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Crack nucleation at the surface of stressed fibers

P.C. P. Bouten® and G. de With®
Philips Research Laboratories, P 0. Box 80.000, 5600 JA Eindhoven, The Netherlands

(Received 23 March 1988; accepted for publication 27 June 1988)

A model is proposed for crack initiation on a pristine surface. In this model failure starts from
a flat surface and the crack develops during the strength or lifetime experiment. Both energy
and kinetic arguments are used. The model is applied to lifetime calculations of pristine optical
fibers. Surface energy and bulk elastic energy are calculated for a fiber with a flat and a slightly
distorted surface. When a small amount of elastic energy is removed locally from the fiber, e.g.,
by dissolution, the distorted state is more stable. Like cracks in brittle materials, the stable
distortions for pristine optical fibers have local radii of curvature at atomic dimensions. In this

model the lifetime of a pristine fiber is mainly determined by the time needed to pass from a
flat surface to a relatively small surface distortion. From the derived expression for the
lifetime, the exponent r in the empirical power law expression for subcritical crack growth can
be interpreted. It is shown that # is stress dependent. The discrepancy in »n value observed for
silica glass fibers (n~20) and bulk fused silica (n ~40} is removed.

1. INTRODUCTION

In fracture mechanics it is an accepted view that existing
flaws or cracks are responsible for failure of brittle materi-
als.'”? Given a crack of length ¢ and an applied stress o, the
stress intensity factor K is defined as

K, = Yo, e (1)

The geometrical constant ¥is determined by the shape of the
crack. With the applied stress normal to the crack plane,
faiture occurs at K; = K, the fracture toughness. At stress
intensities K; < X, stress corrosion produces slow crack
growth.! Given slow crack growth, the crack length at fail-
ure ¢, is longer than the initial length ¢;. The initial crack
length is estimated from experiments where the slow crack
growth is minimized, for instance, in liquid nitrogen,’ in a
vaceum,” in a dry atmosphere, or at high stress rate.

Preventing mechanical damage is important in the pro-
duction of optical fibers. Many experimental results on
strength and lifetime of undamaged optical fibers are report-
ed. The tensile strength of these pristine fused silica fibers in
ambient environment is about 5 GPa.® This corresponds toa
strain at failure of 6%. Using the fracture toughness for
fused silica, K, = 0.75 MPam'/?, a final crack length at
failure ¢, = 13 nm (¥ = 1.26; see Ref. 2) is obtained for the
pristine fibers.

In vacuum or liguid nitrogen, larger fracture strains
(149%-21%) are determined.>® The corresponding initial
crack length ¢; is about 3 nm.

Under constant experimental conditions, the variation
in fracture load of pristine optical fibers is only a few percent.
Kurkjian and Peak related this to fiber diameter fluctu-
ations.® Due to the small variations in strength, the fiber
must have initial cracks of weli-defined length (c;) and
shape (¥ ). In practice this means that initial cracks on the
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pristine fiber have a length equal to about 10 atomic dis-
tances. The variation in length is less than 0.2 atomic dis-
tance. All initial cracks are thus very similar in shape and
depth. This seems to be a nonrealistic model.

In the present paper a new model is presented for the
description of the strength of fibers. This model contains
both a stability criterion, comparable to the Griffith crite-
rion, and a kinetic description, comparable to conventional
stress-assisted corrosion behavior. As far as stability is con-
cerned, suppose that no initial crack at all is present on the
pristine fiber. The initial state, a flat surface, is well defined.
Is it possible to develop a crack starting from this surface?
This question is treated in Secs. FI-1IV of this paper. The
(in)stability of a surface distortion at high stress levels is
studied. The total energy of the distorted state is compared
with that of the initial state. In the total energy, the elastic
energy, the surface energy, the work, and possible heat of
dissolution are taken into account. Two types of distorted
state will be treated. In Sec. I1, a surface distortion is made
by moving material within the distorted section. The total
volume is kept constant. The mechanism of material trans-
port is irrelevant in this discussion. In Sec. III a surface dis-
tortion is described where some material is removed locally,
e.g., by dissolution. The application of the stability criterion
o the strength of optical fibers is discussed in Sec. IV.

Mow consider the kinetic aspects. How fast will 2 distor-
tion, stable with respect to the initial state, grow? This aspect
is treated in Sec. V for a stress-assisted dissolution reaction.
For the case of 8i0,, an often-used overall dissolution/cor-
rosion reaction is given by

=8 —0—8i= + H,0-2=8—0OH
The rate v of the reaction is described with the expression for
a stress-assisted reaction rate”®:

v=uyexp}( — E, + Vo,)/RT ], (2)
where E, is the activation energy at zerc stress, ¥ the activa-
tion volume, ¢, the local siress, R the gas constant, and 7" the
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temperature. The effective activation energy £, = FE,

— Vo, is lowered by the stress. For fracture the chemical
bond has to be greatly elongated. Under external stress, a
part of the elongation is aiready made. Therefore, the activa-
tion energy to be surmounted is lower.”® High reaction ve-
locities are obtained at high local tensile stresses.

Due to this stress-activaied reaction, a distortion be-
comes larger. It can grow to a crack, with a length ¢ that is
large compared with the radius p of the tip. When a reaction
path is known, the failure time can be caleulated. As aconse-
guence of these kinetic aspects it is shown in Sec. VI that the
fatigue parameter », often used to describe slow crack
growth, is an improper parameter. Finally, in Sec. VI, a
comparison with conventional theories and some limitations
of the present model are discussed.

i STABILITY WITH MATERIAL DISPLACEMENT
A. SBurface distortion

A perfect fiber of radius r, has a smooth surface. A force
F_ is applied along the axis. Due to an unspecified process,
some material is displaced within a certain part of the fiber.
The diameter of the fiber thus varies slightly with the posi-
tion on the fiber axis. The total energy of this distorted sys-
tem, consisting of elastic energy and surface energy, is now
caiculated. From the total energy it can be seen when 2 dis-
torted state is stable with respect to the initial state.

Within a distorted region of length A (Fig. 1}, a sinusoi-
dal distortion is assumed. The fluctuation of local radius »
along the fiber axis z is given as

r=rsl1 + xcos(wz) — (x*/4)], (3)

where x = a/r, is the normalized depth of the fluctuation
and @ = 27/ A. The term in x? is necessary to keep the total
volume constant.

8. Surface energy

The area 4, of the curved surface segment is

B

e ——— e »

e —— e — =D

aht
o= —

FIG. 1. Geometry of the fiber section with g sinusoidal surface distortion.
The volume of the distorted section remains constant. £, is the applied
force, A the deformation length, 2a the depth, and r, the initial fiber radius.
Thenormalized depth x and reciprocal length @ are used in the calculations.
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A":f 277'?‘(1.8‘2{ 2ar fl—}-(ﬂ)zdz
G

o0 —X[ Z.

A x2
= Zﬁrof ( I +xcos{wz)} — =
0 4

XV + [xryw sin{wz) |? 2. (4}

The second term in this integral expression, containing

the cosine term, gives zero. An analytical solution for the

remaining integral is, to our knowledge, not possible. For

small values of xrgw( = 27a/A), the square root can be ap-
proximated. Then Eq. (4} leads to

Ay =2mr Al + (k- D], (5
with
k= (mry/A)> (&)

For 2ma/A < 0.75, the difference between the numerically
calculated exact solution of Eq. (4) and approximation (5)
is less than 19%. For 2na/A = 2, the surface area is overesti-
mated by 19%.

The surface energy of the system becomes

Usurf:‘"’yAA :ZﬁroAVU + (k__%)XZL {7)
where ¥ is the specific surface energy of the fiber material.

C. Elastic enargy

For a fiber of radius 7, the stress ¢ is calculated from the
applied force #,:

oc=F, /7" (8)
This relation is used for the stress in the fiber segment with a
small surface distortion (27a < A). Stress concentration is
not taken into account. The material follows Hooke’s law,’
o = €F (¢ is the strain and F is Young's modulus).

In a fiber segment of length dz and radius » (Fig. 1) the
elastic energy is

dU, = (o*/2E)mr* dz. (%)
The elastic energy in the described fiber segment of length A
is then

S O
ey 4

o VE(mr*)?

__F i — (x%/4)
22 B {1 — (x¥/4)1F — X
Eguations (3} and {8) were used in the derivation.
The strain € of the distorted fiber section A is

A F

A
e::—imf € dz=-— 2 _dz
A Jo AJe 7P E
_F, i — (x%/4)
77,?(2} E {[1 . (x2/4?}2 _x_x2}3/2 :
At constant strain (de/dr = 0}, the force ¥, to be applied
depends on the relative depth x of the fluctuation:
{0 — /41 =P

el =

(10}

(i)

F, =F = ) 12)
= )] (
where F is the force applied to an undistorted fiber.
#. C. P. Bouten and G. de With 2891
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The elasiic energy of the fiber at constant strain then
becomes

2

U;,() v {{1 _ (x2/4)]2__x2}3/2

U, = > (13)
Y I [1— (x3/4)]
(O’a,o:Fo/m'?zﬂ VUZW’%A)-
D. Total energy

For the total energy of the system, two cases must be
distinguished: constant force and constant strain. For con-
stant force, the strain (11}, and therefore the displacement,
changes with increasing deformation depth. Besides the elas-
tic energy and the surface energy, a work term is reguired. At
constant strain, no work term appears in the total energy
because there is no overall displacement. In that case the
total energy is

Lftot = Usurf + (]el" <14)
The reduced energy U, is defined as
Ur = (ZE/O,iO V()) L'mt' (15)
Then
{{1_(x2/4)]2~x2}3/2 )
= 5 + 1 ‘+‘ k - l)x 9
[1— (x¥/4)} QU+ (k=]
(16)
with
Q=4yE /ry 02, (17)

For small x the reduced energy is 2 continuously increasing
function in x when Q(k — 1/4) > 2. With reasonable esti-
mates for y, E, o, ,, and r, {see Sec. IV), the presented model
has no minimum when distortion length A <1 gm. This
means that a small surface distortion due to material dis-
placement is not stable.

it STABILITY WITH MATERIAL REMOVAL
A. Surface geometry

In the previcus section the amount of material within
the distorted part of the fiber remained constant. We now
study the case where some material is removed at the distor-
tion, leading to a iocal decrease of the radius (Fig. 2):

F=ryf (1 —x} 4+ xcos{wz}]. (i8)
Note that this expression differs slightly from Eq. (3).

The total energy expression has to be taken into ac-
count, not only the elastic energy and the surface energy, but
also the energy used to remove the material. In the case of

dissolution, this is heat of dissolution.

B. Heat of dissolution

The heat of dissolution is proportional to the dissolved
volume ¥,. The volume of the removed cylindrical section
(Fig. 2) is

A
v, =J‘ 7{(ry — rdz = ¥V, (2x — 1.5x%), (1%)
G
where ¥, = 772 A is the total volume of the cylindrical sec-

tion. The total energy contribution due to this heat of disso-
lution is then

3892 J. Appl. Phys., Vol. 84, No. 8, 15 October 1988
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FIG. 2. Geometry of the fiber section with a sinusoidal surface distortion.
At the distortion material is removed. The fiber initial radius is r,. Tip radi-
us g is defined at the middle of the distortion.

Ugo =V /' V, Y H = (Vo/V,,)(2x — 1L.5x*)H, (20)

where H is the molar heat of dissolution and ¥, the molar
volume of the fiber material.

C. Surface energy and elastic energy

In the same way as in Sec. II B, but starting from expres-
sion {18 instead of (3) for the description of the distortion,
the surface energy U, of the fiber segment is

Usurf::yA/\ 227ng?’[€i—x)(l+kxz)}. (21)

Using expressions {9) and (18), the elastic energy of the
section A of the fiber (Fig. 2) is

U _ FZ J-A dZ
el—277'!%,,5‘ o [(1 —x) 4 xcos{wz)]?

F i-—x
= — A 375 (223
g £ (1 —2x)%°
In analogy with Eq. (11}, the overall sirain becomes in
this case

e F, I —x .
7t E (1 —2x)3?
At constant strain, the force decreases with increasing depth
x. Starting with force F, at zerc depth,
F,=Fl(1—-2xp"/(1 —x)]. (24}
The elastic energy in the segment with length A and relative

distortion depth x is thus for the present case, at constant
strain,

(23)

Fy (=22 oh

TR B (—x) 2 °

(1 ___ 2x)3/2
(1—x)
(25}

el

For x €1, a combination of {19) and (25) gives
U, = (05,/2EY (Vo — V). (26)

The change in elastic energy is in that case equal to the elastic

P. C. P. Bouten and G. de With 3892
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energy that was present in the removed volume before the
surface was distorted.

D, Total energy

Asin Sec, II D, only the case for constant strain is ireat-
ed. The total energy is then

(]tot = 2] —é" Usurf + Udiss‘ (27)
Using (15), (17), (20), (21}, and (25) and X fortheratioof

the heat of dissolution and the elastic energy per unit vol-
nme,

K=2EH/V,0.,, (28)
the reduced total energy is
Uy ={(1 =2x)*2/(1 —x)} + @(1 —x) (1} + kx?)
+ K{(2x — 1.5x%). (2%)

In Sec. IV (Table ), typical values for @ and & will be given:
<1, k» 1, and x < 1. The magnitude of the product Qkx is
about 1.0. Figure 3 shows this total (veduced ) energy ¥/, for
x <1 and K = 0. The elastic energy decreases, and the sur-
face energy increases with depth x. The total energy has a
minimum.

At K =1and x<£1, U, + Uy, = 0. It is casy to show
that for X > 1 no minimum exists.

The position of the minimurn is obtained from 4¥,/dx
== 0. For the noted conditions (x <1, <1, @k>1, K <1},

Xewin = (1 — K)/Ck (30)
is obtained.
A limiting case for the reaction is the situation in which

the total energy remains constant. AU, = U, (0) — U, (x}
= 0 [Eq. (29)] has, under the same conditions, a sclutionat

%y = 2(1 — K)/Qk. (31)

TABLE L. Some values used in the models presented in Secs. I and IIL A
tensile loaded fused silica optical fiber serves as model system.

Values used in the calculation

Fiber: radius 7, =625 um
applied stress o, = 40GPa
Fused silica: motar volume Y, =273 cm®
Young’s modulus E=72GPa
surface energy y= 0.2J/m’
Heat of solution H= 0.0kJ/mol
Typical deformation depth e= 0.5nm
Calculated:
constants Q= 5.76x107°°
K= 20
relative depth x= 80x107°
With material removed (Sec. I11):
at Mminimum energy:
deformation length A= 42nm
tip radius Poin = 090 nm
k= 2.17x1¢°
at zero energy change: = 3.0nm
po= 0.45nm
k= 434x10°
3893 J. Appl. Phys,, Vol. 84, Ne. 8, 15 October 1888

Utoe

length A
constant

", efastic

FIG. 3. Energy as a function of the deformation depth x, when material is
removed. The lengih A is constant. The elastic energy (dotted curve) and
the surface energy (dashed curve) give the total energy (solid curve). The
minimur in total energy corresponds with deformation depth x,,;,, and tip
radius g,.;,. At zero energy the depth x, corresponds with radius pg.

Figure 3 shows clearly that for a given length A the total
energy increases for x > x,.

E. Radius of curvature

The local radius of curvature g on a curve y(x) is de-
fined as’®

dy 12132 d2
o=l (H]"/ (5
In the middle of the distortion, at z = A/2 [Egs. (3) and
{18}, Pigs. 1 and 21,
p = A/4r’a. (33}
At x =x_,. (Fig. 3}, the total energy has a2 minimum.

The local radius of curvature in the middle of the distortion
is

(32}

Puin = VE/0L5(1 — K). (34)

At x = x,thereis no energy change with respect to the initial
state. The local radius of curvature is

p():;/E/zoi,O(lmK) :Pmin/z' (35)

At minimum total energy and at zero energy change, the
local radii of curvature at the tip [Eqgs. (34) and (35)] are
independent of the depth and the length of the distortion.
This is true as long as the approximations for elastic energy
and surface energy are valid, thus when 2ra < A.

At K = 1, the decrease of the elastic energy of the fiber
segment is equal to the (endothermic} heat of solution of the
removed material. Then p— «. The surface distortion is no
longer stable; a fatigue limit is reached. From Eq. (28} this

limit is
= [2EH/V, (H>0). (36}

From Egs. (34) and (35) it is clear that, for K <0, distor-
tions with still smailer local radii can be stable.

aiimit
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¥, DISCUSSION ON THE STABILITY
A. Type of distortion

In Secs. ¥f and IIl, expressions for the total energy of a
system with a surface distortion were derived. From these
expressions, stability criteria are obtained. In this section,
they are used for an optical fiber with radius 7, = 62.5 pm
{Table I). Fused silica has a Young’s modulus E =72 GPa
and a molar volume ¥,, = 27.3 cm”. In strength and lifetime
experiments, the stress at fracture for a “perfect” optical
fiber is between 2 and 6 GPa.>"! In this section, 4 GPa is
taken as a typical value.

For Si0, glass, several values are reported for the sur-
face energy v. A siloxane surface {only 5i-0O-5i bridges) has
a surface energy of about 0.26 J/m?. 2 For the silanol surface
it is about 0.13 J/m?. The outer fiber surface may be a silox-
ane or silanol surface. As 2 typical value, ¥ = 0.2 J/m” is
taken. In a fast fracture process, where dangling bonds are
produced as an intermediate product, y = 4 ¥/m? is used.’
This estimate is inappropriate here.

From Sec. II it was concluded that no stable fluctuation
was obtained for Q(k—~1/4)>2. In Table [, 0=35.8
% 1077 is calculated. This implies that stable Ructuations
are only possible for A> 1.1 gm. For a small distortion
(@ = 0.5 nm), the local tip radius is very large ( p > 56 gm}.

For the stability with material removal (Sec. 11}, an
estimate for H, e.g., the heat of solution, is needed. With
H =0 kJ/mol (K = 0), stable fluctuations with respect to
the initial state are obtained for p>p, [Eq. (35)]. At o,y
= 4 GPa, p;, = 0.9 nm and p, = 0.45 nm (Table 1}. Hav-
ing a distortion of small depth, e.g., @ = 0.5 nm, lengths of
A = 4.2 and 3.0 nm are derived for p,, and g, respectively
[Eq. (33)].

The ailowance of material removal stabilizes much
shorter surface distortions. At comparabie deformation
depths they have much smaller radii of curvature at the tip.
These surface distortions have local radii of curvature com-
parable to those of cracks in brittle solids.”” The magnitude
of the tip radius determines the local stress [Eq. (1)] and
therefore the stress-corrosion rate [Eqg. (2)]. In the follow-
ing sections, only the case with material removal (Sec. IIE) is
further treated. Within this formalism, stable fiuctuations
are obtained much easier than within the one with material
displacement.

B. Comparison with the Griffith concept

In the calculation of the elastic energy (Secs. 11 C and
{11 C), a constant stress cver the cross section is assumed.
This will be true for small distortions, thus 2re/A < 1. In the
case presented this ratio is about 1 (@ = 0.5 nm}. Better so-
lations of the elastic problem are obtained when the changed
stress situation around the crack is taken into account.

For the case of a sharp crack, this has been done by
Griffith (see, e.g., Ref. 2). The total energy for a sharp inter-
nal crack of unit width and length 2c is

Uy, = — 27c*(*/2E) + dyc. (373

This total energy has a maximum at o = 27 /7c (Fig. 4),
the Griffith fracture condition. For K, = J2yE , it is identi-

3894 J. Appl. Phys., Vol. 64, No. 8, 15 October 1988
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FIG. 4. Energy ¥, asa function of crack length ¢ for a Griffith crack. The
total energy has a maximum at the Griffith fracture condition. Starting at
¢ = 0, the total energy has to increase before failure can oceur.

czlto Eg. (1}. For asurface crack of length ¢ the geometrical
factor ¥ differs slightly. With this sharp crack, the changein
elastic energy is proportional to ¢°. For large distortions
{2ma/A> 1) this is much more than calculated in Bg. (26).
In the total energy expression, the surface energy was overes-
timated for 2ma/A > 1. From these arguments it is conclud-
ed that for 2zra/A > 1 the calculated tip radii {Egs. (34) and
{35)] are too large and no longer constant,

C. Reactlon velocity and energy decrease

A sinusoidal surface distorticn of length A is energeti-
cally favorabie with respect to a flat surface when 0 < x < x,
{Fig. 3). This means that the tip radius p has a lower limit:
£ > p,. For increasing A the total energy curves are drawn in
Fig. 5. For larger A, larger x, and x,;, are obtained. The
minima of these curves (constant tip radius p_;, } are on a
straight line (x €1)}. The total energy of a deformation with

FIG. 5. Total energy curves of Fig. 3 for various deformation lengths (Ag-
5A,). For tip radii p> g, there is energy production when the distortion
size increases. Starting at x = 0, a reaction path with continuously decreas-
ing total energy is possible, e.g., the dot-dashed curve.

P. C. P. Bouten and . de With 3894
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constant tip radius p,,;, decreases with increasing deforma-
tion depth. Size increase is energetically favorable. For a tip
radius p, the total energy remains constant.

The reaction velocity [Eq. (2)] is larger for higher (lo-
cal) stress. At constant applied stress, a smalier tip radius
{at identical deformation depth} gives rise to a larger local
stress. From the reaction velocity, the largest crack velocity
is expected at the smallest tip radivs. However, with too
small tip radii { p <g,) the increase in deformation size is
energetically unfavorable: the total energy increases.

Working with total energy decrease and reaction veloe-
ity leads to a conflicting situation. In the first case the radius
has & minimum, in the second case it does not. Neither the
total energy decrease nor the reaction velocity alone can
solve the problem. They have to be combined. The actual
reaction path is determined by the entropy production
rate."* While the process of material removal is not fully
specified, the contribution of the entropy to the calculation
of the reaction path is not incorporated. The calculation of
the actual reaction path is outside the scope of this paper. In
forthcoming calculations (Sec. V) of the lifetime it is as-
sumed that a maximum energy release rate determines the
reaction path. Energy is only produced for g > p,. For small
P, the amount of energy produced with an increase of the
deformation depth is smaller than at larger p. For larger p,
the reaction rate is slower. The actual reaction path can be
drawn in Fig. 3 as a line of continuously decreasing total
energy with increasing depth x. Comparing this with Fig. 4,
the Griffith concept, leads to a clear conclusion:

In Griffith’s model, a flat surface of a stressed sample is
stable with respect to a short crack. For failure, a crack nu-
cieation step with higher total energy is needed. The model
presented in this chapter does not need such a nucleation
step. This is illustrated in Fig. 6. Under tensile stress, the flat
surface is an unstable state if a mechanism is present to re-
move locally some material, and thereby some elastic energy
from the matrix. The essential difference between the two
models is the allowance of material removal.

V. KINETIC ASPECTS
A. Local stress and reaction velogcity

The sinusoidal surface distortion (Fig. 2) can be de-
scribed with depth 2¢ and tip radius p. The local stress at the
tip of this distortion is approximated by Inglis’ relation

o =0, [1+2(c/p)], (38)

where ¢ = 2a, o, is the applied stress, and o, is the local
stress. The velocity of a stress-assisted reaction is described
with Eq. (2). Due to stress concentration, the local stress at
the tip of a distortion is larger than on a flat surface. A¢ this
tip the reaction is faster; the size of the distortion increases.

The failure time is the time needed for the formation of a

critical crack. A critical crack is reached when K, = Yo, ¢
equals K. In the calculation of the failure time we start
from a flat surface. Most of the time is spent at low reaction
velocities, when the stress concentration at the crack tip is
small (277a/A < 1}. For the calculation of the failure time in
this case, the behavior of p for large distortions (2ra/A > 1)
is not important.
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FIG. 6. Total energy of Griffith’s model (Fig. 4), compared with an esti-
mated reaction path at continuously decreasing energy. This is 2 path
between the zero total energy change at p, and maximum total energy de-
crease, indicated in Fig. 5 (dot-dashed curve).

Combining the reaction velocity v [Eg. (2} ] and stress
concentration [Eq. (38)] gives

v—’—~--‘=i!—c-=u1 exp{D, Jc), (39
dt
where
v, =yyexpf( — E, + Vo, ,)/RT } (40}
and
D, =2Vo,/RT 5. (41)

o, is the applied stress, E, the zero stress activation energy
of the stress corrosion reaction, ¥ the activation volume, and
R the gas constant. Note that D, is not necessarily constant
during the reaction; it depends on p.

For cracks in brittle materials, ¢»p. The first term in
Inglis’ relation {Eq. (38)] is then neglected. In that case,

using K, = Yo, Je (1), Eq. (39) can be written as

v=uvyexpf{( — £, + bK,}/RT }, {42
where
b=2V/Yp. (43}

Expression (42) is often used to describe slow crack
growth in brittle materials like glass.'”'® Usually & is as-
sumed to be a constant. In the Inglis formalism [Eq. (38)]
faiture occurs if the crack tip stress exceeds the theoretical
strength o,,. For fused silica, o, ~20 GPa.'” Using the
stress intensity factor {Eq. (1)1, spontaneocus failure occurs
when K, > K ;.. A combination of these formalisms gives for
large cracks (e3> p)

b= Vo,/K,. (44}

For slow crack growth experiments on fused silica in
water of various temperatures Wiederhorn and co-
workers'™'® report b == 0.216 mol m*/2. Using Eq. (44) and
K, =0.75 MPam!/?, an activation volume ¥ = 8.1 cm®/
mol is obtained.

In the present study it is assumed that no initial cracks
are present; Eq. (39) is used. The reaction rate is fast for
small p. For too small p, the total energy of the system in-
creases. This is unfavorable. Therefore, two cases can be dis-
tinguished.
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(1) The {initial) dissolution rate at the tip of the distor-
tion is so fast that the tip radius will become very small. This
is energetically forbidden; p> p,. Then the necessary total
energy decrease limits the reaction velocity at the tip. To
hold the tip radius above g, the dissolution rate beside the
actual tip is important. This (lower) velocity determines the
rate at which the depth a of the distortion increases.

(2) In the opposite case, the local radius is iarger than
po- The dissolution at the tip is the rate-determining step.
The reaction rate at the tip is kinetically determined.

Intermediate between cases (1) and {2) is when the
dissolution rate at the tip determines the crack growth, but
the tip radius p remains constant. For this case expressions
for the failure time are derived in the next sections.

B. Lifetime for constant tip radius and zers initial depth

Assume that the tip radius is constant at p = g, and the
lifetime is only determined by the reaction velocity at the
crack tip. The total energy of the system then does not
change. Using Eq. (39), the time to failure is given by

= ff d;dt de = le :rexp( — D, Jeyde. (45
Taking u = D, \Jc,
2 S{f
ty= oD J: uexp( — u)du
= 22 [ — (L +uyexp(—~ )] (46}
v,

Spontaneous failure cocurs when the local stress is equal
to a critical stress o, for instance, the theoretical strength
oy, This is the case when

up =D, ey = (V/RT Y (Goi — Tu)- 47

For the special case that the initial state is a flat surface
(1, = 0), Eq. (46) gives

57l (1 )
tp= Pt L — (0, —0,)
77 p,D2 RT ™

i

xexp ( ~ e (0 — ) )| (49)
The term in square brackets deviates less than 1% from 1.0
when { V(o — 6,)/RT | > 6.6. For an activation volume
V of 8 cm®/mol this agrees with (0. — 0,) >2.0 GPa.
When o, = 0,,, this is easily achieved in practical situa-
tions. For the theoretical strength, a value of about 20 GPais
reported. In ambient environment, faiture stresses up to 6 or
7 GPa are reporied on fibers. Only in vacuum or liquid-
nitrogen higher fracture stresses (or strains) are reported.>*
The term in square brackets is thus safely approximated with
1. Then

t,=2/v,D2. (49)
Using expression (35) for tip radius g, and o, for o, thisis
rewritten as

In(z) = —-—Z—O'a-*—ZEHUGHED( a_g@{i)
RT v,

L4
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E, RT\ yE
B[R 2], .
RT V 7 4y, <0
Defining the calculated activation volume ¥, as
dine
Vcaic = —RT 4 5 (51)
do,
Egs. (28) and (50) result in
Voo = V4 2RL (22K ), (52)
g, 1—-K

z

Itis only defined for X < 1. The calculated activation volume
is always larger than ¥ for the chemical reaction. For K = 1,

Ve — oo & fatigue limit exists. For £ = 0 it gives

Ve = V+ (4RT /0,). (53)

The stress dependence of V. is a consequence of the stress
dependence of the (minimum) radius of curvature [Egs.
{34 and (35)] and the siress dependence of the critical
crack length ;.

Using pim = 2p, instead of p, as a constant radius of
curvature in the calculation of ¢, the lifetime is only twice
that given in Eq. (48), since {, is proporticnai to D = 2, thus
linearly dependent on g. The expression for V. remains the
same.

C. Lifetime at nonzero initial distortion depth

More in general, when a small surface distortion, de-
fined by ¢, and p,, was previously present, and ,/c¢,/p;

£j¢s/py, it follows from Eq. (45) (for 2ma/A <1, thus
¢; <p,;) that

= (20, D) [ (1 + D, Je)yexp( — D, e 3 1, (54)

where D, = (2¥5,)/(RT/p;). In this case the term in
square brackets is stress dependent. For X = § this expres-
sion gives

2

zf=—2&(—"z) I sz Y, fi)

4y, W ¥V o RT 2i

wexp (Ea ~ Vo, (1 +2./c./p,) H .

RT

Two different cases are trested here. For case (1) the tip
radius remains constant and equal to g,. The term outside
the square brackets is proportional to 1/62. For case (2) the
initial tip radius depends on the stress as was used in pre-
vious sections [ Egs. (34) and (35)]. For this stress depen-
dence of p the term outside the square brackets is propor-
tional to 1/2. For both cases Eq. (55) may be rewritten as

In (1) = 2 Va(1+2 ""‘) o, +2InT
=% g, < j—gho, 1
= RTTRT P

—*lnv<,+1n(1+2l/—aa Ei)4—1". {56)
RT o
In this equation the constants Pand ¢ differ for the two cases.
For case I, g =2 and P=p,R*/2V7. For case 2 {and Eq.
(35)1, P=yE(R /2V ) and g = 4.
When the ratio

(353
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X =c/pi {573

thus the initial crack geometry is known and the lifetime is
determined. The calculated activation volume ¥, [Eq.
{51)] is determined from the stress dependence of the life-
time [Eq. (56)] for a given depth X

RT(’ g+ 2(¢g—1)(Vo,/RT)X, )
14 2(Vo,/RT)HX, )

Vcalc = g](l + ZXI) +

(58}

This expression shows clearly that the slope of the lifetime
plot (¢, <> In ), expected from the theory, is strongly de-
pendent on the initial crack geometry. This dependence is
mainly determined by the first term of Eq. (58). The magni-
tude of the term in large parentheses varies between ¢ and
{g — 1)}, dependent on the magunitude of (Vo,/RT )X,

Vi. FATIGUE CONSTANT m: THE WRONG PARAMETER

The fatigue parameter n, often used to describe siow
crack growth phenomena and fatigue data, was introduced
by Charles.’® It is used in the power law v = 4K}, where v is
the crack velocity, K, the stress intensity [Eq. (1) ],and 4 a
constant.' From the power law it is easy to show that the
lifetime ¢, ~ /07, where o, is the applied stress. Then # can
be determined from a plot of In ¢, as a function of In o,

dln s
dino,

(593

A value of n = 20 is often obtained from strength and life-
time measurements on pristine silica fibers, and is treated as
a typical value. From slow crack growth experiments on
bulk fused silica, n~40 is obtained.’>® A discrepancy
between the n values of optical fibers and cracks in fused
silica is observed.

The use of Eq. (59) in combination with the lifetime
equation (56) at a distortion of depth X; = (¢,;/p;)}"/? re-
sults in

Vo

noe=—a (14 2X) +
RT( )

(q +2(g — 1)(?@/1%7‘)%)
1+2(Vo,/RTX, /)
(60)

The expression in large parentheses is the same as in Eq.
(58). Itis shown that the fatigue parameter n and the activa-
tion volume ¥ are closely related. For this relation the mag-
nitude of o, {1 + 2X,} has to be known. From Inglis’ rela-
tion (38) it is seen that this is the local stress o at the tip of
the deformation. This means that the fatigue parameter i
depends on the magmtude of o,. The first term of Eq. (60)
becomes Vo, /RT. The term in large parentheses can vary
between 1 and 4.

In Fig. 7 values for n [Eq. (60)] are given for }' = 8.1
cm’/mol, T = 293 ¥, and various values of the local stress
;. The initial depth X, is the variable. The failure stress of a
pristine fiber is in the range of 2-6 GPa.>*"! Using ¥ = 8.1
cm’/mol, obtained from siow crack growth data, ¥, de-
scribes well the experimental data on pristine fibers repre-
sented by i = 20. The value of ¥ = 8.1 cm”/mol, however, is
obtained from slow crack growth data on longer cracks [ Eq.
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FIG. 7. Calculated vaiues of fatigue constant n for several values of local
stress o, and variable initial length X,. This calculation is made for ¥'= 8.1
cm’/mot and ¢ =4 at T= 293 K.

(44} ], giving in the power-law description a value of n = 40.
Thus, the stress corrosion of pristine fused silica (optical)
fibers at high stress and of cracks in bulk silica can be de-
scribed with the same activation volume. In other words,
r = 20 for pristine optical fibers and »# = 40 for large cracks
in fused silica agree with each other since # is not the proper
parameter. Expression (80) resolves the discrepancy in #
values as observed for bulk fused silica glass and their fi-
bers.”® The activation volume is defined as the difference in
molar volume between the initial state and the state prior to
fracture.® Since the strain at failure for the inert sirength is
about 0.2, a rough estimate of the activation volume is about
0.2 ¥,, =6 cm®/mol. This is consistent with the experimen-
tal value of 8.1 cm®/mol.

Vil. GENERAL DISCUSSION
A. On the reaction path

In Secs. If and [if, two types of surface distortion were
studied. At constant total volume (Sec. ), only fluctu-
ations with a long wavelength can be stable. The local radii of
curvature on this distortion are orders of magnitude larger
than those of a crack tip. Distortions with a small local radi-
us of curvature can be more stable than the initial state {Sec.
IIL). In that case if a small amount of elastic energy has to be
removed, e.g., by dissolution, they can develop into a critical
crack.

At each applied stress, 2 minimum radius of curvature
1, exists for a sine-type surface distortion. In that case there
is zero change in total energy. For a fluctuation of the same
depth, a decrease in energy is possible. The local radius is
then larger than g,. A minimum in total energy exists at
Piin = 20 This is derived for small distortions (27a/
A < 1). For larger surface distortions, the actual values for
Py and g, deviate from those given in Egs. (34) and (35).
The idea, however, ic the same: given the depth of a distor-
tion, e.g., a crack, at a certain tip radius p, there is zero
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energy change with length increase. At a larger tip radius,
the total energy decreases with the same increase in the
length of the crack.

The discrepancy between reaction velocity and energy
criterion has already been discussed in Sec. I'V: A high reac-
tion velocity calls for a high local stress, i.e., a small radius of
curvature. The energy criterion dictates 2 minimum radius
Do atthe tip. Both arguments have a part to play in the defini-
tion of the reaction path. This reaction path is defined by the
driving force of the reaction, the (minimum) rate of entropy
production. The actual reaction path i not calculated in this
study. It is assumed that the maximum energy release rate
determines this path.

Starting from a flat surface, lifetimes at constant p are
given. They are boundary cases of the reaction path: at
p = p, the reaction rate is relatively fast; there is no energy
production because the total energy is constant. Atg = p .,
( = 2p,) the reaction rate is siower; the total energy decrease
has its maximmum, The maximum energy release rate will be
somewhere between these two boundary cases. When start-
ing from a flat surface, the calculated failure times [Eq.
(49)] differ only by afactor of Zatp=pgyorp=p,. In
view of the initial condition, this result is not surprising: in
this stage no stress concentration occurs, thus the slow reac-
tion rates are equai. As in nearly all crack initiation and
propagation problems, the lifetime is mainly determined by
the (slowest) reaction rates in the initial stage. The differ-
ence in calculated failure times is thus due to small differ-
ences in the further stress corrosion process. In any case, an
energy production rate needs p > p,, thus a failure time long-
er than 7, calculated at p,.

Doremus?! has given a similar discussion for strength of
materials with cracks. He noted the disagreement of Grif-
fith’s energy criterion {Eq. (37)] and Inglis’ expression for
tensile strength [ Eqg. (38) ] for large cracks (¢>»p). In Grif-
fith’s fracture condition, there is zero change in total energy
at a crack fength increase dec. From the second law of ther-
modynamics, a minimum radius of curvature at the crack tip
was derived. For the case of entropy production, dU,,/
dc < 0 was obtained {Eq. (37} ]. The tip radius is larger than
the minimum value. For faiture, a local stress equal to the
theoretical strength is needed. Due to the larger tip radius in
the case of energy (entropy ) production, the fracture load is
larger than given by Griffith’s fracture condition.

B. On the stress-corrosion timit

In the calculation of failure times in Sec. V, the reaction
rate at the crack tip was assumed to be the rate-determining
step. With the boundary condition of a constant radius of
curvature at the tip, this means that the crack geometry as a
function of time is well defined. The activation volume V.
is stress dependent, but also strongly dependent on the initial
geometry {Egs. (53) and (58} ]. For pristine optical fibers
with a typical value of 4 GPa for the failure stress (Table [},
the stress-dependent term 4R 7 /o, contributes about 2.5
cm’/molto V..

Suppose now we have a small surface distortion defined
by tip radius p, and depth ¢,. This may be an elliptical (sur-
face) crack. The stress distribution around an elliptical hole
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is given by Inglis (see, e.g., Ref. 9). A combination of this
stress distribution and the stress corrosion rate [Eq. (2)]
gives the time evolution of the crack geometry, and thus of
the tip radius. Except for very small applied tensile stress,
the tip radius decreases continuously. Stability consider-
ations (Sec. III} resulted in a lower limit for the tip radius. It
depends on the applied stress [Eq. (35)]: larger radii for
tower stresses. If the tip radius approaches the lower limit,
the stress corrosion rate at the tip is no longer the rate-detes-
mining step. A corrosion rate in another direction, needed to
maintain the tip radius above the critical valse g, defines the
crack velocity. At the tip, the velocity is necessarily lower
than given by (2).

From the initial tip radius p; of an existing distortion, a
critical stress value can be calculated {Eq. (35) ]. Above this
stress, tip sharpening occurs in the initial stage of the stress-
corrosion reaction. The initial stage of the stress-corrosion
reaction mainly determines the lifetime. The stress depen-
dence of this lifetime is nearly equai for the cases with con-
stant and decreasing tip radius [ Eq. (58} 1,¢ = 2 or 4. Below
this critical stress, the stress-corrosion reaction is no longer
determined by the reaction velocities at the crack tip. The
overal! increase of the size of the surface distortion is smaller
than expected from the stress at the tip. The stress depen-
dence of the failure time, as given in Sec. V, is a conservative
estimate. Below the critical stress the value for (4 In 1,/do )
determined from the experiments are expected to be larger
than ¥, .

In Egs. (55) and (56) a more general expression for the
lifetime is derived. From these expressions the expecied
slopes of the lifetime plots are calculated. From a plot of
stress o, as a function of In(#,), V,,,. [Eq. (51)]is obtained.
It shows a strong dependence on the initial crack geometry
[Eq. {58)]. The term in square brackets is nearly constant.
It depends on g, and has a value between 1 and 4. Comparing
values for the first and second terms in Eq. {58) it must be
noted that for large values of X, the stress o, is small in
practical situations.

V.. 15 derived for the case where the corrosion rate at
the tip of the distortion {or crack) controls the rate of length
increase. When this condition is no longer true (due to ener-
gy restrictions), the experimental slope (d In #/do, ) will be
larger than V. . A fatigue limit is approached.

The fatigue parameter » [ Eq. (60) ] is shown to depend
on the local stress o, at the tip of the distortion. For smaller
tocal stress a lower n value is obtained. # is not a constant.
Like V., n obtained from experiments may differ from the
values obtained from Eq. (60) when a fatigue limit is ap-
proached at low stresses.

In Hfetime measurements, e.g., on optical fibers, very
low initial “crack growth velocities” are expected ( < 107'¢
m/s). At these velocities the local stress is relatively low. For
these low stresses a low vajue for n is expected from Eq.
(60). For optical fibers many values for the fatigue param-
eter n are reported.”” In many cases the n value increases
with decreasing stress, thus giving larger lifetimes. It is as-
sumed that in these cases a fatigue limit is approached. When
a drastic decrease of # with increasing lifetime is observed, a
competing chemical reaction may be active.”®
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C. Comparison with £, models

In the lifetime prediction of stressed samples with large
cracks (¢>p) the stress intensity factor X; = Yo, Jc [Eq.
(1)} is often used as a parameter. [t is used in the exponen-
tial expression (42),'° and in the power law v = AK |.' A
comparison of K, = Yo, yc and Inglis’ relation o, =0,
X {1+ 2e/p) shows that K, can be written as

K, =Yo,{p/2 (61)

At K, = K, the local stress ¢, is equal to the theoretical
strength o, .

The theory presented in this paper shows two tmportant
points that are neglected in the lifetime predictions of K-
based models:

{1} The stress intensity K, is defined for large cracks
{¢>p). For large cracks, the first term in Inglis’ stress con-
centration relation is neglected. For small distortions
{¢=p), this term, which is not taken intoc account in K, is
not negligible. Starting from a flat surface (¢, =0}, it is
shown in Egs. (49) and (51) that it is mainly this first term
of Inglis’ relation that determines the stress dependence of
thelifetime. The term in square brackets [ Eq. (46} ] isdueto
the second term in Inglis’ relation. For cracks with c~p,
both terms coniribute to the stress dependence of the lifetime
[Egs. (54} and (58) }. Only at large ¢/p ratios the contribu-
tion of the first term becomes insignificant.

(2) Expression (61) shows that &, depends on the tip
radius p. The theoretical strength o, of a material is deter-
mined by the bond strength and is thus constant for a given
material. When K. is a material constant, radius p is as-
sumed to be constant. For brittle materials, like fused silica,
gissmall ( < 1 nm)."” Using X, as a parameter in the stress
corrosion reaction implies a reaction path at constant tip
radivs p.

For a small disiortion {2wa/A < 1) the stress depen-
dence of for stable surface distortions is clearly shown [ Egs.
{34) and (35)1. This stress dependence dictates a reaction
path: for smaller external forces, distortions with larger tip
radii are used. This has influence on in the stress dependence
of the failure time which is not taken into account in K,
models.

0. On the surface energy

In the discussion on the stability the surface energy term
was introduced as ¥4, where ¥ is the specific surface energy.
For liguids the surface energy and surface tension are equal;
a surface increase means a larger amount of atoms on the
outer surface. For solids, the surface energy and the surface
tension are different in magnitude.?® Here an increase in sur-
face area can be produced also by stretching chemical bonds;
the amount of surface atoms does not change. Therefore, the
surface energy term of the stressed fiber may differ from that
of the stress-free sample. This correction is not taken into
account, neither in the present investigation, nor in the cited
references. %257

In the discussion on the reaction velocity the surface
energy term has to be taken into account in the activation
energy. This is dope in Thomson’s paper.”® In Ref. 16 the
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contribution of the surface energy is assumed to be constant,
and incorporated in the zero-stress activation energy £ *. In
the lifetime descriptions used in this paper, the surface ener-
gy is not explicitly taken into account. Also here it may be
taken as incorporated in the zerc-stress activation energy
E,.

Charles and Hillig?® introduced the surface energy in a
term ¥V, /p, where ¥, is the molar volume and p the radius
of the crack tip. This term is used®”?® to describe the influ-
ence of ¥ on crack blunting. It wili be shown that the intro-
duction of the term ¢¥,, /g in the activation energy is based
on nonvalid arguments. Suppose we have a stress-free cylin-
drical sample of radius r and surface energy . An unit length
of this sample has volume ¥V = 77 and a cylinder surface
area A = 2mr. A radial compression of the material gives a
lower surface area and a lower surface energy. The elastic
energy increases. For a compressive strain ¢ the elastic ener-
gy is €°E /2 (E is Young’s modulus). The free energy has a
minimum at strain € = — y4 /EV. For the given case the
free energy per mole is equal to 1/2{€°EV,, ), the increase in
elastic energy, and can be approximated with y¥_A(1/7).
The term ¥V, /p results thus from the minimization of the
total energy (the sum of elastic energy and the surface ener-
gy) when the initial state is not stressed.

For an already stressed sample, e.g., an external loaded
fiber with initial strain &, the total elastic energy has to be
taken into account in the free-energy minimization. At the
minimum in the total free energy the free energy decrease is
given by 1/2[EV, (Ae)?], where Ae= (YA/EV ) — &,
This is much smaller than y¥, A(1/r), given for the stress-
free case. From these arguments it is concluded that the term
¥V, /p introduced by Charles and Hillig?® is based on non-
valid arguments: the stressed initial state is not taken into
account in this term.

In the study on the stability of 2 surface distortion in this
paper the stressed initial state is taken into account. It is
shown that the surface energy ¥ and the tip radius p of the
distortion are related at the minimum of the total! energy

{Eq. (341

E. Final remarks

Within the present model the surface energy plays an
important role. The magnitude of this quantity can vary.!* A
siloxane (Si-O-51) surface is obtained when silica is treated
at high temperatures (> 600°C). Hydration of siloxane
gives silanol (Si-OH) groups. This decreases the surface
{excess) energy. This formation of silanol groups is a slow
process. 1t is likely that a freshly prepared silica fiber has a
siloxane surface.

Due to physisorption and/or chemisorption of other
constituents on the surface, the energy state of the surface
also changes. The heat of wetting of a silanol surface, for
instance, differs markedly from that of a siloxane surface. In
this view, the state of the surface (siloxane/silancl) and oth-
er surface conditions, like the amount of adsorbed water, are
important for the strength/lifetime characteristics of a fiber.

The process for material removal at the distortion is not
specified here. Local dissolution was a suggestion. When the
process is not clearly specified, the total energy descriptionis
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not a complete thermodynamic description. In a thermody-
namic description, the entropy has to be taken into account.
Only in that case the actual reaction path can be calculated.

A fiat surface is proposed as initial condition. A distor-
tion of this surface can ultimately lead to failure of the
stressed sample. Nothing is said about how such small dis-
tortions criginate. It is only assumed that they are present.

Stable surface distortions have nanometer dimensions.
Macroscopic models are used to describe fluctuations at
atomic dimensions.

To simplify calculations, fluctuations over the whole
circumference of the fiber were studied in Secs. If and III.
Fluctuations that are not over the whole circumference lead
to the same type of results; their numerical values will be
slightly different.

Viil. CONCLUSION

A model has been presented for the failure of a perfect
fiber, Within the model it is assumed that the initial stateis a
flat surface. Surface distortions develop during the test.
Starting from a flat surface, a fluctuation of the surface is
under certain conditions stable with respect to the initial
state of a stressed fiber. When smail amounts of material are
removed from the stressed system, constant local radii of
curvature are obtained as stability criteria. For an optical
fiber they are smalier than 1 nm. The surface distortions can
grow to critical cracks, leading to material failure. The fiber
fails under tensile stress, although no initial crack was pres-
ent. For special cases, failure times are calculated.

Using this model, expressions for the lifetime under ap-
plied stresses are calculated. This is done for cases with and
without initial cracks. From these expressions it is shown
that the fatigue parameter n, used io describe stress corro-
sion empirically, is not a constant, but depends on the local
stress. This dependence resolves the observed discrepancy in
n value between bulk silica and silica fibers.

The expressions derived in this paper are used in the
interpretation of lifetime experiments on optical fibers with
various coatings,’” and will be discussed in forthcoming pa-
pers.
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