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Turbulent flow in capillary gas chromatography - 
evaluation of a theoretical concept by Golay 

A. J. VAN ES, J. A. RIJKS and C. A. CRAMERS* 

Eindhoven University of Technology, Laboratory of Instrumental Analysis, P.O. Box 513, 5600 MB Eind- 
hoven (The Netherlands) 

with appendix by 

M. J. E. GOLAY” 

Perkin-Elmer Corporation, Norwalk. CT 06859 (U.S.A.) 

ABSTRACT 

Early in 1989, the late Marcel Golay derived a theory for turbulent flow capil- 
lary gas chromatography. He assumed that the flow pattern under turbulent condi- 
tions consists of a turbulent core separated from the tube wall by a very thin laminar 
flow layer. Further, it was assumed that the viscosity and the diffusion constant are 
uniform within the turbulent core. The core radius is a fraction p of the tube radius; 
the core viscosity is m times the laminar flow viscosity and the core diffusivity is 
assumed to be d times the laminar flow diffusion constant. Values for p, m and d have 
to be calculated from experimental data; p, m and d are essentially functions of 
Reynolds number (Re). 

Using experimental data obtained in the laboratory, Golay’s plate-height theo- 
ry was evaluated for turbulent flow gas chromatography. In this verification an em- 
pirical relationship was used for the average turbulent diffusion constant as a func- 
tion of Reynolds number and an empirical relationship for the thickness of the 
laminar sublayer. Further, it was assumed that m = d (Reynolds’ analogy). The 
experiments and theory agree fairly well at Re = 6200; at lower and higher values of 
Re the agreement is much poorer. The disagreement may be due to the empirical 
relationships used or to the postulations in the theory: Golay assumed a discontin- 
uous change from laminar to turbulent viscosity and diffusion constants. In engineer- 
ing literature often a gradual change in properties from the laminar sublayer to the 
turbulent and in the turbulent core is assumed. 

a Author deceased. 

0021-9673/90/$03.50 0 1990 Elsevier Science Publishers B.V. 
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INTRODUCTION 

An efficient way to increase the speed of analysis in capillary gas chromatogra- 
phy (GC) is to reduce the column diameter’. However, minimization of the column 
diameter is limited by the drastic reduction in the working range. With present state- 
of-the-art detectors this point is reached at a column diameter of about 10 pm. 

The foregoing approach lowers the contribution of the velocity profile (C, 
term) to the chromatographic dispersion. In addition to a reduction in column diame- 
ter, this contribution can also be lowered by changing the velocity profile. 

A possible way is to coil the column into a helix, which induces a secondary 
flow. This effect has been extensively described by Tijssen’ and Tijssen et ~1.~ for GC 
and LC. Another way is to create turbulent flow. With turbulent flow the velocity 
profile is largely flattened, thus decreasing flow inequalities. Further, the effective 
diffusion coefficient is considerably increased by convective contributions. As a con- 
sequence, peak broadening arising in the mobile phase as a result of the velocity 
profile is expected to be substantially reduced. In a recent papeP, we described an 
instrumental set-up that permits the study of turbulent flow capillary GC. The experi- 
mental instrumentation included previously developed sample introduction, detec- 
tion and recording systems compatible with peak widths in the millisecond range ‘q6. 

Existing theoretical models7-9 were evaluated experimentally. Only the Tijssen 
and Wittebrood theory’ gave acceptable agreement with the experimental plate 
heights at various capacity factors. For unretained components reduced plate heights, 
h c 1, were obtained at an average linear velocity of 15 m/s for column diameters of 
320 pm. For a capacity factor k = 1 the reduced plate height increased by a factor of 
15. Therefore, it was concluded that the gain in speed of analysis by turbulent GC is 
limited to solutes with low capacity factors. 

During these experiments, we asked M.J.E. Golay, former Extraordinary Pro- 
fessor in our laboratory, for expert advice concerning the several contradictionary 
theories on turbulent chromatography. He immediately became extremely interested 
in the subject. During the last months of his life he visited our laboratory several times 
and he derived a theory for turbulent dispersion in capillary GC. His manuscript 
“Calculations Relative to Turbulent Capillary Gas Chromatography” was meant to 
constitute his opening lecture at the 10th International Meeting on Capillary Chro- 
matography in Riva de1 Garda, Italy, in May 1989. We were shocked by the message 
of his sudden death in his native country of Switzerland during the night of April 
28-29, 1989. As a tribute to the great scientist Marcel Golay, inventor of capillary 
chromatography, we evaluate his postulates in this paper. 

THEORY 

In 1989, Golay derived a theory for turbulent dispersion in capillary GC” in 
order to explain the experimental results to be presented in the following Experi- 
mental section. He extended the theory of Tijssen and Wittebrood’ towards general 
sth power velocity profile: 
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where u is the velocity as a function of the radial coordinate and r. is the column 
radius. 

This velocity profile has proved to be a good approximation for turbulent flow, 
where s changes from 5 to 10 for Reynolds numbers (Re) in the range 3000 < Re < 
105. For turbulent dispersion this finally leads to 

C =~,4+(4s+16)k+(s2+10s+20)k2 

m Do 4(S + 4) (2s + 4) (1 + k)2 
(2) 

For a parabolic velocity profile (s = 2), eqn. 2 reduces to the well known C,,, term in 
the Golay-Giddings plate-height equation. For s= 10, eqn. 2 gives the same result as 
that derived by Tijssen and Wittebroodg. 

Later, Golay extended the theory in order to account for the laminar sublayer 
along the column wall. His original text, written in April 1989 (ref. 1 l), is given here in 
the Appendix. 

The calculations are based on the assumption that the flow pattern under turbu- 
lent conditions consists of a turbulent core separated from the tube wall by a thin 
laminar flow layer (Fig. 1). It is also assumed that the diffusion constant and viscosity 
are uniform within the turbulent core. Data for the following variables have to be 
entered in the resulting equations: 

(1) the core radius rt as a function of the tube radius ro: 

rt = pro;p < 1; 

(2) the core viscosity pt as a function of the known laminar flow viscosity po: 

pr = mpo;m > 1; 

(3) the core diffusivity D, as a function of the known laminar flow diffusion 
constant Do: 

D, = dD,;d > 1. 

Implied is also the postulate that p, m and dare essentially functions of the Reynolds 

I T ‘t TURBUENT CORE rt_oro PC1 
-___________________-_ ________ ___________________. 

Dt- pt 
Dt -dD, d>l 
+ - W, m>l 

LwN* su3 LAYER D 
0 PO 

Fig. 1. Postulates made by Golay in his description of turbulent flow capillary GC. 
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number. Fortunately, Re is invariant within the tube as we pass from the high-pres- 
sure inlet side to the low-pressure outlet side. 

If pi and p. are the inlet and outlet pressures, respectively, the gas velocity u in 
the laminar flow region at a distance r from the tube center (r > rt) is given by 

u = _‘i’(r$ - rZ) 

The velocity within the turbulent core is given by 

u_pf-poZ ri-r: 

-+ 

r,“-r2 - __ 
8PL-L PO + Pl > 

(4) 

The velocity profile is depicted schematically in Fig. 2. 
Finally the plate height for turbulent dispersion can be written als follows”: 
The turbulent core: 

Hl 

where 

2 

J= 

(5) 

-1.00 -0.60 -0.20 0.20 
r/r o+ 

Fig. 2. Turbulent velocity profile. m = d = 10; p = r,/ro = 0.8. 
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1 + 2k - 2(1 + k)p2 + p4 
a1 = 

(1 +k) 

+ 2(1 + k)p2 - p4 

(1 + k)m 

(2) The laminar region: 

H _ 2Do(l - p2) + u0Jd a%1 - p4) 
2- 

a2(1 - ~9 + 
UO 400 4 - 3 

(1 -P> 
+ a2S2U -P'> +--j--- 

82(1 -P"> + /pin 1 

2 2 
( >I (6) 

P 

where 

1 + 2k + p4 4 

a2 = 
l+k -(l Ik)m 

/I2 = p4 
( > 

t - 1 

The total plate height H = H1 + Hz. 
The total plate height H can only be calculated if p, m and dare known. In this 

paper, empirical relationships will be used in order to verify Golay’s theory. 
According to the Reynolds’ analogy, mass and momentum are transported by 

the same mechanism (under turbulent conditions) and, therefore, it is the authors’ 
assumption that m = d. The turbulent diffusion coefficient can be written as 

Dt 
-= 1 +0.009Re0~84Sc=d=m 
Do 

(7) 

where 

D, = average cross-sectional turbulent diffusion coefficient; 
Do = molecular diffusion coefficient; 
SC = v/Do (v = kinematic viscosity). 

Using an empirical relationship for the thickness of the laminar sublayer12, it 
follows that p can be written as 
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A computer program based on eqns. 5-8 was used to calculate the plate height as a 
function of the Reynolds number. 

Under Results and Discussion, the results will be compared with experimentally 
determined plate heights. 

EXPERIMENTAL 

Experiments under turbulent flow conditions4 were performed with fused-silica 
columns of I.D. 320 ,um, lengths ranging from 25 to 5 m and a stationary phase film 
thickness of 0.12 pm (CP SIL 5-CB; Chrompack, Middelburg, The Netherlands). 

The sample introduction system consists of a pneumatically actuated Valco 
four-port valve (VICI AG; Valco, Schenkon, Switzerland) with an internal rotor (6 
nl), which allows input band widths as low as 1 ms. The valve is mounted on top of a 
Carlo Erba (Milan, Italy) Model 4/60 gas chromatograph. The carrier gas (nitrogen) 
pressure was controlled with a Tescom (MN, U.S.A.) Model 44-l 100 high-pressure 
regulator (up to 100 bar). A flame ionization detector could not be used as the flame 
was extinguished by the large carrier gas flow-rates. Therefore, a low-cell-volume (40 
~1) photoionization detector (HNU Systems, Newton, MA, U.S.A.) was used 
throughout. The amplifier was modified to lower the time constant to about 2 ms. 

Considering the high column flow-rates involved (> 1 l/min), peak broadening 
due to the cell volume will be extremely small. As ordinary chart-speed recorders are 
far too slow, chromatograms were recorded on a Model 3091 digital storage oscillo- 
scope (Nicolet, Madison, WI, U.S.A.), capable of sampling at a maximum rate of 1 
MHz. 

RESULTS AND DISCUSSION 

Using the theory of Golay (eqns. 5-8) which accounts for a laminar sublayer, 
the plate height could be calculated as a function of Re for various capacity factors. 
Under laminar conditions (p = 1, m = 1 and d = l), it can be calculated that H1 = 0 
and Hz is equal to the value predicted by the Golay-Giddings equation for laminar 
flow. 

At Re = 6200 the results of the Golay theory accouting for a laminar sublayer 
are compared with the measured plate height as a function of k in Fig. 3. A very good 
fit is obtained. However, just as in the other theories9 and Golay using an sth power 
flow profile (eqn. 2), the fit becomes poorer at different Re numbers (see Table I). The 
reason is probably that in reality there is a gradual change of diffusion coefficient and 
viscosity from the laminar sublayer to the turbulent core. The theory assumes a 
discontinuous change from a molecular diffusion coefficient and viscosity to a turbu- 
lent diffusion coefficient and viscosity. More accurate diffusion and viscosity profiles 
have to be used. Another reason might be the empirical relationships used for p, m 
and d. 

It should be noted that so far, the resistance to mass transfer in the stationary 
phase has been neglected. Considering the high carrier gas velocities involved (up to 
15 m/s), the reliability of this assumption must be verified. The resistance to mass 
transfer in the stationary phase is not affected by the flow profile in the mobile 
phasesv13. Assuming a liquid diffusion coefficient Di % lo-’ cm’/s (ref. 13), k = 1 
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0 2 3 4 5 

-K 

Fig. 3. Turbulent dispersion (reduced plate height, h) versus capacity factor (Re = 6200). q = Experi- 
mental; A = measured according to the theory of Golay for an rth power flow profile; B = measured 
according to the theory of Golay accounting for a laminar sublayer. 

TABLE I 

REDUCED PLATE HEIGHTS, h 

Re 

Calculated h’ ’ 

k=O k=l 

Measured h 

k=O k=I 

3000 1.2 42 7 63 
6200 0.5 44 2.6 38 

10 000 0.3 46 1 22 

and u = 15 m/s (Re = 104), the reduced plate height of the resistance to mass transfer 
in the stationary phase is calculated to be h, = 0.22. This may be considered negli- 
gible with respect to the foregoing results. 

APPENDIX 

Calculations relative to turbulent capillary gas chromatogra- 

PhY" 

M. J. E. GOLAY 

Perkin-Elmer Corporation, Norwalk, CT 06859 (U.S.A.) 

a This manuscript was compiled by Dr. Golay during the first week of April 1989, with the intention 
that, after some experiments and calculations, he would present it at the 10th Infernafional Symposium on 
Capillary Chromatography, May 22-25, 1989, in Riva de1 Garda. His sudden death during the night of 
April 28-29, 1989, prevented the fulfillment of these plans. 
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We base these calculations on the assumption that the flow pattern under tur- 
bulent conditions consists of a turbulent core separated from the tube wall by a very 
thin laminar flow layer. We assume that the diffusion constant and viscosity within 
the turbulent core are uniform, and our essential task will be to calculate from experi- 
mental data: 

(1) the core radius, rt, as a fraction of the tube radius, ro: 

r, = pro;/3 < 1; 

(2) the core viscosity, fit, as a function of the known laminar flow viscosity, ho: 

111 = mpo;m > 1; 

(3) the core diffusivity, D,, as a function of the known laminar flow diffusion constant, 
Do: 

D, = dD,;d > 1. 

Implied is also the postulate that p, m and d are essentially functions of the 
Reynolds number, Re; fortuitously, the Reynolds number is an invariant within the 
tube as we pass from the high-pressure inlet side to the low-pressure outlet side. 

We shall assume that the resistance to mass transfer in the fixed phase, the term, 

k3 

(1 + k)* 

in eqn. 22a in a previous paper14 is negligible, although it will be included in the 
mathematical derivations. 

The pattern of the calculations will be to obtain three equations from which to 
calculate p, m and d under identical flow conditions (inclusion of the mass transfer 
term would require a fourth equation): 

(1) the flow resistance equation; 
(2) an equation connecting the observed HETP, ho, with the postulated p, m and din 
the absence of retention (k = 0); 
(3) another equation connecting the observed HETP with p, m and.d in the presence 
of some nominal retention, e.g., k = 1. 

The checks of the calculation should be: 

(1) under the same flow conditions predict and verify h for different retentions, k; 
(2) under various flow conditions observe the variations of p, m and d as functions of 
Re. 
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The flow resistance equation 
The average carrier gas velocity, in cm s- ‘, in a tube of length L, in cm, for the 

case of laminar flow, is given by 

where pi and pO are the inlet and outlet pressure and p is the molecular dynamic 
viscosity, in poise (g cm-’ s-l). 

In the case of turbulent flow, designating rt = pro, the radius of the turbulent 
core, the gas velocity in a point in the thin laminar flow region, it a distance r from 
the tube centre (r > rJ will be given by 

and the velocity within the turbulent core will be given by 

pf-ppo2 r$-rf 

u=8pc ( 

rf - r2 ~ ___ 
p + p* > 

The average velocity will be given by 

*o=~(y+~) 

and the total flow will be given by 

= K. (P? -p.34 
1 ~P,PL 

[l -(I -$Pj 

W) 

(A3) 

(A3b) 

As velocities, flows and the HETP (h) can be fairly accurately determined, 
whereas, pi, p. and u cannot, the experimental procedure should consist in taking a 
tube of much greater length, sL, where 8% 1, and, applying the same pressure differ- 
ential across it, determine the velocity and flow, which are given by 

bf -p,?)d 
” = 16p,/~L (A3c) 
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from which r. can be determined if required. 
From eqns. A3a, b and d, we obtain 

l- 1-t P4’p 

( > L 

F,, FL and s are determined by direct measurements and eqn. A4 is the first of the 
three equations needed. 

The d$iision equations - laminar flow 
These equations are tedious to manipulate, and the general attack used will be 

first illustrated for the case of laminar flow. 
We consider a chromatographic tube of length L and radius r,-, with a retentive 

layer of thickness Ar, with a partition coefficient C and a diffusion constant DL. The 
ratio of the total sample concentration to the concentration within the gas phase will 
be given by 

rg + C[(ro + Ar)2 - r$ 

rZ 
=I+c[(I+$)2-11 

=I+k 

with 

or 

( > 1+; 2=l+; 

The velocity at any point within the tube will be given by 

u= 2ul-J 1-s 
( > 

and the average sample velocity will be 

UO 
ii=---- 

l+k 

(A5) 

(‘46) 

647) 

We shall refer all calculations with respect to a system of coordinates moving 
with velocity zi in the direction of the current, and our approach, for both the laminar 
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and turbulent cases, will be to postulate a general sample concentration of the form 

and to apply to it the diffusion equation with the eventual aim of obtaining e(r). This 
equation is usually given in the form 

DA’f = $j 

which presupposes that D is a constant throughout. When D is not eqn. A9 should 
properly be written as 

DA’f + grad D x grad f = df/dt WW 

but if D is constant within certain given zones, we may still use eqn. A9 within each 
zone, while introducing the boundary condition that at the interfaces of zones I and 
II, e.g., we should have 

Wb) 

where D and D1 designate the respective diffusion constants of the two zones, S is 
some coordinate normal to the zones interface and c designates the ratio of concen- 
trations which are in equilibrium across the interface. 

The application of eqn. A9 to eqn. A8 yields one expression 
and one with it. The first is, after eliminating common coefficients, 

D’=D[lt($r] 

and the second is 

DA’e(r) = -(u - ii) (Al 1) 

without x - e(r) 

(Alo) 

In the first expression, the dimensionless (de/dr)2 represents a kind of entropy 
increase, and is therefore an extensive quantity which, with unity added, should be 
integrated throughout the tube cross-section and weighted everywhere by the appro- 
priate diffusion times the partition coefficient when the latter differs from unity. The 
overall result, divided by the total effective tube cross-section, & 1 + k) (rc is omitted 
in practice), yields the desired value of D’ when the flow has proceeded for some 
distance so that f has became substantially a Gaussian distribution for all r values. 
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The value of de/dr is obtained from the solutions of eqn. Al 1, which are 

e(r) = -(l/D)d-2(u - uO) (A12) 

for the free-flowing zone, and 

e(r) = (l/D&V% (A.1 2a) 

for the fixed zone. 
The values of de/dr obtained from this operation are, for the free-flowing inner 

part of the tube, 

de -= -- 
dr 

and for the fixed phase of thickness Ar, 

&l + k/c) 
r 1 

(A13) 

(Al3a) 

It can be readily verified that these expressions satisfy eqns. Al2 and Al2a, respec- 
tively, in addition to the boundary condition of eqn. A9b, at the interface. Further, 
eqn. Al3a satisfies the condition defdr = 0 at the end of the fixed phase zone, where r 
= r. + Ar, which results from the proper choice of ii as given by eqn. A7. 

Integration of (de/dr)2 in the free-flowing zone yields a first contribution AD; to 
D’: 

AD; = 1 (A14) 

Integration and weighting of (de/dr)z in the stationary phase yields a second contri- 
bution, ADiI: 

(1 +2.:i$).ln(l +:)I (Al4a) 

When k/C Q 1, ln( 1 + k/C) can be replaced by the first three terms of its development 
and we obtain 

k3 t&E 

12(1 + k)“z 1 (Al4b) 
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The parentheses in eqns. Al4 and A14b correspond exactly to the parentheses on the 
left-hand side of eqn. 22a in a previous paperr4, except for the limitation k/C -+ 1, 
which was not included at that time. 

The diffusion equation -turbulent flow 
For the discussion of this case we adopt again the flow distribution of eqn. A8 

and set about determining de(r)/dr for the three zones: 
Zone Z, the turbulent core, of radius rt = pro, with viscosity ,u~ = my and 

diffusivity D, = dD; 
Zone ZZ, the thin laminar layer next to the tube wall; 
Zone ZZZ, the stationary phase, of thickness Ar, diffusivity D1, and with a con- 

centration c times greater than in the free-flowing zones I and II. 
The diffusion equations governing the concentration behaviour in these three 

zones can be solved as formerly and we obtain the following: 
for Zone I, for r < r,: 
e = (l/Dt)Am2 (u - ii) 

from which 

de pi”-p,? 

&=- 32p&LrFi 

(1 +2k)r$-2(1 +k)r$f+rf.r+ 

(1 + k)p 

+ 2(1 + k)&fr - rfr - (1 + k)@ 

(1 + k)p, 1 (A15) 

Observing the boundary condition: 

for r = r,, Dt(de/dr,) = D(de/drri) 

we find for Zone II, for r, < r c r. : 

e = - (1/D)Ae2 (u - ii) 

from which 

de pf - pi (1 + 2k)rz + rt rf -=- 
drll 32pJILrg (1 + k)p “‘(1 + k)pt 

-,_~+~(_~+~)](Al~) 

And observing the boundary condition expressed by eqn. A9b, we find for the sta- 
tionary zone: 

ro<r<ro + r: 

P!-P? de r$ - r;’ 4 

dr*ll - 3UJhL2ro (1 + k)p ‘r+(l Jtk)p,‘r- 

(1 + k/C)rg - (1 + k/C)r$r? 1 + k/C 

- - (1 + k)pr 1 (A17) 
Ptr 
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As can be verified by inspection, the expressions given for de/dr in eqns. A15, 
Al6 and Al 7 satisfy the three diffusion equations in their respective zones, plus the 
two boundary conditions at the I-II and II-III interfaces, plus the end condition: 

at r = r. + Ar: (Wdr~~J = 0 

the latter begin secured by our proper choice of ii. 
When calculating the contributions of Zone I to D’, we first set r = rox and 

rewrite eqn. Al 5: 

_ = _ tPz - Pi34 de 1 + 2k - 2(1 + k)p2 + p4 x3 

dr 32p,rLdD (1 +k) 

+ 2(1 + k)p2 - p4 

(1 + k)m > 1 x-- 
m 

or, with eqn. A3c, and denoting by al the coefficient of x within the brackets: 

a _ 1 + 2k - 2(1 + k)p2 + p4 + 2( 1 + k)p2 - p4 
1- 

(1 +N (1 + k)m 

We calculate the contribution of Zone I to D’ by applying 

D’ = D,[l + 

to eqn. AlSa, to obtain 

r, 

(de/dr)2 

(Al5a) 

AD;=$/dD[l +($)r]rdr 

0 

2 
=- 

l+k 
aff_$+$ >I VW 

We now do likewise for Zone II and, setting again r = rox, we rewrite eqn. Al 6: 

a2 

de @P - p,2)4 1 + 2k + p4 
4 

dr,,=- 32p,~LD l+k - (1 lk)m 
&G+$(- 1+$] 
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or, with eqn. A3c, and denoting by a2 and fi2 the respective coefficients of x and l/x 
within the brackets: 

de 

dx,- 
- - %[a,, - x3 + /32(1/x)] 

We now calculate the contribution of Zone II to D’ by applying eqn. A10 to 
eqn. A16a to obtain: 

ADb=$iD[l +($~],,r=&.D[~+$$$2x-x3+~~xdx] 

r, 0 

1 -p2 &l - p4) =- - 1:k D. I 2 

+ s”Uir?J 

40 [ 4 - 

a2(1 - $7 1 - P8 

3 
+ a2B2(l - P’) + 7 - 

P2U - P4) + /y;ln(l/p) 

2 11 NW 
Theoretically we should determine the contribution of Zone III to D’, which 

will give us a term containing &D1 in its denominator, but this would imply that this 
term is not negligible and constitutes a fourth parameter to be added to m, p and d, so 
that four equations would be required to determine all four parameters. This, how- 
ever, implies the difficulty of using two columns in which the same sample has differ- 
ent k values but the same C2DI term. At present it would appear more expeditious to 
make the measurements with columns having a negligible mass transfer term. Thus 
we would have only the difficulty of finding two columns which, for the same sample 
(to ensure that D, for k = 0 is the same for both experiments) have appreciable k 
values but negligibly small terms containing l/(C2DI). In conclusion, we form D’ 
from the two contributions: 

AD; + AD;, = D 6420) 

We measure D’ experimentally and set the values found as equal to the quantities 
calculated from the known ul, r. and s and from the unknown m, p and d and, adding 
these two equations derived from the cases k = 0, for exampe, and k = k (a known k) 
to the flow equation, determine the three unknown quantities just said. 

SYMBOLS 

c Ratio of concentrations in two zones 
C Partition coefficient 
d Factor relating core diffusivity (DJ to laminar flow diffusion constant (DO) 

(d=- 1) 
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Diffusion constant 
Diffusion constant in the stationary phase 
Core diffusivity 
Laminar flow diffusion constant 
Sample concentration function 
Total flow 
Flow through a tube 
Height equivalent to a theoretical plate (HETP) in general 
Observed HETP 
Capacity factor (retention factor) 
Tube length 
Factor relating core viscosity &) to laminar flow viscosity (p) (m> 1) 
Inlet pressure 
Outlet pressure 
Distance from the tube centre (r>rJ 
Tube radius 
Core radius 
Thickness of retentive layer (liquid-phase film thickness) 
Reynolds number 
Factor increasing tube length (S s 1) 
A coordinate related to the interface of zones 
Time 
Carrier gas velocity 
Average carrier gas velocity 
Average sample velocity 
Velocity in a tube 
Coefficients 
Coefficient 
A factor 
Molecular dynamic viscosity 
Core viscosity 
Laminar flow viscosity 
Factor relating core radius (rt) to tube radius (ro) (p c 1) 
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