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A tandem queueing model with oupled proessorsJaques ResingDepartment of Mathematis and Computing SieneEindhoven University of TehnologyP.O. Box 5135600 MB EindhovenThe NetherlandsLerzan �Ormei �Department of Industrial EngineeringKo UniversitySariyer-IstanbulTurkeyAbstratWe onsider a tandem queueing model onsisting of two stations. Speial feature ofthe model is that the total servie apaity of the stations together is onstant. Whenboth stations are nonempty, a given proportion of this apaity is alloated to the �rststation and the remaining part to the seond station. However, if one of the stationsbeomes empty, the total apaity of the two stations together is alloated to the otherstation.The model is motivated by a situation enountered in multi-aess ommuniation inable TV networks. Before users are atually allowed to transmit data over a ommuni-ation hannel, they �rst have to obtain a kind of grant in order to avoid ollisions. Thetotal apaity of the ommuniation hannel is divided over the two di�erent stages:alloation of the grants on one hand and transmission of atual data on the other hand.We study the two-dimensional Markov proess representing the numbers of jobs inthe two stations. A funtional equation for the generating funtion of the stationarydistribution of this Markov proess is derived and the solution of the funtional equationis obtained. In the analysis we use the theory of Riemann-Hilbert boundary valueproblems.

�The researh was done while the author was at EURANDOM, Eindhoven, The Netherlands1



1 IntrodutionIn this paper we onsider a tandem queueing model onsisting of two stations. Jobs arriveat the �rst station aording to a Poisson proess. After reeiving servie at this station,they move to the seond station, and upon ompletion of servie at the seond station theyleave the system. The amount of work that a job requires at a station is an exponentiallydistributed random variable. The total servie apaity of the two stations together isonstant. When both stations are nonempty, a given proportion of the apaity is alloatedto station 1, and the remaining proportion is alloated to station 2. However, if one of thestations is empty, the total servie apaity of the stations is alloated to the other station.The model we onsider is motivated by the following situation enountered in able TVnetworks.Cable TV networks are urrently being upgraded to enable bidiretional ommunia-tions between the network terminations (NTs) at the ustomer premises and a entrallyloated head end (HE). In order to oordinate upstream transmission (i.e., from NTs toHE) a medium aess protool is needed. This protool an be a request-grant mehanismonsisting of two stages. At the �rst stage, an NT whih has data to transmit sends arequest to the HE in a dediated time slot to speify the number of data slots it needs.If only one NT sends a request in a ertain time slot, then the HE reeives the requestsuessfully. If more NTs send a request simultaneously in a ertain time slot, a ollisionours, upon whih a ollision resolution algorithm (CRA) is started for these NTs. TheNTs involved in the ollision have to retransmit their request. Hene, for a request to reahthe HE suessfully, a random number of time slots is needed, depending on the numberof NTs involved in the ollision and the CRA employed by the system. Upon reeivinga request suessfully, the HE starts the seond stage of the mehanism, the atual datatransmission, by sending a grant to the orresponding NT to transmit its data in spei�eddata slots. Note that also the atual transmission of data from the NTs to the HE needsa random number of time slots sine eah NT has a di�erent amount of data to transmit.Furthermore, the apaity of the upstream hannel is divided between these two stages bythe appropriate use of time slots. Some of the time slots are dediated to data transmissionof NTs already having a grant, and the rest is dediated to requests of NTs not yet havinga grant. In our model, servie at station 1 represents the proess of reeiving the requests,whereas servie at station 2 represents the transmission of the atual data orrespondingto the suessfully reeived requests. Hene, the total server apaity represents the totalupstream bandwidth, and its alloation to the two stations orresponds to the time-sharingof the upstream hannel by the two stages desribed above.What is a lever way to divide the total servie apaity over the two individual serviestations? In [6℄, Klimov onsiders the minimization of the average holding osts in a time-sharing queueing system with a number of stations in series attended by a single server. Inthe ase of two stations in series with the objetive of minimizing the average sojourn time,Klimov's results imply that the optimal poliy would be to alloate the whole apaity tothe seond station whenever this station is not empty. However, in the above mentionedappliation, the poliy to �rst alloate time slots for data transmission to the NTs whihrequests have already been reeived, and alloate only the remaining time slots for reeivingnew requests, turns out to be not very sensible. The reason for this is that there is a roundtrip delay (RTD) on the ollision feedbak. Upon a ollision, the HE announes that aollision ourred at a ertain slot and all the NTs whih tried to send a request in thatslot have to try again aording to the CRA. However, this announement reahes the NTs2



only after some time due to the RTD. This feedbak delay is very diÆult to inorporate ina queueing model, but also may not be ignored ompletely due to its substantial e�et onthe whole proess. Sala et al. [11℄ show, through simulations, that whenever the feedbakdelay is long, mean sojourn times at eah stage an be shortened by alloating request slotson a more regular basis. That is why we study the model in whih a �xed part of the totalservie apaity is always alloated to the �rst station, and only the remaining part to theseond station when both stations have at least one job. Only when one of the two stationsis empty, the total servie apaity is alloated to the other station.Systems in whih the servie rates of stations hange at the moments that one of thestations beomes empty, are known in the literature as systems with oupled proessors. Ina pioneering paper, Fayolle and Iasnogorodski [4℄ were the �rst to onsider suh a system.They analyzed two oupled servers in parallel with exponential servie times and deriveda solution for the generating funtion of the stationary distribution of the Markov proessdesribing the number of jobs in both queues, using the theory of Riemann-Hilbert boundaryvalue problems. Konheim, Meilijson and Melkman [7℄ determined the generating funtionof the joint queue length distribution in the ompletely symmetri ase (idential arrivaland servie rate at both servers) using a uniformization method. In Cohen and Boxma[3℄, the ordinary oupled proessor model is analyzed for the ase of generally distributedservie times. Our model an be viewed as the tandem version of the model in [3, 4, 7℄. Likethe ordinary oupled proessor model, our model will also be analyzed using the theory ofboundary value problems.Another way to divide the total servie apaity over the individual servie stations isto ompletely alloate the total servie apaity to one of the two stations in an alternatingorder. This would lead to a polling system with two stations in tandem attended by asingle server. For some tandem polling systems with di�erent types of swithing rules, suhas gated and exhaustive servie, Katayama [5℄ has given expliit expressions for the meansojourn time of jobs in the system.The rest of the paper is organized in the following way. In the next setion, we desribein detail the model under onsideration. In setion 3, we derive a funtional equation forthe generating funtion of the stationary joint distribution of the number of jobs in bothqueues. This funtional equation is analysed in setion 4 for the two extreme ases inwhih the total apaity is alloated to one of the two stations, even if both stations arenonempty. For the intermediate ases, in whih the stations really share the apaity whenboth stations are nonempty, the funtional equation is studied in setion 5. First, the kernelof the funtional equation is analyzed and after that a boundary value problem is formulatedand its solution is presented. In setion 6, we briey disuss a slightly more general model.As a speial ase of this more general model, we prove the well-known produt form solutionfor the stationary distribution of the ordinary tandem queue with exponential interarrivaland servie times using the theory of boundary value problems. We onlude this paperwith giving onlusions and mentioning some topis for further researh in setion 7.
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2 Model desriptionWe onsider a tandem queueing model onsisting of two stations. Jobs arrive at station 1aording to a Poisson proess with rate �, and they demand servie from both stationsbefore leaving the system. Eah job requires an exponential amount of work with parameter�j at station j, j = 1; 2. The total servie apaity of the two servie stations together is�xed. Without loss of generality we assume that this total servie apaity equals one unitof work per time unit. Whenever both stations are nonempty, a proportion p of the apaityis alloated to station 1, and the remaining part (1�p) is alloated to station 2. Thus, whenthere is at least one job at eah station, the departure rate of jobs at station 1 is �1p and thedeparture rate of jobs at station 2 is �2(1� p). However, when one of the stations beomesempty, the total servie apaity is alloated to the other station. Hene, the departure rateat that station, say station j, is temporarily inreased to �j. In the sequel we will denotewith �j = �=�j the average amount of work per time unit required at station j, j = 1; 2.Clearly, the two-dimensional proess X(t) = (X1(t);X2(t)), where Xj(t), j = 1; 2, is thenumber of jobs at station j at time t, is a Markov proess. The transition rate diagram ofthis proess is given in Figure 1.

Figure 1: The transition rate diagram of the systemUnder the ergodiity ondition �1 + �2 < 1; (1)the proess X(t) has a unique stationary distribution. In the sequel we are interested indetermining this stationary distribution. 4



3 Funtional equationLet us denote with �(n; k) the stationary probability of having n ustomers in station 1 andk ustomers in station 2. From the transition rate diagram of the model, we an derive theset of balane equations��(0; 0) = �2�(0; 1);(�+ �1) �(n; 0) = ��(n� 1; 0) + (1� p) �2�(n; 1); n � 1;(�+ �2) �(0; 1) = �1�(1; 0) + �2�(0; 2);(�+ p �1 + (1� p) �2) �(n; 1) = ��(n� 1; 1) + �1�(n+ 1; 0) + (1� p) �2�(n; 2); n � 1;(�+ �2) �(0; k) = p �1�(1; k � 1) + �2�(0; k + 1); k � 2;(�+ p �1 + (1� p) �2) �(n; k) = ��(n� 1; k) + p �1�(n+ 1; k � 1) + (1� p) �2�(n; k + 1);n � 1; k � 2:Now we de�ne, for jxj � 1; jyj � 1, the joint probability generating funtionP (x; y) := Xn�0Xk�0�(n; k)xnyk:From the balane equations it follows that P (x; y) satis�es the following funtional equation�(�+ p �1 + (1� p) �2)xy � �x2y � p �1y2 � (1� p) �2x�P (x; y)= �(1� p) [�1 y(y � x) + �2 x(y � 1)℄�P (x; 0)+�p [�2 x(1� y) + �1 y(x� y)℄�P (0; y)+�p �2 x(y � 1) + (1� p) �1 y(x� y)�P (0; 0): (2)The onstant P (0; 0) an be determined by substituting x = (�1y2)=(�1y��2(y�1)) in (2).For this hoie of x, both the fator in front of P (x; 0) and the fator in front of P (0; y) areequal to zero, and hene equation (2) redues toP ( �1y2�1y � �2(y � 1) ; y) = �2(y � 1)�2(y � 1) + �y(1� �1y2�1y��2(y�1) )P (0; 0): (3)Now, letting y " 1 in (3), we obtain P (0; 0) = 1 � �1 � �2. This result an, of ourse,be explained by the fat that, independent of p, the two stations together always work atapaity 1 (if there is work in the system) and the fat that �1 + �2 equals the amount ofwork brought into the system per time unit.How an we �nd the solution P (x; y) of the funtional equation (2)? In the next setion,we will give the expliit solution for P (x; y) in the speial ases p = 0 and p = 1. After thatwe show, in setion 5, how for the ase 0 < p < 1 the solution of (2) an be obtained usingthe theory of boundary value problems.
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4 The ases p = 0 and p = 1In the ase p = 0, resp. p = 1, the model that we onsider an be alternatively viewed asa tandem queueing model with one single server for both stations together, in whih theserver gives preemptive priority to station 2, resp. station 1. It turns out that for theseases, the funtional equation (2) an be solved relatively easily. This is mainly due to thefat that either the fator in front of P (0; y) in equation (2), in ase p = 0, or the fator infront of P (x; 0), in ase p = 1, is equal to zero. In fat, in ase p = 0, the model we onsideris well-known. However, as far as we know, the model is not studied before in ase p = 1.Therefore, we will partiularly pay attention to the latter ase in this setion.4.1 The ase p = 0If p = 0, every time the server has ompleted a servie of a job at station 1, he willimmediately ontinue the servie of this same job at station 2, due to the fat that servieat station 2 has priority. Hene, the analysis of the model essentially redues to the analysisof a singleM=C2=1 queue, in whih the servie time onsists of two exponential phases withparameters �1 and �2 respetively. This model an, for example, also be analysed using thespetral expansion method (see [8℄) or the matrix-geometri method (see [10℄). Equation(2) redues in this ase to�(�+ �2)xy � �x2y � �2x�P (x; y) =��1 y(y � x) + �2 x(y � 1)�P (x; 0) + ��1 y(x� y)�P (0; 0): (4)Now, beause for y = �2=(�+ �2 � �x) the fator in front of P (x; y) in (4) is zero, also therighthandside of (4) should be equal to zero. Hene,P (x; 0) = 1� �1 � �21� �1x(1+�2��2x)1��2x : (5)Substituting (5) in (4), we obtain after straightforward but lengthy alulationsP (x; y) = (1� �1 � �2)(1 + �2(y � x))1� (�1 + �2 + �1�2)x+ �1�2x2 : (6)4.2 The ase p = 1If p = 1, the model is a tandem queue with a single server and preemptive priority for the�rst queue. Equation (2) redues in this ase to�(�+ �1)xy � �x2y � �1y2�P (x; y) =��2 x(1� y) + �1 y(x� y)�P (0; y) + ��2 x(y � 1)�P (0; 0): (7)Now, for x = �(y), the unique root in the unit irle of the equation �x2�(�+�1)x+�1y = 0,the righthandside of (7) should again be equal to zero. Hene, we obtainP (0; 0) = �1� �2y (1� �(y))1� y �P (0; y); (8)6



or, alternatively, P (0; y) = 1� �1 � �21� �2y (1��(y))1�y : (9)Furthermore, substitution of (8) in (7) givesP (x; y) = �1x(1� �(y)) + x� y(�1 + 1)x� �1x2 � y P (0; y): (10)A nie probabilisti explanation for the results in equations (9) and (10) an be given.First remark that the root �(y) an be interpreted as the generating funtion of the numberof jobs served in a busy period of an M=M=1 queue with arrival rate � and servie rate�1 (see e.g., Cohen [2℄, page 190). Now, if we look at our model only during periods thatthe �rst queue is empty (i.e., we glue together idle periods of the �rst queue), the seondqueue behaves as an MX=M=1 queue with arrival rate �, bath size generating funtion�(y) and servie rate �2. Hene, the funtion P (0; y)=P (0; 1), i.e. the generating funtionof the onditional distribution of the number of jobs in the seond queue given that the�rst queue is empty, is the same as the generating funtion of the number of jobs in theabove mentioned MX=M=1 queue. The latter one is well known (see e.g., [2℄, page 387)and immediately gives equation (9).To explain equation (10) we introdue the random vetor (Y1; Y2), denoting the station-ary number of ustomers in the system (Y1) and the stationary number of ustomers alreadyserved in the urrent busy period (Y2), at a point in time in whih the server is busy in anM=M=1 queue with arrival intensity � and servie intensity �1. Furthermore, let Q(x; y) bethe generating funtion of (Y1; Y2). The funtion Q(x; y) an be straightforwardly obtainedby studying the two-dimensional Markov proess orresponding to (Y1; Y2). This proesshas almost the same transition rates as the ones in Figure 1 with p = 1, only the rates nearthe vertial boundary di�er. It turns out that Q(x; y) is equal toQ(x; y) = (1� �1)x(x� �(y))(�1 + 1)x� �1x2 � y : (11)Now, if we denote by (X1;X2) the stationary number of jobs at the two stations in ourmodel at arbitrary points in time, and by (0;X(i)2 ) the same quantities during idle periodsof the �rst station, then we have(X1;X2) d= ( (0;X(i)2 ); with probability 1� �1;(0;X(i)2 ) + (Y1; Y2); with probability �1: (12)Here, the random vetors (0;X(i)2 ) and (Y1; Y2) are furthermore independent. Hene, be-ause the random vetor (0;X(i)2 ) has generating funtion P (0; y)=P (0; 1), we haveP (x; y) = P (0; y)P (0; 1) (1� �1 + �1Q(x; y)) : (13)Using P (0; 1) = 1� �1, and ombination of (11) and (13), diretly gives (10).Remark: Deomposition result (12) also holds for generally distributed servie times andhene may be starting point for the analysis of the model with arbitrary servie times.7



5 The ase 0 < p < 1In this setion we will derive the solution of funtional equation (2) for 0 < p < 1. A keyrole is played by the kernelK(x; y) := (�+ p �1 + (1� p) �2)xy � �x2y � p �1y2 � (1� p) �2x:5.1 Zeros of the kernelBeause the kernel K(x; y) is, for eah x, a polynomial of degree 2 in y, we have thatfor every value of x there are two possible values of y, say y1(x) and y2(x), suh thatK(x; y1(x)) = K(x; y2(x)) = 0.Lemma 1 The algebrai funtion y(x) de�ned by K(x; y(x)) = 0 has four real branh points0 = x1 < x2 � 1 < x3 < x4.Proof: Branh points are zeros of the disriminant, D(x), of the equation K(x; y) = 0 asfuntion of y, i.e.,D(x) = ��x2 � (�+ p�1 + (1� p)�2)x�2 � 4p(1� p)�1�2x:Clearly, D(0) = 0, D(x) < 0 for small positive x, D(1) � 0, D((�+ p�1+ (1� p)�2)=�) < 0and limx!1D(x) =1. Hene, the lemma follows. 2Lemma 2 For eah x 2 [x1; x2℄, the two roots y1(x) and y2(x) are omplex onjugate.Hene, the interval [x1; x2℄ is mapped by x 7! y(x) onto a losed ontour L, whih issymmetri with respet to the real line.Proof: Follows diretly from the fat that the disriminant D(x) is zero for x = x1 andx = x2 and negative for x 2 (x1; x2). 2
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Figure 2: The ontour LIn Figure 2, the result of Lemma 2 is illustrated. In the sequel we will denote the interiorof the ontour L by L+. Finally, notie that for a point y(x) on the ontour L we have thaty(x)y(x) = (1� p)�2xp�1 ; (14)where the notation y indiates the omplex onjugate of y.8



5.2 The boundary value problemNext, we will formulate a boundary value problem for the funtion P (0; y).Lemma 3 The funtion P (0; y) is regular in the domain L+ and satis�es for y 2 L theonditionImP (0; y) = Im  p2�2y(y � 1) + (1� p)y [p�1y � (1 � p)�2℄p [y((1� p)�2 � p�1y) + p�2y(y � 1)℄ P (0; 0)! : (15)Proof: For zeropairs (x; y) of the kernel for whih P (x; y) is �nite, we have�(1� p) [�1 y(y � x) + �2 x(y � 1)℄�P (x; 0)+�p [�2 x(1� y) + �1 y(x� y)℄�P (0; y)+�p �2 x(y � 1) + (1� p) �1 y(x� y)�P (0; 0) = 0: (16)We an rewrite this equation, by substituting (1� p)�2x = p�1yy (see (14)), inP (0; y) = p2�2y(y � 1) + (1� p)y [p�1y � (1� p)�2℄p [y((1� p)�2 � p�1y) + p�2y(y � 1)℄ P (0; 0) + 1� pp P (x; 0): (17)Now, if (1�p)�2p�1 x2 � 1, then L lies entirely within the unit irle (y(x2) is the point onL with largest absolute value). Hene, P (0; y) is regular in L+. Finally, (15) follows from(17) by taking x 2 [x1; x2℄ and using that P (x; 0) is real for those x.If (1�p)�2p�1 x2 > 1, then P (0; y(x)) an be ontinued analytially over the interval [x1; x2℄via equation (16), beause P (x; 0) is regular on this interval. Hene, the analyti ontinua-tion of P (0; y) is �nite at y = y(x2). Beause P (0; y) has a power series expansion at y = 0with positive oeÆients, this implies that P (0; y) is regular for jyj < y(x2) and hene inL+. 2Lemma 3 shows that the determination of P (0; y) redues to the determination of thesolution of the following Riemann-Hilbert boundary value problem on the ontour L:Determine a funtion P (0; y) suh that1. P (0; y) is regular for y 2 L+ and ontinuous for y 2 L+ [ L.2. Re [iP (0; y)℄ = (y), for y 2 L,where (y) = � Im  p2�2y(y � 1) + (1� p)y [p�1y � (1� p)�2℄p [y((1� p)�2 � p�1y) + p�2y(y � 1)℄ P (0; 0)! :The standard way to solve this type of boundary value problem (see, e.g., Muskhelishvili[9℄) is to transform the boundary ondition (15), by using onformal mappings, to a on-dition on the unit irle. Let z = f(y) be the onformal map of L+ onto the unit irleC+ = fz : jzj < 1g and denote by y = f0(z) the inverse mapping, i.e., the onformal mapof C+ onto L+. 9



Now, if the funtion H(z) is the solution of the problem (P):Determine a funtion H(z) suh that1. H(z) is regular for z 2 C+ and ontinuous for z 2 C+ [ C.2. Re [iH(z)℄ = ~(z), for z 2 C, where ~(z) = (f0(z)),then P (0; y) = H(f(y)) is the solution of the original problem. The solution of problem(P), a so-alled Dirihlet problem on the irle, is well-known (see [9℄) and given byH(z) = 12� ZC ~(w)w + zw � z dww +K;where K is some onstant.In this way, P (0; y) has been formally determined. Substitution, �rst in (16) to obtainP (x; 0) and after that in (2), then yields P (x; y), so that the generating funtion of the jointstationary distribution of the queue lengths in the tandem queue has been obtained. In afuture study the details of this analysis will be provided. For example, the determination ofthe onformal map generally poses an interesting problem in the analysis of these boundaryvalue problems.Remark: In most problems, for the determination of the onformal map f and the inverseonformal map f0, a numerial tehnique (e.g., Theodorsen's proedure, see [3℄) has to beapplied. However, for this spei� problem, an expliit expression for the onformal mappingf(y) an be found (see the paper of Blan [1℄, in whih the time-dependent behaviour ofthe ordinary tandem queue without oupled proessors is studied).6 GeneralizationThe model that we onsidered so far in the paper is a speial ase of the following model.The system has two stations in tandem, eah station having its own server. Customers arriveat station 1 aording to a Poisson proess with rate �, and they require an exponentiallydistributed servie time from both stations before leaving the system. The servie rate atstation j is equal to rate �j whenever both stations have at least one ustomer. If one ofthe stations beomes empty, the servie rate at the other station hanges from �j to ��j .For this model the funtional equation beomes�(�+ �1 + �2)xy � �x2y � �1y2 � �2x�P (x; y)= �(��1 � �1)y(y � x) + �2x(y � 1)�P (x; 0)+�(��2 � �2)x(1� y) + �1y(x� y)�P (0; y)+�(��2 � �2)x(y � 1) + (��1 � �1)y(x� y)�P (0; 0): (18)After alulations, similar to those done in the previous setions, we get for y on the ontourL, Im �(��2 � �2)�1y(1� y) + �1y (�1y � �2)(��1 � �1)y (�1y � �2) + �1�2y(1� y)P (0; y)�= Im �(��2 � �2)�1y(1� y)� (��1 � �1)y (�1y � �2)(��1 � �1)y (�1y � �2) + �1�2y(1� y) P (0; 0)� :10



Again, we an now formulate a Riemann-Hilbert boundary value problem for the fun-tion P (0; y) on the ontour L of the following form:Determine a funtion P (0; y) suh that1. P (0; y) is regular for y 2 L+ and ontinuous for y 2 L+ [ L.2. Re [g(y)P (0; y)℄ = (y), for y 2 L.The study of this more general Riemann-Hilbert boundary value problem will be a topifor further researh. In the remaining part we restrit our attention to the solution of theproblem for the speial ase of an ordinary tandem queue, i.e., ��j = �j, j = 1; 2.6.1 The ordinary tandem queueIn the ase ��j = �j , j = 1; 2, it is of ourse well-known that the stationary joint distributionof the number of jobs at the two stations has a produt form. We now show how this resultfollows from (18). For zeropairs (x; y) of the kernel for whih P (x; y) is �nite, we have, from(18), �1y(x� y)P (0; y) = �2x(1� y)P (x; 0): (19)Multiplying both sides by (�(1� y))=(�1�2), we obtain�2y(x� y)(1� y)P (0; y) = �1x(1� y)(1 � y)P (x; 0); (20)where now �j = �=�j. Clearly, for real x, the righthandside of (20) is real, and furthermorefor y on the ontour L, we have �2yy = �1x. Using these two fats, we onlude thatIm ((x� y)(�2y � �1x)P (0; y)) = 0:Finally, using again that (x; y) is a zeropair of the kernel, this redues toIm ((1� �2y)P (0; y)) = 0:The solution of this boundary value problem is given byP (0; y) = K1� �2y ;where K is a onstant. Substituting this in (19) gives (again using �2yy = �1x)P (x; 0) = K1� �1x:Finally, substituting the formulas for P (0; y) and P (x; 0) in (18) givesP (x; y) = K(1� �1x)(1� �2y) :In this way, we �nd the produt form solution for the tandem queueing system diretly fromthe boundary value problem. 11
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