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A fluid flow model of an ATM traffic shaper 

lL. van den Berg*, E.B. Dikst, lA.C. Resingt and 1 van der Wal t 

Abstract 
In this paper we study a fluid flow model of an ATM traffic shapero In particular, we are interested 

in the relation between the buffer capacity of the shaper, the shaper rate, the cell arrival process and the 
cell loss probability. The main conclusion of the paper is that cell loss probabilities are very sensitive 
to several traffic characteristics of the arrival process, like e.g. the squared coefficient of variation of 
the durations of on-periods in an on-off arrival process. 

Keywords: Traffic shaper, cell loss, fluid flow model. 

1 Introduction 

Public ATM backbone networks will be operational within a few years. In the first years of the introduc
tion mainly semipermanent virtual path connections (VPCs) will be used, e.g. for the interconnection of 
Local Area Networks (LANs). In order to reduce the required VPC bandwidth it is necessary to reduce 
the rate with which LAN data bursts are offered to the ATM network. This can be achieved by buffering 
data bursts at the entrance to the network. 

LAN ATM LAN 

Interw.Unit Buffer Shaper 

Figure 1: The interworking unit and shaper connect LAN and ATM. 

In this paper, we considerthe situation in which two LANs are connected via an ATM VPC, see figure 
1. Protocol conversion is performed in the interworking units (IWUs) between the LANs and the ATM 
network. In particular, in the IWUs the relatively large packets coming from the LANs are segmented 
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into short, fixed length, ATM cells. The cells are stored in a buffer (traffic shaper) before they are offered 
to the network. The traffic shaper forwards the cells to the network at a fixed (cell) rate equal to the ATM 
VPC rate. Cells that arrive at a full buffer are discarded. In fact the traffic shaper takes care of adapting 
the speed of the LANs to the bandwidth provided by the ATM VPC. For instance, in the case of an FODI 
LAN, packets arrive at the IWU with a speed of 100 Mbit/s while the mean arrival rate may be much 
smaller, e.g. 2 Mbit/s. Hence traffic shaping is needed in order to reduce the required VPC bandwidth. 

The present study is concerned with the following important question: what is the relation between 
the buffer capacity, the shaper rate (vpC bandwidth), the cell arrival process and the cell loss probabil
ity? Insight into this problem is important for making a proper choice for the bandwidth of the ATM VPC. 
Obviously, to minimize costs, the VPC bandwidth should be chosen as low as possible under the condi
tion that the resulting cell loss probability is smaller than a certain predefined value and the cell delay is 
acceptable. 

Different approaches for modelling ATM systems are used in the literature (see Roberts [6]), in par
ticular discrete-time queueing models (see e.g. Gravey, Louvion and Boyer [2]) and fluid flow models 
(see e.g. Anick, Mitra and Sondhi [J.D. In this paper we have chosen to use a fluid flow approach. This 
approach enables us to derive expressions for the cell loss probability in the case that the arrival process 
is given by an N -state Markov process. We come back to related literature on fluid flow models in section 
2.3. 

We will now give an overview of the contents of the rest of the paper. In section 2 the traffic shaper is 
modelled as a (continuous time) fluid flow model and expressions for the cell loss probability are derived. 
In section 3 we present and discuss numerical results. We restrict our attention mainly to on-off arrival 
streams. First, we study the influence of the variability of the length of the on-periods of the arrival process 
(Le. the packet size) on the cell loss probability. Next, we consider the relation between the shaper rate 
and the buffer size for given cell loss probability and arrival process. Finally, we compare the results of 
the fluid flow model with the results of a discrete-time MMBP queueing model. The conclusions of our 
study are given in section 4. 

2 The fluid flow approach 

2.1 Model description 

In the fluid flow model data enters the buffer with a rate depending on the state of the arrival process. The 
buffer is emptied, say at rate r (here r equals the shaper rate). The buffer is assumed to have finite capacity 
K. If the buffer is empty and the arrival rate is less than r then the output rate of the buffer reduces to the 
arrival rate. If the buffer is full and the arrival rate exceeds r then the arrival stream is split into two parts, 
one with rate r which enters the buffer, and a remainder which overflows and is lost. 

The state of the arrival process is described by a Markov process with N states. The transition rate 
from state i to state j, j =F i, of this chain equals Aij. The Markov chain regulates the arrival rates, Le. 
when the chain is in state i the arrival rate is equal to JLi. We will assume JLi =F r for all i. (If one or more 
arrival rates are equal to r the system can be reduced by eliminating these components.) 

We write L and H for the sets oflow and high arrival rates respectively: 

L:= UIJLi < r}, H:= {ilJLi > r}. (1) 

The problem is only interesting if both L and Hare nonempty. If H is empty then the buffer will 
never be filled. If L is empty then the average overflow rate is equal to the average arrival rate minus r. 
For convenience, we assume JLN > r. 
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2.2 Analysis 

For the analysis of our system, we follow the renewal approach for the analysis of a manufacturing system 
as presented in Wijngaard [8]. The state of the system is a pair (i, x) with i the state of the arrival process 
and x the buffer content. In order to obtain the overflow (loss) fraction we look at the overflow in a renewal 
cycle. As renewal points we take the entrance into the state (N, K), i.e., the arrival process is in state N 
and the buffer is full. (Note that also other choices for the renewal points are possible.) 

Wijngaard introduces general "cost" functions to obtain performance measures for his manufacturing 
system. We use these cost functions to obtain the loss fraction for the traffic shapero In order to find the 
loss fraction two cost functions are considered. One will give the expected duration of a cycle, the other 
the average loss in a cycle. Obviously the loss fraction is equal to the quotient of the average loss in a 
cycle and the product of the mean cycle duration and the average arrival rate. The average arrival rate is 
equal to L 7riJ.Li, with 7ri the equilibrium probability for the arrival process to be in state i. In any realistic 
situation we will have L 7riJ.Li < r. 

For both cost functions we have to define a cost rate: when the arrival state is equal to i and the buffer 
content is equal to x the cost rate is denoted by Ci (x). For the cost function "time" we will have Ci (x) = 1 
for all i and 0 ::: x ::: K. For the cost function "loss" we define Ci (K) := J.Li - r for i E Hand 0 everywhere 
else. 

Define Vi (x) as the residual cost until the next renewal if the arrival process is in state i and the buffer 
content is equal to X. For Vi (x). 0 < x < K, a differential equation can be obtained by looking ahead an 
infinitesimal amount of time /).: 

Vi(X) = /).Ci(X) + LAij/).VjCX + /).J.Li - /).r) + (1- LAij/).)Vi(X + /).J.Li - /).r) +0(/).). (2) 
j#i j#i 

Taking the limit for /). towards 0 we obtain 

Defining 

we can rewrite this as 

(r - J.Li)vi(X) = Ci(X) + I) .. ijVj(x) - L AijVi (x). 
j#i j#i 

di(X) .- Ci(x)/(r - J.Li), .-
aij .- Aij/(r - J.Li), j i= i .-
aii .- -L Aij/(r - J.Li), .-

j#i 

vi(x) = di(X) + L aijVj(x) + aiivi(x). 
j#i 

Or. with A the matrix with elements aij. in vector-matrix notation 

v' (x) = d(x) + Av(x). 

(3) 

(4) 

(5) 

The equations hold for all i and all 0 < x < K but also on a part of the boundary. For the components 
i E L the boundary x = K can be included. and for i E H the boundary x = O. This whole region will be 
called the interior. For the components i E L in x = 0 and for i E H in x = K boundary conditions will 
be formulated later on. 
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Note that the cost rate "time" does not depend on i and x at all. For given i the cost rate "loss" is equal 
to 0, thus independent of x except for i E H in the boundary points x = K. So the functions di(X) are all 
independent of x on the interior and the set of differential equations simplifies to 

v' (x) = d + Av(x). (6) 

Since the matrix A is a scaled Markov generator it has row sums equal to O. Hence e • the column 
vector (1. 1 •...• 1), is an eigenvector of A for eigenvalue O. We assume that A has N independent eigen
vectors Ut with corresponding eigenvalues Pt with (for convenience) PI = 0 and UI = e. If we write d 
as 

then the set of solutions of (6) can be written as 

N 

with 

vex) = L OtUlePtX + I(x), 
l=l 

N 

I(x) = UIYIX - LUlYt./pi.. 
1.=2 

(7) 

(8) 

(9) 

The N unknown constants Of have to follow from the boundary conditions. We will define VN (K) := 0, 
since we use this expression at the end of the cycle and not at the beginning of it. The boundary conditions 
are 

and 
vN(K) = o. 

So in order to obtain the loss fraction we have to solve a number of subproblems: 

• Obtain the eigenvalues and eigenvectors of the matrix A. 

For both cost functions "time" and "loss": 

• Express the vector d in the eigenvectors (Le. find the N coefficients Yi , see (7) ). 

• Obtain the N constants Of from the boundary conditions (10), (11) and (12). 

Finally the total expected costs during one cycle, denoted by C , can be obtained from 

C = L 1 (CN(K) + LANjVj(K»). 
k#NANk j#N 

(to) 

(11) 

(12) 

(13) 

Writing CT and CL for the total expected cycle time and total expected loss in a cycle, the loss fraction 
a. is obtained from 

(14) 
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2.3 Related literature 

In the context of communication systems. the fluid flow model was introduced by Anick, Mitra and Sondhi 
[1]. They considered a system with an infinite buffer in which the arrival process consists of a superposi
tion of identical on-off sources with exponential on-times and off-times. Later on, Kosten [4] extended the 
arrival process to a general "Markov-driven" source. In the work of Mitra [5], the model of Anick, Mitra 
and Sandhi is extended in the way that also the service process can be in different states (and hence you 
can have different service rates).- Furthennore. both the finite and the infinite buffer case are considered. 

We have chosen to use the renewal approach of Wijngaard in contrary to the above mentioned ref
erences, which use a more direct approach to calculate the distribution of the buffer contents and, in the 
finite buffer case, the cell loss. 

3 Numerical results 

In this section we will show some numerical results for the cell loss of a traffic shaper in the case of an 
on-off arrival process using the fluid flow model of the previous section. 

3.1 Variability of the arrival process 

First, we are interested in the influence of the variability of the arrival process on the cell loss probability 
in the shapero The arrival process consists of successive off-periods and on-periods. During an off-period 
the arrival rate equals 0 and during an on-period the arrival rate equals 1. i.e. every time unit one cell 
arrives. The length of the off-periods is exponentially distributed, with mean "Coff. For the on-periods, 
we keep the mean, "Con. fixed. However, we vary the squared coefficient of variation, 2. In our numerical 
example. we choose "Con = 30 and "CoIf = 170 and the shaper rate equals 0.5, i.e. every two time units a 
cell leaves the buffer (if the buffer is non-empty). Hence the total load of the traffic offered to the shaper 
is equal to 0.30. For the duration of the on-periods. we choose different distributions depending on the 
value of 2. 

In the case that 2 = 1 we choose an exponential distribution. The arrival process consists of two 
states. The arrival rates satisfy fl.l = 0 and fl.2 = 1. The transition rates are chosen as A21 = ("Co/l)-1 and 
A12 = ("Colf)-I. 

When c2 < 1 we choose a Coxian-2 distribution for the duration of the on-periods. The arrival process 
consists of three states. The arrival rates satisfy fl.l = 0 and fl.2 = fl.3 = 1. The transition rates Al3. AZI 

and A32 are O. The other transition rates are chosen as: 

1 a+l a+l 
Al2 = -, A23 = --, A31 = --, 

"CoIf a"Con tOil 

where 
c2 + -./2c2 -1 

a=-~-~-
1-

Remark that this only works in the case c2 2:: 1/2. 
Finally. when 2 > 1 we choose a hyper-exponential distribution with balanced means for the duration 

of the on-periods (see e.g. page 399 ofTijms [7]). Once again, the arrival process consists of three states. 
The arrival rates satisfy J.Lt = 0 and fl.2 = fl.3 = 1. The transition rates A23 and A32 are equal to O. The 
other transition rates are chosen as: 

q (l-q) 2q 2(1-q) 
AIZ = - , AI3 = ,A21 = -, A31 = , 

"Coif "Coif ton "COli 
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where 

Ifc2=t 
q = 2(1 + V C2+1), 

Comparison of the cell loss probabilities for these distributions of the length of the on-periods gives us 
insight into the impact of c2 on the cell loss. 

Figure 2 depicts the behaviour of the cell loss for a range of buffer values K (30 ::s K ::s 270). 

1 EO,-----------, 

lE-12+--_�_-I--+-I--+--+---+----j 

30 90 150 210 270 
Buflersize 

i-&sq.coeff . ..o.5 -9-sq. coefl . ..o.75~sq. coell .• l.0 i 

!-trsq. coeff .• l.25+sq. coeff..1.5 I 

Figure 2: Cell loss as function of the buffer 
size for various values of c2 for a system with 
load=0.30, shaper rate=O.5. t'Oll = 30 and 1:off = 
170. 

lEO 

1E·2 

lE·4 

., ., 
.!a lE·S 
(jj 
U 

lE·S 

lE-l0 

lE·12 
30 90 150 210 270 

Buffersize 

-e-sq. coelf . ..o.5 -9-sq. coeff...o.75~sq. coeff •• l.0 

i -Ir sq. coeff .• 1.25 + sq. coell .• l.5 

Figure 3: Cell loss as function of buffer size for 
various values of q for a system with 10ad=0.30, 
shaper rate=0.5, 1:011 = 30, t'off = 170 and c2 = 
1.5. (BM = Balanced Means) 

Note that the buffer size in Figure 2 is given in multiples of 30, the number of arriving cells during the on
period. In practical applications the length of the on-period corresponds to the number of cells in a packet. 
From Figure 2 we conclude that the cell loss decreases exponentially when the buffer size increases (cf. 
Mitra [5]). Furthermore we conclude that the squared coefficient of variation of the on-periods has a large 
impact on the cell loss. For example, when the required (maximum) cell loss equals 10-5 the buffer sizes 
needed for the different values of c2 are 130 for cZ = 0.5, 200 for c2 = 1.0 and 330 for c2 = 1.5. 

So far, we used the balanced means fit for the hyper-exponential distributed on-periods. However. 
note that in general we have one degree of freedom in fitting a hyper-exponential distribution on the two 
quantities t'Oll and c2. In Figure 3 we show the influence of this degree of freedom on the loss probabilities 
by varying the parameter q. Note that also A21 and A31 need to be adapted in order to satisfy the fit on 7:0/1 

and c2. 
We conclude that the effect of q on the cell loss is considerable. Remark that in our numerical exam

ple we could choose q arbitrarily between 0 and 1 (of course, by symmetry this reduces essentially to q 
between! and 1). However. in general, there can be some restrictions on the possible values of q. 

So far. we considered on-periods with exponentially distributed tails. Next, we wantto investigate the 
influence of the tail of the on-periods on the cell loss probabilities. This is important because in practice 
data packets have a maximum length and hence the length of on-periods will be bounded. Therefore, we 
compare two distributions for the on-periods: an exponential distribution with mean t'Oll and a Bernoulli 
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(two-point) distribution, i.e_ with probability p the on-period equals 1 and with probability 1 - p the on
period equals a. The parameters p and a are chosen such that the mean and squared coefficient of variation 
of the on-periods are 1:'011 and I, respectively. i.e. 

~ 2p ±JT!.p 
p - 011 a - __ ..:...-,...... 

- 21:'01\(1:'011 - 1) + l' - 2p - 1 . 

The cell loss of the system with the above described distribution for the on-periods is determined by 
simulation. Figure 4 depicts the results of the simulation in comparison with the analytical results for the 
system with exponentially distributed on-periods. As expected we see that in the case of exponentially 
distributed on-periods the cell loss is considerably higher. 

lEO,------------, 

lE-' 

.. lE-2 
.a 
~ lE-3 

lE-4 

lE-S+----.-----..-----..Jf 
30 60 90 

Bulfersize 

*SpeciaJ distribution (Simulated) 

.. Exponential distribution 

120 

Figure 4: Influence of tail of on-periods on cell 
loss for a system withload=0.30. shaperrate=0.5, 
1:'011 = 30, 1:'0// = 170 and c? = 1. 

3.2 Buffer size versus spa per rate 

2SOO .---.---------, 

2000 

<I> 1500 
.~ 

Jl 
dl,ooo 

o 0.2 0.4 0.6 0.8 
Shaper rale 

-El-Coxian-2 (c2-o.S) ..... Exponential (c:z.l) 

.. Hyperexponentlal (c:z.1.5) 

Figure 5: Buffersize versus shaper rate for a sys
tem with 1:'011 = 30, 1:'0// = 170 and cell loss prob-
ability 10-5• . 

In this subsection we come back to the question raised in the introduction how the vpe rate should be 
chosen such that, on one hand the ceUloss probability does not exceed a predefined value and, on the 
other hand the cell delay remains acceptable. For several shaper rates we have determined the buffer size 
needed to obtain a given ceUloss probability. Oearly, the size of a buffer guarantees a maximal cell delay. 
A buffer should not be too large, otherwise this maximal cell delay becomes unacceptable. 

Figure 5 depicts the relation between the buffer size and the shaper rate for a ceUloss probability of 
10-5 and three different arrival processes. These arrival processes are on-off processes with 1:'011 = 30. 
1:'0// = 170 and c? = 0.5, 1 and 1.5. respectively. 

Remark that a shaper rate smaller than 0.15 is not allowed because otherwise the load of the shaper 
exceeds one. The required buffer size has been calculated for shaper rates equal to 1. i. i. t. ! and 
i (this is because the shaper operates in discrete time). We conclude that the required buffer size grows 
very rapidly when the shaper rate decreases below a certain value. This effect is enhanced in the case of 
high variability of the length of the on-periods. 
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3.3 Discrete-time MMBP versus continuous-time fluid flow 

The main difference between the shaper and the fluid flow model is that the shaper operates in discrete 
time, i.e. time is divided into slots, while the fluid flow model operates in continuous time. In this section, 
we compare the cell loss of our fluid flow model with the cell loss in a discrete time model with arrivals 
according to a two-state Markov modulated Bernoulli process (MMBP). In an MMBP the arrival proba
bility in a time slot depends on the state of an underlying Markov chain, i.e. when the chain is in state i 
the arrival probability equals Pi,. i = 1,2. For a more precise description of an MMBP and the analysis 
of an MMBPIDII/K queue, we refer to Guillemin, Boyer and Dupuis [3]. 

til 
<II 

..Q 

'i 
t) 

1EO 

1E-2 

lE-4 

1E-6 

1E-8 

1 E-1 0 +--.---,--.,-----ljL--;>--;----r----r--! 

10 20 30 40 50 60 70 80 90 100 
Buffersize 

B- ",1-1.00, JL2-O.00cq.. ",1-0.85, ",2=O.OS ~ ",1=0.70, )!2=O.101 

-&- Pl-l.OO, P2=0.OO+ PI-D.SS, n=o.os * PI=O.7D, n-o.l0 

Figure 6: Comparison of fluid flow model with MMBP model for a system with 10ad=0.5, shaper rate=O.5, 
mean length phase 1 = 10, mean length phase 2 = 30. 

For three different cases the results of the comparison are shown in Figure 6. Of course, the system 
parameters have been chosen such that mean time in state i. shaper rate and load are the same in the fluid 
flow model and the MMBP model. We see that in the case of on-off arrival processes (i.e. PI = 0, P2 = 1, 
resp. Ji-l = 0, Ji-2 = 1) the behaviour of the cell10ss is identical in both models. However, when the arrival 
rates differ from 1 resp. 0, the cell loss probabili ties do not coincide in the two models. This is caused by 
the extra cell level randomness of the arrival process in the MMBP model. In the MMBP model there is. 
except from randomness in the length of the periods in the different states, also randomness in the number 
of arrivals during a period (this in contrary to the fluid flow model). Furthermore. in the MMBP model 
there is also randomness in the positions where cells arrive within a period in a certain state. 

It might be expected that during burst periods traffic streams resemble CBR streams. Hence the cell 
level randomness is limited. even for a superposition of several of these streams. Therefore we consider 
the fluid flow model as a practically useful model. 
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4 Conclusions 

In this paper we use a fluid flow queueing model to study the behaviour of an ATM traffic shapero Aim of 
the paper is to get insight into the relation between buffer capacity, shaper rate, cell loss and cell arrival 
process. 

Our main conclusion is that in order to make sensible predictions about the cell loss at a shapero de
tailed infonnation is needed about the traffic characteristics of the arrival process. For example. in the 
case of on-off arrival processes with exponentially distributed off periods. we have seen that not only the 
mean and the coefficient of variation of the length of the on-periods play an important role. but also other 
quantities like e.g. higher moments and the tail of the distribution. 

Concerning the relation between the shaper rate and the buffer capacity we have seen that the buffer 
capacity needed to obtain a predefined cell loss probability grows very rapidly when the shaper rate de
creases below a certain point Hence. when we choose to hire a small part of the bandwidth we have to 
take into account that the cell delay becomes very large. 

Finally. in order to study the influence of cell level randomness (Le. randomness both in the number 
and in the position of cells within a period) on the cell loss probability, we have compared results obtained 
by a fluid flow model and a discrete time two-state MMBPID/l/K model. We have seen that the ceil loss 
probabilities for these models may differ considerably,. depending on the ceil rates during the two states 
of the arrival process. Due to the. probably, limited cell level randomness of the streams offered to the 
traffic shaper we expect that the behaviour of the cell Ioss probabilities is well predicted by the fluid flow 
model. 
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