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Chapter 1

Introduction

All truths are easy to understand once they are discovered; the point is to discover them.
Galileo Galilei (1564 - 1642)

A complete understanding of the turbulence in fluids stands as perhaps the last great
problem of classical physics. While the equations of fluid motion have been known for
a long time, the system is essentially still a black box, where the core of the problem is
its strong nonlinearity. Not surprisingly then, a comprehensive theory of turbulence is
still lacking, notwithstanding experimental and theoretical efforts by such great physi-
cists as G.I. Taylor and A.N. Kolmogorov, which have shed light on many aspects of
turbulent flows. Even the development in the last quarter of the twentieth century of
chaos theory, providing a framework of analysis for a wide scala of nonlinear phenom-
ena, eventually proved insufficient for the turbulence problem.
In a sense turbulence is as much a mathematical problem as it is a physical one. As
remarked by Foiaset al. [49], the equations of fluid motion, the Navier-Stokes equa-
tions, are one of the few examples in physics where the nonlinearity arises solely due to
kinematical, or mathematical, considerations. But the mathematical difficulties accom-
panying the turbulence problem are in no sense less than their physical counterparts.
In fact, the difficulties in proving existence and uniqueness of solutions for the Navier-
Stokes equations are so great that the prestigious Clay Institute of Mathematics turned
it into one of seven Millennium Problems, offering a million dollar prize for its solution.

Let us recall then, in broad terms and before involving any tedious mathematics, some
basic aspects of the turbulence problem and simultaneously try to indicate why it re-
mains such a fascinating topic of study.

1.1 Preliminaries

While most (if not all) fluid flows in nature live in three spatial dimensions, some
systems exist which are assumed to be more or less two-dimensional (2D). It is either
rotational effects, negligible vertical dimensions as compared to horizontal dimensions,
density stratification effects, or a combination of these causes which render the motion
two- rather than three-dimensional. Let us immediately add the restriction of con-
stant fluid density, the so-called incompressibility condition. As such, the 2D Navier-
Stokes equations supplemented with the incompressibility condition are thought to be
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an appropriate model for systems as diverse as the large-scale atmospheric flow, Ten-
nekes [139], to the flow in extremely thin films of soap, see Goldburget al. [58]. With
these restrictions in hand, we turn to examine the phenomenology of our system.

To study a viscous flow we first have to push the fluid into motion, e.g., by means
of an initial condition. We only need to know the exact conditions of the fluid in terms
of pressure and velocity at one convenient moment of our choosing, at which we set
time equal to zero. If we apply an initial condition and then let the flow evolve without
interfering, we speak of a freely decaying flow; eventually the fluid will come to rest
because its kinetic energy is depleted by viscous dissipation. Contrarily, in a forced
flow some kind of external forcing mechanism, like a mechanical stirring device or a
blowing wind, continuously adds kinetic energy, balancing the viscous dissipation. It
is these forced flows which we are mainly concerned with in the sequel. Specifically,
we are interested in the phenomenology of forced flows enclosed by rigid walls.

An important guideline for our observations is the dimensionless Reynolds number,
Re, which measures the relative strength of viscous damping to nonlinear processes. It
will be shown later how this number arises, here we are content with its formula,

Re =
U`

ν
, (1.1)

whereU is a characteristic velocity scale, usually a root-mean-square velocity,` a char-
acteristic length scale, e.g., the length of the flow domain andν the kinematic viscosity
parameter. It is the Reynolds number which tells one how many degrees of freedom a
flow contains and which, consequently, determines what type of phenomenology one
can observe. Even thoughRe is essentially finite for a viscous flow, it can still be
a huge number, e.g. for the atmosphere one may encounter a dazzling integral-scale
Reynolds number ofRe = O(1010). It is exactly the possibility of such large Reynolds
numbers that prohibits calculations of highly turbulent flows, as the number of compu-
tational modes in a detailed computation should equal or exceed the number of degrees
of freedom of such flows.

So let us imagine a small experiment, assuming we observe a fluid, subject to a control-
lable external forcing. The simplest motion, associated to low values of the Reynolds
number, is stationary and laminar, the flow is ordered, does not change in time and
behaves in a completely predictable way. Based on our present observations of the
flow and knowing that we have isolated the fluid from the rest of the world, we can
safely predict its future behavior for all eternity; it remains exactly the same as what
we observe.
Suppose next that we increase the intensity with which we force the flow, supplying
more energy to the flow and thereby increasing the Reynolds number. The stationary
behavior is now replaced by a time-dependent motion. Although the nature of this time
dependency is ordered and regular, e.g., in the form of repetitive or periodic motion, it
is not possible to exactly predict for which forcing amplitude this behavior will occur
and what form it precisely has.
Again we increase the intensity of the forcing, this time supplying so much energy
to the flow that order in the temporal signal is destroyed. The resulting flow is time-
dependent, but now so in an irregular, erratic way. In other words the flow has become
chaotic, or, if we supply even more energy, turbulent.
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Figure 1.1: A snapshot of the vor-
ticity field of a 2D turbulent flow in a
bounded domain, black indicates neg-
ative values, white means positive val-
ues. Note the presence of intense
boundary layers and many vortices of
varying size and strength.

In daily vocabulary turbulent is synonymous to disordered, uncontrolled, or even vi-
olent (English dictionary). As used by physicists, however, turbulence refers to some-
thing much more complex than just a random or disordered process. Within a sea of
disorder, organized structures may arise in the form of eddies, or vortices. These vor-
tices form, interact and die out from the smallest to the largest spatial scales, from the
sink hole vortex one can observe when a bathtub is emptied to the devastating hurricane
storms which may affect entire nations. Here, the distinction between two- and three-
dimensional flows becomes apparent, as their turbulent phenomenologies are strikingly
different.
A key concept in the 2D phenomenology is that, under the right circumstances, a self-
organization of the flow may take place. Small eddies of equal sign merge to form
ever larger structures. Typically, the eddies have the form of a single core, known
as a monopolar vortex, or of two counter rotating cores, known as a dipolar vortex.
More exotic configurations may also arise, as, e.g., the tripolar vortex observed by Van
Heijst and Kloosterziel [146], which consists of a large core with two counter-rotating
satellites. In the turbulent sea surrounding the larger vortices, small-scale structures
abound, sometimes, as a result of shearing of large vortices, in the form of elongated
patches, known as filaments. An example of these structures is given in Figure 1.1,
which depicts the vorticity field1 during a turbulent flow on a bounded square domain,
for modest Reynolds number,Re ' 5000. The plot is a computational result and
shows both the presence of intense boundary layers and filamentary structures as well
as many vortices of varying size, strength and sign.

It is exactly the creation of coherent vortices that lends a flow its aesthetical beauty
and, at the same time, makes the 2D turbulence problem so complex. Specifically, the
influence of these structures on the turbulent dynamics is poorly understood. Let us,
however, take a brief look at some mechanisms that are thought to drive these dynamics
and constitute the most important theory of 2D turbulence to have emerged so far.

Heuristic turbulence theory

Conjectures on the transfers of energy and squared vorticity by the non-linear dynam-
ics and the associated scaling behavior of the energy spectrum were posed in the late

1The vorticity is the rotation of the velocity field, it is an especially suitable quantity for the visualization
and analysis of a two-dimensional flow field consisting of vortices and small-scale structures.
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sixties of the previous century, by Kraichnan [74], Leith [78] and Batchelor [10], here-
after collectively referred to as KLB-theory. We repeat the Kraichnan argument for
an infinite domain, assuming that an ideal random forcing pumps a fixed amount of
energy and squared vorticity into the flow. The forcing acts at a fixed length`f within
the inertial range; the part of the spectrum that is dominated largely by the non-linear
dynamics and remains unaffected by viscous dissipation processes. These latter pro-
cesses are assumed to act only on the smallest length scales, below the so-called cut-off
length,`η. On dimensional grounds, this latter length follows from the spectral enstro-
phy dissipation rateη and the kinematic viscosityν, as

`η =
(

ν3

η

)1/6

.

Based on the assumption of locality of length scale interactions, KLB-theory conjec-
tures that a transport, or cascade, of energy towards larger wavelengths takes place
in the rangè À `f . The transfer process is known as the inverse energy cascade,
because it is exactly opposite to the downward-in-wavelength transfer of energy in
three-dimensional turbulence.
Let u(t,x) denote the fluid velocity vector at timet and positionx = (x, y) in a
domainΩ. One can define its Fourier transform as

û(t,k) =
∫

Ω

u(t,x)e−ik·xdA,

for discrete wave vectork = (k1, k2) ∈ Z2\{0}. KLB-theory predicts that, in the
inverse cascade range, the spectral energyE(k) ≡ |û(t,k)|2 scales with wavenumber
k = |k|. On dimensional grounds the scaling must be

E(k) = c0ε
2/3k−5/3 for k ¿ kf ,

whereε is the spectral energy dissipation rate,kf = 2π`−1
f the forcing wavenumber

andc0 = O(1) a non-dimensional constant.
Instead, in two dimensions it is the squared vorticity, or enstrophy, that is transported
downward in length scale, also referred to as the direct cascade. Starting at the forcing
length`f , enstrophy is transferred to progressively smaller wavelengths. Above the
forcing wavenumber, the spectral enstrophy dissipationη is used to obtain the scaling

E(k) = c1η
2/3k−3 for kf ¿ k ¿ kη,

wherec1 = O(1) is another non-dimensional constant andkη = 2π`−1
η . Because

nonlinear interactions in two dimensions take place in the form of triads of wavenum-
bers, in which one wavenumber emits, one wavenumber receives and the intermediate
wavenumber transmits energy or enstrophy, the cascades of these latter quantities are
mutually exclusive. According to KLB-theory one cannot observe enstrophy transport
in the inverse cascade range and, likewise, one cannot observe energy transport in the
direct cascade range.
Furthermore, the enstrophy transfer persists indefinitely, achieving a statistically steady
state, where input is balanced by destruction due to viscosity. The energy transfer, on
the other hand, is not balanced by dissipative processes, but rather continues until it
reaches an infinite wave length, for which it needs an infinite amount of time. As
such, it lives in a quasi steady-state. Infinite domains are, however, not encountered
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Figure 1.2: Double logarithmic en-
ergy spectrum, showing the dual cas-
cade of energy and enstrophy and the
associated -5/3 and -3 scaling be-
havior, wherekf denotes the forcing
wavenumber andkη the dissipation
wavenumber.

en
er

gy
sp

ec
tr

um

k
f
 k

η

energy 

enstrophy 

k−5/3 

k−3 

wavenumber

in physical reality and Kraichnan conjectured that a piling-up of energy in the largest
wavelength mode would occur in a finite domain, a so-called condensation regime.
Summarizing, the KLB situation is shown in Figure 1.2.

Let us examine the physical picture corresponding to the somewhat abstract cascade
ideas. The transfer of energy to ever larger wavelengths is generally thought to be asso-
ciated to the self-organization of energy-containing vortices into ever larger structures.
An alternative view was forwarded by Paret and Tabeling [107] and by Boffettaet
al. [14], who suggested that the inverse cascade is manifested in a clustering, rather
than a merging, of like-signed vortices.
The enstrophy transfer, as described by Batchelor [10], is brought about by the amplifi-
cation of vorticity gradients due to the extension of iso-vorticity lines by the large-scale
flow field. This explanation may seem slightly cryptical, but recall the description of
filaments containing large amounts of vorticity. If such a filament is wound around a
large vortex it is both stretched in one direction and squeezed in the other, as would
happen with an elastic band which is stretched tightly around a large package of mail.
Naturally, the vorticity gradients in our stretched filament are enlarged such that vis-
cous dissipation becomes important.

Any theory stands or falls with its confirmation or rejection by experimental evidence
and KLB-theory with its prediction on scaling exponents, has been widely tested in
both laboratory experiments and computational models. Hence, we consider next some
of the experimental and numerical techniques, used to study (quasi) 2D turbulence. An
extensive literature exists, see also the overview of laboratory experiments by Kel-
lay and Goldburg [69], the review by Tabeling [133] or the forthcoming overview by
Carnevale [21] and we limit our summary to work that is directly relevant for the re-
maining part of the thesis.

Laboratory Experiments and Computational Models

In one of the first experiments on quasi-2D turbulence, Sommeria and Verron [130,
129] used a set-up in which magnetic (Lorentz) forces assume the role of the Coriolis
forces in a rotating experiment, suppressing vertical motions in a thin layer of mer-
cury contained within a square tank. Several interesting phenomena were observed,
including an inverse cascade of energy and what seemed to be a condensation regime,
in the form of a domain-filling circulation cell. More than a decade later, Paret and
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Tabeling [107, 106] used an array of magnets underneath a square tank to excite a
turbulent flow in a shallow fluid layer, in which three-dimensional motion was sup-
pressed by density stratification. Again a domain-filling circulation cell occurred, pos-
sibly corresponding to a condensation regime. Furthermore, an inverse energy cascade
was observed and evaluation of vorticity statistics seemed to confirm KLB-scaling.
These experiments could be conducted for a limited span of time only, due to three-
dimensional mixing effects and subsequent loss of stratification. It was argued in this
context by Satijnet al. [124], that bottom-drag may, in effect, lead to a non-negligible
three-dimensional structure of the flow, depending on the fluid depth and the Reynolds
number.

An alternative set-up was constructed by Kellayet al. [70, 68], studying various as-
pects of turbulence in a thin soap film, see also Goldburget al. [58], Rutgers [121]
and Martinet al. [91]. These experiments rejected KLB-scaling in the inverse cas-
cade range, but confirmed it in the direct cascade range. However, Rutgerset al. [122]
showed that the presence of air-drag probably caused the observed deviations from
KLB scaling. An open problem for these particular experiments is the occurrence of
soap-film thickness variations, violating the incompressibility condition.

With exception of the soap-film experiments, which suffer mostly from fluid-air in-
teractions, all experimental set-ups have rigid walls and bottoms that cause the gen-
eration of fluid boundary layers. The interactions of the flow with the rigid container
bottom and side walls and the questionable two-dimensionality of the experiments are
in clear violation with the fundamental assumptions of KLB-theory. Even so, some of
the predictions following from KLB-theory were more or less confirmed in laboratory
experiments, which is a remarkable fact by itself.

The first direct numerical simulations (DNS) of forced 2D flows under periodic bound-
ary conditions were presented by Lilly [82], apparently confirming KLB-theory. How-
ever, these results were questionable due to a very limited computational resolution.
Some time elapsed before higher resolution computations became available, as, e.g.,
those by Frisch and Sulem [54], who observed an inverse cascade range, and those by
Legraset al. [77], who noted both deviations from KLB-scaling in the direct cascade
range and the presence of coherent structures, see also the forthcoming overview by
Carnevale [21].

While boundary effects are excluded in a double-periodic domain, one is still stuck
with a largest computational mode, effectively limiting the size of the system. Indeed,
the usual (quasi-stationary) end-state seems to be a condensation regime, but contrary
to the laboratory experiments, here the condensation is in the form of a domain-filling
dipolar vortex, as demonstrated by, e.g., Mattheuset al. [92] for flows decaying over
long times and by Hossainet al. [64] for forced flows. Several methods have been
applied to prevent the piling-up of energy in the largest mode, as, e.g., the introduction
of Ekman damping for the lowest computational modes by Maltrud and Vallis [87],
essentially a linear damping mechanism, or the use of hypoviscosity by Borue [15], in
which an inverse higher-order dissipation operator is added to the equations of motion.
In the latter case the normal viscous dissipation is usually replaced by a higher-order
dissipation operator, referred to as hyperviscosity. Besides removing unwanted energy
condensation, the latter mechanism also serves to effectively extend the inertial range,
confining viscous dissipation to smaller scales. A major drawback of these methods
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is, however, that one deliberately alters the equations of motion, such that the resulting
flow is no longer a pure Navier-Stokes solution.
Whatever the computational model used, there is still considerable debate amongst the
experts concerning the KLB-conjectures. Predictions on spectral scaling exponents in
forced flows and the effect of intermittency, or coherent structures, on these exponents
have been questioned for both the inverse cascade regime, see Borue [16], Boffetta
et al. [14], Frisch and Sulem [54], Maltrud and Vallis [87], Smith and Yakhot [127]
or Rutgers [121], as well as for the direct cascade regime, see Borue [15], Chenet
al. [23], Ishihara and Kaneda [65, 67], Legraset al. [77], Lindborg and Alvelius [83],
Maltrud and Vallis [87] or Ohkitani [102]. Furthermore, the locality of length scale
interactions in the inverse cascade range, see Maltrud and Vallis [88] or Danilov and
Gurarie [33, 32], and even the very possibility of a direct enstrophy cascade, see Tran
and Bowman [142], have been subject of debate. Of course, the limitst → ∞ and
ν → 0 are notoriously hard to achieve in both laboratory and computational experi-
ments; departures from classical theory can still be blamed on the failure to achieve
either of these limits.

Chapter outline

In the following parts of this Chapter we discuss the inevitable mathematical side of
the problem, proceeding with a formulation of the governing equations in Section 1.2.1
and a summary of some functional analytic aspects in Section 1.2.2, i.e., mainly the as-
sociated function spaces and important norm-inequalities. Equipped with the language
of Section 1.2.2 we return to several aspects of the theory of viscous 2D flows in Sec-
tion 1.3, consideringa priori estimates on several integral quantities and consequences
of the fact that laboratory or computational domains are finite and possibly equipped
with no-slip walls. Finally, we conclude this chapter with an outline of the remaining
part of the thesis in Section 1.4.
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1.2 Mathematical fundaments

1.2.1 Evolution equations

Suppose an incompressible fluid of unit density,ρ = 1, fills a two-dimensional domain
Ω ∈ R2. We require the domain-boundary∂Ω to be sufficiently smooth (that is, locally
Lipschitz-continuous of, at least, orderC1, see, e.g., Zeidler [155]). Looking at this
fluid from an inertial frame of reference any movement of the domain with respect to
the surrounding universe can be disregarded. Thus a fluid flow inΩ can be described
by the Eulerian velocityu(t,x) = (u(t,x), v(t,x)) and the scalar kinetic pressure
field p(t,x) at timet and positionx = (x, y), while it evolves according to the Navier
Stokes equations

∂tu + (u · ∇)u +∇p− ν∆u = f in W ≡ Ω× [0, T ], (1.2)

whereν > 0 is the kinematic viscosity parameter andf(t,x) an external forcing
mechanism. No additional fluid is created and no existing fluid is destroyed within the
domain, leading to the continuity condition

∇ · u = 0 in W. (1.3)

An initial condition

u(0,x) = u0(x), x ∈ Ω (u0 given) (1.4)

and the Dirichlet boundary conditions

u(t,x) = 0, x ∈ ∂Ω, ∀t, (1.5)

known as the no-slip condition and denoted in short-hand asu(·, ∂Ω) = 0, are added to
complete the problem. The equations are non-dimensionalized, extending the range of
applicability to a wide scala of physical phenomena. Each variable is the product of a
specific physical scale and a primed, non-dimensional variable;x = x′ ˆ̀, t = t′T̂ , u =
u′Û , p = p′Û2 andf = f ′T̂ Û−1. Applying these terms to the dimensional equations,
multiplying with ˆ̀ = Û T̂ and dropping primes and hats, yields again equation (1.2),
whereν is now replaced by the inverse of the dimensionless Reynolds number, which
is defined asRe = (U`/ν), see also formula (1.1).
Equation (1.2) represents the so-called primitive variable formulation. Eliminating the
pressure from the evolution balance, we shall mainly use the vorticity equation in the
sequel. The scalar vorticity is defined as

ω(t,x) := (∇∧ u(t,x)) · e3 = ∂xv − ∂yu, (1.6)

wheree3 ⊥ R2, the unit vector perpendicular to the plane. Taking the rotation of
equations (1.2) and applying several vector identities yields the velocity-vorticity for-
mulation, or vorticity equation for short,

∂tω + (u · ∇)ω − (1/Re)∆ω = q. (1.7)

whereq(t,x) = (∇ ∧ f(t,x)) · e3. By taking the limitν → 0, one ends up in the
regime of ideal hydrodynamics, which is guided by the Euler equations

Dω

Dt
≡ ∂tω + (u · ∇)ω = q. (1.8)
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Forq = 0 and no-slip or periodic conditions, all vorticity integrals of the form
∫
Ω

ωndA
are conserved quantities of the dynamics, so-called inviscid invariants.
Finally, the stream function is a scalar potential,ψ(t,x), related to the velocity com-
ponentsu = ∂yψ and v = −∂xψ, and to the vorticity through a Poisson equation

ω = −∆ψ. (1.9)

1.2.2 Function spaces and inequalities

In two dimensions the Eulerian fluid velocityu(t,x) is a real, vector-valued function,
defined at positionx ∈ Ω ⊂ R2 and timet ∈ R in some simply connected domainΩ
with boundary∂Ω. In the sequel, we takeΩ to be either the square domain

D :=
{
x ∈ R2 | −d/2 ≤ x ≤ d/2,−d/2 ≤ y ≤ d/2}

with lengthd, or the circular domain

C :=
{
x ∈ R2 | |x| < r

}

with radiusr.
Some properties of the function spaces associated to the Navier-Stokes problem with
appropriate boundary conditions are recalled below. The reader is referred to the re-
search volumes by Doering and Gibbon [35] and Foiaset al. [49], or the monographs
by Temam [137, 138], for a comprehensive overview.

Function spaces and norms

The basics are first the spaces[Cm(Ω)]2 of continuous vector-valued functions inΩ,
with partial derivatives up to orderm, where possiblym = ∞, see the classical book
by Adams [2]. If one imposes the Dirichlet condition,u(·, ∂Ω) = 0, (andu(t,x) is
also zero elsewhere outsideΩ), one has

u ∈ [C∞0 (Ω)]2

and functionsu(t,x) are said to have compact support.
As a next step, we assume that the spatial root-mean-square of the functionu(t,x) is
finite, in other words,u(t,x) is square-integrable. Such a demand is fulfilled if our
function lives in the Lebesgue space[L2(Ω)]2, which has innerproduct and norm

(u,u) :=
∫

Ω

u(t,x) · u(t,x)dA < ∞ and ‖u‖2,Ω ≡ (u,u)1/2,

wheredA = dxdy. The latter innerproduct represents a physically important quantity;
it equals exactly twice the domain-integrated kinetic energy,2E(t) ≡ (u,u). Hence,
stating thatu ∈ L2, it is implicitly assumed that the kinetic energy of a flow remains
finite for all times. Likewise, for the scalar vorticity one has the innerproduct

(ω, ω) :=
∫

Ω

ω(t,x)ω(t,x)dA.
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Again, this innerproduct has a special meaning, as it equals twice the global enstrophy
of a flow,2Z(t) ≡ (ω, ω).
Extending the Lebesgue spaces to includep-integrable functions,[Lp(Ω)]2 for p ∈
[1,∞], the associated norms are denoted as

‖u‖p,Ω :=

(∫

Ω

|u|pdA

)1/p

< ∞,

and, ifp = ∞,
‖u‖∞,Ω := sup

x∈Ω
|u(x)|.

For these spaces one hasL1 ⊂ L2 ⊂ . . . ⊂ L∞ and consequently

‖u‖1,Ω ≤ ‖u‖2,Ω ≤ . . . ≤ ‖u‖∞,Ω.

If we now return to the Navier Stokes problem, recall that it was assumed thatu(t,x) is
divergence-free. The two demands onu(t,x) (square-integrability and zero-divergence)
can be denoted as

H = {u ∈ [L2(Ω)]2|∇ · u = 0}.
However, our language should be further extended to also includep-integrability of
(higher-order) derivatives ofu(t,x), which is achieved with the Sobolev spaces

[Wm,p(Ω)]2 :=
{
u ∈ [Lp(Ω)]2 | Dαu ∈ [Lp(Ω)]2, for 0 ≤ α ≤ m

}
,

for partial derivativesDαu up to orderm. To include the Dirichlet boundary con-
ditions, denote by[Wm,p

0 (Ω)]2 the closure ofC∞0 (Ω) in [Wm,p(Ω)]2. Again (semi-
)norms are associated to these spaces, for1 ≤ p < ∞,

‖u‖m,p,Ω :=





∑

0≤α≤m

‖Dαu‖p
p,Ω





1/p

< ∞.

As before, a special notation is used to allow for the zero-divergence condition,

V = {u ∈ [W 1,2
0 (Ω)]2 | ∇ · u = 0}.

With the most important function spaces defined, we turn to a special case, driven by
the presence of rigid boundaries. Forp ∈ [1,∞] the spacesLp(∂Ω) include real-valued
functions defined on the domain boundary∂Ω. For these spaces the norms

‖ · ‖p,∂Ω :=




∫

∂Ω

| · |pds




1/p

, 1 ≤ p < ∞,

are finite and furthermoreLp(∂Ω) enjoys all the properties of the spacesLp(Ω). A
trace theorem relates the norms‖ · ‖m,p,Ω over functions inWm,p(Ω) to ‖ · ‖q,∂Ω, for
mp = n andp ≤ q < ∞ one has the imbedding

Wm,p(Ω) → Lq(∂Ω),

wheren equals the spatial dimension ofΩ.
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Inequalities

Related to the function spaces defined above, we recall several functional inequalities.
The Hölder inequality,

∫

Ω

|uv|dA ≤



∫

Ω

|u|pdA




1/p 


∫

Ω

|v|qdA




1/q

,

for p−1 + q−1 = 1, where the casep = q = 2 corresponds to the classical Schwarz
inequality.

The Poincaŕe-Friedrichs (P-F) inequality relates theL2-norms ofu(t,x) and its tensor
gradient,∇u(t,x), while taking the domain-geometry into account,

‖u‖22,Ω ≤ λ−1
1 ‖∇u‖22,Ω.

The constantλ1 is the smallest eigenvalue of the negative Laplacian and foru(·, ∂Ω) =
0, within the domainΩ = D we use the estimate given by Galdi [55],λ−1

1 ≤ d2/2π2.
However, ifΩ = C, the circular domain, this constant equals the first-zero of the zero-
th order Bessel function of the first kindλ1 = (j0,1)2 ' 5.7831.

Now theL2-norm of∇u(t,x) equals the root-mean-square vorticity, which can be
shown using the continuity equation and generalized integration-by-parts,

‖∇u‖22,Ω =
∫

Ω

(
(∂xu)2 + (∂xv)2 + (∂yu)2 + (∂yv)2

)
dA

=
∫

Ω

(
(∂xv)2 + (∂yu)2 − 2∂xu∂yv

)
dA = ‖ω‖22,Ω. (1.10)

Also ‖∆u‖22,Ω = ‖∇ω‖22,Ω, such that the P-F inequality is also applicable to theL2-
norm of the vorticity gradient. As noted by Doering and Gibbon [35], such equalities
do not hold in everyLp, e.g., forp = ∞ one has‖ω‖∞,Ω ≤ ‖∇u‖∞,Ω.
In this respect, recall for theL∞-norm Agmon’s inequality [2],

‖u‖∞,Ω ≤ (2‖u‖2,Ω‖∇u‖2,Ω)1/2
. (1.11)

The Young inequality can be derived from0 ≤ (a− b)2 and reads as

ab ≤ ε

p
ap +

1
(p′εp′/p)

bp′

for all a, b, ε > 0 with p ∈]1,∞[ andp′ = p/(p− 1).

Physical theories of turbulence usually deal with the statistical behavior of a flow and,
hence, it is important to consider averages. Usually, it is tacitly assumed that ensem-
ble averages may be replaced by combined space and time averages, whereas such
an ergodicity assumption remains to be proved for the Navier-Stokes equations, see
Foias [48] for a discussion. On the other hand, Foiaset al. [49] showed how, using the
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concept of asymptotic limits, the ergodicity question can be circumvented. Let us start
with defining the averagea(T ) of a time-dependent functionb(t), as

a(T ) ≡ 1
T

T∫

0

b(t)dt

The supremum limit, or largest limit point, is then denoted as

〈b(t)〉 := lim sup
T→∞

a(T ),

with the properties,

lim sup
T→∞

|a(T )| ≤ sup
T≥0

|a(T )| and 〈b(t)〉 ≤ ∞ ∀ t.

Now we are interested in ensemble averages, but only for the case that our statistics
are stationary. Letµ be a suitable probability distribution, than equivalence of the
ensemble average with respect toµ and the asymptotic limit can be shown, e.g. for the
quantity‖u‖2,Ω ∫

‖u‖2,Ωdµ(u) = 〈‖u‖2,Ω〉.

Because the statistics are supposed to be stationary, the average of time derivatives
should be zero.

1.3 Aspects of the theory of viscous flows

Energy and degrees of freedom

We turn our attention first to the kinetic energyE(t) := 1
2
(u,u), and its evolution

equation in a general domainΩ,

Ė(t) = −ν‖ω‖22,Ω + (f ,u), (1.12)

the L2-innerproduct of the Navier-Stokes equations withu(t,x). Here we use the
fluxie notation to denote the time-derivative of a global quantity,ȧ = da/dt. Energy
is supplied to the flow by means of the innerproduct(f ,u), whereas it is destroyed by
the viscous dissipation term, which scales with the mean-square vorticity, or enstro-
phy, Z(t) := 1

2
(ω, ω). If no external forces are present a standard result, by the P-F

inequality and formal integration over time, is the exponential energy decay,

E(t) ≤ E(t0) exp (−2νλ1t), (1.13)

see, e.g., Foiaset al. [49]. This fact establishes ana priori control over the root-mean-
square velocity scale,U ≡ ‖u‖2,Ω ≤ ‖u0‖2,Ω and, hence, over the integral-scale
Reynolds number,Re. It does not take much imagination to realize that such a control
is lost for forced flows.
Instead, the Reynolds number is replaced by the dimensionless generalized Grashof
number, introduced by Foiaset al. [50],

Gr :=
‖f‖2,Ω

ν2λ1
, (1.14)
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and named after the analogous Grashof number in Rayleigh-Bénard convection.

As mentioned in Section 1.1, our concern with the Reynolds number comes from the
fact that it scales with the number of degrees of freedom,Nf , of a flow. Arguably, one
of the most important discoveries in the theory of turbulence is that for a finite viscos-
ity, ν > 0, Nf is finite.
Although the heuristic KLB-theory already assumes finite dimensionality with the in-
troduction of a minimal length scale, a first rigorous proof was established by Foias and
Temam [51] and later, using different methods, by Lieb [81] and Ruelle [119]. These
estimates were improved by Constantinet al. [30], who used the energy dissipation
length`E , which, from dimensional analysis, has the form

`E =
(

ν3

λ1E
)1/4

where the constantλ1 arises through dimensional arguments and where the asymptoti-
cally averaged energy dissipation is defined as

E ≡ ν
〈‖ω‖22,Ω

〉
.

Hence, the number of degrees of freedom in a turbulent flow can be characterized as

Nf '
(

d

`E

)2

.

An upper bound on the numberNf in terms of the parameterGr on a no-slip domain
is achieved by a classical estimate following from the energy balance (1.12) with time-
independent forcesf(x), see, e.g., Temam [136, 137]. Majorizing the right hand side
of equation (1.12) with the Schwarz, P-F and Young inequalities, one obtains

2Ė(t) + 2ν‖∇u‖22,Ω ≤ 2‖f‖2,Ω‖u‖2,Ω ≤ 1
νλ1

‖f‖22,Ω + ν‖∇u‖22,Ω.

Subtracting the termν‖∇u‖22,Ω and taking averages, such that the time derivative drops
out, one ends up with,

ν
〈‖ω‖22,Ω

〉 ≤ ν3λ1Gr2,

where we used that‖ω‖2,Ω = ‖∇u‖2,Ω. Because the right hand side is defined in
terms of external parameters, the latter expression is a direct bound on the number of
degrees of freedom,Nf ≤ d2λ1Gr. On a double periodic domain however, one has
the much smaller bound

Nf ≤ c1Gr2/3 (1 + log Gr)1/3
.

This logarithmic correction arose first in the purely mathematical work of Constantin
and Foias [30], but Ohkitani [101] showed later it could also be derived from the frame-
work of the KLB-theory itself.
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Vorticity gradients

In three spatial dimensions vortex stretching acts to generate enstrophy in the main
body of the flow, a mechanism that is absent in 2D turbulence. Indeed, a whole different
process takes place in 2D, as compared to the 3D evolution. Instead of the vorticity, it
is the vorticity gradient∇ω(t,x) that may be amplified in the bulk of a 2D flow, by an
alignment with the rate-of-strain tensor,

Rij = ∂xj
ui + ∂xi

uj ,

were we briefly use the index notation for vectorsu = (u1, u2) andx = (x1, x2).
In the inviscid integral evolution balance for the vorticity gradients one observes this
alignment,

Ṗ (t) = −
∫

Ω

∂xiωRij∂xj ωdA.

These observations allowed the construction of KLB-theory, which is a high-wavenumber
dissipation scaling theory based on the averaged enstrophy dissipation

χ ≡ ν
〈‖∇ω‖22,Ω

〉
,

where the instantaneous innerproduct quantityP (t) := 1
2
(∇ω,∇ω) is known as the

palinstrophy. A minimal wavelength, below which viscosity completely rules the dy-
namics, can be defined on dimensional grounds,

`χ =
(

ν3

λ1χ

)1/6

,

which, on a double-periodic domain, equals the KLB dissipation length`η.

Consequences of a finite domain

Whatever the set-up used to study a two-dimensional fluid flow, a maximum length
is present, either because any laboratory experiment is bounded or because one has a
gravest mode in a computational model. It is interesting to consider how this affects
the KLB-theory, specifically in the presence of no-slip boundaries.

First of all, recall that it was hypothesized by Kraichnan [74], that the presence of
a finite domain length would lead to a so-called condensation regime. Due to the in-
verse energy cascade a pile-up, or condensation, of energy in the largest accessible
mode was expected to occur.

Recently, it was argued by Tran and Bowman [142] that a direct enstrophy cascade
with a -3 exponent cannot occur on any finite domain, such that it remains a feature
of turbulence on an infinite domain and KLB-theory only. The core of their argument
is related to the fact that the Poincaré-Friedrichs (P-F) inequality can be applied on a
finite domain. Furthermore, these authors argued that coherent vortices can only form
because spectral scaling is steeper than -3 in the direct cascade range. This latter argu-
ment is the world turned upside down; usually it is assumed that the -3 cascade scaling
is in itself correct while the presence of coherent structures may require some logarith-
mic corrections to spectral scaling, as argued by Kraichnan [75]. Simulations of a pure
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Navier-Stokes flow on a double periodic domain by the same authors seems to confirm
these ideas [143].

On the other hand, in a domainΩ where the velocity is equipped with the no-slip
condition at the boundary∂Ω, an additional process takes place, as enstrophy may be
produced at the domain walls, corresponding to the second term in the right-hand-side
of the enstrophy balance,

Ż(t) = −ν‖∇ω‖22,Ω + ν

∫

∂Ω

ω∂nωds + (ω, q), (1.15)

where the unit vectorn ⊥ ∂Ω. For flows on a double-periodic domain the integral
over∂Ω in the right-hand-side of balance (1.15) equals zero. Similar to the exponen-
tial energy decay there is, by the P-F inequality, an exponential enstrophy decay on a
double-periodic domain when there is no external forcing present,q = 0. Right away,
it also becomes clear that the presence of the boundary term violates the constant-flux
condition on the enstrophy required in KLB-theory. Using the definition of the av-
eraged enstrophy dissipationχ, we follow the same procedure as we used earlier for
the energy equation. The aim is to obtain an averaged version of equation (1.15), for
which the innerproduct term in the right-hand-side is rewritten with, respectively, the
Schwarz, Young and P-F inequalities, obtaining

(ω, q) ≤ ‖ω‖2,Ω‖q‖2,Ω ≤ νλ1

2
‖ω‖22,Ω +

‖q‖22,Ω

2νλ1
≤ ν

2
‖∇ω‖22,Ω +

‖q‖22,Ω

2νλ1
.

Thus applying the last line to equation (1.15) and averaging the result, one finally ends
up with the balance equation

χ ≤
〈‖q‖22,Ω

〉

λ1ν
+ 2ν

〈∫

∂Ω

ω∂nωds

〉
.

As a consequence, it is rather difficult to compare estimates of the KLB dissipation
length`χ on a bounded domain with its spectral analogue`η. In fact, Foiaset al. [49]
argued that, on a no-slip domain, the classical spectral length estimate is very close
to the length scale estimate used to obtain a bound on the degrees of freedom in any
domain,̀ E ' `η.

1.4 Outline of the thesis

The modest aim of this thesis is to investigate the effects of no-slip walls on forced 2D
flows. In the process we hope to help bridging the large gap between wall-bounded
laboratory experiments on one hand and the ideal world of theories of 2D flows on the
other. Hence, we explore the properties of a forced, purely two-dimensional flow, con-
fined by rigid walls to a simple, square geometry, where the rigid walls are emulated
by the no-slip boundary condition.
The following Chapter contains a short review of the numerical tools and applied forc-
ing schemes. The so-called route to turbulence under a stationary forcing mechanism
is the theme of the third Chapter. We study, as a function of the kinematic viscosity
parameter, the types of flow one encounters, progressing from a steady-state towards
turbulent flows. In the fourth Chapter we examine the turbulent phenomenology of
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intermediate Reynolds number flows, mainly in terms of the most important integral
flow-quantities. Here, the flow is kept alive by a stochastic forcing model, resulting
in a very different phenomenology as compared to the flows under stationary forcing.
However, not all information on the dynamics can be extracted from domain integrated
quantities and hence, local vorticity scaling behavior is studied in the fifth Chapter, by
means of structure functions. The resulting scaling behavior is then compared to ideal
KLB-scaling as well as scaling results for periodical domains. Finally we summarize
our results in the sixth Chapter.



Chapter 2

Numerical tools

Men have become the tools of their tools
Henry D. Thoreau (1817 - 1862)

2.1 Introduction

Our main computational tool is a pseudo-spectral code solving the 2D velocity-vorticity
equation on the square domainD = [−1, 1]2, under no-slip boundary conditions, de-
veloped by Clercx [24]. In this chapter the basic architecture of the code is briefly
outlined, for details consult Clercx [24] and also Canutoet al. [20]. In addition, some
properties of the stirring forces are discussed.

2.1.1 Layout of the numerical scheme

The set of equations to solve consists of the vorticity equation (1.7), the incompress-
ibility condition (1.3), the no-slip boundary condition (1.5), the definition of the scalar
vorticity (1.6) and an appropriate initial conditionω0(x). Using some vector identities
and incompressibility, Daube [34] showed that these equations are equivalent to the
vorticity equation (1.7), complemented by the set

∆u = −(∇ω) ∧ e3, in D × [0, T ] (2.1)

ω(·, ∂D) = e3 · ∇ ∧ u(·, ∂D)
ω(0,D) = e3 · ∇ ∧ u(0,D)
u(·, ∂D) = 0,

essentially adding a Poisson equation (2.1) in each of the velocity componentsu(t,x)
andv(t,x) to the problem.
A drawback is, however, that the Dirichlet condition for the velocity on∂D cannot be
cast into an associated condition for the vorticity. This problem is resolved by the in-
fluence matrix technique, which was originally designed by Kleiser and Schuman [73]
to obtain pressure boundary conditions for the primitive variable Navier-Stokes equa-
tions. For an overview of the method, see Canutoet al. [20] and references therein.
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Temporal discretization scheme

The code uses a semi-implicit Adams-Bashforth Crank-Nicolson (ABCN) time dis-
cretization scheme, which is more or less standard for spectral DNS codes. The non-
linear and forcing terms in the flow evolution equations are marched in time with a
second-order explicit AB method, the other terms are marched in time with the im-
plicit CN method, such that the time discretized vorticity equation reads as

(
∆− 2Re

δt

)
ωn+1 = Re

[
3((u · ∇)ω + q)n − ((u · ∇)ω + q)n−1

]

−
(

2Re

δt
+ ∆

)
ωn (2.2)

whereδt denotes the time step and indexn denotes discrete time, see also Canutoet
al. [20]. As is immediate from the scheme, all quantities in the right-hand side are
known at timen and the scheme is thus a Helmholtz equation inωn+1. Once equation
(2.2) is solved, one next usesωn+1 to solve the Poisson equations (2.1) inun+1(x) and
vn+1(x), reading as

∆un+1(x) = −∂yωn+1, ∆vn+1(x) = ∂xωn+1.

The loop is completed by usingun+1, vn+1 andωn+1 to solve the Helmholtz equation
once more, atn + 2.
Because the ABCN scheme is second order accurate,O(δt2), and the earlier values
un−1, vn−1 andωn−1 are unknown atn = 0, the first time step uses a Runge-Kutta
scheme to pertain accuracy. As we are free to ’switch-on’ the forcing at a time later
thann = 0, qn does not have to be evaluated during the Runge-Kutta step.

Spatial discretization method

The spatial discretization scheme is a spectral method based on Chebyshev polynomi-
als of the first kind,

Tn(x) = cos(n arccos(x)). (2.3)

Hence, the vorticity can be expanded as

ω(t,x) =
N∑

n=0

M∑
m=0

ω̂mn(t)Tn(y)Tm(x),

obtaining a similar expression for the velocity coefficientsûmn(t), where the number
of modes in a square domain is equal for both directions,N = M . The coefficients
ûmn(t) andω̂mn(t) are obtained by a collocation procedure, whereu(t,x) andω(t,x)
are evaluated at the Gauss-Lobatto grid-points (xi, yj)

xi = cos (iπ/N) , yj = cos (jπ/N) , for 0 ≤ i, j ≤ N. (2.4)

Figure 2.1 shows such a non-equidistant Gauss-Lobatto collocation grid, for resolution
N = 32. As can be seen from the Figure, the grid-point density increases towards the
boundary, where the grid interval is of orderO(N−2).
Transformations between physical and spectral space are executed with fast fourier
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Figure 2.1: The Gauss-Lobatto col-
location grid for modest resolution
(N = 32).

transforms (FFT). The spectral convolutions needed to calculate the nonlinear term
would requireO(N4) product operations, a highly undesirable by-product of any spec-
tral method. To by-pass this effect, the nonlinear term is calculated in physical space
at each of the Gauss-Lobatto points, such that the cost of multiplication is reduced to
O((N log N)2) product operations, see Canutoet al. [20]. Even so, problems arise in
the form of aliasing errors, which are solved by the so-called padding technique, de-
veloped by Orszag [103].

The boundary conditions are imposed by the Lanczos tau method. The coefficients
of the two highest-order Chebyshev modes ofu, v andω in both directions are explic-
itly used to satisfy boundary conditions, as these modes do not contribute significantly
to the total Chebyshev expansion sum, see Canutoet al. [20] for details.

A problem arises because no explicit boundary value for the vorticity is knowna pri-
ori. To overcome this difficulty the vorticity value at the boundary has to be enforced
by means of the influence matrix technique. Details of this technique are discussed by
Daube [34] and Clercx [24], but we briefly describe it here.
In essence, with the influence matrix technique one splits the vorticity field in a par-
ticular solution and a summation of complementary solutions at the boundary points,
where the corner points are excluded

ω = ω̂ +
P∑

i=1

αiω̃i. (2.5)

A similar expression is obtained for the velocity components. The particular solutionω̂
is determined by solving equation (2.2), whilst settingω̂ = 0 at∂D. Onceω̂ is known,
a particular solution for the velocitŷu can be determined from the Poisson equations.
Now, generally speaking, the particular solution for the velocity is not divergence free,
∇ · û 6= 0, and, if one defineŝζ = e3 · ∇ ∧ û, the rotation of the latter solution is not
equal to the particular solution for the vorticity,ζ̂ 6= ω̂.
Next, the complementary solutionsω̃i are obtained by solving equation (2.2) withω̃i =
δij , wherej refers to boundary points andδij is the Kronecker delta function. Solving
the corresponding Poisson equations yields the complementary velocity solutionsũi

andṽi.
Defining ζ̃ = e3 · ∇ ∧ ũ, one demands that the usual relation between vorticity and
velocity holds on the boundary,

ζ̂j − ω̂j +
P∑

i=1

αiMji = 0 ∀j ∈ [1, P ].
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where the influence matrixM has elementsMji =
(
ζ̃i − ω̃i

)
j
, such that one obtains

αi = −
P∑

j=1

(
M−1

)
ij

(
ζ̂j − ω̂j

)
. (2.6)

The coefficientsαi are then used to determine the value of the vorticity at the bound-
ary, through equation (2.5), after which one solves once more equation (2.2) and the
Poisson equations for the velocity components.

However, numerical instability problems arise because the highest-order Chebyshev
modes are used in the procedure to determine the boundary values of the vorticity. Be-
cause the solver for the Helmholtz equation (2.2) and the Poisson equations relating the
vorticity and the velocity components does not use these highest-order modes, their so-
lutions are outside the mathematical framework described by Daube, generating errors
in the form of high frequency residuals. Eventually these errors propagate to all lower
order modes as well, as the modes are coupled through the equations. To overcome
this problem the Tau correction is applied, in which a second set of complementary
solutionsω̄ is added to definition (2.5), following a similar procedure for the veloc-
ity. The influence matrix technique is then extended to obtain also the coefficients for
the second set of complementary solutions, but here one not only imposes the usual
relation between velocity and vorticity, but additionally sets the high frequency errors
equal to zero. For a detailed discussion on the removal of the high-frequency residuals,
see Clercx [24].

Finally, the Helmholtz equation (2.2) and the Poisson equations are solved in spec-
tral space. These equations can be reworked into linear matrix equations for spectral
vorticity coefficientsω̂,

Aω̂ + ω̂B = F,

which is solved with the Haidvogel-Zang algorithm [62]. Diagonalizing eitherA or
B, theN one-dimensional Helmholtz equations can be solved with recursion relations
for the Chebyshev coefficients, obtaining a quasi-tridiagonal system that can be solved
efficiently by a modified Thomas algorithm. The matricesA, B andF are obtained
explicitly by using the analytical forms for the partial derivatives of Chebyshev polyno-
mials. A similar procedure is followed for the Poisson equations, see Canutoet al. [20]
for details.

Parallel computations

Yin parallelized the available Chebyshev code, using the message passing interface
(MPI) language. The parallelization of the non-linear term was based on earlier work
on a Fourier code; a description can be found in [153, 154]. The core of the parallelized
code is a parallel task distribution scheme; within each time loop the calculation of the
non-linear term in the vorticity equation is distributed to four processors. For two
spatial dimensions the arrays are hardly large enough to make further parallelization
efficient, as too much time is consumed by inter-processor communication. For de-
tails, see Yin [153].
Parallel computations were executed on the TERAS, a system consisting of two 512-
CPU SGI Origin 3800 systems and on the Aster, an SGI Altix 3700 system, consisting
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of 416 CPUs. Both are so-called Cache-Coherent Non Uniform Memory Access ma-
chines (CC-NUMA). Memory access is non uniform (NUMA), because each processor
can access its own memory faster than that of another processor. The contents of the
various processor caches should be coherent (CC), however, this requires extra hard-
ware and a cache coherency protocol.

2.1.2 A note on numerical accuracy

We start with pointing out that with spatial resolutionN , we refer to the number of
active modes only, ignoring the extra number of modes needed in the dealiasing proce-
dure. Stability for the outlined discretization scheme follows from a CFL-like criterion,

δt ≤ 9
N2

,

whereN denotes the number of nodes, which appears in squared form because the grid
interval near the boundary scales likeO(1/N2). This demand on the time-stepping
is worse as compared to computations on a double periodic domain. For instance,
Matthaeuset al. [92] report a resolution of(512)2 modes, withδt = 4.88 × 10−4,
whereas the same resolution on a no-slip domain requires a time step ofδt ' 3.4 ×
10−5.
To make sure all scales relevant to the dynamics of the flow are well-resolved, it was
argued by Maassen [85] that the total number of grid pointsNm, satisfies

Nm >

(
k̃χ

π

)2

, (2.7)

wherek̃χ is an instantaneous enstrophy dissipation wavenumber, defined as

k̃χ =
d

2

(
‖∇ω‖22,Ω

ν2

)1/6

.

However, this practical estimate was derived for decaying flows on more or less heuris-
tical grounds. Let us, therefore, recall what is known from rigorous mathematics. We
require the definition of the number of determining nodesNd, see Foias [48]. Say one
uses a finite number of nodesm, such that

∫

Ω

(u1(t,m)− u2(t,m)) dA → 0 as t →∞, (2.8)

whereu1(t,m) andu2(t,m) are Galerkin projections of the velocitiesu1(t,x) and
u2(t,x), each associated to a slightly different initial condition. If now the limit (2.8)
implies that also

∫

Ω

(u1(t,x)− u2(t,x)) dA → 0 as t →∞,

the numberm equals the number of determining nodes,m = Nd. Unfortunately, the
upper bound estimate onNd is a lot worse than that for the degrees of freedomNf ,
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which was based oǹE rather thaǹ χ. Foiaset al. [49] prove that, on a no-slip domain
one has for domain dependent constantC0,

Nd ≥ C0Gr2, (2.9)

a rather depressing result from a computational point of view, that remains to be im-
proved [49]. The relation between the different quantities is

Nd > Nm > Nf ,

whereNm appears in squared form because it refers to the number of modes in one spa-
tial direction. While no solution is established here, the preceding discussion should
make clear that the computational resolution remains a complicated issue. While mak-
ing sure the estimate (2.7) is obeyed, we by no means satisfy the condition (2.9) and
we remain exposed to the risk of computational undersampling.

2.2 Forcing protocols

The first numerical simulations of forced two-dimensional turbulence on a double-
periodic domain were presented by Lilly in 1969 [82], who used a discrete time-
dependent first order Markov chain forcing protocol. In such a Markov process a lim-
ited band of wave numbers is excited, where the present state is correlated to the state
at a previous time with an additional random phase component. As a physical analogue
one can think of several mechanical stirring devices moving through a fluid at a slow
rate in random order and with random amplitude. Much later, the Markovian forcing
model was evaluated in some detail by Maltrud and Vallis [87, 88] and used by Oetzel
and Vallis [100], Clercxet al. [26], Ishihara and Kaneda [65, 67] and, on a spherical
domain, by Nozawa and Yoden [98, 99].
Other types of stochastic forcing mechanisms include white-noise-in-time Gaussian
processes, applied at a single wave number by Borue [15] and over a band of wave
numbers by Frisch and Sulem [54] and Smith and Yakhot [127, 128].
A much simpler, static-in-time deterministic forcing model was used in the three-
dimensional periodic computations by Kidaet al. [72] and in a two-dimensional pe-
riodic setting by Babianoet al. [6] and Ohkitani [102], assigning a fixed amplitude to
one or several Fourier modes.
Overholt and Pope [104] designed a time-dependent deterministic forcing model, argu-
ing that stochastic models do not perform well in simulating inertial range dynamics,
whereas Wellset al. [151] simply applied periodic oscillations to the largest computa-
tional modes on a bounded domain.
Eswaran and Pope [38] and later Lindborg and Alvelius [4, 83], introduced remarkably
complex forcing schemes to control the inner-product quantity(f ,u), allowing the
definition of a forcing defined Reynolds number. We argue, however that the number
Gr is, in fact, the most general means by which the effect of an external forcing can
be measured. As noted by Foiaset al. [49], in the case of a time-dependent forcing
f(t,x), one should use a slightly different version of the generalized Grashof number,

G̃r :=
(

sup ‖f‖2,Ω

ν2λ1

)
, (2.10)

where the supremum is taken over time andλ−1
1 ≤ (

d2/2π2
)
, which takes into account

the time-dependency of the forcing scheme.
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In the sequel we use either the static-in-time single wave number forcing, or the Markov-
chain forcing model. So let us first discuss these forcing protocols in detail, after which
we provide the appropriate conversion formula to implement a Fourier process into a
Chebyshev scheme.

Static-in-time forcing

The simplest forcing protocol is a static-in-time fixed amplitude forcing of a single
Fourier wave number, where it is understood that we apply the forcingq(x) to the vor-
ticity equation. Exciting with a contant amplitudeA0, a single Fourier wave number,
kf = |kf | one has

q(x) = 2A0 (cos (k1x) + cos (k2y)) , for kf = (k1, k2), (2.11)

of which a plot is given in Figure 2.2. Additional parameters in the forced vorticity
equation are thusA0 andkf .

Figure 2.2: Iso-contour plot of the
forcing field q(x), for A0 = 0.05
and kf = 6. Contour levels range
from -1 to 1, with an interval of 0.2,
where dashed lines represent negative
values.

Time-dependent Markov-chain model

In discrete-time (n ∈ Z+) notation, a first order Markov process with a complex expo-
nential random phase and amplitudeA0,

q(n) = rq(n− 1) +
(
1− r2

)1/2
A0e

ıπψ(n), (2.12)

is weighted by the correlation coefficientr,

r =
1− δt/2τ

1 + δt/2τ
.

If the diffusion timescaleτ equals half the time stepδt, r = 0 and the process becomes
random-in-time, whereasτ →∞ results in static-in-time forcing.

Here,ψ(n) ∈ R is a realization of the zero-mean Gaussian White Noise random vari-
ableΨ. Thus〈ψ(n)〉Ψ = 0, where the mean〈·〉Ψ is taken with respect to the probability
distribution of realizations,PΨ(ψ) [112].
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A continuous-time version of (2.12) is obtained by multiplying with(1 + δt/2τ) and
some algebraic manipulation, resulting in the trapezoidal scheme approximation

q(n)− q(n− 1)
δt

=
−1
2τ

(q(n) + q(n− 1)) +
(

2
τδt

)1/2

A0e
ıπψ(n),

to the first-order stochastic differential equation

d
dt

q(t) =
−1
τ

q(t) + lim
δt→0

(
2

τδt

)1/2

A0e
ıπψ(t),

which is a so-called Langevin equation. Integrating over[0, t] while settingq(0) = 0,
gives

q(t) = A0 lim
δt→0

(
2

τδt

)1/2
t∫

0

eıπψ(s)e(s−t)/τds.

The Markovian scheme introduces three new free parameters into the vorticity equa-
tion, A0, τ andkf . An example is shown in two iso-contour snapshots ofq(t,x) in
Figure 2.3, forA = 6.0, τ = 0.1 and7 ≤ kf ≤ 9.

(a) (b)

Figure 2.3:Iso-contour plots of the forcing fieldq(t,x) at t = 450 (a) andt = 500 (b), see
text for details. Contour levels range from -7 to 7, with an interval of unity, where dashed lines
represent negative values.

Mappingf to q

On a double periodic domain, the scalar forcing field,q, is inserted directly into the
discrete Fourier transformed vorticity equation, applying it to a spherical shell of wave
numbers|k| ∈ [a, b], with k ∈ Z2\{0}. Note that the resulting (pseudo) scalar func-
tion, q : k 7→ k× f , such thatq⊥f . Vector forcing functionf(t,x) ∈ R2 is obtained
with a Helmholtz decomposition

f = k · v + k×A with k ·A = 0.

Because the forcing should be divergence free,k · f = 0, one must havev = 0, to
obtain

q = k× (k×A)
= −(k · k)A,
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such that,

f(t,k) = −|k|−2

∣∣∣∣∣∣

e1 e2 e3

k1 k2 0
0 0 q(t,k)

∣∣∣∣∣∣
= q(t,k)|k|−2(−k2, k1). (2.13)

Conversion formula

The forcing schemes lined out above are defined in terms of Fourier wave numbers and
should be converted before they can be plugged into the Chebyshev code, requiring
an expansion of Fourier coefficients in Chebyshev polynomials. On the domainD :=
[−1, 1]2 an arbitrary scalar functiong : D → R, has Chebyshev coefficients

gmn = π−2cmcn

∫

D

g(x)
Tm(x)√
1− x2

Tn(y)√
1− y2

dA, x ∈ D. (2.14)

Here and further on(m,n) ∈ [0, M ]2 ⊂ N2 andcm = 2 ∀m ∈ [1,M [ andc0 = cM =
1, with Chebyshev polynomials of the first kind of orderm given by equation (2.3). On
the double-periodic domain, the scalar forcing fieldq was given in terms of its discrete
Fourier coefficientsq(t,k), applied to a limited wave number band|k| ∈ [a, b]. Thus
q(t,x) is defined as

q(t,x) =
∑

|k|∈[a,b]

q(t,k)eık·x, x ∈ [0, 2π]2, (2.15)

and should be substituted in (2.14). Evaluating at the Gauss-Lobatto collocation points,

x = cos θ1, y = cos θ2, for θ1 =
πm

M
, θ2 =

πn

M
(2.16)

and using the Chebyshev polynomials (2.3) one obtains

gmn = π−2cmcn

∑

|k|∈[a,b]

q(t,k)
∫

[0,π]2

eı(k1 cos θ1+k2 cos θ2) cos(mθ1) cos(nθ2)dθ1dθ2.

(2.17)
This result can be rewritten using a Jacobi-Anger expansion, see e.g., Arfken [5]

eık1 cos θ1 = J0(k1) + 2
∑

l∈N
ılJl(k1) cos(lθ1),

whereJl(k1), is thelth order Bessel function of the first kind again, see e.g., Arfken
[5]. Using the orthogonality property of the cosine function

π−1

π∫

0

cos(lθ1) cos(mθ1)dθ1 = 1
2
δlm,

whereδlm denotes the Kronecker delta, the integrals in (2.17) can now be determined
component wise;

π−1

π∫

0

eıkj cos θj cos(mθj)dθj = ımJm(kj) j = 1, 2.
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Henceforth, entries in the Chebyshev coefficient matrix are expressed as a summation
over Fourier coefficients and Bessel functions

gmn = cmcn

∑

|k|∈[a,b]

q(t,k)ım+nJm(k1)Jn(k2), (2.18)

wherec0 = 1 andcm = 2 ∀m ∈ [1,M ]. Finally, (2.18) can be decoupled in even-even
to odd-odd Chebyshev modes, to ensure an efficient numerical algorithm [24].



Chapter 3

Roadmap to chaotic flow

Never make anything simple and efficient when a way can be found
to make it complex and wonderful.

Anonymous

3.1 Introduction

Of general interest is the behavior at large times,t → ∞, of any solutionω(t,x) to
the two-dimensional vorticity equation as a function of a physical parameterε. Sup-
pose, for now, that the value of this parameter determines the strength of some external
forcing mechanism. Gradually increasing the value ofε, one expects to encounter a
sequence of markedly different flows. At the extremes, the smallest parameter values
lead to stationary solutionsω(x) and sufficiently high values lead to turbulence. How-
ever, the phenomenological road connecting these extremes is not generally known.
Originally, the discussion was brought alive by Landau [76], who reasoned that the
complexity of a fluid flow would build-up for increasing values ofε as follows:

steady→ periodic→ 2-periodic→ . . . → n-periodic,

where each transition is a Hopf-bifurcation that adds another frequency to the flow; an
n-periodic motion thus containsn independent frequencies. Landau conjectured that
turbulence is a limit state of quasi-periodic motion with an ever-increasing number of
frequencies, wheren →∞ asε →∞.
However, Newhouse, Ruelle and Takens [120, 96] argued that the above picture is prob-
ably incorrect; quasi-periodic motion seems to be a non-generic property of dissipative
dynamical systems, implying that these motions may not occur at all. (Their precise
argument states that 3-periodic motion is unstable to smallC2-perturbations, whereas
4-periodic motion is unstable to smallC∞-perturbations). Rather, before reaching the
limit ε → ∞ one would observe that the flow becomes chaotic and lies on a ’strange
attractor’, an attracting set with a specific geometrical structure, see, e.g., the overview
by Ruelle [118]. This implies furthermore that the frequency spectrum is no longer dis-
crete, with separate peaks at the excited frequencies, but that it has become continuous
with a high noise-level.

Let us, before reviewing some results known from the literature, give an example of
the different types of motion, mentioned above. Usually one observes a system in the
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form of time series, even though the behavior of, e.g. a fluid flow represents a spatio-
temporal system, time series measured somewhere within the system may give a good
idea of its total behavior. In Figure 3.1 we show a sequence of four different types of
motion in time, where the signals were created artificially. Units on the axes are lack-
ing, as we are only interested in the form of the signals and not so much in quantifying
the systems we consider. The first two plots in the sequence are familiar and unexciting
if one is interested in dynamics. Figure 3.1(a) shows a stationary state where nothing
changes in time, whereas Figure 3.1(b) displays a purely periodic signal, in this case
a sine. However, Figure 3.1(c) shows already a stranger behavior; it is the result of
adding two sines with a fundamentally different frequency (in this casef0 = 2.2 and
f1 = 1/3) and is a form of the quasi-periodic motion mentioned by Landau [76]. Then,
Figure 3.1(d) displays a chaotic signal that cannot be mimicked by a superposition of
periodic signals, it looks random, yet some order can be distinguished. In fact, it is the
output signal of the logistic equation, see e.g. Verhulst [147] for details,

yn = Ayn−1 (1− yn−1) ,

where the present value of the systemyn depends on the previous valueyn−1 in a non-
linear (quadratic) way. The value of the control-parameterA determines what type of
behavior results, several regimes can be identified and in this specific case we used the
valueA = 3.9, which is in the chaotic regime.

(a) (b) (c) (d)
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Figure 3.1: Artificial signals showing stationary (a), periodic (b), double-periodic (c) and
chaotic (d) behavior.

So let us now return to what is known for the behavior of fluid flows. While no exper-
imental evidence was ever found for Landau’s conjecture, Ruelle-Takens-Newhouse
scenarios were observed in various degrees of accuracy in Rayleigh-Bénard convec-
tion experiment, see Ahlers [3], Swinney and Gollub [60, 132], Gollub and Benson
[59] and Libchaberet al. [80], and in Taylor-Couette experiments, see Brandstäteret
al. [17].
However, in their convection experiments Libchaberet al. also observed phase-locking,
where the ratio of the fundamental frequencies in a 2-periodic flow locks to the same ra-
tional number until the system becomes chaotic, a phenomenon unexplained by Ruelle-
Takens-Newhouse theory. Furthermore, Waldenet al. [149] recorded quasi-periodic
motion with four and even five independent frequencies in a Rayleigh-Bénard convec-
tion experiment, showing that the Hopf bifurcation leading from quasi-periodicity to
chaos may not always occur. Also in electromagnetically forced quasi two-dimensional
(2D) flows of large aspect ratio studied by Tabelinget al. [134] no clear evidence for
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the Ruelle-Takens scenario was found. For these latter flows, the transition sequence
depended on the initial number of driven vortices.
Based on early observations of the phase-locking phenomenon, Feigenbaum [45, 46]
sketched the route to chaos in terms of an infinite cascade of period-doubling bifurca-
tions. One should thus observe a (quasi-)periodic state in which more and more sub-
harmonics of the base frequency are added to the flow for each parameter change, until
the system reaches chaos. Subsequently, the Feigenbaum scenario was observed in
several Rayleigh-B́enard convection experiments, by Gollub and Benson [59], Giglio
et al. [57] and, for low Chandrasekhar numbers, by Libchaberet al. [80]. However,
a system may not be confined to a single route to chaos. Indeed, in two-parameter
Rayleigh-B́enard problems, as studied by Libchaberet al. and by Gollub and Benson,
or Taylor-Couette flows as studied by Buzuget al. [19] and Pfisteret al. [108], several
routes to chaos may exist side by side, whereas hybrid behavior can also occur.

On the computational side, following the ground-breaking work of Lorenz [84], nu-
merical experiments were largely based on finite mode truncations of the Navier-Stokes
equations, leading to systems of coupled ordinary differential equations, see Gallavotti
[56] for an overview. It is, however, uncertain how such truncated solutions relate
to full Navier-Stokes solutions, as it was shown by Treve and Manley [145] that the
chaos observed in the severely truncated Lorenz model is a consequence of its small
number of modes, rather than its dynamics. On the other hand, a study of the Lorenz
model gave rise to a whole new road-to-turbulence theory, proposed by Manneville
and Pomeau [89, 90]. These authors observed how ordered, periodic behavior, or lam-
inar flow, was disturbed in irregular intervals by violent events, known as bursts, in
which the system takes on a chaotic appearance. Gradually, as the guiding parameter
is changed, the intermittent bursts become more and more frequent, until the systems
is fully chaotic. Such behavior was also observed by Gollub and Benson [59] in a
convection experiment, at about the same time the associated intermittency-theory was
developed, and by Duboiset al. [36].
Kida et al. [72] expored the road to turbulence as a one-parameter problem in a three-
dimensional periodic domain by means of DNS. Decreasing the value of the viscosity
parameter under constant forcing revealed a remarkably complex behavior, including
low and high dimensional chaotic motions and finally turbulence. Not surprisingly, due
to the complexity of the guiding equations, the transition sequence observed by these
authors did not correspond directly to any theory, although some resemblance was
seen to occur with the earlier experimental work of Waldenet al. [149]. Feudel and
Seehafer [47] presented data from 2D DNS experiments on a periodic domain, where
the amplitude of an external forcing served as control parameter, observing transition
sequence which included phase locking phenomena and travelling waves. Applying
stress-free boundary conditions in one and periodic conditions in the other direction
Braunet al. [18] mimicked the laboratory experiments of Tabelinget al. with purely
2D computations. For these large aspect ratio flows a period doubling cascade to chaos
was observed.

Finally, a reminder that chaos is not turbulence. Where the latter is generally agreed
to possess a very large number of degrees of freedom, it was shown by Lorenz [84]
that chaos may occur for as little as three degrees of freedom. Low-dimensional chaos
in no way explains the high-dimensional turbulence, but may be encountered as a pre-
turbulent state.
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Route to turbulence in a finite 2D domain

The present chapter is mainly inspired by the work of Kidaet al. [72], exploring the
phenomenology of a continuously forced viscous flow as a function of the kinematic
viscosity parameterν. Applying the no-slip boundary conditions on the velocity, the
value ofν is progressively decreased in a series of DNS experiments on a square do-
main. To keep matters simple, we use the time-independent single wavenumber forc-
ing described in Section 2.2, keeping the forcing amplitude and wavenumber fixed at
A0 = 0.05 andkf = 6. This set-up corresponds to a chess-board pattern of 36 driven
vortices of alternating sign. Zero-vorticity initial conditions are applied, to make sure
the resulting phenomenology arises due to the action of the forcing only.

The overall transition sequence for decreasing values of the kinematic viscosity pa-
rameter down toν = 1/5000 can, roughly speaking, be summed up as follows;

steady→ periodic→ quasi-periodic→ chaos→ intermittent→ chaos.

Essentially, the route to chaos is a two-parameter problem, depending on both the forc-
ing wavenumber and the kinematic viscosity parameter, but for convenience, we cast
these into a single control or bifurcation parameter,ν′ = (1/νkf ). In this way we ob-
tain a sequence of increasing values, whereν = 1/5000 corresponds to the maximum
valueν′ = 833.3. Starting with low values ofν′, the flow changes from a steady state
to periodic and quasi-periodic motion before the system enters its first chaotic state.
These different states of motion refer to the spatio-temporal behavior of the flow but
are most clearly recognized in measured time series of, e.g., the value of the vorticity at
a given point in the domain. This part of the sequence corresponds neatly to the Ruelle-
Takens scenario described before, our results are reported in Molenaaret al. [94].
During the first chaotic state measured signals are irregular, but of similar amplitude
as compared to the preceding periodic motions. If, however, the value of the control
parameter is further increased the first chaotic state is disturbed by progressively more
frequent and violent events, known as intermittent bursts, during which the measured
signal may have a much larger amplitude than usual. Such a behavior is generically
known as intermittency and hence the second part of the transition sequence is more
like a complicated form of the Manneville-Pomeau intermittency scenario. Finally
these bursts push the system into a second chaotic state.

Chapter outline

The roadmap to the rest of this chapter is as follows; Section 3.2 is devoted to sev-
eral aspects of the stationary solutions and Section 3.3 gives an overview of the time-
dependent solutions, where periodic solutions are discussed in more detail in Sec-
tion 3.4 and intermittent solutions in Section 3.5. We end the chapter with a sta-
bility analysis of the system with respect to small initial perturbations and sensitiv-
ity to changes in computational resolution in Section 3.6. The introduction proceeds
next with a short summary on aspects of nonlinear dynamical systems theory and an
overview of several tools required for their analysis.
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3.1.1 Non-linear dynamical systems

Some elements of nonlinear dynamical systems are summed up here in a brief syn-
thesis, the reader is referred to, e.g., Doering and Gibbon [35], Temam [138] or Ver-
hulst [147] for details. A dynamical system is autonomous if it can be described by the
set of ordinary differential equations

dx
dt

= g(t,x, ε), (3.1)

whereε is a control-parameter,x the n-dimensional state vector andg a sufficiently
smooth vector field. In phase space, that is, in then-dimensional space containing
all possible system states, the long-term behavior of the system is known as its local
attractor. The collection of all these states associated to all admissible initial conditions
is known as the global attractor and denoted byA. In other words,A is the set towards
which all solutions from all possible initial conditions converge in due time. Although
the global attractor is an abstract mathematical concept, its importance is immediately
clear if one realizes that its ’dimension’ is directly related toNf , the number of degrees
of freedom in the system, see, e.g., Robinson [114],

Nf ∼ Dfrac(A).

Here the fractal dimension, also known as the box-counting dimension or limit capac-
ity, is defined as

Dfrac(A) ≡ lim sup
δ→0

log N(A, δ)
log(1/δ)

, (3.2)

whereN(A, δ) is the number of balls, of radiusδ > 0, needed to coverA. Thus
Dfrac(A) counts the number of balls of radiusδ that each contain one point ofA.
The simplest local attractor is a fixed point, or steady state (S). Referring back to
the notation in equation (3.1), a fixed point simply corresponds tog(x, ε) = 0, where
the control parameter is smaller than some limit value,ε < c2. Instead of a single
stationary state, a sequence of such states may exist, denoted asSI , SII , . . ., SN ,
associated to different values of the control parameter.
The transition to time-dependent motion, due to small changes in the control parameter,
is denoted as,S → P , in this particular case known as a Hopf bifurcation, leading
to a limit cycle, or periodic behavior with one fundamental frequency (P ). Quasi-
periodic motion is denoted asQPn, wheren corresponds to the number of excited
incommensurate frequencies, where the transitionP → QP2 is a secondary Hopf, or
Neimark-Sacker bifurcation. ForQP2, phase space trajectories lie on a 2-torus, a donut
shape, and forQPn, n > 2 on a hyper-torus. Chaotic motion is denoted withCI and
CII , where the former indicates a low- and the latter a high-dimensional motion. The
transitionQP3 → C corresponds to the break-up of a 3-torus into a so-called chaotic
attractor, e.g., the product of a Cantor set with an interval ofR [120].

3.1.2 Tools of the trade: analysis of computational data

It may be somewhat confusing in the following Sections that the analysis of a dynami-
cal system exhibiting a complex spatio-temporal behavior is largely based on temporal
observations (time series). This approach is only possible due to an important theo-
rem by Takens, see also the earlier work of Farmer [44] and the Navier-Stokes related
discussion by Robinson [114], stating that the system dynamics can be recovered from
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time-delayed point-measurements. Hence, we briefly discuss the analysis techniques
applied to our computational data. Again, our overview is far from exhaustive and the
reader is referred to, e.g., Mullin [95], Schuster [126], Abarbanel [1] or Thompson and
Stewart [140] for details.

A first indication of the behavior encountered in experiments is, apart from a visual
inspection of the measured time series itself, the corresponding discrete power spec-
trum Ps(f). For an arbitrary functiong(n), measured at discrete timen, the power
spectrum at frequencyf = (n/N∆t), where∆t is the sampling time, is denoted as

Ps(f) = lim
N→∞

∣∣∣∣∣
N−1∑
n=0

g(n)e−if

∣∣∣∣∣

2

.

Typically, a data sequence is divided in overlapping blocks ofN -points for each of
whichPs(f) is estimated. The overall spectrum is the average of these separate power
spectra, with resolutionf∆ = (1/N∆t). The maximum or Nyquist frequency is
fNyq = 2/∆t. Periodic motion results in a distinct peak in the power spectrum, with
each additional period adding another spectral peak, whereas chaotic behavior leads to
a broadband spectrum.
Note that every spectral peak is necessarily an integer multiple off∆ and the ratio of
two peaks will always be a rational number,f1/f2 = p/q ∈ Q. But in a quasi-periodic
motion two or more incommensurate frequencies occur, that is, frequencies for which
f1 = αf2, such thatα /∈ Q. Some extra testing is thus needed to determine the na-
ture of the periodic behavior. To gain a better understanding of the system, we have
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Figure 3.2:A sample time series (a) and its phase portrait for two different lags,τ = ∆t (solid
circles) andτ = 16∆t (circles) (b).

to reconstruct its phase-space behavior. As mentioned before, the motion of the sys-
tem trajectories through phase-space can be reconstructed from a measured time series
by the delayed embedding technique, a method devised by Packardet al. [105] and
Rouxet al. [117]. In two dimensions one plots a time seriesX(n) against a delayed
version of itselfX(n + τ). The lagτ = m∆t, for integerm and sampling time∆t,
corresponds to a local minimum in the average mutual information,mini(I(τ)), where
i = 1 denotes the first andi = 2 the second minimum. Using the scheme by Fraser
and Swinney [52], see also Abarbanel [1], the average mutual information is a measure
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of the predictability of observationX(n + τ), given the earlier observationX(n),

I(τ) =
∑

X(n),X(n+τ)

P (X(n), X(n + τ)) log2

(
P (X(n), X(n + τ))

P (X(n))P (X(n + τ))

)
.

P (X(n), X(n + τ)) is the joint probability density function (PDF) for measurements
taken atn andn + τ to result in valuesX(n) andX(n + τ), whereas the individual
PDFs forX(n) andX(n+τ) are denoted byP (X(n)) andP (X(n+τ)). If two mea-
surements are completely independent the mutual information equals zero,I(τ) = 0.
To check the sensitivity of the resulting embedding with respect to the applied delay,
a comparison was made with the delay set atmin2(I(τ)), the second local minimum
of I(τ). In general, these larger delay times yielded no additional information on the
phase space behavior. For a sample time series, Figure 3.2(a), we show the effect of
choosing a different time lag in the corresponding phase portrait, Figure 3.2(b). Clearly,
the lagτ = ∆t yields insufficient information and a distorted phase portrait, one would
expect the phase portrait of a sinusoidal signal to describe a circle, as is the case for
τ = 16∆t. Note that neither the circle nor the ellipsoid are completely filled with
points, as we used only a short time series.

The integer embedding dimension of the attractor,Demb, is likely to be higher than
two. Hence, one should determine the integer valueDemb = m at which the at-
tractor is completely unfolded. That is, if the attractor is mapped by coordinates
Xm(n) = (X(n), X(n+τ), . . . , X(n+mτ)), which integerm is required to conserve
its topology correctly?
To answer this question, one can apply the global false nearest neighbor technique
(FFN), developed by Kennelet al. [71]. In short, with FFN one compares if the nearest
neighbor to a point in a phase space of dimensionDemb = m − 1, remains a nearest
neighbor ifDemb = m. If this is not the case, the proximity forDemb = m − 1 was
not caused by the dynamics, but rather by an insufficient unfolding of the attractor and
the points are false nearest neighbors. Hence, one compares the Euclidian distance of
the nearest neighborsXm−1(n) andYm−1(n) in dimensionm− 1 to their distance in
dimensionm,

Rm(n) =
|X(n + mτ)− Y (n + mτ)|
‖Xm−1(n)−Ym−1(n)‖ ,

where‖ · ‖ is the Euclidian norm. A threshold value must be defined whichRm(n)
should exceed to identify a false nearest neighbor. Here we follow the suggestion
by Abarbanel [1] thatRm(n) > 15, whereas a consistency check was made with
Rm(n) > 10. Once the fraction of false nearest neighbors reaches zero for dimen-
sionm, it remains zero for alln > m and one has unfolded the attractor at embedding
dimensionDemb = m.

The actual dimension of the system is by no means required to be integer. In fact it
is likely to be non-integer, or fractal. In the previous Subsection we introduced the
fractal dimensionDfrac, as the true dimension of the global attractor. Several other
definitions of dimension exist, and in our analysis we use the correlation dimension
Dcorr, a refinement ofDfrac, which rather estimates the collection ofN cubes of side
δ, such that the chancespi of finding independently two phase space points in the same
cube add up to a cumulative minimumP (A, δ),

Dcorr(A) ≡ lim sup
δ→0

log P (A, δ)
log(δ)

, (3.3)
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where

P (A, δ) =
N∑

i=1

p2
i .

As one considers correlation integrals for each pair of points in phase space, the dis-
tance between these points should be a consequence of the phase space geometry only.
Because the phase space is reconstructed from a single time series, temporally corre-
lated points should thus be excluded from the analysis, as these would bias the estimate
of the correlation integral. Thus a suitable temporal lag∆l, known as the Theiler win-
dow, has to be taken between adjacent pairs in a time series during the calculation of
Dcorr, see Provenzaleet al.[111] for details. Provenzaleet al. argued that a reasonable
estimate for the Theiler window comes from the space-time separation plot. This lat-
ter plot displays, for anm-dimensional phase space, contours of the fraction of points
closer than separation distancer in phase space as a function of the temporal window
∆l. In each case several values were used for∆l, to test for convergence of results.

Embedding a point-measured time series inm-dimensional phase space, the Poincaré
section plots the intersection of phase space trajectories with a hyperplane of dimen-
sionm − 1, for crossings of the same sign. Each next pointy in the Poincaŕe section
is the image of a previous pointx under action of the Poincaré return map, that is,
P : x 7→ y. We use an algorithm developed by Heggeret al. [63], to produce these
sections. If the system follows a limit cycle a linear approximationP ′ can be made in
the vicinity of the fixed point,

x̃ = P (x̃),

through which the limit cycle crosses the hyperplane, see Thompson and Stewart [140].
For an attracting limit cycle the eigenvalues ofP ′ lie within the unit circle and progres-
sive crossings of the hyperplane asymptotically approachx̃, see Figure 3.3. Such limit
cycles are structurally stable; small perturbation of the system lead to the same behav-
ior.

Figure 3.3: A trajectory spi-
ralling towards a fixed-point in
three-dimensional phase-space. The
intersections with the Poincaré plane
P , spanned byp′ and q′, reveal the
structure of the system attractor.

q’

P

p’

On the other hand, when the system becomes chaotic, structure is lost in the Poincaré
section. To determine the extent of the chaos one can measuring how fast phase
space trajectories diverge, which requires an estimate of the largest Lyapunov expo-
nentφmax. Ideally, one would like to measure the complete Lyapunov spectrum, but
for higher dimensional systems this is very hard to achieve. Instead one can useφmax,
assuming the average separationd(t) of trajectories as a function of time is exponential,
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such that
d(t) = c0e

φmaxt,

wherec0 is a constant that normalizes the initial separation. On the other hand, di-
mension estimates, likeDcorr, give an idea of the complexity of he system. To es-
timate φmax and Dcorr we use a method and software developed by Rosenberget
al. [115, 116], who also explain why one should rather estimateφmax than quantify
chaos by the popular Grassberger-Procaccia algorithm [61].

Since Wolf et al. [152] applied a method for calculating Lyapunov exponents to a
Taylor-Couette experiment, debate followed on the validity of estimates for such high-
dimensional systems as fluid flows. Indeed, there seem to be severe constraints on the
estimates of bothDcorr andφmax. Without repeating the technical details here, Eck-
mann and Ruelle [37] showed that the number of pointsN in a time series, required to
provide a reliable estimate of these quantities is, respectively,

N > 10Dcorr/2 and N > 10Demb .

Clearly, these conditions generate problems for the analysis of higher dimensional
chaotic or turbulent motions. Considering the high spatial resolution required at high
Reynolds numbers, such lengthy time series are far beyond present-day computational
resources. On the other hand, as was already noted by Brandstäteret al. [17], while the
system has a very high dimensional phase space, the actual motion may yet be confined
to a relatively low dimensional attractor. The time series in our analysis are in the range
up toN ≤ 60000, dimension estimates aboveDcorr = 9.3 and estimates ofφmax for
Demb > 4 are thus unreliable.
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3.2 Stationary solutions

For values of the control parameterν′ ≤ 125.0, the computational solutions converge
to steady states, see Figure 3.4. At parameter valueν′ = 83.3 the flow field essentially
equals the forcing field, a checkerboard pattern of 36 monopolar vortices of alternating
sign. This field preserves all the rotation and reflection symmetries of the square, form-
ing the dihedral symmetry groupD4. However, forν′ = 100.0 a symmetry breaking
pitchfork bifurcation1 has changed the flow configuration to a large circulation cell,
which fills the interior of the domain, with small secondary vortices at fixed locations
near the corners. The reflection symmetries are broken, but not the rotational symme-
tries, forming the subgroupZ4 ⊂ D4.

(a)ν′ = 83.3 (b) ν′ = 100

Figure 3.4:Normalized iso-vorticity plots forν′ = 83.3 (a) andν′ = 100 (b), carryingD4 and
Z4 symmetry respectively, where contours range from -1 to 1 with an interval of 1 and dashed
lines represent negative values.

Let us suppose that the observed solutions are time-independent, but that the inertial
term in the evolution equation is no longer negligible as compared to the dissipation
and forcing terms. For this case we want to get some idea about the stability of the
non-homogeneous stationary solutions with respect to time-dependent perturbations of
small amplitude. The stability is determined with the energy method, consult e.g. Do-
ering and Gibbon [35] for details. For once we do not consider the vorticity equation,
but rather the original Navier-Stokes equation, with stationary solutionU(x) and per-
turbationũ(t,x), to avoid the integrals over the boundary that arise in the enstrophy
equation. The velocity-pressure pairU(x), P (x) is a fixed point in phase space and
the equation of motion reads as

U · ∇U +∇P = ν∆U + f ,

where it also holds that∇ ·U = 0. Taking the domain-integrated innerproduct of this
latter equation withU, the energy equation reads as

(∇U,∇U) = ν−1(f ,U),

where we can rearrange the innerproduct in the right-hand-side with the Schwarz and
P-F inequalities and the generalized Grashof number (1.14) respectively,

ν−1(f ,U) ≤ ‖∇U‖2,D
‖f‖2,D
λ

1/2
1 ν

= νλ
1/2
1 Gr‖∇U‖2,D.

1That is, if such a bifurcation is compatible with the Navier-Stokes equations, see Saut and Temam [125].
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Now with ‖∇U‖22,D = (∇U,∇U), combining the last two lines, one has by Agmon’s
inequality (1.11)

νλ
1/2
1 Gr ≥ ‖∇U‖2,D ≥ λ

1/4
1 (‖U‖2,D‖∇U‖2,D)1/2 ≥ λ

1/4
1√
2
‖U‖∞,D.

We proceed with the introduction of small perturbations, which are added to the sta-
tionary velocity and pressure fields

u(t,x) = U(x) + ũ(t,x)
p(t,x) = P (x) + p̃(t,x)

and which satisfy

∂tũ + ũ · ∇ũ + U · ∇ũ + ũ · ∇U = −∇p̃ + ν∆ũ

∇ · ũ = 0,

together with the appropriate boundary conditionũ(·, ∂D) = 0. A sufficient stability
criterion is that the energy of the perturbation vanishes fort → ∞, which can be
established from the energy balance

d
dt

1
2
‖ũ‖22,D = −ν‖∇ũ‖22,D −

∫

D

(ũ · ∇U) · ũdA.

The problem is now that the right hand side should not exceed the negative perturbation-
energy−‖ũ‖22,D, to guarantee an exponential decay in time and ensure stability,

−2ν‖∇ũ‖22,D − 2
∫

D

(ũ · ∇U) · ũdA ≤ −‖ũ‖22,D. (3.4)

Note that, by generalized partial integration, the Hölder inequality and our earlier esti-
mate, we obtain

−2
∫

D

(ũ · ∇U) · ũdA = 2
∫

D

U · ũ · (∇ũ)dA

≤ 2‖U(x)‖∞,D‖ũ‖2,D‖∇ũ‖2,D

≤ 2λ
−1/2
1 ‖U(x)‖∞,D‖∇ũ‖22,D

≤ 2ν
√

2

λ
1/4
1

Gr‖∇ũ‖22,D. (3.5)

Now we search for the smallest value of the quantity

2ν‖∇ũ‖22,D + 2
∫
D(ũ · ∇U) · ũdA

‖ũ‖22,D
,

which should be greater or equal to unity to meet our demands for stability. Hence,
with our estimate (3.5) the infimum of this latter quantity reads as

inf


2ν‖∇ũ‖22,D −

(
2ν
√

2/λ
1/4
1

)
Gr‖∇ũ‖22,D

‖ũ‖22,D


 ≥ 2ν

(
λ1 −

√
2λ

3/4
1 Gr

)
≥ 1,
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such that the stability demand (3.4) is only satisfied if
(

2νλ1 − 1

2νλ
3/4
1

√
2

)
≥ Gr. (3.6)

We check the stability condition (3.6) with computations, allowing the system to reach

Figure 3.5: Normalized energy time
seriesEn(t) = E(t)/〈E(t)〉 for ν =
1/5.
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a steady state first, after which a small perturbation is applied during a short interval.
Using the unscaled viscosityν = 1/5, with A0 = 5 × 10−3 andkf = 6, such that
‖f‖2,D ' 0.06, the corresponding evolution of the normalized energy,En, is shown
in Figure 3.5(a). The perturbation is applied att = 500, when the system has already
reached a steady state. Subsequently, the perturbation energy falls off to zero, such
that the energy of the system sinks back to its stationary state value. Note that, with
λ−1

1 ≤ (d2/2π2), the generalized Grashof number becomesGr . 0.3.

3.3 Time-dependent solutions

Leaving the stationary solutions behind, in the following two Sections we analyze the
phenomenology within the interval125.0 ≤ ν′ ≤ 833.3, in which the system explicitly
depends on time. The upper limit to this range is set by computational rather than phe-
nomenological considerations, rendering our explorations far from complete. Recall
that the transition sequence for the time-dependent motions is

periodic→ quasi-periodic→ mild chaos→ intermittent→ strong chaos.

Three examples of the encountered phenomenology are given in normalized instanta-
neous contour plots of iso-vorticity lines, Figure 3.6. The phenomenology for the pe-
riodic and mild-chaotic motions is dominated by a large circulation cell, Figure 3.6(a).
The intermittent states consist of low-intensity phases, during which the phenomenol-
ogy is dominated by a large circulation cell, and high-intensity, during which the cell
may break up into smaller cores, Figure 3.6(b). Finally, Figure 3.6(c) shows the flow
in a strongly chaotic state and the configuration has changed accordingly, to include
several small cores in the center of the domain. For each value of the control parame-
ter Table 3.1 indicates the observed type of behavior and the associated computational
resolutionN . As in the work of Kidaet al. [72], the value of the control parameter is
decreased in discrete steps; it should be kept in mind that other types of behavior may
live between each pair of adjacent values.
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(a)ν′ = 150.0 (b) ν′ = 366.6 (c) ν′ = 583.3

Figure 3.6:Normalized iso-vorticity plots forν′ = 150.0 (a), ν′ = 366.6 (b), andν′ = 583.3
(c) where contours range from -10 to 10 with an interval of 1 and dashed lines represent negative
values. In all plotst ' 500.

Table 3.1:Control parameterν′, computational resolutionN , a characterization of system state
at large times, see Section 3.1.1 for an explanation of the symbols, and remarks on phenomenol-
ogy. For all computationsTend = 1000.

ν′ N State Remarks
125.0 160 P Monopole, symmetry subgroupZ4

133.3 ” ” symmetry subgroupZ2

150.0 ” ”
166.6 ” ”
183.3 ” ”
191.6 ” QP2 Second fundamental frequency
200.0 ” ”
216.6 ” ” Jump to secondQP2 branch
225.0 ” ”
233.3 ” ”
250.0 ” ”
258.3 ” QP3 Third fundamental frequency
266.6 ” CI First chaotic state
283.3 ” ”
291.6 ” IM Intermittent solutions
300.0 ” III

316.6 ” II

333.3 180 III

350.0 ” IM

366.6 ” ” Monopole broken-up to quadrupole
383.3 ” ”
400.0 200 ” Quadrupole broken-up
416.6 ” ”
500.0 256 ”
583.3 ” CII Second chaotic state
666.6 ” ”
833.3 ” ”
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3.4 Periodic flows

3.4.1 Time series and power spectra

As mentioned above, solutions in the sub-range125.0 ≤ ν′ ≤ 266.6 are time-dependent
in a periodic way. Within this sub-range, the following transition sequence is found

S → P → QP2 → QP3 → CI ,

corresponding rather well to the Ruelle-Takens-Newhouse [120, 96] scenario. At the
lower end of the range, forν′ = 125.0, a transition takes place from the second steady
stateS to a single periodic stateP , shown in Figure 3.7(a), in a time series of the
normalized enstrophy,Zn(t). For several subsequent values of the control parameter,
down toν′ ≤ 183.3, the flow remains single-periodic, although an increasing number
of integer multiples of the base frequency are also excited.
Then, forν′ ≥ 191.6, the periodic attractor is replaced with the more complex, double-
and triple-periodic motionsQP2 andQP3. As can be clearly seen in Figure 3.7(b) for
ν′ = 200.0 and, with more effort (c) forν′ = 258.3, these states are still ordered and
regular. The observed fundamental frequencies and their most important integer mul-
tiples in the quasi-periodic state are listed in Table 3.2. Finally, atν′ = 266.6, periodic
behavior is replaced by low dimensional chaos, Figure 3.7(d).

(a)ν′ = 133.3 (b) ν′ = 200.0
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Figure 3.7:Part of the normalized enstrophy time series,Zn(t) = Z(t)/〈Z(t)〉 for a periodic
flow (a), a double-periodic flow (b), a triple-periodic flow (c) and a chaotic flow (d). Note the
increasing amplitude of the motions

Let us now consider in more detail the sequence described above. The first parameter
value for which the solution becomes time-periodic,ω(t) = ω(t + T0), is found at
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Table 3.2:Control parameterν′, fundamental frequenciesf2 < f1 < f0 (Hz) and their most
important integer multiples, sums and differences, in increasing order in the periodic state. Low
dots. . . means higher frequencies are present but not denoted.

ν′ f2 < f1 < f0 (Hz) Multiples, sums and differences
125.0 0.781 2
133.3 0.963 2,3
150.0 1.120 2,3
166.6 1.218 2,3
183.3 1.303 2,3,4
191.6 0.425, 1.359 f1 − 3f0, f1 − f0, 2f1, f1 + f0, 3f1, 4f1

200.0 0.453, 1.416 f1 − f0, f1 + f0, f1 + 3f0, 2f1 + 2f0, 2f1 + 3f0

216.6 0.509, 1.473 2f0, 2f1 − 2f0, 2f1, 3f1 − 2f1, . . .
233.3 0.506, 1.554 f0 + f1, 2f1, 2f1 + f0, 3f1, . . .
250.0 0.510, 1.643 (f1 − f0)/2, f1 − f0, 2f1 − 3f0, . . .
258.3 0.552, 0.679, 1.119 f1 − f0, 2f2 − 2f1,2f2 − f1, . . .

ν′ = 125.0, where the resulting motion has periodT0 ' 1.2804. The mechanism by
which the transition occurs is a supercritical Hopf bifurcation, (see e.g., Mullin [95])
which maintains the spatialZ4 symmetry. Using overlapping windows of 512 points,
the corresponding power spectrum was determined from 16000 data points of the nor-
malized enstrophy time series. A single peak can be observed at the base frequencyf0

and a smaller peak at2f0, Figure 3.8(a). The corresponding vorticity field (not shown)
is dominated by a large circulation cell withZ4 symmetry.

For subsequent values of the control parameter, down to at leastν′ = 183.3, Fig-
ure 3.8(b), the single-periodic state persists, but here the harmonics3f0 and4f0 are
also excited. Furthermore, small frequency shifts occur, progressively increasing the
base frequency with each step. This growth of the fundamental frequency of theP
state, for decreasing values ofν′, is shown in Figure 3.9.
A symmetry breaking bifurcation leads toZ2 symmetry within theP state (the sub-
groupZ2 ⊂ Z4 denotes symmetry with respect to rotations overπ). This corresponds
to observations of a Taylor-Couette flow, where, in spite of a symmetrical forcing
scheme, symmetry-breaking bifurcations occurred [95]. Remarkably, theZ2 symmetry
is preserved for all following values of the control parameter, down to the maximum
valueν′ ≤ 833.3. Forν′ = 150.0 one sees the reduced symmetry in a contour plot of
the corresponding normalized vorticity field, Figure 3.6(b). The central cell is slightly
distorted and the secondary vortices in the corners are no longer fixed at the same po-
sition.
For ν′ ≥ 191.6 a Neimark-Sacker bifurcation has led the flow onto a branch of quasi-
periodic states, initizing aQP2 motion. Besides several higher harmonics of the largest
fundamental frequencyf0 ' 1.36, several sums and differences of integer multiples of
f0 and the smaller frequencyf1 ' 0.425 are now also excited, Figure 3.8(c). TheQP2

state lives in the range191.6 ≤ ν′ ≤ 250.0, where the value of the largest fundamental
frequency increases for progressive values of the bifurcation parameter, as can be seen
in Figure 3.9. With the onset of theQP2 motion a long-time undulation appears in the
system, at a subharmonic of the largest base frequency,f0/8.
However, in the interval216.6 ≤ ν′ ≤ 250.0 the long-time undulation has disap-
peared, whereas a strong spectral peak is now present at twice the largest fundamental
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(a)ν′ = 125.0 (b) ν′ = 183.3
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Figure 3.8:Power spectra of vorticity time series forν′ = 125.0 (a), ν′ = 183.3 (b), ν′ =
191.6 andν′ = 266.6 (d).

frequency,2f0. The frequencyf1 remains nearly constant in a ’locked’ state within
this parameter range, see Table 3.2.
Another Hopf bifurcation occurs, leading to aQP3 state, which is observed atν′ =
258.3. Two of the new base frequencies are close to the fundamental frequencies of the
previousQP2 state, the third frequency enters at an intermediate value.

Figure 3.9:Largest fundamental fre-
quencyf0 as a function of the control
parameterν′. Solid circles (•) sym-
bolize single-periodic motion, circles
(◦) denote quasi-periodic motion. la
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For ν′ = 266.6 a final Hopf bifurcation has taken place, and the time series take on
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a chaotic appearance, Figure 3.7(d). Even though the transient state is similar to that
observed forν′ = 258.3 and the system initially relaxes towards aQP3 state of mo-
tion, this state becomes unstable and falls off into a chaotic regime. The corresponding
power spectrum, Figure 3.8(d), has a strongly increased noise-level over a wide range
of frequencies before it falls off, in contrast with the spectra observed earlier for the
periodic motions, which have a nearly ’discrete’ appearance.

Interestingly, noQPn state withn > 3 was observed in our computations. According
to Ruelle-Takens theory, such motions withn = 4 and even withn = 3 are unstable
with respect to small perturbations and, as such, may not occur at all. On the other
hand, it is very well possible that aQPn state forn > 3 can be found for values of the
control parameter situated between those considered here. As such, it can not be ruled
out thatQPn motion may live under pre-chaotic state parameter values.

3.4.2 Phase space reconstruction

Using vorticity time seriesω(t,x), measured at fixed locations in the flow, we recon-
struct the phase space behavior of the system. For each progressive value of the control
parameter the delayτ , determiningmin1(I(τ)), see Section 3.1.2, is listed in Table 3.3,
along with the embedding dimensionDemb, as determined by the false nearest neigh-
bor technique. Due to the low embedding dimension,Demb = 3, completely unfolded
phase portraits can be made for theP state, of which we give two examples in Fig-
ure 3.10. Recall that the true dimension of the system may be non-integer, or fractal, a
fact we return to later on.

At parameter valueν′ = 125.0 a fixed point in phase space becomes unstable and
bifrucates to a limit cycle. It was clear from the spectral analysis that the branch of
limit cycles persists at least to valueν′ = 183.3. Observe then, how the system spirals
towards the limit cycle atν′ = 125.0, in Figure 3.10(a), and recall the simple form
of the corresponding spectrum, Figure 3.8(b). The qualitative difference with theP
attractor atν′ = 150.0 becomes clear from Figure 3.10(b), where the limit cycle has
changed its orientation.
To explore the structure of the system in phase space and the stability properties of
the attractors, we plot Poincaré sections, in Figure 3.11. Recall that the Poincaré map
defines a discrete dynamical system associated to the continous dynamical system de-
fined by the equations of motion. A limit cycle in phase space is a fixed point of the
Poincaŕe map; the corresponding trajectory in the Poincaré section may be seen to
asymptotically approach this fixed point. The limit cycle atν′ = 125.0, Figure 3.11(a),
shows such a discrete trajectory of the Poincaré map, asymptotically approaching a
fixed point.
At ν′ = 133.3, Figure 3.11(b), an initial folding of the trajectory occurs, but eventually
the system moves towards another nodal point, in the lower left corner of the plot.
Decreasing the control parameter toν′ = 166.6 one sees again the result of folding ac-
tion in Figure 3.11(c); the system seems to approach a saddle point, but as it moves
away from this saddle point it finds its true attractor in the form of another nodal
point, to which it asymptotically converges. This picture is somewhat resemblant of
the forced oscillator discussed by Thompson and Stewart [140].
In Figure 3.11(d), forν′ = 183.3, the system is close to a break-up of the limit cycle,
as is apparent from the ’blurred’ state of the trajectory in the Poincaré section. Even
so, it still evolves to a nodal point.
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Figure 3.10:Three-dimensional phase space trajectories, showing completely unfolded attrac-
tors; ν′ = 125.0 (a) andν′ = 150.0 (b).

Apart from the latter situation, the encountered limit cycles are hyperbolic, that is, pos-
sessing a linearized Poincaré map with two real eigenvalues withinS1, the unit circle
in the complex plane. This suggests a structural stability of the system; small pertur-
bations will result in a limit cycle with the same stability properties, an observation we
discuss in Section 3.6, see Thompson and Stewart [140] for details.

A dramatic change is brought about by the Neimark-Sacker bifurcation, when the con-
trol parameter is changed toν′ = 191.6, Figure 3.11(e), resulting in aQP2 attractor.
First of all, this Poincaŕe section is not completely unfolded, but rather a projection
onto the plane, as the embedding dimension of the system has increased toDemb = 4
and the true Poincaré section should thus be three-dimensional. TheQP2 attractor fills
a 2-torus and the Poincaré section accordingly reveals a closed loop or limit cycle, with
the outlying points caused by transients.
When the bifurcation parameter equalsν′ = 200.0 the Poincaŕe section, Figure 3.11(f),
shows again a closed loop, as was the case forν′ = 191.6, but here the projection onto
the plane results in a somewhat twisted trajectory. Forν′ = 216.6 (not shown) the
system explores an even larger region of phase space, whereas more sums of multiples
of f0 andf1 have been added to the flow.
For the interval233.3 ≤ ν′ ≤ 266.6, we project several attractors onto the(ω(t), ω(t+
τ))-plane along with the Poincaré sections, in Figure 3.12. None of these plots shows
a completely unfolded attractor, asDemb = 4 in all cases, but nevertheless some es-
sential topological features become clear.
Recall from the previous Section that two different types ofQP2 motion were ob-
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Figure 3.11:Poincaŕe trajectories, attracted to fixed points (a), (b), (c) and (d), and to limit
cycles (e) and (f).

served, below and above the valueν′ = 216.6. This change within theQP2 state is
interpreted as a jump from one branch of quasi periodic solutions to another, resulting
in a different Poincaŕe map. Atν′ = 233.3 the phase portrait, shown in Figure 3.12(a),
looks somewhat like the phase portrait of theQP2 attractor observed by Cumming and
Linsay [31] in a nonlinear electronic resonator. Here the system has jumped to a dif-
ferent branch ofQP2 solutions and the corresponding Poincaré section, Figure 3.12(e),
reveals a structure that looks more or less like three nodal points, along with quite
some outlying crossings of the plane, instead of the closed loop observed before. The
QP2 attractor found at parameter valueν′ = 250.0, Figure 3.12(c), has an even more
complicated structure than that at valueν′ = 233.3, but still this is a system with two
rather than three incommensurate frequencies. The corresponding Poincaré section,
Figure 3.12(d), clearly shows how the system is asymptotically attracted to three nodal
points, at which phase space trajectories cross the Poincaré plane.

While the projection of theQP3 attractor onto the plane, Figure 3.12(e), seems to be
similar to a similar projection of theQP2 attractor, the Poincaré section, Figure 3.12(f),
clearly reveals the differences between these states. Indeed, theQP3 phase portrait
should be rotated in three-space to appreciate its structure. Remarkably, one can ob-
serve three well-defined initial ’tails’, which may be inherited from the previousQP2

state.
Then, atν′ = 266.6 the system spirals into chaos, but not all of the structure of the
preceding periodic attractor is lost in the phase portrait, Figure 3.12(g), whereas the
embedding dimension remains unaltered,Demb = 4. Hence we denote this low-
dimensional chaos withCI . A similar state was described by Thompson and Stew-
art [140] to be low-dimensional behavior that has certain order, as well as a random
component. But the random component follows from the system dynamics only, no
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Figure 3.12:Projection of the attractor onto the(ω(t), ω(t + τ))-plane (left column) forν′ =
233.3 (a), ν′ = 250.0 (c), ν′ = 258.3 (e) andν′ = 266.6 (g). The corresponding Poincaré
sections, hyper-planes in(ω(t), ω(t + τ), ω(t + 2τ))-space (right column), graphs (b), (d), (f)
and (g).
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stochastic impurities were introduced into the system by means of forcing or initial
condition. A close-up of the main part of the Poincaré section, Figure 3.12(h) shows
that structure is lost and the Poincaré map is not properly linearizable. This state is
very similar to what Libchaberet al. [80] observed in a B́enard convection experiment;
incomplete decay of 3-torus onto a strange attractor.

For the (quasi-) periodic motions, phase space trajectories should, on average, re-
main at a fixed distance. In a logarithmic graph of the stretching factorsφ, see Sec-
tion 3.1.2, which slope determines the maximum Lyapunov exponentφmax, see Sec-
tion 3.1.2, one should therefore observe a relaxation to a constant value, see also Rosen-
steinet al. [115]. Indeed one sees such a behavior for, e.g., theQP2 motion found at
ν′ = 200.0, in Figure 3.13(a), yielding a zero estimate forφmax. Here the logarithm of
the stretching factors was determined over 20000 data points, for several values of the
delay, to test the sensitivity of the results with respect to this parameter. Specifically,
the Figure shows the curves forτ = 4∆t andτ = 5∆t, where∆t is the sampling
interval.
The Theiler window,∆l, is a temporal lag that excludes temporally correlated points
from the estimation procedure for the correlation dimension,Dcorr, see Section 3.1.2.
The value of∆l follows from a space-time separation plot, of which an example is
shown in Figure 3.13(b), forν′ = 200.0. In the Figure one clearly sees the recurrent,
periodic behavior, reflected in temporal correlations, whereas a minimal estimate for
the Theiler window roughly equals∆l = 30∆t.
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Figure 3.13:Logarithm of the stretching factorsφ for two delays (a) and the corresponding
space-time separation plot (b), at parameter valueν′ = 200.0. The space-time separation plot
shows, as a function of the minimal temporal separation window of points in a time series, the
fraction of points that is closer than some separation distance inm-dimensional phase space.
Fractions increase from 0.1 (bottom curve) to 1 (top curve) in steps of 0.05.

As expected, purely periodic motions result in low-dimensional phase space behav-
ior, whereDcorr is slightly larger than unity, see Table 3.3. While one subsequently
expects the valueDcorr = 2 for motion on a 2-torus, somewhat larger estimates are
found, for the interval191.6 ≤ ν′ ≤ 216.6. Remarkably, the value of the correlation
dimension then falls off to aboutDcorr ' 1.5 for 225.0 ≤ ν′ ≤ 250.0, even though the
motion is still quasi-periodic at these parameter values. The phenomenon is caused by
the jump to a different branch ofQP2 solutions, also observed in the Poincaré sections,
compare, e.g., Figure 3.11(f) and Figure 3.12(d).
A QP3 motion should, ideally, result in a correlation dimensionDcorr = 3, see also
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the example given by Rosensteinet al. [116]. Indeed, withDcorr ' 2.9, the estimate
is close to the expected value. Finally, the chaotic motion atν′ = 266.6 is of a slightly
higher dimension than the preceding periodic flows.

Table 3.3:For each value of the control parameterν′, estimates are given for the discrete delay
(τ/δt) and the correlation dimensionDcorr.

ν′ state (τ/∆t) Demb Dcorr

125.0 P 37 3 1.4± 0.1
133.3 ” 43 ” 1.3± 0.2
150.0 ” 18 ” 1.1± 0.1
166.6 ” 35 ” 1.1± 0.2
183.3 ” 33 ” 1.2± 0.1
191.6 QP2 24 4 2.7± 0.2
200.0 ” 22 ” 2.6± 0.1
216.6 ” 19 ” 2.5± 0.3
225.0 ” 21 ” 1.5± 0.2
233.3 ” 12 ” 1.5± 0.1
250.0 ” 22 ” 1.6± 0.1
258.3 QP3 18 ” 2.9± 0.1
266.6 C 17 ” 3.6± 0.2

Summarizing, the Ruelle-Takens-Newhouse scenario seems to be fulfilled in the pa-
rameter range up toν′ < 266.6, where chaos results from the destruction of a 3-torus.
Remarkably, Braunet al. [18] observed chaos after the destruction of a 2-torus in a 2D
flow of large aspect ratio, with one periodic and one no-slip direction. On the other
hand, Feudel and Seehafer [47] did observe a 3-torus in the route to chaos on a double-
periodic square domain.
The chaotic motions discussed so far are low-dimensional and still far removed from
turbulence. In the next Section we examine, for decreasing values of the control pa-
rameter, the mechanisms that are thought to bring the flow to high-dimensional chaos.

3.5 Intermittent flows

3.5.1 Time series

The CI chaotic state, observed at parameter valueν′ = 266.6, is also found for
ν′ = 283.3. Increasing, however, the value of the control parameter toν′ = 291.6, a
dramatic change has taken place; theCI state is disturbed by irregular violent bursts of
large amplitude, collectively referred to as aII regime, reminiscent of the intermittent
motions observed by Manneville and Pomeau [90]. In Figure 3.14 we show a close-up
of a trueCI state and a laminarII state in parts of two vorticity time series, along with
the corresponding power spectra. In Figure 3.14(a) one sees theCI behavior of the
flow atν′ = 283.3, where the spectrum, Figure 3.14(b), is taken over 4096 data points
and averaged over overlapping windows of 1024 points, aroundt = 375. Similarly,
for ν′ = 316.6, Figures 3.14(c) and (d) display a part of a vorticity time series and the
power spectrum, during a laminar phase of the evolution. The power spectrum is again
taken over 4096 points in the laminar interval. Qualitatively, the laminar part of theII

state is similar to theCI state, but in theII state the laminar intervals are disturbed by
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Figure 3.14:Vorticity time series forν′ = 283.3 (a) andν′ = 316.6 (c), with the corresponding
power spectra shown in (b) and (d) respectively.

violent bursts, with intensities of up to ten times the mean value. In Figure 3.15(a) the
overall behavior of a normalized vorticity time series in theII state atν′ = 316.6 is
shown. Note the length of the laminar phase as compared to the bursts and the intensity
of these bursts.
Then, for parameter valueν′ = 300.0, the system has jumped to a different type of in-
termittent behavior, denoted asIII . This second type of intermittent motion, is shown
in a normalized vorticity time series in Figure 3.15(b), forν′ = 333.3. Here, laminar
intervals take on a more or less regular appearance, but last much shorter than in theII

state, while high-intensity bursts appear more frequently but are generally less violent,
as compared to the laminar behavior. With decreasing parameter values, the laminar
part of theIII state lasts shorter with a less regular distribution, whereas bursts appear
more frequent.
PureIII flows were observed for parameter valuesν′ = 300.0, ν′ = 333.3 and
ν′ = 383.3, a pureII flow only for ν = 316.6, while a combination of the two was
found at intermediate parameter values. This mixed state is denoted with the symbol
IM . During the mixed state aIII state may suddenly give way to a laminarII motion,
followed by a violent burst, after which the system may either go through anotherII

cycle or return to theIII state.

While the two intermittent regimes are generally different, some comparable phe-
nomenological aspects are observed in both states. Minima in the energy and enstrophy
time series coincide in both regimes. The peaks in these time series do, however, not
coincide; enstrophy peaks usually occur when the energy shows a sharp decline. This
feature can be explained as follows; during the laminar phase the energy of the system
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Figure 3.15:Vorticity time series, normalized by the root-mean-square, displaying the qualita-
tive difference between the two types of intermittency forII (a) andIII (b).

can gradually build-up to peak values. In this case the flow field is dominated by a
stable central circulation cell, possibly with several accompanying satellite vortices of
opposite sign. Such a stable configuration, and the central cell in particular, may carry
increasing amounts of energy. However, depending on the value of control parameter
ν′, this configuration is either severely altered or even destroyed during a high inten-
sity event, resulting in a sharp fall-off of the energy, whereas the small-scale structures
produced in the event generate a peak in the enstrophy time series.
Consequently, the flow fieldω(t,x) takes on an ever more complicated structure dur-
ing the bursts. At the lower end of the subrange, forν′ = 300.0, ν′ = 316.6 and
ν′ = 333.3 (not shown), a large core of the central circulation cell still remains intact
at all times. But in this state secondary vortices have detached from the corners of the
domain and are moving closer to the interior of the domain. Then, forν ≥ 366.6,
Figure 3.6(b), the central structure is finally broken into two cores.
The differences between the laminar phases in theIII and II states are visualized
in two contour plots in Figure 3.16(a) and (b), for, respectivelyν′ = 300.0 and
ν′ = 316.6. In the III laminar phase,ν′ = 300.0, a shedding of small, secondary
vortices has taken place, which move as satellites with the central cell. On the con-
trary, secondary vortices are visible in theII laminar phase, but these remain at more
or less fixed locations during the evolution, whereas the central cell is somewhat larger
than in theIII laminar phase.
Another instrument to characterize a time series is the second-order structure function
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(a)ν′ = 300.0 (b) ν′ = 316.6

Figure 3.16:Iso-vorticity contour plots of the laminar phase forν′ = 300.0 (a) andν′ = 316.6
(b). Contour lines in (a) range from -30 to 30 with an interval of 3 and from -50 to 50 with an
interval of 5 in (b); negative values are represented by dashed lines.

S2(n), which, as a function of the time-lagn, reads as

S2(n) =
1
T

T∫

0

(ω(t + n∆t)− ω(t))2 dt.

In various systemsS2(n) may scale withn as follows,

S2(n) ∝ n2D,

whereD is the scaling exponent. As discussed by Provenzaleet al.[111] for the motion

(a)ν′ = 300.0 (b) ν′ = 316.6
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Figure 3.17:Scaling behavior of second-order structure functionS2(n) with time lagn, for
theIII state (a) and theII state (b).

on a strange attractor, with increasing values ofn one observes the following behavior
of S2(n); first D = 1 for smalln. Then, for slightly largern, the structure function
oscillates and finally converges to a constant value, corresponding to the limited region
of phase space explored by the system. For the intermittent motionsII andIII , Fig-
ure 3.17 displays the scaling of the second-order structure function. Atν′ = 300.0
(III state), Figure 3.17(a),S2(n) has a scaling behavior that is roughly similar to the
description by Provenzaleet al.; a short interval has scaling exponent that is slightly
larger than unity, after which progressively smaller oscillations convergence to a con-
stant value. Forν′ = 316.6, Figure 3.17(b), the oscillating phase is virtually absent,
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Figure 3.18:Vorticity time series, normalized by its root-mean-square, forν′ = 333.3 (a),
ν′ = 500.0 (b), ν′ = 666.6 (c) andν′ = 833.3 (d).

whereas the initial scaling is closer to the expectedD = 1. The structure-functions for
the mixed motionsIM (not shown), display a scaling that is a combination of those
shown in Figure 3.17; aD = 1 initial scaling, followed by oscillations.

The intermittent motions are observed in the range291.6 ≤ ν′ ≤ 500.0, but at param-
eter valueν′ = 583.3 the system has become predominantly chaotic. In this state of
motion, designated asCII and associated to a high-dimensional phase space behavior,
laminar phases are short and rare events. In Figure 3.18 the normalized vorticity evo-
lution is shown in the same time interval, for several parameter values. While laminar,
low-intensity motions are recognizable forν′ = 333.3 andν′ = 500.0, Figures 3.18(a)
and (b), these types of motions have disappeared forν′ = 666.6 andν′ = 833.3,
Figures 3.18(c) and (d). Furthermore, the overall intensity of the vorticity increases
significantly fromν′ = 333.3 to ν′ = 833.3, moving from intermittent motions to a
new phase of chaos.
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3.5.2 Phase space reconstruction

An important question is whether theII , III and mixedIM types of motion result in
different types of phase space behavior and, if so, how these differences can be quan-
tified. As in the previous Section, we determine the quantitiesτ andDemb. These
quantities are listed in Table 3.4, along with the system state, and used to construct
phase portraits and Poincaré sections to answer our questions. While it is hard to draw
firm conclusions, theIII state generally requires higher embedding dimensions than
the II state. The more complicated phase space behavior encountered in the present
parameter range is resembled by a higher embedding dimension; the numberDemb is
seen to grow fast with decreasing values of the viscosity parameter onceν′ ≥ 283.3.
As such, it is not possible to produce completely unfolded phase portraits and once
more we have to be satisfied in general with a projection onto the(ω(t), ω(t + τ))-
plane.

Figure 3.19:Three-dimensional
embedding, forν′ = 316.6, in
(ω(t), ω(t+τ), ω(t+2τ))-space.
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Let us however, first look at a three-dimensional(ω(t), ω(t + τ), ω(t + 2τ)) embed-
ding of the pureII -attractor occurring atν′ = 316.6, in Figure 3.19. Note that the axes
are drawn at arbitrary levels, zooming in on the central area of the attractor. Here we
recognize, with some effort, in the dense area in the upper left-hand corner a structure
very similar to theCI -attractor observed in Figure 3.12(g) in the previous Section. This
structure is caused by the long intervals with laminarCI motion in theII state. Re-
markably, the connection between the laminar area and the surrounding cloud caused
by the violent bursts appears in the form of a very well-defined trajectory. This seems
to be a characteristic feature of theII motion, as it does not occur for the pureIII

state.
Even though the intermittent motions observed here are generally of higher dimension
than the systems discussed by Manneville and Pomeau, certain characteristics seem to
be similar. During the laminar motions of theCI cycle the system is close to an old at-
tractor, such that the system displays some kind of memory of its previous states. This
behavior was recognized by Manneville and Pomeau in their Lorenz model, where in-
termittent solutions possessed some memory of an old limit cycle. However, neither
of the two distinct types of intermittency observed in our computations can directly be
related to the three types of intermittency proposed in the Manneville-Pomeau theory.
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Figure 3.20: Close-up of a projection of the attractor onto the(ω(t), ω(t + τ))-plane, for
ν′ = 291.6 (a) andν′ = 333.3 (c). The corresponding Poincaré sections, (b) and (d), are slices
through(ω(t), ω(t + τ), ω(t + 2τ))-space.

Figures 3.20(a) and (c) display close-ups of the central part of the attractor for, respec-
tively, ν′ = 291.6 andν′ = 333.3. Not surprisingly, the pureIII -attractor, observed
for ν′ = 333.3, has a very different form as compared to the pureII -attractor in Fig-
ure 3.19. On the other hand, the mixedIM phase portrait in Figure 3.20(a) has some
features in common with theIII phase portrait, specifically the spider-web structure
in the central area of the projection, which is caused by the laminar part of theIII

motions. The dense ’blob’ of points in the upper right-hand corner is caused by theII

laminar motions, which are confined to a rather narrow region of phase space.
The corresponding Poincaré sections result from the crossing of trajectories in a three-
dimensional phase space embedding with a plane and are shown in Figures 3.20(b)
and (d). With some imagination a ’butterfly structure’ can be seen in Figure 3.20(b),
with the dense crossing caused by laminar motions forming the body and the outlying
crossings caused by the bursts forming the wings of the butterfly. Even though the sys-
tem atν′ = 316.6 is in a pureII state, the Poincaré section in that case has a similar
butterfly-like structure, but for the otherIM states this structure is lost.
In Figure 3.20(d) a diffuse parabolic curve can be distinguished. However, it cannot
be established beyond doubt whether this is truly a characteristic of the dynamics or
if the structure arises due to the incomplete unfolding of the Poincaré section. In low-
dimensional problems the part of a parabola falling below the bi-sectrix, shown in the
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Figure as a solid line, corresponds to brief intervals of laminar motion. Overall, the pic-
ture could correspond to the intermittency of the first type, as observed by Manneville
and Pomeau [90], where a real eigenvalue of the linearized Poincaré map crosses the
unit circle, but again, the high dimensionality of the problem prohibits firm conclu-
sions.

For the higher dimensional attractor found at parameter valueν′ = 350.0, Figure 3.21(a),
the spider-web structure has evolved beyond recognition. Here the thick column pro-
truding from the central region contains the laminarCI -like motions. A close-up for
ν′ = 400.0, Figure 3.21(b), shows this column and the very high density of phase space
points it contains more clearly.
From the Poincaŕe section atν′ = 350.0 andν′ = 400.0 (not shown) it is even less
straightforward to draw conclusions; again any occurring patterns of crossings could
be caused by incomplete unfolding rather than the dynamics.

Table 3.4: Control parameterν′, the system state, discrete delay(τ/δt) determining
min1(I(τ)), embedding dimensionDemb and the correlation dimensionDcorr.

ν′ state (τ/∆t) Demb Dcorr

283.3 CI 16 4 -
291.6 IM 33 6 2.7± 0.2
300.0 III 32 8 2.8± 0.2
316.6 II 26 5 4± 0.5
333.3 III 32 6 -
350.0 IM 48 10 3± 0.2
366.6 IM - - -
383.3 III 43 10 5± 0.5
400.0 IM 54 11 -
416.6 IM 51 5 3.5± 0.3
500.0 IM 51 6 -
583.3 CII 29 - -
666.6 ” 35 - -
833.3 ” 32 - -

As mentioned in Section 3.1.2, it may be impossible to obtain reliable estimates for
the correlation dimensionDcorr and the maximum Lyapunov exponentφmax if the
dimension of the system grows beyond certain limits for progressive values of the
control parameter. Indeed, we run up to this problem for the flows discussed in the
present Section. While the estimateDcorr = 3.6 was obtained for theCI motion at
ν′ = 266.6, no clear estimate is obtained for the same type of motion atν′ = 283.3.
Given that the embedding dimension remains unaltered, it can be assumed, however,
that the value ofDcorr will be close to the estimate atν′ = 266.6. On the other hand,
underν′ = 266.6 no value forφmax was obtained, whereas the system atν′ = 283.3
yieldsφmax ' 0.08. This latter value is comparable with the estimate for the famous
Rössler attractor, but much lower than that for the Lorenz attractor, which is close to
1.5, see Wolfet al. [152]. The first intermittent motions, encountered atν′ = 291.6
andν′ = 300.0, yield much lower correlation dimension estimates than their respective
embedding dimensions would suggest. However, noa priori expected values exist for
these states. Unfortunately it is thus not possible to relate our estimates to known val-
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Figure 3.21: Close-up of a projection of the attractor onto the(ω(t), ω(t + τ))-plane, for
ν′ = 350.0 (a) andν′ = 400.0 (b).

ues for different systems. Problems arise due to the dual character of the time series;
while the laminar motions may be low-dimensional the chaotic bursts may not, thus
’fooling’ the method applied to estimateDcorr. In terms of the quantityDcorr there is
no marked difference between theII andIII states, as far as the estimates are reliable.

Summarizing, while the Ruelle-Takens-Newhouse scenario guides the system from sta-
tionarity to low-dimensional chaotic solutions, it is a type of intermittency scenario that
moves the flow from low- to high-dimensional chaos. A complicated sequence of tran-
sitions leads the system from one type of intermittency to the next, where each phase
is associated to a different pattern in phase space.

3.6 Stability analysis

Computational resolution

To determine the influence of variations in the computational resolutionN on the ob-
served phenomenology, a series of simulations was executed with constant time step
δt = 0.000135 and increasing spatial resolution. As before, the forcing parameters are
fixed atA0 = 0.05 andkf = 6, whereas the bifurcation parameter equalsν′ = 250.0,
which is in the regime of double-periodic solutions. Increasing the value of the com-
putational resolution in each direction fromN = 129 to N = 257, Table 3.5 lists
the measured value of the fundamental frequencies. While no variation is recorded in
f0, the value of the second frequency,f1, is overestimated for the lowest resolution
N = 129. Within the resolution of the power spectrum the higher resolution computa-
tions seem well-resolved.

Forcing wavenumber

Although the route to chaos was treated as a one-parameter problem in the previ-
ous Sections, it is essentially a two-parameter problem, where different transition se-
quences may be found if the position in(kf , ν)-space is altered. In this respect, it was
already observed by Tabelinget al. [134], that a different number of driven vortices in
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Table 3.5:Fundamental frequencyf0 for each computational resolutionN .

N 129 161 181 201 217 257
f0 1.643 1.643 1.643 1.643 1.643 1.643
f1 0.540 0.510 0.509 0.510 0.510 0.510

a quasi 2D flow of large aspect ratio may lead to a different route to chaos. Hence, we
briefly consider the transition sequence that can be observed if the forcing wavenumber
is changed tokf = 4, keeping the amplitude fixed atA0 = 0.05. The forcing mecha-
nism now consists of 16 driven vortices of alternating sign, arranged in a linear array.
Again, the phenomenology is dominated by a large circulation cell and the transition
sequence to low-dimensional chaos consists of periodic and quasi-periodic motions.
However, the fundamental frequencies associated to these motion are different from
the situation forkf = 6 and the transitions are found at different values of the kine-
matic viscosity. E.g., if one defines once more the control parameterν′ = (1/kfν), at
ν′ = 200.0 one now findsQP2 motion withf0 = 2.209 andf1 = 1.133, as opposed
to the valuesf0 = 1.416 andf1 = 0.453, found forν′ = 200.0 underkf = 6.

Initial condition

To test the stability of the observed time-dependent solutions with respect to small ini-
tial perturbations, the initial conditionω0(x) = 0 was replaced by a Gaussian white-
noise vorticity field of amplitudẽa. These tests were executed for control parameter
ν′ = 250.0, with forcing parametersA0 = 0.05 andkf = 6, computational resolution
N = 181 and time stepδt = 2.7× 10−4.

The main consequence of the random initial conditions is a breaking of theZ2 sym-
metry in the vorticity field. Once such a symmetry-breaking has occurred the system
may, however, return to a nearly symmetric flow field at a given moment during the
evolution, depending on the strength of the initial perturbation. Figure 3.22(a) and (b)
show contour plots of the vorticity field prior to and just after a symmetry breaking
becomes visible in the entire domain.

(a) (b)

Figure 3.22:Iso-vorticity contour plots revealing forν′ = 250.0 andã = 0.01, before (a) and
after (b) aZ2 symmetry breaking becomes visible in the entire flow field. Contour lines range
between -30 and 30 with an interval of 3 and negative values are represented by dashed lines.
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So let us discuss the encountered phenomenology for increasing values of the sec-
ond control parameter̃a. The end state for parameter valueã = 0.0, already discussed
in Section 3.4, is aQP2 motion, a quasi-periodic motion with two incommensurate
frequencies, one atf1 = 1.076 and one atf0 = 0.509. However, for parameter value
ã = 0.0001, theZ2 symmetry is broken during the transient state, which lasts up to
t ' 300, after which the system returns to a nearly symmetric state and enters a stable
QP2 motion. The largest base frequency equals againf1 = 1.076, but contrary to the
case for̃a = 0.0 a long-time undulation is now present atf0/9. Hence, while the sys-
tem seems to behave rather different under influence of the initial perturbation, several
of its spectral characteristics are surprisingly well-preserved.
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Figure 3.23:Phase portraits forν′ = 250.0 and ã = 0.0 (a), ã = 0.0001 (b), ã = 0.001 (c)
and ã = 0.01 (d), projected on the(ω(t), ω(t + τ))-plane.

On the other hand, it is interesting to compare the phase portrait forã = 0.0001, Fig-
ure 3.23(b), with the phase portrait forã = 0.0, Figure 3.23(a). While the delay is
roughly equal to the delay in the unperturbed system,τ = 25δt, the phase portrait is
dramatically different.
If the second control parameter is increased tenfold toã = 0.001, the flow moves from
one large-scale instability to the next with laminar phases in between, similar to the
unperturbed system in the intermittent stateII . Accordingly, the phase portrait reveals
a complicated motion through phase space, where trajectories spiral around a core of
laminar motions, Figure 3.23(c). The effect of an increase in one control parameter is
thus quite profound; the system has moved towards a state of motion similar to that
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encountered for̃a = 0.0 andν′ = 316.6. In the vorticity field the instabilities cause
symmetry breaking, but during the laminar phases the flow is nearly symmetric; the
initial noise is not strong enough to force a definite change.

The evolution for̃a = 0.01, is again spectacularly different from the evolution starting
with zero initial conditions, breaking ofZ2 symmetry takes place at an early stage,
aroundt ' 100, when the random irregularities contained in the initial condition have
been sufficiently amplified by the dynamics. A close-up of the phase portrait is shown
in Figure 3.23(d), revealing a core in the phase space projection where the motion fol-
lows a complex pattern.

Further discussion

As a one-parameter problem the route to high-dimensional chaos was found to con-
sist of two parts. A Ruelle-Takens scenario takes the flow from stationary to low-
dimensional chaotic motions, after which intermittent behavior dominates the transi-
tion to high-dimensional chaos. A problem with the applied DNS techniques is that the
continuous parameter space can only be explored in discrete steps. Different behavior
may live under intermediate values of the control parameter and the precise position of
the critical parameter values, at which bifurcations take place, is not possible. On the
other hand, unlike a (severely) truncated computational model, a DNS yields Navier-
Stokes solutions.
If the purely 2D computations are to be compared with quasi 2D laboratory experi-
ments, it should be kept in mind that the sensitive dependence on the initial conditions
(as shown in the present Section for small random disturbances in the initial flow field)
may influence the actual transition sequence. Small, random initial fluctuations are
thought to be unavoidable in laboratory experiments, which may result in a signifi-
cantly different phase space behavior.





Chapter 4

Evolution of integral quantities

Civilization begins with order, grows with liberty, and dies with chaos.
Will Durant (1885 - 1981)

4.1 Introduction

If a fluid is brought to motion by the stochastic forcingq(t,x), described in Section 2.2,
a wholly different flow is created as compared to the flows resulting from the steady
stirring forces applied in the previous Chapter. As remarked by Robinson [114], the
solution of the vorticity equationω(t,x) at timet > t0 now depends on all times fol-
lowing the initial timet0 and the global attractorA is no longer a well-defined object.
In this setting we analyze the phenomenology in terms of the most important integral
quantities, discussed earlier in Section 1.3. Although the resulting flow is of low to
intermediate Reynolds number, it nonetheless displays a turbulent character.
A major problem in the case of a bounded domain equipped with no-slip walls, is
the lack ofa priori control over the asymptotically averaged enstrophy dissipation,χ,
due to the production of vorticity at the no-slip walls. Simultaneously, this vorticity
production alters the flow phenomenology completely, as compared to turbulence on
a double-periodic domain, as vorticity carrying boundary layers are created near the
walls.

Spontaneous spin-up

The difference between turbulence in a no-slip domain and flows on a double-periodic
domain is perhaps most pronounced if one considers the global angular momentum,

L(t) :=
∫

Ω

(r ∧ u(t, r)) · e3dA, r ∈ Ω (4.1)

wherer = (x, y) and unit vectore3 ⊥ Ω ⊂ R2. This quantity is irrelevant on a
double-periodic domain, whereas it is intricately linked to the phenomenology on a no-
slip domain. In decaying turbulence in the square domainD, a sudden growth to peak
values of the angular momentum may occur. The phenomenon is a consequence of the
self-organization of the flow into a single huge vortex structure and is known as spon-
taneous spin-up, described by Clercxet al. [25] and Maassenet al. [86]. Spontaneous
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in this case refers to the fact that the observed phenomenology is an inherent charac-
teristic of the turbulence itself, independent of the initial conditions. Kraichnan [74]
predicted this type of behavior in the presence of a finite domain-size and used the
term Bose-Einstein condensation, referring to the condensation of energy in the lowest
accessible wave number mode. Sommeria [129] made early experimental observations
of the phenomenon, followed by Paret and Tabeling [107] and Maassenet al. [86]. The
spin-up phase is followed by a slow decline of the absolute value of the global angular
momentum,|L(t)|, ast →∞, caused by viscous dissipation.

In this Chapter it is shown that spin-up-like phenomena may also be observed if the
time-dependent forcingq(t,x) is applied to generate a two-dimensional fluid flow from
a set of zero initial conditions,ω0(x) = 0. Here, the Reynolds number, denoted asRe∗,
is based on the time-averaged root-mean-square velocity scaleU = (1/d) 〈‖u‖2,D〉,
achieving a value on the order ofRe∗ ' 3000. For these stochastically forced flows,
the phenomenology during a spin-up event is again dominated by the generation of a
large circulation cell, occupying most of the interior of the domain. However, con-
trary to the decaying case, in the forced flow several consecutive events occur of rapid
build-up and collapse of the circulation cell, where a spontaneous sign reversal of the
angular momentum of the flow is possible from one event to the next. Each collapse
of the cell is caused by the destabilizing effect of intense boundary layers and is asso-
ciated to a decrease in the value of the absolute angular momentum. Consequently, the
evolution of other relevant integral quantities, such as the energy,E(t), or enstrophy,
Z(t), is strongly influenced by the spin-up events. Shear and normal stresses exerted
on the fluid, resulting from the interaction of the emerging central cell with the do-
main boundaries are thought to cause the spin-up phenomenon in the decay scenario
[25, 26, 86], which is confirmed in the forced case.

The flow grows to large-scale order, lives relatively undisturbed for some time and
then dies with a collapse back to disorder, after which a new phase of growth may
begin. There seems to be an analogy with convection systems. The spontaneous sign-
reversals of a large circulation cell are similar to the spontaneous sign-reversals of a
feature known as ’the wind’ in confined thermal convection, described by Niemelaet
al. [97], see also the review article by Kadanoff [66]. However, while these authors
speculated upon the cause of the observed large-scale instabilities, the definite cause
was not established. Our computations suggest it is the viscous boundary layers that
play a crucial role in these issues.
Furthermore, the production of vorticity in viscous boundary layers, due to the no-
slip boundary condition, serves as a natural energy dissipation mechanism, as was ob-
served earlier for the initial energy dissipation in decaying flows on a circular no-slip
domain by Liet al. [79]. Our observations highlight a sharp difference with continu-
ously forced flows in a double-periodic domain, where often some kind of additional
energy dissipation is applied to achieve a stationary energy balance, as, e.g., the Ekman
damping applied by Maltrud and Vallis [87] or the hypo-viscosity operator applied by
Borue [15], where an inverse dissipation operator is added to the equations of motion
with ν∆−p, for p = 4, 6, 8, . . ..

An intriguing property of the spin-up state is an approximate similarity behavior of
E(t) and|L(t)|, enabling the definition of a global energy saturation time. If this time
approaches unity the kinetic energy of the flow is mainly carried within a large circula-
tion cell, away from the dissipative scales of motion, from which one derives the usual



4.1 Introduction 63

turbulence time scaleτ based upon the ensemble-averaged enstrophy dissipation [102].
Certain bounds on the velocity and vorticityL2-norms must be fulfilled to obtain the
afore mentioned equality. Associated with the energetic upper bound, a domain-sized
uniform rotation plays a special role as limiting process. The energy saturation time is
subsequently shown to exhibit a scaling behavior withτ and, on the other hand, with
the integral-scale Reynolds number.

Chapter outline

The phenomenology of intermediate Reynolds number flows, driven by a stochastic
time-dependent forcing, is discussed in Section 4.2. Bounds on an instantaneous energy
saturation time and its averaged version are derived and shown to be obeyed in the
computational results in Section 4.3.
Coupling back to earlier work on decaying flows in different no-slip domains, we derive
several evolution inequalities which the domain integrated angular momentum should
satisfy and combine these inequalities with scaling ideas in Section 4.4. Finally, we
briefly discuss the difference of the phenomenology on a no-slip domain with that on a
double-periodic domain in Section 4.5.
Because the behavior ofL(t) is such an important indicator of the phenomenology, we
first discuss the evolution balance of the angular momentum, before proceeding with
the analysis of computational results.

4.1.1 Angular momentum balance equation

Using generalized partial integration and the no-slip boundary condition it can be
shown that an equivalent definition ofL(t) exists in terms of the vorticity,ω(t, r),
on the bounded domainΩ ⊂ R2,

∫

Ω

xv(t, r)− yu(t, r) dA = −1
2

∫

Ω

r2ω(t, r)dA, r ∈ Ω (4.2)

wherer = |r|. A balance equation forL(t) can be derived, using either the right hand
side of equation (4.2) and the vorticity equation, see e.g. Saffman [123], or definition
(4.1) and the primitive variable Navier-Stokes equations. Let us stick to the former,
obtaining

L̇(t) = −ν

2

∫

Ω

r2∆ωdA− 1
2

∫

Ω

r2qdA.

Observe that, forΩ = D and by generalized partial integration, the last line can be
reworked further into

L̇(t) = −ν

2

∮

∂D

r2 ∂ω

∂n
ds− ν

∫

D

r · ∇ωdA− 1
2

∫

Ω

r2qdA. (4.3)

Renaming the third term in the right hand side of balance (4.3) toM(t), we substitute
the expression

q(t, r) =
∑

a≤|k|≤b

q(t,k)eık·r,
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to obtain

M(t) = − 1
2

∑

a≤|k|≤b

∫

D

(x2 + y2)q(t,k)eik·rdA. (4.4)

Using the classical integration-by-parts formula one obtains, withD = [−1, 1]2,
∫

[−1,1]2

x2eı(k1x+k2y)dA =
(

2
k2

sin k2

)[(
2
k1
− 4

k3
1

)
sin k1 +

4
k2
1

cos k1

]
,

which can be rewritten in terms of spherical Bessel functions of the first kindjn(k),
for n = 0 andn = 2, see e.g. Arfken and Weber [5], such that one finds

M(t) = −
∑

a≤|k|≤b

q(t,k)
2∑

i, j = 1
i 6= j

2
3
j0(ki) (j0(kj)− 2j2(kj)) .

From computational results the torque was found to be an order of magnitude smaller
than the change in angular momentum,|M(t)| ¿ |dL(t)/dt|, and the correlation
between these quantities was found to be insignificant. Henceforth, the evolution of
L(t) is assumed to be independent of the torqueM(t) associated to the external forcing
and any occurring spin-up is indeed spontaneous.

4.2 Phenomenology

A time series of the normalized angular momentumL′(t) during aRe ' 3000 com-
putation, with other parameters as given in Table 4.1, is shown in Figure 4.1. The
normalized quantity equals

L′(t) :=
L(t)

‖r‖2,D‖u‖2,D

where the denominator equals the angular momentumLu(t) of a uniform rotation with
kinetic energyE(t). The spin-up effect is clearly recognizable and the global rota-
tion associated with peaks in|L′(t)| changes sign spontaneously several times, as in,
e.g., the intervalt ∈ [800, 1000]. It is mainly the viscous normal vorticity gradient,
integrated over∂D in balance (4.3), that drives the spin-up effect. This corresponds
to observations of spin-up of turbulent flow, decaying from a set of random initial
conditions under no-slip boundary conditions inD [25]. The spin-up is caused by
self-organization of the flow into a large vortex structure. A similar self-organization
process is observed for decaying flows [25, 26, 86], but here the initial stage of spin-up
may include a large number of smaller eddies superimposed on a background rotation
of specific sign. However, due to the continuous forcing of the flow, increasing the
energy of the large vortex structure, the configuration is unstable and eventually breaks
down. The break-down process is catalyzed by the viscous boundary layers, which
are created at the domain walls. As these boundary layers detach from the wall and
interact with the flow in the interior, the central vortex is destabilized and collapses,
causing a rapid decrease of the quantity|L′(t)|. In the resulting irregular flow another
vortex core, possibly with opposite-signed vorticity, may become the new focus for
self-organization. In Figure 4.2 three consecutive vorticity snapshots show a break-
down and a subsequent reappearance, with opposite sign, of a large coherent structure.
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Re∗ ν U A0 R ∆t N
3000 5.0× 10−4 1.5 6.0 0.98 3.4× 10−4 161
5000 2.0× 10−4 1.0 1.0 0.98 1.35× 10−4 257

Table 4.1:Model parameters as used in the computations, grouped in flow parametersRe∗, ν
and flow scaleU , forcing parametersA0 andR and the time step∆t and spatial resolutionN ,
which is equal in both directions. All computations run up toT = 1000.

Corresponding to the snapshots in Figure 4.2,L′(t) is positive att = 800, negative at
t = 1000 and close to zero during the highly irregular motion att = 900. Note that
the Figures are shown in dimensionless simulation time units. One could reformulate
time in terms of a turnover time of the largest eddies,Te, which is defined by means of
the maximum measured root-mean-square velocity and the half-width of the domain,
d/2,

Te =
2

d max
t
‖u‖2,D

.

As such, the computations shown in Figure 4.1 run up to300Te.

The global phenomenological picture is in sharp contrast with observations of forced
2D turbulence on a double-periodic domain. There the usual end state is a domain fill-
ing dipole structure, which was first observed in DNS by Hossainet al. [64] and later
by Smith and Yakhot [127, 128]. Strong deviations from the double-periodic setting,
due to the presence of boundary layers, were already observed by Liet al. [79], in the
case of decaying flow on a circular no-slip domain. These authors noted the change
in early-time dissipative properties of the flow, under the action of boundary-layer de-
velopment. For the forced, wall-bounded flows considered here, it is found that the
no-slip walls provide a natural energy dissipation mechanism, as the kinetic energy of
the flow did not diverge during our computations (see Figure 4.4). The boundary lay-
ers are sources of opposite-signed vorticity, as compared to the central vortex. Hence,
these structures are sources of enstrophyZ(t), which is proportional to the destruction
term in the global energy balance, see also Section 1.3,

Ė(t) = −2νZ(t) + (f ,u), (4.5)
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Figure 4.1:Evolution of the normalized angular momentumL′(t), showing distinct phases of
spin-up.
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where the inner product term in the right-hand side represents the energy input due to
the forcing. Thus the boundary layers enhance dissipation properties of the flow in
two ways; by production ofZ(t) on one hand and by causing instability of the central
vortex on the other hand.

(a) t = 800 (b) t = 900 (c) t = 1000

Figure 4.2:Snapshots of the vorticity evolution during the sign reversal of a large monopolar
vortex structure forRe ' 3000, with vorticity levels ranging fromω < −5 (black) toω > 5
(white).

To obtain a more precise description of the encountered coherent structures, the Weiss
function Qw(t,x) is used [150]. This is essentially the Jacobian determinant of the
velocity gradient tensor,

Qw(t,x) := −4 det(∇u).

Depending on the sign ofQw(t,x) regions in the flow are interpreted as either hyper-
bolic,Qw(t,x) > 0, or elliptic,Qw(t,x) < 0. BecauseQw(t,x) equals the magnitude
of the squared rate of strain minus the squared vorticity,Qw(t,x) = 2(|∇u|2 − ω2),
flow behavior is assumed to be strain-dominated in hyperbolic regions and vorticity-
dominated in elliptic regions, corresponding to coherent structures, whereasQw(t,x) =
0 denotes the separatrix between the former two. Care should however be taken with
respect to the validity of this interpretation throughout the flow, as was argued by Bas-
devant and Philipovitch [9] and earlier by Weiss [150]. The main assumption that∇u
should vary slowly with∇ω, implying that the vorticity gradients are determined lo-
cally by the eigenvalues of∇u and allowing a characterization in terms of hyperbolic
and elliptic behavior, seems to be satisfied only in vortex cores and so-called saddle
points. Henceforth, the area of applicability ofQw(t,x) is sharply reduced.
Corresponding to the snapshots of Figure 4.2, three snapshots ofQw(t,x) are pre-
sented in Figure 4.3. Clearly, att = 800 and t = 1000 the elliptic vortex core is
surrounded by strain-dominated flow, whereas the roll-up of boundary layers in the
corners creates small secondary vortices. The remains of a large elliptic core occupy
the lower right quadrant att = 900, at whichL(t) ' 0. During this phase the influ-
ence of the forcing is more pronounced, as is visible in the presence of small, relatively
weak elliptic structures throughout the flow. The observations above seem to comple-
ment the experimental results by Paret and Tabeling [107], in which a large circulation
cell dominated the flow in electromagnetically driven thin fluid layer experiments. Fol-
lowing the theoretical predictions by Kraichnan [74], this type of flow was referred
to as a condensation regime, suggesting that it occurs when an energy cascade from
smaller to larger length scales reaches the domain sized in a finite domain. Due to the
loss of stratification in the experiments caused by three-dimensional mixing effects,
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(a) t = 800 (b) t = 900 (c) t = 1000

Figure 4.3:Contour plots of the Weiss functionQw(t,x), corresponding to Figure 4.2. Dashed
lines representQw(t,x) < 0, solid linesQw(t,x) > 0 and contour increments in all plots are
10.

the duration of the experiments was limited and it remained unclear what the long time
evolution of the condensation regime would be. Although the formation mechanism for
such a circulation cell is poorly understood, our observations suggest that the viscous
boundary layers play a crucial role in its development. Henceforth, stability of this type
of flow seems, even for modestRe, very unlikely under the action of a time-dependent
forcef(t,x) in a domain equipped with the no-slip conditions.

On the contrary, it was shown in the previous Chapter that if a time-independent forc-
ing f(x) is applied, statically forcing the wave numberkf = 6 for ν = 1/2000, a
global circulation cell appears and remains stable for long times,T > 103. Such a
stationary forcing mechanism closely resembles the laboratory experiments by Som-
meria [129] and the computational results confirm his experimental observations in the
limit Rh →∞ (no bottom friction), whereRh is an inverse bottom friction parameter.
In this case it is thought that the local structure off(x) prevents a destabilization of the
flow, leaving the central cell largely intact. However, it was also argued in the previous
Chapter that if initial noise is present, as is likely to be the case during a laboratory
experiment, symmetry breaking may eventually occur, possibly leading to a different
flow regime. The value of the viscosity parameter plays an important role in these is-
sues, where stability of the central circulation cell becomes less likely for decreasing
values ofν.
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4.3 Similarity regime

A simple physical idea follows from the observation that the energy scales with velocity
squared, and the absolute angular momentum scales with a finite length times velocity,

E(t) ∝ U2, |L(t)| ∝ `U.

Hence, on dimensional grounds, one can define the time

γ :=

∣∣∫
D r2ω(t, r)dA

∣∣
‖u‖22,D

, (4.6)

whereγ = O(1) implies a strong similarity in the evolution ofE(t) and|L(t)|, which
seems to coincide with a self-organization of the flow into a large vortex structure.
After some transient behavior, this similarity regime indeed occurs in the computational
data, as can be seen in the upper graph of Figure 4.4. More clearly, it follows from
the evolution ofγ, shown in the lowest graph in Figure 4.4. After some transient
behavior, which is omitted in the graph, the value ofγ in the computational results
seems bounded close to unity. Indicating approximate similarity in the evolution of
E(t) and|L(t)|, this seems to coincide with flow self-organization in the interior ofD,
into a coherent vortex structure. Furthermore, assuming thatE(t) remains finite, as is
the case in our computations,γ → 0 refers to the irregular behavior associated to the
break-down and possible sign reversal of this coherent vortex. If one demands thatγ
is a constant of the order unityγ = O(1), some bounds on the energy and enstrophy
should be fulfilled to meet this requirement; let us cast these bounds in the form of a
lemma

Lemma 4.3.1. If γ ∈ R a constant of order unity, one must have

‖u‖2,D ≤
√

2C0(D) and ‖∇u‖2,D >
√

2C1(D) (4.7)

for domain-dependent constantsC0(D) ' 5.3 and C1(D) ' 26.3, settingλ1 =(
2π2/d2

)
.

Suppressing the proof of lemma 4.3.1 until the following Subsection, both bounds are
seen to be crudely satisfied in Figure 4.4, whereC1(D) is indicated in the lower graph,
whereasC0(D) lies outside the scale of the upper graph. It can be shown that the
uniform rotation

uu(x) =
2
γ

(−y, x), for x ∈ D, γ = 1,

has a global kinetic energy which is exactly equal toC0(D). However, such a flow is
not compatible with the no-slip condition, which demands thatuu(∂D) = 0. Hence,
γ is no longer close to unity whenE(t) → C0(D), which is confirmed in the upper
graph of Figure 4.4, where the energy in the similarity regime is bounded well below
C0(D).
Clercxet al. [26] noted that on a circular domainC, for a given energy,L(t) is max-
imized under uniform rotation. Consequently, the amount of spin-up in forced turbu-
lence onC was expressed as a percentage of the angular momentum in uniform rotation.
For the computational results presented above, uniform rotation contained in the largest
circular sub-domainBR ⊂ D, where the radiusR is slightly smaller than(d/2), seems
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Figure 4.4:Similarity in the behavior of the kinetic energy (solid line) and the absolute angular
momentum, shifted to|L(t)|+ 2, (dotted line) in the upper graph. The dashed line corresponds
to the constantC0(D) of lemma 4.3.1. The middle graph shows the enstrophy (solid line) and
the constantC1(D) of lemma 4.3.1, (dashed) where we setλ1 = (2π2/d2). The lower graph
displays time scaleγ, omitting transients, where the dashed line corresponds to the equality
E(t) = |L(t)|.
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(a) t = 800 (b) t = 900 (c) t = 1000

Figure 4.5:Normalized stream function contour plots, corresponding to the snapshots in Fig-
ures (4.2) and (4.3). Contours range from -1 to 1 with an interval of 0.1 and dashed lines
represent negative values.

to be a reasonable first-order approximation at times with strong spin-up of the flow.
As shown in three consecutive contour-plots in Figure 4.5, the stream functionψ(t,x)
is nearly circular att = 800 and, albeit slightly weaker, att = 1000. These plots bear a
strong resemblance with the stream function in the maximum entropy state in decaying
turbulence, under zero-viscosity (ν = 0), as obtained by Pointin and Lundgren [109],
and later by Chavanis and Sommeria [22], for a bounded square domain.

It is perhaps surprising that the lower bound in lemma 4.3.1 is on the enstrophy rather
than the energy. However, this bound can be interpreted as a critical value for the
strength of the large coherent structure, which should be attained before the similarity
regime can occur.

Geometrical bounds onE(t) andZ(t)

We explain the results of lemma 4.3.1, under the assumptionγ = O(1), beginning with
a general lemma, for a bounded domainΩ.

Lemma 4.3.2. For r ∈ Ω and constantλ1 > 0 the following inequalities hold

|L(t)| ≤ ‖r‖2,Ω‖u‖2,Ω (4.8)

2|L(t)| ≤ ‖r‖24,Ω‖ω‖2,Ω (4.9)

2|L(t)| ≤ λ
−1/2
1 ‖r‖24,Ω‖∇ω‖2,Ω. (4.10)

Proof of Lemma 4.3.2.Observe first that

|L(t)| ≤
∫

Ω

|(r ∧ u) · e3|dA ≤
∫

Ω

|r||u|dA ≤ ‖r‖2,Ω‖u‖2,Ω,

establishing (4.8) while using a property of the absolute value of the exterior product
and the classical Schwarz inequality. With the vorticity formulation for the angular
momentum andr = |r|, one can apply the Ḧolder inequality,

2|L(t)| ≤
∫

Ω

|r2ω(t, r)|dA ≤ ‖r2‖p,Ω‖ω‖q,Ω. (4.11)
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For p = q = 2 one has inequality (4.9), a mere application of the Poincaré-Friedrichs
(P-F) inequality of Section 1.2.2 yields the other desired result (4.10), noting that
‖r2‖2,Ω = ‖r‖24,Ω.

Now we are ready to proceed with a proof of our bounding constants in the domainD.

Proof of Lemma 4.3.1.With (4.6) one can replace|L(t)| by γE(t) in inequality (4.8),

γ

2
‖u‖22,D ≤ ‖r‖2,D‖u‖2,D

divide both sides by(γ/
√

2)‖u‖2,D and square the result, to obtain

E(t) ≤ C0(D) =
2
γ2
‖r‖22,D,

where‖r‖22,D = (d2/
√

6)2, such thatC0(D) = (16/3)(1/γ)2(d/2)4 and whered is
the domain length, confirming the first inequality of lemma 4.3.1.

Next, we argue that the enstrophy,Z(t), should be greater than a second domain de-
pendent constant. Starting with the observation that, with the P-F inequality, one could
obtain either

E(t) ≤ 2
γ2
‖r‖22,D ≤ λ−1

1 Z(t), (4.12)

or

E(t) ≤ λ−1
1 Z(t) ≤ 2

γ2
‖r‖22,D,

neither of which can be excluded beforehand. Let us, however, continue with the last
line, rewriting it as

‖ω‖2,D ≤ 2λ
1/2
1

γ
‖r‖2,D.

Now, we apply this line to the inequality (4.9) of Lemma 4.3.2,

|L(t)| ≤ 1
2
‖r‖24,D‖ω‖2,D ≤ λ

1/2
1

γ
‖r‖2,D‖r‖24,D.

As a last step we use our scaling relation (4.6) and replace|L(t)| by γE(t) in the last
line, ending up with

E(t) ≤ λ
1/2
1

γ2
‖r‖2,D‖r‖24,D,

which is inconsistent with our earlier bound on the energy. So we should prefer relation
(4.12), obtaining instead a lower bound on the enstrophy

Z(t) ≥ C1(D) =
2
γ2

λ1‖r‖22,D.
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4.3.1 Asymptotic scaling

Turning our attention once more to equality (4.6), we are interested in the average

γ̃ := lim
T→∞

1
T

T∫

t0

2|L(t)|
‖u‖22,D

dt, 0 < t0 < T ≤ ∞, (4.13)

wheret0 can be chosen for convenience to exclude initial transients. Phrased differ-
ently, γ̃ is a characteristic time for the similarity regime of energy and angular momen-
tum. Thus if the value of the similarity time is on the order of unity,γ̃ = O(1), a
situation is achieved where the energy is, on average, carried by a global rotation. For
the computational data in Figure 4.4 the estimate isγ̃ ' 1.18.

Danilov and Gurarie [32] remarked that 2D turbulence is a multi-scale phenomenon,
roughly characterizable by a well-separated enstrophy saturation timeτ and a corre-
sponding time for the energy saturation. It is generally assumed thatτ is the most
relevant time characterizing the flow dynamics in the direct enstrophy cascade regime
[102]; from dimensional arguments it follows from the enstrophy dissipation asτ ≡
χ−1/3, see also Section 1.3. However, a logarithmic correction may be necessary,
based on corrections applied to the spectrum in the direct cascade part of the inertial
range by Kraichnan [75],

τ ≡ χ−1/3 ln `f/`χ,

where`χ denotes the viscous dissipation length and`f the forcing length.
Now it is tempting to compare the time for the similarity regimeγ̃ with the enstrophy
saturation timeτ . When the phenomenology is dominated by a large circulation cell,
see Section 4.2, integral flow properties like the energy,E(t), and angular momentum,
L(t), are thought to be carried by scales that are much larger than`χ. Thus it is ex-
pected from physical reasoning thatγ̃ À τ , as was assumed by Danilov and Gurarie
[32] for τ and the energetic saturation time scale. Indeed, it can be shown that there
exists a lower bound relation betweensup γ̃ andτ , which is, however, less pronounced
than physical intuition suggests.
Before we proceed we should make an important preparation, assuming that station-
ary statistical solutions to the problem exist, such that the ensemble average ofL2-
norms remains finite, see Section 1.2.2. Replacing time averages with these ensemble-
averages, note that, from equation (4.13) one obtains

sup γ̃ ≥
∫

2‖r‖2,D
‖u‖2,D

dµ(u) ≥ 2λ1‖r‖2,D

∫
‖∆u‖−1

2,Ddµ(u),

where the Poincaré-Friedrichs inequality was applied twice. Upon noting that the func-
tion g(x) = x−1 is convex forx ≥ 0, i.e. g′′(x) > 0, the Jensen inequality, stating
that〈g(x)〉 ≥ g(〈x〉), may be applied. Subsequently applying the Schwarz inequality
yields, respectively,

∫
‖∆u‖−1

2,Ddµ(u) ≥
( ∫

‖∆u‖2,Ddµ(u)
)−1

≥
( ∫

‖∆u‖22,Ddµ(u)
)−1/2

.

Using that‖∆u‖2,D = ‖∇ω‖2,D and applyingτ−3 = ν〈‖ω‖22,D〉, with the last line
one obtains a scaling relation betweenτ andsup γ̃, involving only domain-dependent
constants,

sup γ̃ ≥ 2λ
3/2
1 ‖r‖2,Dν1/2τ3/2. (4.14)
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Forν = 1/2000, the scaling (4.14) is compared with computational data in Figure 4.6.
However, for the computational data ordinary time-averages were taken and the precise
relation of these quantities with respect to the ensemble average is unclear. The result
(4.14) does not seem to satisfy the initially expectedγ̃ À τ . It is thought, however,
that the complex interaction of the largest scales of motion with the dissipative scales,
during a collapse of the large monopolar vortex, makes the average characteristics of
these extremes no longer well-separated throughout the flow-evolution. Hence, it is not
likely that a sharper bound linking̃γ andτ than the bound (4.14) can be obtained.

Figure 4.6: Lower bound relation
(4.14), between the enstrophy dissipa-
tion timeτ and the eddy-turnover time
γ, where we putλ1 = (2π2/d2) (solid
line) and computational data (circles)
in a log-log plot, for ν = 1/2000.
Each marker represents one computa-
tion, under slightly different forcing-
parameter values.
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Finally, it should be noted that one can also derive a lower bound onsup γ̃ in terms
of the generalized Grashof number̃Gr, introduced in Section 2.2. Recall from Sec-
tion 1.3 that, by a standard calculation [50], one obtains the energy inequality

d
dt
‖u‖2,D + νλ1‖u‖2,D ≤ ‖f‖2,D,

where the P-F inequality was used in the left-hand side and the Schwarz inequality in
the right-hand side. Hence, one obtains

〈‖u‖2,D〉 ≤ 1
νλ1

〈‖f‖2,D〉, (4.15)

where the brackets〈·〉 denote ensemble averaging. Now one has, by definition (2.10),
the sequence

sup γ̃ ≥ 2‖r‖2,D
〈‖u‖2,D〉 ≥

2νλ1‖r‖2,D
〈‖f‖2,D〉 , (4.16)

a lower bound onsup γ̃ entirely in terms of external control parameters, assuming that
the average of the forcing is controllable. In computations, equality in the lower bound
(4.16) will not be achieved, because the value ofγ̃ is assumed to be on the order of
unity, γ̃ = O(1), whereas the right hand side of inequality (4.16) is on the order of the
kinematic viscosity,O(ν).
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4.4 Angular momentum scaling and inequalities

Scaling on a circular domain

In this Section we briefly step away from the main topic of forced flows in a square
domain, to examine the angular momentum scaling behavior for a decaying flow in a
circular no-slip domain. The torque of a fluid in a circular tankC of radiusR containing
a fluid spinning at angular velocityΩ0, in terms of the Reynolds number,Re, and
the generalized Grashof number,Gr. Using the traditional Prandtl estimate on the
thickness of the viscous boundary-layer,

δbl ' (ν/Ω0)
1/2

,

see, e.g., Landau and Lifschitz [76]. The torque of the fluid equals

L̇(t) = νR

2π∫

0

ω(∂C)ds,

where we can obtainω(∂C) from the Prandtl estimate and the fact that the total circu-
lation of the flow, defined as

Γ =
∫

C

ωdA,

must equal zero. Becauseω = Ω0, one has for the circulation in the interiorΓint and
for the circulation in the boundary layerΓbl, with Γ = Γint + Γbl = 0 andΓint =
πR2Ω0, that

Γbl = −πR2Ω0 = ω(∂C)π
∫ R

R−δ

rdr.

Disregarding terms involvingδ2, one obtains thatω(∂C) ∼ −RΩ0/δ, which leads to

L̇(t) ∼ 2πR2Ω3/2
0 ν1/2,

or, with Re ∼ RU/ν andU = Ω0R/2, to

L̇(t) ∼ ν2R−1Re3/2. (4.17)

Summarizing, the dimensional analysis tells us thatL̇(t) scales with a constant of order
O (

ν1/2
)
.

Now we return to the global angular momentum balance, assuming that the external
forces are either not present or do not result in a net contribution to this balance, leav-
ing us again with

L̇(t) = νR

∫

∂C

ω(t, r)ds.

Note that the pressure contribution is zero on the boundary∂C, as the innerproduct
(r · ds) vanishes at∂C.
Recall from Section 1.2.2 the spacesLp(∂C), equipped with norms‖ · ‖Lp(∂C). Recall
also from Section 1.2.2 the Sobolev trace embedding theorem, see also Adams [2],
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yielding the immersionW 1,2(C) ↪→ L2(∂C). For the constantC0 this embedding
theorem allows us to relate the norms onL2(∂C) andW 1,2(C) through the inequality

‖ω‖2,∂C ≤ C0

(‖ω‖22,C + ‖∇ω‖22,C
)1/2

.

Observe furthermore that, by a property of the spacesL1(∂C) andL2(∂C), one has
‖ω‖1,∂C ≤ ‖ω‖2,∂C . So let us pursue the following line of thought

νR

∫

∂C

ω(t, r)ds ≤ νR‖ω‖1,∂C

≤ νR‖ω‖2,∂C

≤ νRC0

(‖ω‖22,C + ‖∇ω‖22,C
)1/2

≤ νRC0

(
1 + λ−1

1

)1/2 ‖∆u‖2,C ,

where we used in the last line the fact that‖∇ω‖2,C = ‖∆u‖2,C and the P-F inequality.
A mishap is that we do not have a direct bound on the quantity‖∆u‖2,C , which is
essentially the square root of the palinstrophy. To achieve the scaling 4.17, one must
have that

‖∆u‖2,C ∝ Re1/2,

which would yield agaiṅL(t) ∼ O (
ν1/2

)
.

On the other hand, on a square no-slip domain for the case of unforced dipole-wall
collisions, Clercx and van Heijst [28] observed a scaling behavior for the palinstrophy
leading to

‖∆u‖2,D ∝ CtRe3/4,

whereCt is a constant of order unity and dimension1/t. If the latter result would carry
over to a circular domain, a combination with the above analysis yields that

L̇(t) ≤ νC1Re3/4

with constant
C1 = RC0Ct

(
1 + λ−1

1

)1/2
.

In this case our estimate would be slightly worse than the dimensional scaling results,
as we now obtained thatL̇(t) scales as most asO (

ν1/4
)
.

Results on a square domain

After Topping [141], we define inΩ = D the non-negative excess quantity

Q(t) := ‖ω‖2,D − λ
1/2
1 ‖r‖−1

2,D |L(t)| , (4.18)

Referring to the previous Subsection, inequality (4.8) of lemma 4.3.2 implies, together
with the P-F inequality, thatQ(t) is non-negative,Q(t) ≥ 0. Certainly, we could
also have used the second relation of lemma 4.3.2, inequality (4.9), which would have
yielded a slightly smaller geometric constant, but for convenience we use here the
constant in definition (4.18). The first quantity in the right-hand-side of (4.18) is the
root-mean-square (rms) vorticity, the second quantity has the rms vorticity as its limit.
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The quantityQ(t) thus refers to the contributions to the rms vorticity that cannot be
explained by a global rotation, it contains, e.g., contributions from viscous boundary
layers or vorticity filaments, whence we refer to it as excess vorticity. Figure 4.7 shows
the evolution of bothQ(t) and the rms vorticity, for the computational data shown
earlier in Figure 4.4. The greatest difference between these quantities occurs during
times with well developed circulation cell, e.g., aroundt = 800, whereas the difference
is almost zero aroundt = 900 when the circulation cell has broken down.

Figure 4.7: Evolution of the excess
vorticity,Q(t), (solid line) and the rms
vorticity, ‖ω‖2,D (dotted line).
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Recall that the spacesLq(∂Ω) are equipped with norms‖ · ‖Lq(∂Ω). Furthermore,
one can define an instantaneous average enstrophy ’wavenumber’,κ2(t) := H2/H1,
relating the enstrophy to its dissipation, where we denoteH1 = ‖∇u‖2,Ω andH2 =
‖∆u‖2,Ω. The wavenumberκ2(t) is of intrinsic interest, because it may characterize a
dominant length in the direct enstrophy cascade regime, as noted by of Bartuccelliet
al. [8], who defined the ratiosHn/Hn−1 as so-called ladder inequalities, where higher
rungs of the ladder, of ordern = 1, 2, . . ., pick up information during more violent,
rarer events. Usually, a similar rms wavenumber is defined asκ1(t) := H1/H0, where
H0 = ‖u‖2,Ω, which is a characteristic wavenumber for the energy of the flow. Now
we can pose the following theorem;

Theorem 4.4.1. In Ω = D, the square of sided, for domain dependent constantC2,
the evolution of the excess vorticityQ(t) is bounded as

Q̇(t) ≤ νκ2(t) (C2‖∇ω‖2,∂D + ‖∇ω‖2,D) . (4.19)

The theorem states that the evolution of the excess vorticity is limited by both the square
root of the wall-generated palinstrophy and the usual rms vorticity gradient (square root
of the palinstrophy), weighed by the average enstrophy-carrying wavenumberκ2(t).
The‖∇ω‖2,D-contribution is dominant, as it contains information on the palinstrophy
throughout the entire domain. However, when strong boundary layers are present near
the walls, the former,‖∇ω‖2,∂D-contribution may also pick-up information.
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Proof of the result

Observe the following proof,

Proof of Theorem 4.4.1.Integrating by parts and using the Schwarz inequality inL2(∂D),
one has

−L̇(t) = ν

∫

∂D

r2∇ω · nds− 2ν

∫

D

r · ∇ωdA

≤ νκ2(t)

λ
1/2
1

(‖r2‖2,∂D‖∇ω‖2,∂D + 2‖r‖2,D‖∇ω‖2,D
)
,

where we used that, by the P-F inequality, one has1 ≤ κ2(t)λ
−1/2
1 . Also, we now

have

−λ
1/2
1 ‖r‖−1

2,DL̇(t) ≤ νκ2(t)
(‖r2‖2,∂D
‖r‖2,D

‖∇ω‖2,∂D + 2‖∇ω‖2,D

)
. (4.20)

Next, we turn to the enstrophy evolution. Because∂D is piecewiseC1, we can use the
Sobolev trace embedding theorem of Section 1.2.2, one has, for constantC0 > 0, and
by the P-F inequality,

‖ω‖2,∂Ω ≤ C0

(‖ω‖22,Ω + ‖∇ω‖22,Ω

)1/2

≤ C0

(
1 + λ−1

1

)1/2 ‖∇ω‖2,Ω.

DenotingC1 = C0(λ−1
1 + 1)1/2, with these observations

Ż(t) = ν

∫

∂D

ω∇ω · nds− ν‖∇ω‖22,D

≤ ν‖ω‖2,∂D‖∇ω‖2,∂D − ν‖∇ω‖22,D
≤ ν‖∇ω‖2,D (C1‖∇ω‖2,∂D − ‖∇ω‖2,D) ,

such that, because‖ω‖2,D ≡ ‖∇u‖2,D and‖∇ω‖2,D ≡ ‖∆u‖2,D, one obtains

˙‖ω‖2,D ≤ νκ2(t) (C1‖∇ω‖2,∂D − ‖∇ω‖2,D) , (4.21)

where we used the enstrophy wavenumberκ(t). Now the time derivative of the excess
vorticity is

Q̇(t) = ˙‖ω‖2,D − λ
1/2
1 ‖r‖−1

2,DL̇(t),

and the theorem follows from inequalities (4.20) and (4.21), with constant

C2 =
(‖r2‖2,∂D/‖r‖2,D

)
+ C1.
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4.5 No-slip versus periodic boundary conditions

Classical scaling on a Poincaré-Friedrichs domain

On an infinite domain Constantinet al. [29] showed that the first eigenfunction of the
Laplacian operator cannot drive a classical KLB inertial range. The reason is that the
forcing and dissipation wavenumbers are not well-separated,kη ≤

√
3kf . Remark-

ably, this result was later established for a Markov-chain forcing model by Oetzel and
Vallis [100], who observed no separation between the forcing scale and the enstrophy
dissipation scale in high-resolution double-periodic simulations.
As noted by Tran and Bowman [142], on a finite domain one can apply the Poincaré-
Friedrichs (P-F) inequality, which may also prohibit classical scaling. Let us combine
then the method devised by Constantinet al. with the P-F inequality, noting that

〈E(t)〉 =

kη∫

kd

E(k)dk and 〈Z(t)〉 =

kη∫

kd

k2E(k)dκ, (4.22)

wherekη denotes the enstrophy cut-off wavenumber, see Section 1.3, andkd denotes
the smallest wavenumber, related to the domain length. Applying then the KLB-
spectrum, where one can observe, for forcing wavenumberkf , that

ε = (c1/c0)3/2ηk−2
f , (4.23)

such that one obtains,

k2
d〈E(t)〉 ' k2

d

kf∫

kd

c0ε
2/3k−5/3dk + k2

d

kη∫

kf

c1η
2/3k−3dk

' c1η
2/3

[
3
2

(
kd

kf

)4/3

−
(

kd

kf

)2

− 1
2

(
kd

kη

)2
]

(4.24)

and

〈Z(t)〉 '
kf∫

kd

c0ε
2/3k1/3dk +

kη∫

kf

c1η
2/3k−1dk

' c1η
2/3

[
3
4

(
1−

(
kd

kf

)4/3
)

+ ln(kη/kf )

]
. (4.25)

Combining (4.24) and (4.25) with the P-F inequality,k2
d〈E(t)〉 ≤ 〈Z(t)〉, one finds

9
4

(
kd

kf

)4/3

−
(

kd

kf

)2

≤ 3
4

+
1
2

(
kd

kη

)2

+ ln(kη/kf ).

Apply next the KLB-assumption thatkd ¿ kf ¿ kη, then

e−3/4kf ≤ kη. (4.26)

Not as strong as the result by Constantinet al., but still one sees thatkf andkη may
be not well-separated and one may even havekf > kη, which would mean that no
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inertial range exists below the forcing scale. Note that we did not even require no-slip
boundaries to achieve this result, the mere fact that a P-F inequality can be applied is
sufficient.

Further discussion

Throughout the development of the theory of 2D turbulence flows on a double-periodic
domain have served as a reference case. The absence of boundary integrals in the en-
strophy balance on a periodic domain provides a control over the enstrophy dissipation
χ, which is lacking for no-slip boundary conditions. However, it was observed in our
computational results that the no-slip boundaries enhance energy dissipation due to the
generation of vorticity in the viscous boundary layers, a mechanism which is absent
on a double-periodic domain. This difference was also noted by Clercxet al. [26] for
computations on a circular no-slip domain as compared to a flow on a double-periodic
domain. In fact, while Tran and Bowman [142, 143], in their theory on spectral scaling
exponents, assume that the energy reaches a stationary state in computations, such a
state has not yet been observed for pure Navier-Stokes flows on a double-periodic do-
main.
Furthermore, Eyink [39] remarked that a rigorous prove that the energy in the limit
ν → 0 remains finite,E(t) < ∞, is still lacking, but intuition suggests this is more
likely to be the case on a no-slip domain than on a double-periodic domain. Note that
no (quasi) 2D laboratory experiments with infinite kinetic energy have been observed
so far. In this context we should also mention a result due to Vishik and Fursikov [148],
who proved, for a white-noise in time forcing in a no-slip domain, that

ν〈‖∇u‖22,Ω〉 = Fii(0), (4.27)

whereFii(0) is the trace of the forcing correlation tensor. While Eyink [40] interpreted
this result as a proof of diverging energy in forced turbulence in the limitν → 0, for
the viscous case it implies, by the P-F inequality, a finite energy.

With respect to phenomenology, forced Navier-Stokes flows on a double-periodic do-
main invariably seem to lead to a dipolar condensation regime, as observed by Hos-
sainet al. [64]. In this sense, the no-slip boundaries have a dramatic effect on the evo-
lution of the flow, as the difference of such a stable dipolar state on a double-periodic
domain with the disrupted condensation regime evolution observed in our computa-
tions is quite pronounced. Immediately, our results raise questions on the applicability
of KLB-theory to the no-slip setting; the interaction of small with large scales of mo-
tion during the break-up of a large circulation cell and the generation of enstrophy at the
walls are in clear violation of the assumptions of the classical scaling theory. However,
our results encompass only modest Reynolds numbers. Increasing the integral scale
Reynolds number may lead to a different phenomenology and different conclusions.





Chapter 5

Vorticity statistics

There are three kinds of lies: lies, damned lies, and statistics.
Benjamin Disraeli (1804-1881)

5.1 Introduction

In this Chapter we turn to study certain statistical properties of flows that can be char-
acterized by the disrupted condensation regime phenomenology described in Chapter
4. Our aim is to examine the statistics of the small scales of motion, thus carving away
the effects of the self-organization of the flow at the large scales. Furthermore, we ex-
amine the influence of the no-slip walls on these small scales of motion and compare
the observed scaling behavior of these statistics with that predicted by classical KLB-
theory. However, we consider only limited integral-scale Reynolds numbers, such that
a comparison may not always be appropriate. Our aim is, again, not to reach higher
Reynolds numbers, but rather to examine in more detail the statistics associated with
the disrupted condensation regime.

The most important tool used to analyze flow statistics is based on spatial vorticity
(or velocity) differences, taken over length scaler = |r|,

δω(r) = ω(x + r)− ω(x).

If the vorticity field is Hölder continuous, see Adams [2], it holds that, for0 < µ < 1,

|ω(x + r)− ω(x)| ≤ Crµ C ∈ R+,

and the absolute differences exhibit a scaling behavior withr.
Raising the differences to the powern followed by ensemble averaging〈·〉, yields the
n-th order vorticity structure function

Sn(ω(r)) = 〈(δω(r))n〉.
Because the Eulerian velocity fieldu(t,x) lives inR2, one can take either parallel or
perpendicular velocity differences, leading respectively toS

‖
n(u(r)) andS⊥n (u(r)). As

noted by Doering and Gibbon [35], any function in the Lebesgue spaceL2 may still
have local singularities. In a two-dimensional fluid flow this may be observed in the
form of filamentary structures that carry large amounts of vorticity and thus may act as
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true discontinuities in the vorticity field. So a theory that deals with the scaling behav-
ior of Sn(ω(r)) should take into account the possibility of such intermittency effects on
the small length scales in the flow. These effects cause deviations from Gaussianity for
the smallest length scales, observed in the form of, e.g., asymmetric probability distri-
bution functions of vorticity increments. On the other hand, because the Navier-Stokes
equations are invariant with scale, statistical quantities that depend on the separation
lengthr should also possess scaling behavior that is proportional tor.

Multi-fractal scaling

The two issues of scale invariance and intermittency are addressed with the so-called
multi-fractal formalism, see e.g. Frisch [53]. The key concept is that instead of a fixed
scaling exponent, each scaler may have its specific exponent,

δω(r) ∼ rh,

with probability distribution

Ph(δω) ∼ rdim−D(h).

The scaling exponent has a clear geometrical meaning:dim refers to the spatial dimen-
sion of the problem, which equals 2, whereasD(h) refers to a fractal dimension of the
problem. Consequently, by using the difference2 − D(h), one assumes that a lower-
dimensional subset of the full two-dimensional flow problem causes the observed vor-
ticity fluctuations. Again, this can be visualized in the form of vorticity filaments that
are more one- than two-dimensional entities, whilst carrying a non-negligible amount
of vorticity.
The scaling behavior of the vorticity structure functions of ordern would be

Sn(ω(r)) ∼ rζ(n),

where it is understood that taking the logarithm on both sides leads, for smallr, to
exponent

ζ(n) ≡ inf
h≥0

{nh + [2−D(h)]},

and the infimum is taken because only the smallest exponents are of interest. The
relation between the vorticity structure function exponents and the classical energy
spectrumE(k), at wave numberk, is for

E(k) ∼ kβ ,

that one hasβ = −(3 + ζ(2)).

A theoretical issue is the possibility of ’dissipative singularities’, that cannot be ruled
out. Suppose thatε(r) denotes the local energy dissipation concentrated in a ball with
radiusr. In fact, the classical theory assumes thatε(r) → 0 for ν → 0, which implies
regularity of the velocity field,δu(r) ∼ r, and Kraichnan scaling [75] for the vorticity
field, δω(r) ∼ constant, because the velocity and vorticity Hölder exponents are re-
lated byµu = µω +1. However, in the limitr → 0 a negative Ḧolder exponent,µ < 0,
would lead to singularities. It is the possibility of these ’negative Hölder singularities’
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in the vorticity field that has led to some heated debate, see Eyink [41] and Falkovich
and Lebedev [43] and also the discussion in Section 4.5.

Structure function scaling results for small scales of motion were obtained in labo-
ratory experiments in a thin, electromagnetically forced fluid layer by Paretet al. [106]
and in soap film experiments by Kellayet al. [68], see also the overview by Kellay and
Goldburg [69], and Riveraet al.[113], who compared the result obtained with structure
functions to the results obtained with a filtering technique based on large-eddy simula-
tions. Several numerical experiments were devoted to the topic, of which we mention
the studies by Babianoet al.[7], whose work was based on velocity rather than vorticity
increments and Chenet al. [23], who used large-eddy filtering techniques to examine
the alignment of the vorticity gradient and the vorticity transport vector. Similar align-
ment issues were explored earlier by Protaset al. [110].

Chapter outline

In Section 5.2 we analyze the scaling behavior of vorticity structure functions in the
interior of the domain, assuming our measurements are taken sufficiently far from the
boundary to reduce the influence of the no-slip boundaries to a minimum. In Sec-
tion 5.3 scaling results in the near-wall region are compared to those for the interior.
Section 5.4 contains results on the local enstrophy transfer, which is coupled to the
third-order mixed structure function.

5.2 Statistics in the interior of the domain

For separation lengthsr, lying between the forcing scale and the viscous dissipation
scale,̀ f > r > `χ, assuming only a constant ultraviolet flux of enstrophy and using
the language of the multi-fractal model, Eyink [39] proved the scaling

Sn(ω(r)) ∼ rζ(n), ζ(n) ≤ 2/3, ∀n,

for thenth-order vorticity structure function, whereζ(n) is the usual multi-fractal scal-
ing exponent. This result confirms the theoretical work of Sulem and Frisch [131], who
concluded that in the enstrophy range the energy spectrum should scale asE(k) ≤
c0k

β , with the lower boundβ > −4.

On the contrary, using the classical Batchelor argument for the advection of a pas-
sive scalar, Falkovich and Lebedev [42] argued that one must haveζ(n) = 0 for all n.
Instead, these authors assumed a logarithmic scaling regime for all vorticity structure
functions,

Sn(ω(r)) ∼ (ln(r))2n/3
.

This, in turn, suggests that logarithmic intermittency corrections on spectral scaling in
the enstrophy cascade range, are perhaps superfluous. The Falkovich-Lebedev result
was confirmed in an experimental setting in the aforementioned laboratory experiments
on a quasi-2D flow in a square PVC cell by Paretet al. [106], who assumed the flow to
be dominantly isotropic. These authors observed no significant deviations from Gaus-
sian values, estimated the direct cascade KLB-constant to bec1 ' 1.4 ± 0.3 and con-
cluded that classical KLB-theory, perhaps even without later logarithmic corrections,



84 Vorticity statistics

is probably fully sufficient in explaining direct cascade dynamics. Remarkably, high
resolution (20482 modes) DNS by Ishihara and Kaneda [65] of forced turbulence on a
double periodic domain, using hyperviscosity, where the dissipation operator equalled
ν∆p for p = 6, also obeyed the classical picture, with logarithmic corrections and con-
stantc1 = 1.9. On the other hand, Tran and Bowman [142] argued that on any finite
domain one should have a spectral exponent in the direct cascade range ofβ < −5,
which would imply thatζ(2) > 2. However, strictly speaking the relations used in their
argument are only valid for a double-periodic domain, making the predictions less uni-
versal than indicated.

Before comparing our computational results with the ideas mentioned above, we briefly
outline some of the usual statistical tools used in the data analysis.

Statistical tools and computational results

Several quantities should be measured to obtain an idea of the statistical properties of
the small scales. The basic quantity is the probability density function (PDF)P (s′(r))
of normalized vorticity increments,

s′(r) =
δω(r)

〈(δω(r))2〉1/2
,

where the denominator represents the root-mean-square over time.
Furthermore, the skewness and flatness represent the third and fourth statistical mo-
ments of a distribution and are defined for the vorticity increments as, respectively,

S(r) :=
S3(ω(r))

(S2(ω(r)))3/2

and

F (r) :=
S4(ω(r))

(S2(ω(r)))2
.

This latter measure can also be expanded to include higher orders, known as the so-
called hyperflatness factors, which are defined as

H2n(r) :=
S2n(ω(r))

(S2(ω(r)))n
for n = 2, 3, . . . .

If H2n(r) is independent of separation lengthr, no intermittency is present, which,
by the multi-fractal scaling model, results in scaling exponentsζ(2n) = nζ(2), or,
ζ(n) ∝ n. However, it was argued by Duboset al. that while the hyperflatness may
deviate from its expected valueE(H2n(φ)) for a Gaussian random processφ,

E (H2n(φ)) =
(2n)!
2nn!

,

such deviations do not prove the presence of intermittency in the classical sense.
Another important issue is to check for statistical convergence of the data, for which
Tabelinget al. [135], see also Belinet al. [11], applied a convenient method. Based on
the fact that the flatness,F (r), can also be expressed as

F (r) =
∫ ∞

0

(s′(r))4P ′(s′(r))ds′ =

∫∞
0

(s(r))4 P (s, r)ds
(∫∞

0
(s(r))2P (s, r)ds

)2 ,
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ν `f A0 ã ∆t N
2.0× 10−4 0.29 5.0 0.01 1.35× 10−4 257

Table 5.1:Computational parameters; kinematic viscosity, forcing length, forcing amplitude,
initial noise amplitude, computational time step and computational resolution.

Re∗ `en `χ Reχ

7500 0.63 0.0045 4150

Table 5.2: Measured quantities; integral-scale Reynolds number, mean-square wavenumber,
enstrophy dissipation length and alternate Reynolds number.

where we temporarily denoted vorticity differences ass(r) = δω(r) and whereP (s, r)
is the PDF of these vorticity increments. As remarked by Tabelinget al., it is the
quantity

(s(r))p
P (s, r), (5.1)

for ordersp = 4, 6, . . ., that allows one to check the statistical convergence of the
data, by simply plotting that quantity and verifying if the tails of the distribution are
well-defined. In fact, for their experiments on three-dimensional turbulence in a low-
temperature helium gas Belinet al. plotted a relation between the order of the structure
function and the minimum number of data points required to obtain converged statis-
tics. From this relation these authors concluded that sixth order structure functions
required a record length of up toO (

105
)

points, whereas eighth-order structure func-
tions required a number of points on the orderO (

5× 107
)
. On the other hand, Paret

et al. [106] could determine vorticity structure functions, in experiments on quasi-2D
turbulence in electromagnetically forced thin fluid layers, up to ordern = 12, using a
mere105 data points, because the PDF of vorticity increments were sufficiently close
to a Gaussian PDF.

Let us move on to discuss our computational results, starting with a summary of the
numerical parameters in Table 5.1 and several measured quantities in Table 5.2. Note
that, withkf = 7, the forcing length-scale equals approximately`f ∼ 0.29. From
the time-averaged kinetic energy it follows that the integral-scale Reynolds number
was close toRe∗ ' 7500. As mentioned before in Section 4.4, the square root of
the ratio of enstrophy and energy defines a characteristic mean-square wavenumber,
κ1(t) = (Z(t)/E(t))1/2, from which one obtains a mean energy carrying wavelength,
`en = 2π〈κ1〉−1. Averaged over time, the characteristic energy length in our computa-
tional results is slightly larger than twice the forcing length. During the computations
the palinstrophy was at most on the order ofP (t) = O (

107
)
, thus satisfying the

heuristic demand for the computational resolution, equation (2.7). Furthermore, the
dissipative length-scale for the enstrophy,`χ, was determined to be less than the small-
est separation length over which vorticity differences were measured in the interior
r = 0.006. Hence, a modest enstrophy cascade inertial range`f > r > `χ is achieved
of close to two decades. In this respect, for laboratory experiments in electromagnet-
ically forced shallow fluid layers Paretet al. [106] defined a Reynolds number as the
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squared ratio of forcing and enstrophy dissipation lengths,

Reχ :=
(

`f

`χ

)2

,

achieving a value on the order ofReχ = O (
103

)
. Here, the same definition yields

Reχ = 4.2× 103.

In view of the discussion above, it is important to first consider the issue of conver-
gence of statistics, using the method introduced by Belinet al. [11] and noting that
our record lengths are on the order ofO (

106
)

points. Arguably, it is easier to obtain
records of sufficient length in most laboratory experiments than in numerical simula-
tions, where, for high Reynolds numbers, only relatively few eddy turn-over times are
computed. In Figure 5.1 the quantity (5.1) is shown, forp = 4, 6, 8 and 10, measured
at the separation lengthr = 0.006. With increasing order the tails become less well-
defined and the shape becomes less symmetric. Clearly, the statistics forp = 8 and 10
are not converged, whereas the situation forp = 6 is still reasonably acceptable. The
consequence is, hence, that we cannot consider structure functions or the hyperflatness
of orders greater than 6, with any confidence. Indeed, this is a severe limitation with
respect to issues of intermittency, where it is desirable to have information on higher
order statistics and those aspects should definitely be addressed in future work.

We plot vorticity structure functions of orders 2, 4 and 6 against separation length
in a double logarithmic graph in Figure 5.2(a). The measurements of vorticity incre-
ments are taken in the center of the domain, throughout a small squareB(r) of side
r. In such a manner one hopes to reduce the influence of the boundaries and achieve
a more or less isotropic situation. It was argued by Paretet al. [106] that experiments
in a quasi 2D flow in a square cell, yielded isotropic results for the vorticity statistics,
after sufficient record lengths were averaged.

The solid line in the graph corresponds toζ(n) = 2/3, the upper bound on the scaling
exponents of vorticity structure functions of all orders provided by Eyink [39]. Clearly,
scaling forζ(2) is steeper than 2/3, but not as steep as the valueζ(2) > 2, predicted by
Tran and Bowman [142]. An explanation for the deviations from both the Eyink-model
and the Tran and Bowman prediction may lie in the non-constant enstrophy flux on a
bounded domain, an observation we return to in Section 5.4. We sum up the results for
the scaling exponents in Table 5.3. The values forn = 2 andn = 4 are significantly
different from the values obtained from laboratory experiments by Paretet al. [106],
who observed scaling exponents ranging fromζ = −0.05 to ζ = 0.15. Furthermore,
these results point at a steeper thanβ = −3 scaling of the energy spectrum in the di-
rect cascade range. On the other hand, Paretet al. noted that the enstrophy dissipation
in their experiments may not be entirely two-dimensional, which could have profound
consequences with respect to the observed scaling behavior at small scales.

Figure 5.2(b) shows the flatness and hyperflatness of ordern = 3, corresponding to
the data in Figure 5.2(a). The corresponding Gaussian values are 3 and 15 for the
flatness and third order hyperflatness, respectively, from which the computational data
deviate strongly moving towards smaller scales. However, both the results for the (hy-
per) flatness and the scaling exponents may be different for higher Reynolds numbers,
where a different phenomenology may be found to occur.
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Figure 5.1: Convergence check for the vorticity statistics (structure functions), showing the
scaled quantity (5.1), for order p=4 (a), p=6 (b), p=8 (c) and p=10 (d).
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n 2 4 6
ζ(n) 1.3± 0.1 2.2± 0.1 2.7± 0.2

Table 5.3:Scaling exponents for the structure functions of ordern.

One-dimensional Chebyshev spectra

To complement our observations on scaling behavior, one-dimensional power spectra
are examined, showing the distribution of energy and enstrophy over the computational
modes. Because the usual Fourier methods are not applicable on a no-slip domain, we
have to use one-dimensional Chebyshev spectra instead. These spectra are measured
along a line in the domain, following the procedure outlined by Clercx and van Hei-
jst [27]. Evaluating the local kinetic energy in terms of its Chebyshev coefficients
Ẽmn(t),

E(t,x) =
N∑

m=0

N∑
n=0

Ẽmn(t)Tn(x)Tm(y),

whereN is the number of Chebyshev polynomials, which is equal for each direction,
andTn(x) is then-th order Chebyshev polynomial, see Subsection 2.1.1. Averaging
the symmetrically equal contributions along the linesx = 0 andy = 0, one obtains the
one-dimensional (1D) spectrum,

S̃n(t) = 1
2

∣∣∣∣∣
N∑

m=0

(
Ẽnm(t) + Ẽmn(t)

)
Tm(0)

∣∣∣∣∣ ,

a positive quantity. However, it must be cautioned that the correspondence to a Fourier
spectrum is not a one-to-one relation and that the Chebyshev spectra should not be
compared directly to the KLB-spectrum and its predictions for spectral scaling. Even
so, it is interesting to examine the scaling behavior of the Chebyshev spectra, shown
below in Figure 5.3. Two 1D spectra at the same instant in time are shown, evaluated
on lines through the center of the domainx = 0 andy = 0. In each spectrum we
show, for comparison, the classical KLB-scaling with exponentβ = −3.
While the 1D spectrum on the linex = 0 has a fairly uniform scaling in the region
below the injection scale,̀f ' 0.3 or mode number 12, the scaling exponent equals
β = −2.5± 0.2. The anisotropy of the flow becomes clear if one considers the corre-
sponding 1D spectrum measured aty = 0, where two scaling regions can be identified.
One region extends from the forcing scale to mode number 100, where the exponent
equalsβ = −2 ± 0.1, for larger modes (smaller scales) the exponent is as low as
β = −5 ± 0.2. Again, care should be taken in the comparison of these scaling ex-
ponents to the theory developed for the double-periodic case, not to mention the case
of an infinite domain. Even so, the results are surprising asa priori one might expect
steeper spectra, as was conjectured by Tran and Bowman [144] for domains where the
P-F inequality can be applied.

Time-averaged 1D spectra are shown in Figure 5.4, forx = 0.0 andy = 0.0. These
spectra were averaged over roughly45Te, whereTe denotes the large-scale eddy turnover
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Figure 5.3:Double logarithmic plot of the spectral energy per Chebyshev mode on lines through
the center of the domain,x = 0 (a) andy = 0 (b). The dotted line in each graph shows the
classical scaling with exponentβ = −3. In both plots the forcing injection scale is at mode 12
and time equalst = 200.
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Figure 5.4:Double logarithmic plot of the spectral energy per Chebyshev mode on lines through
the center of the domain,x = 0 (a) andy = 0 (b), averaged over roughly 45 large-scale eddy
turnover times. The dotted line in each graph shows the classical scaling with exponentβ = −3.
In both plots the forcing injection scale is situated at mode 12.
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time, introduced in the previous Chapter. In these averaged spectra the anisotropy effect
has largely been levelled out. For both directions two scaling regions can be identified.
Extending upwards from the region of the forcing scale to, roughly, mode number 150,
the exponent is surprisingly close to the classical predictions, withβ = −3 ± 0.1.
However, for the higher modes the spectrum scales likeβ = −4.
The scaling exponent over the middle range of modi is somewhat larger than the ex-
ponent derived from the second order vorticity structure function,ζ(2), but for the
high mode numbers the scaling would be in much closer correspondence, asζ(2) =
1.3 ± 0.1, which would lead toβ = −4.3 ± 0.1. It is thought that the advection of
viscous boundary layers into the interior of the domain leads to the altered scaling for
the high Chebyshev modes, an observation we return to in the next Section.
A remaining problem is that the lack of isotropy on a no-slip domain makes the cou-
pling between exponentsζ(2) andβ less obvious. Furthermore, the unclear relation
between the 1D Chebyshev spectrum and the usual Fourier spectrum mentioned above
should be kept in mind.

5.3 Statistics in the wall-region

In the previous Sections we deliberately took measurements at some distance from the
domain boundary∂D, to avoid obvious bias expected to occur near the wall. Now
we turn to examine statistics measured near the domain boundary, measured in the
wall-normal direction, and compare these to the scaling results reported in the previous
Section. For three-dimensional turbulence Benziet al. [12] compared small-scale ve-
locity statistics measured near a no-slip wall with statistics measured in the bulk of the
flow, concluding there was an increase in deviations from Gaussian behavior moving
towards the wall.
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Figure 5.5:Log-linear plot of the PDF,P (s′), of normalized vorticity increments,s′(r), with
r = 0.006 (stars),r = 0.012 (circles) andr = 0.024 (filled triangles), where the solid line
represents a Gaussian normal PDF, near the wall (a) and in the interior of the domain (b).
Measurements in (a) were taken in the wall-normal direction.

In Figure 5.5(a) we show the PDF of normalized vorticity increments in the wall-region
at three separation lengths and the corresponding PDF in the interior in Figure 5.5(b).
Clearly, deviations from the normal distribution, shown in the Figure as solid lines, are
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Figure 5.6:Double logarithmic plot
of flatness for wall region (stars)
and interior (circles) versus separa-
tion lengthr.
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very pronounced in the near-wall region, although smaller deviations also occur in the
interior for separation lengthsr = 0.006 andr = 0.012. In the wall region the devia-
tions are still marked forr = 0.024, but this is not the case in the interior. In the work
of Benziet al. increasing deviations from a Gaussian distribution were interpreted as
an increase in intermittency, moving from the interior of the flow towards the wall.

Surprisingly, from Figure 5.6 the increase of the flatness towards smaller separation
lengths|r| seems to be greater for the interior than for the wall region. This result
indicates that, considering deviations from Gaussian behavior, there may be no clear
difference between the wall region and the interior of the flow. From a phenomenolog-
ical viewpoint the latter conclusion fits with the idea that boundary layers and vorticity
filaments are advected into the interior of the domain when a large circulation cell
breaks up, that is, if one accepts that it is these elongated structures that are responsible
for the deviations from Gaussian behavior.

An important quantity is the average boundary layer thicknessδbl, defined here as

δbl :=

(∫
∂D

(
∂nu‖

)2 ds∫
∂D (∂nω)2 ds

)1/2

,

whereu‖ denotes the velocity component parallel to the boundary,u ‖ ∂D and∂n de-
notes the derivative normal to∂D, see Maassen [85]. On the square no-slip domain one
has∂nu‖(∂D) = ω(∂D). In other words, the average boundary layer thickness is de-
fined as the ratio of the magnitude of the stress to the vorticity gradient at the boundary.
Averaged over 45 large-scale eddy turnover times in the statistically stationary regime,
the boundary layer thickness equals〈δbl〉 = 0.0062, a value corresponding to the initial
boundary layer thickness in simulations of decaying flows on a square no-slip domain
by Clercx and van Heijst [27].

One-dimensional Chebyshev spectra

We examine one-dimensional Chebyshev spectra, shown Figure 5.7. These spectra are
measured att = 200 in the near-wall region on the linesx = 0.99 andy = 0.99, see
the previous Section for an explanation. Measured on the linex = 0.99, Figure 5.7(a),
the spectrum displays an extended scaling region with exponentβ = −2.5 ± 0.1. For
y = 0.99, Figure 5.7(b), the scaling in the highest modes is asβ = −2.9 ± 0.1, but
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Figure 5.7:Double logarithmic plot of the spectral energy per Chebyshev mode on lines near
the wall, x = 0.99 (a) andy = 0.99 (b). The dotted line in each graph shows the classical
scaling with exponentβ = −3. In both plots the forcing injection scale is situated at mode 12.

moving from the high modes to the forcing mode the scaling behavior flattens out, such
that the region of mode numbers< 50 has exponentβ = −2± 0.2.

Clercx and van Heijst [27] performed simulations of decaying turbulence on a square
no-slip domain at integral-scale Reynolds numbersRe = 5000, Re = 10000 and
Re = 20000, where the initial condition corresponded to an array of 100 Gaussian
vortices of alternating sign. For the scaling exponents of the instantaneous Chebyshev
spectrum measured at an early time near the wall, it was observed that the scaling ex-
ponent of the highest Chebyshev modes relaxed fromβ = −2.4 to β = −5/3, moving
from Re = 5000 to Re = 20000. It was argued by these authors that the boundary
layers, acting as a source of small-scale vorticity, cause the spectrum for the higher
Chebyshev modes to become less than thea priori expectedβ = −3.
In our forced simulations, theβ = −5/3 scaling is not observed for the instantaneous
Chebyshev spectra measured in the near-wall region. Due to the lower Reynolds num-
bers achieved here, the scaling exponent seems closer to that found atRe = 5000 in
the decaying simulations. On the other hand, in the computations on decaying flows
in D, for Re = 20000, the spectral scaling of high Chebyshev modes was observed to
evolve in time fromβ = −5/3 to β = −3, [27], an observation that was coupled to the
simultaneously increasing thickness of the boundary layer.
For the time-averaged spectra in Figure 5.8, averaged over roughly45Te, a scaling
region withβ ' −3 seems to extend over an even larger range of Chebyshev modi
than for the averaged 1D spectra measured in the interior of the domain atx = 0 and
y = 0, shown in Figure 5.4. Extending from modes 20 to 180, a−3 scaling region
is recovered, while the higher modes clearly have a steeper scaling behavior, which
is closer toβ = −5. In the near-wall region it is thought that the viscous boundary
layers influence the spectral scaling behavior over a range of modi, extending beyond
the mode numbers associated to the average boundary layer thickness, which is found
around mode number 246. Correspondingly, the steeper scaling exponent measured
for the high mode numbers in the previous Section was thought to be caused by the
influence of vorticity filaments (advected boundary layers).
However, it must be noted that while scaling exponents may (or may not) deviate from
classical predictions, the presence of a direct cascade of enstrophy cannot be derived
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Figure 5.8:Double logarithmic plot of the spectral energy per Chebyshev mode on lines near
the wall,x = 0.99 (a) andy = 0.99 (b), averaged over roughly 45 large-scale eddy turnover
times. The dotted line in each graph shows the classical scaling with exponentβ = −3. In both
plots the forcing injection scale is situated at mode 12, the averaged boundary layer thickness is
at mode 246.

from the scaling exponents alone. To obtain this information the enstrophy transfer
should be measured, which, again, creates some problems for a no-slip domain.

5.4 A note on the enstrophy

Before considering the enstrophy transfer, let us briefly re-examine, on a general bounded
domainΩ with sufficiently smooth boundary∂Ω, the domain integrated enstrophy bal-
ance (1.15). For convenience, we assume a time-independent inhomogeneous term
q(x),

Ż(t) + ν‖∇ω‖22,Ω = ν

∫

∂Ω

ω∂nωds + (ω, q).

The analysis gives us some feeling for the enstrophy dissipation process and highlights
one of the difficulties in establishing properly the enstrophy transfer. The procedure
is very similar to that followed in the proof of theorem 4.4.1, requiring again the trace
theorem. First we obtain, by the Hölder inequality,

∫

∂Ω

ω∂nωds ≤ ‖ω‖2,∂Ω‖∇ω‖2,∂Ω.

Now relating the norms on∂Ω to those overΩ by the trace theorem and rewriting the
result with the P-F inequality, one obtains

‖ω‖2,∂D ≤ C0‖ω‖1,2,D ≤ C0

(
1 + λ−1

1

)1/2 ‖∇ω‖2,D,

see also Section 4.4. Furthermore, one can rewrite the innerproduct term by applying,
respectively, the Schwarz, Young and P-F inequalities,

(q, ω) ≤ ‖q‖2,Ω‖ω‖2,Ω ≤
‖q‖22,Ω

2νλ1
+

νλ1

2
‖ω‖22,Ω ≤

‖q‖22,Ω

2νλ1
+

ν

2
‖∇ω‖22,Ω.
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Finally, combining these results yields

Ż(t) +
ν

2
‖∇ω‖22,Ω ≤ C1ν‖∇ω‖2,Ω‖∇ω‖2,∂Ω +

‖q‖22,Ω

2νλ1
,

whereC1 = C0(1 + λ−1
1 )1/2. Taking asymptotic averages, we end up with an ex-

pression for the enstrophy dissipation which is different from the usual result on a
double-periodic domain, although its asymptotic upper bound remains unaltered,

lim sup
t→∞

ν

t

t∫

0

‖∇ω‖2,Ω (‖∇ω‖2,Ω − C1‖∇ω‖2,∂Ω) dτ ≤ ‖q‖22,Ω

2νλ1
.

The first term on the left-hand side equals the usual expressionχ ≡ ν〈‖∇ω‖2,Ω〉, see
Section 1.3, but the second term follows from the presence of no-slip boundaries. So it
is the difference of the rms vorticity gradient over the whole domain with the rms vor-
ticity gradient over the boundary that determines the enstrophy dissipation, rather than
the usual palinstrophy (mean-square vorticity gradient). These considerations could
explain why the Tran and Bowman theory for a double-periodic domain [142] may not
be applicable to the no-slip situation. One of the key equations used in their work is
essentially the energy balance minus the enstrophy balance,

k2
f Ė(t)− Ż(t) = 2ν

(
P (t)− k2

fZ(t)
)
,

wherekf is a forcing wavenumber. On a no-slip domain the right hand side would
include the norm‖∇ω‖2,∂Ω and there is noa priori reason to assume that this quantity
tends to vanish under the limit of large timest → ∞. Hence, a directly controlled
upper bound onχ is lacking. An interesting situation occurs if

C1‖∇ω‖2,∂Ω → ‖∇ω‖2,Ω,

which refers to a setting where (nearly) all the enstrophy dissipation is concentrated in
the viscous boundary layers and which could lead to considerable deviations from the
classical scaling exponents for the vorticity statistics.

Enstrophy transfer

From the vorticity equation one can derive, in the isotropic case, an exact equation for
stationary two-point vorticity correlations, see Bernard [13],

− 1
2
∇〈[δ‖u(r)][δω(r)]2〉+ 2ν〈∇ω(r + x)∇ω(x)〉 = G(x),

whereG(x) denotes the forcing correlation term and the brackets〈·〉 denote combined
space and time averaging. Taking first the inviscid limit and then the limit of small
correlation lengths, one is stuck with a mixed correlation function, in analogy with the
Kolmogorov scaling for the third-order velocity structure function in three dimensional
flows. Hence the global scaling law (see Bernard [13], Eyink [39] or Tabeling [133]),
for the scale dependent enstrophy dissipation,χ(r), reads as

−1
2r
〈Q(r)〉 = χ(r), (5.2)
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where we denoted the quantity

Q(r) = [δ‖u(r)][δω(r)]2.

By the global law (5.2) the average of this latter quantity should equal the scale de-
pendent enstrophy dissipation,χ(r). Because the situation is statistically stationary,
the transfer should equal dissipation. However, it must be stressed that it is uncertain
whether the scaling law (5.2) even holds in the case of a no-slip domain. Relating the
quantityχ(r) to the enstrophy transfer may thus not be appropriate, because in the
derivation of equation (5.2) one assumes, respectively, that the situation is isotropic,
that one has a constant enstrophy transfer and that one operates in the limit of large
Reynolds numbers. As argued before, see also Section 1.3, we meet neither of these
requirements, as was pointed out in the discussion on the domain integrated enstrophy
balance, above. On the other hand, it is not possible to determine the enstrophy transfer
directly from Chebyshev mode triad interactions, as is the case for spectral computa-
tions based on Fourier modes on a double-periodic domain. As such, computing the
mixed third-order structure function may be the only alternative on a no-slip domain.

The left hand side of equation (5.2), normalized by its maximum value, is shown as
a function ofr in Figure 5.9, where we took our measurements in a small square cen-
tered in the domain. Although the integral of the quantity− 1

2
r−1〈Q(r)〉 is negative,

as one expects for the range of scales below the forcing length, one clearly sees an al-
ternating behavior with positive values occurring at several length scales. Interpreting
the Figure in terms of enstrophy transfer, there is a predominant flux towards smaller
scales in the range0.1 ≥ r ≥ 0.006. Moreover, the shape of the transfer function is
rather different from the typical time averaged enstrophy transfer per wavenumber on
a double-periodic domain, as determined directly from wavenumber triad interactions,
see e.g. Maltrud and Vallis [88], but again, our interpretation is disputable.
Coupling these results to the observed Chebyshev spectra is not straightforward, but
roughly one could state that it is the production of vorticity in the near-wall region that
causes both the 1D Chebyshev spectra and the quantityQ(r) to deviate from observa-
tions on a double-periodic domain. However, we mention, again, that the integral-scale
Reynolds numbers considered here are rather modest and different results may be ob-
tained if the numberRe∗ is increased significantly.

Figure 5.9: The normalized mixed
third-order structure functionQ′(r) =
− 1

2
r−1〈Q(r)〉/Qmax(r), as a func-

tion of separation length|r|.
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In turbulent soap film experiments Kellayet al. [68] measured the PDF of the quantity
Q(r), denoted asP (Q(r)), and compared this PDF to an exponential fit. Results were
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highly non-Gaussian, and the form of the exponential fit was accordingly

exp−(|Q(r)|/Q0)
α

where the value of the exponent was determined atα = 0.4. Numerical computations
on a double-periodic domain with high Reynolds numbers,Re = O (

5× 105
)
, lead

to a similar value for the exponent, withα = 0.41. Furthermore, the exponent did not
vary significantly with scale. In Figure 5.10(a) we show the PDFP (Q(r)) for three
separation lengths. Indeed, the PDF has a highly non-Gaussian form and the exponen-
tial fit with α = 0.4 andQ0 = 0.04 is reasonable for increasing separation lengths,
Figures 5.10(b), (c) and (d).
Thus our computational results are in accordance with the earlier experimental and
numerical work of Kellayet al. [68], even though the Reynolds numbers considered
here are much lower. For forced and hyper-viscous 2D turbulence on a double periodic
domain Chenet al. [23] found symmetric PDFs of the enstrophy transfer for a range
of length scales. However, these authors calculated the enstrophy transfer with a large
eddy simulation filtering technique, rather than based on the third order mixed struc-
ture function. The advantage of such a method is that it allows a calculation of the
enstrophy flux at each point in the domain, rather than having to average over space.
Increasing tails of the measured PDFs for smaller scales was interpreted as a sign of
increasing intermittency, an observation that, more or less, carries over to the results
presented here.
Recall from Section 1.1 that the physical mechanism behind the direct cascade of en-
strophy, if it exists, was posed by Batchelor [10] to be an amplification of vorticity
gradients due to shearing of small scale filaments by the large scale flow field. Based
on new ideas in 3D turbulence, Chenet al. [23] examined the local alignment of the
vorticity gradient∇ω(t,x) and the vorticity transport vector. These authors concluded
that vorticity is mainly transported along streamlines and much less so along the direc-
tion of the gradient∇ω(t,x), confirming Batchelor’s ideas.

Instead of the local enstrophy flux defined by Chenet al., which requires some form
of large-eddy approximation, we plot the instantaneous point-wise nonlinear term in
the local enstrophy equation and attempt to couple this quantity to the Weiss function,
Qw(t,x), introduced in Section 4.2. Multiplying the vorticity equation withω(t,x),
one obtains the balance equation for the local enstrophyZ(t,x) := 1

2
(ω(t,x))2,

∂tZ(t,x) + Ψ(t,x) = (1/Re)ω(t,x)∆ω(t,x) + ω(t,x)q(t,x),

where the local transfer term is just

Ψ(t,x) := ω(t,x) (u(t,x) · ∇ω(t,x)) .

Of course, this latter term drops out in the domain integrated balance.

Considering first snapshots of the stream functionψ(t,x) and vorticityω(t,x) at the
same instant,t = 200, Figure 5.11(a) and (b), one sees the remains of a larger cir-
culation cell. This feature is most pronounced in the stream function, where the cell
occupies a large part of the domain. In the vorticity field one observes two pronounced
vortex cores of opposite sign, one of which belongs to the large cell, as well as several
elongated filamentary structures extending from the wall regions into the interior of
the domain; these latter filaments are clearly detached boundary layers. Recall that the
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Figure 5.10:Probability distribution function,P (Q), of the quantityQ(r) (a) at three separa-
tion lengths,r = 0.006 (stars),r = 0.012 (circles) andr = 0.024 (filled triangles). Separate
PDFs forr = 0.006 (b), r = 0.024 (c) andr = 0.096 (d) are compared to an exponential fit
(solid line in each graph).
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(a) (b)

(c) (d)

Figure 5.11:Iso-contour plot of the stream function,ψ(t,x), where contours range from -1 to 1,
with an interval of 0.1 and dashed lines represent negative values (a). Snapshot of the normalized
vorticity,2ω(t,x)/〈|ω(t,x)|〉, compressed to the interval (-5,5) (b). Normalized Weiss function,
Qw(t,x)/〈|Qw(t,x)|〉, compressed to the interval (-5,5) (c) and the normalized nonlinear term
in the point-wise enstrophy equation,Ψ(t,x)/〈|Ψ(t,x)|〉, compressed to the interval [-1,1](d).
In plots (b), (c) and (d) white indicates positive values and black indicates negative values, for
all plots t = 200.
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instantaneous 1D Chebyshev spectra measured on the perpendicular linesx = 0 and
y = 0 at t = 200 and shown in Figure 5.3 in Section 5.2, revealed a large variation in
scaling. These differences in scaling can be explained from the vorticity field, where
x = 0 is largely dominated by the circulation cell, whereasy = 0 picks up information
from filamentary structures and secondary vortices as well.
The Weiss functionQw(t,x), Figure 5.11(c), identifies two strong elliptic cores, cor-
responding to the two vortices of opposite sign and many smaller cores, whereas the
surrounding flow is weakly strain-dominated. Whereas the regions whereΨ(t,x) < 0
seem to be unrelated to the Weiss function, the regions whereΨ(t,x) > 0 seem to be
coupled mainly to the regions that are weakly strain-dominated.

Further discussion

The purpose of the present Chapter was to examine scaling properties of small-scale
vorticity statistics under the condensation regime phenomenology. Due to the non-
isotropy of the flow a comparison with scaling results for pure Navier-Stokes flows on
a double-periodic domain is problematic.A priori results on the vorticity statistics,
such as the relation between the enstrophy transfer and the mixed structure function
of third order, may be questionable for the case of a bounded no-slip domain. Also,
caution should be taken in translating the scaling exponents obtained from Chebyshev
spectra into the Fourier spectral exponents as used in classical KLB-theory.
Another problem in connecting the results in the present Chapter with KLB-theory
and computational results known from the relevant literature is the low integral-scale
Reynolds numbers examined here. Higher Reyolds numbers may give rise to a signif-
icantly different scaling results, as was e.g. observed by Clercx and van Heijst [27]
for increasing Reynolds numbers in decaying flows on a bounded square domain. It
follows that there is a need for higher Reynolds number computations with strongly
increased resolutions, spanning a larger inertial range.
The flows considered here are purely two-dimensional, a property that may not be sat-
isfied for the smallest length-scales in laboratory experiments on shallow fluid layers,
as remarked by Paretet al. [106], see also the discussion on the role of bottom friction
in such experiments by Satijnet al.[124]. Furthermore, the no-slip condition is the nat-
ural boundary condition in such laboratory experiments, rendering computations with
a similar geometry and no-slip boundary conditions a necessary step if results from the
laboratory are to be compared with existing scaling theories.





Chapter 6

Summary and Conclusions

We have found a strange footprint on the shores of the unknown. We have devised profound
theories, one after another, to account for its origins. At last, we have succeeded in

reconstructing the creature that made the footprint.
And lo! It is our own.

Sir Arthur Eddington (1882 - 1944)

The work reported in this thesis, a follow-up to the PhD work of Maassen [85] on
decaying flows on bounded domains, concerns several aspects of forced Navier-Stokes
flows on a bounded domain for low to intermediate values of the integral-scale Reynolds
number,Re∗, achieving at mostRe∗ ' 7500. Our conclusions highlight the effect of
the no-slip boundaries on the evolution of the flow. In itself it is not surprising that
such an influence occurs; flows in a non-homogeneous setting are expected to deviate
from the isotropic flowsa priori, where the isotropic setting refers to the plane in the
case of heuristic turbulence theory or to a double-periodic domain in the case of 2D
computations. However, the generation of viscous boundary layers and their influence
on the flow in the interior of the domain remains a surprisingly much neglected issue
in the relevant literature on (quasi) two-dimensional viscous flows.

A pronounced example of the difference of a bounded flow as opposed to flows in
a double-periodic domain is observed when one follows the route to chaos in a square
domain. As a function of the kinematic viscosity parameter this route can roughly be
divided into two parts; a Ruelle-Takens scenario [120, 96] leads the flow from sta-
tionary to low-dimensional chaotic solutions, as shown by Molenaaret al. [94]. The
low-dimensional chaotic motions are then disturbed by increasingly frequent events of
increasing intensity, resembling a Manneville and Pomeau [90] intermittency scenario.
Our results reveal a marked difference with similar experiments on a double-periodic
domain by Braunet al. [18], where the transition sequence included travelling wave
instabilities and a period-doubling cascade. On the other hand, computations with
one periodic and one no-slip direction by these authors showed chaos occurring af-
ter a break-up of a temporally periodic flow with two fundamental frequencies, which
is more like the Ruelle-Takens scenario observed here. An explanation for these dif-
ferences follows from the fact that instabilities in a no-slip domain are caused by the
formation of secondary vortices and the detachment of viscous boundary layers, a pro-
cess that is, naturally, absent in a double-periodic domain. A problem with the adopted
strategy in the exploration of the route to chaos is that no continuous bifurcation se-
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quence could be established; only a discrete set of values for the control parameter
were examined. Also, our exploration was limited by the computational resolution,
rather than by phenomenological considerations.

An interesting phenomenology can be observed in forced flows for intermediate values
of the Reynolds number on a square no-slip domain, where the forcing mechanism is
a time-dependent, stochastic process, comparable to the action of a stirring device that
moves in random order through the fluid. Self-organization of the flow takes place,
leading to a single large circulation cell in the interior of the domain. At the solid
domain-boundary viscous boundary layers are created, which may eventually detach
from the wall and roll-up in the corners of the domain. When these secondary vortices
interact with the large circulation cell, the latter may become unstable and collapse,
after which a new phase of self-organization may lead to another circulation cell, pos-
sibly of opposite sign, Molenaaret al. [93]. Such findings are in marked contrast to the
phenomenology of forced flows in a double-periodic domain, see Hossainet al. [64],
where the usual end-state is a stable domain-filling dipolar vortex. From several in-
equalities describing the behavior of the domain-integrated angular momentum,L(t),
on both a square and a circular no-slip domain, bounds were obtained on the behavior
of that quantity. In some instances these bounds are physically uninteresting or unob-
tainable, but in such cases it makes sense to explore if the bounds can be improved
using scaling results from computations or dimensional arguments. Furthermore, it is
interesting to evaluate the phenomenology for higher integral-scale Reynolds numbers
compared to those considered here, which is likely to lead to different results.

Finally, if one examines the statistics of the small scales in the disrupted condensation
regime phenomenology, strong deviations from Gaussian behavior can be observed.
These deviations are thought to be caused by the observed phenomenology; especially
the advection of boundary layers into the interior and the build-up and break-down of
a large circulation cell prevent a more or less isotropic situation, with the associated
Gaussian statistics, from developing. The scaling exponent for the second-order vor-
ticity structure function,ζ(2), was found to be larger than the upper bound prediction
by Eyink [39],ζ(2) ≤ 2/3, but smaller than the estimate by Tran and Bowman [142],
ζ(2) > 2, following from their prediction on spectral scaling in the direct cascade
range. On the other hand, the observation that this exponent is nonzero,ζ(2) 6= 0, also
contradicts earlier results by Paretet al. [106], obtained from laboratory experiments
in square PVC container with no-slip boundaries. Here, again, it is interesting to obtain
data for higher resolution and higher Reynolds number computations, which is neces-
sary to make a reliable comparison of results to existing scaling theories. Furthermore,
a means of determining the enstrophy transfer,χ(r), other than by means of the mixed
third-order structure function has to be devised. Notwithstanding earlier experimental
results, the applicability of the latter method to a no-slip domain is not without doubt,
as neither of the assumptions of isotropy or a constant enstrophy transfer are satisfied
in that case.

Considering the differences between forced Navier-Stokes flows on a double-periodic
domain and the type of forced flows examined here, it seems unlikely that a simple one-
to-one correspondence exists between the former and (quasi) two-dimensional flows in
domains with rigid walls, as observed in laboratory experiments. Furthermore, it is at
present still unclear how any of the wall-bounded settings for two-dimensional flows re-
late to the classical KLB-theory. In fact, as argued by Tran and Bowman [143], it is also
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uncertain how double-periodic flows relate to KLB-theory. Furthermore, the purely
two-dimensional case considered in this thesis is hard to achieve in a laboratory exper-
iment, as one is likely to introduce some form of bottom friction or three-dimensional
effect on the smallest scales of motion, which greatly increases the complexity of the
problem. However, our computations can be viewed as an intermediate step between
the laboratory experiment on one hand and computations on a double-periodic domain
on the other.
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Samenvatting

Het proefschrift bevat de resultaten van een numerieke en theoretische studie naar
geforceerde twee-dimensionale (2D) visceuze stromingen op een begrensd domein.
De studie is een onderdeel van het 2D turbulentie programma van de Stichting voor
Fundamenteel Onderzoek der Materie (FOM). Numerieke simulaties werden uitgevo-
erd met een bestaand computer model, gebaseerd op een pseudo-spectrale discretisatie
techniek. Er is gebruik gemaakt van de supercomputers van de Stichting Nationale
Computerfaciliteiten (NCF). Hierbij een woord van dank aan zowel de NCF als FOM
voor de geboden financiële ondersteuning.

Voor een tijdsonafhankelijke forcering werd bekeken wat de eindtoestand van de stro-
ming is als de waarde van de kinematische viscositeit in discrete stappen wordt ver-
laagd, de zogenaamde route naar chaos. Daarbij kijkt men voornamelijk naar het
gedrag van het systeem in de tijd, door, bijvoorbeeld, op bepaalde punten in het domein
de waarden van de vorticiteit te meten in regelmatige intervallen. Voor afnemende
waarden van de viscositeitsparameter vindt men een opeenvolging van stationair, peri-
odiek, dubbel-periodiek, drievoudig-periodiek en, uiteindelijk, mild-chaotisch gedrag.
Deze transitiereeks lijkt sterk op het uit de chaostheorie bekende Ruelle-Takens sce-
nario. Echter, het betreft hier laag-dimensionale chaos; het gedrag van het systeem
lijkt nog steeds sterk op de voorafgaande periodieke bewegingen maar is niet meer
zo netjes geordend als tijdens het periodieke regime. Met laag-dimensionaal wordt
overigens bedoeld dat er slechts een beperkt aantal vrijheidsgraden nodig zijn om het
systeem te beschrijven. Dit in tegenstelling tot, bijvoorbeeld, een turbulente stroming
die juist gekenmerkt wordt door een groot aantal vrijheidsgraden.
Laat men nu de waarde van de kinematische viscositeit nog verder afnemen, dan wordt
het mild-chaotische regime in toenemende mate verstoord door perioden met hoog-
dimensionaal gedrag van grote intensiteit. Naar het duale karakter van het systeem
wordt in dit geval gerefereerd met de term intermittentie. Op een gegeven moment
overheerst het hoog-dimensionale gedrag volledig en is de stroming in een tweede
chaotische fase terecht gekomen. Dit tweede deel van de transitiereeks lijkt sterk
op de intermittentie-route tot chaos, eveneens bekend uit de chaostheorie. Om het
waargenomen gedrag te analyseren kan men enerzijds de gemeten tijdreeksen beki-
jken en Fourier spectra of structuur functies berekenen. Anderzijds kan men, door
een gemeten tijdreeks uit te zetten tegen een iets vertraagde versie van zichzelf (in
twee of meerdere dimensies), proberen om de faseruimte van het systeem te recon-
strueren. Punten die in de tijdreeks ver van elkaar verwijderd zijn kunnen in faseruimte
vlak naast elkaar komen te liggen, als gevolg van de dynamica van het systeem. Voor
faseruimten met een dimensie hoger dan twee kan men doorsneden construeren, zoge-
naamde Poincaré secties, waarin voor bepaalde, laag-dimensionale gevallen duidelijke
patronen herkenbaar zijn. Voor het intermittente gedrag is de dimensie van de bijbe-
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horende faseruimte echter veelal zo groot, dat het moeilijk wordt om het gedrag te
analyseren. Voor een echt turbulente stroming is dit zelfs onmogelijk, omdat het aantal
datapunten dat vereist is om de faseruimte van het systeem grondig te kunnen analy-
seren exponentieel groeit met de dimensie van het systeem.

Houdt men een stroming in leven met een tijdsafhankelijke stochastische forcering,
dan valt, voor een middelmatig aantal vrijheidsgraden, een spectaculaire fenomenolo-
gie waar te nemen. Er vindt spontane zelf-organisatie van de stroming plaats, zodat een
domein-vullende circulatiecel ontstaat. Deze cel wordt echter gedestabiliseerd door
interactie met aan de wand gegenereerde visceuze grenslagen. De destabilisatie kan
uiteindelijk uitmonden in een volledige destructie van de cel, waarna zich een nieuwe
cel kan vormen, mogelijk met een tegengestelde rotatie richting. Een dergelijke evo-
lutie is sterk verschillende van het gedrag van geforceerde stromingen op een vierkant
domein met twee periodieke richtingen. In het laatste geval ontstaat op een gegeven
moment een stabiele dipool-structuur, die het gehele domein vult. De evolutie op een
afgesloten domein wordt omschreven als een onderbroken condensatie regime, ref-
ererend naar een voorspelling van Kraichnan [74], dat er een ophoping van energie
kan plaatsvinden in de grootste golflengte op een eindig domein. Fysisch vindt een
dergelijk ophoping, of condensatie, plaats in de vorm van een grote domein vullende
wervel.
Voor de beschreven fenomenologie zijn boven- en ondergrenzen aan het gedrag van
het domein geintegreerde hoekimpulsmoment, onderzocht. Er is telkens gepoogd om
vanuit eerste principes, d.w.z vanuit de bewegingsvergelijking, te werken om zodoende
tot a priori resultaten te komen. In bepaalde gevallen lukt het echter niet om fysisch
relevante grenzen op te stellen en is gebruik gemaakt van bestaande schalingsideen
verkregen door numerieke simulaties of dimensie argumenten.

Behalve het gedrag van integrale grootheden is het van belang het lokale gedrag te
meten, in de vorm van snelheids- en vorticiteitsverschillen. Deze structuurfuncties
schalen met de afstand waarover ze gemeten worden. De schalingsexponenten die
hieruit volgen geven een idee of de stroming zich gedraagt zoals voorspeld in de heuris-
tische 2D turbulentietheorie of dat er afwijkingen plaatsvinden. In dit geval was het
doel om voor het onderbroken condensatie regime het gedrag van de kleine schalen te
bekijken. Met name de vorticiteits schalingsexponenten over de kleinste lengte schalen
lijken af te wijken van het ideale gedrag, ten gevolge van de advectie van vorticiteits-
filamenten (losgelaten visceuze grenslagen) naar het inwendige van het domein.
Daarnaast is de kansverdeling van de derde-orde gemengde structuurfunctie bepaald.
Op een dubbel-periodiek domein geeft laatstgenoemde structuurfunctie een idee van
het transport van de enstrofie (gekwadrateerde vorticiteit). Echter, op een afgesloten
domein lijken er nogal wat haken en ogen te zitten aan een dergelijke interpretatie;
het domein is niet isotroop, de invoer van enstrofie is niet constant omdat er vorticiteit
gegenereerd wordt aan de wanden en het Reynolds getal is in onze berekeningen aan
de lage kant. Opvallend is dat de gemeten kansverdelingen toch sterk lijken op uit de
literatuur bekende resultaten.

Samenvattend kan men stellen dat de aanwezigheid van vaste wanden een sterke in-
vloed heeft op geforceerde Navier-Stokes stromingen met een middelmatig Reynolds
getal. Zowel de fenomenologie als het schalingsgedrag van dergelijke stromingen lijkt
af te wijken van het geijkte gedrag op een dubbel periodiek domein. Voor de interpre-
tatie van laboratorium experimenten aan (quasi) twee-dimensionale stromingen, waar-
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bij men vrijwel altijd met vaste wanden te maken heeft, is een dergelijke observatie van
groot belang. Het lijkt erop dat er voor middelmatige Reynolds getallen geen directe
vertaalslag mogelijk is van numerieke simulaties op een dubbel-periodiek domein naar
laboratorium experimenten of van de experimenten naar de heuristische turbulentiethe-
orie.





Acknowledgements

he struggled to get through his day, he was helplessly behind,
he poured himself onto the page,writing for hours at a time.
Six degrees of inner turbulence, Dream Theater (2001)

First of all, a big thank you goes out my supervisors, Herman Clercx and GertJan van
Heijst, for all their advice and encouragement during the four years of this PhD project;
I am very grateful for the confidence they put in a non-physicist. Helpful remarks and
comments during the last phase of the project from my co-promotor Detlef Lohse and
committee members Brenny van Groesen and Anton van Steenhoven are gratefully ac-
knowledged.

A lot of thanks to all the staff at the Fluid Dynamics Laboratory and the fellow PhD
students with whom I’ve had a chance of exchanging thoughts and drinks. I mention es-
pecially my office mate Werner Kramer (I’m still sorry for almost killing your plants),
former postdoc Mathew Wells and (former) colleagues and students Adrian, Andrzej,
Dennis, Geert, Jieheng, John, Laurens, Marleen, Martin, Petra, Ralph, Ruben, Sveta
and Thijs. Thank you for the fun during conferences, the borrels in N-laag and the
many, many coffee breaks in the egg. Also, I couldn’t have survived without the help
of Gert on small and big computer problems and secretaries Brigitte and Marjan on
small and big administrative problems, merci beaucoup.

Gabriel and Irina, after breakfast in Paris I’m sure lunch awaits us in Barcelona. Thank
you for a lot of fun during the last months in Eindhoven.

Climbing is my greatest passion, which I’ve been fortunate enough to share on many
occasions with other fanatics; Arko, Harry, Jurriaan, Mathew, Maurice, Wouter and all
the occasional weekend climbing friends, keep on rocking!

Dear Arko, Eric, Jeroen, Johan, Michel and Wouter. You showed me the true impor-
tance of friendship. You were there when the whisky bottle had to be emptied, when
storms had to be endured and when life had to be celebrated. I thank you and your
ladies for all those moments throughout the ups and downs of the last four years.

Finally, my brother and sisters, Emanuel, Rafaela, Ingvild, Janneke and Floor, my
father and his wife, Martien and Juuleke, and my mother, Heidi, to whom this thesis is
dedicated, I thank you for your unrelenting warmth and support.



Statements

accompanying the thesis

Forced Navier-Stokes Flows on a Bounded Two-Dimensional Domain

1 Two-dimensional fluid flow in a confined domain under stationary forcing fol-
lows a Ruelle-Takens route to chaos.This thesis, Chapter 3.

2 In forced flows on a bounded square domain a large circulation cell may form
spontaneously, gain in strength, and collapse after interaction with the viscous
boundary layers, after which the process may repeat itself.Molenaar, Clercx &
van Heijst. Physica D,196, p.329-340, 2004.

3 Interactions of the large scales of motion with small-scale boundary layers dur-
ing the collapse of a large circulation cell on a bounded square domain leads to
anomalous scaling behavior for the vorticity statistics.This thesis, Chapter 5.

4 The applicability of a Poincaré-Friedrichs inequality on a finite domain is a
key difference between the classical theory of two-dimensional turbulence and a
bounded two-dimensional flow.This thesis, Chapters 1, 4 and 5.

5 Besides bringing safety to the land, dikes may have destroyed the famous Hol-
land light.www.hollandslicht.nl.

6 Contrary to popular belief, those rock climbers most at risk of injury are the most
dedicated and the most skilled.Wright, Royle & Marshall. Br. J. Sports Med.,35,
p.181-185, 2001.

7 Small perturbations can change the roadmap to peace in the Middle-East into a
roadmap to chaos.

8 Living in the global village has changed our notions ofgoede buurandverre
vriend: today they may be one and the same person.

9 In climbing the pleasure is scale invariant: mastering a three meter boulder prob-
lem can be as rewarding as ascending a mountain.

10 Using bottled oxygen on the worlds’ highest peaks is equivalent to competing in
theTour de Francewith a motorized bicycle.

Eindhoven,
October 2004
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