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1 Introduction

Analysis on Lie groups, and on more general manifolds, is largely governed by
properties of strongly elliptic, or subelliptic, operators. It is a remarkable fact
that the theory of these operators extends naturally from the commutative
Euclidean group to a general, non-commutative, Lie group. Our purpose is
to describe in the simplest and most direct fashion the Lie group version of
the theory of strongly elliptic operators. In particular we demonstrate that
each such operator generates a continuous semigroup, the 'heat' semigroup,
in each continuous representation of the group. Subsequently we comment
on the more interesting but more complicated subelliptic situation. Despite
appearances the strongly elliptic theory remains largely commutative but the
subelliptic theory contains a genuine non-commutative element.

There are two distinct but related approaches to the Lie group theory.
Either one can examine the operators in a general representation of the group
and use the left regular representation on the Lp-spaces as a calculational aid
or one can begin with the Lp-theory and subsequently extend the key prop
erties to a general representation. Moreover, in each of these approaches one
can concentrate initially on the resolvents of the operators or on the semi
groups they generate. In the language of partial differential equations these
options correspond to emphasizing the Green function or the heat kernel. We
adopt the second approach and begin with the Lp-theory since this allows
closer comparison with the usual Euclidean theory. Moreover, we focus on
the semigroup kernel since this leads directly to the 'Gaussian' bounds which
are of great practical utility.

There are three principal steps in the Lp-theory of ad-dimensional (con
nected) Lie group G. First one considers the corresponding problem on
the Euclidean group Rd. Then one can construct the semigroup kernels
by Fourier transformation and derive 'Gaussian' bounds on the kernels and
their derivatives. This will be discussed in detail in Section 2. Secondly, one
observes that G is locally diffeomorphic to R d under the exponential map.
Therefore the Euclidean kernel can be used as a local approximation to the
Lie group kernel. Then, by a uniform iteration method, one constructs a
function on G x G which corresponds to the global kernel. This is the key
technical idea which is developed in Section 3. Thirdly, one uses the Gaussian
properties of the local approximant to establish that the function constructed
by this series expansion is indeed a semigroup kernel corresponding to the
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strongly elliptic operator and that it satisfies Gaussian bounds etc.. By this
means one constructs a continuous semigroup whose generator is the clo
sure of the original strongly elliptic operator and the Gaussian properties
allow the extension of the semigroup to a general representation of the Lie
group. In Section 4 we comment on the further extension of these results to
subelliptic operators.

The iterative method which lies at the heart of this approach is a version
of the parametrix method. It is analogous to the well known 'time-dependent'
perturbation expansion although in this context one does not have a pertur
bation in any conventional sense. There are two remarkable features of the
parametrix method. First it leads to a global solution starting from the ini
tial local approximation. Technically this arises because the terms in the
series expansion are given by convolution of terms localized in a fixed com
pact region. In particular larger distances only arise in higher order terms.
Secondly, the expansion has extremely good convergent properties. The ker
nel is a function over R+ x G x G with the variable t E R+ interpretable
as a time parameter. But the expansion is uniformly convergent over G x G
for all t > O. In most time-dependent problems the perturbation series are
usually only convergent for small times but in the current context one ob
tains convergence for all times as a consequence of the Gaussian bounds on
the local Euclidean approximant and its derivatives.

2 The Euclidean group

Let Lp(Rd ) denote the usual Lp-spaces with respect to Lebesgue measure and
ai = a/aXi, i E {I, ... , d}, the corresponding partial derivatives. We adopt
multi-index notation aa = ail" .Bin' and ea = eil .•• ein for eE R d, where
Q = (it, ... ,in) with i j E {I, ... ,d}. Further the length of Q is denoted by
lad = n. Then we consider m-th order partial differential operators

H= L caaa

ai lal$m

with coefficients Ca E C where m is an even integer.
The operator H is defined to be strongly elliptic if there is a fl > 0

such that
Re (( _1)m/2 L ea ea

) ~ fllel m

a;lal=m

2

(1)



for all eE Rd where I. I denotes the modulus. The largest value of JL for
which (1) is valid is called the ellipticity constant of H. There are two
other equivalent definitions which are worth mentioning.

First it is easy to establish that H is strongly elliptic with ellipticity
constant JL if, and only if, for each>. E (0, JL) there is a v ~ 0 such that

Re ( L ca(iet) ~ >'Ielm
- V

aj lal~m

(2)

for all eE Rd.
Secondly, H is strongly elliptic if, and only if, there is a >. > 0 and v ~ 0

such that
Re(c.p,Hcp) ~ >.Nm / 2(cp)2 -vllc.pll~

for all cp E C~(Rd) where

Nk ( cp) = sup 118a c.pl/z
aj lal=k

(3)

and II . liz denotes the L2-norm. This third characterization (3) of strong
ellipticity is called the Garding inequality and the ellipticity constant of
H is the least upper bound of the>' for which the inequality is satisfied
uniformly on C~.

The equivalence of these last two conditions is a consequence of Fourier
theory. If cp I---t $ = :Fcp denotes the Fourier transform on L2 then (8j l.p) (e) =
i ei $(0. Therefore

Re(c.p, Hc.p) - >'lIaPc.pII~ +v Ilcpll~ =

kd de 1$1 2 (Re L ca(iet - >'((ie)P)2 +v)
aj lal~m

for all cp E L 2(Rd ) and all multi-indices 13. But if (2) is valid then the right
hand side is positive uniformly for f3 with 1131 = m/2. Hence (2) implies (3).
The converse implication also follows from this identity by a simple limiting
argument.

Each strongly elliptic operator H, after appropriate closure, generates a
strongly continuous semigroup S on each ofthe Lp-spaces with a well-behaved
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'Gaussian' kernel K. This follows because H corresponds to a multiplication
operator on the Fourier space;

where
h(e) = E ca(iet

a;lal~m

But then St = e-tH acts by convolution,

with the kernel K given by

Kt(x) = (21rtd/ 2 r de e-ie,xe-th(e>
lRd (4)

As strong ellipticity of H ensures that Re h(e) ~ A lelm
- 11 the kernel auto

matically has a Gaussian type decrease.

Proposition 2.1 There exist a, b > 0 and w ~ 0 such that

IKt(x)[ ~ a t-d/mewte-b(lxlm/t)l!(m-l)

for all x E Rd and all t ~ O.

The proof is a simple exercise in contour integration. If one shifts the integral
over Rd in (4) by replacing ewith e- i"1 where "1 E Rd then

IKt(x)1 ~ (21rt d/ 2 [ de e-f/·xe-tReh(e-if/)
lRd

But one then estimates that

for suitable A > 0 and (1,11, W ~ O. Therefore

and the required bounds follow by optimizing over "1. For example, one sets
"1 = (Ix 1/((1t) )l/(m-l) Ix 1-1 X.
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Similar estimates follow for the derivatives {jOt K t of the kernel. These
have a Fourier representation analogous to (4) but with an additional factor
(i~)Ot in the integrand. Now for each a and e > 0 there is a ka,e > 0 such
that

I~al :::; (t 1~lm)lal/mClal/m :::; ka,e Clal/medl{lm .

Therefore a simple modification of the foregoing argument gives the following
result.

Corollary 2.2 There exist b > 0 and w ~ 0, and for each multi-index a an
aa > 0, such that

I(801 K t )(x) I :::; aa c(d+laD/mewte-b(lxlm/t)l/(m-l)

for all x E R d and all t ~ O.

It is also evident that one has bounds

IxlnIKt(x)1 :::; an C(d-n)/mewte-b(lxlm/t)l/(m-l)

for all n E {O, 1, 2, ...}. Thus differentiation introduces an additional sin
gular factor t- l / m but multiplication by Ixl introduces a factor t l /

m which
effectively removes the singularity. Hence an n-th order partial differential
operator

Ln = L fa {jOt
a; lal$n

with Coo-coefficients fa defined on a neighbourhood of the origin is defined
to be of actual order n', with n' E {O, 1,2, ...} if the coefficients satisfy
bounds

Ifa(x)1 ~ c Ixl(lal-n')vO

in an open neighbourhood of the origin or, equivalently, if ({j/3 fOt)(O) = 0 for
all multi-indices 13 with 1131 < (lal - n') V O. It follows that the composition
of two partial differential operators with actual order n~ and n~ is a partial
differential operator with actual order n~ + n~.

Proposition 2.3 Let Ln be an operator of actual order n'. Then there exist
a neighbourhood n of the origin and a, b > 0 and w ~ 0 such that

I(LnI<t)(x)1 :::; a c(d+n')/mewte-b(lxlm/t)l/(m-l)

for all x E n and all t ~ O.
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(5)

This is a direct consequence of the foregoing discussion. It gives the key
estimates in the subsequent parametrix approximation.

The resolvents ()..I + H)-l can be constructed from the semigroup S for
sufficiently large positive).. by

Therefore the resolvents act by convolution with kernels r>. which are given
by the Laplace transforms of the K t ,

r>. = loo dt e->.t K t

Hence one can convert bounds on Kt and its derivatives into bounds on r>.
and its derivatives. In the sequel we need L1-bounds.

Corollary 2.4 Let L n be an operator of actual order n' with n' ::; m - 1.
Then there exist a neighbourhood n of the origin and constants a > 0 and
p ~ 0 such that

for all ).. ~ p.

Proof It follows directly from Proposition 2.3 and (5) that

111nLnr>.lll < a in dx100
dt e-(>.-w)tr(d+n')/me-b(lxlm/t)l/(m-l)

< a [00 dt [ dy e -(>.-w)trn/ /m e _blylm/(m-I)
lo lRd

< a'().. - wtl+n // m .

Therefore one can choose p = 2w and a = 2a'.

3 General groups

o

Let G be a connected d-dimensional Lie group which, for simplicity, we as
sume to be unimodular and g 1--+ Igi a modulus on G, i.e., the shortest length,
measured by a fixed Riemannian measure on G, of an absolutely continuous
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path from 9 to the identity e. This modulus is, via the exponential map,
locally equivalent with the modulus on g, i.e., there exists a C > 0 such that

(6)

for all a E 9 sufficiently close to O. Further let dg denote the Haar measure
on G and Lp(G) the corresponding Lp-spaces. Then G acts continuously by
left translations,

(L(g)J)(h) = !(g-lh) ,

on each of the Lp-spaces. If p E [1,00) the action is strongly continuous
and if p = 00 it is weakly* continuous. All subsequent topological properties
are correspondingly understood with respect to the strong topology, or the
weak* topology if p = 00.

Next let al, ... ,ad be a (vector space) basis of the Lie algebra 9 of G.
Then t f---+ exp(-tai) is a one-parameter subgroup of G and the corresponding
left translations t f---+ L(exp( -tai)) form a continuous one-parameter group.
Let Ai denote the generator of this group. For example, if G = R d and dg is
Lebesgue measure then choosing the usual Cartesian basis one has Ai = -fA.

Now we consider m-th order operators

H= L caAa
a;lal$m

with Ca E C, m an even integer and Aa = Ai) ... Ain for a = (il, ... , in).
The domain of H in Lp is the subspace Lpim = nlal$m D(Aa) of m-times
left differentiable functions. It is not difficult to establish that Lpim is dense
in L p and hence H is densely defined. Then the adjoint of H is densely
defined and hence H is closable. Moreover, the subspace LpiOO = nm>O Lp;m
of Coo-vectors is a core for each H. -

The operators H are the direct analogue of those examined in the previous
section for the Euclidean group and H is again defined to be strongly elliptic
if the coefficients Ca satisfy either the bounds (1) or the equivalent bounds
(2). Alternatively, this definition is equivalent to the Carding inequalities
(3) for all r.p E C~(G), but with

Nk(r.p) = sup IIAar.p112 ,
aj lal=k

although this last equivalence is now not so evident. (It will be discussed at
the end of the section.)
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Our aim is to establish that the closure of each strongly elliptic operator H
generates a continuous semigroup S, on each Lp-space, with a kernel K satis
fying Gaussian type bounds. We approach this problem by first constructing
a family of functions K which formally corresponds to the semigroup ker
nel. This construction starts by local approximation with the kernel of the
analogous operator on the Euclidean group, i.e., the kernel discussed in the
previous section. Secondly, we verify that the K do indeed have the correct
properties for a semigroup kernel and that the generator of the semigroup is
the closure of the original strongly elliptic operator.

The starting point of the construction is the observation that the kernel
K, if it exists, should be a solution of the parabolic equation

(at +H)Kt = 0

for t > 0 with the initial condition K t ~ 0 as t ~ O. Alternatively if one
defines K t = 0 for t$;O then (t,g) ....-. Kt(g) from R x G into C should be
the fundamental solution for the heat operator at + H, i.e.,

((at + H)Kt)(g) = o(t) o(g) (7)

for all t E Rand 9 E G. Now the parametrix method expresses K as a
perturbation expansion in terms of a localized version of the corresponding
kernel for the Euclidean group. The perturbation parameter is the 'time'
variable t and the expansion is a direct analogue of 'time-dependent' per
turbation theory. The surprise is that the perturbation expansion for the
semigroup kernel is convergent for all t > O.

The local approximation procedure starts with the exponential map.
Let neG be an open relatively compact neighbourhood of the identity

e E G and Wo an open ball in 9 centered at the origin such that explwo : Wo~

n is an analytic diffeomorphism. Set ax = Ef=l Xjaj, for x E R d, and W =
{x E R d : ax E Wo}. Then for c.p: n ~ C define <p: W ~ C by <p(x) =
c.p(exp(ax)). If n is small enough the image of Haar measure under this map
is absolutely continuous with respect to Lebesgue measure. In particular,
there exists a positive COO-function u on W, bounded from below by a strictly
positive constant, such that all derivatives are bounded on Wand such that

in dg c.p(g) = fw dx u(x) <p(x)
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for all 'P E L l (n j dg). We normalize the Haar measure dg such that u(O) = l.
The key feature of the exponential map is the existence of COO-vector

fields Xl, ... ,Xd on W with the property

(8)

for all 'P E C~(n), where the AI, . .. , Ad are generators of left translations.
Moreover,

(9)

for 'P E C~(n) where the Yi are COO-vector fields of actual order zero, i.e.,
Yi = E1=1 fJii and the Ii E C~(W) have a first-order zero at the origin. But
then

~ = ifrj; +Ji'rj; (10)

where H = Ea ca(-ala is the operator corresponding to H on Rd and H'is
an operator of actual order at most m - 1.

Next let K t denote the kernel associated with if on R d , with K t = 0 if
t ~ 0, let X E C~(n) satisfy x(e) = 1 and define kt by kt = KtX.. It follows
immediately from (10) that

(at +H)ktr(x) - «at +H)(KtX))(x) + (H'(KtX))(x)

- <5 (t) <5 (x) + it(x)

where It has the form (with a finite sum)

It(x) = L,:(L(i)Kt)(X)Xi(X)
i

with Xi E C~(W) and the L(i) are operators of actual order at most m - 1.
Therefore kt and it have compact support and satisfy the heat equation

(11)

Moreover, the bounds of Proposition 2.3 and the local equivalence of the
moduli on G and Rd, given by (6), ensure that one has bounds

Ikt(g)1 < a rd/mewte-b(lglm/t)l!(m-l)

IIt(g)1 < a r(d+m-l)/mewte-b(jglm/t)l/(m-l)

9
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It follows that the series

for some a, b > 0 and w ~ 0 and all t > 0 and 9 E G. In addition kt = It = 0
for t ~ O. Therefore one can construct a solution of the heat equation (7) by
iteration of the approximate equation (11).

Proposition 3.1 Define K1n
) recursively by K1°) = kt and

K (n) - -it d K(n-l) I
t - S t-s * s

o

K t = L: Kt(n)

n~O

is Lp-convergent to a limit K t E Lpioo for all p E [1,00] and t > O. The
limit K satisfies the heat equation (7), with the convention K t = 0 for t ~
O. Moreover, t 1-+ K t is continuous from (0,00) into Li(G) for all p ~

0, where Li(G) = Ll(G;ePlgldg) is the weighted space with norm "eplli =
I dg eP1g1Iep(g) I. Finally, there are b > °and w ~ 0, and for each multi-index
a an aa > 0, such that

I(AaKt)(g)1 ~ aa r(d+lal)/mewte-b(lglm/t)l/(m-l)

for all 9 E G and t > O.

We sketch the main features of the proof.
First, it suffices to prove that the series for K is L1-, and L oo-, convergent

because the Lp-convergence is then an immediate consequence. The L1

convergence is particularly easy because the estimates (12) and (13) imply
that

(14)

for suitable a > 0 and w 2: O. Therefore, as

one can argue by recursion that one has bounds

for all n 2: 0 and all t > 0. Thus the series is L1-convergent for all t > O.
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The Leo-convergence is slightly more complicated. It relies on the L1

bounds (14), the analogous Leo-bounds

and the recursion relations

(Here we use the unimodularity of G to simplify the calculation). One can
then use these relations to bound successively the Leo-norms of the K!n).
The specific bound is that

for suitable a, b, w, uniformly for all t > 0 and n ~ o. (The proof is by
induction on n, the general induction process starts when -d+n > -(m-1).)
Hence one obtains uniform convergence of the series for Kt and bounds

(15)

for all 9 E G and t > O.
Secondly, similar estimates allow one to verify that K t satisfies the heat

equation (7) and the continuity properties.
Thirdly, consider the Gaussian bounds with lal = O. It follows from (12)

that
sup ePlgllkt(g)1 $ a r d/ m ew(1+ pm)t (16)
gEG

for all p, t > 0 with redefined values of a > 0 and w > O. Moreover, a
standard estimate gives

Similarly
sup eP1gIj1t(g) I $ a t-(d+m-l)/mew(1+pm)t
gEG

and
(17)
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Now one can use the estimates (16)-(17) to bound

sup ePlgIIKln)(g)1
gEG

by a simple modification of the foregoing recursive arguments. The resulting
bounds differ from the case p = 0 only by an additional factor ewpmt . There
fore one obtains bounds on ePlg'lKt(g)I which differ from the earlier bounds
(15) by the additional factor ewpmt. Explicitly,

IKt(g)1 ~ a rd/mew(Hpm)te-plgl

for all p, t > O. Optimizing with respect to p then gives the desired Gaussian
bounds.

The proof of the Coo property of K t and the bounds for the derivatives
AO'K t is analogous and we omit further details. 0

The expansion used to construct the kernel K has a notable localization
feature. The zero-order approximant K(O) is supported by O. Moreover,
since the first-order approximant K(l) involves a convolution it is supported
by 0 2 • Then by recursion K(n) is supported by on. Thus the large distance
behaviour of the kernel is captured by the higher-order terms.

Let U = {U(g) : 9 E G} be a continuous representation of the Lie group
G by bounded operators U(g) on the Banach space X and assume U is weakly
continuous, or weakly· continuous if X has a predual. Now let Ai denote
the generator of the continuous one-parameter group t 1--+ U(exp( -tai))'
Then applying the previous definitions the strongly elliptic operator H =
LIO'I$m cO'AO' with domain Xm = nlO'I$m D(AO') becomes a densely defined,
closable operator on X.

Since the representation U is continuous one has bounds

with M ~ 1 and p 2:: O. Therefore, since the kernel K t satisfies Gaussian
bounds, K t E Li(G) and one can define bounded operators St on X by

St = U(I<t) = fa dg Kt(g) U(g) .

Note that t 1--+ St~ is continuous from (0, (0) into X for all ~ E X, since t 1--+

K t is continuous from (0,00) into Li(G). Because of the bounds IIKt(n)lli ~
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a (bntnjn!)l/mew(I+pm)t it follows that limt!O Ste = limt!o U(K1°»)e, if one of
the two limits exists. But (Kt)t>o is a bounded approximation of the identity
and hence

limU(K1°»)e = lim f dxu(x) Kt(x) x(x) U(exp(axne = e .
t~ t~~

Therefore liffit!O Ste = e strongly if U is strongly continuous and weakly* if
U is weakly* continuous.

We will first apply this to the L;-, and L;;n-, spaces with respect to the
left regular representation. Here L; = Lp ( G; ePlg!dg) is the weighted space
and L;;n = nlQI~n D(AQ) the associated space of n times left differentiable
functions with respect to the weighted measure. Then

Step = Kt * ep

and it follows that StL; ~ L;;oo ~ D(H). Moreover, if p E [1,00) and
q E (1,00] is conjugate to p then

-fa dt Ukr)(t)('l/J, Step) + fR dt r(t)('l/J, HStep)

= - fR dt (8tr) (t)('l/J, Step) +fa dtr(t)(H*tf;, Step) = 0

for all ep E L;, r E C~((0,00)) and tf; E C~(G). But then by continuity it
is valid for all 'l/J E L~. On the other hand the map t 1-+ HStep is continuous
if ep E L;;m' Therefore it follows from the lemma of Du Bois-Reymond that
t 1-+ ('l/J, Step) is differentiable and ft ('l/J, Step) +('l/J, HStep) = 0 for all ep E L;;m,
'l/J E L~ and t > O. Then

d
dt Step + HStep = 0 (18)

strongly for all ep E L;;m by an application of the mean value theorem.
The family S = {Sdt>o forms a semigroup if, and only if, K is a convolu

tion semigroup. But the definition of K seems unsuited for direct verification
of this property and so we have to approach it indirectly. We will argue that
it follows from the lower semiboundedness of Re H on L 2 • In some situa
tions this latter property is an obvious implication of the strong ellipticity
condition. For example, if m = 2 and H is expressed in the form

d

H = L cijAiAj + CO
i,j=l
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with the matrix of leading coefficients C = (Cij) symmetric then strong ellip
ticity is equivalent to strict positivity of the real part of C. Therefore Re H
is lower semibounded. Lower semiboundedness of the real part of a general
second-order operator can then be deduced from this special case as the first
order terms are a small perturbation of the leading terms. But it appears
that the proof of semiboundedness for higher order operators is somewhat
more complicated to establish.

Proposition 3.2 Each symmetric strongly elliptic operator H on L2(G; dg)
is essentially self-adjoint and lower semibounded.

It suffices to establish that the range of (AI +H) is equal to L2 and its inverse
is bounded for all large positive A. For this we use a resolvent version of the
foregoing parametrix techniques.

Let X, X' E C~(G), supp X' c n, x(e) = 1 and X' = 1 on supp X. Then
for all cp E C~(G) and 'lj; E L 2 (G) one has for all r E C~(G) with suppr ~
suppx

kdgr(g)('lj;,PI+H)L(g)cp) - ('lj;,(AI+H)(r*cp))

fa dg ((AI + H)r)(g) (t/;, L(g)cp) X'(g)

fa dg r(g)((AI + H)r)(g) (19)

where 7(g) = ('lj;, L(g)'P) X'(g). Since C~(G) is dense in L1(G) it follows by
continuity that (19) is valid for all r E L1(G) with supp r ~ supp X. Now
let r>.. be the function on G with support contained in n such that r>.. = itx
where R>.. denotes the kernel of the resolvent of (AI +H)-Ion Rd. Then one
has in the sense of distributions

(t/;, (AI + H)(r>. * cp))

fw dx O'(x) R>.(x) X(x)((AI +H + H')f)(x)

fw dx O'(x) ((AI + H + H')(R>.. X))(x) f(x)

= fw dx O'(x) 8(x) X(x)f(x) + fw dxO'(x)S>..(x) (t/;,L(exp(ax))cp)

14



where SA has the form

Once again the Xi E C~(W) and the L(i) are operators of actual order at
most m- 1. But the estimates of Corollary 2.4 imply that lirA 111 :5 a A-I
and IlsA11I :5 a A-11m for large A. So

(t/J, (AI + H)(rA * cp)) = (t/J,cP) + (t/J, SA * cp)

Therefore, if RA and S>. denote the operators of convolution with r>. and s>.,
respectively, then IIR>.cpIl2:5 aA-1 11cp1l2 and IIS>.cplI2:5 aA-l

/
m llcpIl2' Hence

(20)

for all cp E C~(G) and by density it follows that RAL2 ~ D(H) and (20)
is valid for all cp E L2 • Thus if A is sufficiently large that a A-11m < 1 then
(I + S>.) has a bounded inverse and

cp = (AI +H)R>.(I + S>.)-lcp .

This establishes that the range of (AI + H) is equal to L 2 and hence H is
self-adjoint. But it then follows that

and hence
IIcpl12 :5 aA- l (1 - aA- l

/
m t 1 11(AI + H)ep112

Therefore (AI +H) has a bounded inverse. Thus H is lower semibounded by
spectral theory. 0

Now it is straightforward to prove that K is a convolution semigroup.
Since Re H is a symmetric strongly elliptic operator on L 2 it follows from

Proposition 3.2 that it is lower semibounded on L2 , i.e., there is a v 2 0 such
that

Re( cp, Hcp) ~ -v lIepll~

for all cp E L2 ;m' Next observe that if CPt E D(H) satisfies the Cauchy
equation

d
dt ept +HCPt = 0
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for all t > 0 then

Therefore t ~ e-vt ll't'tIl2 is a decreasing function. Now suppose r.p~l) and
r.p~2) both satisfy (21) and 't'P) ~ r.p, r.p~2) ~ r.p as t ~ O. Then r.pP) _ r.p~2)

also satisfies the equation but r.pP) - r.p~2) ~ 0 as t ~ O. Therefore, as a
consequence of the foregoing decrease property, r.pP) = r.p~2), i.e., the solution
of (21) is uniquely determined by the initial data r.p = r.po.

Now let 'P E L 2;m' Then 'Pt = St+s'P = K1+s * 'P satisfies (21) with initial
data 'Po = Ss'P. Moreover, 'Pt = StSs'P satisfies the equation with the same
initial data. Therefore

(St+s - StSs)'P = 0

for all 'P E L 2;m, and by continuity, for all r.p E L 2 • This establishes that
S is a semigroup on L2 • But this implies that K t is a convolution semi
group. Therefore S is also a semigroup on the other L~-spaces and in any
representation in a Banach space.

It follows from (18) that the generator Hs of S is an extension of H on L~.

Now L;;oo is a dense S-invariant subspace and hence a core of Hs . Therefore
H s must be the closure of H.

At this point we have essentially established the main result.

Theorem 3.3 Let H be an m-th order strongly elliptic operator acting on
the Banach space X, associated with a continuous representation U. Then
the closure of H generates a continuous semigroup on X with a kernel Kt E
Coo (G) satisfying bounds

I(AaKt)(g) I :::; aa C(d+lal)/mewte-b(lglm/t )l/(m-l)

for all 9 E G and t > O.

The kernel K t was constructed in Proposition 3.1 and the foregoing argument
established that {Kdt>o is a convolution semigroup and the corresponding
operators S = {Sdt~o defined by StX = fG dg Kt(g) U(g)x form a continuous
semigroup on X. Let p > 0 be so large that IIStl1 :::; MePt uniformly for all
t > 0, for some M > O. Let H L and SL be the operator and semigroup
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corresponding to the left regular representation in Li. Let c.p E Li;oo and
x E X. Then for all t > 0 one has

StU(c.p)x = U(Kt * c.p)x = U(Sfc.p)x

Hence by the Duhamel formula

StU(c.p)x - U(c.p)x - U(Sfc.p - c.p)x

_ -U(l
t
dsHLS~c.p)x =-It

ds (U(S~HLc.p)x)

Therefore

IIr1 (StU(c.p)x - U(c.p)x) - U(HLc.p)xll - IIr1I t
ds U(S~HLc.p - HLc.p)xll

< sup IIS~HLc.p - HLc.plli IIxll .
O<8~t

Since SL is a continuous semigroup, it follows that U(c.p)x is in the domain
of the generator Hs of S 'and

HsU(c.p)x = U(HLc.p)x = HU(c.p)x .

Taking for c.p a smooth bounded approximation of the identity one deduces
that Hs extends H. But the dense subspace of smooth elements of the
representation, nO' D(AO'), is invariant under S. Therefore Hs = H and the
proof of the theorem is completed. 0

One can also prove that H is closed on Lp(G;dg) for p E (1,00). But
this is not generally the situation for p = 1 or p = 00. This is, however,
not surprising since even in the Euclidean case, G = R d, it is well known
that the Laplacian is not closed on L1 or Loo , i.e., the domain of the closed
Laplacian contains functions which are not twice-differentiable in the natural
sense. The fact that H is closed on L2 does, however, improve the statement
of Proposition 3.2. The operator H is self-adjoint.

Strong ellipticity was expressed as a restriction (1) on the coefficients
CD! of the operator H. But it follows from the definition that H - >.AO'· AD!
is also strongly elliptic for each multi-index a = (i}, ... , im / 2 ), with a o =
(im / 2 , ••• ,id, and for each >. E (0, JL) where JL is the ellipticity constant.
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Therefore ReH - >.AQ· AQ is lower semibounded on L2(G j dg) by Proposition
3.2. This, however, implies that

for some v 2: 0 and all 'P E C~(G). Hence taking the supremum over a
with lal = m/2 one deduces that H satisfies the Garding inequality (3) on
L2 ( G j dg). Thus strong ellipticity implies the Garding inequality. But the
converse implication can be established by evaluating the Girding inequality
with approximate local eigenfunctions of the operators Ai. Adopting the
notation introduced prior to Proposition 3.1 one chooses 'P E C~(n) with
ep(x) = ei€.xx(x) where X is a COO-function with support in a ball of radius
r centred at the origin. Then using (8) and (9) the Garding inequality for
'P for large eand small r yields the strong ellipticity condition. Therefore
strong ellipticity is equivalent to the Garding inequality. This conclusion is
of significance for the broader discussion of subelliptie operators.

4 Subelliptic operators

The theory of subelliptic operators is formulated in a similar fashion to the
foregoing strongly elliptic theory but the vector space basis al, ... ,ad of g is
replaced by an algebraic basis ab ... , ad

l
, Le., a set of linearly independent

elements whose Lie algebra spans g. Moreover, the main structural properties
of the subelliptic operators are very similar to their strongly elliptic counter
parts. Nevertheless, there are striking differences between the subelliptic and
strongly elliptic theories. There is no Euclidean counterpart of an algebraic
basis and the Euclidean group serves no useful role as a local approximation
in the subelliptic setting. One can, however, exploit the parametrix method
with the Euclidean group replaced by a non-commutative group which has
a 'simple' algebraic structure related to the structure of the algebraic basis.
We briefly outline some of the new and distinguishing features of the subel
liptic theory. We begin with some geometric and algebraic features which
are independent of the subelliptic operators but only relate to the underlying
algebraic basis al, ... , adt .

First, if the group G is viewed as a manifold the ai correspond to directions
on the manifold and one can define a distance relative to paths restricted to
the directions of the algebraic basis. The ball of radius h measured with
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respect to this subelliptic distance then behaves like 8D as 8 -+ 0 where D
is an integer interpretable as the local dimension of the manifold relative
to the basis. It is this dimension rather than the group dimension which
determines the small time singularity of the subelliptic heat kernels. It can
be calculated from the basis as follows.

Let gl denote the linear span of the algebraic basis al, ... , ad1 and gj
the span of the algebraic basis together with the corresponding multiple
commutators of order less than or equal to j. Then gl C g2 C ... C gr = 9
where r is an integer and the smallest number with this property is referred
to as the rank of the algebraic basis. Next set V1 = 91' and "i = 9j\9j-l for
j E {2, 3, ...}. This gives the direct sum decomposition

9 = V1 ffi V2 ffi .. . ffi lI,.

of the Lie algebra and
r

D = L:j dim "i
j=l

Clearly, D 2:: d with equality if, and only if, r = 1. In particular this
establishes that locally the subelliptic distance cannot be equivalent to the
distance defined with a vector space basis. Nevertheless at large distances
the two measures of separation are equivalent.

Secondly, one can associate a 'simpler' Lie algebra go with 9 by a contrac
tion process which streamlines the algebraic structure. Define linear maps
"Yt: gl 1---+ gl for each t > 0 such that "Yt(ai) = tai for i E {I, 2, ,dd. Then
extend al, ... , ad1 to a basis of g2 by adding elements ad1+1, ,ad2 which
are commutators of basis elements aI, , ad1 and in addition extend "Yt to 92
such that "Yt(ai) = t2ai for i E {d1+ 1, ,d2}. Next extend al, ... ,ad2 to a
basis of g3 by adding elements ad2+1, , ad3 which are double commutators
of basis elements all' .. ,ad! and extend "Yt to g3 such that "Yt(ai) = t3ai for
i E {d2 +1, ... ,d3 }. After repeating this process a finite number of times one
obtains a vector space basis of 9 and linear maps "Yt: 9 1---+ g. Then 90 is the
contraction of 9 with respect to "Y, i.e., go is the vector space 9 equipped
with the Lie bracket

[a,b]o = lim"Y;l[,t(a), "Yt(b)] .
t!O

It follows that go is a homogeneous Lie algebra with dilations (,t)t>o and
all' .. , ad1 is an algebraic basis of go with rank r and local dimension D.

19



Let Go be the connected, simply connected, Lie group with the Lie al
gebra go. It is the group Go which acts as the local approximation to Gin
the subelliptic theory. The simplifying feature of Go is the existence of the
dilations It, t > 0, which allow scaling arguments to extend local properties
globally.

As an illustrative example suppose al, ... ,adl is a vector space basis of
g then gl = g, r = 1, D = d and It(a) = ta for all a E g. Therefore
,;l[,t(a),'t(b)] = t[a,b] -... 0 as t -... 0 and go is abelian. Thus in this case
Go = R d and we return to the previous situation.

Now we turn to the definition and discussion of subelliptic operators.
Again we consider m-th order operators

H = 2: COl Acr

01; 1001$m

on the spaces Lp ( G; dg) but now the multi-indices a = (it, ... , in) are formed
from indices i j E {I, ... ,dt} in the subelliptic directions. Now, however, the
order of the products is more important since reordering a product AOI by
use of the Lie algebraic relations introduces operators Ai in directions which
are not contained in the algebraic basis. Therefore it is difficult to define a
subelliptic analogue of strong ellipticity directly in terms of the coefficients
COl of H. But one can adopt the definition in terms of the Garding inequality.
Thus H is defined to be subelliptic on G if

for all t.p E C;o(Rd ) where

Nk(t.p) = sup II Aa t.p112
01; lal=k

and the supremum is restricted to multi-indices formed from the subelliptic
directions.

The theory of subelliptic operators can now be developed in close analogy
with the strongly elliptic theory. There are three main steps.

First, H is subelliptic on G if, and only if, it is subelliptic on the con
tracted group Go. In the strongly elliptic case Go = R d and this statement
reiterates the equivalence of strong ellipticity and the Garding inequality.
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Secondly, one establishes that the closure of H generates a continuous
semigroup S on the Lp-spaces over Go with a kernel K satisfying Gaussian
bounds,

I(Aa Kt}(g) I :5 aa r(D+!al)/mewte-b(lglr'/t)l/(m-l)

for all 9 E Go and t > 0 where I . It is the modulus associated with the
subelliptic distance and the derivatives are in the subelliptic directions. The
analogous step in the strongly elliptic case consisted of constructing Sand
K for the group Rd. This was achieved in Section 2 by utilizing Fourier
techniques. These methods are not applicable to Go and the proof is quite
different. But the homogeneous structure on Go, the existence of the dilations
" is critical and can be viewed as the vestige of the Euclidean structure.

Finally, the properties of H on Go are extended to H on G by parametrix
arguments. The main thrust of the reasoning is unchanged from the strongly
elliptic case but the details are somewhat different.

Notes and remarks

Recent work on semigroups, kernels and kernel bounds, together with detailed
references, is described in the books [Dav], [Rob] and [VSe]. The Lie group
theory of strongly elliptic operators began with the unpublished thesis of
Langlands [Lan] which established that these operators generate semigroups
with smooth universal kernels. Langlands used parametrix arguments for the
resolvent. His arguments, with some simplifications, are described in [Rob].
The current streamlined approach based on parametrix arguments for the
kernel is abstracted from [EIR2] and [EIR1J but the essential convergence
properties are taken from [BrR]. The derivation of Gaussian bounds via the
parametrix expansion and weighted spaces differs from the now standard
method introduced by Davies and described in the above books although
the methods are related. The approach to subelliptic operators sketched in
Section 4 is fully developed in [EIR3]. The local approximation by a nilpotent
group is analogous to the method of Rothschild and Stein [RoS] but has the
advantage that the dimension of the approximating group is the same as the
original group, there are no additional dimensions.

21



References

[BrR]

[Dav]

[EIR1]

[EIR2]

[EIR3]

[Lan]

[Rob]

[RoS]

[VSe]

BRATTELI, 0., and ROBINSON, D.W., Subelliptic operators on
Lie groups: variable coefficients. Acta Applicandae Mathematicae
(1995). To appear.

DAVIES, E.B., Heat kernels and spectral theory. Cambridge
Tracts in Mathematics 92. Cambridge University Press, Cam
bridge etc., 1989.

ELST, A.F.M. TER, and ROBINSON, D.W., Weighted strongly
elliptic operators on Lie groups. J. Funct. Anal. 125 (1994), 548
603.

--, Subcoercivity and subelliptic operators on Lie groups II:
The general case. Potential Anal. 4 (1995), 205-244.

--, Weighted subcoercive operators on Lie groups, 1995. To
appear.

LANGLANDS, R.P., Semi-groups and representations of Lie
groups. PhD thesis, Yale University, 1960. (Unpublished).

ROBINSON, D.W., Elliptic operators and Lie groups. Oxford
Mathematical Monographs. Oxford University Press, Oxford etc.,
1991.

ROTHSCHILD, L.P., and STEIN, E.M., Hypoelliptic differential
operators and nilpotent groups. Acta Math. 137 (1976), 247-320.

VAROPOULOS, N.T., SALOFF-COSTE, L., and COULHON, T.,
A nalysis and geometry on groups. Cambridge Tracts in Mathe
matics 100. Cambridge University Press, Cambridge, 1992.

22


