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Monte Carlo simulations of temperature-programmed desorption spectra

A. P. J. Jansen
Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
(Received 5 August 2003; published 29 January 2004

We show how to obtain good quantitative data on the energetics of surface reactions by fitting results of
dynamic Monte Carlo simulations to results of kinetic experiments. In particular, we can obtain numerical
values for various lateral interactions by simulating temperature-programmed desorption spectra and fitting the
simulated spectra to the experimental ones using evolution strategies. We illustrate the procedure by determin-
ing nearest-, next-nearest-, and next-next-nearest-neighbor interactions for CQ189Rh
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[. INTRODUCTION tions clearly improve on mean field, they are still approxi-
mations. Density-functional theoDFT) calculations for a

Temperature-programmed desorpti@D) is one of the number of systems have shown that there are generally more
most widely used techniques in heterogeneous catalysis arfdan one interaction of appreciable magnitude between
surface sciencklt has been used to show the importance ofadsorbate$:'° Analyses of the heat of adsorption as a func-
lateral interactions for the kinetics of surface reactions, bution of coveragé! phase diagrams of adlayérst®and other
so far it has not been completely successful in obtainingexperiments point to the same fact. These lateral interactions
guantitative data for these interactions. One can often get @an differ substantially and, as will be shown, can determine
reasonable fit of an experimental TPD spectrum with a singlelifferent properties of a system. It is not clear then that the
parameter for the lateral interactions with the rate equationapproximations mentioned above are always reliable.

An accurate description of the kinetics of surface reac-
tions with lateral interactions can be given by dynamic, or
kinetic, Monte CarldDMC) simulations-*~*°We will show
in this paper that it is possible to determine numerical values
Here 6 is the coveragd, is time, T is temperaturekg is the  for various substantially different lateral interaction param-
Boltzmann constanE %) is the activation energy for desorp- eters with DMC simulations of TPD. This is obvious of great
tion in the absence of lateral interactionsis the prefactor benefit. If lateral interactions can be obtained from such a
for desorptionn is the order of the reaction, and the lateral widely used technique as TPD, it may be possible to obtain a
interactions are modeled with the paramd@eiThe problem large amount of quantitative data on these interactions for
with this form is the interpretation of this parameter. Equa-many systems. Apart from the lateral interactions our method
tion (1) is a purely phenomenological expression. A simplealso yields the activation energy and prefactor for desorption.
physical model would be that the adsorbates are randomllf also gives error estimates that indicate how relevant a spe-
distributed over the sites and there is no correlation betweegific lateral interaction is for the kinetics. We will illustrate
the occupation of neighboring sites. This mean-field approxithe method on CO desorption from &00).2° We will de-
mation leads to termine lateral interactions between nearest, next-nearest,

and next-next nearest neighbors. There is a strong repulsion

de Ot — . between neighboring sites. This repulsion leads to an ordered

g ve o1+ a(etwei—1)] (2)  ¢(2x2) structure of the adlayer even at the temperatures

where desorption takes place, but it hardly affects the spec-

for simple desorption of an atom or molecule that has arira, which are determined by the next- and next-next-nearest-

interaction ¢y With each of itsZ nearest neighbors. If the neighbor interactions.

interaction is small, then Edl) is a good approximation of
Eq. (2) with B=Z¢yy - An advantage of this model is that it

can easily be extended to more complicated reactions and to

models with more lateral interaction parameters. It has been A. The model for CO/Rh(100)

used SUCCGSSfU”y to explain oscillations in  NO .
. . . CO adsorbs onto top sites of RIO0 for the coverages
3 _
hydrogenatlong. A weak point of the model is that the ab below 9= 0.5 that we will look EO This means that we us

sence of correlation in the ocpupatlon of sites is co.ntradlcé square grid for the adsorption sites. For the fit of the TPD
tory to the presence of lateral interactions. Even at high tem-

peratures when there is no long-range order, there is stiﬁ'peCtra a grid size of 256256 was used. There are two

) : ; processes; CO can desorb or it can diffuse by hopping to a
ig?drt range ordefi.e., correlation, and Eq.(2) does not neighboring site if that site is vacant. For both processes we

. . . . ... _write the rate constark as’*®
Correlation can be included by using pair approximations,

such as the quasichemical approximation or even more so-
phisticated approximatiorfs® Although these approxima- k=ve Fact/keT, 3

%: — e (EQ-BO)/KgT gn 1)

Il. COMPUTATIONAL DETAILS
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FIG. 2. Definition of the pairwise interactionsyy, ¢nnn, and
AEi=AE,q , ¢dnnnn ON the left. The three-particle interactions in the middle are
(o=1) desorption : i i )
neglected; these configuration do not occur becabge is large
and positive. The three-particle interaction, and similar ones, on the
right are neglected because they are small.

CO(ads)

We expect three-particle interactions with at most one pair
of CO molecules at nearest-neighbor sites to be negligible
(see Fig. 2 Three-particle interactions with two pairs of CO
molecules being nearest neighbors may be of a similar mag-
nitude as weak pair interactioAsHowever, the nearest-
neighbor pair interactiongy will be shown to be so large
. diffusion that such configurations are very unlikely. Therefore we have
~ neglected all three- and more-patrticle interactions. We have
also assumed that the prefactors are not affected by the lat-
eral interactions. This agrees with what has been found for
similar systems: CO on KiL00), Cu(100), and Pd100 at
low coverage$? CO also adsorbs at bridge position when
the coverage is above 0.5 Mimonolayey.° This is a much
more complicated situation, because the number of kinetic

FIG. 1. Energy profiles for desorption and diffusion. The Parameters is more than double the number of kinetic param-
sketches indicate how the activation energies are affected by th@ters for low coverages. Therefore we have only looked at
lateral interactions. The thick curves show the situations withoucoveraged<o0.5.
lateral interactions. The thin curves show the situations with lateral Diffusion of CO is very fast. If realistic diffusion rates
interactions.(For simplicity a situation is shown for diffusion in Wwill be used, almost all computer time would be spent on the
which only one side of the profile is change&or desorption we diffusion. Fortunately, the rate constant for diffusion can be
have a late barrier and a Brsted-Polanyi parameter=1. For  reduced drastically without affecting the results of a simula-
diffusion we have an intermediate barrier with=1/2. tion. The reason for this is that the main role of diffusion is

to equilibrate the adlayer. This can be accomplished with a
The activation energy is written &= E%)+ AE,., where  reduced diffusion as followésee also Fig. B The effect of

act

ELQ is the activation energy without lateral interactions andlateral interactions on the activation energy for diffusion is

AE,is the change due to lateral interactions. We assume @'ven by the same expressions as for the activation energy
Bronsted-Polanyi relation\ E .= o[ AE;— AE;], with AE; for d_esorptlon. Differences are _that we have an intermediate
(AE)) the effect of the lateral interactions on the adsorptionParrier,a=1/2, AE;#0 but is given byAE(=26(6| ¢y ,
energy of CO aftefbefore the reaction has taken plage. and there are more sites mvolvg{d‘he summation ovek is

For desorption we have assumed a late barder;1 (see OVer two sites and the one oviers over 16 sites.The acti-

Fig. 1. Because there are no lateral interactions in the ga¥ation energyE() for diffusion was chosen as the minimal
phase we hav\E;=0. We have assumed that the lateralvalue that givesE .= E{Q)+AE,=0 for all possible con-
interactions are pairwise additive so thsE; ==, by , figurations of the CO molecules. The value was determined
with the summatiork over all sites involved in the reaction for each simulation separately. By taking a minimal value for
(just one for desorptionthe summation over all surround- EQ) the variation of the diffusion rate as a function of tem-
ing sites(12 sites for desorption ¢, the lateral interaction perature was minimized. Note that changiﬁﬁz does not
between adsorbates at siteandl, and, and§, equalto 1 change the equilibrium of the adlayer in any wage Fig.

if the site is occupied and O otherwise. We have included). This depends only oAE,., and the way tha\E is
nearest-neighborgyy, next-nearest-neighboeyyy, and  affected by the lateral interactiorisee aboveensures that
next-next-nearest-neighbor interactiofgyyy (see Fig. 2 the different adlayer configurations occur with a proper prob-
Positive values indicate repulsion and negative ones attra@bility given by a Boltzmann factor. The prefactor for diffu-
tion. sion was also given a minimal value, but large enough so that

1]

AE it AE; 2
ED, AE; (a=1/2)
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is able to deal with noisy data. In addition, it is a method that
does not get trapped in the first local optimum that is encoun-
tered. It is a method from the field of evolutionary
computatior?’ It shares many characteristics with the better
known method genetic algorithmi®,but ES seems better
suited to optimize sets of real numbé&fgWe also tried Pow-

(igocetd) ell's method and simulated annealing to fit the experimental

spectre?® Powell’'s method managed to converge in spite of
¥ / the noise, but generally gave bad fits, because it got trapped

in the nearest local minimum. Simulated annealing gave fits

of the same quality as ES, but seemed to be somewhat less
efficient)
For each set of kinetic parametefgrefactor, activation
energy, and lateral interactionswe computed x?
- =3,_,Neny?s’, wherei stands for TPD spectra with differ-
AE; ent initial coverageNe,, is the number of such spectis,is
an error estimate, ang? is the difference between the ex-
FIG. 3. Energy profile for diffusion and how it changes when we Perimental and the simulated spectrum defined as
reduce activation energy in the absence of lateral interactions. The

AE; ©
Epet

(reduced)

Nsampl
equilibrium of the adlayer depends on the energy differencis ¥3= 1 %ﬂpe[r(_exp)_ r(;im)]z (4
=AE;—AE;, but not on the height of the activation barrier. The " Nsampe =1 " g '

activation energyE(?) affects only this height. , . .
9zt y g wherer (&) and r(™ stand for desorption rates in the ex-

the adlayer was equilibrated at all times. This value of thé?€riment and the simulation, respectively. The sum is over
prefactor was determined experimentally by varying it angdifferent temperature$,+jAT. The error estimates; were
determining the range for which the results did not changed&termined by assuming that the errors are mainly due to the
Together with the way that the activation energy is chosennumerical noise in the simulations. We did 101 simulations
this ensures that a minimal fraction of the simulation time isWith the same initial conditions and kinetic parameters. For

spent on the diffusion. each subsequent pair of simulations we calculaigd and
for s? we took the average gf?/2 over the 100 pairgThere
B. Dynamic Monte Carlo is a factor 1/2, because we are calculatifgrom two simu-

. . lations, whereas in the fit there is only one simulatioie
We have used DMC to simulate the evolution of the ad-,, oy atNe,,=8 different initial coverages, and we used

layer using thecARLOS code? Our method can be derived T =250 K.N —401. withAT=1 K. and a heating rate
from first principles, and gives exact results for the modeIO?5 K/sec. sample ' ’ 9
that we use for CO on Rh00).'"*® There are numerous '
DMC algorithms that can be used, which all give statistically
exactly the same resuft&2+18All DMC algorithms generate
an ordered list of times at which a reaction takes place, an
for each time in that list the reaction that occurs at that timerial. The components of the vectarare the kinetic param-

A DMC simulation starts with some chosen initial configu- eters that we want to determine. To minimjg&we generate

ration. Th_e list is travers_ed and changes are made to th new population, which we hope contains better kinetic pa-
configuration corresponding to the occurring reactions. The

various algorithms differ in how the reaction times are Com_rameters than the original one. We generate a new population

. : ; by first generating\ offspring by randomly choosing two
puted, how a reaction of a particular type is chosen, and howairs &) and (o) and making a so-called interme-

it is determined where on the surface a reaction takes place.
We have used the first-reaction method in all our simulationsglate crossove (Xt x)/2,(oy + @1)/2]. Then we mutate
ch of the\ offspring as follows:x,—x,+N(o,) and

because this method gives exact results also when the ra‘lf‘g S
constants vary in time as in a TPD experim&nt’:18:24.25 0o~ 0, eXfIN(Ag)], wherea indicates a component of the
' vector andN is a random number drawn from a Gaussian

distribution centered at the origin and a width given by the
argument. The quantitAo is a parameter of the method.
The simulated spectra can be very noisy because we af@nally for each of thex offspring we computec? by doing
using stochastic simulations. The noise can be reduced bat set of DMC simulations. The new population will then
only at the cost of an increase in computer time. The noiseonsist of theu pairs from the\ offspring with the lowest
scales a©O(L 1), with L the linear dimension of the grid, x? (comma selection We have typically generated 50 popu-
and the computer time for simulating a TPD spectrum scalefations during a single run withu=32, A\=64, andAc
as O(L2InL) with the first-reaction methotf. The method =0.5. A single run consisted of about 25000 DMC simula-
that we have chosen to fit the simulated spectra to the exions. This took at most only a little over 2 days on a 600
perimental ones is evolution strate¢®S).2%?’ This method ~ Mhz Pentium 1l PC.

The ES that we have used works with a set of pairs
(xi,07), withi=1,2,... u, wherex; and o; are vectors of
real numbers ang is the number of pairs. The set is called
population and the pairs can be considered genetic mate-

C. Evolution strategies
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FIG. 4. Convergence of the evolutionary computation. The lines
show the error estimatg? for the best set of kinetic parameters for
CO desorption from RH.00) in the subsequent populations and the

400 450 500 550 400 450 500 550
Temperature (K)

average of all sets in each population. FIG. 5. Experimentalleft) and simulatedright) temperature-
programmed desorption spectra for CO{R)). Each simulated
IIl. RESULTS AND DISCUSSION spectrum was obtained from a single simulation with a grid of

1024x 1024 points. The values on the right of each set of curves
There are two kinds of errors when we fit the experimen-ndicate initial coverages. The curves are offset vertically to make
tal spectra. We have errors because our DMC is a stochastikem easier to distinguish. The thin curves on the right are simu-
method and we may have errors because our model of tHated spectra with the lateral interactions switched off. The heating
lateral interactions may be deficient. The total error is arfate is 5 Kisec.
unknown combination of the errors of both types. We are
mainly interested in possible shortcomings of our model ofthat the agreement is very good. Our best set of kinetic pa-
the lateral interactions. To get an idea of the errors caused bmeters  is vgee=1.435<10%sec *, EQ)=121 kd/mol,
the DMC simulations we have done some preliminary fits togyy=24 kd/mol,  ¢yyn=1.1 kd/mol, and  énann
obtain lateral interactions. The best preliminary fit was ob-=0.9 kJ/mol with x2=9.3, which should be compared to
tained with ¢yn=~25 kd/mol, ¢yun=1.3 kd/mol, and 3.9, which is the value that is obtained by trying to fit simu-
drannn= 1.0 kd/mol with the prefactor and the activation en- lated spectrasee above We note that, ag? is a quadratic
ergy fixed at experimental values of.—6.31x10*sec’*  form, the error is only about 50% larger, because of short-
and E(9=137 kJ/mol?® We then generated TPD spectra comings of our model and experimental errors. This means
with these parameters using DMC and a grid of size 1024hat the model for the lateral interactions is acceptable.
% 1024 to minimize the noise of the simulations. We then The procedure does not always converge to exactly the
tried to fit these simulated spectra in exactly the same way as2me minimum. In fact, we can get an even better fit than
we fitted the experimental spectra. Because the simulatedleé one mentioned above for small values ¢y . For
spectra could, in principle, be fitted exactly, the errors wereexample, vgee=6.31x10%¥sec !, EQ)=137 kd/mol, ¢y
due only to the stochastic nature of the DMC simulations.=2.4 kJ/mol, ¢yyn=1.3 kd/mol, and ¢yynn=1.5 kJ/mol
The best fit to the simulated spectra was found tovgg  gives x>=8.7. The drawback of this set is that it allows
=9.28x10%sec!, E®)=139 kd/mol, ¢yy=17 kd/mol,  adlayer structures at low temperature that are not found ex-
dan= 1.4 kd/mol, andgyyny= 1.0 kd/mol with y?=3.9.  perimentally. Up to coverages of 0.5 MLcg2 X 2) structure
We see that the fit is reasonable for the prefactor and this found? This points to strong repulsion between CO mol-
activation energy, bad fapyy, and excellent fopyyy and ~ €cules at nearest-neighbor sites. The set above with small
drnnn . We will show below why this is the case. More ¢y Yields a (/2X24/2)-20 structure at low temperature.
important here is the value gf. If the fit of the experimen-  The set of kinetic parameters with high\y value was ob-
tal spectra gives a much higher value, then this would pointained with constraints that made tbg2 < 2) structure more
to shortcomings of our model for the lateral interactions.  stable than a number of other possible structures. Such con-
Figure 4 shows a typical result for the convergence of thestraints can easily be included in ES.
determination of the lateral interactions and other kinetic pa- If the next-next-nearest-neighbor interaction is neglected,
rameters for CO desorption from a @00 surface using then the fit becomes a bit less good wjth=11.2 andvges
ES. Note that the overall trend is that the best set of param=2.04x 10"sec?, EQ)=123 kJ/mol, ¢yn=13 kd/mol,
eters in and the average of each population improves, buwnd ¢\yw=2.0 kJ/mol. Note that the prefactor and the acti-
quite often a new population may also be worse than theation energy for an isolated molecule is almost the same as
previous one. This indicates the ability of ES to search for &or the best fit. The nearest-neighbor interaction is quite dif-
global minimum. ferent for reasons that we will discuss below. The next-
Figure 5 shows the experimental and simulated TPD spemearest-neighbor interaction is about equal to the sum of
tra with the kinetic parameters that give the best’fitVe see ¢y and dynnn Of the best fit. This is an indication that this
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is an important quantity determining the spectra. mentioned above. The next-nearest-neighbor interaction is in
We have repeated the fit a number of times, looked at thexcellent agreement, but the next-next-nearest-neighbor in-
statistics of the results, and derived estimates for the accueraction has a different sign. Attractive interactions between
racy of the kinetic parameters. The results of this proceduradsorbates at next-next-nearest-neighbor positions have been
are Infgesd/sec)=12.2"37 EQ=121"7 kdimol, ¢y used to explain island formatioh. However, if gy iS
=245 kdimol,  Pn=1.15%kdI/mol, and ¢y  Negative, thenpyyy should probably be larger, as their sum
=0.9"33 kJ/mol. These are best values with one-sided stanwas found to be very sensitive to the shift of the peaks in the
dard deviations. We see that the errors for the prefagjgy | PD Spectra. As there are no details in Ref. 11 on how the
and the activation enerds’?) are quite substantial. The main latéral interactions are obtained, we cannot properly com-

cause for this is a compensation effect; a TPD spectrun'inent on the origin of the difference between our results and
changes very little when the activation energy and the prefthose of that study.

actor are decreased or increased simultanedtisixperi-

mental values are found in the range dp/sec?t) IV. SUMMARY
=12.9-16.3 anE{%)=134-149 kJ/mof® The most recent
values arevgee= 1018%2sec * ande(®)=137+2 kd/molin We have shown that temperature-programmed desorption

the low coverage limit. The agreement with our result isspectra contqin information on the lateral interactions in a
reasonable. In fact, the desorption rate constant for an isgyStém. This information can be extracted and numerical val-
lated molecule is the same for the experimental values anH€S for lateral |ntera§:tlons can be obtained from these spect.ra
the best-fit values af=500 K, which is the peak maximum by a_ccu_rately modeling th_e surface processes using dynamlc,
temperature at low coverageee Fig. 5 Measurements of ©F kinetic, Monte (_:arlo S|mula_t|0ns. Because these simula-
the heat of adsorption gave a value of #18 kd/mol, which tions are stochastic and thg S|mulateq spectra are .therefore
is also in good agreement with our best-fit values if we aghoisy, we have usec_j evolution strategies tq fit the simulated
sume that CO adsorption is not or only weakly activafed. spectra to the experlmerjtal ones. We have illustrated _the pro-
The large error ingyy is due to the weak dependence of ¢&dure with CO desorption from RE00). We have obtained

the TPD spectra on this lateral interaction. The valuef the prefactor and the activation energy for the desorptlorj and
is large and the CO molecules will avoid occupying neigh-f[he nearest-, next-nearest-, and next-next-nearest-ne_lghbor
boring sites. This lateral interaction only affects how easy itNteractions. The TPD spectra show that the nearest-neighbor
is for the adlayer to rearrange itself when CO molecules staff'teraction is strongly repulsive. It leads to tig2x2)
desorbing, but when a CO molecule desorbs it rarely has Siructure for coverages below 0.5 ML even at the tempera-
nearest neighbor, so there is no direct effect on the TPEHI€ Where desorption takes place, but it has only a small
spectra. This means that one cannot really determine thglfect of the TPD spectra. This also means that the numerical
value of ¢y from TPD. Although the interaction between vglue for.the nearest-neighbor interaction can only be deter-
nearest neighbors need not be known precisely, one shoul@inéd with a large error. The TPD spectra depend much

not prevent CO molecules occupying nearest-neighbor pospgore on the next- and next-next-nearest-neighbor inte_rac-
tion altogether. Forgyy— we find a best fit withy? tions. These are much smaller, but can also be determined

=11.3. This is clearly higher than our best fit, although nothCh more accurately. Numerical values for the lateral inter-

much. Apparently the adlayer wants to move the CO mo|_actions are ¢yy=24 kd/mol, pyyy=1.1 kd/mol, and

2 . . . - i - 2carl (0)
ecules apart. This is easier when there is a small probabilitf?nnnn=0-9 kJ/mol - with - vgee=1.435¢ 10%sec, Egg

that the CO can become nearest neighbors. =121 kJ/mol, for the prefactor and the activation energy for
The errors in the other lateral interactions are muchlesorption of an isolated CO molecule. Because of the

smaller, because they do affect the TPD spectra substantiallprévalence of TPD, the procedure introduced in this paper
This differs from calculating the lateral interactions with will enable us to obtain accurate numerical values for lateral

DFT. There strong lateral interactions can be determinedteéraction for many adsorbates on many substrates.
quite accurately, but the weak lateral interactions have much

larger relative errors.Coverage-dependent measurements of ACKNOWLEDGMENT
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