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A direct numerical method for a class of queueing problems

by

J. Wijngaard

o. Introduction

In the last years a lot of attention is g~ven to queueing problems with

state dependent service and/or service in batches (see Rosenshine [2J).

Only for some of these problems it is possible to derive explicit expres

sions for the stationary probabilities or other interesting quantities.

In this paper a numerical procedure is given for a rather general class of

these problems. The most important restrictions are that the arrivals has

to be one for one (but may be state dependent) and that the service mecha

nism is negative exponential.

In a case where explicit expressions are available the computing time re

quired for the calculation of these expressions was compared with the corn.

puting time required for the direct numerical method. It turned out that

there was not much difference.

I. The model

Let (P.c) be a Markov chain with costs on the nonnegative integers 1N. (P is

a Markov chain and c a nonnegative function on 1N) • The transition probabi

lities are denoted by p ... Let f be an arbitrary real valued function on 1N;
~J 00

the function Pf is defined by (Pf)(n) = L p .f(i). if this sum exists. If
i=O n~

c is interpreted as the expected costs in the first period. then pn-l c gives

the expected costs in the n-th period and

The following assumptions are made:

00

L
n=O

pnc the total expected costs.

i)

ii)

Pni = 0 for i > n + I and for all n EO 1N.

Pnn+1 > 0 for all n ~ I.

POO = 1, c (0) = O.

There is an integer Nand posi tive numbers a and b such that Pnn+1 ~ a

andp ~ 1-2a-b forn~N.nn



- 2 -

iii) For each n there is an nO ~ n such that, starting 1n nO' it is possible

to reach state 0 without visiting [nO + 1,00), that means, there is a se

quence nO,nl,n2""'~with nO > n l > n2 > ••• > ~ = 0 such that

P > 0 for i = O,I, ••• ,k-i.
nin i + l

a n'iv) There is an r, a + b < r < 1, such that r c(n) is bounded on :IN.

The state 0 is absorbing and the costs here are O. We are interested in the
00

total expected costs starting in some state n, L (P~c)(n). In the next
~=O 00 ~

of this sum is proved and it is shown that rn I (P c)(n)
~=o

lemma the existence

is bounded on IN.

For convenience we shall denote the space of all real valued functions f on

IN such that rnf(n) is bounded on [k,oo) by B~ and sup Irnf(n) I by II f Ik'
n~k

Lemma. The total costs starting in n,
00

I
~=o

00

(P~c)(n) exist and I
~=o

P~c E: BO•
r

Proof. Let NO > N be such that it 1S possible to reach state 0 from state

NO - 1 without visiting [NO'OO). First the expected costs until the first visit

to [0 ,NO - ) J are considered. Let Pf for f an arbitrary function on [NO ,00) be
00

p .f(i).n1

is an element

are the expected costs starting 1n n until

By assumption iv) the function c
NO

element of Br ' then for n ~ NO

I
i=No
if existing,

00

given by (Pf)(n) =

Then I (~c) (n) ,
~=O

the first visit to [O,NO- IJ.
NO

of B • Let v be an arbitrary
r

00 00 II f I~

rn I (Pf) (n) I rnl I p . f (i) I n I 0= s r Pni i =
i=N n1 i=N

0 0
r

p n-)
II f I~ ( nn+) L n-1= + Pnn + p . r ) s

o r i=N n1
0

s II f I~ {r + (1 - r) (p + l!..!. PI)} so M r n~

S h+ (l-r)(I-2a-b +..!...:!:..E. a}llfli •
r NO
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~ NO ~
Hence Pf 1S also an element of B

r
and IIPfl~ $

o

p : = r + (I - r) (I - 2a - b + 1 + r a) •
r

pll f liN with
o

00

wi th II L p1 f I~ $ ~ II f liN • Hence
1=0 0 PO·

a
Since 1 > r> a + b the constant

NO
is also an element of B

r

p is between 0 and 1 and therefore
00

L
1=0

~f

00

L
1=0

~ 1
(P c) (n) $ n 1 _ p II c I~

r 0

Once 1n [0 ,NO - 1] there is a positive probability to reach state 0 wi thout

coming again in [NO'OO). Therefore the total costs starting in n exist for
00 00 00

each n L 1 L ~c is bounded on [NO ,00). This implies I 1 0
and P c - P c E B .0

R.=O 1=0 1=0
r

00

Now let v:= L
1=0

1Pc, then for n E lN

( 1) yen)
~l n

= c(n) + L P .v(i) = c(n) + P Iv(n+ I) + L P .v(i), or
i=O n1 nn+ i=O n1

(2) v(n + I) - yen) = ---
Pnn+ 1

n-l
{ L

i=O
P . (v(n) - v(i» - c(n)} •

n1

Let u(n) := v(n + I) - yen) , n E lN, then for n ~

n-l k c(n)(3) u(n) = I u(k) L Pki -
Pnn+ 1 k=O i=O Pnn+ l

Hence u(n) s atis fies the following equation in x,

n-I k c(n)(4) x(n) = L x(k) L Pni - n ~ 1 .
Pnn'tl k=O i=O Pnn+ 1

Each solution of this equation is determined by x(C'). Let f be the solution

with f(O) = 0 and let g be the solution of the homogeneous equation

x(n) =-
Pnn+ 1

n-l

L
k=O

x(k)
k

L Pni
i=O

with g(O) = 1. Then the general solution of (4) is x = f + dg with d a con-
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stant. Since u is a solution of (4), u

g we have

f + d g with d = uou u
v( I). For

n-I
g(n) =-- L g(k)

Pnn+1 k=O

k

L Pni ~
i=O

n-I
g(n - I) L p . •

p n~
nn+ I i=O

a + bHence, if n ~ N, g(n) ~ g(n - I) a • Let NO be as in

ma, then g(NO - I) > O. By the lennna v(n)rn is bounded,

sibility of v yields

the prolPf of the lem
Ivll

v(n) ::; ---.Q. • The po
n

r

IIvlb
lu(n)! ::; max(v(n+ I),v(n)) ::;--;+T

r

The quantity - f«n)) can be used as
r .. I_~ln II vII

approximation of v(I). The error which is made is~ ::; ~+I •
g g(n)r

Notice thatv(l) =u(O) =- :~~~ is also found ifu(k) =0 iS~Ubstituted in (3),

or v(k + I) = v(k) in (2) or v(k) = c(k) + Pkk+lv(k) + i~O Pkiv(i) in (I).

This means that - :~~~ is the approximation of vel) which is gotten if the

transi tion k + k + I is replaced by a transition k + k.

and since r > a this implies lim u«n)) = O.
a + b n-+oo g n

This result can be used to construct an approximation procedure for v(I).

We had u(n) = fen) + v(l)g(n), hence u«n)) = m + v(I). Since lim u«n)) = 0
f ( ) g n g ,nJ n-+oo g n

this implies v(l) = -lim g(~) •
n-+oo

It is easy to calculate fen) and g(n).

2. The quality of the approximation

the process. If there is an integer q such that p . = 0
n~

for i < n - q it is possible to derive bounds for the error in fen) and g(n).

In section I we found that the error of - fen) as approximation of vel) ~s
g(n)

IIvlb
not larger than -n+T . However, it is rather difficult to express this bound

r
in the parameters of

Let N
I

be such that g(n) > 0 for n ~ NI • Define

f * (n) - f (n) * ( ):- gcny , c n =

k
g(k) I Pni

c(n) * i=O
( ) , P k = -"7'(......)~--- for n,k ~NI'

Pnn+l g n n g n Pnn+l
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Then

*f (n) =
n-]

\ * * *L f (k)P
nk

- c (n)
k=n-q

for n ~ N1 + q •

n-]

Further I P:k = I.
k=O

Hence f*(n) for n ~ N
1

+ q can be interpreted as the total expected costs in

a Markov process with transition probabilities p~. which is stopped as soon
1J

as a state n with n < N
1

+q is reached. In each state n ~ N1 +q the costs are

-c*(n), the costs of stopping the process in n < N] +q are f*(n).

It is easy to see now that for n > N
Z

~ N1 + q the cos ts f* (n) can be wri tten

as f*(n) = C
Zn

+ R
Zn

' where C
Zn

are the expected costs until a state k < NZ
is reached and R

Zn
the res t of the cos ts.

Let Pk(n) be the probability that k is the first state in [O,NZ - IJ, then

Hence

N -IZ

I
k=N -q

2

*Pk (n) f (k) •

and

N -I
Z

L
k=N -q

2

N -IZ

L
k=N -q

2

* *Pk(n){f (n) - f (k)} =

*Let f (n) attain its maximum on [N
Z

-q,N
Z

-IJ in k
h

and its minimum 1n k.R,'

Then

The process moves In each transition at least one step to the left, hence

o ~

n

L
j=N

Z

c* (j) •

Since v(I) -lim f*(n) this gives the following bounds on v(])
n-+<x>
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()O

:0; - f* (kQ,) + I c* (j) •
j=N

Z
()O

In most cases it is not so difficult to give abound on I
j=N

Z

* .c (j). We had

c* (j) =
c(j) = c (j)

:0;
c(j)

Pjj+lg(j) j-I k j-I
I g(k) I p .. g(j - I) L p. "

k=O i=O F i=O J~

Let NZ be chosen such that NZ > NO (see the proof of the lemma), then

while

c* (j) :0; c (j)
g(j-I)(a+b) for j ~ NZ

+ b)j+l-NZg (j) ~ g (N
Z

- ]) (a a for j ~ NZ .

If c(j) is bounded for instance we get the following result,

()O

\' *(") B
t.. c J :0; b g (N

Z
- 1) ,

j=NZ

where B is an upper bound of c(j).

*Remark. The interpretation of f (n) as the total expected costs in a Markov

chain is perhaps also of some analytical use. If for instance q = and

p > 0 for all n > 0 then g(n) > 0 for all n and p*. = 1 for n > O.nn-! nn-]
* * *Hence f (n) = f (n - ]) - c (n) for all n > 0 and

()O ()O

v(l) I * I c(n) .
= c (n) =

g(n)Pnn+]
,

] ]

where g(.) is given by g(n)
Pnn-]

g (n - !).=
Pnn+l
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3. Applications

This method can be applied to those queueing systems where the customers

arrive one for one and where the service mechanism is negative exponential.

State dependent service- and arrival rates and batch service, or other types

of not one for one service are allowed. In these cases the embedded Markov

chain which describes the number of customers at the moments of arrival has

the prescribed structure. The stochastic process X(t) of the number of cus

tomers at time t is a regenerative process (see Ross [3J). The cycle is the

epoch between two subsequent times that an arriving customer comes in an

empty system. The quotient of the expected cycle costs, EC,· and the expected

cycle time, ET, is in general equal to the average costs. Let c(n) be the

expected costs per time in state n. If we set c(i) = 0 for i ~ k and c(k)

equal to the expected time in state k (until the first transition), then the

average "costsl!, ~~ , are equal to the probability that the system is in

state k. The quantities EC and ET can be calculated with aid of the above

described method.

A special case where also analytical results are known is that of a queue

with Poisson arrival, states dependent batch service, infinite many services,

and negative exponential service time. This queue is equivalent with an in

ventory system with Poisson arrival of customers, an (s,q) order strategy

and negative exponentially distributed lead time (see also Wijngaard and

van Winkel [4J). Galliher, Morse and Simond [IJ derived explicit expressions

for the stationary probabilities. We compared the calculation of these ex

pressions with the direct numerical method and found about the same computing

times. Notice that in this case the results of section 2 could be applied.

References

[IJ Galliher, Morse and Simond, (1959), The dynamics of two classes of

continuous ~ review inventory systems, Operations Res. 1, (362-384).

[2J Rosenshine, (1975), Queueing theory: The state of the art. AILE transac

tions I (257-267)~

[3J Ross (1970), Applied probability models with optimization applications,

Holden-Day, San Francisco.

[4J Wijngaard, van Winkel (1974), Average number of back order in a conti

nuous review (s,S) inventory system with exponentially distributed

demand, presented at EURO I, Brussel.


