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DISCRETE EVENT SYSTEMS: 
DYNAMIC VERSUS STATIC 

TOPOLOGY 

K.M. van Hee P.M.P. Rambags 

Department of Mathematics and Computing Science 
Eindhoven University of Technology 

Abstract 

In this paper, we present two models for discrete event systems: A formal Actor 
model, based upon Agha [1], and the Des model [5]. The former has a dynamic 
topology whereas the latter has a fixed interaction structure. 
We introduce an equivalence relation for discrete event systems and we construct an 
equivalent Des for each Actor system. Furthermore, we prove several results, such 
as the serializability of events in the Actor model and the establishment that every 
name-generating mechanism is isomorp~ic to the method introduced by Agha, i.e., 
to extend an existing name with some element. 

1 Introduction 

Many existing models for discrete event systems have a fixed topology, i.e. the number 
of active components and their interaction structure are fixed. The Petri Net model 
[13] is a well-known example. 
There exists also another class of discrete event systems where the topology is dynamic, 
i.e. new components can be created during the course of the system and the interaction 
structure may change. The Actor system is one of the most well-known specimen of 
this class. 
In order to derive properties of Actor systems and to manipulate them, we need a 
formal description. Agha [1] uses recursive equations. It is not obvious to see whether 
these equations have solutions and if so, which ones. An other approach is based upon 
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graph grammars [9J. We present in Section 3 a formal Actor model constructed from 
sets and functions. We have been inspired by [1], which allows us to abandon all time 
aspects, only order of events is left. We assume only one actor machine of the same 
actor to be alive at each moment. We adopt the method to generate new names locally. 
All new names will be an extension of an existing name with a natural number and we 
prove that every name-generating mechanism is isomorphic to this method. 
In Section 4, we briefly introduce another model for discrete event systems, called the 
Des model. It has a fixed interaction structure. We shall not explain the basic ideas 
behind it, instead we refer to [6J. 

First, we introduce in Section 2 a very general notion of discrete event systems, called 
transition system. Its purpose is twofold: We use it to describe the semantics of more 
specific models, in this case the Actor and Des models, and to compare discrete event 
systems. For the latter, several similarity relationships on transition systems are de
fined, of which the strongest is equivalence. Thus we are able to compare discrete 
systems described in completely different frameworks, in this case Actor systems and 
Des'ses. In Section 5, we first construct a very simple Des which realizes any Actor 
system only. It has one processor. Consequently, it cannot perform actions in par
allel. Next, we construct an equivalent Des for each Actor system. This result may 
seem remarkable because of the static topology of a Des. The resulting Des, however, 
has some difficulties, e.g. processors have infinitely many outpnt channels. We solve 
these problems by means of a two-steps construction. In the end, each processor with 
innnitely many output channels has been replaced by one or more simple processors 
with only finitely many output channels. The resulting Des can be implemented in 
EXSPECT [6,7J. Consequently, we are able to prototype any Actor system. 
We start with some notations. 

Notations 

INo is the set of natural numbers including zero and for i E INo: IN, = {j E INolj :::: i}. 
For S a set and T a binary relation over S, T* is the transitive closure ofT. We overload 
the symbol *: For S a set, S* is the set of all finite rows over S. We denote the empty 
row by E and row concatenation by o. We write (Sb S2, .•. , sn) for a row consisting of 
the elements 81,82, ••. ,8n, respectively. For x E So, Ixl is its length and Xi is the ith 
element of x. Sometimes we use x & a as shorthand for x 0 (a). 
For A and B sets, A ~ B iff B <;; A, A --+ B denotes the set of all total functions from 
A to B and A f> B the set of all partial functions from A to B. For f a function, 
f[a : bJ = A x E dom(f) : if x = a then b else f(x) ft, and for X <;; dom(f),j(X) = 
{f(x) I x E X}. We denote function concatenation by 0 and function restriction by f. 
For an injective function, we write f- 1 for its inverse. For an non-injective function 
and y some element, f-l(y) = {x E dom(f) I f(x) = y}. 

For A and B 1 ,B2 , ••• ,Bn sets, f E A --+ Bl X Bz X ... X Bn, a E A and i E {1, ... ,n}: 
fi( a) denotes the i,h component of f( a). 
The symbol 'w' stands for 'infinite'. For all n E INo: n < w. If X is a set of numbers, 
then XW = Xu {w}. For an ordered set D and db d2 ED: d1 !!lin.d2 is the minimum 
of d1 and d2 and d1 max dz is the maximum of d1 and dz. 
If Y is a set of sets, then U Y denotes the union of all elements of Y. If A is a set, 
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then IAI is the number of elements in A, JP(A) denotes the set of all subsets of A and 
18(A) denotes the set of all multisets (bags) over A, i.e. the set of all functions from A 
to IN!). Please note: Infinitely many copies of the same element can appear in a bag 
and a bag can contain infinite many different elements. 
For b E 18(A) and x some element: x E b iff x E A and b(x) > O. 
For A, B sets, x E 18(A) and y E 18(B): 

- x<;;y iff 
- x = y iff 
- x Uy = 

- x\y 

Va Ex: a E B 1\ x(a) :<; yea). 
x <;; y 1\ Y <;; x. 
AaEAUB : ifaEA\Bthenx(a) 

else if a E B \ A then yea) 
else x(a) + yea) fi fi.. 

A a E A : if a E B then (0 .!!l.!hlP(a) - yea)) 
else x( a) ft. 

- x n y = x \ (x \ y). 

Please notice that x n y = y n x. 

Sets can be viewed as bags. If S is a set, then the corresponding bag S E 18( S) is 
defined as A s E S : 1. So we can apply the operations above to sets and bags. For 
a bag-valued function j with finite domain A = {at, ... ,an}, mrng(f) denotes the 
multisetrange of j, defined as mrng(f) = feat) U ... U f(a n ). We also write UaEA f(a) 
for mrng(f). 
If x is a bag over A, then # x is the number of elements in x, i.e. # x = LaEA x( a). 
x is infinite iffVk E INa: 3B <;; A : LaEB x(a) > k, otherwise x is finite. 

For clarity, we sometimes use the following notation in proofs: 

A 

{} 1: Hint why A is equivalent with B :} 

B. 
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2 Transition system 

In this section we formalize a general notion of a discrete system which is called a 
tmnsition system. We shall use transition systems to describe the semantics of the Actor 
and Des models. We also mention several relationships between transition systems in 
order to mutually compare them. 

A transition system consists of a finite or countable set of states of which some are 
initial. The system starts with an initial state and then moves from one state to another. 
Actually, a transition system is a directed graph. Most frameworks incorporate, in some 
form, a transition system. 

Definition 2.1 Transition system 
A transition system is a triple (S, L, T), where: 

- S is a finite or countable set; 

- L r;;, S; 

-Tr;;,SxS. 

S is called the state space, L the set of initial states and T the tmnsition relation. 
o 

This definition of a transition system can be found in [3]. In literature, also other 
classes of transition systems are described, for instance see [8,11,12,17]. They differ 
from ours in mainly two items, viz.: 

- There is only one initial state; 

- The transition relation T has been replaced by a set of actions A and a relation 
R r;;, S x A x S, where (s, a, Sf) in R if action a can make the system move from 
state s to state Sf. 

Hence, there may be different transitions between two states, while in Defini· 
tion 2.1 only the existence of a transition can be indicated. 

All these classes of transition systems can be transformed into each other, but we shall 
not elaborate it here. 

A transition system may have several states which are never reachable, i.e. the system 
can never get there when started in an initial state. In some sense these states are 
superfluous, yet we do not require all states be reachable. When specifying a transition 
system one may not know which states are reachable and which are not. It may also 
be convenient to define the state space too large. 
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Relationships between transition systems 

One of our primary goals is to compare transition systems. We would like to characterize 
the behaviour of these systems with expressions as 'system A is more powerful than 
system B,' 'system A simulates system B' or 'system A is in fact the same as system 
B.' 
Several approaches to compare transition systems have been described in literature, 
e.g. observation equivalence [12] and bisimulation equivalence [8], but they consider 
other classes of transition systems and application areas. We shall introduce our own 
similarity relationshlps. It would be an interesting topic for further research to relate 
all classes of transition systems and their comparison techniques. 

When developing a new system, we compare several designs with each other and with 
the existing system. In these cases we have a specification of some transition system 
and one or more implementations. All implementations can be roughly divided up 
into three classes: Incorrect implementations, correct but incomplete implementations 
and both correct and complete implementations. An incorrect implementation can do 
more than is specified. A correct implementation performs allowed actions only, but 
it might be incomplete, i.e. the specification allows a larger set of actions than the 
implementation actually can do. See Figure 2.1. 

Incorrect implementations 

Partitioning line I .. - +-------------------1 

Correct but incomplete implementations 

Partitioning line II - - - +------------------~ 

Correct and complete implementations 

/ 

Figure 2.1 Three classes of implementations 

In this subsection, we introduce some concepts to make the comparisons between dis
crete systems more precise. We only consider transition systems here. Consequently, 
if we like to compare two systems described in different frameworks, we have to find 
representations of them on the level of transition systems first. 
We distinguish different transition systems by means of uppercase letters of the be
ginning alphabet. Their state spaces, initial states and transition relations are distin
guished by subscripts. 
First, we apply a reduction on any transition system such that all states are reachable 
and the transition relation is reflexive. 
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Definition 2.2 Reduced transition system 
Let (S,L,T) be a transition system. Its reduction (S,£,T) satisfies: 

s = {s E S I 3n E INa : 3so, ... , Sn E S : 

So E L " Sn = S " 'Ii E {1, ... , n} (S'_1,8.) E T} 

T = { (s, s') E S x Sis = s' V (s, s') E T} 

o 

This reduction gives just the information we need to determine the behaviour of a 
transition system. All similarity relationships will be based hereupon. 
We map reachable states of a system A onto reachable states of a system B by a 
total function f E SA --> SB. Hence, all reachable states of system A have to have a 
correspondent in system B. In fact, they are partitioned into classes and each class 
of A corresponds to a reachable state of B. The sizes of the classes are a measure for 
the efficiency of system A as compared with system B. 
Now we define the first relationship between transition systems: Realization. 

Definition 2.3 Realization 
Let A and B be transition systems. A realizes B with respect to function f iff 

- '1(s, s') E TA (J(s),J(s')) E TB 

o 

Intuitively, we say 'A realizes B' if we have a mapping to project states of A onto states 
of B such that the mapped behaviour of A is also behaviour of B. In terms of Figure 
2.1, the realization relation formalizes partitioning line I. 
Without proof we mention that the realization relation is transitive: 

Lemma 2.1 
Let A realize B w.r.t. functiou f and let B realize C w.r.t. function g. 

Then A realizes C w.r.t. go f. 
o 

The definition of the realization relation as such is not useful in many practical cases. 
The point is that it has been based on reachable states and we do not know in advance 
which states are reachable and which are not. However, it can often be proven that 
all reachable states have certain properties in common. One might speak of system 
invariants. In the following lemma, S can be regarded as a set of states for which these 
invariants hold. It can be used in several practical cases. 



Lemma 2.2 
Let S be a set and J a function with the following properties: 

- 'is E S : 'is' E SA (s,s') ETA =} s' E S 

- J(LA) ~ LB 

- 'is,s' E S : (s,s') ETA =} f(s) = f(s') V (f(s),f(s'») E TB 

Then A realizes B with J. 

Proof: See appendix. 
o 

7 

(1) 

(2) 

(3) 

(4) 

(5) 

If all transitions of system A correspond to a transition of B, then A realizes B. This 
is a special case of Lemma 2.2. 

Lemma 2.3 
Let J E SA --+ SB, J(LA) ~ LB and suppose 

'i(s,s') ETA: (J(s),f(s')} E TB . 

Then A realizes B with function J. 
o 

Consequently, 

Lemma 2.4 
If SA = SB, LA ~ LB and TA ~ TB, then A realizes B with the identical function. 
o 

Notice that A may realize B even if the transition relation of A is empty. If A realizes 
B then we consider B at least as powerful as A. 
We are now introducing a stronger relationship: Simulation, in which we also require 
that behaviour of B is, under the image of J, behaviour of A. 



Definition 2.4 Simulation 
A simulates B with respect to function f iff 

o 

- A realizes B with respect to f 

- f is surjective 

- V(t, t') E TB 'Iso E f-1(t) : 3n E INo : 381, ... ,8n E f-1(t) : 

3sn+1 E f- 1(t') : Vi E {O, ... ,n} : (8;,S;+1) E TA 

Without proof we mention that the simulation relation is transitive, too: 

Lemma 2.5 
Let A simulate B w.r.t. function f and let B simulate C w.r.t. function g. 
Then A simulates C w.r.t. go f. 
o 

Lemma 2.2 can be extended for the simulation relation. 

Lemma 2.6 
Let S be a set and f a function with additional properties: 

- 'Is E S : 'Is' E SA (s, s') E TA => s' E S 

- f(L A ) = LB 

- 'Is,s' E S : (s,s') E TA => f(s) = f(s') V (I(8),1(S')) E TB 

- V(t,t') E TB : 'Iso E f-1(t) n S : 3s1, ... ,sn E f-1(t) : 
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(1) 

(2) 

(3) 

(4) 

(5) 

3sn+1 E r1(t') : Vi E {O, ... ,n} : (S;,S;+l) E TA (6) 

Then A simulates B with f. 

Proof: See appendix. 
o 

Simulation with an injective function implies that both systems simulate each other. 
We omit the proof. 



Lemma 2.7 
Let A simulate B with function I and suppose: I is injective. 
Then B simulates A with 1-1. 
o 
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This property gives rise to an equivalence relation on the set of transition systems. 
Finally, we have come to the strongest relationship: Equivalence. 

Definition 2.5 Equivalence 
Two transition systems A and B are equivalent iff a bijective function I 
exists with the following properties: 

-Vs,s'ESA 

Notation: A ~ B. 
o 

(s,s') E TA {o} (I(s),f(s'» E TB . 

It is straightforward to see that equivalence equals simulation with an injective func
tion. 

Lemma 2.8 
A ~ B iff an injective function I exists such that A simulates B with I. 
o 

We shall use the following lemma in a subsequent section to prove the equivalence of 
two systems. 

Lemma 2.9 
Let I E SA --> SB be an injective, not necessary surjective function. Assume further
more: 

- V(t, t'} E TB t E rng(f) => t' E rng(f) 

- I(LA) = LB 

-VS,S'ESA (s,s') E TA {o} (I(s),f(s'» E TB 

Then A ~ B. 

Proof: See appendix. 
o 

In the next section, we present a formal model for Actor systems. 

(1) 

(2) 

(3) 
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3 Actor model 

In this section, we present a formal model for Actor systems. It has been based upon 
[1], but we assume only one actor machine of each actor to be present at each moment. 

Agha [1] has already introduced a formal model, he however uses recursive domain 
equations. This method has some disadvantages, for instance it is not immediately 
clear whether such an equation has solutions, and if so, which ones. Often a complex 
fixpoint theory is needed to find a minimal solution (e.g. see [2,14,15,16]). Therefore 
we choose a different approach. 
In order to give a non-recursive definition for actors, we introduce so· called local states, 
i.e. for every actor some internal memory. We have thus introduced over-specification, 
a designer might not want to bother about local actor states as we force him to do. We 
do not regard this as a disadvantage, on the contrary we feel that our model is easier 
to understand and use. It has been illustrated with some examples. 

Agha introduced a method to generate different names for new communications and new 
actors. In this method, each new name is an extension of an existing communication 
name with some element. All initial configurations should be such that no name of 
an actor or communication is a prefix of another name. He proved that this property 
remains invariant when the Actor system evolves. Consequently, no new name can 
equal an already existing name. 
This method has a nice feature: All new names can be computed locally. To justify 
its usage, we show that all name-giving mechanisms are isomorphic to it, before we 
formalize Actor systems. 

Index problem 

Let [ be a countable set of indices (names) and f E [ _ IP( [) a function that assigns 
to each index a set of new indices, such that: 

Vi,j El : i -I j =} f(i) n f(j) = 0 

Vi E [ : 3io E [\ U rng(f) : 3n E INo : i E r( io) 

(1 ) 

(2) 

According to Eq. 1, all images under f are disjunct. Eq. 2 implies that each index can 
be reached from an initial index in finitely many steps. This is the most general form 
of a name-giving mechanism. 
We construct an isomorphic set of indices X, X ~ INo', and a function 9 E X _ IP(X). 
Here, each index will be a finite string of natural numbers and every new index will be 
an extension of the original index with one number. Let: 

- [ = {io, it, ... } be an enumeration of [ with order, i.e. io < it < 

- [0 = [ \ U rng(J) (all initial indices) 

- l' E ([ \ [0) - [ such that 1'(j) = i iff j E f( i), Vi,j. 

Please note: l' exists and has been defined unambiguously. 



- rEI -dVo with r = A i E I : if i E 10 then #{i E 10 I j < i} 

clE. #{ j E J(J'( i)) I j < i}1i 

Function r assigns to each i E I a local number. 
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Now we construct a function h which maps every i E Ion a string of natural numbers: 

- h := Ai E I : if i E 10 then (r(i)) clE. h(J'(i))&r(i) ft 

- X := rng(h) 

Hence, h E I -> X. Function h has been defined recursively and due to Eq. 2, the 
recursion is fi1lite~ Consequently, X ~ INo•. 

Lemma 3.1 
h is injective. 

Proof. 
Let i,j E I and suppose h(i) = h(j). We prove i = j. Since Ih(i)1 = Ih(j)1 we have 
i,j E 10 or i,j E 1\10 • If i,j E 10 then rei) = r(j) and from the definition of r it 
follows that i = j. Next, assume i,j E I\Io. Then h(J'(i)) = h(J'(j)) and rei) = r(j). 
Consequently, Ih(J'(i))1 = Ih(J'(j))1 = Ih(i)l- 1 and with induction to the length of 
h( i) it follows that J'( i) = f'(j). Hence, i,j E J(J'( i)) and they have the same local 
number, so i = j. 
o 

This means that the inverse of function h, h-l, exists. We now define function g: 

-g:= AxEX: {x&nlnEINolln<#J(h-l(x))} 

Theorem 3.1 Index problem 
(I,J) is isomorphic to (X,g) with respect to h. 

Proof. 
Function h is a bijection from I to X. What remains to prove is that for all i E I 
h(J(i)) = g(h(i)). 

o 

h(J( i)) = {h(j) I j E J( i)} = {h(J'(j)) & r(j) I j E J( i)} = 

{h(i)&n I n< #J(i)} = {h(i)&n I n< #J(h-l(h(i)))} 

g(h( i)) . 

Now we formalize the Actor system. 
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Formal model 

The readers unfamiliar with the Actor model should read the informal description in 
[1]. 
We construct an Actor system out of three sets and a complex function over these sets. 
The sets specify, respectively, 

- tags, i.e. communication names and actor names, 

- values of messages, 

- states of actors. 

We assign to each actor a state. This state can be seen as some local information. 
For example, an actor that forwards the previous message when the current message 
arrives, should be able to remember one message. If all messages are natural numbers, 
then its state is a natural number. 
We explicitly mention that the set of message values and the set of actor states do 
not deal with acquaintances. A communication will consist of a message value and a 
possibly empty set of acquaintance names. An actor always has a state and a set of 
acquaintances. 

Definition 3.1 Actor system 
An Actor system is a quadruple (l, M, A, B), where: 

- I is a finite, ordered set 

1* is the set of all possible tags, which has been ordered lexicographically. Since 
a tag belongs to a communication or an actor, we define A := 1* and 7 I' 
and we use A for actor names and 7 for communication names. 

- M is a countable set 

M is the set of message values. 
M := M X lP(A), the set of all nameless communications. 

- A is a countable set 

A is the set of actor states. 
A := A X lP(A), actor states with acquaintances. 

- B E A X 7 X M -+ (7 f> A X M) X (A f> A) X A 
B is the behaviour function. It assigns to an actor state (A), a communication 
name (7) and a communication (M): A set of named communications to actors 
(7 f> A X M), some new actors (A f> A) and a replacement behaviour (A). 

For B, the following constraints should hold: (All free variables universally quantified) 
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If B( (a, V), t, (m, W) = (J, g, (aa, VV)), then: 

o 

- dom(J) n dom(g) = 0 
New actors and new communications should be named differently. 

- dom(f) and dom(g) are finite 

An actor should not produce an infinite amount of new communications or 
actors. 

- t' E dom(f) U dom(g) => 3i E I : t' = t & i 

New names are an extension of the received communication name. 

- (a', (m', W')) E rng(f) => a' E V U W U dom(g) 

/I W' ~ V U W U dom(g) 
Messages can be sent to well-known actors only and such a message may contain 
no unknown actor names. Please note: 
V = Acquaintances of the actor itself; 
W = Acquaintances of the received communication; 
dom(g) = Newly created actor names. 

- (a', V') E rng(g) => V' ~ V U W U dom(g) 

The acquaintances of newly created actors should be well-known. 

- VV ~ V U W U dom(g) 
All new acquaintances of the actor itself should be well-known, too. 

We use partial functions over a set of names to denote sets of named elements. For 
example, let f E T f+ M, then f corresponds with a set of named communications. 
A configuration of an Actor system consists of a finite set of actor names and for each 
actor name: 

- An actor state with acquaintances (A); 

- A set of named communications (T f+ M). 

A configuration can thus be described as an element of A f+ A X (T f+ M). We call 
the set of all possible configurations of an Actor system the state space. 



Definition 3.2 State space 
Let an Actor system be given. Its state space S satisfies: 

o 

S = {sEAf>Ax(Tf>M) 

} 

11I((a,V),!) E rng(s) : V ~ domes) 

1\ lI(m, W) E rng(f) : W ~ domes) 

1\ IIN,N' E Names(s) : N of N' * N n N' = 0 
1\ IIn,n'EUNames(s): ((3uEI*: nou=n') * n=n') 

1\ U N ames( s) is finite 

where Names(s) = {domes)} U 
aEdom(s) 

N ames( s) is the union of all sets of names in configuration s. 
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According to the first constraint on S, all acquaintances should be part of the config
uration. The second constraint asserts that all names are different and because of the 
third constraint, no name is a prefix of another one. Finally, the last restriction states 
that the number of communications and actors is always finite. 
In a given configuration, each actor that has a communication may consume it, produce 
new communications and actors and replace its behaviour. We call an assignment of 
communications to actors an event. 

Definition 3.3 Event function 

The event function E of an Actor system with state space S satisfies: 

E = A s E S : {e E A f> T I dome e) of 0 1\ dome e) ~ dome s) 

1\ lIa E dom(e) : e(a) E dom(s2(a))}. 

o 

For any configuration s, the event function gives all possible events. Such an event 
e E E(s) unambiguously determines another configuration Q(s,e), namely the resulting 
one when all communications are processed. Before we give Q( s, e), we introduce two 
auxiliary functions. 

Definition 3.4 (3, Jl 
Let s E S, e E E(s) and a E dom(e). 

- (3(s,e,a) := B(sl(a),e(a),s2(a)(e(a))) 

-Jl(s,e):= AaEA: {(t,m) I 3a'Edom(e) (t,(a,m)E{31(S,e,a')} 

o 
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In this definition, f3( s, e, a) is the behaviour of actor a when processing communication 
era) in configuration s and /1(s,e) gives for every actor name a E A the set of new 
communications with tags sent to a when event e occurs in configuration s. 

In configuration Q(s,e), each actor a E A has a set /1(s,e)(a) of additional named 
communications. Moreover, Q(s,e) differs from s in the following two aspects: 

- Each a E dom(e) gets a new actor state with acquaintances, namely f33(s,e,a). 
Furthermore, communication e( a) has been disappeared. . 

- For each a E dome e) we have a set dom(f32( s, e, a)) of new actors. Each new 
actor a' E dom(f32( s, e, a» gets 132 ( s, e, a)( a') as state with acquaintances. 

These considerations give rise to next definition. 

Definition 3.5 Transition junction, transition relation 
The transition function Q of an Actor system satisfies: 

Q E 8 X rng(E) f+ 8 such that dom(Q) = {(s,e) I s E 8 " e E E(s)} 

and for s E 8, e E E( s) : 

Q(s,e) = A a E dom(e) : (/13(s,e,a), 

s2(a) \ {(e(a),s2(a)(e(a»)} U /1(s,e)(a») 

U A a E domes) \ dom(e) : (sl(a), s2(a) U /1(s,e)(a») 
U UP a' E dom(/12(s,e,a)) : (/12(s,e,a)(a'), /1(s,e)(a'») 

I a E dom(e)} 

The transition relation T of an Actor system satisfies: 

T ~ 8 x 8 and 

T = {(s,Q(s,e») Is E 8" e E E(s)}. 

o 

We do not formally prove the correctness of our transition function, i.e., Q( s, e) E 
8. Instead we remark that for every new configuration, all acquaintances must be 
part of it since an actor sends messages to well-known actors only and these messages 
have no unknown actor names. Moreover, no name can be a prefix of another name 
because we adopted the name-generating mechanism of Agha. At last, the number of 
communications and actors must be finite, as an actor can only produce a finite amount 
of new communications and actors. 
Please note: If L is a set of initial configurations of an Actor system with state space 
8 and transition relation T, i.e. L ~ 8, then the triple (8, L, T) is a transition system. 
This property enables us to compare an Actor system with a system described in a 
completely different model that also specifies a transition system, using the relationships 
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from Section 2. In Section 5, we implement any Actor system in the Des model and we 
compare the resulting Des with the original Actor system in this way. 
We proceed with three examples of simple Actor systems. 

Example 3.1 Changing behaviour 
Consider the following informal description of a behaviour. For n E INa: 

Dn = "Accept a natural number m, return to sender m * n and become Dn+1." 

We construct an Actor system (I, M, A, B) in which actors with this behaviour may 
appear. 

I .- {D,1,2} 

M .- INa 

A .- INa U {user} 

We do not describe B for user. User is a so-called external actor. 
We assume: An actor with the above described behaviour has no acquaintances and 
every communication sent to it has exactly one acquaintance, namely the sender. 
For n E A \ {user}; t,et E 1* and m EM: 

B((n,0),t, (m,{et}» := ({(t&D,(et,(n*m,0»)}, 

0, 
(n + 1,0) 

) . 

We can playa transition game for this Actor system. Our configurations are constituted 
from partial functions and we have no method to picture them yet. Instead, we simply 
describe configurations by enumerating all partial functions involved. 
Suppose we have an initial configuration So with one user u and one actor b with 
behaviour 03, while b has just received two communications from u: A seven and an 
eight. 

So = {(b, ((3,0), {((D),(7,{u}», ((1), (8,{u}»}», 

(u, ((user, {b,u}), 0»} 

Please notice that u has two acquaintances, namely b and itself. 
Dependent on the selected communication, there are two possibilities for the next con
figuration 81: 

81 = {(b, ((4,0), {((1),(8,{u}»}», 

(u, ((user, {b,u}), {((O,D),(21,0»)}»} 

or Sl {(b, ((4,0), {((D), (7, {u}» }», 
(u, ((user, {b,u}), {((1,D),(24,0»}»}. 
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Assuming only b consumes a communication, we have two possibilities for the last 
configuration S2, too: 

S2 = {(b, ((5,0),0)), 

(u, ((user, {b,u}), {((O,O),(21,0)), ((I,O),(32,0))}))} 

or S2 = {(b, ((5,0),0)), 

(u, ((user, {b,u}), {((O,O), (28, 0)), ((I,O),(24,0))}))}. 

In the end, u has received either a 21 and a 32 or a 28 and a 24. Nondeterminism has 
come up. 
o 

The following example has been taken from [IJ: 

Example 3.2 Recursive factorial 
We construct an Actor system (I, M, A, B) with three kinds of actors: 

- Users; 

- Factorial actors; 

- Customers. 

Users send communications to factorial actors. Again, users are external actors whose 
behaviour we shall not formalize. 

1 .- {O,I} 
M .- INo (Only numbers need be send.) 

A .- {user,jac} U IN! 

Factorial actors have one acquaintance, namely their own name. Communications 
arriving at a factorial actor have merely the sender as acquaintance. 
For m,t,a E 1* and n E M: 

B((fac,{m}),t,(n,{a})).- jfn=O 

then ({(t&O,(a,(1,0)))}, 

0, 
(fac, {m}) 

) 
else ({(t&O,(m,(n-l,{t&I})))}, 

{(t&I,(n,{a}))}, 
(fac, {m}) 

) 

ft· 
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A customer also has one acquaintance, namely the actor which a response must be 
sent to. Communications destined for customers have no acquaintances. For n E INl , 

k E M and a,t E I*: 

B«n,{a}), t, (k,0») .- ({(t&0,(a,(n.k,0»)}, 
0, 
(n,{a}) 

) . 

Please note: The replacement behaviour of a customer is irrelevant, for a customer 
receives no communications anymore after the first one. 
Let us play the transition game again. Assume we have an initial configuration So with 
an user u and a factorial actor m, where u has just send a 3 to m. 

So = {em, ((fac,{m}), {(t,(3,{u}»)}»), 
(u, «user,{m,u}), 0»)} 

The system then evolves to final configuration 87. 

87 = {(m, «(fac,{m}), 0»), 
(t 0(0,0,1), «I,{t a (0,1)}), 0», 

(t 0(0,1), «2, {t a (I)}), 0»), 

(t a (1), «3, {u}), 0»), 
(u, «user,{m,u}), {(to (0,0,0,0,0,0,0),(6,0»)}»)} . 

Configuration 87 has three redundant actors: to (1), to (0,1) and to (0,0,1). These 
actors could as well be deleted from the system. 
o 

Our model allows an actor to deterministically select among acquaintance names, be
cause the set of names has been ordered lexicographically. In Example 3.3 we have 
constructed a behaviour sel for returning messages to the acquaintance with lowest 
name. 

Example 3.3 Acquaintance selection 
Let (I, M, A, B) be an Actor system with additional properties: 

o E I; 

sel E A 

and for t E I*, m E M and V E JP(r), 

B( (sel, 0), t, (m, V» = if V = 0 
then (0, 0, (sel,0) ) 



else ({(t&O, (min(V),(m, V)))}, 

0, 
(sel,0) 

) 

ft· 
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We assume an actor with local state sel to have no acquaintances itself. Such an actor 
selects the lowest actor name out of the set of received acquaintance names and returns 
the communication to it. 
o 

Serializability of events 

An event in which several actors process communications can be split up into a number 
of events, all occurring after each other. The resulting configuration is the same in 
both cases. We call this property serializability of events. In order to prove it, we first 
introduce several lemmas. 

Events that may occur in a given configuration might also occur if new actors and new 
communications are added. In both cases, the behaviour of an actor being part of such 
an event is equal. This is expressed in Lemma 3.2. 

Lemma 3.2 
'Vs,s'ES: 'VeEE(s) 
If dom(s) <;; dom(s') and Va E dom(e) 81(a) = sl(a) II s2(a) <;; s2(a), then: 

- e E E(s') ; 

- 'Va E dom(e) : (3(s,e,a) = (3(s',e,a); 

- 'Va E A : I'(s,e)(a) = I'(s',e)(a) . 

Proof. 
The first point directly follows from Definition 3.3. 
The second property can be directly derived from the definition of (3 and the last 
assertion is an immediate consequence of the second one. 
o 

Next lemma is a direct consequence of the definition of (3: 

Lemma 3.3 
'Vs E S : 'Ve,e' E E(s) 'Va E dom(e n e') (3(s,e,a) = (3(s,e',a) . 
o 

Assume we split up an event e of a configuration s into two events e' and e". The set 
of new communications that resul ts when e is processed in s, equals the union of these 
sets if e' and e" were processed in s. 



Lemma 3.4 
'tis E S : 'tie E E(s) : 'tI DI , D2 E dom(e) : 
If DI UD2 = dom(e) and DI nD2 = 0 and DI ,D2 -#0, then: 

-efD1 E E(s) and efD2 EE(s); 

- 'tIa E A : ,,(s,e)(a) = ,,(s,e f Dl)(a) U ,,(s,e f D2)(a) . 

Proof: See appendix. 
o 
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If actor a creates a new actor a' in event e then a is the only one in e being able to 
send communications to a'. This property is a special case of next lemma, that is, if 
D is a singleton. 

Lemma 3.5 
'tis E S : 'tie E E(s) : 'tiD C;; dom(e) : 
'tIa ED: 'tIa' E dom(,82(s,e,a» : ,,(s,e)(a') = ,,(s,efD)(a'). 

Proof: See appendix. 
o 

We are now able to prove the serializability property. 

Theorem 3.2 Serializability of events 
Let s E S, e E E(s), Dl and D2 C;; dom(e) and suppose dom(e) = D1UD2, D1nD2 = 0, 
Dl -# 0 and D2 -# 0. 
Then e f Dl E E(s), e f D2 E E(Q(s,e f DI» and 

Proof: See appendix. 
o 

As an Actor system evolves, some present actors might get superfluous. The last 
configuration of Example 3.2 included three customers which would never receive a 
communication anymore. Another example regarding redundant actors is concerned 
with forwarders [1], i.e. actors that only forward received communications to other 
ones. An interesting topic for future research would be to give sufficient conditions for 
deleting an actor from the system. Such an Actor system might ultimately reach an 
empty configuration, i.e. a configuration without actors. 
In the next section we introduce briefly our model of discrete event systems, called Des 
model. 
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4 Des model 

In this section we describe a mathematical model for discrete event systems, called the 
Des model. We shall not extensively discuss its motivations and properties, instead we 
refer to [5]. 
Like Predicate/Transition nets [4] and Coloured nets [10], the Des model is an extension 
of the elementary Petri Net model [17]. A major difference with the Actor model 
from the previous section is the topology: In a Des, the number of components and 
their interaction structure are fixed, whereas an Actor system exhibits dynamic process 
creation. We have developed a tool called EXSPECT [6,7] to specify and simulate a 
Des. Hence, specifications of systems described as Des are suitable for prototyping. We 
start with an informal treatment. 

A Des consists of two kinds of components: Processors and channels, which correspond 
to transitions and places in Petri nets. A processor is connected with several input 
and output channels. To each channel a type is associated and to each processor a 
function. The signature of the function of a processor is such that the types of the 
input parameters are identical to the types of the input channels and the types of the 
output parameters of the function correspond to the types of the output channels. A 
channel may be shared by several processors as input or output channel. The channels 
may contain so-called triggers (tokens in Petri nets). A trigger has a value that belongs 
to the type of the channel. More than one trigger of the same value may reside in a 
channel, so a channel contains a bag over its type (cf. notations). 
For each processor, every input channel has a multiplicity, which gives the number of 
triggers the processor needs from that channel to operate. At each moment a transition 
can occur, which means that the configuration of triggers in the channels may change. 

Such a transition happens instantaneously and is executed by the processors. A pro
cessor that has enough triggers in each input channel may pick as many triggers as it 
needs and produce a finite amount of new triggers for its output channels, according 
to its function. Several processors may produce triggers for the same output channel. 
A channel having always exactly one trigger can be seen as a memory of the system. 
We call such a channel a store. If a processor wants to use the store, it picks out the 
trigger and instantaneously places back a new trigger into the store. In fact, it replaces 
the trigger. A store can even be a database. In this case, its type is very complex. 
A configuration of triggers distributed over channels is called a state. 

The Des model actually resembles Coloured nets very much. The selection of tokens 
differs, in our model a processor has to accept all triggers, whatever their values may 
be, whereas in Coloured nets a transition might refuse certain tokens because of their 
colours. But we can simulate such a refusal by simply placing back undesirable triggers. 

The systems we consider may be part of another, much larger system. In this case, 
communications take place from our system to its environment and vice versa. We 
regard the environment as a Des too, i.e. as a system with processors and channels, 
but we do not know the specification of those processors and the channel structure. 
Processors with an unknown specification are called black box processors. A black box 
processor which only produces triggers for our well-known system may be modeled as a 
single channel containing an infinite amount of triggers. Such a channel represents an 
input stream. It will never get empty, since a processor consumes only a finite amount 
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of triggers in a finite time interval. 
To indicate the processors and channels and their input and output relations, we use a 
diagram technique where processors are represented by triangles and channels by circles. 
For input/output relations we use arrows and for each input channel we mention its 
multiplicity, except for input channels with multiplicity one, which is the default value. 
See Figure 4.1 for an example. 
We now formalize the Des framework. 

Environment Known system 

Figure 4.1 

Definition 4.1 Discrete event system 
A discrete event system (Des) is a quadruple (R,C,I,O), where R is a function-valued 
function, C and 0 are set-valued functions and I is a bag-valued function, such that: 

- dom(I) = dom(O) = dom(R), finite or countable sets. 

- Vi E dom(R) : I(i) E lB(dom(C)) 1\ I(i) of 0 1\ I(i) is finite 

1\ O( i) E IP( dom( C)). 

- Vi E dom(R) R(i) E {b E lB({(c,w) IcE dom(C) 1\ wE C(c)}) 

I Vc E dom(C): L b((c,w)) = I(i)(c)} 
wEC(c) 

-+ lB({(c,w) IcE O(i) 1\ wE C(c)}). 

- Vi E dom( R) Vb E dom( R( ill : R( i)(b) is finite. 

- Vi E dom(C) C(i) is finite or countable. 

Dom(R) is called the set of processor indices, denoted by P, 



dom( C) is called the set of channel indices, denoted by K 
and for all PEP, k E K: 

o 

- J(p) is called the bag of input channels of p, where 
J(p)(k) is the multiplicity of channel k; 

- O(p) is the set of output channels of p; 
- R(p) is the reaction function of p; 
- C(k) is the type of channel k. 
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We shall use these symbols strictly for the concepts defined. When we consider different 
Des'ses we distinguish them by means of subscripts. 

Definition 4.2 Trigger set, state space, event set 
Let a Des be given. Then 

Q := {(k, w) IkE K 1\ wE C(k)} 

S .- IB(Q) 

E .- {e E P f+ IB(Q) I dom(e) f- 0, dom(e) is finite 
andVp E dom(e) : e(p) E dom(R(p))} . 

Q is called the trigger set, S is called the state space and E is called the event set. 
o 

Please note that an event is an assignment of a bag of triggers to a processor such that 
for each input channel k with multiplicity m exactly m triggers are chosen. 

Definition 4.3 Event function 
The event function F of a Des satisfies: 

FE S --+ IP(E) and 

VsES: F(s)={eEE I mrng(e)~s}. 

o 

Hence, e E F( s) only if s contains enough triggers to supply all the processors of 
dom(e). Note that e E F(mrng(e)), for all events e E E. It is easy to verify that for all 
s, tin S: If s ~ t then F(s) ~ F(t). 
We next define the transition function, which assigns to a state s and an event e E F( s) 
a new state. 



Definition 4.4 Transition function, transition relation 
The transition function T of a Des satisfies: 

T E 5 x E -1+ 5 such that dom(T) = {(s,e) leE F(s)} 

and for s E 5, e E F(s) : 

T(s,e) = s \ mrng(e) U U R(p)(e(p)). 
pEdom(e) 

The transition relation of a Des is: 

{(s,t) E 5 X 5 I Ole E F(s) : T(s,e) = t} . 

Elements of the transition relation are called transitions. 
o 
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We also use the symbol T to denote the transition relation. It is easy to verify that the 
graph (5, L, T), where 5 is the state space of a Des, L a collection initial states and T 
its transition relation, forms a transition system. 
A Des cannot evolve from a finite state (i.e. a state with finitely many triggers) to an 
infinite state or vice versa. This is expressed by Lemma 4.1. 

Lemma 4.1 
Let T be the transition relation of a Des. Then 

'I(s, s') E T : s is finite ¢> s' is finite. 

Proof. 
Each processor consumes and produces a finite amount of triggers and in an event only 
finitely many processors perform an action. 
o 

We have true parallelism in our model: Processors may execute simultaneously. As in 
an Actor system, we have serializability of events, too. Without proof we mention that 
it is always possible to split up an event for more than one processor into other events, 
such that the successive execution of these events, in any order, ends in the same state 
as the original compound event. 

Theorem 4.1 5erializability of events 
Let a Des be given and let s E 5 and e E F(s) such that Idom(e)1 ~ 2. Let further 
DbD2 C dom(e) such that IDri ~ 1, ID21 ~ 1, Dl n D2 = 0 and Dl U D2 = dom(e). 
Then erDl E F(s), etD2 E F(T(s,e[Dl)) and 

o 
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Please notice the resemblance with Theorem 3.2. For more results on the Des model, 
see [5J. In the next section we show that any Actor system can be implemented in an 
equivalent Des. 
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5 Implementation of Actor systems as Des'ses 

In this section, we present two implementations of any Actor system as Des. The first 
one is really very simple, we use only one processor here. Consequently, all parallelism 
is lost and this Des only realizes the original Actor system. But it might be useful in 
order to very quickly obtain a prototype of the Actor system. The second one will be 
equivalent with the Actor system, thus maintaining all parallelism, but it has processors 
with infinitely many output channels and therefore it needs some adjustments to make 
it suitable for EXSPECT. This will be done in two steps, yielding a Des that simulates 
the original Actor system. 

5.1 First implementation 

In this subsection, we implement an arbitrary Actor system in a simple Des. Let an 
Actor system (I, M, A, B) with transition system (S, L, T) be given. We shall construct 
a Des (RR, ee, II, 00) with transition system (SS, LL, TT) that realizes the Actor 
system. To avoid ambiguities we denote symbols referring to the Actor system with 
one character and symbols referring to the Des with two identical characters. 

The Des consists of one processor and two channels. See Figure 5.1. Channel com 
contains communications. Channel act is a store for a table of actor names with 
corresponding behaviours (local states). Processor p repeatedly takes a single commu
nication from com. This communication is destined for some actor a in the table of 
act. Then p processes the communication: New communications are send to com, the 
behaviour of a is updated and possible new actors are added to the table. 

Figure 5.1 The des 

Now we formalize Des (RR, ee, II, 00). It is constructed from the Actor system 
(I,M,A,B): 

ee = {(com, T X (A X M», (act, A f+ A)} , 
II = 00 = {(p, {com, act})} 

and for t E T, a E A, iii E M and I E A f+ A 

RR(p)( {( com, (t, (a, iii»), (act, f)}) = 

{(com, B,(f(a), t,iii», 

(act, I[a: B3 (f(a),t,iii)] U B2(f(a),t,iii)} 

Please review Section 3 for those symbols not defined here. Please note that a (partial) 
function can be considered as a set of tuples. 
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The Des has been defined completely apart from its initial states. It implicitly defines 
a state space SS and a transition relation TT. However, not every possible state s E SS 
is allowed. Communications from com have a communication name and the name of 
the destination actor. Every such actor name should of course be present in the table 
of act. The same should hold for the names of acquaintances, both actor acquaintances 
and communication acquaintances. Furthermore, no single (actor or communication) 
name may be the prefix of another name, particularly no name may be present more 
than once. Next, the number of actors and communications should be finite. Finally, 
act should store exactly one partial function. We shall choose the initial states such 
that all these constraints are met. From the definition of Actor systems it follows that 
all these properties remain invariant when the Des evolves, if it is initiated correctly. 
For the Des we define a set AS of allowed states: 

AS = { {(com, b), (act, {J})} E SS 

I bE 18(T X (A X M)), f E A f> A and 

- lI(t,(a,(m, V))) E b : a E dom(f) 1\ V ~ dom(f) 

- II (a, V) E rng(f) : V ~ dom(f) 

- b and dom(f) are finite 

- lIa, a' E dom(f) : lI(t, r), (t', r') E b 

aefa'l\ teft' =} 

,3x E 1* : a a X = a' V t a X = t' V a a X = t V t a X = a 

} 

We also define a mapping 9 E AS -+ S, where S is the state space of the Actor system: 

9 := >. {( com, b), (act, {J})} E AS : 

(.A aEdom(f) : (J(a), {(t,m) I (t,(a,m))Eb})). 

It can easily be verified that 9 is a total, surjective and injective function. 
We finally define the set of initial states LL of the Des: 

Hence, LL C;; AS and g(LL) = L. Without proof we mention that the Des cannot 
escape from the set of allowed states. It follows from the construction of the Des and 
the constraints on B (see Definition 3.1). 

Lemma 5.1 
lis E AS : lis' E SS (s, s') E TT =} s' E AS. 
o 

The Des realizes the Actor system. 



Theorem 5.1 
(SS, LL, TT) realizes (S, L, T) with g. 

Proof: See appendix. 
o 
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Consequently, all the actions of the Des are correct. Actually, the Des can perform 
each one-step action of the Actor system, i.e. every action of a single actor. As any 
Actor system has serializability of events, the Des can reach every possible state the 
Actor system might evolve to. So this prototype is not too bad, despite of the lost of 
parallelism. It's no use adding one or more processors in parallel with p, since only one 
processor at a time can use store act. 
We proceed with a better implementation of the Actor model into the Des model, where 
all parallelism will be maintained. 

5.2 Second implementation 

Again, we consider an Actor system (I, M, A, B) with transition system (S, L, T). We 
construct a Des D' = (R',C',I',O') with transition system (S',L',T') and we shall 
prime every symbol referring to D'. 
D' will be a chain consisting of a countable number of processors and channels. See 
Figure 5.2. Each processor has a name a and two input channels with multiplicity 
one. One of them, CO" is used to collect communications for a and the other one, b,,, 
is a kind of pseudo-store for the behaviour of a. This channel will contain at most one 
trigger. In case ba is empty, a is not (yet) present in the Actor system, otherwise a 
really exists. The actor population will always be finite when the system starts with a 
finite one, because an actor produces only finitely many new actors. 
Each processor has every channel in the system as output channel, so it can send 
communications to every processor in the system and it can initiate another processor 
a' by sending a trigger to bal. Of course, bal must then be empty, but this is guaranteed 
by construction. The equivalence of both systems will be proved. 
We start with a formal specification of D'. 

D' := (R',C',I',O'), where: 

dom(R') = A = I*; dom(C') = U {ca,ba } ; 
aEA 

C' = U {(ca , T X M), (ba , A)} ; 
aEA 

I' = U {(a, {ca,ba })} ; 
aEA 

0' = U {(a, dom(C'))} 
aEA 

and for a E A, t E T, in E M and a E A: 



R'(a)({(c",(t,m)), (b",Ii)}) = 

{(c"",(tt,mm)) I (tt,(aa,mm)) E B.(Ii,t,m)} U 

{(b"",aa) I (aa,aa) E B2(Ii,t,m)} U 

{(b", B3(1i, t, m))} 
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Dom(R') is countable, because I is finite. D' implicitly defines a state space S', an 
event function F' and a transition relation T'. Before we define a set of initial states 
for D', we give a function g E S -> S' which maps every configuration of the Actor 
system onto a state of the Des. 

g := AS E S : {(b",s.(a)) I a E domes)} U 

{(c",(t,m)) I a E domes) A (t,m) E s2(a)}. 

The set of initial states L' will then be: 

L' := g(L). 

D' consists of countable many identical processors. Figure 5.2 shows a schematic repro
duction. A thick line represents an infinite number of input/output relations. 

Output to 

} 
every channel 
in the system 
(including b"l 

A single processor 

Lemma 5.2 
g is injective. 

Proof. 

• • • 

Des D' 

Figure 5.2 

This can easily be seen by interpreting g: For each actor a in the configuration, its 
behaviour is mapped on pseudo. store b" and its communications are mapped on channel 
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Ca. For each actor name 0;' that is not part of the configuration, ba , and Ca ' are empty. 
Hence, no two different configurations of the Actor system are mapped onto the same 
state of D'. 
D 

Events of the Actor system can be transformed into events of the Des and vice versa. 

Lemma 5.3 
'Is E S : 3h E E(s) --> F'(g(s)) 

Proof: See appendix. 
D 

h is bijective. 

Now we can prove the equivalence of both systems. 

Theorem 5.2 
(S,L,T) ~ (S',L',T'). 

Proof: See appendix. 
D 

We have constructed an equivalent Des D' for each Actor system. It has a processor a 
for each actor name 0; E A. Not every processor will be used. For example, consider 
some channel with a communication named t E T. Since A = T, a processor t exists. 
Due to the uniqueness of names, it will never be initiated in this case. 
The number of processors in D' is, of course, infinite. We have chosen the initial states 
such that D' always starts with a finite actor population and we have already mentioned 
that this population will always remain finite. The only problem with D' is that it 
consists of processors with infinitely many output channels. In the remainder of this 
section, we describe a method to simulate these processors with systems consisting of 
processors with finitely many output channels, which enables us to actually implement 
D' in EXSPECT. 

5.3 Processors with countable many output channels 

The Des model allows to specify processors with countable many output channels. In 
this subsection, we decompose such a Des into another one where each processor has 
only finitely many output channels. So this subsection differs from the previous two 
in the sense that we are not transforming Actor systems into Des'ses, we are only 
considering Des'ses among themselves. 

Let a Des be given with countable many processors, all of them being able to com
municate with each other. Such a processor has infinitely many output channels. We 
assume each processor to have one input channel. This case can easily be generalized 
for processors with more input channels. 
We show that such a Des can be decomposed into another one where each processor 
has only finitely many output channels. We shall use a two-steps construction. First, 
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we construct another system having one additional processor and channel, where each 
originally present processor has left only one output channel. The added processor, 
however, still has countable many output channels. Step two is to overcome this prob
lem. We prove that the thus arisen Des simulates the original one. 

5.3.1 Step one 

In a system with processors with countable many output channels, we can built in a new 
channel in which those processors can place their triggers. We shall call this channel 
collect. Furthermore, we need a processor, called distributor, that has to transport these 
triggers to their destination. Then distributor will still have countable many output 
channels, but in the new system it will be the only one. Step two (see below) shows a 
way to also replace this one. 

We start with a formal specification of the original system (Des D), where we require 
each processor to have exactly one input channel. Next, we construct the new system 
(Des D') and we shall prime every symbol referring to it. After that we prove that D' 
simulates D. 

The original system 

D = (R,C,I, 0) with processors P = {P<hPl, oo.}; channels K = {CO,Cl, ... }; 

I = U {(Pi, {C;} n; (Each processor has a single input 
iEN, channel with multiplicity one) 

o = U {(Pi, Kn; (Output to every channel) 
ieNo 

and set of initial states L. See Figure 5.3. D implicitly defines a trigger set Q, a state 
space S, an event function F and a transition relation T. 

The new system 

D' = (R',C',I',O') with processors p' = P U {distributor}; K' = K u {collect}; 

C' = C u {(collect, Qn ; 
I' = I U {(distributor, {collect})} ; 

0' = {(distributor, Kn U oX pEP : {collect} 

and for i E !No and W E C(Ci): 

R'(distributor)({(collect, (Ci,W))}) = {(Ci,W)}, 

R'(Pi)({(Ci,W)}) = {(collect,q) I q E R(Pi)({(Ci,W)})}. 

See Figure 5.3. The set of initial states will be: L' := L. Please note: Collect is always 
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empty at start. 
D' implicitly defines a trigger set Q', a state space S', an event function F and a 
transition relation T'. 

Theorem 5.3 
D' simulates D. 

System D 

Proof: See appendix. 
o 

• • • • • • 

System D' 

Figure 5.3 

This result allows us to replace every system D with a system D'. We remark that 
this transformation can easily be generalized for processors with two input channels 
instead of one. Applied on the second implementation of the previous section it yields 
a system with only two processors with infinitely many output channels: A distributor 
for communications and a distributor for behaviours. The next step concerns these 
two. 

5.3.2 Step two 

This step addresses the problem of replacing a single processor with countable many 
output channels with a chain of simple processors with finitely many output channels. 
Consequently, this chain will be of infinite length. Such a chain of processors can be 
implemented. The implementation starts with an empty chain and when the system 
evolves, this chain grows larger and larger. Whenever we need a new output channel, we 
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activate a new processor, while we assume the existence of an infinite, but countable 
chain of relatively simple processors on a conceptual level. Such a simple processor 
accepts various communications and picks out those destined for a particular output 
channel. Other communications are simply forwarded. 
We could actually do without step one, but that would lead towards an enormous burst 
of new processors and channels: Every single processor should then be replaced with 
an infinite amount of other processors, while the original system already consisted of 
infinitely many processors. 
We elaborate this step in the same way as the former one. 

The processor with couutable many output channels 

D = (R,C,I,O) with Po E P; {ho} U {CO,CI, .•. } ~](; 

C :::l {(ho, INo X Y)} U U {(Ci, Y)} ; 
ieNo 

I ;2 {(po, {hom; (The input channel has multiplicity one) 

o :::l {(Po, {CO,CI, ... })} 

and for n E INo and y E Y: 

R(po)({(ho,(n,y))}) = {(cn,y)} 

where Y is an arbitrary type. Des D has a set of initial states L and embodies some 
unknown part. See Figure 5.4. 

The chain 

D' = (R',C',I',O') wl'th P' = P U { } T.(' ]( U {h h } PI,P2, ... ; 11 = I, 2, •.. ; 

C' = C U U {(hi, INi X Y)} ; 
ieNl 

I' = I U U {(Pi, {hi})} ; 
iENl 

0' = 0 r(p \ {Po}) u U {(Pi, {hi+!, Cim 
ieNo 

and for i E INo, n E IN; and y E Y : 

R'(Pi)( {(hi, (n, y))}) = 

if i = n 

then {(Ci,Y)} 

else {(hi+!,(n,y))} 

ft. 

All other processors remain unchanged. For pEP \ {Po} and b E dom(R(p)) 
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R'(p)(b) = R(p)(b). 

See Figure 5.4. The initial states: L' .- L. Hence, channels h
"

h2 , ••• are initially 
empty. 

WELL
KNOWN 

PART 

/ / 
UNKNOWN 

PART 

/ / 
System D 

WELL
KNOWN 

PART 
~--------~----------~ Po 

/ / 
SAME 

UNKNOWN 
PART 

/ / 

Theorem 5.4 
D' simulates D. 

Proof: See appendix. 
o 

System D' 

Figure 5.4 

PI • • • 

The above result allows us to replace every such processor having countable many 
output channels by a chain of processors with only finitely many output channels. 
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If we apply both steps to the second implementation, then we obtain a Des that sim
ulates the original Actor system because of the transitivity of the simulation relation. 
Moreover, it can be implemented in EXSPECT. 
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6 Concluding remarks 

In this paper, we first introduced transition systems to describe discrete event systems 
in general and we formalized and analyzed their behaviours. After that we presented 
two formal models for discrete event systems: The Actor model and the Des model. 
The main difference is their topology: The former exhibits dynamic process creation, 
whereas the latter has a fixed interaction structure. The semantics of both models are 
in terms of transition systems, which gives a powerful tool to compare Actor systems 
and Des'ses with each other. 
In Section 3, we developed the Actor model without using recursive definitions. We 
proved the serializability of events. Our model is well-suited to prove other properties of 
Actor systems as well. Furthermore, we proved that every name-generating mechanism 
is isomorphic to the one introduced by Agha. 
Section 4 gives a brief overview of the Des model. Despite of its static topology, we 
constructed in Section 5 an equivalent Des for each Actor system and we decomposed 
it into an implement able one. 

In further research, we shall mainly be engaged in three topics. At first, we intend to 
further explore the different classes of transition systems and their similarity relation
ships. The next topic is about Actor systems. In Section 3 we mentioned that we are 
interested in sufficient conditions for deleting an actor. We have also in mind to com
pare our Actor model with other formalisms of Actor systems. For example, Janssens 
and Rozenberg [9J have proposed a formal Actor model based on graph grammars. We 
would also like to investigate the modelling power of Actor systems. Are they really 
useful for many practical cases? Our model might help us to answer this question and 
the prototypes could also contribute. Lastly, we are working on a formal decomposi
tion/composition theory for Des'ses and we are interested in comparing the Des model 
with other models coming from literature to describe discrete event systems. 

Our experiences with Des'ses are very promising. We have described a lot of systems 
coming from literature and practice as Des, including Petri nets and Actor systems, 
and we have built a tool, called EXSPECT, to prototype Des'ses. 
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Appendix 

This appendix includes proofs. 

Proof Lemma 2.2. 
From Eqs. 1 and 2 it follows that SA ~ S. We first show "Is E SA : f(s) E SB. Let 
S E SA, then 3n E INo : 3so, ... ,Sn E SA : So E LA A Sn = S A Vi E {l, ... ,n} : 
(Si_I,Si) ETA. Then f(so) E LB, Si E S for all i E {O, ... ,n} and using Eq. 5 we 
have for all i E {l, ... ,n}, f(Si-I) = f(8i) or (J(Si-,),J(Si») E TB, hence 3m :::: n : 
3to, ... ,tm E SB: to E LB A tm = f(s) A Vi E {l, ... ,m}: (ti_I,ti) E TB, i.e. f(s) E SB. 
Next, let (s,s') ETA. We have already showed f(s),f(s') E SB. What remains to 
prove is f(s) = f(s') V (J(s),f(s'») E TB. 
(s,s') E TA implies s = s' V (s,s') ETA. If s = s' then f(s) = f(s') else with Eq. 5 it 
follows that f(s) = f(s') or (t(s),j(s')) E TB. 
o 

Proof Lemma 2.6. 
Since S ~ SA, we can apply Lemma 2.2. So we already know that A realizes B with f. 
First, we prove the surjectivity of f for SA --> SB. Let t E SB, then 3m E INo : 
3to, ... ,tm E SB : to E LB A tm = t A Vi E {l, ... ,m} : (ti-"ti) E TB. We 
show t E f(SA) by induction. If m = 0 then by Eq. 4, 3s E LA : f(s) = t and 
LA ~ SA. If m > 0 then we may assume 3so E SA : f(so) = tm-I. Eqs. 1 and 2 imply 
SA I:;; S, i.e. So E S. Applying Eq. 6 yields 3s

" 
... ,Sn E f-I(tm_I) : 3sn+I E f-I(tm): 

Vi E {O, ... ,n} : (Si,Si+I) ETA, i.e. Sn+I E SA and f(sn+I) = tm = t. 
Next, let (t,t') E TB and So E SA such that f(so) = t. If t = t' then (t(so),j(so)) = 
(t,t') ETA, else with Eq. 6 it follows that 3SI, ... ,Sn E f-I(t) : 3sn+I E f-I(t') : 
Vi E {O, ... ,n}: (Si,Si+I) ETA. Since So E SA, also si E SA, hence (Si_I,Si) E TA for 
alliE {l, ... ,n+l}. 
o 

Proof Lemma 2.9. 
Note: f E SA --> SB. First we prove the surjectivity of f for SA --> SB. Let t E SB, 
then 3n E INo: 3to, ... ,tn E SB: to E LB A tn = t A Vi E {l, ... ,n}: (ti_I,ti) E TB. 
We show t E f(SA). By Eq. 2, to E LB = f(LA) hence 3so E LA : f(so) = to. Applying 
Eq. 1 n times yields Vi E {l, ... , n} : 3si E SA : ti = f(Si) and then using Eq. 3 n times 
leads to Vi E {l, ... ,n}: (Si-I,Si) ETA, i.e. sn E SA and f(sn) = tn = t. 
Next, let s,s' E SA. By the bijectivity of f and Eq. 3, (s,s') E TA {o} s = s' V 
(s,s') E TA {o} f(s) = f(s') V (t(s),f(s'») E TB {o} (J(s),j(s'») E TB. 
o 

Proof Lemma 3.4. 
e E E( s) means dom( e) ~ dom( s) and for all a E dom( e), e( a) E dom( S2( a)). Since 
dom(e f D, ) i' 0 and dom(e f D, ) ~ dom(e), we have e f D, E E(s). Analogously 
e f D2 E E(s). Using the definition of p and Lemma 3.3 we derive: 

p(s,e)(a) 

{(t,m) 1 30" E dom(e) (t,(a,m) E .8,(s,e,a')} 
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= {(t,m) 1 3a' E D, (t,(a,m)) E ,8,(s,e,a')} U 

{(t,m) 1 3a' E D2 (t,(a,m)) E ,8,(s, e, a')} 

= {(t,m) 1 3a' E D, (t,(a,m)) E ,8,(s,e fD"a')} U 

{(t,m) 1 3a' E D2 (t,(a,m)) E ,81(s,efD2,a')} 

= J.I(s,e f DIl(a) U J.I(s,e f D2)(a) . 

o 

Proof Lemma 3.5. 
Let s E S, e E E(s), D <;; dom(e), a E D and a' E dom(,82(s,e,a)), then D i- 0. 
If D = dom(e) then the assertion holds. Assume D C dom(e), then J.I(s,e)(a') = 
J.I(s,e f D)(a') U J.I(s,e f(dom(e) \ D))(a'), according to Lemma 3.4. 
Let D':= dom(e) \ D. It satisfies to show J.I(s,e fD')(a') = 0. 
J.I(s,e fD')(a') = {(t,m) 13a" ED': (t,(a',m)) E ,81(s,e fD', a")}. Let (t,(a',m)) E 
,81 (s, e f D', a") for some a" E D' to get a contradiction. The fourth constraint on 
B (see Definition 3.1) requires a' be either an acquaintance, i.e. a' E domes), or 

a newly created actor, i.e. 3i E I : a' = e( a").i. We have a' rt dome s) because 
a' E dom(,82(s,e,a)). Moreover, a' E dom(,82(s,e,a)) implies 3i' E I : a' = e(a).i'. 
Consequently, a' = e(a").i = e(a).i'. Hence, e(a") = e(a) and all names in configura. 
tion s are different, so a" = a. Contradiction. 
o 

Proof Theorem 3.2. 
By Lemma 3.4, e f DI E E(s) and e f D2 E E(s). Let s' := Q(s,e f DI), then by the 
definition of Q and Lemma 3.3, 

s' = >. a E DI : (,83(s,e f DI,a), 

s2(a) \ {(e f DI(a), s2(a)(e f DI(a)))} U J.I(s,e f DI)(a)) 
U >. a E domes) \ DI : (sl(a), s2(a) U J.I(s,e f Dt)(a)) 
U U {>. a' E dom(,82( s, e[ DI, a)) : (,82( s, ef DI, a)( a'), 1'( s, e f DI)( 01')) 

laEDd 

>. a E DI : (,83(s,e,a), s2(a) \ {CeCa), s2(0I)(e(a)))} U J.I(s,e r DIl(a)) 
U >. a E domes) \ DI : (sl(a), S2(0I) U J.I(s,e f DI)(OI)) 

U U {>. a' E dom(,82(s,e,a)) : (,82(s,e,a)(a'), J.I(s,e f DIl(a')) 

laEDd 

D2 <;; dom(s)\DI, hence 'Va E D2 : s,(a) = s~(a) and s2(a) <;; s;(a). Since domes) <;; 
dome s') and e f D2 E E( s), the conditions of Lemma 3.2 are satisfied. Consequently, 
e r D2 E E(s'). Then, 

Q(s', e f D2 ) 

1: Def. Q * 



>. a E D2 : (,83(s',efD2,a), 

s~(a) \ {(e f D2(a), s~(a)(e f D2(a)))} U p(s',e f D2)(a)) 
U >. a E domes') \ D2 : (s~(a), s~(a) U p(s',e f D2)(a)) 
U UP a' E dom(,82(s',efD2,a)) : (,82(s',efD2,a)(a'),p(s',efD2)(a')) 

I aEDd 

= 1: Substitution, Lemma 3.2, Lemma 3.3 :} 

>. a E D2 : (,83(s,e,a), 

s2(a) U p(s,efDl)(a)\ {(eta), s~(a)(e(a)))} U p(s,efD2)(a)) 

U >. a E Dl : (,83(s,e,a), 
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s2(a) \ {CeCa), s2(a)(e(a)))} U p(s,e f D1)(a) U p(s,e f D2)(a)) 
U >. a E domes) \ (Dl U D2) : (sl(a), s2(a) U p(s,e f D1)(a) U p(s,e f D2)(a)) 

U UP a' E dom(,82(s,e,a)) (,82(s,e,a)("'), 
pes, e f DIl(a') U pes, ef D2)(a')) 

I a E D1 } 

U UP a' E dom(,82(s,e,a)) (,82(s,e,a)(a'), p(s,efD2)(a')) I a E D2} 

= 1: For a E D2 we have s~(a)(e(a)) = s2(a)(e(a)), Lemma 3.4, Lemma 3.5 :} 

>. a E Dl U D2 : (,83(s,e,a), s2(a) \ {(e(a), s2(a)(e(a)))} U p(s,e)(a)) 

U >. a E domes) \ (Dl U D2) : (sl(a), s2(a) U p(s,e)(a)) 

U UP a' E dom(,82(s,e, a)) : (,82(s,e,a)(a'), p(s,e)(a')) I a E Dl U D2} 

= 1: dom(e) = Dl U D2, def. Q :} 

Q(s,e) . 

o 

Proof Theorem 5.1. 

We use Lemma 2.2. What remains to prove is 'Is,s' E AS : (s,s') E TT =} g(s) = 
g(s') V (g(s),g(s')) E T. 
Let s,s' = {(com,b), (act,{J})}, {(com,b'), (act,{J'})} E AS and assume (s,s') E 
TT. Then a communication (t,(a,fh)) E b exists such that b' = b \ {(t,(a,fh))} U 
Bl(f(a),t,fh) and J' = i[a : B3(f(a),t,fh)] U B2(J(a),t,fh). Moreover, {(a,t)} E 
E(g(s)) and ,8(g(s), {(a,t)},a) = B(f(a),t,fh) and p(g(s), {(a,t)}) = >. a' E A : 
{(t',fh') I (t',(a',fh')) E Bl(J(a),t,fh)}. By def. Q (the transition function of the 
Actor system), 

Q(g(s), {(a, tn) 



= {(a, (B3 (f(a),t,m), {(t',m') I (t',(a,m')) E b} \ {(t,m)} U 

{(t',m') I (t',(a,m')) E B 1(f(a),t,m)}))} 

U >. a' E dom(f) \ {a} : 

(f(a'), {(t',m') I (t',(a',m')) E b} U 

((t',m') I (t',(a',m')) E B1(f(a),t,m)}) 

U >. a' E dom(B2(f(a),t,m)) : 

(B2(f(a),t,m)(c/), {(t',m') I (t', (a', m')) E B1(f(a),t,m)}) 

= >. a' E dom(f') : 

(f'(a'), ((t',m') I (t',(a',m')) E b\ {(t,(a,m))}UBtCf(a),t,m)}) 

= g({(com, b'), (act, {J'})}) 

= g(s') . 

Hence, (g(s),g(s')) E T. 
o 

Proof Lemma 5.3. 
First we give function h. Let s E S, then 

h .- >. e E E( s) : >. a E dome e) : 

{(bo,sl(a)), (co, (e(a),s2(a)(e(a))))} . 

Clearly, h is injective. We prove h(E(s)) = F'(g(s)). 

o 

h(E(s)) = h({e E A f> T I dom(e)"l0 II dom(e) ~ domes) II 

dome e) is finite II 

Va E dom(e) : e(a) E dom(s2(a))}) 

= {e' E A f> S' I dom(e') "I 0 II dom(e') ~ domes) II 

dom(e') is finite II 

Va E dom(e') : e'(a) ~ g(s) II 

e'(a) E dom(R'(a))} 

= 1: no two different processors share an input channel :} 

{e' E A f> S' I dom(e') "I 0 II mrng(e') ~ g(s) II 

dome e') is finite II 

Va E dom(e') : e'(a) E dom(R'(a))} 

= F'(g(s)). 
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Proof Theorem 5.2. 
According to Lemma 2.9 we only need to prove: 

1. V(t,t') E T' : t E rng(g) * t' E rng(g); 

2. "Is,s' E S : (s,s') E T ¢} (g(s),g(s')) E T' . 

We start with 2. Let s, s' E S. 

(s,s')ET 

¢} 1: def. T :} 

3e E E(s) : s' = Q(s,e) 

¢} 1: def. Q :} 

3eEE(s) 
s' = A a E dom(e) : (,83(s,e,a), 

S2( a) \ {(e(a), S2( a)( e(a))}} U p(s, e )(a)) 
U A a E dom(s) \ dom(e) : (s1(a),s2(a) U p(s,e)(a)) 

U U {A a' E dom(,82(s,e,a)) : (,82(s,e,a)(a'),p(s,e)(a')) 

I a E dom(e)} 

¢} 1: def. g, g is injective (Lemma 5.2) :} 

3e E E(s) : 
g(s') = {(c",(t,iii)) I a E A 1\ (t,iii) E p(s,e)(a}} 

U ((b",,83(s,e,a)) I a E dom(e)} 

U {(c", (t,iii)) I a E dom(e) 1\ (t,iii) E s2(a)} 

\ {(c",(e(a),s2(a)(e(a)))) I a E dom(e)} 

U ((b",s1(a)) I a E dom(s) \ dom(e)} 

U {(c", (t,iii)) I a E dom(s)\ dom(e) 1\ (t,iii) E s2(a)} 

U {(b"",82(s,e,a)(a')) I a E dom(e) 1\ a' E dom(,82(s,e,a)}} 

¢} 1: rearrange :} 

3e E E(s) : 

g(s') = ((b",s1(a)) I a E dom(s)} 
U {(c", (t,iii)) I a E dom(s) 1\ (t,iii) E s2(a)} 

\ {(b",s1(a)) I aEdom(e)} 

\ {(c",(e(a),s2(a)(e(a)))) I a E dom(e)} 

U {(c",(t,iii)) I a E A 1\ (t,iii) E p(s,e)(a)} 
U ((b"",82(s,e,a)(a')) I a E dom(e) 1\ a' E dom(,82(s,e,a)}} 

U {(b",,83(s,e,a)) I a E dom(e)} 
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{o} 4: def. g, def. h, def. 1', def. f3 * 
3e E E(8) : 

g(s') = g(s) \ U {h(e)(Il) I Il E dom(e)} 

U {(c,,, (t,m)) 
I Il E A A 31l' E dom(e) : 

(t, (Il, m)) E BI (8, (Il'), e( Il'), S2( Il')( e( Il')))} 

U ((b""a) I 31l E dom(e) : 

(Il', a) E B2( s, (Il), e( Il), 82( Il)( e( Il)))} 

U {(b",B3(8'(Il),e(Il),s2(1l)(e(Il)))) III E dom(e)} 

{o} 4: def. h, def. R' * 
3e E E(8) : g(s') = g(s) \ mrng(h(e)) U U"Edom(h(e))R'(Il)(h(e)(Il)) 

{o} 4: Lemma 5.3, e' = h( e) * 
3e' E F'(g(8)) : g(8') = g(8) \ mrng(e') U U"Edom(e') R'(Il)(e'(Il)) 

{o} 4: def. T' * 
(g(8),g(8')) E T' . 

Next, we turn to 1-
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Let (t, t') E T', then 3e' E F'(t) : t' = t \ mrng(e') U U"Edom(e') R'(Il)(e'(Il)). Suppose 
t E rng(g). The injectivity of 9 and the bijectivity of h allow us to define s' := 
Q(g-I(t),h-'(e')). Hence, 8' E S and because of the totalness of g, 8' E dom(g). 
Similar to the above it follows that g(s') = t', so t' E rng(g). 
o 

Proof Theorem 5.3. 
We define V' := {8 E S' I EqEQ 8((collect,q)) i' w}, i.e. V' consists of the states in 
S' with finitely many triggers in channel collect. Obviously, L' ~ V'. We also define a 
function f E S' -; S: 

f := ,\ 8 E S' : (8rQ) U {q E Q I (collect,q) E 8}. 

Clearly, f is total and surjective, f(L') = L and for all 8,8' E S' : f(s U 8') = 
f(8) U f(8') and if 8' <;; s then f(8 \ 8') = f(8) \ f(8'). We claim: D' simulates D with 
f. Using Lemma 2.6 we have to prove: 

'Is E V' : 'Is' E S' : (8,8') E T' => 8' E V' 

V8,S' E V' : (8,8') E T' => f(s) = f(8') V (f(8),j(8')) E T 

V(t, t') E T : '180 E f-'(t) n V' : 3s" ... ,8n E f-'(t) : 38n+1 E f-'(t') 

Vi E {O, ... ,n} : (8i,Si+') E T' 

(1) 

(2) 

(3) 
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1. Let s E V', then collect has finitely many triggers. Let s' E S' and suppose (s,s') E 
T'. As only finitely many processors can perform an action and each processor 
produces finitely many triggers, s' can have only finitely many additional triggers 
in channel collect. Hence, s' E V'. 

2. Let (s,s') E T', then Ole E F'(s) : s' = s \ mrng(e) U u"Edom(e) R'(p)(e(p)). Note: 
For p E dom(e) \ {distributor}, f(e(p)) = e(p) and f(R'(p)(e(p))) = R(p)(e(p)) and 
if distributor E dome e), then f( R'( distributor)( e( distributor)) = f( e( distributor)). 
We distinguish two cases. If dom(e) n P = 0 then dom(e) = {distributor}, hence 
f(s) = f(s'). Case dom(e) n P t- 0, we define e' := e f P. Then dom(e') t
o and f(s') = f(s) \ f(mrng(e)) U UPEdom(e) f(R'(p)(e(p))) = f(s) \ mrng(e') U 
UPEdom(e') R(p)(e'(p)), i.e. (f(s),f(s'))E T. 

3. Let (t, t') E T and let So E f-1(t) n V'. We define b := So f(Q' \ Q), then #b t- w, 
so 3n E INa : n = #b. 

o 

Let q}, ... , qn E Q such that b = UiE{l, .,' ,n} {(collect, qi)}' We define for i E {I, ... n}, 
Si := (so fQ) U {qj I 1:S: j:S: i} U {(collect,qj) I i < j:S: n}. Then f(Si) = t 
and because of def. R'( distributor), (Si-1, Si) E T'. Furthermore, Sn = t. (t, t') E T 
implies Ole E F(t) : t' = t \ mrng(e) U UvEdom(e) R(p)(e(p)). Notice that e E F'(s). 
We define Sn+1 := t \ mrng(e) U UPEdom(e)R'(p)(e(p)), then (Sn,Sn+1) E T' and 
f(sn+1) = t'. 

Proof Theorem 5.4. 
Please note: Q c Q'. We define V':= {s E S' I s f(Q' \ Q) is finite}, i.e. V' consists of 
the states in S' with finitely many triggers on the way to their destination. Obviously, 
L' ~ V'. We also define a function 9 : Q' -> Q that maps triggers of D' to triggers of 
D. Triggers in {h" h2' ... } are mapped onto their destination channel. For all q E Q: 

g(q) := q 

and for all i E IN
" 

n E INi and y E Y: 

g((hi,(n,y))) := (cn,y). 

Next, we define a function f E S' -> S: 

f := )., BE S' : {g( q) I q E s} . 

Clearly, f is total and surjective, f( L') = L and for all s, s' E S' : f( sUs') = f( s)U f( s') 
and if s' ~ s then f( s \ s') = f( s) \ f( s'). We use Lemma 2.6 again to prove the 
simulation property. We have to prove the same three items as in step one: 

'Is E V' : 'Is' E S' : (s, s') E T' => s' E V' 

'Is,s' E V' : (s,s') E T' => f(s) = f(s') V (f(s),f(s')) E T 

(1) 

(2) 



'1(t, t') E T 'Iso E J-I(t) n V' : 3sI , ... ,Sn E J-I(t) 3sn+I E J-I(t') 

ViE{O, ... ,n}: (Si,Si+I)ET' 
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(3) 

1. The same argument can be used here, but now for channels hI, h2 , ••• instead of 
channel col/ect. 

2. Let (s,s') E T', then 3e E F'(s) : s' = s\mrng(e)U UPEdom(e) R'(p)(e(p». Dom(e) 
can have three kinds of processors: 

From {PI,P2, ... }; 
Po; 
From the 'UNKNOWN PART'. 

For p E {PI,P2, ... }, J(e(p» = J(R'(p)(e(p». If Po E dom(e), then for some 
n E INo and y E Y, e(po) = {(ho,(n,y»}. J(e(po» = e(po) and J(R'(po)(e(po») = 
{(cn,y)} = R(po)(e(Po». For p E 'UNKNOWN PART', J(e(p» = e(p) and 
J(R'(p)(e(p))) = R(p)(e(p». 
Let X := dom( e)\{pI,P2, ... }. If X = 0 then J(mrng( e» = f(UPEdom(e) R'(p)( e(p))), 
hence J(s) = J(s'). Case X -10 then J(s') = J(s) \ (UpEX e(p» U UpEX R(p)(e(p», 
i.e. (f(s),J(s'» E T. 

3. Let (t,t') E T and So E rI(t) n V', then 3e E F(t) : t' = t \ mrng(e) U 
UPEdom(e) R(p)( e(p» and So has only finitely many triggers in hI, h2, .... These trig
gers can be forwarded to their destination in n := L(h;,(m,Y»Eso f(Q'\Q)(m - i + 1) 
single· processor events. Thus we have a sequence SI, ... , Sn E J- I (t) such that 
(Si-I,Si) E T' for all i E {I, ... n} and Sn f(Q' \ Q) = 0, i.e. Sn = t. Consequently, 
e E F'(sn). If Po E dom(e) then e(Po) = {(ho,(m,y»} for some m E INo,y E Y 
and J(R'(po)(e(Po))) = {(cm,y)} = R(po)(e(Po)). For p E dom(e) \ {Po}, i.e. 
p E 'UNKNOWN PART', we already have J(R'(p)(e(p))) = R(p)(e(p». We define 
Sn+I := Sn \ mrng(e) U UPEdom(e)R'(p)(e(p», then (Sn,Sn+1) E T' and J(Sn+I) = 
J(sn) \ J(mrng( e» U UPEdom(e) J(R'(p)(e(p))) = t \mrng(e) U UPEdom(e) R(p)( e(p» = 
t'. 

o 
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