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Abstract

We consider a tandem queueing model consisting of two stations. Special feature of
the model is that the total service capacity of the stations together is constant. When
both stations are nonempty, a given proportion of this capacity is allocated to the first
station and the remaining part to the second station. However, if one of the stations
becomes empty, the total capacity of the two stations together is allocated to the other
station.

The model is motivated by a situation encountered in multi-access communication in
cable TV networks. Before users are actually allowed to transmit data over a communi-
cation channel, they first have to obtain a kind of grant in order to avoid collisions. The
total capacity of the communication channel is divided over the two different stages:
allocation of the grants on one hand and transmission of actual data on the other hand.

We study the two-dimensional Markov process representing the numbers of jobs in
the two stations. A functional equation for the generating function of the stationary
distribution of this Markov process is derived and the solution of the functional equation
is obtained. In the analysis we use the theory of Riemann-Hilbert boundary value
problems.

*The research was done while the author was at EURANDOM, Eindhoven, The Netherlands



1 Introduction

In this paper we consider a tandem queueing model consisting of two stations. Jobs arrive
at the first station according to a Poisson process. After receiving service at this station,
they move to the second station, and upon completion of service at the second station they
leave the system. The amount of work that a job requires at a station is an exponentially
distributed random variable. The total service capacity of the two stations together is
constant. When both stations are nonempty, a given proportion of the capacity is allocated
to station 1, and the remaining proportion is allocated to station 2. However, if one of the
stations is empty, the total service capacity of the stations is allocated to the other station.
The model we consider is motivated by the following situation encountered in cable TV
networks.

Cable TV networks are currently being upgraded to enable bidirectional communica-
tions between the network terminations (NTs) at the customer premises and a centrally
located head end (HE). In order to coordinate upstream transmission (i.e., from NTs to
HE) a medium access protocol is needed. This protocol can be a request-grant mechanism
consisting of two stages. At the first stage, an NT which has data to transmit sends a
request to the HE in a dedicated time slot to specify the number of data slots it needs.
If only one NT sends a request in a certain time slot, then the HE receives the request
successfully. If more NTs send a request simultaneously in a certain time slot, a collision
occurs, upon which a collision resolution algorithm (CRA) is started for these NTs. The
NTs involved in the collision have to retransmit their request. Hence, for a request to reach
the HE successfully, a random number of time slots is needed, depending on the number
of NTs involved in the collision and the CRA employed by the system. Upon receiving
a request successfully, the HE starts the second stage of the mechanism, the actual data
transmission, by sending a grant to the corresponding NT to transmit its data in specified
data slots. Note that also the actual transmission of data from the NTs to the HE needs
a random number of time slots since each NT has a different amount of data to transmit.
Furthermore, the capacity of the upstream channel is divided between these two stages by
the appropriate use of time slots. Some of the time slots are dedicated to data transmission
of NTs already having a grant, and the rest is dedicated to requests of NTs not yet having
a grant. In our model, service at station 1 represents the process of receiving the requests,
whereas service at station 2 represents the transmission of the actual data corresponding
to the successfully received requests. Hence, the total server capacity represents the total
upstream bandwidth, and its allocation to the two stations corresponds to the time-sharing
of the upstream channel by the two stages described above.

What is a clever way to divide the total service capacity over the two individual service
stations? In [6], Klimov considers the minimization of the average holding costs in a time-
sharing queueing system with a number of stations in series attended by a single server. In
the case of two stations in series with the objective of minimizing the average sojourn time,
Klimov’s results imply that the optimal policy would be to allocate the whole capacity to
the second station whenever this station is not empty. However, in the above mentioned
application, the policy to first allocate time slots for data transmission to the NTs which
requests have already been received, and allocate only the remaining time slots for receiving
new requests, turns out to be not very sensible. The reason for this is that there is a round
trip delay (RTD) on the collision feedback. Upon a collision, the HE announces that a
collision occurred at a certain slot and all the NTs which tried to send a request in that
slot have to try again according to the CRA. However, this announcement reaches the N'T's



only after some time due to the RTD. This feedback delay is very difficult to incorporate in
a queueing model, but also may not be ignored completely due to its substantial effect on
the whole process. Sala et al. [11] show, through simulations, that whenever the feedback
delay is long, mean sojourn times at each stage can be shortened by allocating request slots
on a more regular basis. That is why we study the model in which a fixed part of the total
service capacity is always allocated to the first station, and only the remaining part to the
second station when both stations have at least one job. Only when one of the two stations
is empty, the total service capacity is allocated to the other station.

Systems in which the service rates of stations change at the moments that one of the
stations becomes empty, are known in the literature as systems with coupled processors. In
a pioneering paper, Fayolle and ITasnogorodski [4] were the first to consider such a system.
They analyzed two coupled servers in parallel with exponential service times and derived
a solution for the generating function of the stationary distribution of the Markov process
describing the number of jobs in both queues, using the theory of Riemann-Hilbert boundary
value problems. Konheim, Meilijson and Melkman [7] determined the generating function
of the joint queue length distribution in the completely symmetric case (identical arrival
and service rate at both servers) using a uniformization method. In Cohen and Boxma
[3], the ordinary coupled processor model is analyzed for the case of generally distributed
service times. Our model can be viewed as the tandem version of the model in [3, 4, 7]. Like
the ordinary coupled processor model, our model will also be analyzed using the theory of
boundary value problems.

Another way to divide the total service capacity over the individual service stations is
to completely allocate the total service capacity to one of the two stations in an alternating
order. This would lead to a polling system with two stations in tandem attended by a
single server. For some tandem polling systems with different types of switching rules, such
as gated and exhaustive service, Katayama [5] has given explicit expressions for the mean
sojourn time of jobs in the system.

The rest of the paper is organized in the following way. In the next section, we describe
in detail the model under consideration. In section 3, we derive a functional equation for
the generating function of the stationary joint distribution of the number of jobs in both
queues. This functional equation is analysed in section 4 for the two extreme cases in
which the total capacity is allocated to one of the two stations, even if both stations are
nonempty. For the intermediate cases, in which the stations really share the capacity when
both stations are nonempty, the functional equation is studied in section 5. First, the kernel
of the functional equation is analyzed and after that a boundary value problem is formulated
and its solution is presented. In section 6, we briefly discuss a slightly more general model.
As a special case of this more general model, we prove the well-known product form solution
for the stationary distribution of the ordinary tandem queue with exponential interarrival
and service times using the theory of boundary value problems. We conclude this paper
with giving conclusions and mentioning some topics for further research in section 7.



2 Model description

We consider a tandem queueing model consisting of two stations. Jobs arrive at station 1
according to a Poisson process with rate A, and they demand service from both stations
before leaving the system. Each job requires an exponential amount of work with parameter
v; at station j, j = 1,2. The total service capacity of the two service stations together is
fixed. Without loss of generality we assume that this total service capacity equals one unit
of work per time unit. Whenever both stations are nonempty, a proportion p of the capacity
is allocated to station 1, and the remaining part (1 —p) is allocated to station 2. Thus, when
there is at least one job at each station, the departure rate of jobs at station 1 is vyp and the
departure rate of jobs at station 2 is v5(1 — p). However, when one of the stations becomes
empty, the total service capacity is allocated to the other station. Hence, the departure rate
at that station, say station j, is temporarily increased to v;. In the sequel we will denote
with p; = A/v; the average amount of work per time unit required at station j, j = 1,2.

Clearly, the two-dimensional process X () = (X1 (t), X2(t)), where X;(t), j = 1,2, is the
number of jobs at station j at time ¢, is a Markov process. The transition rate diagram of
this process is given in Figure 1.
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Figure 1: The transition rate diagram of the system
Under the ergodicity condition
p1+p2 <1, (1)

the process X (t) has a unique stationary distribution. In the sequel we are interested in
determining this stationary distribution.



3 Functional equation

Let us denote with 7(n, k) the stationary probability of having n customers in station 1 and
k customers in station 2. From the transition rate diagram of the model, we can derive the
set of balance equations

Am(0,0) = wo7(0,1),
A+v1)7(n,0) = Ar(n—1,0)+ (1 —p)ran(n,1), n>1,
A+1v2)w(0,1) = wv17(1,0) 4+ 1o7(0,2),
A+pr1+ 1 —=p)ro)n(n,l) = AIr(n—-1,1)+wr(n+1,0)+ (1 —p)rer(n,2), n>1,
A+wv2)w(0,k) = purin(l,k—1)+wer(0,k+1), k>2,
A+pr1+ {1 —-p)ro)n(n,k) = An(n—1,k)+puin(n+1,k—1)+ (1 —p)rem(n,k+1),

n>1, k>2.

Now we define, for |z| < 1, |y| < 1, the joint probability generating function
P(z,y) = Z Z m(n, k)z"y.

n>0k>0

From the balance equations it follows that P(z,y) satisfies the following functional equation

(A4 v+ (1 = p)w)ay — Az?y — pray? = (1 = p) oz ) Plz,9)
= (1 =p) 1 y(y - o) + w2y — 1)]) P(z,0)
+(p 221 = ) + v y(z - y)]) PO, )
+(prazly — 1)+ (1 = p) v y(z — y)) P(0,0). (2)
The constant P(0,0) can be determined by substituting = = (v19?)/(v1y —va(y — 1)) in (2).

For this choice of z, both the factor in front of P(x,0) and the factor in front of P(0,y) are
equal to zero, and hence equation (2) reduces to

p(— 1Y ) - valy 1 P(0,0). 3)

ny — ey —1 V2(y—1)+/\y(1—m;+f(2ym)

Now, letting ¥y T 1 in (3), we obtain P(0,0) = 1 — p; — pg. This result can, of course,
be explained by the fact that, independent of p, the two stations together always work at
capacity 1 (if there is work in the system) and the fact that p; + p2 equals the amount of
work brought into the system per time unit.

How can we find the solution P(z,y) of the functional equation (2)? In the next section,
we will give the explicit solution for P(z,y) in the special cases p = 0 and p = 1. After that
we show, in section 5, how for the case 0 < p < 1 the solution of (2) can be obtained using
the theory of boundary value problems.



4 The cases p=0and p=1

In the case p = 0, resp. p = 1, the model that we consider can be alternatively viewed as
a tandem queueing model with one single server for both stations together, in which the
server gives preemptive priority to station 2, resp. station 1. It turns out that for these
cases, the functional equation (2) can be solved relatively easily. This is mainly due to the
fact that either the factor in front of P(0,y) in equation (2), in case p = 0, or the factor in
front of P(x,0), in case p = 1, is equal to zero. In fact, in case p = 0, the model we consider
is well-known. However, as far as we know, the model is not studied before in case p = 1.
Therefore, we will particularly pay attention to the latter case in this section.

4.1 The case p=10

If p = 0, every time the server has completed a service of a job at station 1, he will
immediately continue the service of this same job at station 2, due to the fact that service
at station 2 has priority. Hence, the analysis of the model essentially reduces to the analysis
of a single M/C5/1 queue, in which the service time consists of two exponential phases with
parameters v; and vy respectively. This model can, for example, also be analysed using the
spectral expansion method (see [8]) or the matrix-geometric method (see [10]). Equation
(2) reduces in this case to

(()\ + wo)zy — Ay — 1/23:) P(z,y) =
(1 (y = 2) +vam(y = 1)) P(,0) + (ny(z - 4)) P0,0).  (4)

Now, because for y = v5/(A + v2 — Az) the factor in front of P(z,y) in (4) is zero, also the
righthandside of (4) should be equal to zero. Hence,

~ l=pi—p
P(,0) = e (5)
1—pox

Substituting (5) in (4), we obtain after straightforward but lengthy calculations

(I =p1=p2)(A 4 p2(y — 2))
Ple.y) = 1- (p1 + p2 + p1p2)T + p1p2x? (6)

4.2 The case p=1

If p = 1, the model is a tandem queue with a single server and preemptive priority for the
first queue. Equation (2) reduces in this case to

((A + vp)zy — Arly — l/lyQ) P(z,y) =
(2201 =) + v y(@ = y))P0,y) + (vaoly — 1) P0,0).  (7)

Now, for z = £(y), the unique root in the unit circle of the equation Az — (A vy )z +v1y = 0,
the righthandside of (7) should again be equal to zero. Hence, we obtain

P.0) = (1= oy ) o,y )



or, alternatively,

1 —p1—p2
P0,y) = ———% (9)
o

Furthermore, substitution of (8) in (7) gives

_ izl —£€(y)) T =Y pio.y). (10)

P
@ 8) = D — pra? =y

A nice probabilistic explanation for the results in equations (9) and (10) can be given.
First remark that the root {(y) can be interpreted as the generating function of the number
of jobs served in a busy period of an M/M/1 queue with arrival rate A and service rate
v1 (see e.g., Cohen [2], page 190). Now, if we look at our model only during periods that
the first queue is empty (i.e., we glue together idle periods of the first queue), the second
queue behaves as an M~ /M/1 queue with arrival rate ), batch size generating function
¢(y) and service rate vo. Hence, the function P(0,y)/P(0,1), i.e. the generating function
of the conditional distribution of the number of jobs in the second queue given that the
first queue is empty, is the same as the generating function of the number of jobs in the
above mentioned M~ /M/1 queue. The latter one is well known (see e.g., [2], page 387)
and immediately gives equation (9).

To explain equation (10) we introduce the random vector (Y7, Y2), denoting the station-
ary number of customers in the system (Y7) and the stationary number of customers already
served in the current busy period (Y3), at a point in time in which the server is busy in an
M/M/1 queue with arrival intensity A and service intensity v4. Furthermore, let Q(z,y) be
the generating function of (Y7,Y3). The function Q(z,y) can be straightforwardly obtained
by studying the two-dimensional Markov process corresponding to (Y7,Y5). This process
has almost the same transition rates as the ones in Figure 1 with p = 1, only the rates near
the vertical boundary differ. It turns out that Q(z,y) is equal to

(1 = p1)z(z = £(y))
(p1 + 1)z —p1a% -y

Qz,y) = (11)

Now, if we denote by (X7, X9) the stationary number of jobs at the two stations in our
model at arbitrary points in time, and by (0, Xél)) the same quantities during idle periods

of the first station, then we have

0, x{", with probability 1 — pi,

(i) . . (12)
(0,X57) + (Y1,Ys), with probability p;.

(X1, X2) g{

(4)

Here, the random vectors (0, X3”) and (Y7,Y3) are furthermore independent. Hence, be-

cause the random vector (0, Xél)) has generating function P(0,y)/P(0, 1), we have

P(0,y)
P(0,1)

P(z,y) = (1=p1+mQz,y)). (13)

Using P(0,1) =1 — py, and combination of (11) and (13), directly gives (10).
Remark: Decomposition result (12) also holds for generally distributed service times and
hence may be starting point for the analysis of the model with arbitrary service times.



5 Thecase 0<p<1

In this section we will derive the solution of functional equation (2) for 0 < p < 1. A key
role is played by the kernel

K(z,y) = (A+pvi + (1 —p)vo)zy — A’y — pray® — (1 — p) 1oz

5.1 Zeros of the kernel

Because the kernel K(z,y) is, for each z, a polynomial of degree 2 in y, we have that
for every value of x there are two possible values of y, say yi(z) and ys(z), such that
K(z,y1(z)) = K(z,y2(x)) = 0.

Lemma 1 The algebraic function y(z) defined by K(x,y(x)) = 0 has four real branch points
O=x1 <22 <1< 3 < 24.

Proof: Branch points are zeros of the discriminant, D(z), of the equation K(z,y) = 0 as
function of y, i.e.,

D(z) = ()\x2 —(A+pr1+(1 —p)ug)x)2 —4p(1 — p)rivaz.

Clearly, D(0) =0

, D(z) < 0 for small positive z, D(1) > 0, D((A+pv1 + (1 —p)r2)/A) <0
and lim,_, o D(z) =

oo. Hence, the lemma follows. O

Lemma 2 For each x € [z1,z2], the two roots yi(z) and ys(x) are complex conjugate.
Hence, the interval [z1,x2] is mapped by = — y(z) onto a closed contour L, which is
symmetric with respect to the real line.

Proof: Follows directly from the fact that the discriminant D(x) is zero for z = z; and
x = z9 and negative for z € (21, z2). O

X - plane y - plane

Figure 2: The contour L

In Figure 2, the result of Lemma 2 is illustrated. In the sequel we will denote the interior
of the contour L by L*. Finally, notice that for a point y(z) on the contour L we have that

_ _ (1 - plraz
y(a)ple) = = (14)

where the notation 7 indicates the complex conjugate of y.



5.2 The boundary value problem

Next, we will formulate a boundary value problem for the function P(0,y).

Lemma 3 The function P(0,y) is reqular in the domain L™ and satisfies for y € L the
condition

1 (P21 + (= p)ylpng — (1= p)vy]
Im P(0,y) =1 ( (=7 D) Fpoasty 1] P(0,0)>. (15)

Proof: For zeropairs (z,y) of the kernel for which P(z,y) is finite, we have

((1=p) [ y(y = ) + w22y — 1)]) P(z,0)

+(plra2(1 = ) + v y(z - y)]) P(0, )

+(prazly —1) + (1= p) viy(z — y)) P(0,0) = 0. (16)
We can rewrite this equation, by substituting (1 — p)vez = priyy (see (14)), in

~ pPwy(y — 1) + (1 = p)y [priy — (1 — p)vs]
POy = = (T pva —pn) + sty — D)

P(0,0) + lp%pp(x,()). (17)

Now, if (1;%322 < 1, then L lies entirely within the unit circle (y(z2) is the point on
L with largest absolute value). Hence, P(0,y) is regular in L™. Finally, (15) follows from
(17) by taking = € [z1,z2] and using that P(z,0) is real for those z.

If (1;%322 > 1, then P(0,y(z)) can be continued analytically over the interval [z, z2]
via equation (16), because P(z,0) is regular on this interval. Hence, the analytic continua-
tion of P(0,y) is finite at y = y(x2). Because P(0,y) has a power series expansion at y = 0
with positive coefficients, this implies that P(0,y) is regular for |y| < y(z2) and hence in

Lt. O

Lemma 3 shows that the determination of P(0,y) reduces to the determination of the
solution of the following Riemann-Hilbert boundary value problem on the contour L:

Determine a function P(0,y) such that
1. P(0,y) is regular for y € L™ and continuous for y € L™ U L.
2. Re [iP(0,y)] = c(y), for y € L,

where

o (PRI =D+ (= p)y [y — (1= pvy]
W)= I( mmrmm—w@+wmw4nf“m>

The standard way to solve this type of boundary value problem (see, e.g., Muskhelishvili
[9]) is to transform the boundary condition (15), by using conformal mappings, to a con-
dition on the unit circle. Let z = f(y) be the conformal map of L' onto the unit circle
Ct ={z : |z| <1} and denote by y = fo(z) the inverse mapping, i.e., the conformal map
of C* onto L.



Now, if the function H(z) is the solution of the problem (P):

Determine a function H(z) such that
1. H(z) is regular for 2 € C* and continuous for z € C* U C.
2. Re [iH(z)] = ¢(z), for z € C, where ¢(2) = c(fo(2)),

then P(0,y) = H(f(y)) is the solution of the original problem. The solution of problem
(P), a so-called Dirichlet problem on the circle, is well-known (see [9]) and given by

H(z) 1/Ce(w)w+Zd—w+K,

2T w— 2z w

where K is some constant.

In this way, P(0,y) has been formally determined. Substitution, first in (16) to obtain
P(z,0) and after that in (2), then yields P(z,y), so that the generating function of the joint
stationary distribution of the queue lengths in the tandem queue has been obtained. In a
future study the details of this analysis will be provided. For example, the determination of
the conformal map generally poses an interesting problem in the analysis of these boundary
value problems.

Remark: In most problems, for the determination of the conformal map f and the inverse
conformal map fy, a numerical technique (e.g., Theodorsen’s procedure, see [3]) has to be
applied. However, for this specific problem, an explicit expression for the conformal mapping
f(y) can be found (see the paper of Blanc [1], in which the time-dependent behaviour of
the ordinary tandem queue without coupled processors is studied).

6 Generalization

The model that we considered so far in the paper is a special case of the following model.
The system has two stations in tandem, each station having its own server. Customers arrive
at station 1 according to a Poisson process with rate A, and they require an exponentially
distributed service time from both stations before leaving the system. The service rate at
station j is equal to rate pu; whenever both stations have at least one customer. If one of
the stations becomes empty, the service rate at the other station changes from y; to p}.

For this model the functional equation becomes

(O + 1+ po)ay — Aoy — pay? — poz) Plz,y)
= (i = m)yly — 2) + pa(y — 1)) P(x,0)
+((15 = p2)z(1 = y) + pry(z — y)) P(0, )
(5 = p2)(y = 1) + (uf = p)y( — y)) P(0,0). (18)

After calculations, similar to those done in the previous sections, we get for y on the contour
L,

Im ((u§ — p2) (L = y) 4 py (17 — po
(w5 — p0)y (1Y — p2) + pipey(l —y

— Im ((u§ — p2)my(l —y) — (u1 —m)y
(17 = p1)y (G — p2) + pp2y

P(.y))

Py — p2)
= P(0,0)) .

—~|— = |—

10



Again, we can now formulate a Riemann-Hilbert boundary value problem for the func-
tion P(0,y) on the contour L of the following form:
Determine a function P(0,y) such that

1. P(0,y) is regular for y € L™ and continuous for y € L™ U L.

2. Re [g(y)P(0,y)] = c(y), for y € L.

The study of this more general Riemann-Hilbert boundary value problem will be a topic
for further research. In the remaining part we restrict our attention to the solution of the
problem for the special case of an ordinary tandem queue, i.e., uj = pj, j = 1,2.

6.1 The ordinary tandem queue

In the case pj = pj, j = 1,2, it is of course well-known that the stationary joint distribution
of the number of jobs at the two stations has a product form. We now show how this result
follows from (18). For zeropairs (z,y) of the kernel for which P(z,y) is finite, we have, from
(18),

py(z —y)P(0,y) = poz(l — y)P(z,0). (19)

Multiplying both sides by (A(1 —3))/(u112), we obtain

p2y(z —y) (1 =79)P0,y) = prz(l —y)(1 =) P(z,0), (20)

where now p; = A/ . Clearly, for real z, the righthandside of (20) is real, and furthermore
for y on the contour L, we have poyy = p1x. Using these two facts, we conclude that

Im ((z — y)(p2y — p17) P(0,y)) = 0.

Finally, using again that (z,y) is a zeropair of the kernel, this reduces to

Im ((1 = p2y)P(0,9)) = 0.
The solution of this boundary value problem is given by

K
1 —poy’

P(an) =

where K is a constant. Substituting this in (19) gives (again using poyy = p11)

K

P(z,0) = v

Finally, substituting the formulas for P(0,y) and P(z,0) in (18) gives

K
(1= p1z)(1 = pay)

P({L‘,y) =

In this way, we find the product form solution for the tandem queueing system directly from
the boundary value problem.

11



7 Conclusions and topics for further research

In this paper we analysed a tandem queueing model consisting of two stations in which the
total service capacity of the two stations together is constant. The service capacity of the
individual stations depends on whether or not one of the stations is empty. The stationary
joint distribution of the number of jobs in the two stations is analysed, using the theory of
boundary value problems.

The numerical evaluation of the solution is a topic for further research. Furthermore,
the analysis of the more general tandem queueing model with coupled processors, briefly
described in section 6, will also be part of a future study.
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