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A tandem queueing model with 
oupled pro
essorsJa
ques ResingDepartment of Mathemati
s and Computing S
ien
eEindhoven University of Te
hnologyP.O. Box 5135600 MB EindhovenThe NetherlandsLerzan �Orme
i �Department of Industrial EngineeringKo
 UniversitySariyer-IstanbulTurkeyAbstra
tWe 
onsider a tandem queueing model 
onsisting of two stations. Spe
ial feature ofthe model is that the total servi
e 
apa
ity of the stations together is 
onstant. Whenboth stations are nonempty, a given proportion of this 
apa
ity is allo
ated to the �rststation and the remaining part to the se
ond station. However, if one of the stationsbe
omes empty, the total 
apa
ity of the two stations together is allo
ated to the otherstation.The model is motivated by a situation en
ountered in multi-a

ess 
ommuni
ation in
able TV networks. Before users are a
tually allowed to transmit data over a 
ommuni-
ation 
hannel, they �rst have to obtain a kind of grant in order to avoid 
ollisions. Thetotal 
apa
ity of the 
ommuni
ation 
hannel is divided over the two di�erent stages:allo
ation of the grants on one hand and transmission of a
tual data on the other hand.We study the two-dimensional Markov pro
ess representing the numbers of jobs inthe two stations. A fun
tional equation for the generating fun
tion of the stationarydistribution of this Markov pro
ess is derived and the solution of the fun
tional equationis obtained. In the analysis we use the theory of Riemann-Hilbert boundary valueproblems.

�The resear
h was done while the author was at EURANDOM, Eindhoven, The Netherlands1



1 Introdu
tionIn this paper we 
onsider a tandem queueing model 
onsisting of two stations. Jobs arriveat the �rst station a

ording to a Poisson pro
ess. After re
eiving servi
e at this station,they move to the se
ond station, and upon 
ompletion of servi
e at the se
ond station theyleave the system. The amount of work that a job requires at a station is an exponentiallydistributed random variable. The total servi
e 
apa
ity of the two stations together is
onstant. When both stations are nonempty, a given proportion of the 
apa
ity is allo
atedto station 1, and the remaining proportion is allo
ated to station 2. However, if one of thestations is empty, the total servi
e 
apa
ity of the stations is allo
ated to the other station.The model we 
onsider is motivated by the following situation en
ountered in 
able TVnetworks.Cable TV networks are 
urrently being upgraded to enable bidire
tional 
ommuni
a-tions between the network terminations (NTs) at the 
ustomer premises and a 
entrallylo
ated head end (HE). In order to 
oordinate upstream transmission (i.e., from NTs toHE) a medium a

ess proto
ol is needed. This proto
ol 
an be a request-grant me
hanism
onsisting of two stages. At the �rst stage, an NT whi
h has data to transmit sends arequest to the HE in a dedi
ated time slot to spe
ify the number of data slots it needs.If only one NT sends a request in a 
ertain time slot, then the HE re
eives the requestsu

essfully. If more NTs send a request simultaneously in a 
ertain time slot, a 
ollisiono

urs, upon whi
h a 
ollision resolution algorithm (CRA) is started for these NTs. TheNTs involved in the 
ollision have to retransmit their request. Hen
e, for a request to rea
hthe HE su

essfully, a random number of time slots is needed, depending on the numberof NTs involved in the 
ollision and the CRA employed by the system. Upon re
eivinga request su

essfully, the HE starts the se
ond stage of the me
hanism, the a
tual datatransmission, by sending a grant to the 
orresponding NT to transmit its data in spe
i�eddata slots. Note that also the a
tual transmission of data from the NTs to the HE needsa random number of time slots sin
e ea
h NT has a di�erent amount of data to transmit.Furthermore, the 
apa
ity of the upstream 
hannel is divided between these two stages bythe appropriate use of time slots. Some of the time slots are dedi
ated to data transmissionof NTs already having a grant, and the rest is dedi
ated to requests of NTs not yet havinga grant. In our model, servi
e at station 1 represents the pro
ess of re
eiving the requests,whereas servi
e at station 2 represents the transmission of the a
tual data 
orrespondingto the su

essfully re
eived requests. Hen
e, the total server 
apa
ity represents the totalupstream bandwidth, and its allo
ation to the two stations 
orresponds to the time-sharingof the upstream 
hannel by the two stages des
ribed above.What is a 
lever way to divide the total servi
e 
apa
ity over the two individual servi
estations? In [6℄, Klimov 
onsiders the minimization of the average holding 
osts in a time-sharing queueing system with a number of stations in series attended by a single server. Inthe 
ase of two stations in series with the obje
tive of minimizing the average sojourn time,Klimov's results imply that the optimal poli
y would be to allo
ate the whole 
apa
ity tothe se
ond station whenever this station is not empty. However, in the above mentionedappli
ation, the poli
y to �rst allo
ate time slots for data transmission to the NTs whi
hrequests have already been re
eived, and allo
ate only the remaining time slots for re
eivingnew requests, turns out to be not very sensible. The reason for this is that there is a roundtrip delay (RTD) on the 
ollision feedba
k. Upon a 
ollision, the HE announ
es that a
ollision o

urred at a 
ertain slot and all the NTs whi
h tried to send a request in thatslot have to try again a

ording to the CRA. However, this announ
ement rea
hes the NTs2



only after some time due to the RTD. This feedba
k delay is very diÆ
ult to in
orporate ina queueing model, but also may not be ignored 
ompletely due to its substantial e�e
t onthe whole pro
ess. Sala et al. [11℄ show, through simulations, that whenever the feedba
kdelay is long, mean sojourn times at ea
h stage 
an be shortened by allo
ating request slotson a more regular basis. That is why we study the model in whi
h a �xed part of the totalservi
e 
apa
ity is always allo
ated to the �rst station, and only the remaining part to these
ond station when both stations have at least one job. Only when one of the two stationsis empty, the total servi
e 
apa
ity is allo
ated to the other station.Systems in whi
h the servi
e rates of stations 
hange at the moments that one of thestations be
omes empty, are known in the literature as systems with 
oupled pro
essors. Ina pioneering paper, Fayolle and Iasnogorodski [4℄ were the �rst to 
onsider su
h a system.They analyzed two 
oupled servers in parallel with exponential servi
e times and deriveda solution for the generating fun
tion of the stationary distribution of the Markov pro
essdes
ribing the number of jobs in both queues, using the theory of Riemann-Hilbert boundaryvalue problems. Konheim, Meilijson and Melkman [7℄ determined the generating fun
tionof the joint queue length distribution in the 
ompletely symmetri
 
ase (identi
al arrivaland servi
e rate at both servers) using a uniformization method. In Cohen and Boxma[3℄, the ordinary 
oupled pro
essor model is analyzed for the 
ase of generally distributedservi
e times. Our model 
an be viewed as the tandem version of the model in [3, 4, 7℄. Likethe ordinary 
oupled pro
essor model, our model will also be analyzed using the theory ofboundary value problems.Another way to divide the total servi
e 
apa
ity over the individual servi
e stations isto 
ompletely allo
ate the total servi
e 
apa
ity to one of the two stations in an alternatingorder. This would lead to a polling system with two stations in tandem attended by asingle server. For some tandem polling systems with di�erent types of swit
hing rules, su
has gated and exhaustive servi
e, Katayama [5℄ has given expli
it expressions for the meansojourn time of jobs in the system.The rest of the paper is organized in the following way. In the next se
tion, we des
ribein detail the model under 
onsideration. In se
tion 3, we derive a fun
tional equation forthe generating fun
tion of the stationary joint distribution of the number of jobs in bothqueues. This fun
tional equation is analysed in se
tion 4 for the two extreme 
ases inwhi
h the total 
apa
ity is allo
ated to one of the two stations, even if both stations arenonempty. For the intermediate 
ases, in whi
h the stations really share the 
apa
ity whenboth stations are nonempty, the fun
tional equation is studied in se
tion 5. First, the kernelof the fun
tional equation is analyzed and after that a boundary value problem is formulatedand its solution is presented. In se
tion 6, we brie
y dis
uss a slightly more general model.As a spe
ial 
ase of this more general model, we prove the well-known produ
t form solutionfor the stationary distribution of the ordinary tandem queue with exponential interarrivaland servi
e times using the theory of boundary value problems. We 
on
lude this paperwith giving 
on
lusions and mentioning some topi
s for further resear
h in se
tion 7.
3



2 Model des
riptionWe 
onsider a tandem queueing model 
onsisting of two stations. Jobs arrive at station 1a

ording to a Poisson pro
ess with rate �, and they demand servi
e from both stationsbefore leaving the system. Ea
h job requires an exponential amount of work with parameter�j at station j, j = 1; 2. The total servi
e 
apa
ity of the two servi
e stations together is�xed. Without loss of generality we assume that this total servi
e 
apa
ity equals one unitof work per time unit. Whenever both stations are nonempty, a proportion p of the 
apa
ityis allo
ated to station 1, and the remaining part (1�p) is allo
ated to station 2. Thus, whenthere is at least one job at ea
h station, the departure rate of jobs at station 1 is �1p and thedeparture rate of jobs at station 2 is �2(1� p). However, when one of the stations be
omesempty, the total servi
e 
apa
ity is allo
ated to the other station. Hen
e, the departure rateat that station, say station j, is temporarily in
reased to �j. In the sequel we will denotewith �j = �=�j the average amount of work per time unit required at station j, j = 1; 2.Clearly, the two-dimensional pro
ess X(t) = (X1(t);X2(t)), where Xj(t), j = 1; 2, is thenumber of jobs at station j at time t, is a Markov pro
ess. The transition rate diagram ofthis pro
ess is given in Figure 1.

Figure 1: The transition rate diagram of the systemUnder the ergodi
ity 
ondition �1 + �2 < 1; (1)the pro
ess X(t) has a unique stationary distribution. In the sequel we are interested indetermining this stationary distribution. 4



3 Fun
tional equationLet us denote with �(n; k) the stationary probability of having n 
ustomers in station 1 andk 
ustomers in station 2. From the transition rate diagram of the model, we 
an derive theset of balan
e equations��(0; 0) = �2�(0; 1);(�+ �1) �(n; 0) = ��(n� 1; 0) + (1� p) �2�(n; 1); n � 1;(�+ �2) �(0; 1) = �1�(1; 0) + �2�(0; 2);(�+ p �1 + (1� p) �2) �(n; 1) = ��(n� 1; 1) + �1�(n+ 1; 0) + (1� p) �2�(n; 2); n � 1;(�+ �2) �(0; k) = p �1�(1; k � 1) + �2�(0; k + 1); k � 2;(�+ p �1 + (1� p) �2) �(n; k) = ��(n� 1; k) + p �1�(n+ 1; k � 1) + (1� p) �2�(n; k + 1);n � 1; k � 2:Now we de�ne, for jxj � 1; jyj � 1, the joint probability generating fun
tionP (x; y) := Xn�0Xk�0�(n; k)xnyk:From the balan
e equations it follows that P (x; y) satis�es the following fun
tional equation�(�+ p �1 + (1� p) �2)xy � �x2y � p �1y2 � (1� p) �2x�P (x; y)= �(1� p) [�1 y(y � x) + �2 x(y � 1)℄�P (x; 0)+�p [�2 x(1� y) + �1 y(x� y)℄�P (0; y)+�p �2 x(y � 1) + (1� p) �1 y(x� y)�P (0; 0): (2)The 
onstant P (0; 0) 
an be determined by substituting x = (�1y2)=(�1y��2(y�1)) in (2).For this 
hoi
e of x, both the fa
tor in front of P (x; 0) and the fa
tor in front of P (0; y) areequal to zero, and hen
e equation (2) redu
es toP ( �1y2�1y � �2(y � 1) ; y) = �2(y � 1)�2(y � 1) + �y(1� �1y2�1y��2(y�1) )P (0; 0): (3)Now, letting y " 1 in (3), we obtain P (0; 0) = 1 � �1 � �2. This result 
an, of 
ourse,be explained by the fa
t that, independent of p, the two stations together always work at
apa
ity 1 (if there is work in the system) and the fa
t that �1 + �2 equals the amount ofwork brought into the system per time unit.How 
an we �nd the solution P (x; y) of the fun
tional equation (2)? In the next se
tion,we will give the expli
it solution for P (x; y) in the spe
ial 
ases p = 0 and p = 1. After thatwe show, in se
tion 5, how for the 
ase 0 < p < 1 the solution of (2) 
an be obtained usingthe theory of boundary value problems.
5



4 The 
ases p = 0 and p = 1In the 
ase p = 0, resp. p = 1, the model that we 
onsider 
an be alternatively viewed asa tandem queueing model with one single server for both stations together, in whi
h theserver gives preemptive priority to station 2, resp. station 1. It turns out that for these
ases, the fun
tional equation (2) 
an be solved relatively easily. This is mainly due to thefa
t that either the fa
tor in front of P (0; y) in equation (2), in 
ase p = 0, or the fa
tor infront of P (x; 0), in 
ase p = 1, is equal to zero. In fa
t, in 
ase p = 0, the model we 
onsideris well-known. However, as far as we know, the model is not studied before in 
ase p = 1.Therefore, we will parti
ularly pay attention to the latter 
ase in this se
tion.4.1 The 
ase p = 0If p = 0, every time the server has 
ompleted a servi
e of a job at station 1, he willimmediately 
ontinue the servi
e of this same job at station 2, due to the fa
t that servi
eat station 2 has priority. Hen
e, the analysis of the model essentially redu
es to the analysisof a singleM=C2=1 queue, in whi
h the servi
e time 
onsists of two exponential phases withparameters �1 and �2 respe
tively. This model 
an, for example, also be analysed using thespe
tral expansion method (see [8℄) or the matrix-geometri
 method (see [10℄). Equation(2) redu
es in this 
ase to�(�+ �2)xy � �x2y � �2x�P (x; y) =��1 y(y � x) + �2 x(y � 1)�P (x; 0) + ��1 y(x� y)�P (0; 0): (4)Now, be
ause for y = �2=(�+ �2 � �x) the fa
tor in front of P (x; y) in (4) is zero, also therighthandside of (4) should be equal to zero. Hen
e,P (x; 0) = 1� �1 � �21� �1x(1+�2��2x)1��2x : (5)Substituting (5) in (4), we obtain after straightforward but lengthy 
al
ulationsP (x; y) = (1� �1 � �2)(1 + �2(y � x))1� (�1 + �2 + �1�2)x+ �1�2x2 : (6)4.2 The 
ase p = 1If p = 1, the model is a tandem queue with a single server and preemptive priority for the�rst queue. Equation (2) redu
es in this 
ase to�(�+ �1)xy � �x2y � �1y2�P (x; y) =��2 x(1� y) + �1 y(x� y)�P (0; y) + ��2 x(y � 1)�P (0; 0): (7)Now, for x = �(y), the unique root in the unit 
ir
le of the equation �x2�(�+�1)x+�1y = 0,the righthandside of (7) should again be equal to zero. Hen
e, we obtainP (0; 0) = �1� �2y (1� �(y))1� y �P (0; y); (8)6



or, alternatively, P (0; y) = 1� �1 � �21� �2y (1��(y))1�y : (9)Furthermore, substitution of (8) in (7) givesP (x; y) = �1x(1� �(y)) + x� y(�1 + 1)x� �1x2 � y P (0; y): (10)A ni
e probabilisti
 explanation for the results in equations (9) and (10) 
an be given.First remark that the root �(y) 
an be interpreted as the generating fun
tion of the numberof jobs served in a busy period of an M=M=1 queue with arrival rate � and servi
e rate�1 (see e.g., Cohen [2℄, page 190). Now, if we look at our model only during periods thatthe �rst queue is empty (i.e., we glue together idle periods of the �rst queue), the se
ondqueue behaves as an MX=M=1 queue with arrival rate �, bat
h size generating fun
tion�(y) and servi
e rate �2. Hen
e, the fun
tion P (0; y)=P (0; 1), i.e. the generating fun
tionof the 
onditional distribution of the number of jobs in the se
ond queue given that the�rst queue is empty, is the same as the generating fun
tion of the number of jobs in theabove mentioned MX=M=1 queue. The latter one is well known (see e.g., [2℄, page 387)and immediately gives equation (9).To explain equation (10) we introdu
e the random ve
tor (Y1; Y2), denoting the station-ary number of 
ustomers in the system (Y1) and the stationary number of 
ustomers alreadyserved in the 
urrent busy period (Y2), at a point in time in whi
h the server is busy in anM=M=1 queue with arrival intensity � and servi
e intensity �1. Furthermore, let Q(x; y) bethe generating fun
tion of (Y1; Y2). The fun
tion Q(x; y) 
an be straightforwardly obtainedby studying the two-dimensional Markov pro
ess 
orresponding to (Y1; Y2). This pro
esshas almost the same transition rates as the ones in Figure 1 with p = 1, only the rates nearthe verti
al boundary di�er. It turns out that Q(x; y) is equal toQ(x; y) = (1� �1)x(x� �(y))(�1 + 1)x� �1x2 � y : (11)Now, if we denote by (X1;X2) the stationary number of jobs at the two stations in ourmodel at arbitrary points in time, and by (0;X(i)2 ) the same quantities during idle periodsof the �rst station, then we have(X1;X2) d= ( (0;X(i)2 ); with probability 1� �1;(0;X(i)2 ) + (Y1; Y2); with probability �1: (12)Here, the random ve
tors (0;X(i)2 ) and (Y1; Y2) are furthermore independent. Hen
e, be-
ause the random ve
tor (0;X(i)2 ) has generating fun
tion P (0; y)=P (0; 1), we haveP (x; y) = P (0; y)P (0; 1) (1� �1 + �1Q(x; y)) : (13)Using P (0; 1) = 1� �1, and 
ombination of (11) and (13), dire
tly gives (10).Remark: De
omposition result (12) also holds for generally distributed servi
e times andhen
e may be starting point for the analysis of the model with arbitrary servi
e times.7



5 The 
ase 0 < p < 1In this se
tion we will derive the solution of fun
tional equation (2) for 0 < p < 1. A keyrole is played by the kernelK(x; y) := (�+ p �1 + (1� p) �2)xy � �x2y � p �1y2 � (1� p) �2x:5.1 Zeros of the kernelBe
ause the kernel K(x; y) is, for ea
h x, a polynomial of degree 2 in y, we have thatfor every value of x there are two possible values of y, say y1(x) and y2(x), su
h thatK(x; y1(x)) = K(x; y2(x)) = 0.Lemma 1 The algebrai
 fun
tion y(x) de�ned by K(x; y(x)) = 0 has four real bran
h points0 = x1 < x2 � 1 < x3 < x4.Proof: Bran
h points are zeros of the dis
riminant, D(x), of the equation K(x; y) = 0 asfun
tion of y, i.e.,D(x) = ��x2 � (�+ p�1 + (1� p)�2)x�2 � 4p(1� p)�1�2x:Clearly, D(0) = 0, D(x) < 0 for small positive x, D(1) � 0, D((�+ p�1+ (1� p)�2)=�) < 0and limx!1D(x) =1. Hen
e, the lemma follows. 2Lemma 2 For ea
h x 2 [x1; x2℄, the two roots y1(x) and y2(x) are 
omplex 
onjugate.Hen
e, the interval [x1; x2℄ is mapped by x 7! y(x) onto a 
losed 
ontour L, whi
h issymmetri
 with respe
t to the real line.Proof: Follows dire
tly from the fa
t that the dis
riminant D(x) is zero for x = x1 andx = x2 and negative for x 2 (x1; x2). 2
L

x

y (x)

y (x)

x - plane y - plane

1  

1  

2

2xx 0

Figure 2: The 
ontour LIn Figure 2, the result of Lemma 2 is illustrated. In the sequel we will denote the interiorof the 
ontour L by L+. Finally, noti
e that for a point y(x) on the 
ontour L we have thaty(x)y(x) = (1� p)�2xp�1 ; (14)where the notation y indi
ates the 
omplex 
onjugate of y.8



5.2 The boundary value problemNext, we will formulate a boundary value problem for the fun
tion P (0; y).Lemma 3 The fun
tion P (0; y) is regular in the domain L+ and satis�es for y 2 L the
onditionImP (0; y) = Im  p2�2y(y � 1) + (1� p)y [p�1y � (1 � p)�2℄p [y((1� p)�2 � p�1y) + p�2y(y � 1)℄ P (0; 0)! : (15)Proof: For zeropairs (x; y) of the kernel for whi
h P (x; y) is �nite, we have�(1� p) [�1 y(y � x) + �2 x(y � 1)℄�P (x; 0)+�p [�2 x(1� y) + �1 y(x� y)℄�P (0; y)+�p �2 x(y � 1) + (1� p) �1 y(x� y)�P (0; 0) = 0: (16)We 
an rewrite this equation, by substituting (1� p)�2x = p�1yy (see (14)), inP (0; y) = p2�2y(y � 1) + (1� p)y [p�1y � (1� p)�2℄p [y((1� p)�2 � p�1y) + p�2y(y � 1)℄ P (0; 0) + 1� pp P (x; 0): (17)Now, if (1�p)�2p�1 x2 � 1, then L lies entirely within the unit 
ir
le (y(x2) is the point onL with largest absolute value). Hen
e, P (0; y) is regular in L+. Finally, (15) follows from(17) by taking x 2 [x1; x2℄ and using that P (x; 0) is real for those x.If (1�p)�2p�1 x2 > 1, then P (0; y(x)) 
an be 
ontinued analyti
ally over the interval [x1; x2℄via equation (16), be
ause P (x; 0) is regular on this interval. Hen
e, the analyti
 
ontinua-tion of P (0; y) is �nite at y = y(x2). Be
ause P (0; y) has a power series expansion at y = 0with positive 
oeÆ
ients, this implies that P (0; y) is regular for jyj < y(x2) and hen
e inL+. 2Lemma 3 shows that the determination of P (0; y) redu
es to the determination of thesolution of the following Riemann-Hilbert boundary value problem on the 
ontour L:Determine a fun
tion P (0; y) su
h that1. P (0; y) is regular for y 2 L+ and 
ontinuous for y 2 L+ [ L.2. Re [iP (0; y)℄ = 
(y), for y 2 L,where 
(y) = � Im  p2�2y(y � 1) + (1� p)y [p�1y � (1� p)�2℄p [y((1� p)�2 � p�1y) + p�2y(y � 1)℄ P (0; 0)! :The standard way to solve this type of boundary value problem (see, e.g., Muskhelishvili[9℄) is to transform the boundary 
ondition (15), by using 
onformal mappings, to a 
on-dition on the unit 
ir
le. Let z = f(y) be the 
onformal map of L+ onto the unit 
ir
leC+ = fz : jzj < 1g and denote by y = f0(z) the inverse mapping, i.e., the 
onformal mapof C+ onto L+. 9



Now, if the fun
tion H(z) is the solution of the problem (P):Determine a fun
tion H(z) su
h that1. H(z) is regular for z 2 C+ and 
ontinuous for z 2 C+ [ C.2. Re [iH(z)℄ = ~
(z), for z 2 C, where ~
(z) = 
(f0(z)),then P (0; y) = H(f(y)) is the solution of the original problem. The solution of problem(P), a so-
alled Diri
hlet problem on the 
ir
le, is well-known (see [9℄) and given byH(z) = 12� ZC ~
(w)w + zw � z dww +K;where K is some 
onstant.In this way, P (0; y) has been formally determined. Substitution, �rst in (16) to obtainP (x; 0) and after that in (2), then yields P (x; y), so that the generating fun
tion of the jointstationary distribution of the queue lengths in the tandem queue has been obtained. In afuture study the details of this analysis will be provided. For example, the determination ofthe 
onformal map generally poses an interesting problem in the analysis of these boundaryvalue problems.Remark: In most problems, for the determination of the 
onformal map f and the inverse
onformal map f0, a numeri
al te
hnique (e.g., Theodorsen's pro
edure, see [3℄) has to beapplied. However, for this spe
i�
 problem, an expli
it expression for the 
onformal mappingf(y) 
an be found (see the paper of Blan
 [1℄, in whi
h the time-dependent behaviour ofthe ordinary tandem queue without 
oupled pro
essors is studied).6 GeneralizationThe model that we 
onsidered so far in the paper is a spe
ial 
ase of the following model.The system has two stations in tandem, ea
h station having its own server. Customers arriveat station 1 a

ording to a Poisson pro
ess with rate �, and they require an exponentiallydistributed servi
e time from both stations before leaving the system. The servi
e rate atstation j is equal to rate �j whenever both stations have at least one 
ustomer. If one ofthe stations be
omes empty, the servi
e rate at the other station 
hanges from �j to ��j .For this model the fun
tional equation be
omes�(�+ �1 + �2)xy � �x2y � �1y2 � �2x�P (x; y)= �(��1 � �1)y(y � x) + �2x(y � 1)�P (x; 0)+�(��2 � �2)x(1� y) + �1y(x� y)�P (0; y)+�(��2 � �2)x(y � 1) + (��1 � �1)y(x� y)�P (0; 0): (18)After 
al
ulations, similar to those done in the previous se
tions, we get for y on the 
ontourL, Im �(��2 � �2)�1y(1� y) + �1y (�1y � �2)(��1 � �1)y (�1y � �2) + �1�2y(1� y)P (0; y)�= Im �(��2 � �2)�1y(1� y)� (��1 � �1)y (�1y � �2)(��1 � �1)y (�1y � �2) + �1�2y(1� y) P (0; 0)� :10



Again, we 
an now formulate a Riemann-Hilbert boundary value problem for the fun
-tion P (0; y) on the 
ontour L of the following form:Determine a fun
tion P (0; y) su
h that1. P (0; y) is regular for y 2 L+ and 
ontinuous for y 2 L+ [ L.2. Re [g(y)P (0; y)℄ = 
(y), for y 2 L.The study of this more general Riemann-Hilbert boundary value problem will be a topi
for further resear
h. In the remaining part we restri
t our attention to the solution of theproblem for the spe
ial 
ase of an ordinary tandem queue, i.e., ��j = �j, j = 1; 2.6.1 The ordinary tandem queueIn the 
ase ��j = �j , j = 1; 2, it is of 
ourse well-known that the stationary joint distributionof the number of jobs at the two stations has a produ
t form. We now show how this resultfollows from (18). For zeropairs (x; y) of the kernel for whi
h P (x; y) is �nite, we have, from(18), �1y(x� y)P (0; y) = �2x(1� y)P (x; 0): (19)Multiplying both sides by (�(1� y))=(�1�2), we obtain�2y(x� y)(1� y)P (0; y) = �1x(1� y)(1 � y)P (x; 0); (20)where now �j = �=�j. Clearly, for real x, the righthandside of (20) is real, and furthermorefor y on the 
ontour L, we have �2yy = �1x. Using these two fa
ts, we 
on
lude thatIm ((x� y)(�2y � �1x)P (0; y)) = 0:Finally, using again that (x; y) is a zeropair of the kernel, this redu
es toIm ((1� �2y)P (0; y)) = 0:The solution of this boundary value problem is given byP (0; y) = K1� �2y ;where K is a 
onstant. Substituting this in (19) gives (again using �2yy = �1x)P (x; 0) = K1� �1x:Finally, substituting the formulas for P (0; y) and P (x; 0) in (18) givesP (x; y) = K(1� �1x)(1� �2y) :In this way, we �nd the produ
t form solution for the tandem queueing system dire
tly fromthe boundary value problem. 11



7 Con
lusions and topi
s for further resear
hIn this paper we analysed a tandem queueing model 
onsisting of two stations in whi
h thetotal servi
e 
apa
ity of the two stations together is 
onstant. The servi
e 
apa
ity of theindividual stations depends on whether or not one of the stations is empty. The stationaryjoint distribution of the number of jobs in the two stations is analysed, using the theory ofboundary value problems.The numeri
al evaluation of the solution is a topi
 for further resear
h. Furthermore,the analysis of the more general tandem queueing model with 
oupled pro
essors, brie
ydes
ribed in se
tion 6, will also be part of a future study.A
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