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Chapter 1

Helical Ordering in Supramolecular
Polymers

ABSTRACT

In this Chapter we present the subject of helical supramolecular polymers, and
discuss how we can adapt and expand existing theories to describe this phe-
nomenon and phenomena related to it. For this, we first give a general intro-
duction to the helix-coil transition, chirality amplification, linear self-assembly
and helical self-assembly. This is followed by a more detailed and somewhat
more technical look at the theory of the helix-coil transition and that of linear
self-assembly. We close the Chapter by giving the aim and outline of the thesis.
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FIGURE 1.1: Chemical formula of one of the chiral discotic molecules
used by Brunsveld and co-workers. The chemical name of the molecule
is N,N’,N”-tris{3[3’-(3,4,5-tris{(2S)−2-(2-{2-[2-(2-methoxyethoxy)-ethoxy]-ethoxy}-
ethoxy)-propyloxy})-benzoylamino]-2,2’-bipyridyl}benzene-1,3,5-tricarboxamide. [9]

1.1 Helical Self-Assembly and Chirality Amplification

Depending upon their chemical architecture, biopolymers may undergo a transition be-
tween the entropically favorable random coil state and a more ordered helical state, under
the influence of a change in, e.g., pH value or temperature. [1] That such a transition
is not limited to conventional (covalently bound) biopolymers has been known for some
time. Indeed, several supramolecular assemblies (being aggregates, the monomers of which
are linked by reversible, physical bonds) that occur in biological systems, are believed to
have a helical conformation under suitable external conditions. Examples include [2, 3] the
protein actin [4, 5, 6] and tobacco mosaic virus (TMV). [7]

Recently, several types of synthetic molecule were shown to form helical supramolecular
chains in solution. [8, 9, 10, 11, 12, 13, 14, 15, 16] In order to illustrate the richness of the
behavior of these materials, we discuss one of these systems in some detail here, namely one
of the discotics studied by Brunsveld et al. [9] (see Figure 1.1). These discotic, or disclike,
molecules consist of a large aromatic core, surrounded by polar side chains. When they
are dissolved in an apolar medium, such as chloroform, the molecules remain molecularly
dissolved, and no evidence of aggregation is found. In a polar solvent (like water or n-
butanol), however, the molecules self-assemble into disordered stacks at relatively high
temperatures (around 310-330 K), dependent on the concentration. These stacks undergo
a helical order-disorder transition as the temperature is lowered. [9]

Note that the monomers used in the experiments contain a stereocenter in each of the side
chains. This causes the helix formation to be biased toward one of the screw senses, if all
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(or at least most) of the side chains have the same enantiomeric form. The net fraction of
helical bonds (the helicity) may be determined experimentally by, e.g., circular-dichroism
spectroscopy. [9] If one were to use achiral monomers, one would not be able to measure
any net helicity in this way, since an equal amount of right-handed and left-handed bonds
would form. [17] Remarkably, when achiral and homochiral monomers are mixed and
aggregates allowed to form, a disproportionately large optical effect is observed, [18, 19]
a phenomenon which also occurs in conventional helical polymers, and which is known
as chirality amplification (more specifically, chirality amplification of the sergeants-and-
soldiers type). [17, 20]

Apart from being interesting due to their rich behavior and their link to biology, helical
supramolecular polymers have several possible applications. They are potentially useful
as novel gelators due to their strong growth (which we will discuss in detail in Chapters
3 and 7). [21] Furthermore, there is a possibility that disclike or ringlike monomers can
aggregate to form molecular wires or channels. [22] The tunability of the properties of
equilibrium polymers by external manipulation (e.g., a change in temperature) further
makes them of interest from a material-technology point of view. Due to this, there now
exists a need for a theory describing the coupling between the helical transition and self-
assembly that goes beyond the simple all-or-nothing model of Oosawa and co-workers for
the helical aggregation of actin [4, 23], and for a theory that describes the possibility of
chirality-amplification effects in self-assembled systems. [18, 19] To these ends, we combine
the theory of conformational transitions with a treatment of linear self-assembly. [24] This
is the main focus of this thesis.

1.2 Model Description

1.2.1 The Helix-Coil Transition

To devise a theory for the helical transition in self-assembled aggregates, we first de-
scribe treatments of the helix-coil transition in (bio-)macromolecules and of the linear self-
assembly, and then derive an expression for the free energy of a solution of self-assembled
chains that display a helical transition (see Figure 1.2 and 1.3), which becomes the starting
point of our description of helical self-assembly.

As already implied in section 1.1, the helix-coil transition came to prominence as a subject
of study mainly due to its occurrence in such biologically important macromolecules as
DNA and polypeptides (proteins). [1] The helical structures in these biopolymers are
stabilized by physical bonds, e.g., ionic interactions, hydrogen bonds, or van der Waals
interactions. [25, 26] The same types of interaction are used to create synthetic equivalents
of helix-forming biologically important molecules. [27, 28] To synthesize a polymer that can
indeed display a helical conformation, one must take into account the polymer architecture
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FIGURE 1.2: Schematic depiction of a helical structure composed of bifunctional
monomeric units.

FIGURE 1.3: Schematic depiction of the reversible coil-to-helix transition.

and the nature of the intramolecular (and sometimes also intermolecular) physical bonds
which stabilize the helix, [25, 26] as well as the effect that the solvent composition can
have on the polymer conformation. [29, 30]

Polymers that form a helix can do so under the influence of a change in, for instance,
temperature. [1, 31] At high temperatures, they generally exist in the random-coil con-
formation, well-known as the most common conformational state of polymers. [32] Upon
decreasing the temperature, they undergo a transition from this random structure to a
helical one (see Figure 1.3). This process is reversible, and the reverse transition is of-
ten referred to in biology as denaturation. [33, 34] The helix-coil transition is generally
believed not to be a phase transition in the true sense of the term, but rather a gradual
order-disorder transition [1] (although Hansmann and co-workers claim to deduce from
computer simulations on short polyalanine chains that it is a true phase transition, see
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[35] and references cited therein). It turns out, however, that the helix formation is often
remarkably sharp. As we shall see, this is due to the cooperativity of the process.

Despite the rather intricate picture of physical bonds linking groups and forming helical
structures, it turns out that the conformation of helical polymers can be described with a re-
markably simple model if we assume that these polymers can be treated as one-dimensional
objects. [1, 36] Note that it is not a priori clear that this is allowed. Flexibility of the
chain may, after all, cause the polymer to fold back onto itself and to interact with itself
over large distances even when the direct interactions between monomers are short-ranged,
something that is impossible in a strictly one-dimensional chain. These long-range intra-
chain interactions can turn the (quasi) one-dimensional problem into a three-dimensional
one, and in this case a true phase transition becomes a possibility. Intra-chain interactions
can be ignored, however, when a sufficiently poor solvent is used, leading to so-called θ
conditions, or when the polymer is sufficiently rigid. While the latter condition may not
apply for all helical polymers, it is reasonable for the aggregates of discotic molecules de-
scribed in section 1.1. For the same reason, we ignore in our work the formation of closed
helical rings.

We define two types of bond along the one-dimensional chain, the helical type and the non-
helical type. A polymer that contains N monomeric units (and therefore N−1 bonds) can
then be in 2N−1 different states, since each bond can be either helical or non-helical. How-
ever, not all of these configurations are equally likely. The likelihood of each configuration
depends on many factors, some of which are due to the properties of the monomers (such
as the ease with which a helix is initiated and that with which it propagates), and some
of which depend on the thermodynamic properties of the system (like the configurational
entropy of the chain). The following model is an adaptation of the model of Zimm and
Bragg for the helix-coil transition in polypeptides. [36] As we shall show in section 1.3, it
can also be mapped onto the one-dimensional Ising model. [37]

We capture the properties which determine the state of the polymers in two free-energy
parameters: that of the formation of a helical bond from a non-helical one, and that of
the formation of an “interface” between a helical and a non-helical region along the chain.
This description can be summarized in the following Hamiltonian, which, like all energies
in this thesis, is given in units kBT , with kB Boltzmann’s constant and T the absolute
temperature. We have set the free energy for the formation of a non-helical bond equal to
zero.

H =
1

2
R

N−2∑
j=1

(1− sjsj+1) +
1

2
P

N−1∑
j=1

(1 + sj) (1.1)

Here, sj gives the conformational state of the bond numbered j: non-helical (sj = −1)
or helical (sj = +1). The quantities R and P represent the free energy of an interface
between a non-helical and a helical region and the excess free energy of a helical bond over
a non-helical one. The values of these parameters depend on the chemical architecture
of the molecules, as well as on the solvent composition. As we shall see in section 1.3,
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Right-handed Left-handed

FIGURE 1.4: Schematic depiction of right-handed and left-handed helical polymeric
structures.

the latter free-energy parameter functions as an external field that couples to the helical
bonds, in that it attributes an additional free energy to the helical state, but not to the
non-helical state. Note that, in eq (1.1), we have not specified the boundary conditions of
the problems, i.e., the ends of the polymer. This we discuss in section 1.3.

The first term of the Hamiltonian eq (1.1) is only unequal to zero if a helical bond follows
a non-helical one, or vice versa (i.e., when there is an interface between a helical and a
non-helical region). The free-energy penalty on a helix-coil interface, R, can be seen as
a cooperativity (or, as called in ref [36], nucleation) parameter. [36, 38] The larger it
becomes, the less favorable the formation of helix-coil interfaces, and the larger the (mean)
number of bonds that comprise a helical or non-helical region. An increase of this free-
energy parameter causes the helix-coil transition to become sharper. An increase in the
degree of polymerization of the chain can have the same effect. Note, however, that the
helix-coil transition does not become infinitely sharp for an infinitely long polymer, and
hence is not a phase transition for any finite R. The helix-coil transition can only become
a true phase transition if both R and N go to infinity. [1]
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1.2.2 Chirality Amplification

Helices can be constructed in two ways, with a right-handed or a left-handed screw sense.
These two forms are mirror images of each other (see Figure 1.4), and one can therefore say
that the formation of a single helix introduces a macromolecular chirality into a system,
due to the fixed screw sense of the helix. [39] This chirality cannot usually be detected,
since in a solution of polymers consisting of achiral monomers, equal amounts of right-
and left-handed helical bonds are formed. As such, a solution of these polymers displays
no net optical effect. [17] However, as already mentioned in the first part of this Chapter,
the chiral nature of the helix can be demonstrated if one uses homochiral monomers as
the building blocks of the polymer. In that case, symmetry is broken, one helical screw
sense is preferentially formed, and an optical (Cotton) effect can be measured.1 [9] It is
well known that, even by mixing chiral and achiral monomers, or by using a non-racemic
mixture of right-handed and left-handed chiral monomers, one can attain an optical ef-
fect. It turns out that the addition of a relatively small amount of chiral material or
a relatively small enantiomeric excess may induce a disproportionately large optical ef-
fect. This phenomenon is known as chirality amplification, [17, 20] and its two forms are
the sergeants-and-soldiers principle [40, 41, 42] (for mixtures of homochiral and achiral
monomers) and the majority-rules principle [43, 44] (for non-racemic mixtures of left- and
right-handed chiral monomers).

Chirality amplification in fully helical chains can (in principle) be described with a model
in the same class as that of the helix-coil transition. After all, we still consider a system in
which two types of bond are present (albeit left-handed helical and right-handed helical,
rather than helical and non-helical) on a one-dimensional “lattice”, and where a free-
energy penalty on an interface between the two types of bond is imposed. However, the
description of the chirality amplification is more complex due to the presence of two types of
monomer, and the circumstance that the type of monomer under consideration influences
which type of bond preferentially forms near it. A sensible model therefore makes use
of a combination of two interwoven and interacting one-dimensional sublattices, one that
describes the conformation of the bonds, and one that describes the composition of the
chain. A detailed description is beyond the scope of this introduction and is given in the
relevant Chapters (4-6).

In the context of polymers consisting of more than one type of monomeric unit (copoly-
mers), a key difference between conventional polymers and equilibrium polymers manifests
itself. In multi-component aggregates, [45, 46, 47] the composition of the aggregates and
the order of the two types of monomer in a chain are equilibrium properties, whereas in
conventional polymers these are fixed. These are examples of so-called annealed (equi-

1The conformational state of the polymers can be discerned most easily if an isolated monomer does
not induce an optical effect, since in this case a measurement of the optical effect gives direct information
about the net fraction of helical bonds of one screw sense. This is the case for the discotic molecules
discussed in section 1.1.
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librium) and quenched (fixed) disorder respectively, and the statistics describing the two
are significantly different. [48, 49, 50] This means that treatments meant to describe
multi-component aggregates are (at least, in principle) inaccurate for the description of
copolymers, and vice versa (see also Chapters 4 and 5).

1.2.3 Linear Self-Assembly

As mentioned in Section 1.2.1, in the context of the helix-coil transition, intramolecular
physical bonds are important in stabilizing a molecular conformation in (bio)polymers.
However, as also already indicated, intermolecular physical bonds between monomeric
units can play a vital role in nature as well. Through this type of bond, of which a
large variety exists, [51] molecules can be linked without the use of covalent (chemical)
bonds. Molecules that bind in this way are said to self-assemble into supramolecular
structures. [8, 51, 52, 53, 54, 55, 56, 57, 58, 59] Examples of molecules that self-assemble
are numerous, ranging from proteins [4] to asphaltenes [60] to dipolar fluid particles[61] to
sulfur [57, 62, 63] to amphiphiles. [64] The variety of shapes of the aggregates is equally
large, from spherical to cylindrical to bilayer-like structures. [58] Which shape is preferred
depends strongly not only on the shape of the molecules, but also on external circumstances,
such as the overall concentration of monomers. [58, 65]

In this thesis we focus on one particular class of aggregates, namely linear self-assembled
aggregates. [57, 66, 67, 68] Linear self-assembly is the formation of quasi-one dimensional
(chainlike) aggregates, also called equilibrium polymers or (in physics) living polymers
(see Figure 1.5). In some ways, linear self-assembly resembles conventional polymeriza-
tion, where monomeric building blocks are linked by covalent bonds. In both cases, chain-
like compounds with a high degree of polymerization are formed in a propagation step,
sometimes preceded by an initiation step. In regular polymerizations, there is often a
termination step that fixes the length of the polymer. This step is absent in equilib-
rium polymerizations. [57] The reversibility of the propagation step, which characterizes
equilibrium polymerization, causes the aggregates to constantly break up and recombine,
shedding monomers and absorbing others, a process that makes the aggregates self-healing.
[69] The reversibility, coupled to the fact that the physical bonds linking the monomers in
these chains are generally weaker than covalent bonds, makes linear self-assembled poly-
mers rather fragile objects. However, their equilibrium nature can also be considered one
of their biggest advantages, as their properties (such as the mean aggregate size) can be
controlled by changing the conditions of their surroundings, for instance the temperature
or the monomer concentration.

The theoretical description of equilibrium polymers is far from trivial, as we shall discuss
in section 1.4, and it proves necessary to invoke approximations. An often-used approxi-
mation, which we also use in this thesis, is the ideal-solution one, in which a dilute solution
of polymers is described in terms of the chemical potential of the assembling monomers, a
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surfactants

discotics

bifunctional
molecules

FIGURE 1.5: Three examples of chainlike assemblies: a rod- or wormlike micelle,
an aggregate formed from bifunctional monomeric units, and one formed from disc-
shaped monomers with flexible side-chains.

free energy associated with breaking an aggregate in two (the so-called end-cap energy E),
and a mixing entropy term. [24, 58, 66, 67] The free energy of a single aggregate is given
by the free energy of a bond, −E, typically of the order of -10 to -20 kBT or -20 to -50
kJ/mole, multiplied by the number of bonds, N − 1. The free energy per unit volume F
of a solution of self-assembled linear aggregates (made dimensionless with the volume of a
monomer unit) can then be calculated by including a mixing-entropy term and performing
the sum over all possible aggregate sizes. This gives

F =
∞∑

N=1

ρ(N) [ln ρ(N)− 1− E(N − 1)] (1.2)

with ρ(N) the (as yet unknown) dimensionless number density of aggregates of degree of
polymerization N . (Again, we give the free energies in units of the thermal free energy.)
This rather simple equation is the end result of many approximations and simplifications,
some of which are immediately apparent, such as the assumed independence of E on the
size of the aggregate (which is reasonable if the aggregates are sufficiently long). Some
others are briefly discussed in Section 1.4. Equation (1.2) is the starting point of a wide
variety of studies, most notably in the field of so-called giant micelles. [66]



10 Chapter 1

The size distribution of the self-assembled polymers can be determined from the free-energy
density (eq (1.2)) by taking the functional derivative with regard to ρ(N), while enforcing
the law of conservation of mass

φ ≡
∞∑

N=1

Nρ(N) (1.3)

with φ the total volume fraction of aggregating material. This gives

ρ(N) = exp [E(N − 1) + µN ] (1.4)

Here, µ is a Lagrange parameter that takes the role of a chemical potential. The mean
aggregate size 〈N〉 can be calculated from

〈N〉 ≡ φ/

∞∑
N=1

ρ(N) =
1

2
+

1

2

√
1 + 4φ exp E (1.5)

From eq (1.5) follow two different scaling laws. For φ exp E ¿ 1, the mean size scales with
1 + φ exp E, whereas for φ exp E À 1, it scales with

√
φ exp E.

It is immediately obvious from eq (1.4) that non-extensive contributions to the free energy
play a major role in self-assembly, whereas extensive terms can simply be absorbed into
the chemical potential. [66, 68] While, in polymer physics, non-extensive effects are often
ignored altogether (see, e.g., the literature on the helix-coil transition), we cannot afford
to neglect these effects here.

Another model, often used in chemistry to describe equilibrium polymerization, is the so-
called ladder model. This model [64] is derived from reaction-kinetic theory, and assigns
equilibrium constants analogous to the reaction constants of chemical-reaction theory to
the propagation (and initiation) steps of the aggregation. [63] These equilibrium constants
are related to the end-cap energy used in our model by E = ln K with K the equilibrium
constant. Due to its mean-field nature, this model experiences difficulties when fluctuations
become large. [57, 70]

1.2.4 Helical Self-Assembly

To combine the treatments of equilibrium polymerization and the helix-coil transition, we
must include a free-energy term associated with the helical transition into eq (1.2) prior
to minimization. This can be done by determining the canonical partition function Q(N)
of a single aggregate that can undergo a helical transition, since its free energy is given
by f = − ln Q(N) in the canonical ensemble. This partition function contains, besides
the end-cap energy, information about the conformational state of the bonds. The total
dimensionless free energy density is now given by

F =
∞∑

N=1

ρ(N) [ln ρ(N)− 1− ln Q(N)] (1.6)
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In this equation, we sum again over all aggregate sizes, now taking into account the con-
figurational state of each aggregate. Equation (1.6) is the starting point of our treatment
of helical self-assembly, and will be expanded upon in Chapters 2 and 3. As we shall see,
in our case, the free energy does not necessarily reduce to the general form of eq (1.2), not
even in the limit 〈N〉 À 1, as is often thought.

1.3 The Ising Model Applied to the Helix-Coil Tran-

sition

The basis of the model which we use to describe the helical transition (eq (1.1)) is the
one-dimensional Ising model. [1, 36, 71, 72] This model is one from the class of magnetic
n-component models, with n = 1. As we shall mention later, another model from this class,
with n → 0, can be used to describe (self-assembled) polymers. Although more elaborate
models, as well as computer simulations, have been used in the past to describe the helix-
coil transition, [73, 74, 75] the Ising model remains one of the more popular models to
describe order-disorder transitions. The model is named after Ernst Ising, who solved it in
one dimension in 1925 after Lenz suggested the model to him. [37, 76] Originally intended
to describe phase transitions in ferromagnetic materials, [77] the Ising model has now
become a prototype for many processes in diverse areas of science. Ising models have been
used to describe, among others, gas-liquid condensation, [78, 79] adsorption on surfaces
[80] and the helix-coil transition. [1]

The Ising model is a two-state lattice model, meaning that any lattice site has a property
that can be in one of two states (e.g., “spin up” or “spin down”), and in its simplest form it
presupposes a close-range, nearest-neighbor interaction between the spins that are present
on the lattice sites. The Ising model in one dimension, which we use in this work, has the
following dimensionless Hamiltonian (cf. eq (1.1)). [81]

H = −J

N−2∑
j=1

sjsj+1 − h

N−1∑
j=1

sj (1.7)

where N − 1 is the number of lattice sites, and sj corresponds to the spin at lattice site
j. This spin variable can have a value of ±1, where +1 indicates an “up spin”, and −1
a “down spin”. J is the dimensionless coupling constant between neighboring spins, and
h the (dimensionless) strength of the external magnetic field. An informal mapping of
the model for a helical polymer onto the Ising model is shown in Figure 1.6. The free-
energy parameters translate as follows: J in the Ising model corresponds to R/2 in our
model, whereas h corresponds to −P/2. Further, in our theory the reference free energy is
shifted by an amount (R + P )/2. Note that in order to make this mapping we necessarily
also assume that the interactions between monomers in the aggregate are short-ranged in
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helical
bond

non-helical
bond

Helix-coil

Ising chain

‘interface’

FIGURE 1.6: Comparison between a one-dimensional Ising chain and a partially
helical polymer. The arrows in the top figure indicate the spins of the magnetic
lattice, whereas the circles in the bottom figures represent the monomers, between
which are the (helical and non-helical) bonds. Indicated are a helical bond, a non-
helical one and an interface between a helical and a non-helical region.

nature. This is not always the case, as attractive forces of the van der Waals or ionic type
generally extend beyond nearest neighbors. In the case of the discotic monomers, van der
Waals interactions between the discs can be reasonably assumed to be largely responsible
for the aggregate formation. However, it can be shown that the sum of the van der Waals
interactions in a chain scales linearly with the size of the chain, and that as such, long-range
interactions do not have a significant contribution.

In order to determine the thermodynamic properties of this system, the canonical partition
function, defined as

Q(N − 1) ≡
∑

s1=±1

· · ·
∑

sN−1=±1

exp(−H) (1.8)

is calculated. In the absence of an external field (h = 0), the partition function is readily
obtained and equals Q(N − 1) = 2N−1 coshN−1 J for the case where periodic boundary
conditions apply, or, equivalently, for the case where an infinitely long chain is considered.
[81, 82] Due to the difference between the Ising parameters and those in our model, this
partition function has an added constant of proportionality in our model. If an external field
is present, the partition function is usually obtained with the aid of the so-called transfer-
matrix method pioneered by Kramers and Wannier, [83] which we also use throughout this
thesis.

The transfer-matrix method is based on the statistical weights of the different types of spin
following the preceding spin, e.g., the statistical weight of an “up” spin following an “up”
spin or that of a “down” spin following an “up” spin. These statistical weights, which have
the form of Boltzmann factors, are collected in a matrix, which provides a mathematically
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simple way to calculate the partition function. In addition to the transfer matrix, the
so-called end vectors are needed to complete the partition function. These vectors describe
the state of the ends of the sequence of spins, and hence are only important for finite chains.
By changing the end vectors, we can introduce different boundary conditions, which can
correspond to different situations in biopolymers (see [84] for some examples). For a clear
step-by-step description of the transfer-matrix method see [1], [85] or Chapter 2.

Besides the applications mentioned earlier, in polymer science a model that mathematically
resembles the Ising chain is often used. This RIS (rotational isomeric state) model describes
the conformational properties of ideal polymer chains. [86, 87, 88] In the RIS model, a
polymer chain is represented by a collection of bonds of equal length, connected by junction
points. At these junctions points, the angle between two bonds is approximated to take
one of several discrete values. Usually three values for the angles are allowed (as in the
case of the molecule n-butane), namely 0◦, in which the bond is a so-called trans bond,
and approximately ±120◦, known as the gauche+ and gauche− bonds. [87] As such, the
standard RIS model is a three-state model, and it formally corresponds to a three-state
Potts model; [89] this is a model that resembles the Ising model but in which spins can
be in any one of n states, with n > 2. However, for symmetrical polymers (e.g., polymers
with identical side groups along the chain), the energies of the gauche+ and gauche− states
are equal, reducing the problem to one with only two possible energies for each bond. In
this case, the theory becomes similar in form to that of the Ising chain, although because
of its three-state character, the RIS model does describe more conformational states.

1.4 The Free Energy of a Linear Aggregate

When we attempt to write down an exact expression for the free energy of a self-assembling
system, we soon encounter a problem: what exactly constitutes an aggregate? [90] In
other words, when does a monomer belong to an aggregate, and when does it not? The
theory of linear self-assembly requires a partition of the monomers into ni aggregates of
size i = 1, ...,∞. This causes a paradox, since the monomers which were so far assumed
indistinguishable, suddenly become distinguishable by their presence in an i-mer. This
definition problem remains an unresolved complication in the field, and has been discussed
in several contexts by many authors. [90, 91, 92] The root of the problem is that it is
necessary to arbitrarily introduce a criterion to decide whether a monomer belongs to an
aggregate, e.g., by defining that a monomer only belongs to an aggregate if it is less than
a distance r away from the closest other monomer in that aggregate.

Even if we somehow manage to sidestep this conceptual problem, it is not a trivial matter
to write down the exact partition function of a self-assembled aggregate. Strictly speaking,
the partition function of an aggregate is given by the configurational integral over the
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positions and momenta of all its constituent monomers. [58] To make a mapping from
microscopic coordinates onto collective coordinates (this gives the ρ ln ρ term in eq (1.2)),
the Jacobian must be known. This Jacobian is only known exactly in some highly idealized
cases, namely in the dilute regime where fluctuations are Gaussian in nature.

It is not surprising, then, that a description of self-assembly necessarily hinges on many
approximations. Many models have been put forward, at various levels of approximation.
[58, 62, 63, 64, 70, 93, 94, 95, 96, 97, 98] Wheeler and co-workers, for instance, treat the
aggregates in terms of a magnetic n-component model extrapolated to zero components,
[57, 70] a view earlier proposed by de Gennes for conventional polymers, and later worked
out by des Cloizeaux, and applied by Schäfer, in the context of equilibrium polymers.
This n → 0 model can include intra-aggregate interactions and accurately predicts the
properties of self-assembled polymers. The mean-field version of this model corresponds
mathematically to a model often used in chemistry, the so-called ladder model, which we
described in section 1.2.3. [97]

In the model description we use (eq (1.6)), we approximate the total partition function of a
collection of self-assembled chains by its maximum term for the size distribution. In other
words, we only take into account the most likely size distribution and ignore the others.
This is allowed when the size distribution is peaked around the mean aggregate size, which
is the case when fluctuations (which become large for long aggregates) are small. Since
the concentration of very long chains is small if the total amount of assembling material is
constant, we expect that the maximum-term method is reasonable.

The maximum-term argument is not the only approximation inherent to the theory. We
discuss four of the idealizations here: the neglect of the contribution of closed rings, the
contribution of the molecular detail of the solvent, the role of the thermal wavelength, and
the possibility of infinitely long chains in a finite system.

1) While, for sufficiently flexible chains, rings are always present, and in fact a ring-
dominated regime has been theoretically predicted, [99, 100] they are believed to be unim-
portant for end-cap energies that are not exceedingly large, and for polymers with a large
persistence length. [100] This is because for low end-cap energies, the closed rings will be
unfavorable compared to open ones due to the entropy of the chains. Large persistence
lengths render ring formation unimportant because the persistence length determines the
optimal ring size. Wittmer et al. argue that rings shorter than approximately a persis-
tence length are unfavorable, and ring formation is suppressed in favor of linear chain
formation when the persistence length is large compared to a bond length. In any case,
above the polymerization transition, rings merely deplete material from the system that
would otherwise be available for linear chains. [100] If the end-cap energy goes to infinity,
a phase transition between a state where the polymers are linear and one where they are
ring-shaped can occur. However, an infinite end-cap energy implies that the aggregates
become infinitely long, a point that is discussed later in this section. The role of rings is
still hotly debated in the literature. [66, 100]
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2) As usual in the field, we ignore the explicit contribution of the solvent molecules, since
the discotics we shall mostly discuss are much larger than the solvent molecules. We treat
the solvent as a structureless continuum that only changes the value of E (and R and P )
in eq (1.1). However, see [94].

3) Equation (1.2) takes the entropy of a solution of aggregates into account by a mixing con-
tribution, as well as through E. It has been argued that other degrees of freedom may have
to be accounted for (see ref [68] and references cited therein). In many formal descriptions
of equilibrium polymerization, quantum effects are included. [58, 67] Specifically, the ther-
mal wavelengths of the vibrational and rotational degrees of freedom of the monomers (and
solvent molecules) enter these descriptions. Since the thermal wavelength is much shorter
than the smallest length scale we consider (the monomer size), we remove this wavelength
from our description when we (implicity) coarse-grain out the solvent molecules. That this
is justified follows from the circumstance that the theory without the quantum correction
gives a scaling of the mean aggregate size with the square root of the overall concentration
of monomers, [66, 67] a scaling that is also observed for dilute solutions in experiment. [66]
Descriptions which retain the quantum-mechanical contributions give a different (much
smaller) scaling exponent than produced by the classical theory. [101]

4) It may be seen in eq (1.2) that we sum over all aggregate sizes from unity to infinity.
This, too, is an approximation, since in reality the size of the aggregates is limited by the
container in which they are present, at least if the aggregates are rigid rods. If they are
flexible, one has to include a free energy of chain compression in order to describe the state
of the chains. Since the fraction of extremely large aggregates is small, our approximation
is reasonable, unless the free energy needed to break an aggregate goes to infinity.

1.5 Aim and Outline of the Thesis

The aim of the thesis is to describe, using statistical-mechanical techniques, the coupling
between self-assembly and the helical transition in linear supramolecular polymers, as well
as the chirality amplification that may occur in mixed aggregates of this type, and to
explore the effect of external fields and inter-aggregate interactions on the self-assembly
and helical transition. In Chapter 2, we outline a treatment, expanding that of van der
Schoot et al., [24] describing the helical transition in dilute solutions of supramolecular
polymers, with special focus on the description of the aggregate ends. The results indicate
that the helical transition and the growth are strongly coupled. In Chapter 3 we compare
our theory with experiments, and find that only two of the sets of boundary conditions can
quantitatively describe experiments on self-assembled disc-shaped molecules. In Chapters
4 and 5 we look at mixed aggregates of homochiral and achiral building blocks. As indi-
cated earlier, such aggregates can display a form of chirality amplification known as the
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sergeants-and-soldiers effect. In Chapter 4 we outline a theory for this phenomenon in the
long-chain limit, which we expand in Chapter 5 to all chain lengths. In both Chapters, we
provide a comparison with relevant experiments and find excellent agreement with mea-
sured values. In Chapter 6 we apply a similar theoretical treatment to the majority-rules
type of chirality amplification, again valid in the long-chain limit, and provide a brief out-
look on the modifications necessary to describe all chain lengths. Finally, in Chapter 7, we
examine the effect of external fields and interaggregate interactions on the polymerization
and helical transitions.



Chapter 2

Helical Aggregation: General Theory
and the Role of End Effects

ABSTRACT

We outline a treatment for the helical-to-non-helical transition in self-assembled
linear aggregates, emphasizing the role of end effects. In order to investigate
this role in detail, we apply constraints to the first and last bonds of model
linear aggregates that exhibit a helix-coil type configurational transition. Three
different classes of behavior manifest themselves. These can be distinguished
by the presence or absence of re-entrance of non-helical conformations with
changing solute concentration, as well as by the dependence of the locations of
the polymerization and helical transitions on the cooperativity of the helical
transition. The helical transition and the polymerization are strongly coupled,
as evidenced by a growth spurt of the aggregates below the helical-transition
temperature.1

1Most of this Chapter appeared in Langmuir 2003, 19, 1375. Some parts appeared in J. Phys. Chem.
B 2001, 105, 10691.
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2.1 Introduction

The linear self-assembly of dissolved molecules into helical superstructures occurs not only
in systems of biological interest, [2, 3, 4, 6, 7, 51] but has also been observed in solutions
of synthetic molecules of quite diverse molecular weights. [9, 10, 11, 12, 13, 14, 15, 16, 102]
Central to the current understanding of this helical self-assembly is the role played by
cooperativity, in particular the strong coupling of the crossover between non-helical and
helical aggregated states to the growth of the assemblies. [24]

As discussed in Chapter 1, many different theoretical treatments describing the equilibrium
or ‘living’ polymerization have been presented. [58, 63, 64, 66, 70, 93, 95, 96, 103] From
these works it becomes clear that linear self-assembly is strongly affected by non-extensive
contributions to the free energy of an aggregate, since extensive contributions can simply
be absorbed into the chemical potential. [66, 68] Non-extensive contributions derive from
so-called end effects, i.e., from the differences between the local environment of a molecule
at the end of an aggregate and that of one in the center. However, it is only in the case
that the length of an aggregate greatly exceeds its intra-chain correlation length that such
a separation in intensive and extensive contributions to the free energy can be formally
made, and that one can truly speak of end effects instead of finite-size effects.

Much theoretical work has also been done on the helix-coil transition in conventional
(‘dead’) polymers such as polypeptides and DNA. [1, 36, 73, 104] Finite-size effects are
often ignored altogether as these theories usually consider the conformational properties in
the long-chain limit. In this limit, the sharpness of the crossover from a fully non-helical
to a fully helical polymer conformation is governed by the degree of cooperativity involved
in the formation of the helical links, which are often stabilized by hydrogen bonds. In
practice, the formation of these links can indeed be very cooperative, implying that the
helical transition can be sharp and reminiscent of a phase transition.2

Van der Schoot et al. [24] devised an approximate theoretical model that was set up to
describe helix-coil type transitions in solutions of self-assembled polymers, and concluded
the transition to be remarkably cooperative. Here, we extend their theory to allow for a
more accurate description of this transition, explicitly including deviations from the long-
chain limit. As a result we are now able to present diagrams of states, indicating the
existence of two ordering regimes: one where the polymerization transition and the helical
transition coincide and one where they do not. In both cases there is a strong coupling
between the growth of the aggregates and the helical transition. Our treatment implies
that in the experiments of refs [9, 10] only a part of the possible aggregation behavior
was explored and that by changing (for instance) the solvent conditions, a more complete
picture of the physics of these systems may be obtained. Despite its apparent simplicity,

2The limit where the cooperativity becomes infinite formally corresponds to the limit of infinite coupling
constant in an Ising chain. Hence, in this limit, and then only for infinitely long aggregates, does the helical
transition become a true phase transition. [1]
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the theory quantitatively accounts for experimental data obtained on solutions of certain
chiral discotic molecules, [9] as we shall see in Chapter 3.

To investigate the influence of end effects, we vary the description of the aggregate ends.
We can force either end to be helical, or non-helical, or choose not to constrain it, meaning
there are nine possible pairs of boundary conditions. We find here that the theory is fairly
sensitive to the boundary conditions set, and that varying the boundary conditions can
lead to a radically altered behavior. This means that it is possible to determine from
experiment the preferred state of the ends of the aggregates.3

The remainder of this Chapter is organized as follows. In section 2.2 we discuss the theory
of linear self-assembly of unspecified molecular building blocks in solution. We focus on
polymer-like aggregates that potentially exhibit a helical-type configurational transition,
and specify the way the imposed boundary conditions are implemented. Next, in section
2.3, we discuss important quantities such as the mean helicity and the scission energy
in the large-aggregate limit. Section 2.4 is devoted to a discussion of the impact of the
boundary conditions on the various aggregation states. The Chapter concludes with a
short discussion and conclusions in section 2.5, where we also make the connection with
the well-known Oosawa-Kasai model for helical aggregation. [4, 23]

2.2 Formalism

We consider a dilute solution of molecules or particles that, under the appropriate con-
ditions, form quasi one-dimensional, polymer-like aggregates. The driving force of the
self-assembly need not be specified, but one may think of specific interactions, such as
hydrogen bonding [105, 106] and ionic bonding, [55] or aspecific ones, such as those arising
from the hydrophobic effect. [9, 56] Important is that the polymerization is reversible,
so that the material in the monomeric and polymeric forms remains in thermodynamic
equilibrium. The monomers are of an as yet undetermined shape and size (although large
compared to the solvent molecules, allowing us to regard the solvent as a structureless
continuum) but should display an order-disorder type transition in the aggregated state.
Depending on whether the transition is enthalpy- or entropy-driven, the polymeric state
appears either above or below a certain transition temperature which, due to the essentially
one-dimensional nature of the aggregation, is not sharp. The same applies, at least in prin-
ciple, to the appearance of the ordered state, or more specifically, the helical state. Without
loss of generality and in keeping with the experimental findings, we assume the transitions

3Obviously, the energies of the first and last bonds of the aggregates can also be varied in a continuous
way, rather than assigning discrete values to them. However, in order to avoid generating additional
parameters in our model, we chose to fix the energies of the end bonds to either infinity or the appropriate
energy of a helical or non-helical bond.
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from monomers to aggregates and from disordered aggregates to helical aggregates to be
enthalpy-driven, implying that these take place upon a lowering of the temperature.

The helical-aggregation theory [24] we use to study finite-size effects is a combination of
the standard theory of linear self-assembly, and the Zimm-Bragg theory for the helix-coil
transition. [36] The potential usefulness of the latter in equilibrium polymerization was first
remarked upon by Oosawa and co-workers [23] in their description of the polymerization of
actin. The Zimm-Bragg theory can be mapped onto an Ising chain with nearest-neighbor
interactions between bonds. [1, 74, 84]

The free-energy density F of a dilute solution of self-assembled polymeric objects may,
within a saddle-point approximation for the size distribution of the aggregates, be written
as

F =
∞∑

N=1

ρ(N)[ln ρ(N)− 1− ln Q(N)] (2.1)

with ρ(N) an as yet unknown dimensionless number density of aggregates of size N , and
Q(N) the partition function of a single aggregate. F is given in units of the thermal energy
kBT , with kB Boltzmann’s constant and T the absolute temperature, as are all energies in
this thesis (unless specifically indicated otherwise). In equilibrium ρ(N) optimizes F , so
we take the functional derivative of F with respect to ρ(N) and equate that to zero, while
enforcing the conservation of mass

φ =
∞∑

N=1

Nρ(N) (2.2)

with φ the overall volume fraction of solute molecules. This gives

ρ(N) = Q(N) exp µN (2.3)

with µ < 0 a Lagrange multiplier that may be interpreted as the (dimensionless) chemical
potential of the solute molecules. It is immediately clear from eq (2.3) that, since the
equilibrium size distribution is proportional to the partition function, the conformational
state of the aggregates is directly coupled to their size distribution, i.e., to their growth.

To calculate the partition function, a model for the conformational states of the assemblies
needs to be formulated. Our model is loosely based on that of Zimm and Bragg, [36] and
characterized by two types of bond, namely helical and non-helical. Let M < 0 denote
the free energy associated with the formation of a non-helical bond, and P the excess free
energy of a helical bond, in addition to that of a non-helical one. If P < 0, a helical
bond is more favorable than a non-helical one, and if P > 0, the reverse is true. The
crossover from non-helical to helical aggregates takes place when P has a value close but
not exactly equal to zero (see also below). We penalize interfaces between helical and non-
helical regions along the chain with a free energy R ≥ 0. For this model, the dimensionless
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Hamiltonian H for an aggregate of N > 2 monomers [74, 84] reads

H = −1

2
R

N−2∑
j=1

(sjsj+1 − 1) +
1

2
P

N−1∑
j=1

(sj + 1) + (N − 1)M (2.4)

with sj = −1 if the bond following the jth monomer is non-helical, and sj = +1 if it is
helical. The first term counts the number of unequal nearest-neighbor bond pairs, and
penalizes these. This term is non-zero only if sj = −sj+1, and the jth bond is in a different
conformational state than the j + 1st. The second term adds an excess free energy P for
each helical bond along the chain, and the third one adds the non-helical (reference) free
energy M for each bond. Monomers (N = 1) are not involved in bonded interactions so
we put H ≡ 0, whereas for dimers (N = 2) a natural choice is H = 1

2
P (s1 + 1) + M .

In the Hamiltonian of eq (2.4) the status of the first and last bonds has not yet been
specified. Different boundary conditions can be implemented by fixing s1 and sN−1 at
predetermined values. For instance, if we set s1 = −1 and sN−1 = −1, both ends are fixed
to be non-helical by construction.

The partition function Q(N) of a chain with free boundaries reads

Q(N) =
∑

s1=±1

· · ·
∑

sN−1=±1

exp−H (2.5)

To alter the boundary conditions simply means setting s1 and/or sN−1 to a fixed value, and
ignoring the sums over these fixed ends. At this stage it turns out to be useful to factorize
out the constant third term of the Hamiltonian, giving

Q(N) ≡ Qh(N) exp−M(N − 1) (2.6)

with Qh(N) the partition function describing the conformational state of an aggregate of
size N > 2 in terms of excess bond energies. For monomers, we obviously have Qh(1) ≡ 1.
For dimers, the choice of Qh depends on the boundary conditions enforced, and is specified
below.

A convenient way to calculate the partition function Qh(N) for N > 2 is by means of the
transfer-matrix method, in which the sums of Qh(N) are recast into products of the so-
called transfer matrix M, consisting of the (unnormalized) transition probabilities between
different types of bond

Qh(N) = u ·MN−2 · u+ (2.7)

The vectors u+ and u represent the a-priori statistical weights for the first and the last
bond, and depend on the boundary conditions we wish to impose, see Table 2.1. The
acronyms for the different boundary conditions are derived from the state of the aggregate
ends: F stands for free, N for non-helical and H for helical.
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acronym description of ends u u+

FF both aggregate ends free to assume either conformation (1,1) (1,s)
NF one end constrained to be non-helical (1,1) (1,0)
NN both ends constrained to be non-helical (1,0) (1,0)
HF one end constrained to be helical (1,1) (0,s)
HH both ends constrained to be helical (0,1) (0,s)
HN one end helical and one non-helical (1,0) (0,s)

TABLE 2.1: Definition of the different sets of boundary conditions, with their
associated vectors in the matrix representation of the partition function (eq (2.7));
s ≡ exp−P is the Boltzmann factor connected with the formation of a helical bond.

The transfer matrix consistent with the Hamiltonian, eq (2.4), may be put in the form

M =

(
1

√
σ√

σs s

)
(2.8)

with s ≡ exp−P and σ ≡ exp(−2R) the well-known Zimm-Bragg parameters. [36] The
former represents the Boltzmann factor for the formation of a helical bond from a non-
helical one. The latter parameter 0 ≤ σ ≤ 1 is a measure of the cooperativity of the
crossover from a non-helical to a helical conformation. The smaller the value of σ, the
sharper this crossover, and the longer the mean length of stretches of all-helical bonds at
fixed average degree of helical content.

Our transition matrix M differs slightly from that of Zimm and Bragg and is in fact
identical to the one proposed by Grosberg and Khokhlov. [32] The differences between our
matrix and that of Zimm and Bragg are unimportant and manifest themselves only if at
least one of the aggregate ends is fixed to be helical. In our description such an end gets
assigned a Boltzmann factor s, whilst in the original Zimm-Bragg theory it is assigned the
product of Boltzmann factors

√
σs.

The evaluation of eq (2.7) is simplified considerably by diagonalization of the transfer
matrix,

M = T ·Λ ·T−1 (2.9)

where Λ is a diagonal matrix containing the eigenvalues of the matrix M, and T is the
matrix of column eigenvectors. T−1 is the inverse of T, so that T−1 ·T = I with I the unit
matrix. Note that, since M is not Hermitian, the inverse of T is not equal to its transpose.
For the eigenvalues of M we find

λ1,2 =
1

2
+

1

2
s± 1

2

√
(1− s)2 + 4σs (2.10)

where the + sign defines λ1 and the − sign λ2. These eigenvalues are identical to the
ones found by Zimm and Bragg. [36] The eigenvectors are determined only to within an
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boundary condition x y

FF (λ1−1+
√

σ)(1−λ2+s
√

σ)
(λ1−λ2)

√
σ

(λ2−1+
√

σ)(λ1−1−s
√

σ)
(λ1−λ2)

√
σ

NF λ1−s+s
√

σ
λ1−λ2

s−λ2−s
√

σ
λ1−λ2

NN λ1−s
λ1−λ2

s−λ2

λ1−λ2

HF sλ1−s+s
√

σ
λ1−λ2

s−sλ2−s
√

σ
λ1−λ2

HH sλ1−s
λ1−λ2

s−sλ2

λ1−λ2

HN s
√

σ
λ1−λ2

−s
√

σ
λ1−λ2

TABLE 2.2: Weights associated with the larger and smaller eigenvalues in the
partition function (eq (2.12)), for all boundary conditions.

arbitrary prefactor, which we fix at
√

σ. This prefactor turns out to be irrelevant to the
final form of the partition function (as it should). With this choice of normalization, we
obtain

T =

( √
σ

√
σ

λ1 − 1 λ2 − 1

)
(2.11)

The partition function Qh(N) can now be determined by combining the above
equations, giving the exact result

Qh(N) = xλN−2
1 + yλN−2

2 (2.12)

for N > 2, where λ1,2 are the eigenvalues of the transfer matrix M, as found above. While
the eigenvalues λ1,2 are independent of the boundary conditions, the weights x and y are
not. They are specified for each set of boundary conditions in Table 2.2.

This leaves us to specify Qh(2), the partition function of the dimers, which has to be
fixed by the boundary conditions. For the cases where one or both ends are helical (cases
denoted HF and HH) we assume all dimers to be helical too, so Qh(2) = s. If one or
both aggregate ends are constrained to be non-helical (cases NF and NN) we assume all
dimers are non-helical and Qh(2) = 1. In all other cases we allow the dimers to be either
non-helical or helical, Qh(2) = 1 + s. Clearly this treatment of dimers has some degree of
arbitrariness, but it seems reasonable to suggest that the influence of a particular choice
for Qh(2) on the helical transition should not be significant.

With the partition function known, quantities such as the mean fraction of helical bonds,
the mean size of the aggregates and the fraction of material absorbed into aggregates can
be readily calculated by standard methodology. [24] To calculate these quantities explicitly
in terms of the concentration of dissolved material φ instead of the chemical potential µ,
we insert eqs (2.3), (2.6) and (2.12) into eq (2.2), and perform the sum. This leads to a
polynomial of order six in the fugacity z ≡ exp(µ −M), which we solve numerically as a
function of the system parameters M , P , R and φ. In order to determine which of the
six solutions of this equation is the physically relevant one, the following considerations
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were made. First, since µ and M are real numbers, the fugacity z is non-negative and real.
Second, in order for the sum in eq (2.2) to converge, zλ1 must be smaller than unity for
all s, implying that z < 1, since λ1 ≥ 1. This leaves only one physically relevant solution
for z in all cases investigated.

2.3 The Ground-State Approximation

Before presenting the results of our numerical calculations in section 2.4, it is instructive to
show how the boundary conditions influence a quantity known in the field of giant worm-like
micelles as the scission or end-cap energy.[66] The scission energy E is the free-energy cost
of breaking an aggregate into two pieces, assumed to be independent of the point along the
length of the aggregate where the break is introduced. The concept of a scission energy
is sensible only if the (number-averaged) mean aggregate size 〈N〉n = φ/

∑∞
N=1 ρ(N) is

very much larger than unity. In that case the larger eigenvalue λ1 dominates the partition
function Qh(N), allowing one to invoke the ground-state approximation [24] and write

ρ(N) ∼
(

1− 1

〈N〉n

)N

exp−E ∼ exp

(
− N

〈N〉n
− E

)
(2.13)

with

〈N〉n =
1

2
+

1

2

√
1 + 4φ exp E ∼

√
φ exp E À 1 (2.14)

the mean aggregate size and

E = −M − ln x + 2 ln λ1 (2.15)

the aforementioned scission energy; x is the weight of the contribution of the largest eigen-
value λ1 to the partition function (cf. eq (2.12)). From eq (2.15) we immediately read off
how the properties of the ends of the aggregate affect the scission energy, namely through
the weight x. Note that the larger E, the larger the mean size of the aggregates (see eq
(2.14)).

In Table 2.3 we have collected the scission energies for high and low values of the Boltzmann
factor s, as well as for s = 1, for all sets of boundary conditions. The scission energies in
the low-s limit all share a non-helical bond strength −M , since for s ¿ 1 helical bonds are
less stable than non-helical ones and the aggregates are mostly non-helical. In the opposite
limit s À 1, they share the overall strength of a helical bond, −M − P , for in this limit
the assemblies are helical. At s = 1, where the helical and non-helical bond have the same
energy, the factor −M +2 ln(1+

√
σ) is present in all cases, since in this case λ1 = 1+

√
σ.

Additional free-energy contributions, apart from these trivial ones, arise from the specific
boundary conditions. Still, in both limits of stable and unstable helical bonds, as well as
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boundary condition E(s ¿ 1) + M E(s = 1) + M + 2 ln(1 +
√

σ) E(s À 1) + M + P
FF 0 − ln 2 0
NF 0 0 −P + R
NN 0 ln 2 −2P + 2R
HF P + R 0 0
HH 2P + 2R ln 2 0
HN P + R ln 2 −P + R

TABLE 2.3: Scission energies for s ¿ 1, where a helical bond is less stable than a
non-helical one, for s = 1, and for s À 1, for all boundary conditions. In all cases
these energies are given without their trivial contribution.

for s = 1, boundary conditions can be grouped together that produce identical scission
energies. For small s, the boundary conditions FF, NF and NN form such a group, as do
HF and HN; the all-helical case HH has a scission energy distinct from these two. For
s = 1, the cases HN, NN and HH form a group, as do HF and NF, and FF forms the
third group. In the large-s limit, the boundary conditions FF, HF and HH form a group
with identical scission energies as do the cases NF and HN; the case NN (with both ends
non-helical) does not belong to either group. As may be easily verified for each of the
boundary conditions, in the limits of stable and unstable helical bonds the results for the
scission energy E given in Table 2.3 correspond exactly to the free-energy difference before
and after the break in an aggregate that is fully non-helical (when s ¿ 1) or fully helical
(when s À 1), with possibly different end states if required by the imposed boundary
conditions.

To illustrate the sensitivity of the scission energy to the boundary conditions, we plot in
Figure 2.1 the quantity E+M as a function of the excess helical-bond strength −P , for the
highly cooperative case with σ = 10−3. For reasons of clarity, only the results for the cases
FF, NF and HF are shown. Obviously, the same trends can be distinguished as in Table
2.3. The cases with both ends either non-helical or helical NN and HH behave similar
to the cases with one boundary fixed (NF and HF). The case with one end non-helical
and the other end helical HN follows the case HF for −P ¿ 0, and the case NF for high
−P À 0, in accordance with Table 2.3. For all boundary conditions, except NN and NF
(see Table 2.3), the scission energy of the aggregates first decreases with increasing −P
to rise again when −P becomes positive, at least if σ is small enough. This means that
for highly cooperative helical bonding the mean aggregate size is also a non-monotonous
function of the helical-bond strength.

We now rationalize the somewhat counter-intuitive dependence of E on P for one of the
boundary conditions, namely that with one end helical, HF. (For the other boundary
conditions similar arguments hold.) In that case, each aggregate has at least one helical end,
even in the regime where helical bonds are highly unfavorable (for −P ¿ 0). Therefore, in
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FIGURE 2.1: The shifted scission energy E + M as a function of the helical-bond
strength −P ; M is the free energy of a non-helical bond and P is the excess free
energy of a helical bond. The cooperativity parameter σ was fixed at a value of 10−3.
Results are shown for boundary conditions HF, FF and NF, as indicated.

this regime the system decreases the number of aggregate ends and the more so the larger
P , which leads to an increase of the mean aggregate size; thus the scission energy also
increases with increasing P > 0. For −P > 0, the scission energy increases with increasing
−P because helical bonds are now favorable and growth maximizes the total number of
bonds.

The state of the assemblies is not only characterized by their mean size, but also by their
mean helicity. (The former quantity is observable, e.g., with the aid of radiation-scattering
techniques, and the latter by circular-dichroism spectroscopy.) A weight-averaged fraction
of helical bonds may be given by [36]4

〈θ〉w ≡ −1

φ

∞∑
N=α+1

ρ(N)
N

(N − α)

∂ ln Q(N)

∂P
(2.16)

Here, the term (N − α) represents the maximum number of helical bonds allowed by the
choice of boundary conditions in an aggregate of N monomers. For the boundary conditions

4Strictly speaking, the average helicity should contain a summation over the (N − 1) bonds, rather
than over the N molecules. However, this would require us to adjust the definition of φ in this context,
and in practice the effect of this improvement is negligible.
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FF, HF and HH, α equals unity, for NF and HN α = 2, whilst for NN α = 3. In this
definition of the mean helicity we count the number of helical bonds, and compare it to the
maximum number of helical bonds that could be present in the system. For monomers,
and (depending on the boundary conditions) for some non-helical dimers and trimers, this
definition may be somewhat confusing, since these species are obviously non-helical, yet
also exhibit their maximum attainable helicity, namely zero. Here we choose to set the
helicity of these small species equal to zero, hence the boundaries of the summation in eq
(2.16). In our definition, the state of full helicity 〈θ〉w = 1 is reached only if the fractions
of monomers and non-helical dimers and trimers approach zero, i.e., in the limit where
〈N〉n →∞.

In the limit of large 〈N〉n the ground-state approximation is valid, and eq (2.16) reduces
to [32]

〈θ〉w =
1

2
+

s− 1

2
√

(s− 1)2 + 4sσ
(2.17)

If we (arbitrarily) define the helical transition to occur at the point when half the bonds are
helical, it follows that in the limit 〈N〉n À 1 this transition takes place when s = 1. It also
follows that, in this limit, the helicity is apparently independent of the mean aggregate size.
On the other hand, the mean size does depend on the conformational state of the aggregate
through the scission energy (see eq (2.14)). This shows that, while instructive, the ground-
state approximation cannot provide a full, internally consistent description of the helical
aggregation. In the next section we therefore apply the full theory to examine the coupling
between the size and the helical state of the aggregates, as well as the dependence of the
diagrams of aggregated states on the choice of boundary conditions.

2.4 Solution beyond the Ground-State Approxima-

tion

We now discuss the diagrams of states presented in the Figures 2.2-2.4, which we calcu-
lated by numerically solving the pertinent equations for the boundary conditions FF (both
ends free), NF (one end non-helical) and HF (one end helical). The state diagrams are
parametrized in terms of the quantities −P and ∆µ ≡ ln φ−M , the former being the ex-
cess helical bond energy (apart from its sign) while the latter can be loosely interpreted as
the difference between the chemical potential of a monomer in free solution and one in an
aggregate. Positive values of ∆µ indicate a preference of the monomers to be present in the
aggregated state, negative values indicate a preference for the free molecularly dissolved
state. The bottom pair of drawn and dashed curves in the diagrams indicates the conditions
for which the fraction of molecules in an aggregated state η ≡ 1− ρ(1)φ−1 equals one-half,
while the top pair indicates conditions for which the mean fraction of helical bonds 〈θ〉w
equals one-half. Clearly, the curves demarcate polymerized from non-polymerized states,
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FIGURE 2.2: Theoretical diagram of states for the case with free boundary condi-
tions (FF), for σ = 1 (dashed line) and σ = 1.5 · 10−3 (drawn line). Vertical axis:
∆µ ≡ −M + ln φ; horizontal axis: −P = ln s. The top line is the helical transi-
tion line, where half the bonds are helical and 〈θ〉w = 1/2. The bottom line is the
polymerization line, where half the material is in the aggregated state and η = 1/2.

and helical from non-helical states. Results are shown for two different values of σ, rep-
resenting high and low cooperativity. Predictions for the cases with both ends non-helical
(NN) or helical (HH) are not reproduced, because they are similar to those of the cases
NF and HF. For similar reasons results for the boundary condition HN (one end helical,
one non-helical) are not given; in fact, they display elements of both NF and HF.

For all boundary conditions, the diagrams show the presence of two regimes, one where the
helical transition and the polymerization transition are widely separated, and one where
they practically coincide. Also, for each case, the polymerization line approaches a constant
value for P À 1, while the helical transition line approaches asymptotically the value P = 0
in the limit of large aggregates, i.e., for large values of ∆µ, as expected from the ground-
state analysis. Furthermore, the coinciding polymerization- and helical-transition lines in
the regime of negative ∆µ and P clearly point at a scaling relation ∆µ ∼ P , which may
in fact be straightforwardly obtained within the ground-state approximation (e.g., from eq
(2.2), (2.3), (2.10), (2.12), and (2.17)).
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FIGURE 2.3: As Figure 2.2, for the boundary condition with one end non-helical
(NF).

The largest influence of the state of the aggregate ends is around P = 0 and ∆µ = 0, where
the assemblies are still relatively short. Here the diagrams differ considerably. Focusing on
these differences we, e.g., observe that the crossovers shift to larger values of ∆µ and −P
when one compares the case where one end is non-helical (Figure 2.3) to that where both
ends are free (Figure 2.2). In other words, fixing one end to be non-helical destabilizes
the aggregated states. An explanation is that the helical transition and the growth of the
assemblies both strongly depend on the ease with which the first helical bond is formed.
Because for the NN and NF boundary conditions the first bond is non-helical, the formation
of the first helical bond requires the formation of a helical-non-helical interface, at the cost
of a free-energy penalty R > 0. This makes the formation of helical aggregated states
always less favorable than in the model with the free boundaries FF.

A similar effect is seen when one compares Figure 2.4 (the case where one end is helical)
to Figure 2.2 (with both ends free), albeit that here the ease of formation of the first non-
helical bond is the deciding factor. For those cases where at least one bond is helical, HF
and HH (the latter not shown), the helical state is stabilized by an increasing cooperativity
(see Figure 2.4 for boundary conditions HF), while for aggregates with a non-helical end
(Figure 2.3) an increase of the cooperativity favors the formation of non-helical bonds.
This is as expected, since the appearance of bonds with a different configuration from that
of the ends is inhibited by the interfacial free-energy penalty imposed.
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FIGURE 2.4: As Figure 2.2 for the boundary condition with one end helical (HF).
In the inset: a cross section of the diagram at s = 0.5 and σ = 1.5 · 10−3, showing
the mean helicity as a function of ∆µ.

Another remarkable difference between the three diagrams of state is the sensitivity of the
diagram on the degree of cooperativity, described by the parameter σ. While the diagram
for the case with free boundary conditions FF (depicted in Figure 2.2) is quite insensitive
to changes in σ, this is not so for all other boundary conditions, which do exhibit quite
a strong dependence on σ (see Figures 2.3 and 2.4). The reason is that if the ends are
free, aggregates can be helical or non-helical without the need to create helical-non-helical
interfaces. Note that while the diagram of states for the case FF is relatively insensitive
to σ, this does not necessarily extend to the actual crossovers, which do display a strong
dependence on σ.

Perhaps the most striking feature we find is the re-entrance behavior of non-helical con-
formations for the cases with at least one helical bond, when ∆µ is varied at constant P
(see Figure 2.4 and inset). This is caused by the circumstance that for these boundary
conditions small aggregates are helical even when the helical bond is unfavorable, so as to
avoid paying the interfacial free energy penalty R. Increasing the value of ∆µ at constant
P causes non-helical bonds to become increasingly more favorable, leading to a decrease of
the overall helicity, and eventually to re-entrance into the region of disordered aggregates.
This effect is obviously stronger for the case HH than for the case HF, since the case HH
has at least two helical bonds per aggregate as opposed to one in HF (results for HH not
shown). Re-entrance behavior is also observed for the case HN (not shown).
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FIGURE 2.5: The predicted fraction of molecules in the aggregated state and the
mean fraction of molecules in the helical state, respectively η and 〈θ〉w, as a function
of the effective density Φ ≡ exp∆µ for exp(−P ) = s = 3. The inset displays the
mean aggregate size as a function of Φ. The arrows indicate the locations of the
polymerization transition Φ∗ and the helical transition Φ∗∗.

We shall see in Chapter 3 that only two of the boundary conditions (NF and NN) can
describe measurements on aggregates of discotic molecules [9] adequately. Therefore, we
feel it is instructive to take a somewhat more detailed look at the behavior of one of these
sets of boundary conditions, namely NF.

We make the weight-averaged fraction of helical bonds 〈θ〉w explicit for these boundary con-
ditions. From equations (2.2), (2.3), (2.6), (2.12) and (2.16) with the boundary conditions
NF from Table 2.2 inserted, we find

〈θ〉w =

∑2
r=1

[
(ar − 2cr)(dr + er) + sλ

′
rdrλ

−1
r (2ar + br) + drfr(2cr − ar)

]

z exp M + z2 exp M +
∑2

r=1 dr(2ar + br)
(2.18)

where

ar ≡ z3λr

(1− zλr)
exp M br ≡ ar

(1− zλr)
(2.19)

cr ≡ z2 ln(1− zλr) exp M dr ≡ s
√

σ(λr − 1) + σs

(λr − 1)2 + σs
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FIGURE 2.6: As Figure 2.5, for s = 10.

er ≡ λ
′
rs

2
√

σ

(λr − 1)2 + σs
fr ≡ s[2 (λr − 1) λ

′
r + σ]

(λr − 1)2 + sσ

and λ
′
r ≡ ∂λr/∂s. For the fraction η of material in aggregates of size N > 1, and the

(number-averaged) mean aggregate size, 〈N〉n, we obtain

η =
2z2 exp M +

∑2
r=1 (2ardr + brdr)

z exp M + 2z2 exp M +
∑2

r=1 (2ardr + brdr)
(2.20)

〈N〉n =
z exp M + 2z2 exp M +

∑2
r=1 (2ardr + brdr)

z exp M + z2 exp M +
∑2

r=1 ardr

(2.21)

To illustrate some of the salient features of the behavior of the system at hand, we take cuts
through the diagram of states (Figure 2.3) and show how the fraction of helical bonds, the
aggregation number and the fraction of aggregated material respond to changing conditions.
In Figures 2.5 and 2.6 we take vertical cuts through the diagram of states at fixed s ≡
exp−P = 3 and at fixed s = 10. Shown are η and 〈θ〉w as a function of Φ, which may
be seen as an effective density and is defined as Φ = φ exp−M ≡ exp ∆µ. The insets in
these Figures give the dependence of 〈N〉n on Φ, where we have indicated with arrows the
locations of the polymerization transition, Φ∗, for which η = 1

2
, and the helical transition,

Φ∗∗, for which 〈θ〉w = 1
2
. Figures 2.5 and 2.6 illustrate the merging of the two transitions

with increasing value of the parameter s, i.e., with increasing strength of the helical bond.



Helical Aggregation: Theory 33

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10s

η

0

1

2

3

4

-4 -2 0 2 4log s

s**

Slope 1n
Nlog

w
θ

FIGURE 2.7: The predicted fraction of molecules in the aggregated state and the
mean fraction of molecules in the helical state, respectively η and 〈θ〉w, as a function
of s for Φ = 3. The inset displays the mean aggregate size as a function of s. The
arrow indicates the location of the helical transition.

In the limit of infinite helical-bond strength, the polymerization transition is completely
dominated by the helical transition. Note the strongly enhanced growth for Φ ≥ Φ∗∗; below
Φ∗∗, the growth of the assemblies is a relatively weak function of Φ. In the absence of a
helical transition 〈N〉n ∼ 1 + Φ if Φ ¿ 1 and 〈N〉n ∼

√
Φ if Φ À 1. [24, 67] The helical

transition shifts the crossover from the weak- to the strong-growth regime to smaller values
of Φ as it becomes more important, i.e., for larger values of s.

In Figure 2.7 we take a horizontal cut through the diagram of states of Figure 2.3 for fixed
Φ = 3. Illustrated in the main Figure are η and 〈θ〉w as a function of the helical-bond
strength s, and in the inset 〈N〉n versus s. For this choice of Φ, the polymerization and the
helical transition are widely separated; the polymer fraction is already at a high 0.8 at the
point where the fraction of helical bonds is still zero. The trend that was already visible
in Figures 2.5 and 2.6 presents itself even more prominently in this Figure: for low values
of s, where most of the bonds are in the non-helical state, the aggregates are in the mean
relatively small and their size is fairly constant, while near the helical transition a sudden,
accelerated growth sets in. Since in this case the polymerization line has long been passed
this demonstrates that it is indeed the helical transition that causes this growth spurt. It
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is easy to show that for large s, 〈N〉n ∼ s, [24] which is indeed observed in the Figure.
Large assemblies are feasible below the helical transition, but only if Φ À 1.

2.5 Discussion and Conclusions

The state of the aggregate ends has a large effect on the physical properties of self-assembled
polymers with different conformational states, even when these polymers are not small.
From a model that allows for restrictions on the state of the aggregate ends we have found
that such restrictions lead to three different classes of behavior. These classes are distin-
guished by their dependence on the degree of cooperativity of the helical transformation,
as well as by the emergence of a re-entrance of the non-helically aggregated state. We
note in passing that a similar re-entrance behavior is observed in (rabbit muscle) actin in
solution in the presence of MgCl2 and varying concentrations of KCl, itself an example of
a helically aggregating system. [107]

Although we have presented the, as far as we know, most complete theory of helical self-
assembly, it is not the first. Oosawa and Kasai proposed a (much simpler) theory to
describe the self-assembly in water of the globular protein actin into helical fibers. [4, 23]
(A somewhat similar theory to that of Oosawa and Kasai was used by Niranjan et al. in
their description of the polymerization of actin. [107]) That theory relies on a so-called
all-or-nothing model, and assumes that all aggregates of degree of polymerization larger
than two are either completely helical or completely non-helical; monomers and dimers
are treated as inherently non-helical. Such an all-or-nothing model is sensible only if the
average aggregate size is much smaller than the intra-aggregate correlation length and is
therefore best suited to describe systems with a large cooperativity.

The (reduced) partition function of an aggregate in the Oosawa-Kasai model may be ex-
pressed as

Qh(N) = 1 + γsN−3 (2.22)

for N ≥ 3, and Qh(N) = 1 for N = 1, 2, with s its usual meaning and γ a Boltzmann factor
expressing the ease with which a helical aggregate can be “nucleated”. Equation (2.22)
differs from the partition function we found in eq (2.12), irrespective of the boundary
conditions. Nonetheless, the properties of the Oosawa-Kasai model are very similar to
those of our model with free boundary conditions FF, albeit only at high cooperativity.
In fact, the partition functions of the Oosawa-Kasai model and our model with free ends
are identical in the limits s À 1 and s ¿ 1 if we choose γ = s2. Since the model with
free boundary conditions poorly describes the experimental data of Brunsveld et al. (as we
shall see in Chapter 3), it is not surprising that the Oosawa-Kasai theory also fails for that
system. However, the Oosawa-Kasai theory does seem to provide a good description of the
helical aggregation of actin in water, suggesting that different systems may be subject to
different boundary conditions. [84]
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The theory in its present form is believed to be suited for any system that undergoes
self-assembly coupled with an ordering transition, provided the system is in the dilute
regime. The theory is potentially unsuited for processes requiring an activation step,
since we do not take the possibility of the presence of inactive monomers into account.
Even without activation, despite the apparent accuracy in describing experimental data
of our model, there is room for improvement. For instance, the possibility of ring closure
has been neglected, as have excluded-volume-type interactions. For the discotic molecules
discussed in section 1.1 at the considered concentrations these are presumably unimportant
approximations. The reason ring formation can be neglected is that we found the aggregates
to be relatively small for T > T∗∗. In the helical state, the aggregates do become long, but
at the same time are expected to become more rigid than in the non-helical state, as the
packing of the molecules is expected to be tighter. [9] Excluded-volume interactions can
be neglected if the volume fraction φ ≤ D/L, with D the diameter of an aggregate and L
its length. [108, 109] We describe the effect of this type of interaction in Chapter 7.





Chapter 3

Helical Assemblies in Solution:
Comparison to Experiment

ABSTRACT

We compare the results of the treatment outlined in Chapter 2 to experimental
results on dilute solutions of discotic molecules in n-butanol, obtained by a
host of techniques. It turns out that only two sets of boundary conditions
provide a quantitative description of the helical self-assembly of the discotic
molecules, namely the boundary conditions in which one or both ends are fixed
to be non-helical. It is in principle possible to distinguish further between these
two boundary conditions, since they show a different dependence of the mean
aggregate size on the temperature. However, currently available experimental
results are insufficient to make this distinction.1

1Parts of this Chapter appeared in Langmuir 2003, 19, 1375. Most of it appeared in J. Phys. Chem.
B 2001, 105, 10691.
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3.1 Introduction

So far, we have discussed the predictions of the theory in terms of the “theoretical” control
variables σ, s and Φ ≡ exp ∆µ, which describe the degree of cooperativity, the stability of
the helical bond and the strength of the “mass action”. In order to test the theory against
experiment, we need to translate these control variables into experimentally accessible
ones, such as the temperature, the concentration of dissolved material and the transition
enthalpies. This we do in the next section, where we compare the theory for the different
boundary conditions with the observations of Brunsveld et al. [9] As we shall see, only
one of the three classes of behavior predicted in Chapter 2 describes the experimental data
adequately.

The remainder of the Chapter is structured as follows. In section 3.2 we compare our
theory to experimental data of Brunsveld et al. on a system of discotic molecules [9] for all
classes of boundary conditions. It appears that the sets of boundary conditions in which
one or both ends are constrained to be non-helical provide the best description of the
experimental results. We provide an in-depth comparison to experiment for one of these
boundary conditions (the one with one end non-helical) in section 3.3 and find quantitative
agreement between theory and experiment. In section 3.4 we present a discussion and
conclusions.

3.2 Comparison of Different Boundary Conditions

Before giving a full, quantitative translation of the theory into experimental parameters,
we note that there is experimental evidence to support the presence of two regimes as seen
in Figures 2.2-2.4. [9, 10] Hirschberg et al. [10] found for their bifunctional molecules
a polymerization transition in one solvent and a combined polymerization and helical
transition in another. Brunsveld and co-workers synthesized a chiral discotic molecule that
in the solvent n-butanol self-assembles into stacks, which under the right conditions exhibit
a helical transition. [9, 110] For these molecules, separate transitions were observed for
their discotics in the solvents n-butanol and dodecane. [9, 111, 112] In dodecane, however,
the two transitions were closer together for comparable concentrations. [112] This suggests
that a change in the solvent quality can lead to the exploration of a different area of the
diagram of states. As we have seen in Chapter 2, the distance between the transitions can
also be tuned by varying the concentration of dissolved material.

In order to determine the quality of the theoretical model a comparison was made with
experimental work on solutions of the so-called C3 discotic of Brunsveld et al. [9, 110] in
n-butanol. This molecule, like most discotics, [11, 13, 103, 113, 114, 115, 116] consists of
an aromatic core, attached to which are (nine) side chains. In the work of Brunsveld et
al. these side chains were chosen to be homochiral and of a polar nature (see Figure 1.1).
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This combination of an apolar core with a polar rim causes the molecule to self-assemble
in solution in order to shield the apolar core from the more polar solvent. The discotic
molecules can also undergo a helical transition, which is presumably caused by an increased
binding free energy of the helical aggregates when compared to the non-helical aggregates.
A model relating the shape of the molecule to its ability to aggregate and form helices has
been described in some detail earlier. [9, 24] The homochiral side chains bias the twist sense
of the intrinsically helical columns, causing the formation of an excess of helices of a single
handedness over the other, an example of molecular chirality inducing macromolecular
chirality. [117] A host of experimental techniques were used to study dilute solutions
of these molecules. [9] We concentrate on results from circular-dichroism spectroscopy
(CD), time-resolved fluorescence spectroscopy and differential scanning calorimetry (DSC)
experiments. Due to the large amount of experimental data that was gathered on this
system, it turns out to be possible to fix all the control parameters of our theory.

Given that the molecular structure of the material does not appear to preclude or prescribe
any state of the aggregate ends, it is not a priori clear which of the boundary conditions
described in Chapter 2 provides the best description of the actual state of the system.
We show below that one can in fact fairly accurately fix the boundary conditions by
fitting to experiment. Note that different boundary conditions may correspond to different
experimental systems. [84]

Following the procedure of van der Schoot in reference [24], we first make the temperature
dependence of the non-helical and helical bond energies M and P explicit by means of a
Taylor expansion around two reference temperature scales T 0

∗ and T∞
∗∗ defined below:[24]

M(T ) ≈ M(T 0
∗ ) +

∂M

∂T
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∗ ) = ln
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and

P (T ) ≈ P (T∞
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(T − T∞
∗∗ ) = (1− T

T∞∗∗
)

hh
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Here, we set P (T∞
∗∗ ) = 0 by definition, and M(T 0

∗ ) = ln φ/(2 − √
2) follows from the

theory of linear self-assembly when one inserts η = 1/2 (corresponding to 〈N〉 =
√

2) into
eq (2.14). In equations (3.1) and (3.2), hn represents the enthalpy of the formation of a
non-helical bond and hh that of a helical bond from a non-helical one. T 0

∗ represents the
polymerization transition temperature in the hypothetical limit that no helical transition
can take place, and T∞

∗∗ the helical-transition temperature of an infinitely long aggregate.
We recall that, by definition, these transition temperatures demarcate conditions for which
〈θ〉w = 1

2
and η = 1

2
.2 From earlier work we know the values of hn and T 0

∗ to be model-
independent. [9, 24]

2The mean helicity is defined slightly differently form that in Chapter 2, in order to better correspond
to the interpretation of the CD data. While in eq (2.16) we took monomers and non-helical oligomers
into consideration by dividing by φ, in the current 〈θ〉w we neglect these, equating 〈θ〉w = 1 with the
equilibrium state at low temperature, rather than the state where all conceivable bonds are helical.
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The enthalpy of the helical transition hh, −50 kJ/mol, was determined by differential
scanning calorimetry (DSC), and corresponds to −20kBT per bond at the actual transition
temperature T∗∗, independent of concentration in the regime 10−2 - 10−4 M covered by the
experiments. We assume that this enthalpy is independent of the boundary conditions.
While not strictly true, this approximation is sensible because the enthalpy was measured
by integrating the measured heat capacity over a large temperature range, starting in
the monomer regime and ending deep within the helical polymer regime. In this latter
regime, the aggregates are so long that the state of the aggregate ends is expected to be
unimportant. The concentration invariance of the enthalpy is also a strong indication that
finite-size effects (and therefore the self-assembly process) have a negligible influence on
the measured value of the enthalpy.

The enthalpy of the formation of a non-helical bond hn was determined by means of fluo-
rescence spectroscopy and found to be equal to −27kBT at the polymerization temperature
T∗ ≈ 316 K for the concentration φ = 2.35 · 10−6.3 Values at other concentrations (where
no data are available) were estimated from this value using the following extrapolation
formula [24]

T 0
∗ (φ2)

T 0∗ (φ1)
' 1 +

kBT 0
∗ (φ1)

hn

ln
φ1

φ2

(3.3)

where we use the known experimental values φ1 = 2.35 · 10−6 and T 0
∗ (φ1) = 316 K as

a reference, and Taylor expand around this temperature, assuming that the non-helical
bond formation dominates at T 0

∗ . Since hn and T 0
∗ are connected only with the bare

polymerization process, and hh was determined directly from DSC measurements (i.e.,
without the intervention of a boundary condition-dependent theory), these parameters can
be fixed without specifying the boundary conditions. Following ref [24] we assume R and
therefore also σ to be temperature and concentration independent.

With hn, hh and T 0
∗ fixed, the remaining unknowns are T∞

∗∗ and R, which we obtain
by a two-parameter fitting procedure to the results of temperature-dependent circular-
dichroism (CD) measurements. These measurements give direct information on the mean
helical content of the supramolecular aggregates at five different concentrations ranging
from 10−6 to 10−2 M, corresponding to volume fractions φ from 2.61 · 10−6 to 2.43 · 10−2.
We reasonably assume that there is a constant proportionality between the fraction of
helical bonds in the solution and the measured optical effect (expressed in mdeg at a
wavelength of 337 nm). In order to obtain a meaningful comparison between theory and
experiment, the experimental values of the mean helicity are normalized so that the highest
measured helicity equals unity.

The fitting to the experimental helicity-temperature data is done as follows. First, T∞
∗∗ is

fitted by hand to an experimental data point close to the midpoint of the transition. (For

3To calculate the volume fraction from the molar concentration, a density for the discotic molecule
of 1.3 g mL−1 was used. We obtained this number from X-ray measurements in the solid state. The
molecular weight of the discotic lies around 3400 g mol−1.
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FIGURE 3.1: The mean helicity versus the temperature in K for the discotic
molecules in n-butanol discussed in the main text, at a volume fraction φ = 2.55·10−4.
[9] The symbols represent experimentally found values, the dashed line gives the op-
timal numerical fit of the case NF with quality parameter ς = 0.15, the drawn line
that for case HF with quality parameter ς = 0.59.

a typical set of experimental helicity-temperature data, see the symbols in Figure 3.1.)
Then, σ is adjusted to give a good agreement at two points, slightly above and below the
transition temperature but not in the regime where the helicity curve becomes horizontal.
T∞
∗∗ and σ are varied until good agreement is found at all three points. To quantify the

quality of the entire fit we number the experimental data points at different temperatures
i = 1, 2, .... Then we define as a measure of the quality

ς2 ≡
∑

i

(〈θ〉w,i − θ̂i)
2

θ̂i

(3.4)

where the sum is over the experimental data points; θ̂i is the mean helicity measured at
these temperatures; 〈θ〉w,i is the theoretical value of the mean helicity at the temperature
corresponding to the data point i.

The quantity ς2 is a weighted mean-square deviation and equals zero in the case of perfect
agreement. Its form was chosen to attain a fit that is biased toward smaller values of the
helicity, and as such takes relative errors, rather than absolute ones, into account. While
a choice of θ̂2

i in the denominator may seem more natural, this would overemphasize the
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high-temperature part of the curve at the expense of the crossover region. Note that it is
difficult to make a comparison between ς and standard quality parameters, since the value
of ς can exceed unity for very poor fits. While the distinction between a good fit and a
poor fit is rather arbitrary, based on our observations we define a poor fit to be any fit
with ς > 0.3 (see Figure 3.1 for examples of a good and a poor fit). The procedure of
fitting and calculating the quality parameter was performed for all six cases, after which
the values for the five experimental concentrations were averaged. The averaged values of
T∞
∗∗ and σ were used in the remainder of this chapter.

For the cases with helical ends (HH, HF and HN), a fit was first attempted for φ =
2.55 · 10−4, but the helicity-temperature curves proved to be highly asymmetrical around
the transition point 〈θ〉w = 1

2
(see Figure 3.1), making it impossible to obtain a good

agreement in both the high- and the low-temperature regimes. Typical values for the
quality parameter fell between 0.55 and 0.60, indicating a poor curve fit. Due to the
difficulty of these fits, we chose not to perform curve fits at other volume fractions, and we
discarded these boundary conditions as candidates for good agreement with experiment.

Cases NF and NN gave good fits for all five concentrations (with ς = 0.13 and ς = 0.16 at
φ = 2.55 ·10−4) giving the average values T∞

∗∗ = 300 K and σ = 1.5 ·10−3, and T∞
∗∗ = 301 K

and σ = 9.3 · 10−3, respectively. For the case FF it proved impossible to fit the 〈θ〉w curve
for all five concentrations, due to the insensitivity of this model to changes in σ (see Figure
2.2). To circumvent this problem a fixed value of σ of 10−3 was used and an attempt at a
one-parameter fit was made, yielding the (rather low) average T∞

∗∗ of 296 K. The quality
parameter obtained for this fit was ς = 0.49 from which we conclude that the FF boundary
condition produces a poor agreement with the data (see also below).

For each set of boundary conditions we checked our manual fit with the help of a least-
squares minimization procedure in Fortran 90 using the NAG library routine E04JYF, if
only for a single concentration (φ = 2.55 · 10−4). Routine C02AFF was used to determine
the value of the fugacity z from the volume fraction. Note that this routine does not take
into account the different weights given to the low- and high-temperature regime, i.e., in
this procedure, all data points were treated equally. For the boundary conditions NN, HF,
HH and HN, the routine suffered numerical difficulties, caused by the implicit nature of the
dependence of the fugacity z on σ and T∞

∗∗ , and the tendency of the algorithm to overshoot
the upper bound of zλ+ < 1. For the boundary condition NF the fitting procedure gave
ς = 0.15, which indicates that the manual fit and the numerical fit (ς = 0.13) are close
together. For the boundary condition FF, the least-squares algorithm showed similar
difficulties in fixing σ as the manual procedure. The results for φ = 2.55 · 10−4, T∞

∗∗ = 297
K and σ = 10−8, yield a value for the quality parameter of ς = 0.36, whereas the manual
fit gave the value 0.49 (for T∞

∗∗ = 297 K and σ = 10−3), indicating that a lower value
for σ gives a somewhat better agreement, although neither approaches the quality of the
curve provided by the boundary conditions NF and NN. See Figure 3.1 for a comparison
between the manual fits for the cases NF (ς = 0.13) and HF (ς = 0.59) at the concentration
φ = 2.55 · 10−4.
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FIGURE 3.2: The helical transition temperature T∗∗ in K versus the concentration
in M of the discotic molecules in n-butanol. [9] The symbols represent the experi-
mentally found values, the dashed line gives the results of the case NF, the drawn
line that for case NN, and the thick line that for the case FF.

From the averaged values of T∞
∗∗ and σ the concentration dependence of the helical tran-

sition temperature T∗∗ was calculated. This we compared with experimental findings (see
Figure 3.2). The agreement between theory and experiment for the case FF is poor, as the
calculated helical-transition temperature for each concentration was found to be a constant
T∗∗ = T∞

∗∗ = 296 K. Both boundary conditions with non-helical ends (NF and NN) show
quantitative agreement between theory and experiment, and any distinction between the
two cases on these grounds is difficult. (The increase of the transition temperature with the
concentration essentially shows that larger helical aggregates are more difficult to “melt”
than smaller ones. A similar effect is seen in polymer crystals. [118]) Our fitting procedure
has demonstrated that only these two boundary conditions can accurately describe the
experimental measurements. Not only the T∗∗ − c curve (Figure 3.2) but also parameters
such as η and 〈θ〉w, are insensitive to the change from model NF to NN. The only marked
difference, as already expected from the scission energy, is in the predicted average size of
the aggregates 〈N〉n shown in the inset to Figure 3.3, where the NN boundary condition
predicts larger aggregates at low temperatures than does NF.

Unfortunately, the difference in aggregate size between the cases NF and NN is not large
enough to distinguish between the two in a comparison with small-angle neutron scattering
(SANS) data obtained on dilute solutions of the discotic molecules in n-butanol. [9, 119] See
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FIGURE 3.3: Theoretical fits to the results of SANS measurements on the sys-
tem of discotic molecules in n-butanol at a concentration of 2.39·10−3 M. [119] On
the vertical axis is the normalized scattering intensity, on the horizontal axis the
temperature in K. The dashed line gives the weight-averaged aggregate size as a
function of the temperature, rescaled to give the best possible fit, for the case NN.
The drawn line gives the same for the case NF. In the inset: Theoretical values for
the number-averaged aggregation number 〈N〉n as a function of the temperature in
◦C. The drawn line again indicates the case NN, the dashed line the case NF. The
concentrations are 9.21·10−3, 9.64·10−5 and 9.89·10−7 M, from top to bottom.

Figure 3.3. As a function of the temperature we show there a normalized SANS intensity
divided by the volume fraction of dissolved material, known to be proportional to the

weight-averaged aggregate size 〈N〉w = φ−1
∞∑

N=1

N2ρ(N). Also shown are the predictions

of this mean aggregate size for the two boundary conditions NN and NF as a function
of temperature. For the theoretical curves shown in Figure 3.3 an unknown constant of
proportionality between 〈N〉w and the normalized scattered intensity is adjusted to produce
the best overlap with the data points. Both the theoretical predictions and the SANS data
show a tendency of the aggregate size to steeply increase below T∗∗, indicating (as we also
saw in Chapter 2) that the helical transition and the aggregate growth are indeed strongly
coupled.
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FIGURE 3.4: The fraction of molecules in the aggregated state as a function of the
temperature T in degrees Celsius. The line gives the theoretical result, the symbols
indicate the experimental data for the C3 discotic in n-butanol at a concentration
of 2.35·10−6 M. [9] The arrows mark the helical-transition temperature T∗∗ and the
polymerization transition temperature T∗.

3.3 Comparison to Experiment of Boundary Condi-

tion NF

Since we have established that the models with boundary conditions NN and NF are the
only ones that give an adequate description of the experiment, let us expand our comparison
to experiment for one of these boundary conditions, being NF. We again use eqs (3.1)-(3.3)
to make the temperature dependence explicit. For the values of the parameters T∞

∗∗ and σ
we used the manually fitted values of T∞

∗∗ = 300.3 K and σ = 1.5 · 10−3. These averaged
values were inserted into eqs (3.2) and (2.18)-(2.21) to produce the theoretical curves for
the various concentrations.

In Figure 3.4 we compare the measured temperature dependence of the fraction of ag-
gregated material with what we find from the theory for the concentration of 2.35·10−6

M. The fraction of aggregated material was deduced from time-resolved fluorescence spec-
troscopy. [9] Indicated in the Figure is the earlier-quoted polymerization temperature of
T∗ ≈ T 0

∗ = 316 K for the concentration 2.35·10−6 M. For high temperatures the agreement
between the theoretical and the experimental curves is excellent. Below T∗∗ ≈ 292 K, also
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FIGURE 3.5: Mean helicity as determined by circular-dichroism measurements as
a function of temperature T for a concentration of 9.64·10−5 M of the C3 discotic
in n-butanol. [9] The drawn line is the theoretical prediction, the symbols are the
experimental results.

indicated in the Figure, theory and experiment appear to diverge. As was discussed already
by van der Schoot and collaborators, [24] the divergence may be due to the interpretation
of the experimental data, where the possible difference in electronic states of the molecules
between a helical aggregate and a non-helical aggregate was not taken into account. [9]
We therefore believe the apparent discrepancy at low temperatures to be unimportant.

Figure 3.5 gives the temperature dependence of the average fraction 〈θ〉w of intermolecular
bonds in the helical state for the concentration of 9.64 · 10−5 M, as obtained by circular-
dichroism (CD) spectroscopy. The reason the CD signal corresponds to a weight average,
as opposed to a number average, is that both the weight average and the intensity of a
CD signal are proportional to the number of helical bonds present in the system. Also
indicated is the theoretical fit of 〈θ〉w, which was calculated in a slightly different manner
than described earlier, in that monomers and dimers were ignored whereas earlier they
were taken into account. The definition of the mean helicity in which we ignore monomers
and dimers corresponds more closely to what is experimentally determined. In the inter-
pretation of the experiments the maximum mean fraction of helical bonds, found at low
temperatures, was set equal to unity. Thus, there is a difference between the experimental
and theoretical maximum helicity: the experimental maximum helicity corresponds to the
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FIGURE 3.6: The calculated mean fraction of helical bonds of the C3 discotic in
n-butanol, 〈θ〉w, as a function of a reduced temperature ∆τ ≡ − ∂ 〈θ〉w /∂T |T∗∗ (T −
T∗∗), for concentrations ranging from 10−2 to 10−6 M. The thick line gives the theo-
retical master curve, whereas the symbols give experimental results for five concen-
trations.

situation at low temperatures (when there are still monomers and non-helical aggregates
and parts of aggregates present), whereas the theoretical maximum helicity corresponds to
the (unrealistic) situation where all molecules in solutions are present in helical aggregates.
The agreement between theory and experiment is remarkably good for all concentrations
in the range from 10−2 to 10−6 M (results not shown for all concentrations). Indeed, the
theory provides a quantitative description of the experimental data.

As is shown in Figure 3.6, the theoretical helicity curves follow the same scaling as the
experimental data (indicated with symbols) were found to obey [24]. Indeed, all predicted
curves collapse onto a single master curve (indicated by the thick line) if we follow the
same prescription as was used in the paper of van der Schoot et al. [24] and rescale the
temperature such that ∆τ ≡ − ∂ 〈θ〉w /∂T |

T∗∗ (T −T∗∗), where we read off the slope of the
helicity curve at T∗∗ from the theoretical curves. The circumstance that the helicity curves
conform to a simple scaling function implies that, for the material discussed, the difference
in concentration merely shifts T∗∗ - albeit in a non-trivial manner. In the ground-state
approximation the shape of the curve is only a function of hh and T∗∗; [24] apparently this
remains true in our theory.

We summarize our comparison to experiment in Figure 3.7 by giving a diagram of states
in terms of the concentration and temperature. Indicated are the theoretical predictions



48 Chapter 3

-20

0

20

40

60

80

100

120

140

-8 -7 -6 -5 -4 -3 -2
lo g  c  [M ]

T  [° C ] theory

T *  exp (UV)

T*  exp ( f luoresc enc e)

T**  exp (UV)

T**  exp (C D )

FIGURE 3.7: Diagram of states in terms of the temperature in ◦C and solute
concentration in M. The symbols indicate experimental results, as indicated, the
lines indicate the conditions where the helical (bottom) and polymerization (top)
transitions take place.

of the transition temperatures T∗ and T∗∗ as a function of the overall solute concentration.
The advantage of this diagram is that we can now immediately compare the theory to
the experimental results obtained with different techniques, including UV spectroscopy,
circular-dichroism spectroscopy and time-resolved fluorescence spectroscopy. The agree-
ment between experiment and theory is good, and the same two regimes as in Figure 2.3
can again be observed.

3.4 Discussion and Conclusions

The agreement between theory and experiment shows that our view of the linear self-
assembly in dilute solution of a class of chiral materials exhibiting a potentially cooperative
conformational transition is accurate. We can conclude that at high temperatures the
molecules aggregate into short, polymeric assemblies in which they retain a relatively
large amount of configurational freedom. Upon lowering the temperature, the aggregates
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undergo the transition to a helical state of definite handedness; they, loosely speaking,
“crystallize internally”. The free-energy gain associated with the transition to the helical
state causes a growth spurt of the aggregates at low temperatures which sets in around the
helical-transition temperature (as is shown in Figure 3.3 and the insets of Figures 2.5-2.7).
As it turns out, due to its strong cooperativity, the transition from the random to the
helical state can occur over a very small temperature range. As a result of the coupling
between growth and the helical transition, there exist two regimes. In one the helical
transition and the polymerization are separated and in another they coincide.

Our theory gives for the co-operativity parameter σ of the C3 discotic in n-butanol a
value of 1.5 · 10−3, more than ten times smaller than was found within the ground-state
approximation. [24] This amounts to a doubling of the interfacial free energy between
helical and non-helical stretches along a chain, from 1.6 kBT to 3.2 kBT per molecule.
Apparently, the helical transition of the material is much more co-operative than previously
thought, although still not as co-operative as the helix-coil transition of, for instance, the
conventional polymer poly(γ-benzyl-L-glutamate), for which σ ' 2.4·10−4. [36]

Out of the six possible boundary conditions, only two describe the experimental data
of Brunsveld and co-workers quantitatively. These two (imposing one or two non-helical
ends) can, in principle, be distinguished by the growth of the assemblies with changing
temperature. Unfortunately, while some SANS data is available for the low-temperature
regime where the differences between the two boundary conditions are expected to be
largest, interpretation of these results is difficult due to the impact of interactions between
the assemblies on the scattered intensity for the low temperatures. [24] As a result, we are
unable to distinguish between the two boundary conditions based on currently available
experimental data. Since the diameter and height of the C3 discs are approximately known,
it is possible to determine for which values of φ and 〈N〉n there will be discrepancies between
our theory and the experimental results. We find that interaggregate interactions will only
play a role for concentrations exceeding 10−2 M, and then only at temperatures below
approximately 0 ◦C. Obviously, there may be systems for which ring-closure and interaction
are important. In those cases excluded-volume effects between randomly oriented stacks of
discs can be included in a simple mean-field way for concentrations up to the close packing
regime. [60] We deal with effects of this kind in Chapter 7.

Of the different boundary conditions that fail to describe the experimental data, the failure
of the model with free ends FF is perhaps the most surprising. Its poor agreement with
experiment stems from the circumstance that the model with free ends is able to generate
both fully helical and non-helical aggregates, that is, to achieve any value of the mean
helicity, without forming any helical-non-helical interfaces. This causes the equilibrium
(lowest free energy) state to be one of separate helical and non-helical aggregates. The
condition 〈θ〉w = 1

2
then corresponds to a state of affairs where there is no preference for

the formation of a helical or a non-helical bond, in other words, to s = 1. So, independent
of concentration (contrary to experimental observation), the helical transition occurs when
s = 1. From standard Zimm-Bragg theory we know that this corresponds to the case of
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infinite aggregate length, so for free boundary conditions T∗∗ equals T∞
∗∗ , since finite-size

effects have no impact on T∗∗. We conclude that the boundary condition FF is apparently
not applicable to the system of Brunsveld et al.



Chapter 4

Amplification of Chirality in Helical
Supramolecular Polymers: the
Sergeants-and-soldiers Principle in
Long Chains

ABSTRACT

We theoretically study the sergeants-and-soldiers principle of chirality ampli-
fication in self-assembled, supramolecular helical polymers, and show that a
mapping is possible on a two-component Ising chain, in which one of the com-
ponents has a spin of fixed orientation. The relative abundance of this compo-
nent is regulated by a chemical potential. Our theory quantitatively describes
recently published measurements of the optical activity of linear assemblies of
certain discotic molecules in solution. We find that the strength of the chiral-
ity amplification depends strongly on the strength of the coupling between the
spins, which translates into a free-energy penalty put on a helix reversal along
the backbone of the self-assembled polymer.
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4.1 Introduction

It is well known that the handedness of helical homopolymers is determined by chiral
centers, present either in the backbone or in side groups. Polymers that contain no chiral
centers can be helical too, but by symmetry cannot, in the mean, display a preferred
handedness. [17] If sufficiently long, such polymers consist of left-handed and right-handed
helical regions of variable length, which are in principle in dynamic equilibrium with each
other. The mean length of these regions is determined by the free-energy cost of a helix
reversal. [20] The larger this free-energy cost, the larger the (mean) distance between helix
reversals.

In this context, it is perhaps not entirely surprising that the copolymerization of a small
amount of homochiral monomeric units with achiral material can have a disproportionately
large effect on the net handedness of a helical polymer. [17, 20, 42] This expresses itself
in an optical activity of the polymer that increases highly non-linearly with the relative
amount of homochiral material. Indeed, it is often seen that only a few percent of chiral
material is necessary to attain the maximal Cotton effect, a phenomenon usually referred to
as the ‘sergeants-and-soldiers’ principle. [40] The chiral monomers (the ‘sergeants’) direct
the configuration of the achiral ones (the ‘soldiers’) near to them over a distance that is
set by the free-energy penalty of a helix reversal. [41]

The sergeants-and-soldiers principle of copolymers as well as other types of chirality am-
plification have been the topic of much experimental [17, 40, 42, 120] and theoretical
[20, 41, 121, 122] work. The theories, which make use of quite diverse theoretical tools, re-
produce available experimental data often quantitatively, and confirm the important role of
helix reversals. [20, 41] They also show that in the long-chain limit, chirality amplification
becomes independent of the molecular weight of the polymer. [20, 121]

Recently, it has become evident that chirality amplification is not restricted to conventional
polymers. Meijer and coworkers observed a large sergeants-and-soldiers effect in solutions
of supramolecular polymers, [18, 19] i.e., polymer-like aggregates formed through the linear
self-assembly of monomeric units. In our view, this is remarkable, because we would expect
the monomer-monomer distance in these relatively weakly bound assemblies to be larger
than in conventional polymers, and therefore any chiral interaction between them to be
weak. In clear contrast to this naive expectation, we observe that the strength of the
sergeants-and-soldiers effect in these aggregates is in fact quite high, and comparable to
that in some conventional polymers.

Unfortunately, available theoretical methods aimed at describing the sergeants-and-soldiers
effect in conventional polymers cannot be applied to supramolecular polymers (at least not
in principle). The reason is that in supramolecular polymers the monomeric and poly-
meric states are in thermodynamic equilibrium, leading to an equilibrium distribution of
the chiral and achiral components along the chains, whereas in conventional polymers this
distribution is fixed. In this work we set up a minimal theory that specifically describes chi-
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rality amplification of the sergeants-and-soldiers type in helical supramolecular polymers,
and that is able to deal with this equilibrium distribution of chiral and achiral monomers.

As it turns out, the same physical principles regulate this type of chirality amplification in
both types of polymer, provided they are long enough. The advantage of our theory is that
it is analytical and exact in the infinite-chain limit, unlike current theories for conventional
copolymers that either require input from numerical simulations or involve approximations
to describe the chirality amplification. In addition, our theory also allows for a simple
determination of the free energy associated with a helix reversal from experimental data.

The experiments of Meijer and co-workers [18, 19] point at the existence of two regimes,
one where the sergeants-and-soldiers effect is virtually independent of the concentration
and one where this is not so. According to the standard theory of linear self-assembly,
the mean molecular weight of supramolecular polymers grows with the square root of the
concentration. [24] This implies that in the former regime the sergeants-and-soldiers effect
is independent of the molecular weight, and that the long-chain limit applies. For the
latter regime, it follows that the sergeants-and-soldiers effect does depend on the mean
length of the aggregates and that the self-assembly and chirality amplification are strongly
coupled. For reasons of simplicity, we focus in this Chapter on the long-chain limit, where
the self-assembly is enslaved by the configurational statistics of the aggregates. [24] The
other limit, in which the self-assembly and the configurations of the chains are coupled,
requires a much more elaborate theoretical description that we deal with in Chapter 5.

The remainder of the Chapter is structured as follows. In section 4.2 we outline our
theory for the amplification of chirality in supramolecular polymers in terms of a one-
dimensional, two-component Ising model. We present an implicit expression for the relative
difference between the numbers of left- and right-handed helical bonds as a function of the
fraction of chiral molecules in the chain and of the free energy of a helix reversal. Next,
in section 4.3, we solve this implicit expression numerically and present the results of
our calculations. The fraction of chiral material needed to almost completely suppress the
handedness incompatible with the structure of the chiral monomers turns out to be roughly
equal to the Boltzmann factor associated with a helix reversal. We confront our theory with
experimental data of mixtures of chiral and achiral discotic molecules in water, obtained
by means of circular-dichroism spectroscopy. [18] For comparison, we also fit our theory
to optical-activity measurements on solutions of a conventional polymer. [40, 41] In both
cases, we get excellent agreement, although our theory should not hold for conventional
polymers. Finally, we present our conclusions in section 4.4.
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4.2 Theory

We consider a dilute solution of helical supramolecular polymers, allowing us to disregard
interaggregate interactions. The aggregates are thought to be sufficiently rigid to make
long-range intra-aggregate interactions such as those of the excluded-volume type unim-
portant. They consist of two types of monomer, one chiral and one achiral. Presuming
the direct interactions of monomers along the chain to be short-ranged, we can rely on
a one-dimensional, two-component Ising model [123] to accurately describe the conforma-
tional properties of these aggregates. Note that similar models have been applied in the
past to describe amplification of chirality in conventional polymers. [20, 41, 121] As we
already briefly discussed in section 4.1, the difference with the earlier work is that for a
supramolecular polymer the distribution of the two components over the one-dimensional
lattice is not fixed, but is an equilibrium property. While the configurations of both types
of polymer can (if only in principle) be described with the same model Hamiltonian, the
methods of calculation of various average quantities are different. [82]

The model we use bears a close resemblance to mixed one-dimensional lattice fluids with
Ising interactions. [34, 124, 125] In the work of Leung and co-workers [34] and that of
Chiang and co-workers [125] both components can take the spin values ±1. In the work of
Kawatra and co-workers, [124] one component is spinless, while the other can again take
the spin values ±1. In contrast, the sergeants-and-soldiers experiment is most naturally
described by letting one of the components have a spin of a fixed value equal to either +1
or to −1, and the other take both the values ±1.

Let us for simplicity first deal with helical aggregates consisting only of achiral monomers,
which we can treat with the simple (slightly modified) one-component Ising model. (Later
on we introduce the second, chiral, component that acts like an instantaneous, localized
magnetic field to which the first component couples.) In our description, we assign a
spin of +1 to a helical bond of one handedness and a spin of −1 to one of the opposite
handedness. For reasons to become clear below, we impose an external magnetic field that
couples to the spins and shifts the balance between the “up” and “down” spins. Obviously,
in zero magnetic field, both spins are equally probable, irrespective of any (finite) coupling
between them. [82]

The dimensionless Hamiltonian of the model of an aggregate consisting of N monomers
(linked by N − 1 bonds) reads (see also eq (2.4))

H =
1

2
R

N−2∑
j=1

(−sjsj+1 + 1) +
1

2
P

N−1∑
j=1

(sj + 1)− E(N − 1) (4.1)

Here, R ≥ 0 is the usual coupling constant between neighboring spins, representing the
free-energy penalty on a helix reversal. P is the dimensionless magnetic-field strength,
and corresponds to the excess free energy associated with a bond of one handedness over
the other. The free energy of the reference bond we set equal to −E. The prefactors of
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one-half in front of the first two terms in eq (4.1) are present to avoid the double counting
of the contributions of the “up” spins and that of the interfaces between “up” and “down”
spins.

From the Hamiltonian in eq (4.1), we determine the (canonical) partition function Q(N)
of an aggregate. This can be done exactly with the well-known transfer-matrix method.
[1] In the large-aggregate regime, N À 1, Q(N) can be simplified considerably by applying
the so-called ground-state approximation, which retains only the largest eigenvalue of the
transfer matrix. This gives [24, 32]

Q(N) =
∑

s1=±1

· · ·
∑

sN−1=±1

exp(−H) ≈ A(s, σ)λN exp E(N − 1) (4.2)

with A(s, σ) a prefactor that we need not specify, containing contributions that are non-
extensive in the aggregate size and that depend on the boundary conditions (see Chapter
2). [126] In equation (4.2), λ = 1

2
+ 1

2
s + 1

2

√
(s− 1)2 + 4σs is the largest eigenvalue of the

transfer matrix with s ≡ exp−P the Boltzmann factor of an “up” spin and σ ≡ exp−2R
the square of the Boltzmann factor of a helix (or spin) reversal. The latter functions as a
cooperativity parameter: the smaller σ, the larger (in effect) the distance over which spins
influence each other and the sharper the magnetization curve. The mean distance between
helix reversals (a correlation length) is given by N (1− ∂ ln Q/∂R)−1and can be calculated
from eq (4.2). Here the derivative −∂ ln Q/∂R gives the number of helix reversals, so that
the number of regions into which the helix reversals divide the aggregate is 1− ∂ ln Q/∂R.

Note that by symmetry, the relevant case for a polymer consisting solely of achiral
monomers is that where s = 1, since achiral monomers have no preference for either
helical handedness. For this value and in the limit N À σ−1/2, the distance between helix
reversals is equal to 1 + σ−1/2, as follows by simple insertion. [32] It is easily seen that the
distance between helix inversions becomes large for small σ.

Formally, the ground-state result of equation (4.2) is valid only for N À 1 (and exact in the
limit N →∞), but it may be extrapolated down to N > 2. This is sensible as long as the
mean aggregate size, 〈N〉 '

√
φA−1(s, σ) exp E, obtainable by inserting eq (4.2) into the

standard theory of linear self-assembly, remains large. [24] Here, φ is the volume fraction
of aggregating molecules and E − ln A(s, σ) assumes the role of an energy associated with
two aggregate ends (the so-called end-cap or scission energy). See, e.g., reference [24] for
a discussion of this energy. The prefactor A(1, σ) for s = 1 becomes a constant equal to
2 if both aggregate ends are free to assume a right- or left-handed conformation. Since in
the long-chain limit the mass distribution of the aggregates is peaked around N = 〈N〉,
we need not explicitly deal with the self-assembly. Hence, from now on we imply the
aggregation number N to represent its (concentration and temperature dependent) mean
value 〈N〉.
In order to obtain the net magnetization (or net helicity, which we define as the difference
between the fractions of right- and left-handed helical bonds), we first calculate the fraction
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of “up” spins, θ+ = −N−1∂ ln Q/∂P . We find

θ+ = 1− θ− =
1

2
+

s− 1

2
√

(s− 1)2 + 4sσ
(4.3)

independent of 〈N〉 À 1, with θ− the fraction of “down” spins. The net magnetization per
site η (or the net helicity per bond) is a measurable quantity (at least in principle) and is
defined as the difference between the fractions of “up” and “down” spins,

η ≡ θ+ − θ− = 2θ+ − 1 (4.4)

Obviously, for our achiral polymers, s = 1 so η = 0; η can only become larger than zero if
we add chiral material. Note that this η is not the same parameter as studied in Chapters
2 and 3.

We now consider the case that there are two types of monomer present, chiral and achiral.
This changes the above equations in a number of ways. First, based on the idea that chiral
monomers have a distinct preference for a certain handedness and achiral ones do not, we
arbitrarily define that a chiral monomer is always followed by an “up” spin, whereas an
achiral monomer can be followed by either spin. Obviously, the free energy of a “down”
spin following a chiral monomer can also have a finite value, rather than the infinite value
we impose in our description. We choose to forbid such a “mismatch” configuration in order
to avoid having to introduce another parameter in our model, thus keeping the number
of model parameters to a bare minimum. In section 4.3, we discuss the impact of a finite
free-energy penalty in some detail.

The dimensionless Hamiltonian H ′ for the copolymer becomes

H ′ =
1

4
R

N−2∑
j=1

(
− nj + 1

sj + nj

· nj+1 + 1

sj+1 + nj+1

+ 1

)2

+
1

2
P

N−1∑
j=1

(
nj + 1

sj + nj

+ 1

)
− E(N − 1) (4.5)

where nj = 1 corresponds to a chiral particle, and nj = 0 to an achiral one. It is easily
checked that for an achiral aggregate, for which nj = 0 for all j, eq (4.5) reduces to eq (4.1),
because the equalities s−1

j = sj and s2
j = 1 hold in our case. Here, we have assumed that

the interaction parameters R and P (and therefore also the corresponding free energies) are
identical for bonds following chiral and achiral molecules. Note that our Hamiltonian H ′ is
constructed such that all configurations in which a “down” spin follows a chiral monomer
are completely suppressed, giving a Boltzmann weight that is exactly zero.

Because the composition of an aggregate of N molecules can vary, it makes sense to invoke
a quasi-grand canonical ensemble rather than the canonical ensemble we used for the single-
component aggregate. The associated quasi-grand partition function Ξ(N) can be written
as

Ξ(N) =
∑

s1=±1

· · ·
∑

sN−1=±1

∑
n1=0,1

· · ·
∑

nN=0,1

exp(−H ′ + µ

N∑
j=1

nj + µ0N) (4.6)
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Here, µ is a dimensionless excess chemical potential of the chiral component, and µ0 is the
reference chemical potential of all assembling monomers. Despite the apparent difference
between the canonical and quasi-grand canonical partition functions, eqs (4.2) and (4.6),
Ξ(N) can be written in the same form as the earlier-discussed Q(N). We only have to
replace the Boltzmann factor s by an appropriately modified one, s′, due to the presence of
the chiral component. Using the Hamiltonian eq (4.5), we can formally derive an expression
for this modified Boltzmann factor with the aid of the transfer-matrix method, giving
exactly s′ = s(1 + exp µ), where s retains its previous meaning as the Boltzmann factor of
an “up” spin over a “down” spin.

That we merely need to replace s by s(1 + exp µ) can also be seen from the following
simple probability considerations. One has to realize that the quantity s′ may be seen as
the (unnormalized) probability that a randomly chosen spin along the chain is in an “up”
conformation. For the mixed system, this probability is equal to the sum of the probability
of an “up” conformation following a chiral monomer (which occurs with a probability
dependent on its chemical potential), and that of an “up” conformation following an achiral
monomer.1 Whence, the total unnormalized probability for a random spin to have an “up”
configuration must indeed be s′ = s(1 + exp µ).

We now impose, as discussed earlier, the condition that achiral molecules should have no
preference for spin “up” or spin “down”, by putting s = 1 (or P = 0). In other words,
s′ = 1 + z with z ≡ exp µ a fugacity that determines the fraction of chiral monomers in
the chain. Replacing s by s′ in eqs (4.3) and (4.4) we conclude that the net magnetization
per site must equal

η =
z√

z2 + 4(z + 1)σ
(4.7)

For aggregates composed entirely of achiral monomers, z → 0 so η → 0; “up” and “down”
conformations are then equally likely. For fully chiral aggregates, z → ∞ and η → 1.
In the ground-state approximation, the mean aggregate size 〈N〉 is enslaved by quantities
such as z and η that describe the conformational state, and is only very weakly dependent
on them. In this case the conformational transition and the aggregate growth are virtually
independent, so we need not discuss this issue any further.

The fraction of chiral material in the aggregates, x, can be calculated directly from eq (4.6).
From standard statistical mechanics we know that x = N−1∂ ln Ξ(N)/∂µ. This gives

x =
(η + 1)z

2(1 + z)
(4.8)

which is exact in the limit of infinite aggregates. Substituting eq (4.7) into eq (4.8) we
deduce that x can be expressed as a function only of z and σ. We can eliminate z, and

1This argument does not apply to conventional polymers. Since the order of their monomers is fixed,
the probability of the presence of a chiral monomer is not dictated only by its excess chemical potential.
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obtain an implicit expression for η as a function of x,

x = (η + 1)
ση2 + η2

√
ση−2 + σ2 − σ

1− η2 + 2ση2 + 2η2
√

ση−2 + σ2 − σ
(4.9)

It turns out to be useful to define a quantity x∗ as the fraction chiral material needed to
induce one-half of the maximum attainable helicity, η = 1/2. From eq (4.9) we find that

x∗ =
3

2

σ +
√

3σ + σ2

3 + 2σ + 2
√

3σ + σ2
≈ 1

2

√
3σ (4.10)

for σ ¿ 1. Equation (4.10) provides an convenient way to directly obtain the free energy
of a helix reversal from experiment.

In experiment one measures an optical effect that depends on the total amount of helical
material in a probe volume. This in turn depends, e.g., on the optical path length, the
concentration of dissolved material and the optical properties of the molecules. To account
for this we introduce a constant of proportionality α that links the theoretical and exper-
imental optical effects. Furthermore, the contributions to the optical effect from the two
types of monomer in a helical aggregate may be unequal in magnitude, and we also need
to account for that. We do this by defining the ratio γ between these contributions for
a chiral and an achiral monomer, and assigning this weight to each bond that follows a
chiral monomer, the fraction of which is z(z + 1)−1. The fraction of bonds that follow an
achiral monomer equals (z + 1)−1, and to these we assign the weight 1. The measured net
helicity denoted by η′ is thus in our description given by a linear superposition of the two
weights, and may be expressed as

η′ = αη

[
1 + (γ − 1)

z

z + 1

]
(4.11)

The roles of σ and γ are discussed in the next section, where we also make a comparison
to experimental data.

4.3 Results and Discussion

To illustrate how cooperativity influences the amount of chiral material needed to (al-
most) completely suppress left- or right-handed helical configurations in initially achiral
supramolecular chains, we have plotted eq (4.11) in Figure 4.1 for α = γ = 1. It clearly
shows that the smaller σ is, the less chiral material is needed to achieve the same net
helicity. This can in fact also be deduced directly from eq (4.10) that gives x∗ as a function
of σ. Note that in the limit σ → 1 there is no amplification of chirality, and chiral and
achiral monomers behave as a simple mixture with η = x.
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FIGURE 4.1: The net helicity η′ as a function of the fraction of chiral material x,
for α = γ = 1 and three values of the cooperativity parameter: σ = 1 (solid line),
σ = 10−3 (dot-dash line) and σ = 10−8 (dashed line).

Note further that, in our model, a fully chiral aggregate cannot exhibit helix reversals, so
η → 1 for x → 1 for all values of σ. This, obviously, is an approximation. To allow for
mismatches, i.e., configurations in which a “down” spin follows a chiral monomer, we can
include a finite free-energy penalty U . If we do this, however, we find that σ → σ/(1−u)2,
with u ≡ exp−U the Boltzmann weight of the mismatch energy, at least for conditions
where U exceeds the helix reversal penalty, and σ ¿ 1 (this being the limit most interesting
from an experimental perspective). In other words, the mismatch energy only renormalizes
the free energy of a helix reversal in this case. This means that the value of σ that we
obtain from fits to experiment is the actual value of exp−2R only if u ¿ 1, and an effective
one otherwise. It does not seem possible to disentangle u and σ experimentally, and obtain
the actual σ from the effective one. However, if we estimate that −U is of the order of the
bond energy (which is typically between −10 and −20 kBT for this type of system [24] ), u
is indeed much smaller than unity, and the value of σ we obtain will be close to the actual
helix-reversal penalty.

The effect of the optical parameter γ on the net helicity is shown in Figure 4.2, for the
case where α = 1. While for low fractions of chiral material η′ is insensitive to γ, for high
fractions it displays a maximum if γ < 1. This is because chiral molecules have a lower
contribution to the overall optical effect than do achiral ones if γ < 1. At fixed α, a further
decrease of γ decreases the height of this maximum and moves it to lower x. For γ > 1
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FIGURE 4.2: The net helicity η′ as a function of the fraction of chiral material x
at σ = 10−3, for four values of the ratio γ between the contributions to the helicity
of the chiral and achiral components. The solid line gives γ = 1.2, the dashed line
γ = 1, the dot-dash line γ = 0.8, and the dotted line γ = 0.5. The fraction chiral
material giving a net helicity of half its maximum value x∗ is indicated for γ = 1.

(when chiral molecules have a larger contribution to the optical signal than achiral ones)
the curve continues to rise, even when the bare helicity has saturated at x < 1. This could
lead to difficulties if interpreting experimental results, since one could erroneously draw the
conclusion that the maximum helicity has not yet been reached, when in fact it has. Note
that the approximate equation (4.10) can still be used to fix the cooperativity parameter
σ even if γ 6= 1, since x∗ is insensitive to the precise value of γ if the cooperativity is
sufficiently large.

We now confront the prediction of our theory with experimental data [18] on a certain
type of discotic molecule that we refer to for brevity as ‘C3 discotic’, dissolved in water.
These molecules have a molecular weight of about 3400 gmol−1 and consist of aromatic
cores, surrounded by nine polar side chains. [9] They self-assemble into helical aggregates
in polar solvents under suitable conditions. Brunsveld et al. [18] synthesized versions of
the discotic molecules with chiral and achiral side chains (see Figure 1.1 for the structure
of the chiral version of the discotic), and performed circular-dichroism measurements on
mixtures of these components at the overall concentrations of 10−4 M and 10−5 M in water
at 5 ◦C. They observed a large sergeants-and-soldiers effect, remarkable not only due to the
fairly weak bonds between monomers discussed earlier, but also because the chiral groups
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FIGURE 4.3: The net helicity η′ versus the fraction of chiral material x (line).
Symbols: experimental data of Brunsveld et al. at two concentrations. (Circles:
10−5 M, crosses 10−4 M). Line: fitted curve with the optimal fitting parameters
σ = 6.4 · 10−3, γ = 0.65, α = 1.15.

are located in the flexible side chains of the molecules, far from the core which is the main
interacting part of the molecule.

Brunsveld et al. [18] observed that the chirality amplification in water was concentration
independent, at least for the two concentrations at which they performed the measure-
ments. As explained in section 4.1, this implies that finite-size effects should not play a
role and that our ground-state theory may be used to describe their data. Furthermore,
the differences between the chiral and achiral molecules are so small, being a single methyl
group on each side chain of the discotic molecules, that we expect that our assumption
of equal binding strengths of the chiral and achiral units is justified. It was also observed
that the maximum Cotton effect occurs at a fraction chiral material x < 1, suggesting that
γ must be smaller than unity. This occurrence of a maximum was attributed in reference
[18] to a difference in packing between the chiral and achiral molecules due to the presence
of the methyl groups in the side chains of the chiral molecules.

In our comparison with the experimental data we fit our theory to the intensity of the
Cotton effect at a wavelength of 336-341 nm, divided by the absorption, as a function
of the fraction of chiral component. We set the maximum in the measured value of this
quantity equal to unity, and use the net helicity η′ as defined in eq (4.11) as its theoretical
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equivalent. The fitting procedure requires the fixing of the cooperativity parameter σ, the
parameter α introduced in eq (4.11), and the ratio of the contributions to the helicity of
chiral and achiral monomers γ. One of these we determine independently from the other
two. In the small-x regime, the helicity is virtually independent of γ, and we fit this part
of the curve with a single parameter, namely σ. To this end, we locate the experimental
value for x∗, and fix the value of σ (with γ = α = 1) at σ = 6.4 · 10−3. Using this value, we
are able to describe the low-x part of the curve, but not the maximum that occurs in the
high-x regime. We fit this part with the two remaining parameters γ and α, and find good
agreement between theory and experiment if we set α = 1.15 and γ = 0.65 (see Figure
4.3).

The value of σ we find corresponds to a helix-reversal energy of 2.5 kBT , indicating a high
degree of cooperativity. This free-energy penalty for a helix reversal is in fact of the same
order of magnitude as those found in certain classes of polyisocyanates discussed in the
next paragraph. It is also similar to the interfacial penalty between helical and non-helical
regions in aggregates of the chiral C3 discotic in a different solvent that we found in a
previous study (see Chapter 2). [127] As discussed earlier, we indeed find that a value of
γ < 1 is necessary to describe the maximum found in experiment. This lends support to
the suggestion of Brunsveld et al. that packing effects cause this maximum. [18]

For comparison, we also fit our theory to optical-activity measurements of copolymers of
(R)-2,6-dimethylheptyl isocyanate and n-hexyl isocyanate in chloroform at temperatures
of −20 and +20 ◦C, [40, 41] although, as mentioned in section 4.1, our theory is strictly not
applicable to this type of (conventional polymeric) system. Again we rescale the experi-
mental data (given as the specific rotation versus the mole fraction of chiral monomers) to
give unity at the maximum in the curve, and again we determine σ from x∗. We now find
σ = 3.1 ·10−4 for T = −20 ◦C and σ = 1.2 ·10−3 for T = 20 ◦C. Because the maxima in the
curves for the isocyanate copolymers occur at relatively high x, quantitative agreement is
found already in this regime for a one-parameter fit involving only γ, where α is kept at a
value of unity. The curve fit shown in Figure 4.4 uses the values γ = 0.94 for T = −20 ◦C
and γ = 0.96 for T = 20 ◦C.

The values of σ we find are in close agreement with values Selinger and Selinger2 ob-
tained from a fit of both their approximate theory and computer simulation to the same
optical-activity measurements on the polyisocyanate system. It seems that σ = exp−2R
is temperature dependent, which is what we expect if the dimensionless helix reversal free
energy R were enthalpy dominated. Is that the case, then from thermodynamics it follows
that the ratio of the values of R taken at temperatures T1 and T2 obeys R2/R1 ' T1/T2,
which relation is indeed obeyed for the values of R found here.

The reason why our theory is able to describe the polyisocyanate experiments is difficult to
understand and deserves further study. Naively, one could speculate that the distribution

2Selinger et al. [41] used a helix reversal energy of 4.2 kBT for their best fit to experiment. We find
4.0 kBT for T = 253 K and 3.4 kBT for T = 293 K, which values correspond well to that used by Selinger.
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FIGURE 4.4: Fit of the theoretical net helicity η′ versus x (line) to experimental data
of Green et al. at two temperatures. Dashed line (theory) and triangles (experiment):
T = 20 ◦C, with fitting parameters σ = 1.2 · 10−3 and γ = 0.96. Solid line (theory)
and circles (experiment): T = −20 ◦C, with fitting parameters σ = 3.1 · 10−4 and
γ = 0.94.

of chiral monomers in the aggregates is similar to that in conventional random copolymers
when their fraction is small (i.e., very much smaller than one per bare correlation length).
In this case the locations of the chiral monomers within an aggregate are uncorrelated,
and truly random. However, this can no longer be the case when the fraction of chiral
monomers is not small, and we should therefore expect to see a marked difference between
the results for fixed and equilibrium randomness outside of the small-x limit. It may well
be that the agreement we observe is merely coincidental. However, we find that our theory
is also able to quantitatively fit experimental measurements of the optical activity of a
whole range of other copolymers. [42, 120, 128] In addition to giving experimental results,
the authors of reference [128] used the approximate theory of Selinger and Selinger [41] to
fit two sets of optical-activity measurements. Our values of R show a reasonable agreement
with those obtainable from these fits.

It appears that for the problem studied here, the distinction between an equilibrium type
of disorder and a fixed type of disorder is not as large as often thought. From a prag-
matic point of view, one may perhaps use our theory even for conventional copolymers,



64 Chapter 4

since it gives good agreement with measurements on such polymers, and it is perhaps less
cumbersome in its application than existing theories. [20]

4.4 Conclusions

The two-component Ising model outlined here provides a quantitative description for the
sergeants-and-soldiers principle in self-assembled (“living”) polymers, provided they are
long enough so that the self-assembly is enslaved by the conformational statistics of the
chains. We find that the free-energy penalty associated with a helix reversal is central to the
description of the chirality amplification. In this our findings resemble earlier work on con-
ventional (“dead”) copolymers. [20, 41] Our analytical theory is exact in the infinite-chain
limit, and quantitatively describes the Cotton effect as measured by circular dichroism
spectroscopy in dilute aqueous solutions of the molecules we refer to as the C3 discotic,
for two concentrations that differ by a factor of ten. We are able to reproduce the exper-
imentally observed maximum in the Cotton effect versus chiral content by following up a
suggestion of Brunsveld et al., [18] and assuming a different contribution to the measured
helicity of the chiral and achiral monomers. For reasons unclear at this point, our the-
ory also quantitatively describes the sergeants-and-soldiers effect in several conventional
copolymers.



Chapter 5

The Sergeants-and-Soldiers Principle
in Chains of any Length

ABSTRACT

The optical activity of helical homopolymers devoid of chiral centers increases
drastically when a small amount of homochiral monomers is incorporated into
them. We study this so-called sergeants-and-soldiers effect of chirality am-
plification in solutions of helical supramolecular polymers with a theoretical
model that bears a strong resemblance to a one-dimensional, two-component
Ising model. We showed in the last Chapter that, in the limit of very long
self-assembled helical polymers, the strength of the sergeants-and-soldiers ef-
fect depends strongly on the free energy of a helix reversal, and less so on the
concentration of aggregating material. In this Chapter we study the chirality
amplification outside the long-chain limit, and find the reverse, that is, a strong
concentration dependence and a weak dependence on the helix-reversal energy.
Our theory quantitatively describes recently published circular-dichroism mea-
surements on mixed aggregates of some discotic molecule in the solvents water
and n-butanol, at two different overall concentrations.
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5.1 Introduction

Many biological and synthetic molecules polymerize into helical chains. [1] In mixtures of
homochiral and achiral versions of such materials, the polymers formed typically display a
larger Cotton effect than one may expect from the fraction of chiral material they contain.
[17, 20] This so-called sergeants-and-soldiers type of chirality amplification [40] is due to
a cooperative shift in the balance between the numbers of right-handed and left-handed
helical bonds, caused by the influence the chiral monomers have on the conformation of
nearby achiral monomers. This effect has been observed both in conventional polymers,
[17, 40, 42, 120, 129] which have a fixed length and composition, and in supramolecular
polymers, [18, 19, 111] for which the length and composition are equilibrium properties.
That a strong sergeants-and-soldiers effect is indeed observed in the latter system is quite
remarkable because supramolecular polymers are in a way fragile, involving relatively weak,
reversible bonds.

The sergeants-and-soldiers principle in conventional polymers has been studied theoreti-
cally by several authors. [41, 121, 122] (For a recent review paper on this topic, see [20].)
From these treatments it becomes clear that the strength of the chirality amplification
depends strongly on the free-energy penalty of a helix reversal and on the degree of poly-
merization. In the long-chain limit the dependence on the chain length disappears, [20, 121]
and the strength of the chirality amplification depends only on the free energy of the helix
reversal. The larger this free-energy penalty, the larger the number of achiral monomers
that are affected by the insertion of a single homochiral monomer, and the stronger the
chirality amplification.

The sergeants-and-soldiers effect has only recently been discovered in supramolecular poly-
mers, [18, 19, 111] and attempts to describe it theoretically have been few in number. [111]
The usefulness of these treatments is limited, however, as they are either valid only in the
long-chain regime (see the previous Chapter), or invoke a mean-field approximation that
is difficult to justify due to the essentially one-dimensional character of the problem. [111]
In this Chapter we outline an approach that improves upon the earlier work by describ-
ing the sergeants-and-soldiers principle in supramolecular polymers beyond the long-chain
limit and outside of the mean-field approximation as regards the configurational statistics
of the chains. We find, in accordance with recent experimental measurements, [18, 19] and
contrary to what is known for conventional polymers, that there are (at least) two regimes:
one where the chirality amplification depends on the overall monomer concentration, and
one where this is not so. We argue that, because the mean degree of polymerization of
supramolecular polymers is roughly proportional to the square root of the solute concen-
tration, [24, 58, 66, 67] the concentration dependence of the chirality amplification in this
type of polymer is actually a chain-length dependence similar to that found in conventional
polymers. The problem in hand should therefore be accurately described by combining the
usual theory of equilibrium polymerization with a non-mean-field description of the con-
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formational state of the polymers. Comparison with experimental results shows that our
treatment is indeed a sensible one. For the long-chain limit, we recover the result obtained
in Chapter 4, and we predict that outside of this limit the sergeants-and-soldiers effect
becomes more strongly dependent on the concentration and less so on the free-energy cost
of a helix reversal.

The remainder of this Chapter is organized as follows. In section 5.2 we outline a model
that describes chirality amplification in a helical chain, based on the two-component Ising
chain, and calculate the partition function of such a chain. In section 5.3, we apply this
partition function in the classical theory of equilibrium polymerization, and derive a formal
expression for the average difference between the number of right-handed and left-handed
helical bonds per unit mass (the so-called mean net helicity) as a function of the overall
concentration of solute molecules, the free energy of aggregation, the fraction of homochiral
monomers, and the free-energy cost of a helix reversal. Next, in section 5.4, we show how
the mean net helicity responds to changes in these parameters, and discuss the various
regimes and trends that appear. Here, we focus on the dependence of the net helicity on
the solute concentration and on the free-energy penalty of a helix reversal. In section 5.5, we
compare our results to those obtained from circular-dichroism measurements on mixtures
of chiral and achiral discotic molecules in the solvents n-butanol and water. [18, 19] The
agreement between our theory and these experiments is quite good. Finally, in section 5.6,
we present our conclusions.

5.2 The Single-Aggregate Partition Function

We again consider a dilute solution of polydisperse aggregates that we presume rodlike,
so that we may ignore both interaggregate and long-ranged intra-aggregate interactions.
The aggregates consist of two types of monomer, homochiral and achiral. If we assume
that the direct interactions along the main axis of an aggregate are short-ranged, we can
describe the conformational state of this aggregate with a one-dimensional, two-component
Ising model. [34, 123, 124, 125] We treat the bonds between monomers as spins that can
have a value of ±1, corresponding to a right- or left-handed screw sense. Given the strong
preference of chiral molecules for a certain helical handedness, we force any bond following
a chiral molecule to have a fixed spin value of +1.

Obviously, the free-energy penalty of a “down” spin (with a spin value of −1) following
a chiral monomer can also be given a finite value, rather than being fixed at infinity as
we do here. However, this would introduce an additional parameter in our model that
somehow needs to be fixed in any comparison to experiment. This is problematic for a
number of reasons (see Chapter 4), the most important one being that it can be shown
that the introduction of this additional parameter merely renormalizes other parameters
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we already use in our description, at least in the double limit where the cooperativity is
high and moreover the additional energetic parameter exceeds the free energy of a helix
reversal, which is the most interesting regime. As we argued in Chapter 4, it suffices to fix
the bond type following a chiral molecule to describe the essential physics of the problem.
In effect, we ignore helix reversals in all-chiral aggregates.

Let N denote the number of monomers that comprise the aggregate. In accordance with
the above arguments, our model Hamiltonian reads (cf. eq (4.5))

H =
1

4
R

N−2∑
i=1

(
− ni + 1

si + ni

· ni+1 + 1

si+1 + ni+1

+ 1

)2

+
1

2
P

N−1∑
i=1

(
ni + 1

si + ni

+ 1

)
− E(N − 1) (5.1)

provided N ≥ 3. For N = 1, we have H ≡ 0, whereas H = 1
2
P

(
n1+1
s1+n1

+ 1
)
−E for N = 2.

In eq (5.1), si = ±1 gives the state of the ith spin along the chain, and ni describes the
chirality of the ith monomer, with ni = 0 for an achiral monomer, and ni = 1 for a chiral
one. The parameter R ≥ 0 is the usual coupling constant between neighboring spins, which
corresponds to the free-energy penalty on a helix reversal between achiral monomers. The
quantity P is, in Ising terms, the dimensionless magnetic-field strength, and represents
the excess free energy associated with a bond of one handedness over the other. The bare
energy of a bond we set equal to −E; it determines the a priori propensity of the monomers
to form aggregates. (These free energies, and indeed all energies in this Chapter, are again
given in units kBT .) Note that the Hamiltonian eq (5.1) is constructed in such a way that
any configuration that contains a spin i with a value of si = −1 following a chiral molecule
(ni = 1) is completely suppressed.

From the Hamiltonian eq (5.1) we can formally write down the quasi-grand partition
function of an aggregate, in which the composition of the aggregate can change but its
total length is fixed at N monomers, as

Ξ(N) =

(
N∏

k=1

∑
nk=0,1

)
exp

[
µ0

(
N −

N∑
i=1

ni

)
+ µ1

N∑
i=1

ni

]
(5.2)

×



N−1∏
j=1

∑
sj=±1


 exp−H

Here, the two bracketed terms in front of the exponentials denote repeated sums, and µ0

and µ1 in the exponential are the chemical potentials of the achiral and chiral molecules.
The transfer matrix method presents an elegant way to simplify the partition function eq
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(5.2), [1] giving

Ξ(N) =

(
N∏

k=1

∑
nk=0,1

)
exp

[
µ0

(
N −

N∑
i=1

ni

)
+ µ1

N∑
i=1

ni

]
(5.3)

×
(

u·
N−1∏
i=2

Mni
· u+

)
exp E(N − 1)

The matrix Mni
contains the (unnormalized) probabilities that a particular type of bond

follows another bond along the chain. For our two-component system, we define two
matrices, M0 and M1 , one to describe the statistical weights for a bond following an
achiral monomer and one to describe those for a bond following a chiral one. Note that
the first bond of the aggregate is not included in the matrix multiplication, as it does not
follow a preceding bond. This bond is instead described by the end vector u+, while u
describes the other aggregate end; u+and u depend on the boundary conditions imposed
(see Chapter 2). [126]

The statistical weights for the matrices M0 and M1 can be obtained from eq (5.1) by
standard methodology. [82] They read

M0 =

(
1

√
σ√

σs s

)
and M1 =

(
0 0√
σs s

)
(5.4)

Here, s ≡ exp−P is the Boltzmann factor of a spin with value +1 over one with a value
−1, and σ ≡ exp−2R is the square of the Boltzmann factor of a spin (or helix) reversal;
these factors are taken to be independent of the type of monomer present. (Note that the
quantities s and σ have similar meanings as in the well-known theory of Zimm and Bragg
for the helix-coil transition in polymers. [36])

Further simplification is possible, if we define an excess chemical potential µ ≡ µ1 − µ0

that couples to the chiral content, and a reference chemical potential µ0 that couples to
the total mass incorporated into assemblies. Eq (5.3) then simplifies to

Ξ(N) = exp [µ0N + E(N − 1)] ũ ·MN−2 · ũ+, (5.5)

which can be obtained by absorbing the excess-chemical-potential term into Mni
, factoriz-

ing the summations and evaluating each term separately. M is the sum of the contributions
of chiral and achiral monomers, and reads

M = M0 + zM1 =

(
1

√
σ√

σs(1 + z) s(1 + z)

)
≡

(
1

√
σ√

σs′ s′

)
(5.6)

where z ≡ exp µ is a fugacity linked to the total amount of chiral material in the solution
and s′ ≡ (1 + z) s can be loosely labeled as the overall preference for one handedness over
the other in a mixed aggregate. For the end vectors ũ and ũ+ we write

ũ =
(

1 + z, 1 + z
)

and ũ+ =

(
1
s′

)
(5.7)
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assuming free ends; we do not enforce a restriction to a particular conformation for the
aggregate ends, because there is no reason to assume that either aggregate end will prefer
a right- or left-handed helical conformation. Note also that, upon going from u+ to ũ+

(and u to ũ), we have absorbed the term from eq (5.3) describing the chemical potential
of the first and last monomers of the chain into the end vectors.

The partition function can now be calculated by matrix multiplication, and takes the form

Ξ(N) =
zN
0 (1 + z) exp−E

(λ1 − λ2)
√

σ
[(λ1 − 1 +

√
σ)(1− λ2 + s′

√
σ)λN−2

1

+(λ2 − 1 +
√

σ)(λ1 − 1− s′
√

σ)λN−2
2 ] (5.8)

Here, z0 ≡ exp[µ0 + E] is again a fugacity, and λ1,2 = 1
2

+ 1
2
s′ ± 1

2

√
(s′ − 1)2 + 4σs′ are

the eigenvalues of the transfer matrix (with λ1 defined by the + sign, and λ2 by the −
sign). Strictly speaking, this partition function is only valid for N > 2, however, inserting
N = 2 gives the correct result, Ξ(2) = z2

0 exp−E(1 + z)(1 + s′). For N = 1, we put
Ξ(1) ≡ z0(1 + z) exp−E. In Chapter 4, we discarded the contribution proportional to
λN−2

2 , and in doing so neglected finite-size effects; this reduces the partition function to a
single term, which greatly facilitates further calculations. Here we keep both terms, since
we are interested in the influence of finite-size effects on the chirality amplification. We
may simplify eq (5.8) by noting that, by symmetry, a right-handed and left-handed bond
are equally likely for the achiral species, and set s = 1, and thus s′ = 1 + z. However, for
reasons to become clear shortly, we choose not to do this yet.

Note that the model we use is not symmetrical, i.e., that a bond following a chiral monomer
is treated differently from one preceding the same monomer. We feel it is justified to use
this model, however, since a helix is inherently directional and is, therefore, an asymmet-
rical structure. Nonetheless, it is easy to adapt our model to enforce symmetry between
bonds preceding and following a chiral monomer: instead of forbidding only “down” spins
following a chiral monomer, we then also forbid the occurrence of a helix reversal at this
monomer. In that case both the bonds before and after the chiral monomer must be in
the same configurational state, i.e., “up”. This changes the transfer matrix M to

M =

(
1

√
σ√

σs s

)
+ z

(
0 0
0 s

)
=

(
1

√
σ√

σs s(1 + z)

)
(5.9)

This adjustment of the theory turns out not to give any significant change in the results
for the chirality amplification, at least for small σ. Since the small-σ regime is of the most
interest to us, we consider it justified to use the theory as outlined above.
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5.3 The Mean Net Helicity of a Solution of Aggre-

gates

Now that we have established the partition function of a single aggregate, let us inves-
tigate how this affects the mean net helicity of a solution of polydisperse, self-assembled
aggregates. In experiment, this net helicity expresses itself as an optical activity.

From the theory of equilibrium polymerization [58, 66, 67] we can find that, within a
saddle-point approximation for the size distribution of the aggregates, the grand potential
per unit volume of a solution of self-assembled polymers reads

∆Ω =
∞∑

N=1

ρ(N)[ln ρ(N)− 1− ln Ξ(N)]. (5.10)

Here, ρ(N) is the dimensionless number density of aggregates of size N . The equilibrium
size distribution can be calculated by minimizing ∆Ω with respect to ρ(N). This gives

ρ(N) = Ξ(N) (5.11)

Using the equilibrium size distribution, we can calculate the mean net helicity, defined as
the difference between the number of right- and left-handed helical bonds averaged over
all monomers present in the aggregated state,

〈η〉 ≡ −1 +
2

φ− ρ(1)

∞∑
N=2

ρ(N)
N

(N − 1)

∂ ln Ξ(N)

∂ ln s′
(5.12)

with φ the total volume fraction of aggregating molecules

φ ≡
∞∑

N=1

Nρ(N), (5.13)

which we keep constant. Note that monomers are not taken into account in the definition
(5.12), because they contain no bonds. The overall fraction of chiral monomers in the
solution can be calculated from

x ≡ 1

φ

∞∑
N=1

ρ(N)
∂ ln Ξ(N)

∂ ln z
(5.14)

and the mean aggregate size is again defined as

〈N〉 ≡ φ
∞∑

N=1

ρ(N)
(5.15)
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We now plausibly assume, as discussed earlier, that achiral monomers have no preference
for a left- or right-handed conformation and set s′ = 1 + z, i.e., s = 1. This reduces the
eigenvalues of the transfer matrix M to

λ1,2 = 1 +
1

2
z ± 1

2

√
z2 + 4σ(1 + z). (5.16)

After this substitution is made, we can express the mean net helicity in terms of z, σ, φ,
E and µ0 using eq (5.8) and eqs (5.10-5.12).

To determine the mean net helicity as a function of the fraction of chiral material, we
fix z and numerically determine the value of the fugacity z0 by inserting eqs (5.8) and
(5.10) into eq (5.12), performing the sum and solving the resulting equation for a fixed
value of the dimensionless quantity φ exp E. Here, φ is the overall volume fraction of
aggregating molecules, and −E and is the earlier-introduced bare bond energy. This gives
six possible solutions for z0. To determine which is the physically relevant one, we take
into account the following. First, since µ0 and E are real numbers, z0 must be non-negative
and real. Second, for the sum in eq (5.12) to converge, z0λ1 must be smaller than 1 for all
compositions of the polymers. This means that z0 < 1, since λ1 ≥ 1. In all the cases we
investigated, this reduces the number of physically relevant solutions to one. With σ, z0

and z known, we can now calculate the mean net helicity and the corresponding fraction of
chiral material by simple insertion. The entire “magnetization” or helicity diagram, giving
〈η〉 as a function of the fraction of chiral material x, can be obtained by using different
values of z and repeating the calculation.

5.4 Results

In the previous Chapter, we showed that, provided the supramolecular polymers are very
long, the strength of the sergeants-and-soldiers effect is strongly dependent on the value
of the cooperativity parameter σ (and hence on the free energy of a helix reversal), and
independent of the concentration of assembling molecules. As we show next, for chains
that are not very long, the reverse is true, and the net helicity does become a function of
the overall volume fraction of assembling monomers φ.

We identify three regimes, one where the chains are long, one where the chains are in some
sense short, and a monomeric regime where the concept of chirality amplification becomes
meaningless. It turns out that a natural way to quantify and distinguish these regimes
is by considering not the mean aggregation number 〈N〉, but one scaled to a correlation
length, so that one counts the number of correlation lengths in an aggregate, rather than
the number of monomers.

Let ξ0 denote the “bare” correlation length, i.e., the mean distance between helix re-
versals in an infinite aggregate that does not contain any chiral material. (Obviously,
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the actual correlation length depends on the aggregation number and the chiral con-
tent of the chain.) This bare correlation length is given by ξ0 ≡ (−∂ ln λ1/∂R)−1, with
λ1 = 1 + 1

2
z + 1

2

√
z2 + 4σ(1 + z) the largest eigenvalue of the transfer matrix, cf. eqs

(5.8) and (5.16). We find ξ0 = 1 + σ−1/2, which reduces to ξ0 ≈ σ−1/2 if σ ¿ 1, i.e., if
the cooperativity is high. The relevant control parameter determining the relative size
of the assemblies is now ξ−2

0 φ exp E, since the “bare” degree of polymerization obeys
〈N〉0 = 1

2
+ 1

2

√
1 + 4φ exp E ∼ √

φ exp E, at least for 〈N〉 À 1. [24] Here, the bare
degree of polymerization is defined as the mean number of monomers of an all-chiral ag-
gregate. As we shall see below, 〈N〉 ≈ 〈N〉0, i.e., the actual degree of polymerization is
quite close to the bare one, meaning that the presence of a second type of monomer does
not significantly affect the mean aggregate size.

In the top graph of Figure 5.1 we plot curves of constant mean net helicity 〈η〉 = 0.1,
0.3, 0.5, 0.7 and 0.9 as a function of the control parameter ξ−2

0 φ exp E and the fraction
of chiral material x, for a fixed degree of cooperativity σ = 10−3. Three regimes can be
distinguished, indicated with Roman numerals in the Figure. These are (I) the “long-chain
regime”, where φ exp E ≥ ξ2

0 , (II) the “short-chain regime”, where 1 ≤ φ exp E ≤ ξ2
0 ,

and (III) the “monomer regime”, for which φ exp E ≤ 1. In the long-chain regime the
sergeants-and-soldiers effect is (virtually) independent of the concentration: the curves
become vertical in this regime. In the short-chain regime there is a strong decrease in
the chirality amplification as the concentration decreases, because the relative amount of
chiral material needed to attain a given net helicity increases with decreasing concentration.
The monomeric regime, where the curves become vertical again (indicating concentration
independence) is uninteresting, for in this regime we cannot speak of a polymerized state.1

It follows from Figure 5.1 that in experiment the values of certain parameters cannot be
obtained from the chirality amplification in all three regimes. In the long-chain regime for
instance, one cannot determine 〈N〉 from the measured net helicity, whereas the shorter
the chains become (regimes II and III), the more difficult it becomes to fix σ. It is therefore
necessary to obtain results for the relationship between 〈η〉 and x in at least two regimes
to determine both parameters, or to fix 〈N〉 in an independent experiment (e.g., in a
light-scattering experiment).

The impact of the degree of cooperativity (that is a function of the free-energy cost of a
helix reversal) on the strength of the chirality amplification is shown in the bottom part of
Figure 5.1. Here we have indicated the fraction of chiral material needed to induce a net
helicity of half its maximum value, defined as x∗, for values of σ ranging from 10−8 to 1 .
(For reasons of clarity, we now plot φ exp E on the vertical axis, rather than ξ−2

0 φ exp E.)
Our results confirm that the chirality amplification does indeed increase with increasing
cooperativity, i.e., that x∗ decreases with decreasing values of σ. It is also obvious, however,
that the effects of mass action and cooperativity are not independent: in the monomeric
regime (III) the value of σ does not influence the strength of the sergeants-and-soldiers

1As a result of our definition of 〈η〉, eq (5.12), which does not include free monomers, we get non-zero
values for 〈η〉 even if almost all the material is present in monomeric form.
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FIGURE 5.1: top: The mass action parameter ξ−2
0 φ expE versus the fraction of

chiral material x, for σ = 10−3. The lines indicate those values of x and ξ−2
0 φ expE

that produce values of a net mean helicity of 〈η〉 = 0.1, 0.3, 0.5, 0.7 and 0.9, as
indicated. The Roman numbers I, II and III indicate the long-chain regime, the
short-chain regime and the monomer regime, separated by dashed lines. bottom:
φ expE as a function of the fraction of chiral material corresponding to a net helicity
of one-half its maximum value, x∗. The lines indicate the values of x∗ and φ expE
for different values of σ, as indicated. The Roman numbers and dashed lines again
indicate the regimes, as in the top Figure.

effect (since the chains will be on average too short to allow for a helix reversal) and all
curves coincide, whereas in the long-chain regime (I) the effect of σ is strongest. We further
note that for sufficiently low values of σ, all curves lie quite close together when plotted
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on a linear scale. This implies that an increase in the cooperativity in this regime may not
lead to a noticeable change in the amount of chiral material needed to obtain a fixed net
helicity, except when placed on a logarithmic scale.

It may seem surprising that, even in the absence of any cooperativity or chirality amplifi-
cation with σ = 1, a fraction of chiral monomers of x that equals one-half does not always
lead to a mean net helicity 〈η〉 of one-half. The bottom graph of Figure 5.1 shows that
in fact more chiral material is necessary to get this fixed net helicity when the overall
concentration (and thus the mean size) decreases. This is a consequence of our assumption
that a bond is only influenced by a chiral monomer if it follows this monomer. The shorter
the aggregates, the larger the probability that a chiral monomer turns out to be the last
molecule of the chain, and as such does not change the conformation of any bond.

In the long-chain limit φ exp E → ∞, x∗ approaches a universal value x∞∗ that depends
only on σ (see Chapter 4):

x∞∗ =
3σ + 3

√
3σ + σ2

6 + 4σ + 4
√

3σ + σ2
(5.17)

It makes sense, then, to rescale x∗ → x∗/x∞∗ . This produces a universal curve for condi-
tions in the long-chain regime, as shown in the top part of Figure 5.2. The Figure again
demonstrates the influence of finite-size effects, which is to reduce the degree of chirality
amplification.

In a similar vein we can produce a universal curve for the short-chain regime by noting
that, in this regime, the size of the aggregates lies between unity and, say, a bare correlation
length. In that case a single chiral monomer is sufficient to change the conformation of
an entire aggregate of size 〈N〉 ≈ 〈N〉0, implying that only very few chiral monomers
are needed to induce a large net helicity if 〈N〉 À 1. As a consequence, the probability
of finding two chiral monomers in a single aggregate approaches zero if x is not very
much larger than x∗. The number of aggregates (per unit volume) whose conformation is
changed by the presence of a chiral agent must be approximately equal to the number of
chiral monomers xφ. The net helicity per unit volume is then given by the number of such
aggregates divided by the total number of aggregates, φ 〈N〉−1

0 , and equals x 〈N〉0. We
therefore rescale x∗ → x∗/x0

∗, with x0
∗ = 〈N〉−1

0 .

As can be seen in the bottom graph of Figure 5.2, the rescaling produces a set of curves that
nearly overlap for all concentrations, not just in the short-chain regime. In the long-chain
regime universal scaling can be observed, since x∗/x0

∗ scales as x∞∗ 〈N〉0 while ξ−2
0 φ exp E

scales as ξ−2
0 〈N〉20 and both x∞∗ and ξ0 are functions of σ only. On the other hand, in

the monomer regime, the overlap of the curves occurs, since 〈N〉0 approaches the value
unity, and x∗/x0

∗ = x∗ 〈N〉0 → x∗ for all σ. Small deviations from the universal curve arise
because we use 〈N〉0 rather than 〈N〉 to rescale the curves.

In contrast to the “bare” aggregate size 〈N〉0, the actual mean size 〈N〉 depends not only
on the overall concentration of aggregating molecules and the strength of the physical
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FIGURE 5.2: top: ξ−2
0 φ expE versus x∗/x∞∗ , for different values of the cooperativity

parameter σ. From left to right: σ = 1, σ = 0.1, σ = 10−2 and σ = 10−4. The Roman
numbers and dashed lines indicate the regimes, as in Figure 5.1. bottom: ξ−2

0 φ expE
as a function of x∗/x0∗, for different values of the cooperativity parameter σ. Drawn
line: σ = 10−4, dot-dash line: σ = 10−2, dashed line: σ = 0.1, dotted line: σ = 1.
Lines indicating the regimes are omitted for clarity.

bonds, but also on the composition of the aggregates, albeit only weakly so. The reason
for this dependence is that the chiral content influences the number of helix reversals in an
aggregate, and the aggregate may respond to the presence of helix reversals by changing
its size. The influence of the composition on the mean size of the aggregates is shown in
Figure 5.3 for the limits of small (the top Figure) and large (the bottom one) degrees of
polymerization. We have plotted here 〈N〉 / 〈N〉0 against x for different values of σ (being
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10−3, 0.1 and 1), and we find that the composition influences the mean aggregate size by
no more than a factor two in either limit.
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5.5 Comparison to Experiment

We now compare the results of our theory with circular-dichroism measurements by
Brunsveld and co-workers on mixtures of chiral and achiral discotic molecules dissolved
in n-butanol and water at overall concentrations of 10−4 and 10−5 M. [18, 19] In both
solvents a strong chirality amplification is found, especially so in n-butanol, where less
than one per cent of chiral material is needed to induce a net helicity of half its maximum
value measured. Again, this level of cooperativity is a remarkable find in self-assembled
polymers, which are after all bound with fairly weak bonds. Interestingly, the net helic-
ity in n-butanol is concentration dependent, whereas for the solution in water the curves
for the two concentrations overlap. It appears that in the former solvent, the chirality
amplification conforms to regime II, whilst in the latter it conforms to regime I.

It is important to stress at this point that if one measures the optical activity of a solution,
one does not specifically measure the net helicity, but rather the chiral content of the
sample, at least in principle. However, in the case of the experiments of refs [18, 19], it
is not necessary to include a contribution from the free monomers. The reason is that
in the discotic molecules studied in [18, 19], the chromophore and the chiral group are
separated to such an extent that no Cotton effect is measured for a solution containing the
homochiral monomers in a molecularly dispersed state. Therefore, circular dichroism only
measures the supramolecular chirality (or the helicity) in this particular system.

However, as also discussed in Chapter 4, this does not mean that the measured Cotton
effect is identical to the net helicity per bond as defined in eq (5.12). In fact, the strength
of the Cotton effect measured in experiment is determined by the total amount of optically
active material in a probe volume as well as by the optical properties of the two types
(homochiral and achiral) of molecules. The former depends, e.g., on the concentration of
dissolved material and on the optical path length. To account for this, we use the constant
of proportionality α (as we did in Chapter 4) that links the theoretical net helicity per
bond and the measured optical effect. For both sets of experiments, we have normalized
the data of Brunsveld et al. [18, 19] to give a value of unity at the maximum in the curves,
implying that we presume that full saturation of the Cotton effect takes place.

To properly deal with the optical properties of the molecules, one needs to realize that the
measured effect may depend on the type of monomer and the type of bond it is involved in.
Thus we again make use of the relative strength γ that distinguishes between contributions
for a bond following a chiral monomer and one following an achiral monomer in an assembly,
and assign this weighing factor to every bond that follows a chiral monomer, the fraction
of which is z(z + 1)−1. We assign the weight 1 to bonds that follow an achiral monomer,
the fraction of which equals (z +1)−1. The mean net helicity obtained from experiment we
denote by 〈η〉′, and it is plausibly given by a linear superposition of the two contributions
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mentioned. Hence,

〈η〉′ = α 〈η〉
[
1 + (γ − 1)

z

z + 1

]
(5.18)

where γ and α are now treated as additional fitting parameters. It follows from eq (5.18)
that if γ is smaller than unity (achiral monomers have a larger contribution to the net
helicity than chiral ones), 〈η〉′ becomes a non-monotonic function of x. This is not so for
γ ≥ 1 in which case 〈η〉′ remains monotonic in x.

We first discuss the experiment that displays a concentration dependence, in which the
solvent is n-butanol, and after that compare our theory to experimental results from the
aqueous solutions. Since the chirality amplification is concentration dependent in the
solvent n-butanol, we must reside within the short-chain regime, where 1 < 〈N〉 < ξ0; it
follows that σ ≈ ξ−2

0 ¿ 1. We have shown in Figure 5.1 that for these values of σ, the net
helicity is insensitive to the value of σ. Therefore, the value of σ becomes arbitrary and we
set σ = 10−8. We now perform a fit at a single value of x, namely x∗, to find the proper
value of φ exp E. For the concentration of 10−4 M this turns out to be at φ exp E = 6 · 104,
i.e., 〈N〉 ≈ 〈N〉0 ≈ 250.

We now plausibly assume that the bond energy −E does not change with concentration.
Then, if our assumption that 〈N〉 ¿ ξ0 is valid, we should obtain good agreement with
the measurements at 10−5 M if we use φ exp E = 6 · 103 (a factor ten lower). Indeed,
this turns out to be the case, indicating that our simple theory takes the concentration
dependence into account in a proper way (see Figure 5.4). We can determine the reference
free energy from the values of φ exp E, since φ is known.2 This gives −E = −19 kBT ,
which is close to the values of −15 kBT and −16 kBT , obtained from measurements at
similar concentrations of homochiral discotic molecules in the solvent n-butanol. [19, 24]

If we choose the values of φ exp E mentioned above, we get good agreement over the entire
range of fractions of chiral material, with the exception of the high-x regime, where a
maximum is observed experimentally. As implied earlier, both here and in the previous
Chapter, the presence of a maximum indicates that bonds following achiral molecules have
a larger contribution to the helicity than do those following chiral ones and thus that the
ratio between the contributions to the net helicity of chiral and achiral monomers γ must
be smaller than unity. We perform a curve fit on the maximum in the curve and obtain
good agreement for γ = 0.9 and α = 1 for both concentrations (see Figure 5.4).

We now compare our theory to circular-dichroism measurements on mixtures of the same
chiral and achiral discotic molecules in water, for which the chirality amplification is con-
centration independent for the concentrations studied. [18] This indicates that 〈N〉 À ξ0,
and thus that the chirality amplification is an invariant of φ exp E (see Figure 5.1). It turns

2To calculate the volume fraction from the molar concentration, a density for the discotic colecule
of 1.3 g mL−1 was used. We obtained this number from X-ray measurements in the solid state. The
molecular weight of the discotic lies around 3400 g mol−1. We have neglected the difference in molar mass
between the chiral and achiral molecules.



80 Chapter 5

1E -4 1E -3 0 .01 0 .1 1
0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

 

 

 
'η

x

FIGURE 5.4: Fit of the theoretical net helicity 〈η〉′ versus x to experimental data of
Brunsveld et al. [19] in n-butanol at two concentrations. (Circles: 10−5 M, crosses
10−4 M). Dashed line: curvefit for 10−5 M with fitting parameters φ expE = 6 · 103,
σ = 10−8, α = 1 and γ = 0.9 . Solid line: curvefit for 10−4 M with fitting parameters
φ expE = 6 · 104, σ = 10−8, α = 1 and γ = 0.9.

out that the current theory reproduces our earlier fit in Figure 4.3 almost exactly (see Fig-
ure 5.5 and inset) if we use the same fitting procedure as before (fixing σ = 6.4 ·10−3 at the
point x∗, and γ = 0.65 and α = 1.15 from the maximum in the curve),3 and set φ exp E
for both concentrations to be large (but obviously a factor 10 apart: we set φ exp E = 107

for 10−4 M and 106 for 10−5 M). This shows that the earlier approximate theory is indeed
a special case of the current one, and is recovered in the infinite-chain limit, as it should
be.

Our choice of φ exp E here is arbitrary. As long as we choose a value that corresponds to
the long-chain limit, we will obtain the proper concentration independence of the Cotton
effect. Therefore, we cannot fix E from the circular-dichroism measurements. However, we
are able to estimate a minimum value for this quantity if we determine the value of φ exp E
for which the chirality amplification becomes discernably concentration dependent,4 for the

3Note that the value of α > 1, necessary to obtain good agreement between theory and experiment,
could indicate that the state of full one-handed helicity (〈η〉′ = 1) was not reached in experiment. Indeed,
contrary to Figure 5.4, Figure 5.5 does not display a clear “plateau” of maximum helicity, but rather a
sharp peak.

4We arbitrarily quantify the transition between concentration dependence and independence to take
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FIGURE 5.5: Fit of the theoretical mean net helicity 〈η〉′ versus x to experimental
data of Brunsveld et al. [18] in water at two concentrations. (Circles: 10−5 M, crosses
10−4 M). All three lines have the fit parameters σ = 0.0064, α = 1.15 and γ = 0.65.
Dashed line: curve fit for φ expE = 107. Solid line: curve fit for φ expE = 106.
Dotted line: curvefit with the model from Chapter 4, valid in the long-chain limit. In
the inset: The relative difference between the mean net helicity in the current model
for φ expE = 106 and that in the earlier model, in percent.

given value of σ = 6.4·10−3. For this particular system the transition between concentration
dependence and independence occurs at E = 18 kBT , from which follows that E must be
smaller than this value for a concentration dependence to occur for these molecules in
water (with this σ) at these concentrations. Alternately, one might decrease φ and thus
enter the concentration-dependent regime.

5.6 Conclusions

The one-dimensional, two-component Ising model, coupled to the theory of linear self-
assembly as outlined in this Chapter, provides a good description of the concentration
dependence of the sergeants-and-soldiers effect in helical supramolecular polymers. We find

place where a change in concentration of a factor ten induces a shift of 10% in the mean net helicity near
the point where 〈η〉 = 1/2.



82 Chapter 5

that an increase of the penalty of a helix reversal leads to a larger chirality amplification in
the long-chain limit, and that an increase of the solute concentration leads to an increase
in the chirality amplification in the short-chain limit. However, we also find that, in
the former limit, the strength of the sergeants-and-soldiers effect becomes insensitive to
changes in the concentration, just as it becomes insensitive to the value of the free energy
of a helix reversal in the latter limit. As a result, it may be difficult to determine the
mean aggregate size from circular-dichroism experiments at high concentrations, and it
may be equally difficult to determine the free energy of a helix reversal from measurements
at low concentrations. The dependence of the chirality amplification on the (mean) chain
length and the central role played by the cooperativity mirror conclusions of earlier work
on conventional copolymers. [20] The theory we present shows quantitative agreement
with circular-dichroism measurements of mixtures of chiral and achiral discotic molecules
in the solvents water and n-butanol, for two concentrations that differ by a factor of ten.
[18, 19] When we assume that chiral monomers have a lower contribution to the measured
helicity than do achiral ones, we can reproduce the experimentally measured maximum in
the Cotton effect as a function of the fraction chiral material. For long enough chains, the
agreement between experiment and theory is identical to that obtained with our earlier,
approximate treatment. In this regime, it is perhaps more convenient to use the earlier,
less cumbersome, treatment.



Chapter 6

The Majority-Rules Principle in
Long Chains

ABSTRACT

Apart from the sergeants-and-soldiers type we discussed in the previous two
Chapters, chirality amplification can also occur in copolymers consisting of the
two enantiomeric forms of the monomeric building blocks. We outline the first
theoretical treatment of this so-called majority-rules type of chirality ampli-
fication in self-assembled aggregates. Our treatment, which is based on the
one-dimensional, two-component Ising model, is analytical, and exact in the
infinite-chain limit. We find a strong dependence of the strength of the chi-
rality amplification on the free-energy penalty of a helix reversal, as well as
on that of a mismatch between the preferred helical handedness of a monomer
and the actual screw sense of the bond that follows it. The strength of the
chirality amplification shows a monotonic increase with increasing helix rever-
sal penalty, but a strongly non-linear and non-monotonic dependence on the
mismatch penalty.
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6.1 Introduction

As mentioned in the previous two Chapters, amplification of chirality is a well-known
phenomenon in solutions of helical copolymers. [17, 20] Of the two classes of chirality
amplification, the sergeants-and-soldiers type has been studied most extensively, while
the majority-rules type is somewhat less well-known. The sergeants-and-soldiers principle
is characterized by a strongly non-linear response of the optical properties of the (achi-
ral) polymers to the addition of a small amount of homochiral material, [40] whereas the
majority-rules principle represents a similar effect for chains consisting of both enantiomeric
forms of the chiral monomers, one of which is present in (small) excess. [43] Both effects
occur due to a shift in the balance between left- and right-handed helical bonds, which can
be quite large.

Recently, strong chirality amplification of the sergeants-and-soldiers type was found in solu-
tions of self-assembled helical aggregates by measurements of the optical activity. [18, 19] In
Chapters 4 and 5, we found that the sergeants-and-soldiers principle in such self-assembled
systems can be accurately described in terms of a one-dimensional, two-component Ising
model. In this Chapter we modify this model to describe the majority-rules principle in
long supramolecular polymers. The reason that a similar model may be used is that the
same physical principles are at work in both the majority-rules and the sergeants-and-
soldiers case. In both cases, the polymers consist of two types of monomer, which can be
bound in two ways (either by a left-handed helical bond or by a right-handed one). In
addition, both phenomena find their origin in the cooperativity of the helical aggregation.
However, as we shall see below, for a description of the majority-rules type of chirality am-
plification we need two free-energy penalties, rather than one. This makes this treatment
somewhat more involved than the one we applied in the previous Chapters.

Note that our treatment is not the first to describe the majority-rules effect. In a recent
paper, [44] Selinger and Selinger investigated the majority-rules principle in conventional
(covalently bound) polymers by applying a random-field Ising model. Unfortunately, the
existing theory cannot be applied to supramolecular systems, at least not in principle,
since the distribution of the two types of monomer along the chains is fixed in conventional
polymers, whereas in supramolecular aggregates it is determined by the thermodynamic
equilibrium. Our treatment is specifically suited to describe chirality amplification in
supramolecular polymers, and is analytical and exact in the infinite-chain limit.

The remainder of this Chapter is organized as follows. In section 6.2 we outline our model
for the majority-rules effect in dilute solutions of long supramolecular polymers, and in
section 6.3 we calculate the net helicity (defined as the difference between the fractions of
right- and left-handed bonds of a polymer) as a function of the enantiomeric excess (defined
as the difference between the fractions of right-handed and left-handed chiral monomers).
In section 6.4 we present our results and demonstrate that the amplification of chirality
increases strongly with an increasing free-energy penalty on a helix reversal. We also
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show the non-monotonic dependence of the chirality amplification on the free energy of a
mismatch between the preferred screw sense of a monomer and the bond that follows it.
Finally, in section 6.5 we summarize our findings and give a brief outlook.

6.2 The Single-Aggregate Partition Function

In our description we consider a dilute solution of aggregates, so that we may ignore
inter-aggregate interactions. We assume that the aggregates are long and discard finite-
size effects, allowing us to describe the configurational statistics of polymers with a rel-
atively simple ground-state calculation. It seems reasonable to suggest that long-range
intra-aggregate interactions are unimportant for the problem in hand. Presuming that
the amplification of chirality is dominated by interactions on small length-scales, such as
nearest-neighbor interactions, we can rely on a two-state Ising model in one dimension to
properly describe the conformational state of the aggregates, as we also did in Chapters 4
and 5. [123]

We make a distinction between two types of monomer, a chiral monomer that has a pre-
ferred left-handed screw sense (which we shall abbreviate as a “−” monomer), and one
that has a preferred right-handed screw sense (the “+” monomer). These monomers can
be linked in two ways, one corresponding to a right-handed helical conformation and one
corresponding to a left-handed one. These ways of bonding we refer to as the “+” bond,
which is the bond type most compatible with the “+” monomer, and the “−” bond, which
is most compatible with the “−” monomer. Furthermore, we introduce two free-energy
penalties, R and W : the first penalizes a helix reversal along the chain, and the second
penalizes a mismatch between the preferred screw sense of a monomer and the bonds near
to it. The former penalty is invoked when two consecutive bonds have different conforma-
tions, and the latter is used whenever a “+” bond follows or precedes a “−” monomer,
and vice versa. We apply the mismatch penalty twice when both monomers adjacent to a
bond are of the type incompatible with that bond.

Our model corresponds to the following dimensionless Hamiltonian H for a chain of degree
of polymerization N .

H =
1

2
R

N−2∑
j=1

(−sjsj+1 + 1) +
1

2
P

N−1∑
j=1

(sj + 1) (6.1)

+W

N−1∑
j=1

[
1− 1

2
(sjnj + sjnj+1)

]
− E(N − 1)

Here, sj gives the state of the jth spin (or bond), with sj = −1 for a “down” spin (a
“−” bond) and sj = +1 for an “up” spin (a “+” bond), and nj gives the type of the
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jth monomer, with nj = −1 for a “−” monomer and nj = +1 for a “+” monomer. The
description of the system is then a combination of two interacting sublattices, one that
describes the monomers and one that describes the bonds. The quantity P corresponds
to the magnetic-field strength in the Ising model and couples to the “up” spins, and −E
is the reference bond free energy. Note that the Hamiltonian (eq (6.1)) is only valid for
chains of length N ≥ 3, which is indeed the regime we wish to describe.

The (quasi grand canonical) partition function of a single aggregate now reads

Ξ(N) ≡
(

N∏

k=1

∑
nk=±1

)
exp

[
µ−

(
N − 1

2

N∑
j=1

(nj + 1)

)
+

1

2
µ+

N∑
j=1

(nj + 1)

]

×
(

N−1∏

l=1

∑
sl=±1

)
exp−H (6.2)

Here, the first and last bracketed terms are repeated sums, µ− is the chemical potential of
the “−” monomers, and µ+ is that of the “+” monomers. We use a quasi-grand partition
function here, in which the total number of monomers in the chain is kept fixed at N , while
the chain composition can change. This partition function is evaluated with the aid of the
well-known transfer-matrix method. The transfer matrix contains the statistical weights for
all configurations of a monomer-bond pair, dependent on the monomer-bond pair preceding
it. The matrix can be derived from the Hamiltonian (eq (6.1)) by standard methods. [82]
For this, it turns out to be convenient to redefine the chemical potentials, so that we obtain
a reference chemical potential (equal to µ−) and an excess chemical potential, defined as
µ ≡ µ+ − µ−. We now define a fugacity z ≡ exp µ that we introduce into the transfer
matrix whenever a “+” monomer is considered. (See Chapter 5 for a formal derivation of
a transfer matrix including these chemical potentials.) As mentioned before, the aggregate
can be divided into two sublattices, one that contains the monomers (with states +1 and
−1) and one that contains the bonds (also with states +1 and −1). Taking into account
the interactions between the two sublattices, the transfer matrix becomes the sum of four
matrices, one for each possible combination of monomers preceding and following the bond
under consideration. It takes the final form

M =

(
(1 + w)(zw + 1) (1 + w)(zw + 1)

√
σ

s
√

σ(1 + w)(w + z) s(1 + w)(w + z)

)
(6.3)

with s ≡ exp−P and w ≡ exp−W the Boltzmann factors of an “up” spin (over a “down”
one), and that of a mismatch between a bond and a monomer, and σ ≡ exp−2R the square
of the Boltzmann factor of a helix reversal. In the matrix representation we can rewrite
the partition function Ξ(N), eq (6.2), similar to how we did this in Chapter 5, giving

Ξ(N) = exp [µ−N + E(N − 1)] ũ ·MN−2 · ũ+ (6.4)

The quantities ũ and ũ+ are the vectors that describe the probability distribution over the
states of the aggregate ends. Since our treatment is meant to describe the long-chain limit,
we need not specify these.
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6.3 Ground-State Approximation

To make the partition function explicit, we determine the eigenvalues of M. These are
λ1,2 = 1

2
(1+w)

(
1 + zs + zw + sw ±√ψ

)
, where λ1 is given by the plus sign and λ2 by the

minus sign. Here, ψ = (zw + 1− sw− sz)2 + 4σ(zw + 1)(sw + sz). The partition function
now becomes a sum of two terms, each including one of the eigenvalues. In the long-chain
limit, the term which includes λ1 is much larger than the one that contains λ2. We can
therefore use the so-called ground-state approximation and retain only this term. [24] The
partition function then becomes

Ξ(N) ≈ A(s, σ, w, z) exp [µ0N + E(N − 1)] λN
1 (6.5)

Here, A is a prefactor that contains end-effects, and as such does not contribute in a
significant way in the long-chain limit. Formally, equation (6.5) is only valid for N À 1,
becoming exact in the infinite-chain limit, but we extrapolate it down to N > 2. This is
allowed if the mean degree of polymerization, 〈N〉 ' √

φ exp ε, remains large; here φ is
the volume fraction of aggregating molecules and ε ≡ E − ln A(s, σ, w, z) the free-energy
penalty associated with the aggregate ends (the so-called end-cap energy). [24] In the
long-chain regime, the mass distribution of the aggregates is fairly sharply peaked around
N = 〈N〉. This means that we need not deal explicitly with the self-assembly, and we
can represent the (concentration and temperature dependent) mean value 〈N〉 by N in the
remainder of this Chapter.

From the partition function we can obtain the quantities which determine the strength
of the chirality amplification, being the net helicity (the fraction right-handed minus the
fraction left-handed helical bonds) and the enantiomeric excess x (the fraction of “+”
monomers minus that of “−” monomers). These are given by

η ≡ −1 + 2 (N − 1)−1 ∂ ln Ξ(N)/∂ ln s ∼ −1 + 2
s

λ1

∂λ1/∂s (6.6)

x ≡ −1 + 2N−1∂ ln Ξ(N)/∂ ln z ∼ −1 + 2
z

λ1

∂λ1/∂z (6.7)

These limiting equations become exact for infinitely long chains. Since right-handed bonds
are not intrinsically more or less favorable than left-handed ones, we now set s = 1 by
symmetry, and simplify equations (6.6) and (6.7). The net helicity η and enantiomeric
excess x become

η =
(z − 1)(1− w)√

ψ
(6.8)

x =
(z − 1)(1 + w)

√
ψ + 4wσ(z2 − 1) + (z2 − 1)(1− w)2

[
(z + 1)(1 + w) +

√
ψ

]√
ψ

(6.9)

with ψ as defined earlier in this section. In principle, we can now eliminate z from equations
(6.8) and (6.9) and express x in terms of η, σ and w. However, we find it more convenient
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FIGURE 6.1: The excess fraction of “+” chiral material needed to attain a net
helicity of one-half, x∗, versus σ = exp−2R, with R the free energy penalty of a
helix reversal, for six values of the mismatch parameter w, as indicated.

to numerically solve z from equation (6.8) for fixed values of w, η and σ, and insert the
obtained value for z back into equation (6.9) to obtain x. We discuss the results of this
procedure in the next section. We limit our discussion to the regime where the fraction of
“+” monomers is equal or larger than the fraction of “−” monomers. Since the majority-
rules effect is symmetrical, the results for a majority of “−” monomers would be identical,
albeit that η, as defined in eq (6.6), would become negative.

6.4 Results and Discussion

Let x∗ be defined as the enantiomeric excess needed to induce a net helicity of one-half.
It is a measure of the strength of the chirality amplification, in that the lower x∗ is, the
more monomers are influenced by a single “+” monomer. To investigate the impact of
the various free-energy penalties on this quantity, we plot it in Figure 6.1, against the
squared Boltzmann factor of a helix reversal σ, for different values of the Boltzmann factor
w of a mismatch. The Figure shows that, for fixed low values of σ (and hence high
values for the free energy of a helix reversal), the strength of the chirality amplification
increases monotonically with an increasing value of the Boltzmann factor of a mismatch.
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FIGURE 6.2: The net helicity η as a function of the enantiomeric excess x, for
different values of the mismatch parameter w as indicated, at a fixed value of the
free energy of a helix reversal of zero (σ = 1).

This is because in this regime (where helix reversals are very unfavorable), the lower the
mismatch free energy is, the more “−” monomers can be present in the aggregates without
changing the net helicity. In this low-σ regime, the degree of chirality amplification becomes
insensitive to the value of σ (especially for low w), as indicated by the horizontal curves.
Apparently, the chirality amplification is dominated by the value of w here, whereas for
higher values of σ, the free-energy penalty of a helix reversal becomes more important.

When we look at the high-σ regime, we observe that the amplification of chirality is lower
than in the low-σ regime; for σ = 1 there is no longer any amplification of chirality. For
values of w close to unity, it is even so that a net helicity of one-half cannot be reached,
even if only “+” monomers are present.

We now look at the chirality amplification for two values of σ in more detail by taking
vertical cuts through the diagram. To this end, we first consider the case σ = 1 (implying
no penalty on helix reversals), see Figure 6.2. In this case, as may in fact already be
concluded from Figure 6.1, we notice that there is indeed no chirality amplification. It
follows from eqs (6.8) and (6.9) that

η =

(
1− w

1 + w

)
x (6.10)
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FIGURE 6.3: As Figure 1, at a fixed value of the free energy of a helix reversal of
3.5 kBT , corresponding to σ = 10−3.

This is a linear function of x, and an increase in w from zero to unity causes a monotonic
decrease of the maximum net helicity. Two limiting cases present themselves: w → 0
and w → 1. In the first case, where the Boltzmann factor w goes to zero, η → x. This
in fact holds for all values of σ, as can be seen from eqs (6.8) and (6.9). The reason
is that for w = 0, every “+” monomer must be followed by a “+” bond and every “−”
monomer by a “−” bond. The σ-independence of the chirality amplification in this limit
arises because our model does not allow for a helix reversal without a mismatch free energy
being involved. In the second limit, w → 1, the net helicity stays equal to zero over the
entire range of x (and σ) values. There is then no longer a penalty on a mismatch between
monomer and bond, and the chain conformation will be determined by entropy, leading to
a state where half of the bonds have a “+” conformation and half a “−” conformation.

In Figure 6.3, we plot the net helicity as a function of the enantiomeric excess at a fixed
helix reversal penalty of 3.5 kBT , and we find that the chirality amplification changes in a
strongly non-linear way with w for σ ¿ 1. Strong chirality amplification occurs at values
of w around 0.7 (corresponding to an energy penalty of 0.4 kBT ). When the value of w
approaches unity, the maximum net helicity decreases, and the value η = 1 is no longer
reached, not even in the case of aggregates that consist of only one type of enantiomer.
This means that care must be taken in the interpretation of experimental data, as the
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maximum obtained optical effect may not correspond to the state in which all bonds are
of one type.

In the limit of infinite cooperativity (σ → 0) we find from eqs (6.8) and (6.9) that η can
only have two values, −1 or 1, dependent on whether z and w are smaller or larger than
unity. This is because in this limit,

η → (w − 1)(z − 1)√
(w − 1)2(z − 1)2

(6.11)

The numerator and denominator are identical, albeit that the sign of η varies with w and
z. In other words, the aggregates are either fully right-handed or fully left-handed helical
for all values of x. This may correspond to the discontinuous phase transition in the one-
dimensional Ising model, which occurs under the same circumstances of infinite coupling
constant and infinite chain length.

6.5 Conclusions and Outlook

We present an analytical treatment of the majority-rules type of chirality amplification
in solutions of helical, self-assembled polymers, valid in the long-chain limit and exact in
the infinite-chain limit. Contrary to our theory for the sergeants-and-soldiers principle,
detailed in Chapters 4 and 5, this treatment requires two free-energy penalties, one on a
helix reversal and one on a mismatch between a bond and the monomers near to it. We
find that the chirality amplification becomes monotonically stronger with an increasing
penalty on a helix reversal, but that it shows a strongly non-monotonic dependence on
the mismatch penalty. Finally, we note that for low values of the mismatch penalty, fully
right-handed or left-handed aggregates no longer form.

Since, to our knowledge, no experimental measurements have been performed on enan-
tiomer mixtures in self-assembled polymers, we are at this time unable to check our theory
against experiment. However, analogous experiments to the sergeants-and-soldiers mea-
surements of Brunsveld and co-workers [18, 19] seem a logical choice for an experimental
study of the majority-rules principle in supramolecular polymers, and these experiments
are now in preparation. [130]

Our treatment is only valid for the long-chain limit, implying (see Chapter 5) that it
can only be sensibly used to describe measurements performed in the concentration-
independent regime. If one wishes to describe concentration dependence, an elaboration
of our treatment is necessary, analogous to the one given in Chapter 5 to the ground-
state treatment of the sergeants-and-soldiers case. This means that one should retain both
eigenvalues of the transfer matrix and use the definitions eqs (6.6) and (6.7) to determine
the chirality amplification.





Chapter 7

The Effect of Fields and Interactions
on the Helical Transition in Linear
Assemblies

ABSTRACT

Interaggregate interactions and external fields both potentially influence the
size distribution of self-assembled polymers. To investigate the effect of interac-
tions on helical supramolecular polymers, we combine a second-virial excluded-
volume treatment with the theory of helical self-assembly. We find that inter-
aggregate interactions can have a large effect on the mean size through a shift
that occurs in the fraction of helical bonds, provided that the concentration
of self-assembling particles is large enough, and provided that the difference in
length between helical and non-helical bonds is relatively large. The mean ag-
gregate size is also strongly dependent on the description of the aggregate ends.
We also investigate the conformational state and mean aggregate size of helical
aggregates in external dipole and quadrupole fields. For a so-called ordering
field, for which the director is parallel to the axis of induced symmetry, we
find enhanced growth of the polymers for certain ranges of angle between the
director of the field and the aggregate axis. For a disordering field, the mean
aggregate size decreases. The fraction of helical bonds also becomes dependent
on the orientation of the aggregates. Here we find an increase in the fraction
of the longer type of bond in an ordering field, and a decrease in a disordering
one.
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7.1 Introduction

The ideal-solution theory for helical self-assembly into linear aggregates, presented in the
earlier Chapters, provides a good description for dilute solutions of linear aggregates, up
to a volume fraction of approximately the mean reciprocal aspect ratio. [24, 60] However,
for higher concentrations of aggregating material, interactions between the aggregates po-
tentially play an important role, e.g., through a modified mass action [131] or through
effects that stem from changes in the configurational statistics of the assemblies. [24] In
the present Chapter we examine the conformational state of helical self-assembled polymers
which do interact, either with other aggregates (which we treat via an excluded-volume
theory) or with external fields of the quadrupole and dipole type.

Treatments have been put forward that deal with the effect of excluded-volume interactions
and that of external fields on helical polymers and similar systems, [132, 133] as well as
on self-assembled chains. [60, 108, 131, 134] Here, we consider the effect of fields and
interactions on polymers that have both properties, i.e., helical supramolecular polymers.
Since interactions have been predicted to influence the mean size of non-helical aggregates,
both rod-shaped ones and flexible coils, [60, 108, 135] it stands to reason that a similar
effect may also occur in helical self-assembled aggregates. Moreover, because there is a
strong coupling between the size and the conformational state of helical aggregates, the
degree of helicity of the chains may also be affected by interactions or fields.

To investigate the effect of interaggregate interactions, we treat the aggregates as rigid
rods, and apply Onsager’s excluded-volume theory. [136] This theory takes repulsive two-
particle interactions between such rodlike particles into account, on the basis that they
cannot occupy the same space. [136, 137] The smaller the angle between the rods, the
lower the free energy of interaction between them. We consider only the long-aggregate
limit here, and ignore factors that stem from interactions between the cylindrical part of
an aggregate and the ends of another, as well as between two aggregate ends.

It is well-known theoretically that the size distribution of aggregates can also react to
external fields, such as electric or magnetic fields. [134] In fact, elongated micelles subject
to a mechanical shear field have been predicted to undergo a gelation transition in the
semi-dilute regime. [138] We present a treatment for self-assembled aggregates coupled to
external fields that can be described by a potential in a statistical-mechanical theory (such
as electric fields or certain types of elongational flow field), for the case where the self-
assembled aggregates exhibit a helical transition. As we shall see, ordering fields (which
are fields with a director that is parallel to the axis of induced symmetry) tend to increase
the mean aggregate size, and disordering fields tend to decrease it. The fraction of helical
bonds also changes with the type of field, as well as with the angle between the field director
and the aggregate axis. We find that the longer type of bond is preferentially formed in
an ordering field, and the shorter type in a disordering field.
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This Chapter is organized as follows: in section 7.2 we study how the interaggregate inter-
actions in long, rigid aggregates affect the helical transition. We find that the aggregate
size can increase drastically under the influence of the interactions, dependent on the differ-
ence in length between the helical and non-helical bonds, the concentration of aggregating
monomers, and the boundary conditions we enforce. In section 7.3, we incorporate the
effect of external fields on the growth and the helical transition of the aggregates, and
find that boundless growth of the aggregates can occur in certain types of orienting field.
Perhaps not entirely surprising, we also find that the fraction of helical bonds in these
aggregates is determined by the relative lengths of the helical and non-helical bonds. In
section 7.4, we provide a brief outlook and discussion, focusing on the problems that occur
in treatments of helical polymers in elongational flow and the methods needed to rectify
these. We also discuss the phenomenon of boundless micellar growth in external orienting
fields. Finally, in section 7.5, we summarize our findings. Unlike in previous Chapters,
we cannot confront our theory with experimental results. This is because, to our knowl-
edge, the effects of external fields and interaggregate interactions on helical supramolecular
polymers have not been experimentally studied.

7.2 Interaggregate Interactions

Consider an isotropic solution of long rodlike aggregates, i.e., aggregates with a very large
persistence length compared to the aggregate size, which are presumed to be rigid and
smooth. In order to calculate the effect of interaggregate interactions between aggregates
of lengths L and L′ we apply a second-virial approximation. This approximation is valid
if the mean length of the aggregates is much larger than their transverse dimension. [136,
137, 139] This implies large aggregation numbers, in particular if the aggregates have a
large transverse dimension (such as those consisting of discotic molecules).

The excluded volume of two rods with lengths L and L′ is, to leading order, equal to
2LL′d| sin γ|, with d the width of the rods and γ the angle between them. [137, 140] The
correction terms of order Ld2 and d3, corresponding to the interaction of an aggregate end
with the cylindrical part or with the end of the other aggregate, are small at sufficiently
low concentrations. The former term, however, does renormalize the dimensionless scission
energy (the energy required to break an aggregate in two) by a factor of κφ, with κ a
constant of order unity and φ the volume fraction of material in solution, defined below
in eq (7.10). [140] The dimensionless scission energy is often of order 10, so we ignore this
renormalization here (see also below). In isotropic solution, we can average the excluded
volume over all angles, which gives π

2
LL′d. [109, 137]

The length of a self-assembled rod can be expressed as

L(N) = ND + (N − 1)l (7.1)
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with N the number of monomers comprising the aggregate, l the (mean) bond length, and
D the monomer thickness along the aggregate axis. We now presume that there are two
types of bond, helical and non-helical, that may be unequal in length. If we take this into
account, we can write

l = l1θ + l2(1− θ) = l1(θ + q − θq) (7.2)

where l1 is the length of a helical bond, l2 the length of a non-helical bond, q ≡ l2/l1, and
θ the “instantaneous” fraction of helical bonds in the aggregate. Other definitions of the
aggregate length are possible, but give the same results.

We now invoke a mean-field approximation to describe the conformational properties of
the aggregates, and replace the length and fraction of helical bonds of the aggregates
surrounding a test aggregate by their mean values. Within this approximation, the free
energy of interaction of the test aggregate with the other rods is, at the level of a second-
virial approximation, given by half the excluded volume times the number density of rods,
and becomes

U =
π

4
L(N) 〈L〉 dρ (7.3)

Here, ρ is the (dimension-bearing) number density of the aggregates, and 〈L〉 = 〈N〉D +
(〈N〉− 1) 〈l〉 is the mean length of these aggregates, averaged over all conformations of the
aggregates, as well as over the size distribution. In this expression, 〈N〉 is the mean degree
of polymerization (averaged over the size distribution of the aggregates) and 〈l〉 = l1(〈θ〉+
q− 〈θ〉 q)) the mean length of a bond in these aggregates, averaged over all conformations
of the chains. Here, 〈θ〉 is the mean fraction of helical bonds in the solution, also averaged
over all chain conformations.

This gives

U =
π

4
φdν−1[ND + (N − 1)l]

[
D + 〈l〉 − 〈l〉

〈N〉
]

(7.4)

with ν the volume of a monomer. In eq (7.4), the first term describes the length of the
aggregate under consideration, and the second that of the others (scaled to 〈N〉).
We now combine eq (7.2) with eq (7.4), and note that θ = (2N − 2)−1

∑N−1
i=1 (si + 1) with

si = ±1 a quantity that gives the state of a bond (+1 for a helical bond, and -1 for a
non-helical one), as in the Hamiltonian of eq (2.4). We find that we obtain a term with the
same form as the one describing the coupling of an external magnetic field on the spins in
an Ising system (see Chapter 1). This means that the interactions renormalize the excess
free energy of a helical bond over a non-helical one, which becomes

P ′ = P +
πφdl21(1− q)

4ν

[
q
D

l1
+ 〈θ〉+ q − 〈θ〉 q

]
(7.5)

where P is the bare excess free energy of a helical bond, and P ′ the renormalized one. We
have dropped the last term from eq (7.4), since it is small in the long-chain limit 〈N〉 À 1.
Note that, in eq (7.5), P ′ depends on the mean fraction of helical bonds. As we shall see
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later, this fraction also depends on P ′, which implies that the problem has to be solved
self-consistently.

With the renormalization of the helical-bond energy described, the canonical partition
function Q(N) takes a form similar to that in Chapters 2 and 3, and obeys, in the ground-
state approximation, valid if N À 1,

Q(N) = (λ+ exp E ′)N exp−Ecap (7.6)

where E ′ is given by

E ′ = E − πφdl21
4ν

(
D

l1
+ q

)(
D

l1
+ 〈θ〉+ q − 〈θ〉 q

)
(7.7)

and

Ecap = E − ln y + 2 ln λ+ − πφdl21
4ν

(
q
D

l1
+ 〈θ〉+ q − 〈θ〉 q

)
(7.8)

is the end-cap or scission energy. Here, −E is the reference free energy in the absence
of a helical transition and interactions, y is a prefactor which depends on the boundary
conditions set (see Chapter 2, but note that in the equation for y here, s has been replaced
by s′), and λ+ = 1

2
+ 1

2
s′ + 1

2

√
(s′ − 1)2 − 4s′σ is the largest eigenvalue of the so-called

transfer matrix. In this expression, s′ ≡ exp−P ′ is the Boltzmann factor associated with
the excess free energy of a helical bond. As before, in Chapters 2 and 3, the parameter
σ ≡ exp−2R is the square of the Boltzmann factor of an interface between a helical and
a non-helical region along the polymer (with free energy R). This parameter we assume
unchanged by the interactions.

We find that the renormalization of E given in eq (7.7) depends on the fraction of helical
bonds. Away from the helical transition, E would be rescaled with a factor −πφd(l2 +
D)2/4ν, which is of the same order of magnitude as the factors that arise from terms
proportional to Ld2 that we ignored (as mentioned earlier). It turns out that the corrections
to E due to interaggregate interactions are small (typically of the order of 0.2 kBT on a
free energy of order 20 kBT ), unless the product φqdl21/ν is very large. This being unlikely,
we can reasonably ignore the corrections entirely and write E ′ ≈ E, and Ecap ≈ E− ln y +
2 ln λ+. Apparently, the coupling between interactions and self-assembly predominantly
occurs through the renormalization of the excess helical bond energy, eq (7.5).

From equation (7.5), we deduce that there must be two regimes, one where the mean
bond length is much larger than the thickness of a monomer, 〈l〉 À D, and one where
the opposite is the case, D À 〈l〉. We focus attention on the case where the bond length
dominates and set D/l1 = 0 in eqs (7.5), (7.7) and (7.8). We describe how the lengths
of the bonds and the concentration influence the fraction of helical bonds, as well as the
mean aggregate size. At the end of this section, we give a brief summary of the results in
the limit where D À 〈l〉.
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FIGURE 7.1: The mean fraction of helical bonds 〈θ〉 as a function of the volume
fraction φ of assembling monomers, for σ = 10−3, s = 1 and four values of the ratio of
the lengths of a non-helical and a helical bond, q, as indicated. For dl21/ν we choose
a value of unity.

The strength of the coupling between the helical transition and the interaction is deter-
mined by the product of φ and the dimensionless volume πdl21/4ν (see eq (7.5)). The
numerical value of the latter depends on the geometry of the monomers. In the case of the
discotic molecules of Meijer and co-workers, [9] ν is of the order πDd2/4, and the dimen-
sionless volume πdl21/4ν is likely of the order of magnitude of 0.1. As we shall show later,
even if we set this volume to unity (increasing the effect of interactions), the interactions
have a modest effect on the mean size of the aggregates, unless the volume fraction of
assembling material is very high, and φ → 1. On the other hand, the impact on the helical
transition can be quite substantial.

From the partition function we can calculate the mean fraction of helical bonds by taking
the derivative of ln Q with respect to ln s′. This gives in the long-chain limit [24, 32]

〈θ〉 =
1

2
+

1

2
(s′ − 1)

[
(s′ − 1)

2
+ 4σs′

]−1/2

(7.9)

Note, as mentioned above, that s′ is a function of the mean fraction of helical bonds
(through 〈l〉), and that we therefore need to solve this equation self-consistently with eq
(7.5). Results of our calculations can be seen in Figure 7.1. There, we plot the fraction
of helical bonds 〈θ〉 as a function of the volume fraction of self-assembling material φ,
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for σ = 10−3 and several values of the ratio between the lengths of a non-helical and a
helical bond, q. For convenience, we have chosen the dimensionless volume πdl21/4ν equal
to unity.1

As can be seen from Figure 7.1, 〈θ〉 > 1/2 for q > 1. This means that more helical bonds
form if a non-helical bond is longer than a helical one. The condition q = 1 corresponds to
the case where both types of bond have the same length, and gives the same results as the
model in which there are no interactions, since P is not changed in this case. For q > 1, we
find an increase in the fraction of helical bonds. This makes sense, because the excess free
energy due to the excluded-volume interaction scales with the square of the length of the
aggregates. The longer the aggregates, the higher this excess free energy. [136] Therefore,
the shorter bond is preferentially formed if q > 1 and the assemblies interact appreciably.

We conclude that interaggregate interactions can indeed have a large effect on the con-
formational state of the aggregates, if the concentration of dissolved material and the
difference in bond lengths are both large enough. We can make an estimate of the con-
centration for which the helical transition is significantly influenced by the interaggregate
interactions, and find that this is the case for φ ≥ 4ν

√
σ/dl21|1−q2| (see also Figure 7.1). It

appears that the value of the dimensionless volume and that the cooperativity parameter
σ both play important roles. If the cooperativity is low, or dl21 is small compared to the
reference volume, a high concentration is required for the interactions to have a significant
impact on the fraction of helical bonds.

In realistic polymers, such as the aggregates consisting of discotic molecules that we con-
sider throughout the thesis, the ratio q presumably has a value larger than unity, since
the bond strength of a helical bond should be larger than that of a non-helical one. On
the other hand, it seems likely that q is not larger than, say, two, due to the details of
the molecular architecture. [141] In this case, the interactions have only a minor effect,
unless the concentration is very high. For this reason we shall focus in the remainder of
our discussion on values of q between 0.8 and 2. The behavior at low concentrations, where
the effect of the interactions is small, unless q becomes very large, validates our approach
in Chapters 2 and 3, in which we neglected interactions in the dilute regime.

The mean size of the aggregates can be calculated by dividing the volume fraction of
aggregating material,

φ =
∞∑

N=1

Nρ(N)ν (7.10)

by the dimensionless number density of aggregates ρ =
∑∞

N=1 ρ(N), where ρ(N) is given by
ρ(N) = ν−1Q(N) exp µN . In this expression, µ is the chemical potential of the assembling
monomers and Q(N) is the partition function of a helical aggregate. (See also Chapter 2,

1The choice to fix the length of a helical bond in this way causes the asymmetry between values of
q > 1 and q < 1 in Figure 7.1, since a non-helical bond for q = α > 1 has a much larger impact on the
total length of the aggregate than for q = 1/α < 1.
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FIGURE 7.2: The ratio 〈N〉 / 〈N〉0 between the mean aggregate sizes with and
without interactions versus the ratio between the lengths of a non-helical and a
helical bond, q, for two different boundary conditions: one with one end fixed to be
non-helical and the other free (NF) and one with one end fixed to be helical and the
other free (HF), as indicated. Here, E′ = 20 kBT , s = 1, σ = 10−3, φ = 0.1, and
dl21/ν = 1.

but note that ρ(N) is dimension-bearing here, whereas it was dimensionless in the earlier
Chapters.) Solving the summations gives φ = yλ−2

+ (λ+ exp−µ′)(1−λ+ exp−µ′)−2 exp−E
and ρ = yλ−2

+ (λ+ exp−µ′) (1− λ+ exp−µ′)−1 exp−E. The mean size becomes

〈N〉 = (1− λ+ exp−µ′)−1 (7.11)

with µ′ = −µ − E ′ a function of the free energy of a helical bond and of the chemical
potential of the assembling monomers. To solve eq (7.11), we determine the value of µ′

from the law of conservation of mass, eq (7.10).

The dependence on q of the ratio 〈N〉 / 〈N〉0 between the mean degree of polymerization
with and without interactions that follows, is shown in Figure 7.2, for E ′ ≈ E = 20 kBT ,
s = 1, σ = 10−3, φ = 0.1, and dl21/ν = 1. Here, 〈N〉0 is the mean aggregate size in the
absence of interaggregate interactions. As we mentioned earlier, for q = 1 we regain the
theory for aggregates without interactions (apart from a small change in E due to end
effects, which we ignore here), and, therefore, the mean aggregate sizes with and without
interactions are identical at this point.

It turns out that the mean aggregate size strongly depends on the boundary conditions
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imposed through the quantity y. The impact of two different boundary conditions is shown
in Figure 7.2. Clearly, the theory predicts a qualitatively different behavior as a function
of q for the boundary condition in which one end is helical and one is free (HF), and that
with one end non-helical and one free (NF). This again demonstrates the sensitivity of the
size of the (long) aggregates to the state of the ends, which we also saw in Chapter 2.

For q > 1, the helical bond forms more readily than the non-helical one. The larger q,
the more helical bonds will form. However, in the case of the boundary conditions with
one end free and one end fixed non-helical, NF, the first bond of an aggregate is always
non-helical. This type of bond is unfavorable and the system tends to form as few of these
as possible, hence the increase in the aggregate size for this set of boundary conditions. For
the boundary conditions HF (one end free and one helical) there is hardly any effect in the
regime q > 1, for the same reason. For q = 1 and s = 1, the values of y for the two sets of
boundary conditions become identical. It can be seen that the mean size of the aggregates
can be affected quite strongly by the value of q at relatively high concentrations, and thus
by the shift in the fraction of helical bonds. At a volume fraction of 0.01 this is no longer
the case, and the mean aggregate size changes at most by a factor 1.06 over the range of
q from zero to two.

We now briefly address the case that the bond length is much shorter than the thickness of a
monomer (D À 〈l〉). The effect of interactions on the mean aggregate size and the fraction
of helical bonds is much smaller, although the trends are the same. This is because in this
case, the renormalized free energy of a helical bond does not depend on the fraction of
helical bonds. This means that the problem is no longer a self-consistent one, and that the
coupling between the helicity and the interactions becomes passive. We can again estimate
the value of the concentration needed for the interactions to change the net helicity and
we find that this is the case for φ ≥ 2

√
σν/dl21|1− q|. This resembles the result for the case

D ¿ 〈l〉, albeit that the dependence on q is weaker here, and therefore, at the same value
of q, a higher concentration is needed to obtain the same shift in the helicity.

7.3 External Fields

To describe the conformational state of helical supramolecular aggregates under the influ-
ence of an external perturbation, we presume that the solution of aggregates is dilute, and
that the particles are rodlike. We focus on external perturbations that can be described
in terms of a potential, and on systems where a steady state has been reached, so that it
is possible to describe the chains with equilibrium statistical mechanics. [142, 143]

The dimensionless free-energy density, F , of a solution of aggregates in an external field
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can be written as

F =

∫
du

∞∑
N=1

ρ(N,u)[ln ρ(N,u)− 1− ln Q̃(N,u)] (7.12)

with ρ(N,u) the dimensionless number density of aggregates and Q̃(N,u) the canonical
partition function of an aggregate in the external field, to be specified below. Here, u is
a unit vector describing the direction of the main aggregate axis. The partition function
includes information not only on the conformational state of the bonds, but also on the
field-aggregate interaction. The equilibrium distribution ρ(N,u) minimizes the free-energy
(eq (7.12)), and reads

ρ(N,u) = Q̃(N,u) exp µN (7.13)

with µ a Lagrange parameter that takes the role of the (dimensionless) chemical potential
of the assembling monomers, fixed by the conservation of mass

φ =

∫
du

∫
Nρ(N,u)dN (7.14)

As before, φ denotes the volume fraction of assembling material in solution.

We restrict ourselves to the cases in which the interaction with the field couples to the
aggregate size as U(u)Nα. For an electric or magnetic field, α = 1, [144] while for the
torsional component of an elongational flow field, α = 3, at least if the rods are not
entangled. [108, 131] We first give a description of polarizable helical rodlike aggregates
in a quadrupole field, and after that discuss that of a dipole field, both for α = 1. The
coupling with α = 1 is easy to describe, yet gives some non-trivial results. The case where
α = 3 is touched upon in section 7.4.

For a quadrupole field, we write the total effect of the field on the aggregate as a sum
of two terms: U(u) = K(1 + δθ) cos2 γ, where γ denotes the angle between the field and
the aggregate axis, and K is the coupling constant between the field and the aggregate,
which is a function of the polarizability of the monomers, as well as the magnitude of the
external field. Kδθ describes the additional coupling due to the difference in polarizability
of monomers in a helical and non-helical conformation; θ is the “instantaneous” fraction
of helical bonds of a configuration. The constants K and δ can be positive or negative;
K < 0 indicates an ordering field, and K > 0 indicates a disordering one. A value of δ < 0
indicates that monomers in a helical conformation have a lower polarizability than those
in a non-helical conformation. For δ > 0, the opposite is true.

For α = 1, [144] we can calculate the effect of the field on a single bond of the helical or
non-helical type in a similar way as we did in section 7.2. Incorporating the field into the
Hamiltonian of a single chain (see Chapter 2), we find that the values of the helical and
non-helical binding free energies are shifted, and that the excess free energy of a helical
bond becomes P̃ (u) ≡ P +Kδ cos2 γ. The partition function now takes the (ground-state)
form

Q̃(N,u) = ỹλ̃N−2
+ exp E(N − 1) (7.15)
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where λ̃+ = λ̃+(u) = w(1
2

+ 1
2
s̃ + 1

2

√
(1− s̃)2 + 4s̃σ) again has a form similar to the

well-known Zimm-Bragg eigenvalue, with w = w(u) ≡ exp(−K cos2 γN) and s̃ = s̃(u) ≡
exp−P̃ (u). [36] The term ỹ = ỹ(u) is a function of the boundary conditions imposed
(see also Table 2.2) and contains the non-extensive terms that remain after the coupling
between the field and the aggregate has been absorbed into the eigenvalue.

When we insert eq (7.15) into eq (7.13), we obtain for the equilibrium size distribution

ρ(N,u) = ỹλ̃N−2
+ exp [µN + E(N − 1)] = ỹλ̃−2

+

(
λ̃+ exp−µ̃

)N

exp−E (7.16)

where µ̃ ≡ −E − µ is a shifted chemical potential. This quantity we fix by multiplying eq
(7.16) by the degree of polymerization N , integrating over the variables x ≡ cos γ and N ,
and invoking eq (7.14),

φ = 4π exp−E

∫ 1

0

ỹλ̃−2
+ dx

∫ ∞

0

N
(
λ̃+ exp−µ̃

)N

dN

= 4π exp−E

∫ 1

0

ỹλ̃−2
+ (µ̃− ln λ̃+)−2dx (7.17)

To make headway, we use a Taylor expansion of ỹλ̃−2
+ , as well as λ+, for small values of

|Kδx2| ¿ 1. (This is justifiable because |K| must be small in order to obtain reasonable
values for the mean aggregate size, as we shall show later.) It is easy to show that the

leading-order term B ≡ limKδx2→0 ỹλ̃−2
+ dominates in the expansion of ỹλ̃−2

+ . This reduces
eq (7.17) to

φ = 4π 〈N〉20 B

∫ 1

0

[
1 + (1− Cδ) 〈N〉0 Kx2

]−2
dx exp−E (7.18)

where 〈N〉0 = (µ̃ − ln λ̃0
+)−1 is the mean size of an aggregate in the absence of the field,

λ̃0
+ = 1

2
+ 1

2
s + 1

2

√
(s− 1)2 + 4σs the eigenvalue of the transfer matrix in the absence of a

field (cf. eq (2.10)), and C = s(−1+λ+ +2σ)/(2λ+−1−s). Note that we need not specify
B, as it does not influence the mean aggregate size, nor the mean fraction of helicity, as
we shall see below.

If we solve the integral (7.18), we obtain for K > 0

φ = 2π 〈N〉20 Bh−1/2

( √
h

1 + h
+ arctan

√
h

)
exp−E (7.19)

with h ≡ K (1− Cδ) 〈N〉0. Note that for h ¿ 1, there is no coupling of the field to the
aggregates and 〈N〉 = 〈N〉0. For K < 0 we get

φ = 2π 〈N〉20 B (−h)−1/2

(√−h

1 + h
+

1

2
ln

1 +
√−h

1−√−h

)
exp−E (7.20)
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In the latter case, a singularity occurs for
√−h = 1 (or K 〈N〉0 = (−1 + Cδ)−1).

The total number density of aggregates can be calculated in a similar fashion, giving

ρ = 4π 〈N〉0 Bh−1/2 arctan
√

h exp−E (7.21)

for K > 0, and

ρ = 2π 〈N〉0 B (−h)−1/2 ln
1 +

√−h

1−√−h
exp−E (7.22)

for K < 0. The singularity for K 〈N〉0 → −(1 − Cδ)−1 for negative values of K, persists
in the mean aggregate size, which follows from 〈N〉 ≡ φ/ρ. This gives

〈N〉 =
1

2
〈N〉0

[
1 + 2

√−h

1 + h

(
ln

1 +
√−h

1−√−h

)−1
]

(7.23)

for K < 0. For K > 0, where there is no singularity, we obtain

〈N〉 =
1

2
〈N〉0

[
1 +

√
h

1 + h

(
arctan

√
h
)−1

]
(7.24)

From equations (7.23) and (7.24), we see that 〈N〉 / 〈N〉0 is a natural function of K 〈N〉0.
Note also that the mean aggregate size becomes independent of the boundary conditions
set, contrary to what we found for the coupling of the helical aggregation to the molecular
field in section 7.2.

Equation (7.23) contains a divergence for h → −1, which implies that the theory predicts
boundless growth for this value. As to be discussed in section 7.4, this phenomenon has
been predicted earlier for solutions of aligned micelles, and is often interpreted in terms of
a gelation transition. [131, 138, 145] On the other hand, we deduce from reference [146]
that the divergence can be removed by allowing for a finite bending flexibility, and must
therefore be regarded as spurious.

It is instructive to see how the mean aggregate size depends on the angle between the
aggregate axis and the field. An angle-dependent aggregate size may be defined as

〈N〉 (u) ≡ φ(u)

ρ(u)
= (µ̃− ln λ̃+)−1 (7.25)

with ρ(u) ≡ ∫
ρ(N,u)dN , and φ(u) ≡ ∫

Nρ(N,u)dN . Note that the mean aggregate size
becomes independent of the boundary conditions, again unlike what we observed in earlier
Chapters. It is obvious from eq (7.25) that boundless aggregate growth occurs if µ̃ = ln λ̃+,
which is only possible for K < 0. The angle at which infinite growth takes place can be
easily determined, and equals x∗ = cos γ∗ ≈ 1/

√
(1− Cδ)K 〈N〉0. For angles smaller than

x∗ the mean aggregate size becomes negative, which is obviously unphysical.
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FIGURE 7.3: The ratio 〈N〉 / 〈N〉0 of the mean aggregate size with and without an
external field versus the angle between the aggregate axis and the external field, γ,
for several values of K 〈N〉0, as indicated, with fixed s = 1, δ = −0.1, and σ = 10−3.

Results are presented in Figure 7.3, where we show the ratio of the mean aggregate size in
the presence of the field, 〈N〉, and that in its absence, 〈N〉0, versus the angle γ, for several
values of the effective field strength K 〈N〉0, at fixed s = 1, σ = 0.001, and δ = −0.1.
Our choice for δ implies that the monomers have a lower polarizability when they are in a
helical conformation than when they are in a non-helical one. For values of K 〈N〉0 below
−1/(1 − Cδ), we indeed find aggregation numbers that go to infinity for angles close to
zero. Furthermore, we can see that the effect of the field on the aggregate size increases
with increasing field strength. The effect of an orienting field (K < 0) is to increase the
mean aggregate size for angles other than π/2, where the rod is oriented perpendicular to
the field and for which the aggregates are not affected by the field. A disorienting field has
the opposite effect, namely to decrease the mean aggregate size.

Since helical structures have an inherent direction, it is not unlikely that a helix may
carry a permanent dipole. In this case the interaction of the polymer with the field is
described by a dipolar field. This situation is very similar to that of a polarizable rod in a
quadrupolar field, albeit that the angle dependence becomes Kx rather than Kx2. [144] In
this case, we find infinitely long aggregates (after integration over all aggregate sizes and
angles) for K 〈N〉0 ≥ ±1/(1 − Cδ), so both for positive and negative values of K. If we
plot the renormalized mean aggregate size as a function of the angle γ (see Figure 7.4), we
see that, for both positive and negative values of K 〈N〉0, an increase in the aggregate size
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FIGURE 7.4: As Figure 7.3, but for a dipolar field.

is observed for a certain range of angles. We note that the aggregates are now smallest not
when they are perpendicular to the field, but when they are parallel to the field, but the
dipole moment is in the direction opposite to that of the field director.

We conclude that the mean size of a helical aggregate depends strongly on the presence of an
external field. Whether the same is true for the conformational state of the aggregate we can
check by calculating the fraction of helical bonds, averaged over all internal configurations
〈θ〉 (u) of an aggregate, as a function of the angle between the aggregate and the field. In
the ground-state approximation this equals (cf. eq (7.9)) [144]

〈θ〉 (u) ≈ ∂ ln λ̃+

∂ ln s̃
=

1

2
+

1

2
(s̃− 1)

[
(s̃− 1)2 + 4σs̃

]−1/2
(7.26)

In Figure 7.5 we show the dependence of the helicity on the angle γ between the axis of the
aggregate and the field, for several values of K 〈N〉0,2 and s = 1, σ = 0.001, and δ = −0.1.

Dependent on the sign of the field, rods inclined at large angles have either a larger or a
smaller degree of helicity than those nearly parallel to the field. This can be explained by
realizing that if K < 0, the field induces monomers to adopt a non-helical conformation,
since non-helical monomers have a stronger interaction with it. This gives a decrease in
θ. For K > 0, the opposite is the case, and the mean helicity increases. The larger the

2We used the values E = 10 and φ = 0.01 to calculate the value of 〈N〉0, since there is no direct
coupling to 〈N〉0 in eq (7.26). For this choice, 〈N〉0 ≈ 50. If we set E = 20, we obtain 〈N〉0 ≈ 1800
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FIGURE 7.5: The fraction of helical bonds in an aggregate as a function of the angle
between the aggregate axis and the external field, for fixed s = 1, σ = 0.001, and
δ = −0.1. Indicated are four different values of K 〈N〉0.

coupling to the field is, the stronger the effect on the helicity. We conclude that very large
values of K 〈N〉0 are necessary to induce a significant effect in the helicity for these values
of σ and δ. We did not study the helicity for values of K 〈N〉0 below -0.9 because of the
spurious boundless aggregate growth for K 〈N〉0 → −1.

In Figure 7.6, we vary some of the other parameters, while fixing K 〈N〉0 at 150. If we
examine an aggregate in which the helical transition is less cooperative (σ = 0.1 instead
of 0.001), we see that the dependence of the helicity on the angle becomes broader and
less pronounced. This implies that we can also obtain a stronger effect of the field on the
helicity at somewhat lower values of K 〈N〉0 if we choose σ small enough. If we differentiate
the helical and non-helical bonds further by increasing the absolute value of δ, we see an
increase in the peak sharpness: helical bonds are so short that they are even more favorable
than before (in the disordering field), and as such the preference for them becomes stronger,
even for values of γ quite close to π/2.

Another way to influence the balance between helical and non-helical bonds is by changing
the Boltzmann factor s, effectively changing the bare excess free energy of the helical bond
(in the absence of a field). Even a small change has a large effect on the helicity curve
(Figure 7.6): the range over which the aggregates are almost fully non-helical increases in
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FIGURE 7.6: As Figure 7.5, but for fixed: a. s = 1, σ = 0.001, and δ = −0.1; b.
s = 1, σ = 0.1, and δ = −0.1; c. s = 1, σ = 0.001, and δ = −0.5, and d. s = 0.9,
σ = 0.001, and δ = −0.1. K 〈N〉0 = 150 in all cases.

size when we decrease the value of s. Only for aggregates that lie almost parallel to the
field does the difference in polarizability between helical and non-helical bonds play a role.

7.4 Discussion

As we mentioned in the previous section, boundless growth can occur in helical aggregates
for certain angles, dependent on the type of field. Theories describing rigid, self-assembled
structures in external as well as molecular fields are known to predict such infinite growth.
[131, 145] It occurs because of a positive feedback between the aggregate size and the
alignment of the aggregates: the larger the aggregate is (in the direction parallel to the
field), the larger the orienting effect of the field on it becomes, and the more it will grow.
[145] This phenomenon is also well known in the context of liquid crystallinity of self-
assembled polymers. [109, 146, 147] Whether or not the unbounded aggregate growth
can be directly linked to the gelation transition predicted in some micellar systems is not
altogether clear at this point, due to a lack of experimental data on aggregates in external
fields. [131] Only in shear flow, which cannot be described by a simple potential, is there
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any experimental evidence (from viscosity measurements) that suggests a change in the
size of the aggregates. [131]

As we already announced in the previous section, it proves possible, however, to avoid
the boundless growth in some of the theoretical descriptions, implying it is a mathematical
anomaly. Two techniques have been proposed to achieve this. First, the infinite growth can
be suppressed by introducing a finite flexibility of the chains, as was done by van der Schoot
in the description of liquid crystalline ordering of linear micelles, [146] and second, it can
(in principle) be suppressed by including a stretching term into the potential. [131, 134]

Ideally, we would like to describe the conformational state and properties of helical ag-
gregates in elongational flow, rather than only in fields of the type described above. If
we apply an external field of the elongational type, and assume the so-called fast-reaction
regime to apply [131], the elongational flow can be described with a term that scales like
U(u)N3, as already mentioned in section 7.1. The third power with N makes it impossible
to use the method we used for the coupling with the electric field, and insert the polymer-
field coupling into the Hamiltonian of the helical chain. Instead, one should calculate the
influence of the field on an entire aggregate, rather than per bond. [131, 142] We have not
been able to find an expression for the mean size of the helical aggregates in elongational
flow.

Nevertheless, it is obvious that for an elongational flow field there is a singularity, now for
all angles γ, since the coupling to the field scales with N3, which grows much faster than the
linear term. To suppress the infinite growth, we can again attempt to introduce flexibility
or use a term for the component of the flow parallel to the rod, i.e., a stretching term,
into the expression for the free energy. [131, 134] This term has the form [P2(cos γ)]2 N5.
Since the prefactor is never smaller than zero, this term cannot increase the anomalous
growth. However, this term becomes zero for cos γ = 1/

√
3, so that it cannot suppress

the infinite growth for this angle. Therefore, it does not solve the problem of infinite
growth for all angles, and upper limits on the allowed aggregate size have to be manually
inserted. [131, 134] The treatment of elongational flow and the effect of flexibility and
chain stretching deserve further study.

Another interesting object for study is the possible effect of external fields and interactions
on the chirality amplification in aggregates formed from monomer mixtures. We speculate
that, since the right-handed and left-handed helical bond are symmetrical, they have the
same length, and the coupling of the interaggregate interactions should be the same for
both types of bond. This would mean that there is no effect on the chirality amplification
itself. Due to symmetry, we imagine that the polarizability of the left-handed and right-
handed helical monomers are equal in magnitude as well, and hence there is likely no effect
for external fields.
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7.5 Conclusions

We have demonstrated that interaggregate interactions, taken into account on the second-
virial level, change the mean size and the conformational state of self-assembled helical
aggregates. We find that the helical transition can couple strongly to the interaggregate
interactions, and that the shift in the helicity due to the interactions can cause a large
change in the aggregate size, if the concentration is high enough. Dependent on the ratio
q between the lengths of a helical and a non-helical bond, the formation of a helical bond
becomes relatively more or less favorable. The boundary conditions imposed have a large
influence on the qualitative picture of the aggregate size as a function of q.

The effect on helical supramolecular polymers of external fields with a quadrupole and
dipole character has been described. Apart from the known factors that regulate the
conformational state of the aggregates in the absence of a field, it now also depends on
the polarizability of the monomers in the helical and non-helical bond states, as well as on
the sign and magnitude of the field. For an ordering field, the longest of the bond types is
favored, all other things being equal, and the mean size of the aggregates increases. In the
case of a disordering field, the opposite is the case and the aggregates become shorter.
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Summary

In biomacromolecules, the conformational transition of a random coil into a helix and the
self-organization of molecules into supramolecular aggregates are two important processes
that usually occur in separate systems but can also be found to occur sequentially (or
simultaneously) in a single system. Recently, some types of synthetic molecule have also
been shown to display both transitions.

The type of molecule we focus on is one that assembles into linear supramolecular aggre-
gates, bound by physical interactions, such as electrostatic or solvophobic interactions, or
hydrogen bonds. Furthermore, these aggregates can undergo a helical-type conformational
transition in solution under the influence of a change in, e.g., concentration or temperature.
To describe the properties of such aggregates we combine a model for the configurational
transition (that is an extension of the one-dimensional Ising model) with the theory of
linear self-assembly.

The combination of the theories of self-assembly and the helical transition can be pursued
rigorously, and we find that there are essentially two regimes, one where the polymerization
transition and the helical transition are separate, and one where they coincide. In both
regimes, we find that the growth and the conformation of the aggregates are strongly
coupled, leading to a growth spurt of the aggregates in the regime where the helical form
dominates. It turns out that the conformation and mean size of the aggregates depend
strongly on our choice of description of the aggregate ends. We can choose to restrict
the aggregate ends (the first and last bond of the aggregate) to be helical or non-helical,
or choose not to restrict them at all. In so varying the boundary conditions, we observe
that three distinct classes of behavior manifest themselves. Comparison of the theory
with experimental measurements shows that only one of these classes can account for the
experimental results.

Experiments, in which mixtures of chiral and achiral versions of the self-assembling
monomers were used, show a strong change in the optical properties with the fraction
of homochiral material, even for small fractions of this material. This phenomenon also
occurs in conventional (covalently-bound) polymers, and is known as the sergeants-and-
soldiers type of chirality amplification. We combine the theory of self-assembly with a
two-component Ising-like model in order to describe the sergeants-and-soldiers principle in
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self-assembled polymers. We find two regimes, in accordance with experimental measure-
ments: one in which the chirality amplification increases with the concentration, and one
which shows no concentration dependence. Apart from the mass action, the free-energy
penalty of a helix reversal can also strongly influence the chirality amplification. We find
that mass action dominates when the aggregates are short, and that the free-energy penalty
of a helix reversal dominates in long polymers.

We use a similar, if somewhat more elaborate, theory to describe the so-called majority-
rules type of chirality amplification in mixed aggregates. This type of chirality amplification
occurs when the polymers consist of the two enantiomeric forms of the monomers, one in
slight excess over the other. Apart from a dependence on the free energy of a helix reversal,
we also find a strongly non-linear dependence on the free-energy penalty of a mismatch
between the preferred screw sense of a monomer and the handedness of the bond following
it.

Inspired by possible applications of the helical supramolecular polymers, such as in novel
gelators, we investigate the behavior of these aggregates at higher volume fractions, taking
interaggregate interactions into account. We also study the effect of external fields on the
conformational state of the assemblies. We find that both external fields (of the dipole and
quadrupole types) and interaggregate interactions (for which we use a second-virial type
description) can have an effect on the conformational state and size of the aggregates. We
find, in accordance to what is known for (non-helical) self-assembled aggregates, that for
some values of the external-field strength and for some angles between the aggregate axis
and the field director, unbounded growth of the aggregates is predicted.

Throughout this work, we place special emphasis on comparing our theory with experi-
mental measurements on aggregates of discotic molecules whenever available, and obtain
quantitative agreement in all cases.

Outlook

Judging from the comparison to experiment, we have succeeded in giving an accurate de-
scription of the helical transition and the sergeants-and-soldiers principle in self-assembled
polymers in dilute solution. However, some obvious routes of investigation are still open.
Our treatment of the majority-rules principle, for instance, has not yet been compared to
measurements of the optical activity due to a lack of experimental data. Also, we have not
yet explicitly extended this approach to include all chain lengths.

A theory for the behavior of helical aggregates which interact was outlined by us in Chapter
7. This study was not exhaustive and many other effects, such as liquid-crystal formation,
have yet to be described. Also in the theory of the effect of fields on the aggregates, we
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have detailed only a few cases. Flow fields in particular remain an interesting object for
further study.





Samenvatting

Twee belangrijke processen die optreden in de natuur zijn de conformationele overgang
tussen een helische toestand en een kluwen in biopolymeren en de zelfassemblage van
supramoleculaire aggregaten uit monomere eenheden door de vorming van fysische bindin-
gen. Deze twee processen komen afzonderlijk van elkaar voor, maar er zijn ook systemen
bekend waarin beide voorkomen, soms los van elkaar, maar soms ook tegelijkertijd. Re-
centelijk zijn er ook synthetische moleculen ontwikkeld die beide overgangen vertonen.

We concentreren ons hier op het type molecuul dat lineaire aggregaten vormt, die worden
samengehouden door fysische wisselwerkingen, zoals waterstofbruggen of electrostatische
of solvofobe interacties. Bovendien kunnen de aggregaten waarin we gëınteresseerd zijn
een conformationele overgang ondergaan van een wanordelijke toestand naar een helische
structuur onder invloed van bijvoorbeeld een verandering in temperatuur of concentratie.
Om de eigenschappen van deze aggregaten te beschrijven combineren we een model voor
de helische overgang (een uitbreiding op het bekende één-dimensionale Ising model) met
een beschrijving van de lineaire zelfassemblage.

Het is mogelijk om de theorieën van de zelfassemblage en de helische overgang te com-
bineren tot een exacte beschrijving van de helische zelfassemblage. We hebben gevonden
dat er twee regimes bestaan, één waar de polymerisatie en de helische overgang gescheiden
zijn en één waar ze samenvallen. In beide regimes bestaat een sterke koppeling tussen de
zelfassemblage en de helische overgang, wat tot uitdrukking komt in het feit dat de voor-
spelde aggregaatgrootte sterk toeneemt in het gebied waar de helische vorm domineert.
Bovendien blijkt dat de gemiddelde grootte en de configuratie van de aggregaten sterk
afhangen van de beschrijving van de uiteinden van de aggregaten. Dit kunnnen we testen
door de eerste en/of laatste binding van in het aggregaat helisch of niet-helisch te kiezen
of door ze vrij te laten. We vinden op deze manier drie klassen van gedrag. Slechts één
van deze klassen geeft een goede overeenstemming met meetresultaten.

In mengsels van chirale en achirale monomeren wordt, zelfs voor lage concentraties aan
chiraal materiaal,een sterke verandering in de optische eigenschappen van de aggregaten
gemeten, ten opzichte van geheel achirale aggregaten. Dit fenomeen treedt ook op in
conventionele (covalent gebonden) polymeren en is bekend als het sergeants-and-soldiers
principe van chiraliteitsversterking. We combineren de zelfassemblage-theorie met een
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Ising-achtig model voor twee-componenten systemen om dit sergeants-and-soldiers principe
in supramoleculaire polymeren te beschrijven. In overeenstemming met experimenten vin-
den we twee regimes, één waar de chiraliteitsversterking toeneemt met de concentratie en
één waar geen concentratie-afhankelijkheid optreedt. Buiten het effect van de concentratie
kan ook de vrije energie van een verandering in de draairichting van de helix langs de keten
een grote invloed hebben op de mate van chiraliteitsversterking. We voorspellen dat het
concentratie-effect domineert voor korte aggregaten, terwijl voor lange aggregaten de vrije
energie van een helix-omdraaiing het belangrijkst is.

We gebruiken een soortgelijke, zij het wat uitgebreidere, theorie om het zogenaamde
majority-rules principe van chiraliteitsversterking in gemengde aggregaten te beschrijven.
Dit is een soort chiraliteitsversterking die optreedt in polymeren die opgebouwd zijn uit de
twee enantiomere vormen van de monomeren, de één in een kleine overmaat ten opzichte
van de andere. Afgezien van de afhankelijkheid van de vrije energie van de helixomdraaiing
vinden we hier ook een, sterk niet-lineaire, afhankelijkheid van de vrije energie die optreedt
als een rechtsdraaiende binding een monomeer volgt dat een linksdraaiende binding pre-
fereert, en vice versa.

Gëınspireerd door mogelijke toepassingen van de helische aggregaten in bijvoorbeeld gela-
toren, hebben we het gedrag van deze ketens bij hogere concentraties onderzocht. Hiervoor
nemen we wisselwerkingen tussen aggregaten mee in onze beschrijving. Tevens bekijken
we het effect van uitwendige velden op de toestand en lengte van de aggregaten. Uit de
theorie volgt dat zowel uitwendige quadrupool- en dipoolvelden als interacties tussen ag-
gregaten een groot effect kunnen hebben op de grootte en toestand van de ketens. Voor
bepaalde waarden van de veldsterkte en de hoek tussen de director van het veld en de
aggregaat-as vinden we, in overeenstemming met wat bekend is voor cylindrische micellen,
een in principe ongelimiteerde groei van de polymeren. Het is mogelijk dat deze groei
overeenkomt met een geleringsovergang. De oneindige groei is echter waarschijnlijk te
remmen door de polymeren in ons model een eindige flexibiliteit te geven.

In dit proefschrift wordt voortdurend veel nadruk gelegd op de vergelijking tussen onze
theorie en experimenten die uitgevoerd zijn aan oplossingen van bepaalde schijfvormige
moleculen. In alle gevallen vinden we een kwantitatieve overeenkomst tussen theorie en
experiment.

Vooruitzicht

De vergelijking tussen theorie en experiment geeft aan dat onze beschrijving voor de
zelf-geassembleerde helische structuren en het sergeants-and-soldiers principe in verdunde
oplossing een goede is. Enkele voor de hand liggende onderzoeksonderwerpen blijven echter
open. Zo is er geen vergelijking met experiment uitgevoerd voor onze beschrijving van het
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majority-rules principe, door een gebrek aan experimentele gegevens. Ook hebben we deze
theorie nog niet uitgebreid, voorbij de lange-keten limiet.

In Hoofdstuk 7 hebben we een theorie besproken voor de helische aggregatie met inter-
aggregaat-interacties. Deze beschrijving was niet uitputtend en er blijven vele effecten
onbeschreven, zoals bijvoorbeeld het ontstaan van vloeibaar kristallijne fasen. Ook in de
theorie van het effect van velden op helische aggregaten hebben we maar enkele gevallen
bestudeerd. In het bijzonder het effect van stromingsvelden blijft een interessant onderwerp
dat nog niet in detail is beschreven voor deze systemen.
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I
Een vrije energie van slechts een paar kBT kan er voor zorgen dat een groot aantal
bindingen in een helisch polymeer eenzelfde conformatie aanneemt. Het is opmerke-
lijk dat dit effect in zelf-geassembleerde ketens even sterk kan zijn als in conventionele
polymeren, ondanks het feit dat de monomeren een grotere onderlinge afstand en een
geringere bindingssterkte hebben.

Dit proefschrift.

II
Het één-dimensionale Ising-model is niet het schijnbaar puur academische model
waarvoor het vaak wordt aangezien, maar heeft wel degelijk toepassingen in reële,
drie-dimensionale systemen.

Dit proefschrift.

D. Poland, H.A. Scheraga, Theory of Helix-Coil Transitions in Biopolymers, Aca-
demic Press, New York (1970).

T.L. Hill, Statistical Mechanics, McGraw-Hill Book Company, New York (1956).

III
In de beschrijving van wanordelijke systemen wordt het verschil tussen zogeheten in-
gevroren wanorde en evenwichtswanorde te weinig benadrukt.

Dit proefschrift, hoofdstuk 4.

M.L.C. Leung, B.Y. Tong, F.Y. Wu, Physics Letters, 54A, 361 (1975).

N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, Addison-
Wesley, Amsterdam (1992).

IV
Het is op zijn minst twijfelachtig om eindige polypeptiden te behandelen met een
theorie die geldig is voor oneindig lange ketens en hierbij bovendien een oneindig
grote vrije energie per lengte-eenheid in te vullen. Conclusies over de aard van de
helix-kluwen-overgang die uit een dergelijke werkwijze volgen, en tegenspreken wat



er al bekend is op dit gebied, dienen dan ook met een korrel zout te worden genomen.

Y. Peng, U.H.E. Hansmann, N.A. Alves, Journal of Chemical Physics, 118, 2374
(2003) en referenties hierin.

V
Het gebruik van dichterlijke taal in een wetenschappelijke publicatie, zelfs door
vooraanstaande wetenschappers, leidt niet altijd tot een verhoogde leesbaarheid.

J.-M. Lehn, Proceedings of the National Academy of Sciences of the USA, 99, 4763
(2002).

VI
Niet alleen in de wetenschap en natuur is coöperativiteit belangrijk, maar ook muziek
en ’sequentiële kunst’ zijn het mooist als het waargenomen geheel meer is dan de som
van de delen.

VII
Door te spreken in pretentieuze termen als ’grafische literatuur’ en ’sequentiële kunst’
proberen stripliefhebbers zich af te zetten tegen de consensus dat strips geen serieuze
literatuur zijn.

VIII
Het toepassen van ’trial-and-error’ methoden om diagnoses te stellen in de medische
praktijk is verontrustend.

IX
De neiging van fysici om systemen te beschrijven aan de hand van algemene modellen
die vaak gestoeld zijn op volstrekt andere systemen, verschilt sterk van de werkwijze



van chemici, die fenomenen vaak op een meer individuele basis behandelen. Hoewel
dit kan leiden tot een wat stroeve communicatie, vullen de twee zienswijzen elkaar
aan.

X
Dit proefschrift bevat geen drukbouten.
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