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Abstract. We present the first exact and robust implementation of the
3D Minkowski sum of two non-convex polyhedra. Our implementation
decomposes the two polyhedra into convex pieces, performs pairwise
Minkowski sums on the convex pieces, and constructs their union. We
achieve exactness and the handling of all degeneracies by building upon
3D Nef polyhedra as provided by Cgal. The implementation also sup-
ports open and closed polyhedra. This allows the handling of degenerate
scenarios like the tight passage problem in robot motion planning.

The bottleneck of our approach is the union step. We address effi-
ciency by optimizing this step by two means: we implement an efficient
decomposition that yields a small amount of convex pieces, and develop,
test and optimize multiple strategies for uniting the partial sums by con-
secutive binary union operations.

The decomposition that we implemented as part of the Minkowski sum
is interesting in its own right. It is the first robust implementation of a
decomposition of polyhedra into convex pieces that yields at most O(r2)
pieces, where r is the number of edges whose adjacent facets comprise
an angle of more than 180 degrees with respect to the interior of the
polyhedron.

1 Introduction

The Minkowski sum of two point sets P and Q in R
d, denoted by P ⊕Q, is defined

as the set {p + q : p ∈ S1, q ∈ S2}. Minkowski sums are used in a wide range
of applications such as robot motion planning [15], computer-aided design and
manufacturing [8], penetration depth computation [14], offset computation [17],
morphing [13], and mathematical morphological operations [18].

In several applications (e.g. in GIS or imaging) one deals with Minkowski
sums of two-dimensional objects, and several implementations exist. When the
two objects are non-convex polygons, two approaches are commonly used. The
first approach computes the convolution of the boundary of two polygons [10].
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The other approach decomposes both polygons into convex pieces, computes
the pairwise Minkowski sums of the pieces, and unites the pairwise sums. Both
approaches have also been studied and implemented in combination with exact
geometric computation [1,20]. The Library for Efficient Data Types and Algo-
rithms (Leda)1 offers an exact implementation based upon the first method.
The Computational Geometry Algorithm Library (Cgal))2 offers exact imple-
mentations of both methods.

There are also many applications, however, that require the computation of
the Minkowski sums of three-dimensional objects. Examples can be found in
CAD/CAM, assembly planning, and motion planning. Implementations of the
3D Minkowski sum exist, but they are neither exact nor robust. The most ef-
ficient such implementation is probably by Varadhan and Manocha [19]. It is
based upon the convex decomposition approach as described above for the two-
dimensional case. They guarantee the correct topology of the result, but are
limited to manifold boundaries. Although many input objects are commonly
two-manifolds, this limitation seems to be a major robustness issue, because the
primitives of the union step, i.e., the Minkowski sum of two convex pieces, are
not allowed to touch tangentially. Thus, at the moment there is no implementa-
tion available that is robust (that is, can deal with all possible degenerate cases),
nor is there an implementation that is exact. This is the goal of our work: to
provide a solution for the computation of Minkowski sums of 3D polyhedra that
can handle all degenerate cases and is exact.

We present the first exact implementation of the Minkowski sum of two non-
convex polyhedra. Our implementation is based on the convex decomposition
approach. For the union step we use 3D Nef polyhedra [11] as provided by Cgal,
which provide exact and efficient Boolean operations and handle all degenera-
cies. Our solution handles regularized solids with open or closed boundary. As a
consequence, it can also be applied to degenerate scenarios like the tight passage
problem in robot motion planning.

In addition to exactness, we also emphasize efficiency. We mostly concentrate
on optimizing the time needed by the union of the pairwise Minkowski sums of
convex pieces, which is the bottleneck of the used approach. For reducing the
runtime of the union it is essential to have a decomposition that yields a low
number of convex pieces. The decomposition into a minimum number of convex
pieces is known to be NP-hard [16]. More than 20 years ago Chazelle proposed a
decomposition method, which generates O(r2) convex pieces in O(nr3) time and
O(nr2) space, where n is the complexity of the polyhedron and r is the num-
ber of reflex edges—edges, whose adjacent facets form an angle larger than 180
degrees with respect to the interior of the polyhedron. However, no robust im-
plementation of this algorithm is known. Most of the practical methods perform
surface decomposition or tetrahedral volumetric decomposition [5,7,12]. These
methods generate O(n) convex pieces of constant complexity.

1 <http://www.algorithmic-solutions.com>
2 <http://www.cgal.org>
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As part of our Minkowski sum, we present the first robust implementation
of a decomposition of a non-convex 3D polyhedron into O(r2) convex pieces.
We use Chazelle’s main idea of inserting facets that resolve reflex edges. On the
other hand, we construct the facets by a completely different method. Apart
from the technical differences, we keep the actual amount of convex pieces low
by scheduling the construction of the facets in an opportune way.

To optimize the union step itself, we develop different union strategies. The
union of multiple polyhedra is done by consecutive binary union operations.
Here, the order of these unions is essential for the runtime. Our union strategies
use different heuristics to minimize the complexity of the intermediate results
and to reduce the total amount of memory usage. We compare the efficiency of
the heuristics experimentally.

The paper is organized as follows. In Section 2 we discuss how to efficiently
decompose a non-convex polyhedron into convex pieces. The Minkowski sum
of convex 3D polyhedra is discussed in Section 3. Section 4 compares multiple
union strategies and refines the most promising. Also, we perform one larger
experiments to get an idea of the performance. In Section 5, we briefly discuss
the handling of tight passage problems. Finally, a conclusion is given in Section 6.

2 Decomposing a Polyhedron into Convex Pieces

The problem of partitioning a polyhedron into convex pieces is more complex
than its two-dimensional counterpart. In general it is not possible to decompose
a polyhedron into simplices, i.e., into tetrahedra, without introducing Steiner
points [16]. The decomposition of a polyhedron into a minimum number of con-
vex pieces is known to be NP-hard [16].

A basic decomposition method was introduced and analyzed by Chazelle [4].
The idea is to remove each reflex edge, i.e., each edge whose adjacent facets have
an angle larger than 180 degree with respect to the interior of the polyhedron,
by inserting an additional facet that cuts the angle into two parts smaller than
180 degrees. Chazelle showed that a polyhedron with input complexity n and r
reflex edges, can be decomposed into O(r2) convex pieces in O(nr3) time and
O(nr2) space. He also provided an example for which the bound of O(r2) convex
sub-polyhedra is tight.

We follow the common decomposition approach of inserting only vertical
facets usually denoted as walls. A wall W (e) of some non-vertical edge e is a
connected subset of the vertical plane pe that supports e. Walls were first defined
by Aronov and Sharir [2]. Because their definition was given for a decomposition
of the three-dimensional space with respect to a set of triangles we adapt their
definition to our problem as follows: Let A(pe) be the planar arrangement of
the intersection of the polyhedron (including previously erected walls) with the
vertical plane pe through e. Then, the wall of W (e) consists of all faces of A(pe)
that are incident to e and inside the polyhedron. The left graphic of Figure 1
illustrates the planar arrangement A(pe) and the wall W (e).
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e

A(pe)

FW(e)

e

SW(e)

Fig. 1. Left : The flood wall FW (e) consists of all facets adjacent to e in the planar
arrangement A(pe) of the intersection of the polyhedron and the vertical plane pe

through e. The arrangement A(pe) may also contain previously inserted walls (dashed
lines). Right : A sight wall SW (e) covers all points that can be connected to e by a
vertical edge without intersections.

Later de Berg, Guibas, and Halperin defined a vertical wall as the set of all
points that can be connected to e via a vertical segment that does not intersect
a face, edge, or vertex [6]. Adapting their definition to our setting, we consider
points that can be connected to e via a vertical segment that completely lies
within the polyhedron. The right graphic of Figure 1 illustrates the definition.
To distinguish the two wall types, we further-on refer to the walls as defined
in [2] as flood walls and to the walls as defined in [6] as sight walls.

The convex decomposition by vertical walls, also denoted as vertical decom-
position, works in two steps. In the first step, vertical walls are erected for all
non-vertical reflex edges. As a consequence, the decomposed volume becomes
subdivided into cylindrical cells. In the second step, walls parallel to the yz-
plane resolve the vertical reflex edges. Figure 2 illustrates the two steps of the
vertical decomposition. Our decomposition deviates from the common approach
to reduce the number of sub-polyhedra.

Using sight walls in the first phase often yields fewer, and never yields more
pieces than using flood walls. This becomes clear if we consider the construction of
two flood walls of reflex edges e and e′. Let us assume that FW (e), if built first, seals
a pocket in the boundary of the polyhedron. But if another flood wall FW (e′) is
built before, it may intersect e and therefore split the pocket into two halves. Both
halves of the pocket will later be sealed separately by the walls constructed for the
two halves of e. Thus, depending on the building order of the flood walls, such a
pocket can be decomposed into multiple pieces, although fewer pieces (or even one
piece) are sufficient. Using sight walls instead, no SW (e′) splits the pocket into two
halves; vertical segments cannot intersect such a pocket.

Because the reflex edges in the second phase are vertical, the definition of
sight walls cannot be applied to these edges. Also, there is no unique vertical



Exact Minkowksi Sums of Polyhedra and Exact and Efficient Decomposition 673

Fig. 2. Vertical decomposition based on the insertion of walls (viewed from the top). In
the first step, the polyhedron is decomposed into xy-monotone sub-cells. Then, further
vertical walls are inserted to subdivide the cells into convex sub-cells.

supporting plane that defines the flood wall of a reflex edge. The procedure of
vertical decomposition suggests to create y-vertical flood walls. We deviate from
this procedure to reduce the number of walls and therefore the number of sub-
polyhedra. An y-vertical flood wall divides a volume into two or three parts.
Instead, we insert a flood wall along one of the two facets adjacent to the reflex
edge. This way, resolving a y-vertical reflex edge splits exactly one volume into
two parts.

In the second step of the decomposition, walls can be built easily. Given a
reflex edge e, let pe be the plane in which we intend to build the wall W (e), and
let c be the cylindrical cell that will be decomposed by it. Then, W (e) can be
created by walking along the intersection of c with pe and adding the incidences
of the new facets to each encountered item. In the first step, the boundary of
a wall is more complex. The boundary of W (e) may not only consist of e and
intersections with c, but also of intersections with other walls. If the walls are
built in random order it is not guaranteed that those intersections exist when
constructing a wall. Therefore, we cannot just walk along the boundary. To allow
using the walk, we schedule the construction of the walls in such a way that all
boundary parts of a wall exist in the moment of its construction. To do this, we
must resolve mutually and cyclic dependencies.

The wall W (e) of a reflex edge e may consist of two parts—of points below
and points above e. We refer to these two parts as the lower wall W−(e) and
upper wall W+(e). Often, the lower wall W−(e) is part of the boundary of some
upper wall W+(e′), or vice versa. Therefore, the lower and the upper walls are
created in two separate sessions.

Starting with the lower parts, we want to sort the reflex edges, and thereby
schedule their construction, from bottom to top. In general, the edges of a
polyhedron—and the same holds for the reflex edges of a polyhedron—can not
be sorted along a given direction. There can always be cyclic dependencies as
illustrated by Figure 3. But, as we will see in the following, it is possible to
resolve the dependencies.

We sort the reflex edges by their lower endpoints. As a result, every pair of re-
flex edges has one of three relations. If (a) they do not overlap vertically, the sort-
ing schedules the edges well. The same holds, if they overlap vertically, but their
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Fig. 3. Variation of Schönhardt polyhedron with a quadratic base viewed from the
side and from the top. The diagonals of the sides are reflex edges, which are circular
dependent on one another.

projection onto the xy-plane does not intersect. If (b) they overlap vertically and
their projections onto thexy-plane intersect internally, the lowerwall of one of them
may be part of the other’s boundary. Let’s assume such an edge pair e and e′, where
W−(e) is part of the boundary of W−(e′). If e has the smaller lower endpoint the
schedule works nicely; otherwise the walk cannot proceed along W−(e′)’s bound-
ary because W−(e) is missing. If (c) they share a common endpoint, the lower walls
share a boundary edge. Their construction is mutually dependent.

To solve the problems described above, we cut some reflex edges into two
or more parts and insert vertical edges from the endpoints of all reflex edges
to the bottom of the polyhedron. The inserted vertical edges exactly resemble
the common boundary parts of walls with common endpoints and therefore
resolve the problem described in (c). Before inserting the vertical edges, we
search the sorted list of reflex edges for situation (b). If we find an edge e part
of the boundary of W (e′), but e′ is scheduled before e, then we cut e at the
intersection point vi with the vertical plane pe′ supporting e′ and put the two
edge halves at their proper positions into the sorted set. Later a vertical edge
will also be inserted between vi and the bottom of the polyhedron. It exactly
resembles the intersection between W−(e) and W+(e′). Note that the split of
a reflex edge performed to resolve (b) can be unnecessary if e cannot be seen
from e′. However, such a split does not introduce an additional convex piece.
The upper walls can be handled in the same way as the lower walls.

In the second step of the decomposition, no wall intersects a reflex edge or
introduces new reflex edges. Also there are no mutual and cyclic dependencies.
Since we use multiple directions, the supporting planes usually intersect and
therefore the decomposition is not unique. But the number of sub-polyhedra is
constant among all orders of wall creation.

Like the decomposition of Chazelle [4], our decomposition clearly yields at
most O(r2) polyhedra. The wall of a non-vertical reflex edge e can intersect
with each other reflex edge at most once. This does not change if other walls
cut e into multiple parts, because all sub-walls have the same supporting plane
as W (e). Therefore the first step generates at most O(r2) cylindrical cells and
O(r2) vertical reflex edges. Then, each vertical reflex edge exactly splits one cell
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into two. The worst case runtime of our implementation is worse than Chazelle’s
since we use kd-tree based ray shooting for the insertion of the vertical edges
and for the walk along the boundary.

3 The Minkowski Sum of Convex Polyhedra

The Minkowski sum of two convex polyhedra is also a convex polyhedron. Fur-
thermore, it is well known that each vertex vP⊕Q of the Minkowski sum P ⊕Q is
the vector sum of vertices vP in P and vQ in Q [15]. Hence, a trivial solution for
the Minkowski sum of two convex polyhedra P and Q computes the convex hull
of all vector sums of vertex pairs of P and Q. This algorithm performs a convex
hull computation on pq vertices, where p and q are the number of vertices in P
and Q. Thus, using Cgal’s convex hull 3 function the trivial algorithm runs
in O(pq log(pq)) time.

A more efficient solution can be obtained by using normal diagrams. Each
convex polyhedron P has a unique dual representation NP called the Gaussian
diagram or normal diagram. It is a subdivision of the sphere into vertices, edges
and faces, such that the outward-directed normal directions of all planes sup-
porting some item of P constitute an item of NP . For a facet of P there is exactly
one plane supporting it. Thus, its dual item is the single point on the sphere with
the same normal direction as the supporting plane. The normal directions of the
planes supporting an edge eP of P form a great arc on the sphere. The endpoints
of the great arc are dual items of the facets incident to eP . A face fn on NP is the
dual item of a vertex vp of P . fn is bound by a convex cycle of edges and vertices,
which are the dual items of the edges and facets incident to vp. The order of the
edges and vertices around fn coincides with the order of dual items around vp.

The faces of NP⊕Q are intersections of faces of NP and NQ. What is more,
the dual face of vP⊕Q is the intersection of the dual faces of vP and vQ with
vP + vQ = vP⊕Q. As a consequence, the overlay of NP and NQ is the normal
diagram of the Minkowski sum P ⊕Q. Also, the exact point set of P⊕Q can easily
be obtained by storing the primal vertices with their respective dual face and
computing the vector sums for each face in the overlay. Thus, using the overlay
of normal diagrams improves on the trivial algorithm in two points. First, the
construction of P ⊕ Q operates on the exact set of vertices, which might be far
smaller than pq. However, in the worst case, P ⊕Q still has O(pq) vertices. And
second, the incidence structure of NP⊕Q allows us to construct P ⊕Q from it in
time linear to P ⊕ Q.

With Nef polyhedra embedded on the sphere [11] as provided by Cgal, we
already have a tool that can be used to realize normal diagrams, and for which
we also have an overlay algorithm that can be reused for the Minkowski sum.
The overlay algorithm also allows to store arbitrary data with each vertex, edge,
and face, and to propagate this data properly during the overlay. Therefore, the
missing operations are the two conversions between a convex three-dimensional
polyhedron and its normal diagram. Both functions are easy to implement.
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Spherical Nef polyhedra are not the most efficient solution for the overlay
of normal diagrams. Asymptotically, there is no essentially superior solution,
but the Cubical Gaussian Map of Fogel and Halperin is clearly faster [9]. The
binary operations on spherical Nef polyhedra can handle more complex overlays
than those of normal diagrams, which are always convex arrangements; they
never include nested faces or lower dimensional features. Therefore, our overlay
algorithm is obviously more costly than needed. Apart from that, the spherical
predicates are too expensive.

For the runtime experiments of this paper, the spherical Nef polyhedra are
sufficient, since the runtime of computing the Minkowski sum of the convex
parts is always much smaller than the union of these partial solutions. For a fu-
ture release of our implementation of non-convex Minkowski sum computations,
we plan to exploit other efficient implementations of algorithms that compute
Minkowski sums of convex polyhedra such as the one based on Cubical Gaussian
Maps [9], or the one based on Arrangement on Surfaces [3].

4 Uniting a Set of Polyhedra

The union of the Minkowski sums of the convex sub-polyhedra is done by mul-
tiple binary union operations of 3D Nef polyhedra. Since the complexity of the
binary union operation depends on the complexities of both input and the result
polyhedron in equal shares, it is essential not to perform the binary operations in
arbitrary order. The trivial method for instance maintains one Nef polyhedron
holding the current intermediate result. It starts with an empty polyhedron and
adds the polyhedra one by one. This method performs very badly, since most of
the union operations involve at least one big polyhedron, namely the interme-
diate result. Experiments showed that examples that can be computed in less
than 10 minutes with efficient methods, run for more than a day with the trivial
approach. Clever methods unite small polyhedra first, and try to keep interme-
diate results as small as possible. Since we cannot foresee the optimal order, we
develop and test different strategies.

Our first method performs in a greedy fashion. It maintains the set of all un-
handled primitives and intermediate results, and unites the two smallest poly-
hedra in each step. This can be realised by a priority queue. The priority of a
polyhedron is its size measured by the number of its vertices. The priority queue
is initialized with all pairwise Minkowski sums of the convex pieces. Then, re-
peatedly the two smallest polyhedra are extracted from the queue, and their
union is inserted into the queue. The method terminates with the result left as
the final remaining element in the queue.

Our second strategy tries to unite neighboring polyhedra to reduce the size of
the intermediate results. For this purpose, we put the primitives into a queue and
sort the queue by the lexicographically smallest vertex of the primitives. In order
to unite polyhedra of the same complexity, we proceed similar to the priority
queue approach. We extract and unite the first two polyhedra, and append their
result to the end of the queue. The neighboring relation used for the sorting is
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Fig. 4. Example Minkowski sums. Top: cup and cup ⊕ sphere. Bottom: spoon, star,
and spoon ⊕ star.

Table 1. Models used in the experiments

cube ball1 ball2 star spoon mushroom cup
facets 6 128 1000 24 336 448 1000
parts 1 1 1 5 186 255 774

maintained throughout the whole union process. Sorting the polyhedra by their
lexicographically smallest vertex does not specify how we compare two such
vertices in the sorting function. We test three comparison types: lexicographical
comparison of the coordinates, comparison of the L1 distance from a point in a
corner of the scenery, and comparison of the L2 distance from the origin.

Performing larger examples, it becomes obvious that memory is major issue in
either of the above strategies. The queue-based approach can be adapted, such
that no more than log p

2 need to be stored, where p is the number of primitives.
Instead of a queue we maintain a stack. The primitives are computed and inserted
to the stack one by one. After pushing the ith primitive onto the stack, we �log i�
times pop and unite the respective top two items and push the result back on
the stack. Note that every binary union (besides the ones after the insertion of
the final primitive) combines two polyhedra that are unions of the same number
of primitives. Although we construct primitives just before they are pushed on
the stack, we also want to sort the set of primitives in advance. For this purpose,
we additionally store all normal diagrams and a sorted list of all ordered pairs
of pointers to the normal diagrams that schedules the creation of the primitives.
The list is sorted by the sum of the smallest vertices of the respective sub-
polyhedra. Again we test the same three comparison types.

Table 2 summarizes the tests of the strategies. The stack strategy proved to
be superior to the others. This becomes clearer the larger the examples get. The
difference between the comparison types is very small. Lexicographical compar-
isons show the best result. The last line of the table shows the runtime of a much
bigger example.
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Table 2. Performance of the different union strategies, the decomposition and the
Minkowski sum of the convex pieces. For each model the number of facets and the
number of convex sub-polyhedra are listed. The runtimes are given in seconds.

priority queue stack convex convex
model1 model2 queue lexi L1 L2 lexi L1 L2 decomp sum

mushroom cube 170 151 151 152 147 147 149 43 14
mushroom ball1 608 529 534 545 408 415 423 43 102

spoon star 963 930 921 925 755 726 732 43 84
cup ball2 8497 415 939

5 Tight Passages

Computing the Minkowski sum of a tight passage scenario requires the handling
of open polyhedra. A Nef polyhedron stores set selections marks for every vertex,
edge, facet, and volume, which indicate whether the respective item is part of
the polyhedron. In case of an open polyhedron the marks of the boundary items
are unselected. These selection marks can additionally be stored in the normal
diagram. During the overlay operation the marks are transferred in the following
way. Given normal diagrams NP and NQ, we consider intersecting items iP and
iQ. Their intersection forms item iP⊕Q in the overlay NP ⊕NQ. Then, the selec-
tion mark stored with iP⊕Q can be computed as iP ∧iQ. This means for instance,
that a vertex vP⊕Q = vP + vQ of P ⊕ Q is selected iff vP and vQ are selected.

If we allow arbitrary selection mark for the input, i.e., each boundary part may
have a different mark, the computation of the Minkowski sum becomes more com-
plicated. The reason is, that each side of a convex sub-polyhedron may consist of
several facets, some of which are boundary parts of the input and some of which are
walls inserted by the decomposition. The selection marks of these facets can differ.
As a consequence, the selection marks cannot be handled as described above.

Fortunately, we don’t need arbitrary selection marks to handle tight pas-
sages. It is only necessary to allow polyhedra that are either open or closed,
i.e., all selection marks of boundary items are either selected or unselected. In
this situation it suffices to ignore the selection marks of the walls. If the side
of a sub-polyhedron consists of original facets and walls, we use the uniform
mark of the original facets; if there are only walls, we can assign an arbitrary
mark. Naturally, the walls must be selected because they represent a point set
inside a polyhedron. Thus, not selecting a wall yields an unselected facet in a
convex Minkowski sum pr1 that should be selected. On the other hand, this wall
is adjacent to another sub-polyhedron. Because of the adjacency and because
of the convexity of primitives, the convex Minkowski sums computed on this
other sub-polyhedron must generate a primitive pr2 that overlaps pr1 such that
the wrongly unselected facet is in the interior of pr1. The final result of the
Minkowski sum operation will not contain any of these facets.

Figure 5 shows a tight passage scenario solved with our implementation.
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Fig. 5. A maze whose corridors have unit width, and the Minkowski sum of a unit
cube and the maze

6 Conclusion

We have presented an exact implementation of the Minkowski sum of non-convex
3D polyhedra. Our implementation also supports open and closed polyhedra,
which allows to solve extreme scenarios like tight passage problems.

As part of our Minkowski sum, we have also presented the first robust decom-
position of non-convex 3D polyhedra into O(r2) convex pieces, where r is the
number of reflex edges.

As part of future work, we want to further improve the efficiency of our
implementation and release it as part of Cgal. We plan two major points of im-
provement. First, we want to improve the second step of the decomposition by
adapting polygon decomposition methods for the decomposition of the cylindri-
cal cells. Those methods would sometimes resolve two vertical reflex edges with
one wall and therefore generate fewer convex pieces. As a second step, we plan
to replace our solution for the convex Minkowski sums by a faster approach.
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