (h; e)}

}

Knowledge Universe Constraints KUC)
The auxiliary function is:

ARBMWE

{

(restored brick masonry wall susceptible to the formation of ettringite ; WRBMWSE)

}

Then:

RBMWEU = {KSI KS E fl(ARBMWE)}

7.4.3 Knowledge of Object-types and Objects Reduced to the Symbol Level

The representation formalisms of the two approaches differ in search strategy and
structure. In an object or attribute oriented approach, search supports query evaluation
(model-theoretic inferencing), whereas in an object-type oriented approach search
supports deductive inferencing (proof-theoretic inferencing). As the structures

233

CHAPTER7 THE CHEMICAL DEGRADATION AND RESTORATJON OF ANCJE!VT BR!('J(,\fASONkY WALLS

described in mathematica! logic show, in deductive inferencing complex knowledge is
represented by means of a system of groups of rules (axioms), whereas in query
evaluation knowledge representation is restricted to predicate clauses that do not
contain negations, disjunctions or quantified statements. It is in this respect that
Brachman & Levesque (1986) state that data bases are knowledge bases of a simple
and limited form. Queries (Hsieh, 1993, p.65) and integrity constraints, however, are
transformed into more complicated forms that should represent complex knowledge.
So, the overall effect of moving from one knowledge representation formalism to
another, is the transfer of the complexity of knowledge from the rules to the queries
and integrity constraints. The named query (view) that retrieves walls that have been
the subject of restoration and that are susceptible to the formation of ettringite and the
integrity constraints in the form of forma! connections, indeed display a considerable
degree of complexity.

Por these reasons, the structures of the object-type oriented approach are not the
same as the structures in the object orientation. One difference is that the identifiers of
the objects are left out from the structures in the former orientation. These identifiers
are not needed, because in the object-type oriented approach the attributes of objects
are expected to be filled in interactively by users answering questions of the
knowledge-based system. In the object oriented approach the knowledge needed for
matching objects as instances of object-types is represented by storing attributes of
objects using abstractions and relations between attributes. In the object-type oriented
approach the knowledge needed for matching objects as instances of object-types is
represented by storing the object-types directly and the user is expected to insert the
attributes of the objects. However, this must not lead the reader to think that databases
deal with individual objects and knowledge bases with classes of objects. Many
knowledge bases deal with both objects and classes of objects, while many databases,
for instance, statistica) databases, deal with classes of objects.

How are we to choose rationally between the different representation formalisms
considering that both formalisms are able to represent knowledge? At this point, we
must realise that the availability of knowledge in the form of functional object-types is
essential. As stated before, functional object-types provide a vantage point from
which to compare and evaluate representation formalisms. We already examined the
basic properties of record-based information models from a functional viewpoint and
concluded that if the essential configuration of the conjunct sets leading to the same
goal, is characterised by identical attributes, each attribute having the same kinds of
values, records are excellent representation and processing tools. If, on the other hand,
these conjunct sets are characterised by heterogcneity caused by having to classify
objects in a goal-oriented fashion accounting for different descriptors and new
conceptual interactions, records are not appropriate (Kent, 1979; Murdoch & Johnson,
1990). Functional object-types show that the presumption that objects have a
homogeneous nature is not true by definition.

The theory of functional classifications as a basis for knowledge-based systems
implies that functional object-types should underlie a knowledge-based system
whether it is object-type oriented or not:

• to provide users with sufficient knowledge to classify an object as an instance

234

CHAPTER 7

of an object-type. As users may have several levels of expertise, the systern
should have several desc1iption levels of object-types and objects, to provîde
the necessary flexibility.
to define efficient structures (rule groups, tables, întegrity constraints,
which together with the available computational processes display intelligent
behaviour for matching object-types and objects.

To a considerable degree the Advanced Knowledge Transfer System (AKTS)
complies with these demands. AKTS adopts a tight coupling strategy to integrate both
knowledge of object-types and knowledge of objects in a unified framework.
Knowledge representation in AKTS is based on systems of DT's which can be
consulted by a meta-interpreter and Prolog-definitions which can be operated upon by
SLD-resolutîon. Both inference are tightly coupled, because both types of
knowledge are stored in the same domain, not as in conventional approaches in which
knowledge of object-types and objects are stored separately. For example, by means
of AKTS it is possible to ask the values of functionally relevant attributes of walls.
Using Prolog, these attributes can also be stored at certain levels of abstraction.

7.5 C01'CLUSION

To exemplify the centra! argumentation of this study we presented a case conceming
the chemica! degradation and restoration of ancient brick masonry walls. The case
study illustrates three main methodological points: (1) the value of a knowledge level
integration of AI and DBT, (2) the value of the theory of functional classifications to
accomplish such an integration and the value of applying DT's and Prolog in the
form AKTS makes them available as a modelling language for functional object
types. Each of these three values finds expression in knowledge level and symbol
level advantages.

First. by concentrating on knowledge level descriptions of object-types and objects,
the case-study reveals the advantages of a knowledge level integration of Al and
DBT. Since these descriptions are not obstructed by a bias toward a specific
representatîon formalism, problems due to using a representation formalism to model
knowledge are avoided. On the one hand, the implementation-free descriptions of
object-types and objeets yield knowledge level such as a better view of
knowledge and enriehed possibilities to improve explanation and maintenance. On the
other hand, the reduction of the object-types and to symbol level structures
and computational processes, is facilitatcd by the availability of elear descriptions.
Codd (1979, p.398) already described the associated for DB-systems:

' .. a meaning-oriented data model stored in a computer should
enable it to respond to queries and other transactions in a more
intelligent manner. Such a model could also be a more
effective mediator between the multiple external views
employed by application programs and end-users on the one

- 235 -

CHAPJEll7 THE CHEl'lf!CAl DEGRADATJON AND RESTORATJON OF A;VC/ENT BRICK M.4SONRY WALLS

hand and the multiple intemally stored representations on the
other.'

Second, the case-study reveals the advantages of the theory of functional
classifications to accomplish a knowledge level integration. At the knowledge level,
many traditional classifieations of masonry walls are possible. For instance, Adam
(1984) describes a classification based on architectural-structural criteria. However,
functional classifications are condueive to a better organisation of the knowledge of
objeets (the masonry walls) and knowledge of constraints (the requirements these
masonry walls should meet to be resistant to chemica! degradation). At the symbol
level, functional objeet-types foster the transfer of knowledge into representation
formalisms of AI and DBT. The functional reconstruction of object-types and objects
supports the organisation and adaptation (for technica! design purposes) of the
mathematica! functions underlying representation formalisms. lt not only helps to
structure production rul es, but also supports the representation of views.

Third, the utility of the joint application of DT's and Prolog is exemplified.
Especially in the form they are offered by AKTS. Together, DT's and Prolog have the
capabihty of describing object-types that delineate walls susceptible to the formation
of ettringite and objects that delineate brick masonry walls. Besides showing that
Prolog can be used for recursive definitions (Chapter 5), the case, in addition, reveals
the utility of Prolog as a database language. By this, the expressive power of AKTS is
emphasised.

Knowledge-based systems based on traditional classifications are easier to develop,
but less useful, whereas knowledge-based systems based on functional classifications
are difficult to develop, but better geared to the concrete needs of preventing chemica!
degradation and carrying out restorations on brick masonry walls.

236-

CHAPTERS

EPILOGUE

8.1 INTRODUCTION

Knowledge-based systems are pervading nearly all fields of trade and industry. As
volume and complexity of knowledge are increasing in the daily practice of
organisations, it is expected that a growing number of organisations wil! be in need of
these knowledge-based systems (see for instance Cohen, 1989, p.3; Smith, 1986,
p.22). Unfortunately, the development of knowledge-based systems causes many
problems. Especially modelling knowledge is a major obstacle in the development of
these systems. This thesis has extensively dealt with the following dimensions
underlying this problem:

1. Confusion of knowledge and knowledge representation formalisms
2. Lack of an adequate theory of the nature of knowledge
3. Lack of an adequate forma! language

To complete the thesis, this chapter briefly states the principal conclusions concerning
these dimensions (Section 8.2). Subsequently, to provide a broader perspective, we
briefly discuss the relation of qualitative object-types and quantitative object-types
(Section 8.3). Finally, the chapter is rounded off with the discussion of some
implications of adopting the proposals made here as a remedy in dealing with these
dimensions (Section 8.4).

8.2 PRII\CIPAL CONCLUSIONS

In characterising modelling knowledge as an activity of reconstructing complex
object-types and complex objects, we explained the need to integrate AI (to deal with
complex object-types) and DBT (to deal with complex objects). The three dimensions
that interfere with the modelling of knowledge and thus with the reconstruction of
object-types and objects led to the following research issues (Chapter 1):

L What are the advantages of integrating AI and DBT at the knowledge level
cornpared to symbol level integration? Does a knowledge level integration
contribute to the process of modelling knowledge?

237

CHAPTER 8 EPJLOGUE

IL Does the theory of functional classifications constitute a conceptual advance
for realising a knowledge level integration, and, if so, in what respects? Does
the theory help to define object-types and objects to enable knowledge-based
systems to perform matches?

III. Can the joint application of Prolog and DTs be considered as an adequate
knowledge level language for describing functional object-types? That is, does
it comply with the genera! requirements applied to modelling languages and
the particular requirements for functional object-types?

The principal conclusions with regard to these issues can be stated briefly.
The investigation of the first research issue yielded a number of advantages that a

knowledge level integration of AI and DBT has over a symbol level integration.
These advantages refer to the availability of a specific eomputer systems level to
define the nature of knowledge, to the improved competenee to reconstruct
knowledge level models and to the availability of a computer systems level from
which to analyse and compare representation formalisrns. It also appeared that the role
of mathematica! logic can be specified better by a knowledge level integration: frorn a
knowledge level perspective mathematical logic is perceived as a forma! language that
is uniquely appropriate for the analysis of knowledge. Mathematica! logic thus helps
to reconstruct object-types and objects and to assess them in a knowledge universe.
However, it is also concluded that mathematica! logic is not cnough, because it has no
ontology. A theory of the nature of knowledge is needed to provide this.

The second research issue concerns the theories of the nature of knowledge to
intercept the observed weakness of mathematica! logic. We argued that, compared to
competing probabilistic and prototypical theories, the theory of functional object
types offers promising perspectives, because it accounts for fundamental concerns of
modelling functional object-types and objects. A centra! element in this theory is the
fact that the problem of modelling knowledge is dealt with by systematically
identifying several object-types which emerge by explicitly accounting for functional
equivalence. As such the theory constitutes an integration of AI and DBT at the
knowledge level. This theory does not only touch upon the activity of knowledge
modelling and the choice of methodologies and modelling techniques, hut also on the
evaluation and choice of knowledge representation formalisms. lt is claimed that this
theory can be viewed as a framework for knowledge modelling. We also concluded
that a language is required to formally describe object-types and objects in accordance
with the theory of functional object-types.

The third research issue concerns the evaluation of the joint application of Prolog
and DTs as a forma! language to describe, validate and simulate functional object
types and objects. lt is argued tbat DTs provide some methodological advantages
compared to e.g. decision plan nets, as advocated by Timmermans (1987).
Furthermore, it is argued that, though Prolog compensates a number of weak points of
DTs, some drawbacks remain. The Advanced Knowledge Computer Transfer System
(AKTS) that offers extensive facilities for working with Prolog and DTs to reconstruct
functional object-types has been developed to solve these problems. In comparison
with DTs, the validation facilities are to an important degree enhanced in

- 238 -

correspondence with the proposed tree-based definitions of a DT. AKTS offers
facilities to check the exhaustiveness and exclusiveness of a complete DT-system.
Furthermore, AKTS provide possibilities to check the connections between DTs using
the forma! definitions of connections. Finally, AKTS has extensive facilities to
simulate a reconstrncted functional object-type. In brief, we can state that AKTS takes
advantage of the complementarity of DTs and Prolog and eliminates remaining
drawbacks such as the Jack of prototypes of DTs, automated checking facilities and
the lack of advanced graphical facilities for DTs.

8.3 QUANTITATIVE OBJECT-TYPES

The views of object-types that are presented here are mainly qualitative object-types.
As in physics the aim is often to introduce quantitative object-types such as length,
time, mass which permit the use of exact figures on measuring scales. If adequate
measuring techniques are not available, one is satisfied with qualitative object-types
(Stegmüller, 1973).

Our approach is somewhat different. We always define an object-type by first
assuming a and finding relevant conditions. Obviously, we account for the
occurrence of functional equivalence. If it is clear, however, that the conditions
needed to describe an object-type independently of each other contribute to the
definition of the object-type and that these conditions are we will consider the
possibility of quantitative object-types. Whether this is possible, depends on the
nature of knowledge: if the conditions of the object-type comply with the principle of
additivity or the principle of multiplicativity, it is permitted to use quantitative object
types. The principles are displayed below:

(object-type described by additions)

(object-types described by multiplications)

An example of a multiplicative model is:

(3) If F 0 then:
dt

0 (the first motion law of Newton)

F is the sum of the veetors of the exogenous forces that operate over an object. m is
the mass of that object and v is its velocity. F and v are vectors (have a direction and
orientation) and m is a scalar (without a direction and orientation). If we assume that
the law is true the principle of multiplicativity can be applied and the use of
quantitative object-types is allowed.

The reader should note that the knowledge represented in this type of models can be
represented using AKTS in several ways. Firstly, but this is an artificial solution, it is
possible to use a DT (for an example see: De Gelder, Van & Lucardie,

- 239 -

CHAPrER8 EPJLOGUE

1993). Secondly, it is possible to incorporate the formula in the design phase of AKTS
by means of DT-properties or parameter properties (see Chapter 6). Thirdly, it is
possible to use Prolog to represent the formula. In fact, this means that functional
object-types subsume quantitative object-types.

8.4 IMPLICATIONS

When we review the main approaches towards modelling in computer science, we can
see that most of the activities have prototypical and probabilistic traits. The line of
reasoning is that the reconstruction of generic object-type is possible and valuable. A
further specification of the object-type is supposed to be performed afterwards to tune
the object-type for specific applications and implementations.

A sad example of this approach is the development of the Building Information
Model (BIM) that was finished in 1989. BIM is the result of a large-scale Innovative
oriented project that aimed at contributing to the infonnation-technical infrastructure
for the building and construction industry. BIM indicates what attributes of building
objects (including building processes) are necessary for effectively dealing with these
objects. The description of the attributes was made in accordance with international
developments in order to develop a standard. Because BIM should be appropriate to
exchange all kinds of attributes, a generic model was developed. BIM proved to be a
severely limited solution. The disappointments carne rapidly when attempts were
made to implement systems based on the models of BIM. It appeared that the models
were not adequate for use as a basis for building computer systems and this led to a
significant loss of money.

From a functional perspective, this is not surprising. We think that the main reason
for the failure of BIM was that the models were not goal-oriented and did not account
for contextual influences. As a consequence the occurrence of functional equivalences
was ignored. We have already described the object-types wall. From the object-type
wall we can derive that a description based on the goal 'fire-safety' is completely
different from a description of the same object-type wall from the goal 'susceptible to
the formation of ettringite'. In both description totally different conditions or attributes
are needed. There is no way to deduce one description from the other. Both object
types are incommensurable.

However, things are improving in computer science applied to the building and
construction industry. In the world of Building and Construction Research DT's are.
applied (see for instance Garrett & Fenves, 1987) and ideas that confirm the theory of
functional object-types are slowly spreading. Examples of these ideas can be found in
De Scheemaker (1994) and in Gui & Mäntylä (1994). De Scheemaker (1994) stressed
the irnportance of describing a building from different viewpoints by accounting, for
instance, for several parties interested in the building or for the life-cycle phases of the
building. As a consequence De Scheemaker also declined the reconstruction of
general models. Similar signals can be found in Gui & Mäntylä (1994) with respect to
assembly modelling.

- 240-

Figure 8.1: The Position of Functional Object-types
systems

FP!l.OGUF

Complex Knowledge-hased

We hope that we have provided enough convincing arguments for the reader to agree
with the scheme of Figure 8. l. It conveys the message that the theory of functional
classîfications offers promising perspectives to improve the development of
knowledge-based systems, because it accounts for fundamental concerns of
reconstructing object-types and objects. These knowledge-based systems are now
known under the headings of expert database systems, decision support systems and
deductive, object-oriented, logic databases or semantic databases. They all have in
common that they can somehow cope with both types of knowledge to classify an
object as an instance of an object-type. These systems, which inevitably have a

complex nature due to functional equivalences, forma real integration of Al- and DB
systems. We hope that functional object-types will be their basis and that AKTS will
be applied to reconstruct them.

241 -

REFERENCES

Abarbanel, R. M., & Williams, M. D. (1986). A Relational Representation for
Knowledge Bases. In L. Kerschberg (Ed.), The First International Conference on
Expert Database Systems, (pp.191-206). Charleston: The Benjamin/Cummings
Publishing Company Ine.

Adam, J. P. (1984). La Construction Romaine. Matériaux et Techniques. Paris:
Pi card.

Almog, J. (1981). 'Dthis and Dthat' Indexicality Goes Beyond That. Philosophical
Studies, 39, 347-359.

Bakker, R. R. (1987). Knowledge Graphs: Representation and Structuring of
Scientific Knowledge. Dissertation, Technical University of Twente.

Balder, J" & Akkermans, H. (1992). TheME: An Environment for Building Format
KADS-11 Models of Expertise. Ai Communications, 5, 136-147.

Bayes, A. J. (1973). A Dynamic Programming Algorithm To Optirnise Decision Table
Code. The Australian Computer Journal, 5, 77-79.

Beerel, A. C. (1987). Expert Systems. Strategie lmplications and Applications. New
York: John Wiley & Sons.

Beitz, H., Buck, N., Jorgensen, P., Larson, L., Maes, R., Marselos, N., Muntz, C.,
Rabin, J., Reinwald, L., Strunz, H., & Verhelst, M. (1982). A Modern Appraisal of
Decision Tables (Codasyl Report). Association of Computing Machinery.

Bell, C. G., & Newell, A. (1971). Computer Structures: Readings and Examples. New
York: McGraw-Hill.

Berg-Cross, G" & Price, M. E. (1989). Acquiring and Managing Knowledge Using a
Conceptual Structures Approach: Introduction and Framework. IEEE Transactions
on Systems, Man and Cybernetics, 19, 513-527.

Brachman, R" & Smith, B. C. (1980). Special Issue on Knowledge Representation.
Sigart Newsletter, 70, 1-138.

Brachman, R. J. (1983). What IS-A Is and Isn't: An Analysis of Taxonomie Links in
Semantic Networks. IEEE Computer, 16(10), 30-36.

Brachman, R. J. (1985). "l lied about the Trees" Or, Defaults and Definitions in
Knowledge Representation. Al Magazine, 6(3), 80-93.

Brachman, R. J., & Levesque, H. J. (1986). What Makes a Knowledge Base
Knowledgeable? A View of Databases from the Knowledge Level. In L.
Kerschberg (Ed.), The First International Conference on Expert Database Sys
tems, (pp.69-78). Charleston: The Benjamin/Cummings Publishing Company Ine.

Brodie, M.L., & Jarke, M. (1986). On Integrating Logic Programming and Databases.
In L. Kerschberg (Ed.), The First International Conference on Expert Database
Systems, (pp.191-207). Charleston: The Benjamin/Cummings Publishing Company
Ine.

Butrick, R. (1987). Logic and Knowledge Representation in PRO LOG. Dr. Dobbs' s
Journal, 30-38.

- 243 -

REFERENCES

Bylander, T., & Chandrasekaran, B. (1988). Generic Tasks in Knowledge Based
Reasoning: The Right Level of Abstraction for Knowledge Acquisition. In B.
Gaines & J. Boose (&is.), Knowledge Acquisition for Knowledge Based Systems
(pp.65-77). London: Academie Press.

Cantrell, H. N., King, J., & King, F. E. H. (1961). Logic Structure Tables.
Communications of the ACM, 4, 272-275.

Carapuça, R., & Fiadeiro, J. (1988). Varying Representation Schemata vs Fact
Updating in KB Management. In R. A. Meersman & A. C. Sernadas (Eds.), Data
and Knowledge (pp.71-87). Amsterdam: Elsevier Science Publishers B.V.

Chow, E. (1987). Representing Databases in Frames. In Sixth National Conference on
Artificial lntelligence, 2 (pp.405-409).

Clancey, W. J. (1983). The Epistemology of a Rule-based System -A Framework for
Explanation. Artificial lntelligence, 20(3), 215-251.

Clancey, W. J. (1985). Heuristic Classification. Artificial lntelligence, 27(3), 289-350.
Clancey, W. J. (1992). Model Construction Operators. Artificial lntelligence, 53(1), 1-

115.
Codd, E. F. (1970). A Relational Model of Data for Large Shared Databanks. Comm.

ACM, 13(6), 377-387.
Codd, E. F. (1979). Extending the Database Relational Model to Capture More

Meaning. ACM Transactions on Database Systerns, 4(4), 397-434.
Cohen, B. (1989). Merging Expert Systems and Databases. Al Expert, 4, 22-31.
Collepardi (1990). Degradation and Restoration of Masonry Walls of Historical

Buildings. Materials and Structures, 23, 81-102.
Cooke, J. (1992). Forma! Methods-Mathematics, Theory, Recipes or What. The

Computer Journal, 35, 419-423.
Cornelis, A. (1993). De Logica van het Gevoel. Middelburg: Stichting Essence.
Das, S. K. (1992). Deductive Databases and Logic Programming. Wokingham:

Addison-Wesley Publishing Company Ine.
David, J. M., & Krivine, J. P. (1990). Explaining Reasoning from Knowledge Levels

Models. In L. Aello (Ed.), ECA/'90, (pp.186-188). Stockholm: Pitman.
Davis, A. M. (1988). A Comparision of Techniques for the Specification of External

System Behavior. Communications of the ACM, 31(9), 1098-1115.
Davis, R. (Ed.). (1982). Runnable Specification as a Design Tool. London: Academie

Press.
De Broek, E. 0. (1989). De Grondslagen van Semantische Databases. Schoonhoven:

Academie Service.
De Gelder, J. T" & Lucardie, G. L. (1993). Knowledge and Data Modelling for

CAD/CAM Applications. In H. J. P. Timmermans (Ed.), Design & Decision
Support Systems in Architecture (pp.111-121). Dordrecht: Kluwer Academie
Publishers.

De Gelder, J. T" Van Gorp, L. F. M" & Lucardie, G. L. (1993). A Framework for
Reconstructing Conceptual Models of Structures. In I. Smith (Ed.), Knowledge
Based Systems in Civil Engineering, 68 (pp.65-76). Being: IABSE-AIPC-IVBH.

De Jonge, J" Bruijning, J., Schoemaker, W. H" & Otten, G. A. M. (1988). Het
Formuleren van Opdrachten in Relationele Vraagtalen. Informatie, 30, 393-460.

De Scheemaker, A. (1994). Het Einde van de Hiërarchie. VCA-medelingen, 3, 11-15.

244-

R.ffERENCES

Deering, M., & Faletti, J. (1986). Database Support for Storage of Al Reasoning
Knowledge. In L. Kerschberg (Ed.), The First International C011ference on Expert
Database Systems, (pp.527-536). Charleston: The Benjamin/Cummings Publishing
Company Ine.

Denise, T. C. (1984). On the Nature of INUS Conditionality. Analysis, 44, 49-52.
Derksen, A. A. (1980). Rationaliteit en Wetenschap. Assen: Van Gorcum.
Deville, Y. (1990). Logic Programming. Systematic Program Development.

Wokingham, England: Addison-Wesley Publishing Company.
Di Battista, G., Kangasallo, H" & Tammasia, R. (1989). Definition Libraries for

Conceptual Modelling. Data & Knowledge Engineering, 4, 245-260.
Etherington, D., & Reiter, R. (1983). On Inheritance Hierarchies with Exceptions. In

PROC. AAAI-83, 83 (pp.104-108). Washington: Morgan Kaufmann.
Everitt, B. S. (1983). Cluster Analysis. In D. Mackay, N. Schofield, & P. Whitely

(Eds.), Data Analysis and the Social Sciences (pp.226-255). London: Pinter.
Fahlman, S. Touretzky, D. S" & Van Roggen, W. (1981). Cancellation in a

Parallel Semantic Network. In IJCAI-81, (pp.257-263).
Falkenberg, E. (1982). Foundations of the Conceptual Schema Approach to

Information Systems. In E. Falkenberg (Ed.), The NATO Advanced Study Institute
on Database Management 1/ieory and Applications (pp.3-17). Dordrecht: Kluwer
Academie.

Feigenbaum, E. A. (1989). Knowledge Processing from File Servers to Knowledge
Servers. In J. R. Quinlan (Ed.), Applications of Expert Systems (pp.3-10). Sydney:
Addison-Wesley Publishing Company.

Fox, M. S. (1986). Beyond the Knowledge Level. In L. Kerschberg (Ed.), The First
International Conference on Expert Database Systems, (pp.455-463). Charleston:
The Benjamin/Cummings Publishing Company Ine.

Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, J. (1991). Knowledge Discovery in
Databases: An Overview. In G. Piatetsky-Shapiro & W. J. Frawley (Eds.),
Knowledge Discovery in Databases (pp.l Menlo Park, California: AAAI
Press/The MIT Press.

Gallaire, IL Minker, J., & Nicolas, J. (1984). Logie and Databases: A Deduetive
Approach. Computing Surveys, 16, 153-185.

Ganapathy, S., & Rajaraman, V. (1974). Information Theory Applied to the
Conversion of Decision Tables to Computer Programs. Communications of the
ACM, 16, 532-553.

Garrett, J. H., & Fenves, S. J. (1987). A Knowledge-Based Standards Processor for
Structural Component Design. Engineering with Computers, 2, 219-238.

Goel, A., Soundararajan, N .• & Chandrasekaran, B. (1987). Complexity in
Classificatory Reasoning. In AAAI-87, Sixth National Conference on Artificial
Intelligence 2, (pp.421-425).

Grad, B. (1962). Decision Tables in System Design. In ACM National Conference,
(pp.76-77).

Grefen, W. P. J., & Apers, M. G. (1993). Integrity Control in Relational Database
Systems-An Overview. Data & Knowledge Engineering, JO, 187-223.

Gui, J" & Mäntylä, M. (1994). Functional Understanding of Assembly Modelling.
Computer-Aided Design, 435-451.

- 245

REFERENCES

Hayes-Roth, F., & Jaeobstein, N. (1994). The State of Knowledge-Based Systems.
Communications of the ACM, 37(3), 27-39.

Hempel, C. G. (1962). Deductive vs. Statistieal Explanation. In H. Feigl & G.
Maxwell (&Is.), Scientific Explanation, Space and Time Minneapolis: Minnesota
Press.

Hempel, C. G., & Oppenheim, P. (1948). Studies in the Logic of Explanation.
Philosophical Sciences(15), 135-175.

Hendriks, P. H. J. (1986). De Relationele Definitie van Begrippen. Een Relationeel
Realistische Visie op het Operationaliseren en Representeren van Begrippen.
Dissertation, Nijmegen.

Herwijnen, J. v., Houten, E.G. v" Houtsma, M.A.W., & Romkema, H.M. (1990).
Implementatie van een Regel-gebaseerd Kennissysteem in een Relationele
Database-Omgeving. Informatie, 32, 14-21.

Hsieh, D. (1993}. A Logic to Unify Semantic-Network Knowledge Systems with
Object-Oriented Database Models. Journal of Object-Oriented Programming, 55-
67.

Hudak, P. (1989). Conception, Evolution, and Application of Functional
Programming. ACM Computing Surveys, 21, 359-411.

Huijsing, A. P. (1992). Een Expert Systeem Shell voor Beslissingstabellen (TNO
Report No. BI-92-156). TNO Building and Construction Research.

Hull, R., & King, R. (1987). Semantic Database Modeling: Survey, Applications and
Research Issues. ACM Computing Surveys, 19, 201-260.

Israel, D. J. (1983). The Role of Logic in Knowledge Representation. IEEE
Computer, 16(10), 37-42.

Jarke, M" & Vassiliou, Y. (1984). Coupling Expert Systems with Database
Management Systems. In W. Reitman (Ed.), AI-Applicationsfor Business (pp.65-
85). Ablex Pub. Co.

Jones, A. (1991). Logic and Knowledge Representation. An Introductionfor Systems
Analysts. London: Pitman Publishing.

Kent, W. (1979). Limitations of Record-Based Information Models. ACM
Transactions on Database Systems, 4, 107-131.

Kim, J" & Courtney, F. (1988). A Survey of Knowledge Acquisition Techniques and
Their Relevance to Managerial Problem Domains. Decision Support Systems, 4,
269-284.

Knippenberg, A. V" & Siero, F. (1980). Multivariate Analyse. Beknopte Inleiding en
Toepassingen. Deventer: Intermedia.

Koppelaar, H. (1990). Automatiseh Ontdekken. Informatie, 32(6), 513-596.
Kowalski, R. (1979). Algorithm is Logic + Control. Communications of the ACM, 7,

424-436.
Kowalski, R. (1984). AI and Software Engineering. Datamation, 92-102.
Kowalski, R. (Ed.). (1985). The Relation Between Logic Programming and Logic

Specification. New Jersey: Prentice Hall.
Kripke, S. A. (1972). Naming and Necessity. In D. Davidson & G. Harman (&Is.),

Semantics of Natura/ Language Dordreeht: Reidel.
Kuhn, T. S. (1970). The Structure of Scientific Revolutions. Chicago: University of

Chicago Press.

246-

REFEREt.JCES

Lafferty, E. L. (1988). Space. In T. C. Bartee (Ed.), Expert Systems and Artificial
Intelligence (pp.3-31). Indianapolis: Howard, W. Sams & Company.

Lafleur, T. G. (1971). Deeision Tables. A Tool for Documenting Logica!
Relationships. ACM Sigplan Notices, 6, 9-12.

Lazarev. G. L. (1989). Executable Specifications with Prolog. Dr. Jobb's Joumal, 10,
61-68.

Levesque, H. J. (1984). Foundations of a Functional Approach to Knowledge
Representation. Artificial Intelligence, 23(2), 155-212.

Lew, A. (1978). Optima! Conversion ofExtended-Entry Decision Tables with Genera!
Cost-Criteria. Communications of the ACM, 21, 269-279.

Lew. A. (1985). Computer Science: A lv!athematical lntroduction. Englewood Cliffs:
Prentice Hall International.

Li, D. (1985). A Prolog Database System. Research Studies Press Ltd.
Lloyd, J. W. (1984). Foundations of Logic Programming. New York: Springer

Verlag.
Loucopoulos, P" & Karakostas, V. (1989). Modelling and Validating Office

Information Systems: an Object and Logic Oriented Approach. Software
Engineering Joumal, 87-94.

Lucardie, G. L. (1988). Relationele Begripsanalyse en Beslissingstabellen: Aanzetten
tot Generalisatie. In A. G. M. Van Der Smagt & P. H. J. Hendriks (Eds.),
Methoden op een Keerpunt (pp.59-81). Amsterdam/Nijmegen: Koninklijk
Nederlands Aardrijkskundig Genootschap.

Lucardie, G. L. (1989). Beslissingstabellen en Kennisgebaseerde Systemen; Een
Conceptuele Benadering (TNO Report). TNO.

Lucardie, G. L. (1992). Functionele Object-typen als Grondslag voor
Beslissingsondersteunende Systemen: De Technische Bouwregelgeving als Case.
In H. De Swaan Arons, H. Koppelaar, & E. J. H. Kerckhoffs (Eds.), NAIC'92,
(pp.213-224). Delft: Delftse Universitaire Pers.

Lucardie, G. L., De Gelder, J. T., & Huijsing, A. P. (1994). DTSS: A Functional
Application of Decision Tables and Prolog as a Coneeptual Modelling Language.
In L F. C. Smith (Ed.), Applications of Artificial lntelligence in Structural
Engineering, (pp.192-204). Lausanne: Federal Institute of Technology (EPFL).

Lucas, P. J. F., & Van Der Gaag, L. C. (1991). Principles of Expert Systems.
Wokingham: Addison-Wesley Publishing Company.

Mackie, J. L. (1965). Causes and Conditions. American Philosophical Quarterly, 2,
245-264.

Martin, J., & Odell, J. (1992). Object-Oriented Analysis and Design. Englewood
Cliffs: Prentice Hall.

McCarthy, J. (1980). Circumscription-A Form of Non-monotonie Reasoning.
Artificial lntelligence, 13(1,2), 27-39.

Mesequer, P. (l 992). Towards a Conceptual Framework for Expert System
Validation. Ai Communications, 5, 119-135.

Metzner, J. R., & Barnes, B. (1977). Decision Table Languages and Systems. New
York: Academie Press Ine.

Mill, J. S. (1898). System ofLogic, bk.1.1. London: Longmans, Green & Co.
Minsky, M. (1982). Why People Think Computers Can't. Al Magazine, 3(4), 3-15.

- 247 -

REFERENCES

Monarchi, E. D., & Smith, J. R. (1992/1993). The Representation of Rules in the ER
Model. Data & Knowledge Engineering(9), 45-61.

Montalbano, M. (1974). Decision Tables. Chicago: Scientific Research Associates.
Mors, N. P. M. (1993). Beslissingstabellen. Leidschendam: Lansa Publishing BV.
Murdoch, S., & Johnson, L. (1990). Intelligent Data Handling. London: Chapman and

Hall.
Neale, I. M. (1988). First generation Expert Systems: a Review of Knowledge

Acquisition Methodologies. The Knowledge Engineering Review, 3, 105-147.
Neches, R., Swartout, W., & Moore, J. D. (1985). Enhanced Maintenance and

Explanation of Expert Systems through Explicit Models of their Development.
IEEE Transactions on Software Engineering, 11, 1337-1350.

Newell, A. (1981). The Knowledge Level. Al Magazine, 1, 1-20.
Newell, A. (1990). Unified Theories of Cognition. Cambridge, Massachusetts:

Harvard University Press.
Ogden, C. K., & Richards, I. A. (1946). The Meaning of Meaning. New York:

Harcourt Brace Jovanovitch.
Overhoff, R. W., & Molenaar, L. J. (1991). In de Regel Beslist. Een Beschouwing

over Regelgeving met behulp van Beslissingstabellen. Dissertation, Leiden.
Oxborrow, E.A. (1989). Databases and Database Systems: Concepts and Issues (2

ed.). Bromley: Chartwell-Bratt Ltd.
Palvia, S. C., & Gordon, S. R. (1992). Tables, Trees and Forrnulas in Decision

Analysis. Communications of the A CM, 3 5, 104-113.
Pedhazur, E. J. (1982). Multiple Regression in Behavioral Research. Explanation and

Prediction (2 ed.). New York: Holt, Rinehart and Winston.
Pollack, S. L. (1965). Conversion of Limited Entry Decision Tables to Computer

Programs. Communications of the ACM, 8, 677-682.
Popper, K. (1934). Logik der Forschung. Wenen: J. Springer.
Putnam, H. (1975). Mind, Language and Reality. In H. Putnam (Ed.), Philosophical

Papers (pp.215-271). Cambridge: Cambridge University Press.
Putnam, H. (1977). Is Semantics Possible? In S. P. Schwarz (Ed.), Naming, Necessity

and Natura/ Kinds Ithaca, NY: Comell University Press.
Reilly, K. D., Salah, A., & Yang, C. (1987). A Logic Programming Perspective on

Decision Table Theory and Practice. Data and Knowledge Engineering, 2, 191-
212.

Reinwald, L. T., & Soland, R. M. (1966). Conversion of Limited-Entry Decision
Tables to Optima! Computer Programs I: Minimum A verage Processing Time.
Journal of the ACM, 13, 339-358.

Reinwald, L. T., & Soland, R. M. (1967). Conversion of Limited-Entry Decision
Tables to Optima! Computer Programs II: Minimum Storage Requirement. Joumal
of the ACM, 14, 742-756.

Reitman Olson, J" & Rueter, H. (1987). Extracting Expertise from Experts: Methods
for Knowledge Acquisition. Expert Systems, 4(3), 152-168.

Reitsma, R. F. (1990). Functional Classification of Space: Aspects of Site Suitability
Assesment in a Decision Support Environment. Dissertation, University of
Nijmegen, International Institute for Applied Systems Analysis, Laxenburg,
Austria/Faculty of Policy Sciences.

- 248 -

Remmen, F. (1982). Databases, Grondslagen voor de Logische Structuur. Den
Academie service.

Remmen, F. (1985). Hoe Vriendelijk zijn Vraagtalen in het Gebruik. Informatie,
666-673.

Risch, T., Reboh, R., Hart. P., & Duda, R. (1988). A Functional Approach to
Integrating Database and Expert Systems. Communications of the ,4CM. 31(12),
1424-1437.

Rosch. E. (1978). Principles of Categorization. In E. Rosch & B. B. Lloyd (Eds.),
Cognition and Categorization Hillsdalc, N.J: Lawrence Erlbaum.

Rowe. N. C. (1988). Artificial lntelligence through Prolog. Englewood Cliffs:
Prentice Hall International.

Salah, A. I. (1986). An lntegration Decision Tables and a Relational Database
System into a Prolog Environment. Dissertation, Universily of Alabama,
Department of Computer and Information Sciences.

Schreiber, A. T. (1992). Pragmatics of the Knowledge Level. Dissertation,
Amsterdam, Faculty of Psychology.

Shwayder. K. (1971). Conversion of Limited-Entry Decision Tables to Computer
Programs-A Proposed Modification to Pollack's Algorithm. Communü.:ations
the AClvf. 14, 69-73.

Siebes, A.P. J. M. (1990). On Complex Objects. Dissertation, Enschede.
Smith, B. C. (1985). Prologue to "Reflection and Semantics in a Procedural

Language". In R. J. Brachman & H. J. Levesque (Eds.), Readings in Knowledge
Representation (pp.3~-43). Los Altos: Morgan Kaufman.

Smith, J. M. (1986). Expert Database Systems: A Database Perspective. In L.
Kerschberg (Ed.), The First International Conference on Expert Database
Systems, (pp.3-15). Charleston: The Benjamin/Cummings Publishing Company
Ine.

Steels, L. (1990). Components of Expertise. Al Magazine, 11(2), 28-49.
Steels, L. (1992). Kennissystemen. Amsterdam: Addison-Wesley.
Stegmüller, W. (1973). Probleme und Resultate der Wissenschaftstheorie wui

Analytische Philosophie. Berlin: Springer Verlag.
Stepp, R. E., & Michalski, R. S. (1986). Conceptual Clustering of Structured Objects:

A Goal-Oriented Approach. Art!ficial lntelligence, 28, 43-69.
Sterling. L., & Shapiro. E. (1986). The Art of Prolog. Advanced Programming

Techniques. Cambridge: The MIT Press.
Sticklen, J. (1989). Problem Solving Architecture at the Knowledge Level. Journal of

Experimental and Theoretica! Artificial lntelligence, 1, 233-247.
Stonebraker, M. (1984). Adding Semantic Knowledge to a Relational Database

System. In M.L. Brodie, J. Mylopoulos, & J. W. Schmidt (Eds.), On Conceptual
Modelling (pp.333-356). Berlin: Springer-Verlag.

Subramanian, G. H., Nosek, J" Raghunathan, S. P., & Kanitkar, S. S. (1992). A
Comparison of the Decision Table and Tree. Communicmions of the ACM, 35, 89-
94.

Tanenbaum, A. S. (1976). Structured Computer Organization. Englewood Cliffs:
Prentice Hall.

Timmermans, H. J. P" & Van Der Heijden, R. E.C. M. (1987). Uncovering Spatial

- 249

REFERENCES

Decision-Making Processes: A Decision Net Approach Applied to Recreational
Choice Behaviour. Journal of Economie and Social Geography, 78, 297-304.

Turner, D. A. (Ed.). (1985). Functional Programs as Executable Specifications. New
Jersey: Prentice Hall.

Twine, S. (1989). Mapping between a NIAM Conceptual Schema and KEE Frames.
Data & Knowledge Engineering, 4, 125-155.

Van Brakel, J. (1986). Is 'Water is Zoiets als H20', Indien Waar, Noodzakelijk Waar?
Algemeen Nederlands Tijdschrift voor Wijsbegeerte, 78(2), 97-116.

Van Calmthout, M. (1993, 19-06-1993). Een Verbeten Race op Weg naar het
Nulpunt. Volkskrant.

Van De Riet, R. P. (1990). Kennisbanken. Informatie, 32, 105-232.
Van Der Smagt, A. G. M. (1985). Definiëren en Relateren in Sociaal

Wetenschappelijk Onderzoek. Dissertation, University of Nijmegen, Faculty of
Policy Sciences.

Van Der Smagt, A.G. M" & Lucardie, G. L. (1991). Decision Making under not
Well-Defined Conditions: From Data Processing to Logical Modelling. Journal of
Economie and Social Geography, 82(4), 295-304.

Van Griethuysen, J. J. (1982). Concepts and Terminology for the Conceptual Schema
and the Information Base (Report ISO TC97/SC5/WG5).

Vanthienen, J. (1988). Een Moderne Kijk op Beslissingstabellen. Informatie, 12, 912-
936.

Vassiliou, Y. (1979). Null Values in Data Base Management. A Denotational
Semantics Approach. In ACM-SIGMOD International Conference on the
Management of Data, (pp.162-169). New York: ACM.

Verhelst, M. (1972). The Conversion of Limited-Entry Decision Tables to Optimal
and Near-Optimal Flowcharts: Two New Algorithms. Communications of the
ACM, 15, 974-980.

Verhelst, M. (1980). De Praktijk van Beslissingstabellen. Deventer: Kluwer.
Walker, A. (Ed.). (1987). Knowledge Systems in Prolog. Reading: Addison-Wesley

Publishing Company Ine.
Welbank, M. (1983). A Review of Knowledge Acquisition Techniques for Expert

Systems. British Telecom Research Laboratories.
Wiederhold, G. (1984). Knowledge and Database Management. IEEE Software, l, 63-

73.
Wiig, K. M. (1988). Management ofKnowledge: Perspectives of A New Opportunity.

User Interfaces, 3, 101-116.
Woods, W. A. (1975). What's in a Link: Foundations for Semantic Networks. In D. G.

Bobrow & A. Collins (Eds.), Representation and Understanding (pp.35-82). New
York: Academie Press.

Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338-353.
Zadeh, L. A. (1975). A Fuzzy-Algorithmic Approach to the Definition of Complex or

Imprecise Concepts. In L. A. Zadeh (Ed.), Selected Papers (pp.147-192).
Zaniolo, C. (1986). Prolog: a Database Query Language for All Seasons. In L.

Kerschberg (Ed.), The First International Conference on Expert Database
Systems, (pp.219-232). Charleston: The Benjamin/Cummings Publishing Company
Ine.

- 250-

Zemach, E. M. (1976). Putnam's Theory of Reference of Substance Terms. The
Journal of Philosophy, 73(5), 116-127.

Zytkow, J., & Baker, J. (1991). Interactive Mining ofRegularities of Databases. In G.
Piatetsky-Shapiro & W. J. Frawley (Eds.), Knowledge Discovery in Databases
(pp.31-53). Menlo Park, Calîfornia: AAAI Press/The MIT Press.

251 -

APPENDIXA

/* Table Drawing
The drawing of DT's in AKTS is done by the predicate draw/1. Draw/l first performs
a number of eomputations, constructs picture descriptions in the Graphic Description
Language (GDL) and finally draws the table in a window, using a GDL-proccssing
predicate. Basically, it works as follows. First of all the title, if any, is being placed by
title/10. The predicate lines_and_label/12 places the condition and action names, i.e.
the labels, together with the horizontal and some vertical lines. The information for
the label width and the row heights is taken from the table_measures/3 term returned
by get_table/7. The vertical lines between the fields of the table are being placed in
fill_tree/10. The fields of the table, consisting of the condition alternatives and the
action values, are processed by fill_tree/10. The predicate fill_tree/l 0 uses the
predicates 'create_alts&line'/11 to place the alternative of the current field together
with the vertical line separating it from the next field; and fill_action_ values/l 0 to fill
in the action values. The necessary information about field width is also drawn from
the table_rneasures/3 term. The actual drawing is done by process_figures/3 which
calls either add_pic/3 or record_pic/3, both GDL-processing predicates.

In the following, only the major predicates are preceded by a specification of their
argument types, success and/or failure conditions and whether they are deterministic.
*/

/* draw(+ Table) :
Table is an atorn.
Suceeeds after drawing the table indentified by Table.
Fails otherwise.
Deterministic.
*/

Style,

+ 'I'ree~width,

is -

- 253

) ,

APPENDIXA

is Label width + 2,

Max_title, Font_height, Font, Style, Size,

'lidth_labelnrs, Ti tle_height) 1

compute_table_window(Firsttime, New_table, Nr_test, Title_test, Table,

Ti tle_Jwight, Row_heights, Tablewidth, Width_labelnrs,

Font_height),

length (Condi tions, Nr_Condi tions),

(Conditions, Actions, Labels),

lines_and_label (Labels, Nr_test, Nr_Conditions, Tablewidth,

Label_width, Font_height, Row_heights, X, 0, 1, Fig2),

fill_tree(Decision_trees, Subividth_trees, X_offset, 0, Row_heights,

Font_height, Nr_test, 1, Fig3),

flattenl(Figl, Fig2, Fig3J, Table_figures),

del_all (Table),

refresh_norv(2'able),

scroll_drawing(Firsttime1 Layout_changel i\Jame_change1 Ti tle._test,

Table, Title_height, Width_labelnrs),

process_f.igures (Layout_change, Tabl

remember(first_time_drawing, no),

remember(name_change, no).

Tabl.e_figures),

/* compute_table_ window(+Firsttime, +New _table, +Nr_test, + Title_test, + Table,
+ Title_height, +Row _heights, + Tablewidth, + Width_labelnrs, +Font_height) :
Firsttime, New_table, Nr_test and Title_test are atoms and either 'yes' or 'no'.
Table is an atom, representing the name of a table.
Title_height, Width_labelnrs and Font_height are integers.
Row _heights is a list of integers.
Succeeds after computing the minimal sizes for the window in which the table Table
will be drawn, considering the current screen size.
Deterministic.
*/

compute_table_windot"1{no 1

compute_table_window(yes, yes,

_).

_, _).

coinpute_table_window(yes, no, lVr_test, T_itle_test, Table" ·Title_height,

Row_heights, Tablewidth, io/idth_labelnrs, Font_height) :

screen (Screenhei gh t, Screenwi dth) 1

compute_table_hei9'1'1t (Roicheights, Font_height, Table_height),

compute_dxy(Nr_test, Title_test, Title_height, Width_labelnrs,

Font_be.ight, Dx, Dy),

Windowheight Table_height + Dy T 35,

Window.vidth is Tablewidth + Dx + 35,

Max_windowbeight Screenheight 45,

Max_windowwidth is Screenwidth - 6,

min (Windowheight, Max_windowheight, N_windowheight),

min (Windowwidth, Max.rvindowividth, N_windowwidth),

- 254-

(Table,

!* compute_dxy(+Nr_test, + Title_test, + Title_height, + Width_)abel_numbering,
+Font_height, -Dx, -Dy) :-
Nr_test and Title_test are atoms and either 'yes' or 'no'.
Title_height, Width_label_numbering, Font_height, Dx and Dy are integers.
Succeeds after computing the sizes Dx and Dy for the optional label numbers and title
of a table respectively.
Deterministic.
"/;/

Dy) :

+ 7 ~

(no, ... 1 _, 0 1 0).

J'...:::;Cur

!* title(+ Title_test, + Table, +Max_title, +Font_height, +Font, +Style, +Size,
+Width_labelnrs. -Figures, -Title_height) :-
Title_test is an atom and either 'yes' or 'no'.
Table is an atom representing the name of a table.
Max_title, Font_height, Style, Size, Width_labelnrs and Title_height are integers.
Font is an atom, representing a font.
Figures is a list with GDL-elements.
Succeeds after constructing the GDL-elements representing the title of Table and
computing Title_height.
Deterministic.
*/

255

title(yes, Table, Max_title, Font_height, Font, Style, Size,

Width_labelnrs, tle_box, Title_text], Title_height)

Max_titJe_box is Max_ti tle 10,

text_width (Table, Font, Style, Size, Ti tle_width),

min ('Ti tle_width, Max_ti tle_box, Final_ti tle_width),

Final_ti tle_box_width is Final_ti tle __ width + 10 + 1,

lines_needed(Table, Final_title_width, Font, Style, Size,

Title_lines),

Title_height .is Title_lines * Font_height + 7 + 1,

is 1 - Title_height,

x_offset is Width_labelnrs,

Title_box = box(Y_offset, x_otfset, TitJe_height,

Final_ti tle_box;_width),

write_text(Table, Font_height, Y_offset, X_offset, Title_lines,

Final._ti tle_box_width, 0, Ti tle_text},

succeed(retractall(title_box(Table, _))},

ässert (ti tle_box (Table, Ti tle_box)) .

ti tle Table, Max_ti tle, Font_height, Font, Style, Si ze, [J,

Title_height) :

Max_t.itle_box is Mäx_title - 10,

text_ividth(Table, Font, Style, Size, Title_width),

mi.n (Ti tle_width, Mäx_ti tle_box, Final_ti tle_width),

Final_title_box_v1idth is F'inal_title_width f 10 + 1,

lines_needed(Table, Final_title_width, Font, Style, Size,

tle_lines),

Ti tle_height .is Ti tle_lines * Font_height + + 1.

APPENDlXA

/* scroll_drawing(+Firsttime, +Layout_change, +Name_change, + Title_test, + Table,
+ Title_height, +Width_labelnrs) :-
Firsttime, Layout_change, Name_change and Title_test are atoms and either 'yes' or
'no'.
Table is an atom, representing the name of a table.
Title_height and Width_labelnrs are integers.
Succeeds after scrolling the drawing in such a way that the upperleft corner of the
table is in the upperleft corner of the window.
Detenninistic.
*/

scroll_drawing(no, no, no,

! .

scroll~ __ drawing (_,

X_scroll is -10

Y_scroll is -10

yes, Table, Title_height, Width_labelnrs)

Width_labelnrs,

Ti tle_height,

gscroll_to(Table, Y_scroll, X_scroll).

scroll_drawing(_, _, no, Table, Title_height, Width_labelnrs)

- 256

APPENDIXA

_I) •

) '

! .

/* lines_and_label(+Labels, +Key, +Conditions, + Table, + Tablewidth, +Label_width,
+Font_height, +Row_heights, +X, +Y, +Nr, -Figures) :-
Labels is a list of atoms.
Key is an atom and either 'yes' or 'no'.
Conditions, Tablewidth, Label_ width, Font_height, X, Y and Nr are integers.
Table is an atom, representing the name of a table.
Row _heights is a list of integers.
Figures is a list with GDL-elements.
Succeeds after constructing the picture elements in GDL of the labels and most of the
lines in Table.
Deterministic.
*/

/;

! ,

î {}, yes,

[],

Pigures) :

Y,

Label~Lvidth,

Figures)

)) '

) '

)) .

- 257 -

APPENDIXA

((0,0), (Y,0)), ((0, Tablewidth), (Y, Tablewidth)),

((0, Label_width), (Y, Label_width) 1,

line ((0, X_2nd_line), (Y, X_2nd_line)) J.

lines_and_label (Label, Key, 0, Ta.ble, Tablewidth, Label_width,

Font_height, Row_heights, X, Y, _, [line ((Y, XJ, (Y,

TablewidthJ) !T_figures])

% 0

+ 2,

! ,

lines_and_label (Label, Key, -1, Table, Tablewidth, Label_width,

Font_}1eight, Row_heights, N_y, 1, T_figures)

lines_and_label ([TermlT_labelJ, Key, T_Conditions, Table, Table•1idth,

Label_width, Font_height, [Row_height IT_row_heights], X, Y, Nr,

Figures) : -

nuF.ber_label(Key, T~Conditions, Nr, X, Y, Row_height, Font_height,

N_nr" Nr~fig),

Figurel line ((Y, X), (Y, Tablewidth)),

v1ri te_text (Term, Font_height, Y, 0, Row_height, Label._width, 0;

Figure2),

N__T_Conditions is T_Conditions l,

N_y is Y + Rov1_height * Font_height + 7,

Key yes

Figures [Figurel, Nr_fig, Figure2 / T'__figures]

/* ELSE */

Figures [Figurel, Figure2 1 T_figures)

) ,
! ,

lines_and_label (T __ label, Key, N_T_Conditions, Table, Tablewidth,

Label_v1idth, Font_height, T_roi.-.t_heights 1 N_y, N_nr, T_figures) ~

number_labe.I {no, _,

number_label (yes, Nr._Conditions, Nr,

N_nr, Nr_fig) :-

Y, Row_heightî Font_height,

determine_label_character (Nr_Condi tions, Character),

concat(Character, Nr, Nrterm),

Nr_width is -X,

wri te_text (Nrterm, Pont_height, Y, X, Row_height, Nr_width, 0,

Nr_fig),

N_nr is Nr + 1.

determine_label_character (Condi tions, 'C ')

Condi tions 0,

! •

determine_label_character(_, 'A').

- 258 -

APPEND!XA

/* fill_tree(+Decision_tree, +Width_tree, +X, +Y, +Heights, +Font_height, +Key,
+Nr, -N_nr, -Figures) :-
Decision_tree is a nested list.
Width_tree is a nested list of integers.
X, Y, Font_height, Nr and N_nr are integers.
Heights is a list of integers.
Key is an atom and either 'yes' or 'no'.
Figures is a list with GDL-elements.
Succeeds after computing the total number of rules in the table and after constructing
the picture elements in GDL for the fields of the table. The contents of the fields are
represented in Decision_tree, the width of each field in Width_tree, and the height of
each row in Heights.
Deterministic.
*!

Pont_height, Key1

! '
1 create_al Y, X, 2, Ny,

Width, Font_height, Ny,

0,

Y, {H_height i

Cclumnwidt:h, yes, X, Y,

! '

x, 1, l,

fill_action_values([], _, _" __ ,N.l.",_"_, [), Nr, [JJ~

! T_act:ion_ values]" Co1um!1h'idth,

, N_nr,

259 -

APPEil/DffA

wri te_text (Actionvalue, Font_height, Y X, Row_height, Colwnnwidth, 1,

Fiq'ure),

N_y is Y + Row_height * Font_height + 7,

fi.Il_a.ction_values (T_action.~values, Co.Iunmwidth, Font_height, Nr,

X, N_y, T_row_heights, N_nr, T_figures}.

/* 'create_alts&line'(+Alts, +Font_height, + Y, +X, +Height, +Width, +Double, -Ny,
-Nx, -Figl,
Alts is a list of atoms.
Font_height, Y, X, Height, Width, Double, Ny and Nx are integers.
Figl and Fig2 are GDL-elements.
Succeeds after computing new Ny and Nx coordinates and after constructing the
GDL-elements for the contents of a field and for the separating line between the
current field and the next.
Deterministic.
*/

·create_alts&line' ([H_altlT_alt], Font_height, Y,

Double, Ny, Nx, Figl, Fig2} :

al ternatives_string{ [H_al t 1 T_al t], String!,

Height,

wri te_text (String, Font_height,

di vision_line (Y, X, f4idth, Fig2),

X, Height, Width, 1, Figl),

Ny is Y + He.ight * Font~heighc + 7 + Double,

Nx is X + Width,

! •

alternatives_string(A.Its, String) :

alternatives_string(Alts, '', String),

alternatives_string([Al , Accu, String):

concat {[Accu, t], String),

! .

alternatives_str.ing([H_alt/T'__al , Accu, String)

concat([Accu, H_alt,

alternatives_string

OF '], NAccu),

t, NAccu, String) .

division_line(Y, X_offset, Tree_width, line((Y,X), (Bottom_line,X)))

X is X_offset + Tree_width,

recall(bottom_line, Bottom_line).

write_text(' ·, Font_height, Y_offset, X_offset, Height, Width,

Alignment, Figure) :

! '
construct_textbox('

Ali gnmen t, Fi gure) .

Font_height, Y_offset, X_offset, Height, Width,

write_text (2'ext, Fonc_height, Y_offset, X_offset, Height, Width,

- 260 -

test_layou

marked_i

test_layout

marked_:L

! .

! .

! .

test_table (Aspect,

ton1(Aspect).

! .

, X_offset/

Font_height, X_ottset,

Si ze),

ze,

'),

'Ti)

- 261 -

SUMMARY

Chapter 1. A central problem in the development of knowledge-based systems is the
process of modelling knowledge. To deal with this problem, we characterise
knowledge as the competence of object-types and objects. In this way. the
process of modelling knowledge is reduced to reconstructing these object-types and
objects. Since object-types and objects display a high complexity, this characterisation
is closely connected with the recognition that integrating Artificial lntelligence (Al)
and Database Technology (DBT) constitutes an essential step to cope with the
complexities of object-types and objects. Three dimensions underlying the problem of
reconstructing object-types and objects are addressed: (1) confusion of knowledge and
knowledge representation formalisms, Jack of an adequate theory of the nature of
knowledge and (3) lack of an forma\ language. Attending to these
dimensions leads to the following research issues assessing the value of:

l. The integration of AI and DBT at the knowledge level
II. The theory of functional object-types as a theory of the nature of knowledge to

accomplish a knowledge level integration
III. The joint application of Decision Tables (DT's) and Prolog as a forma!

language

1. THE INTEGRATION OF AI AND DBT AT THE KNOWLEDGE LEVEL

Chapter 2. To oppose confusing knowledge and knowledge representation and the
minor role of mathematica! logic, Newell introduces the knowledge level. We
investigate Newell's claim that the distinction of the knowledge level leads to a
comprehensive and consistent view of knowledge and knowledge representation and
helps to assign to mathematica! logic the role it deserves.

>rewell views the knowledge level as a separate computer systems level just as the
device level, the circuit level, the register-transfer level and the symbol level. The
introduction of the knowledge level is primarily intencled to have a separate computer
systems level for the definition of the nature of knowledge. Though Newell views
knowledge as a competence to select actions to realise goals. aceomplished by an
intelligent system called the agent, and though Newell provides three principles to
define the nature of knowledge (the Principle of Rationality, the Principle of
Equipotence of Acceptable Actions and the Principle of Joint Goal Satisfaction), our
opinion is that his theory should not be viewed as a theory of the nature of knowledge,
but as one describing the knowledge level. Two main elements prevail in Newell's
characterisation of the knowledge level: (1) at the knowledge level. the explicit aim to

the knowledge of a computer system without any reference to knowledge

263

SUM1YARY

representation formalisms or user interface issues and (2) mathematica! logic playing
a key role as a representation formalism uniquely suited to the analysis of knowledge.

The investigations in this chapter deal with advantages and disadvantages claimed
for the knowledge level. The outcome is that the identification of the knowledge level
yields important advantages, so that we can confirm Newell's claim. We point out the
advantages of a specific computer systems level to define the nature of knowledge,
the reconstruction of implementation-free knowledge level models, the specification
of the role of mathematical logic and the possibilities of examining and comparing
representation formalisms.

Though Newell's theory is an important step forward, much work remains to be
done for the integration of AI and DBT. Two points deserve special attention. The
first is attempting to shift the emphasis away from representation issues and to
redirect it to knowledge. The second point is the role of mathematica! logic as a
representation formalism appropriate for the analysis of knowledge. Within the scope
ofintegrating AI and DBT we examine both points in Chapter 3.

Chapter 3. Though the integration of AI and DBT can be studied in various ways, in
Chapter 3 two basic strategies are distinguished: a symbol level strategy concentrating
on transferring data structures and processes from AI to DBT and vice versa and a
knowledge level strategy concentrating on the knowledge present in an AI- or DB
system. In a symbol level strategy a distinetion is made between AI- and DB-systems,
whereas in a knowledge level strategy this distinction is absent. Distinctive symbol
level features in processes such as the deductive proof-theoretic inferencing of AI
systems versus the model-theoretic query evaluation of DB-systems, and in structures
such as production rules versus reeords, are ignored in exchange for an explicit focus
on knowledge.

Analysis of symbol level strategies reveals that the symbol level approach interferes
with the process of modelling knowledge. The main cause -confusion of knowledge
and knowledge representation- becomes manifest in the use of representation
formalisms to model knowledge without any serious arguments for doing so.

Instead of stressing differences a knowledge level integration emphasises a deep
and significant commonality of AI- and DB-systems stemming from a fundamental
common concern about knowledge. Besides the focus on knowledge and the reduced
role of representation formalisms, a knowledge level strategy is characterised by the
major role reserved for mathematical logic. lt is the basic language for formal
definition of knowledge in a knowledge universe. As we explained, a knowledge
universe is a set of knowledge states. The range of a knowledge state is a set of
knowledge tables describing object-types or objects. A knowledge universe can be
defined by the description, in logical order, of the knowledge schema, the variable
constraints, the inter-variable constraints, the knowledge table constraints and the
knowledge universe constraints.

To illustrate one of the advantages of a knowledge level integration, we perform a
knowledge level evaluation of a data base using a system of mathematica! functions
describing a knowledge universe. We conclude that such a system of mathematical
functions describing a knowledge universe is convenient, but lacks a theory of the
nature of knowledge to take care of the organisation of the mathematica! functions.

- 264-

SUlvfMARY

II. THE THEORY OF FUNCTIONAL OBJECT-TYPES TO ACCOMPLISH A
KNOWLEDGE LEVEL INTEGRATION

Chapter 4. As the reconstruction of a knowledge uni verse consists of defining object
types of a problem domain, theories of the nature of object-types play an
indispensable mie. The probabilistic theory, subscribes to the classica! idea that an
object-type is a set of sufficient and necessary conditions. but on a
theoretica! level. The probabilistic approach assumes that all sorts of random
disturbances at the empirieal level cause problems in the delineation of the extension
(fuzzy sets). By using mathematica! measures of similarity between objects, defined
over an essentially a priori given set of attributes, the probabilist tries to eliminate the
random disturbances, so that univocal criteria can be proved to underlie the fuzzy
extension at the theoretica! level.

In the prototypical or stereotypical theory, object-types are described by means of a
prototype. A prototype shares many attributes of objects so it reflects a centra!
tendency category of objects. The description of a prototype consists of so-called
necessary conditions. Since no object will satisfy all the necessary conditions, the
answer to the question whether an object belongs to the extension of an object-type
depends on the degree of resemblance with the prototype. Inevitably. the delimitation
of the extension is fuzzy, but this vagueness is not ascribed to empirica! disturbanees
as in the probabilistic but to reality whieh does not let itself be categorised
univoeally. Probabilistie and prototype conceptualisatîon methods have much in
common and prevail in AI and DBT.

In the theory of functional classifications. the reconstruction of an object-type takes
place through a goal- or function-controlled process. What is essentially different is
that the functional theory offers a totally different explanation of fuzziness. In contrast
to the probabilistic and prototype theory, the functional theory emphasises that

has a systematic character. The solution of fuzziness is neither sought in the
elimination of random disturbances (such as measuring errors), nor in the comparison
of objects with a prototypieal object-type. The functional solution is typified by the
systematic identification of several object-types. These object-types originate through
flmctional equivalence: the phenomenon that objects, possibly differing in many
respects, are equivalent in aehievîng a nominally speeified function in a certain
context. Consequently object-types are neither abstracted from extensions nor
described through prototypes.

Furthermore, analysis of the current practice of reconstructing knowledge universa
whieh is mainly based on probabilistic and prototypical assumptions, uncovers defi
cieneies in dealing with functîonal equivalenees. To round off the chapter we again
perform a knowledge level evaluatîon of the record-based representation formalism,
but this time the theory of functîonal object-types is used. The evaluation shows a
number of weaknesses of the record-based formalisms. lf the essential configuration
of the conjunct sets leading to the same goal is characterised by identical attributes,
each attribute having the same kind of values, records are excellent representation and
processing tools. If, on the other hand, these conjunct sets are characterised by hetero
geneity caused by having to objects in a goal-oriented fashion accounting for
different descriptors and new conceptual interactions, records are not appropriate.

265 -

SU'1MARY

111. THE JOINT APPLICATION OF DT'S AND PROLOG

Chapter 5. The central aim of this chapter is to assess to what extent the joint
application of DT's and Prolog is useful as a conceptual modelling language for
functional object-types. From this perspective, we analyse the strong and weak points
of DT's and Prolog separately with special concern for the representation,
reconstruction, validation and simulation of functional object-types. The analysis is
based on (1) formal definitions (amended by us) of DT's and (2) the forma!
background of Prolog.

Our analysis shows that DT's and Prolog can compensate their mutual weak points
to a considerable degree. DT's have deficiencies in representing functional object
types that require recursive or small definitions that are no problem at all in Prolog.
DT's stimulate the reconstruction of functional object-types, while Prolog hardly
enforces users to reconstruct functional object-types and generally lacks a modelling
methodology. Prolog offers no facilities to validate functional object-types on
completeness, consistency and correctness. DT's, on the other hand, provide extensive
facilities for these validation purposes. Finally, functional object-types represented in
DT's are not executable, which limits their simulation facilities. In contrast, functional
object-types represented in Prolog are executable and this yields extensive simulation
facilities. The genera] conclusion is that DTs and Prolog are complementary and that
their joint application yields a powerful modelling language, especially for functional
object-types.

Chapter 6. Despite the high complementarity of DT's and Prolog, our analysis also
reveals that their joint application still yields a language with certain drawbacks. The
language does, for instance, not offer facilities for automated validation and
automated simulation when DT's are employed. Furthermore, essential graphical
facilities for drawing DT's are lacking. We attempt to take advantage of the
complementarity of DT's and Prolog and eliminate the drawbacks by developing a
computer-based knowledge modelling tool: the Advanced Knowledge Transfer
System (AKTS). AKTS provides functions to reconstruct, design and simulate
knowledge universa in line with the theory of functional object-types by integrating
DT's and Prolog. The Integrity Control Sub-system, the Inference-Machine and the
Graphical Decision Table Editor respectively offer facilities for automated validation,
automated simulation and drawing DT's. Consequently, it is concluded that AKTS
does not only take advantage of the complementarity of DT's and Prolog, but also
removes the remaining drawbacks.

Chapter 7. In this chapter the methodological argumentation of the thesis is
exemplified with a case-study from the field of chemical degradation and restoration
of ancient hrick masonry walls. The case-study specifically deals with sulphate salt
reactions causing the formation of ettringite, a specific form of chemica! degradation.
It refers to the development of a knowledge-based system for the diagnosis whether
(1) brick masonry walls are susceptible to the formation of ettringite and how (2) to
restore brick masonry walls such that no negative interactions between the restoration
materials and the original materials occur. Since we view knowledge as a competence

- 266

SUMMARY

of matching object-types and objects, this requires equipping the system with object
types that describe walls susceptible to the formation of ettringite and objects that
describe the brick masonry walls under consideration.

The case-study exemplifies three main methodological points. First. by
concentrating on knowledge level deseriptions of these object-types and objects, it
illustrates the advantages of a knowledge level integration of AI and DBT. Besides
the fading distinction and interaction between object-types and objects. it confirms the
value of knowledge level descriptions of object-types and objects: a better view of
knowledge. avoidance of biases toward spccific representation formalisms and
improved explanation and maintenance.

Second, the case-study reveals the advantages of the theory of functional
classifications in comparison with probabilistic and prototypical theories to
accomplish a knowledge level integration. Many classifications of brick masonry
walls are possible on the basis of the original materials. However, the reconstruction
of functional object-types is conducive to more effective classifications of brick
masonry walls. At the symbol level, functional object-types foster the transfer of
knowledge to representation formalisms made available by AI and DBT and simplify
the evaluation of these representation formalisms by means of mathematica! logic.

Third, the utility of the joint application of DT's and Prolog, especially in the form
they are offered by AKTS, is exemplified. Together. DT's and Prolog have the
capability of describing object-types that delineate walls susceptible to the formation
of ettringite and objects that delineate brick masonry walls. Besides the fact that
Prolog can be used for recursive definitions. the case, in addition, reveals the utility of
Prolog as a database language. By this, the expressive power of AKTS is emphasised.

The main conclusions of the thesis are that (l) an integration of AI and DBT at the
knowledge level helps to deal with the problem of modelling knowledge (2) the
theory of functional object-types significantly contributes to such a knowledge level
integration and that (3) the joint application of DT's and Prolog does not only provide
facilities for reconstructing and representing functional object-types, but also for
validation and simulation purposes.
Chapter 8. Here a broader perspective is provided together with a discussion about
implications of adopting the proposals made in the thesis.

267 -

SAMENVATTING

Hoofdstuk 1. Een centraal probleem bij de ontwikkeling van kennis-gebaseerde
systemen vormt het proces van kennis-modellering. Om dit probleem hanteerbaar te
maken, omschrijven we kennis als het vermogen om object-typen en objecten te
matchen. Het proces van kennis-modellering is hiermee herleid tot het reconstrueren
van deze object-typen en objecten. Omdat object-typen en objecten een hoge mate van
complexiteit ve1tonen, is deze omschrijving nauw verbonden met de erkenning dat de
integratie van Artificial Intelligence (AI) en Database Technologie (DBT) een
essentiële stap vormt om de complexiteit van object-typen en objecten het hoofd te
kunnen te kunnen bieden. Drie dimensies ten grondslag aan het reconstructie
probleem van object-typen en objecten: (l) de verwarring van kennis en
kennisrepresentatie-formalismen, (2) het ontbreken van een adequate theorie
betreffende de aard van kennis en het ontbreken van een adequate formele taal.
Het centraal stellen van deze drie dimensies leidt tot drie onderzoeksthema's, gericht
op het vaststellen van de waarde van:

L De integratie van AI en DBT op het kennisniveau
Il. De theorie van functionele object-typen als een theorie over de aard van

kennis gericht op het tot stand brengen van een integratie op het kennisniveau
IIL De gezamenlijke toepassing van beslissingstabellen (BT's) en Prolog als

formele taal.

I. DE INTEGRATIE VAN AI EN DBT OP HET KENNISNIVEAU

Hoofdstuk 2. Newell introduceert het kennisniveau om het verwarren van kennis en
kennisrepresentatie en de ondergeschikte rol van mathematische logica tegen te gaan.
We onderzoeken Newell's claim dat het onderscheiden van het kennisniveau leidt tot
een inzichtelijke en consistente kijk op kennis en kennisrepresentatie en helpt bij het
toekennen van een passende rol aan de mathematische logica.

Newell beschouwt het kennisniveau als een afzonderlijk computersysteem niveau
vergelijkbaar met het instrumentele niveau, het circuit niveau, het registratie-transfer
niveau en het symbool niveau. De introductie van het kennisniveau is primair bedoeld
om een afzonderlijk computersysteem niveau te hebben ten behoeve van de
definiëring van de aard van kennis. Hoewel Newell kennis beschouwt als een, door
een intelligent systeem - de agent -, bewerkstelligde competentie acties te selecteren
ter realisatie van doelen, en hoewel Newell drie principes formuleert om de aard van
kennis te definiëren (het Rationaliteitsprincipe, het Principe van Equipotentie van
Acceptabele Acties en het Principe van Gezamenlijke Doel Satisfactie), zijn we van
mening dat zijn theorie niet beschouwd moet worden als een theorie over de aard van

- 269

SAMEiVVAITING

kennis, maar als een theorie die het kennisniveau beschrijft. Twee belangrijke
elementen treden in Newell's beschrijving van het kennisniveau op de voorgrond: (1)
het expliciete doel op het kennisniveau de kennis van een computersysteem te
analyseren zonder verwijzing naar kennisrepresentatie- formalismen of zaken het user
interface betreffende en (2) mathematische logica die een sleutelrol speelt als een
representatie-formalisme dat uitzonderlijk geschikt is voor de analyse van kennis.

Het onderzoek in dit hoofdstuk heeft betrekking op de geclaimde voor- en nadelen
van het kennisniveau. De conclusie is dat de identificatie van het kennisniveau
belangrijke voordelen heeft zodat we Newell's claim kunnen bevestigen. We wijzen
op de voordelen van een specifiek computersysteem niveau om de aard van kennis, de
reconstructie van implementatie-vrije kennisniveau-modellen en de specificatie van
de rol van mathematische logica te definiëren en de mogelijkheden van representatie
formalismen te onderzoeken en te vergelijken.

Hoewel Newell's theorie een belangrijke stap voorwaarts inhoudt, vergt de
integratie van AI en DBT nog veel inspanning. Twee aspecten verdienen speciale
aandacht, ten eerste de poging om de nadruk op representatie aspecten te verminderen
en te verschuiven in de richting van kennis. Het tweede aspect betreft de rol van
mathematische logica als een geschikt representatie-formalisme voor de analyse van
kennis. In Hoofdstuk 3 besteden we -binnen het kader van de integratie van AI en
DBT- aandacht aan beide aspecten.

Hoofdstuk 3. Hoewel de integratie van AI en DBT op verschillende manieren
bestudeerd kan worden, onderscheiden we in Hoofdstuk 3 twee basisstrategieën: een
symboolniveau-strategie die zich richt op de transfer van datastructuren en processen
van AI naar DBT en omgekeerd en een kennisniveau-strategie die zich richt op de
aanwezige kennis in AI- of DB-systemen. Bij een symboolniveau-strategie wordt een
onderscheid gemaakt tussen AI- en DB-systemen, terwijl bij een kennisniveau
strategie dit onderscheid afwezig is. Kenmerkende symboolniveau-aspecten in
processen, zoals bijvoorbeeld het deductief bewijstheoretisch redeneren van AI
systemen versus de model-theoretische query-evaluatie van DB-systemen, en in
structuren zoals bijvoorbeeld produktieregels versus records, worden genegeerd in ruil
voor een expliciete nadruk op kennis.

Analyse van symboolniveau-strategieën maakt duidelijk dat de symboolniveau
benadering interfereert met het proces van kennis-modellering. De hoofdoorzaak
-verwarring van kennis en kennisrepresentatie- wordt manifest bij het gebruik van
representatie-formalismen om kennis te modelleren zonder steekhoudende
argumenten te hebben voor deze handelwijze.

Een kennisniveau-integratie benadrukt niet de verschillen tussen maar de
significante overeenkomsten van AI- en DB-systemen. Deze overeenkomsten komt
voort uit een fundamentele gemeenschappelijke gerichtheid op kennis. Naast de
nadruk op kennis en de gereduceerde rol van representatie-formalismen, kenmerkt de
kennisniveau-strategie zich door de belangrijke rol die zij toekent aan mathematische
logica. Het is de basistaal voor de formele definitie van kennis in een
kennisuniversum. Een kennisuniversum omvat een set kennistoestanden. Het bereik
van een kennistoestand wordt gevormd door een set kennistabellen die object-typen of
objecten beschrijven. Een kennisuniversum kan gedefinieerd worden door de

270

beschrijving, in logische volgorde, van het kennisschema, de variabele restricties, de
inter-variabele restricties, de kennistabel restricties en de kennisuniversum restricties.

Ter illustratie van een van de voordelen van een kennisniveau-integratie, evalueren
we een database met behulp van een systeem van mathematische functies voor het
beschrijven van een kennisuniversum. We concluderen dat een dergelijk systeem van
mathematische functies voor de beschrijving van een kennisuniversum handig is,
maar dat een theorie over de aard van kennis ontbreekt; een theorie die zorgt voor de
organisatie van de mathematische functies.

Il. DE THEORIE VAN FUNCTIONELE OBJECT-TYPEN VOOR HET
REALISEREN VAN INTEGRATIE OP KENNISNIVEAU

Hoofdstuk 4. Aangezien de reconstructie van een kennisuniversum bestaat uit de
definiëring van object-typen van een probleemdomein, zijn theorieën over de aard van
object-typen onmisbaar. De probabilistische theorie onderschrijft, uitsluitend op een
theoretisch niveau, het klassieke idee dat een object-type beschreven kan worden door
middel van een set voldoende en noodzakelijke voorwaarden. De probabilistische
benadering veronderstelt dat allerlei soorten random verstoringen op empirisch niveau
problemen veroorzaken bij de atbakening van de extensie (fuzzy sets). Door gebruik
te maken van mathematische maten van gelijkheid tussen objecten, gedefinieerd over
een in hoofdzaak a priori gegeven set van attributen, probeert de aanhanger van de
probabilistische theorie de random verstoringen te elimineren, zodat bewezen kan
worden dat op theoretisch niveau eenduidige criteria ten grondslag liggen aan de
fuzzy extensie.

In de prototypische of stereotypische theorie worden object-typen beschreven door
middel van een prototype. Doordat een prototype veel overeenkomstige
eigenschappen van objecten bezit, vertegenwoordigt het een 'centrale tendentie'
exemplaar in de van objecten. De beschrijving van een prototype bestaat uit
zogenoemde noodzakelijke condities. Aangezien geen enkel object zal voldoen aan
alle noodzakelijke condities, hangt het antwoord op de vraag of een object behoort tot
de extensie van een object-type af van de mate van gelijkenis dat het object vertoont
met het prototype. De atbakening van de extensie is onvermijdelijk fuzzy. Deze
fuzziness wordt niet toegeschreven aan empirische verstoringen zoals in de
probabilistische benadering, maar aan de realiteit die zich niet eenduidig laat
categoriseren. Probabilistische en prototypische conceptualiseringsmethoden hebben
veel gemeen en overheersen in de Al en de DBT.

In de theorie van functionele classificaties vindt de reconstructie van een object
type plaats middels een doel- of functie-gecontroleerd proces. Een essentieel verschil
is dat de functionele theorie een totaal andere verklaring biedt voor fuzziness. In
tegenstelling tot de probabilistische en prototypische theorie, benadrukt de functionele
theorie dat fuzziness een systematisch karakter heeft. De oplossing voor fuzziness
wordt derhalve niet gezocht in de eliminatie van random verstoringen, noch in de
vergelijking van objecten met een prototypisch object-type. De functionele oplossing
wordt gekenmerkt door de systematische identificatie van meerdere object-typen.

- 271 -

SAJl.fENVATTING

Deze object-typen komen voort uit functionele equivalentie: het verschijnsel dat
objecten die mogelijk in velerlei opzicht verschillen, identiek zijn in het vervullen van
een nominaal gespecificeerde functie in een bepaalde context. Object-typen worden
derhalve niet afgeleid van extensies noch beschreven door prototypen.

Analyse van de huidige praktijk van het reconstrueren van kennisuniversa, welke
voornamelijk gebaseerd is op assumpties uit de probabilistische en prototypische
theorie, onthult bovendien de gebreken in het hanteren van functionele equivalenties.
Ter afronding van het hoofdstuk evalueren we opnieuw de record-gebaseerde
representatie-formalismen vanuit het kennisniveau-perspectief. Ditmaal wordt de
theorie van functionele object-typen gebruikt. De evaluatie laat een aantal zwakke
punten van de record-gebaseerde formalismen zien. Als de essentiële configuratie van
conjuncte sets leidend naar hetzelfde doel, gekenmerkt wordt door identieke
eigenschappen, waarbij elke eigenschap dezelfde soort waarden heeft, zijn records
uitstekende representatie- en processing tools. Als deze conjuncte sets daarentegen
worden gekenmerkt door heterogeniteit, veroorzaakt doordat objecten op een doel
gerichte manier geclassificeerd moeten worden rekening houdend met verschillende
descriptors en nieuwe conceptuele interacties, dan zijn records niet geschikt.

m. DE GEZAMENLIJKE TOEPASSING VAN BT'S EN PROLOG

Hoofdstuk 5. De beoordeling in welke mate de gezamenlijke toepassing van BT's en
Prolog bruikbaar is als een conceptuele modelleertaal voor functionele object-typen
vormt de voornaamste doelstelling in dit hoofdstuk. Vanuit dit perspectief, analyseren
we de sterke en zwakke punten van BT's en Prolog afzonderlijk, met speciale
aandacht voor de representatie, reconstructie, validering en simulatie van functionele
object-typen. De analyse is gebaseerd op (1) formele (door ons geamendeerde)
definities van BT's en (2) de formele achtergrond van Prolog.

De analyse toont aan dat BT's en Prolog elkaars zwakke punten in hoge mate
kunnen compenseren. BT's hebben tekorten bij de representatie van functionele
object-typen waarvoor recursieve of kleine definities vereist zijn. Voor Prolog vormen
dit type definities geen enkel probleem. BT's stimuleren de reconstructie van
functionele object-typen, terwijl Prolog haar gebruikers nauwelijks stimuleert
functionele object-typen te reconstrueren en in het algemeen een methodologie van
modelleren ontbeert. Prolog biedt geen faciliteiten om functionele object-typen te
valideren op volledigheid, consistentie en correctheid. BT's daarentegen, bieden
uitgebreide faciliteiten voor deze valideringsdoeleinden. Tot slot zijn door BT's
gerepresenteerde functionele object-typen, niet executable. Dit beperkt de simulatie
faciliteiten van BT's. Functionele object-typen gerepresenteerd in Prolog, aan de
andere kant, zijn executable; hetgeen leidt tot een ruim aanbod van simulatie
faciliteiten. De algemene conclusie is dat BT's en Prolog complementair zijn en dat
hun gezamenlijke toepassing een krachtige modelleertaal oplevert, met name voor
functionele object-typen.

Hoofdstuk 6. Onze analyse laat, ondanks de grote complementariteit van BT's en

- 272 -

S'.4:11ENV'1 THNG

Prolog, zien dat hun gezamenlijke toepassing nog steeds een taal oplevert met een
aantal schaduwzijden. De taal biedt bijvoorbeeld geen faciliteiten voor
geautomatiseerde validering en geautomatiseerde simulatie als BT's worden gebruikt.
Daarnaast ontbreken essentiële grafische faciliteiten voor het tekenen van BT's. Door
de ontwikkeling van een computer gebaseerde kennis-modelleer tool: de Advanced
Knowledge Transfer System (AKTS) trachten we de voordelen van de
complementariteit van BT's en Prolog te benutten en de nadelen op te heffen. AKTS
biedt, overeenkomstig de theorie van functionele object-typen, functies om
kennisuniversa te reconstrueren, te ontwerpen en te simuleren door BT's en Prolog te
integreren. Het Integriteitscontrole Sub-systeem, de Inferentie Machine en de
Grafische Beslissingstabel Editor bieden faciliteiten voor respectievelijk
geautomatiseerde validering, geautomatiseerde simulatie en voor het tekenen van
BT's. Derhalve kan geconcludeerd worden dat AKTS niet alleen de voordelen van de
complementariteit van BT's en Prolog benut maar ook de resterende bezwaren opheft.

Hoofdstuk 7. In dit hoofdstuk wordt de methodologische argumentatie van het
proefschrift geïllustreerd aan de hand van een case-study op het gebied van de
chemische degradatie en restauratie van historische, gemetselde stenen muren. De
case-study richt zich speciaal op sulfaatrcacties die leiden tot de vorming van
ettringiet, een specifieke vorm van chemische degradatie. De studie heeft betrekking
op de ontwikkeling van een kennis-gebaseerd systeem voor de diagnose of (1)
gemetselde stenen muren gevoelig zijn voor de vorming van ettringiet en hoe (2)
gemetselde stenen muren te restaureren opdat geen negatieve interacties optreden
tussen de restauratie-materialen en de oorspronkelijke materialen. Aangezien we
kennis beschouwen als het vermogen om object-typen en objecten te matchen, vereist
dit dat het systeem uitgerust wordt met object-typen die muren beschrijven welke
gevoelig zijn voor de vorming van ettringiet en met objecten die de gemetselde stenen
muren beschrijven die voorwerp van onderzoek zijn.

De case-study verduidelijkt diie methodologische punten. Ten eerste worden de
voordelen van een kennisniveau-integratie van AI en DBT geïllustreerd door de
integratie op het kennisniveau van deze object-typen en objecten. Naast het vervagen
van onderscheid en interactie tussen object-typen en objecten, bevestigt het de waarde
van kennisniveau-beschrijvingen van object-typen en objecten: een beter zicht op
kennis, vermijding van bias ten aanzien van specifieke representatie-formalismen en
verbeterde verklarings- en onderhoudsmogelijkheden.

Ten tweede maakt de case-study de voordelen van de theorie van functionele
classificatie voor de totstandkoming van een kennisniveau-integratie zichtbaar in
vergelijking met probabilistische en prototypische theorieën. Op basis van de
oorspronkelijke materialen zijn vele classificaties van gemetselde stenen muren
mogelijk. De reconstructie van functionele object-typen draagt echter bij aan een
effectievere classificatie van gemetselde stenen muren. Op het symboolniveau
ondersteunen functionele object-typen de transfer van kennis naar representatie
formalismen, zoals beschikbaar gesteld door de AI en de DBT en vergemakkelijken
zij de evaluatie van deze representatie-formalismen door middel van mathematische
logica.

Ten derde wordt de bruikbaarheid van de gezamenlijke toepassing van BT's en

- 273

SA,''>,fENVAT11NG

Prolog, met name in de vorm zoals deze door AKTS geboden wordt, geïllustreerd.
BT's en Prolog hebben gezamenlijk het vermogen object-typen te beschrijven die
muren definiëren die gevoelig zijn voor de vorming van ettringiet en objecten te
beschrijven die gemetselde stenen muren definiëren. Naast het feit dat Prolog gebruikt
kan worden voor recursieve definities, toont de case-study bovendien de
bruikbaarheid aan van Prolog als database-taal. Dit benadrukt de expressieve kracht
vanAKTS.

De hoofdconclusies van het proefschrift zijn dat (1) integratie van AI en DBT op het
kennisniveau ondersteunend werkt bij het hanteren van het probleem van het
modelleren van kennis (2) de theorie van functionele object-typen significant
bijdraagt tot een dergelijke kennisniveau-integratie en dat (3) de gezamenlijke
toepassing van BT's en Prolog niet alleen faciliteiten biedt voor de reconstructie en
representatie van funetionele object-typen, maar ook voor validerings- en
simulatiedoeleinden.

Hoofdstuk 8. Tot slot schetsen we een breder perspectief en bediscussiëren we
enkele implicaties van de in dit proefschrift gedane voorstellen.

274-

CURRICULUM VITAE

The author was born on April 1960 in the city of Rheden. He completed grammar
school in 1978 and afterwards studied in Tilburg and Nijmegen where he graduated in
1988 on the subject of theories. methods and techniques of developing knowledge
based systems. From 1988-1989 the author was employed as a computer scientist at
the University of Nijmegen. From 1989 until 1991 he was employed at the Institute of
Applied Computer Science of the Netherlands Organizatîon of Applied Scientific
Research (Expertise Centre Knowledge-Based Systems). From 1991 the author is
employed at the Institute of Building and Construction research of the Netherlands
Organization of Applied Scientific Research (Advisory Group Knowledge-Based
Systems).

- 275 -

THESES ADDED TO THE DISSERTATION 'FUNCTIONAL OBJECT-TYPES

AS A FOUNDATION OF COMPLEX KNOWLEDGE-BASED SYSTEMS'

Thesis 1
Newell's idea about the theory of the knowledge level providing 'a definition of
representation, namely, a symbol system that encodes a body of knowledge.' and not
'a theory ofrepresentation ... ' (Newell, 1981, p.14) is inconsistent with Brachman and
Levesque's view about a knowledge level perspective allowing us 'to examine
computational properties of representational formalisms that wil! continue to hold no
matter what Symbol Level decisions are made.' (Brachman & Levesque, 1986, p.77)

Thesis 2
When Hul1 and King remark that 'little work has been directed at providing
methodological support for selecting an appropriate semantic model or for integrating
the various modeling capabilities found in semantic models.' (Huil & King, 1987,
p.211), they thereby stress the importance in Database Technology of a knowledge
level perspective.

Thesis 3
Davis (1988) is right when exposing the deficiencies of text in a Software
Requirements Specification (SRS) as follows: 'White I am not opposed to large SRSs,
I am opposed to large SRSs written in natural language. This is analogous to building
a 100-story skyscraper. I am not opposed to 100-story office buildings, just to those
entirely constructed of wood. The solution to the skyscraper problem is simple: use
steel. The solution to the SRS problem is also simple: use a forma! technique.
Nevertheless, wood does have its proper place, even in a 100-story building. And
natura! language does have its proper place in an SRS. Where do you apply a forma!
technique and where do you apply something else? The answer is: use a forma!
technique when you cannot afford to have the requirement misunderstood.' (Davis,
1988, p.1100)

Thesis 4
'Users don't know what they want; and often, when they do, they do not need what
they want.' (Kowalski, 1986, p.94)

Thesis S
People who are able to solve cryptograms are probably bad knowledge engineers.

Thesis 6
Looking up the translation of Dutch 'kennisbank' in 'van Dale', we find: 'knowledge
bank, data bank'. From this we can conclude that 'van Dale' follows a knowledge level
approach: they do not distinguish a knowledge bank from a data bank.

- 1 -

THESES

Thesis 7
'By definition' does not have a self-explanatory meaning.

Thesis 8
Failing to distinguish between human intelligence and artificial intelligence has led to
many disappointments in theoretica! and practical Artificial lntelligence research.

Thesis 9
There is a close relationship between a politician's success and his ability to make
eloquent use of functional equivalence to attain his goals. By this eloquence a
politician can be convincing without proving anything.

Thesis 10
The Dutch Railways apply two possibly inconsistent concepts of delay. One to
explain to travellers complaining about the train leaving late that a train leaving a few
minutes late is not delayed. Another to explain to travellers complaining about the
train not waiting a few minutes for them to be able to change, that a train should leave
exactly on time to prevent delay.

Thesis 11
People make great efforts to avoid them.

Thesis 12
The intended reduction of subsidies to technologica! institutes in the Nether!ands not
only contrasts with government policy of other European countries but also with the
Dutch Government wish to use budget windfalls to create more jobs.

Thesis 13
Representation of the Technica! University of Eindhoven promotion regulations in a
Decision Table system and Prolog, using the Advanced Knowledge Transfer System
would significantly reduce the time spent in setting up a promotion commission and
assessing when to hand in what and in what way.

Thesis 14
When life-expectancy for women has decreased to that for men, women will have
attained their ultimate emancipation.

Thesis 15
A logician wil! write 'lf 1 come home, I take off my shoes.', whereas a linguist will
write 'When 1 come home, I take off my shoes.'

Thesis 16
Knowledge is expensive, but not nearly as expensive as ignorance (Cornelis, 1993).

- ii -

