

Discrete event systems : dynamic versus static topology

Citation for published version (APA):
Hee, van, K. M., & Rambags, P. M. P. (1989). Discrete event systems : dynamic versus static topology.
(Computing science notes; Vol. 8909). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/9f50ea5e-3c5e-4181-8335-620905bbd2e6

Discrete Event Systems: Dynamic
Versus Static Topology

by

K.M. van Hee P.M.P. Rambags

89/09

December, 1989

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

DISCRETE EVENT SYSTEMS:
DYNAMIC VERSUS STATIC

TOPOLOGY

K.M. van Hee P.M.P. Rambags

Department of Mathematics and Computing Science
Eindhoven University of Technology

Abstract

In this paper, we present two models for discrete event systems: A formal Actor
model, based upon Agha [1], and the Des model [5]. The former has a dynamic
topology whereas the latter has a fixed interaction structure.
We introduce an equivalence relation for discrete event systems and we construct an
equivalent Des for each Actor system. Furthermore, we prove several results, such
as the serializability of events in the Actor model and the establishment that every
name-generating mechanism is isomorp~ic to the method introduced by Agha, i.e.,
to extend an existing name with some element.

1 Introduction

Many existing models for discrete event systems have a fixed topology, i.e. the number
of active components and their interaction structure are fixed. The Petri Net model
[13] is a well-known example.
There exists also another class of discrete event systems where the topology is dynamic,
i.e. new components can be created during the course of the system and the interaction
structure may change. The Actor system is one of the most well-known specimen of
this class.
In order to derive properties of Actor systems and to manipulate them, we need a
formal description. Agha [1] uses recursive equations. It is not obvious to see whether
these equations have solutions and if so, which ones. An other approach is based upon

2

graph grammars [9J. We present in Section 3 a formal Actor model constructed from
sets and functions. We have been inspired by [1], which allows us to abandon all time
aspects, only order of events is left. We assume only one actor machine of the same
actor to be alive at each moment. We adopt the method to generate new names locally.
All new names will be an extension of an existing name with a natural number and we
prove that every name-generating mechanism is isomorphic to this method.
In Section 4, we briefly introduce another model for discrete event systems, called the
Des model. It has a fixed interaction structure. We shall not explain the basic ideas
behind it, instead we refer to [6J.

First, we introduce in Section 2 a very general notion of discrete event systems, called
transition system. Its purpose is twofold: We use it to describe the semantics of more
specific models, in this case the Actor and Des models, and to compare discrete event
systems. For the latter, several similarity relationships on transition systems are de
fined, of which the strongest is equivalence. Thus we are able to compare discrete
systems described in completely different frameworks, in this case Actor systems and
Des'ses. In Section 5, we first construct a very simple Des which realizes any Actor
system only. It has one processor. Consequently, it cannot perform actions in par
allel. Next, we construct an equivalent Des for each Actor system. This result may
seem remarkable because of the static topology of a Des. The resulting Des, however,
has some difficulties, e.g. processors have infinitely many outpnt channels. We solve
these problems by means of a two-steps construction. In the end, each processor with
innnitely many output channels has been replaced by one or more simple processors
with only finitely many output channels. The resulting Des can be implemented in
EXSPECT [6,7J. Consequently, we are able to prototype any Actor system.
We start with some notations.

Notations

INo is the set of natural numbers including zero and for i E INo: IN, = {j E INolj :::: i}.
For S a set and T a binary relation over S, T* is the transitive closure ofT. We overload
the symbol *: For S a set, S* is the set of all finite rows over S. We denote the empty
row by E and row concatenation by o. We write (Sb S2, .•. , sn) for a row consisting of
the elements 81,82, ••. ,8n, respectively. For x E So, Ixl is its length and Xi is the ith
element of x. Sometimes we use x & a as shorthand for x 0 (a).
For A and B sets, A ~ B iff B <;; A, A --+ B denotes the set of all total functions from
A to B and A f> B the set of all partial functions from A to B. For f a function,
f[a : bJ = A x E dom(f) : if x = a then b else f(x) ft, and for X <;; dom(f),j(X) =
{f(x) I x E X}. We denote function concatenation by 0 and function restriction by f.
For an injective function, we write f- 1 for its inverse. For an non-injective function
and y some element, f-l(y) = {x E dom(f) I f(x) = y}.

For A and B 1 ,B2 , ••• ,Bn sets, f E A --+ Bl X Bz X ... X Bn, a E A and i E {1, ... ,n}:
fi(a) denotes the i,h component of f(a).
The symbol 'w' stands for 'infinite'. For all n E INo: n < w. If X is a set of numbers,
then XW = Xu {w}. For an ordered set D and db d2 ED: d1 !!lin.d2 is the minimum
of d1 and d2 and d1 max dz is the maximum of d1 and dz.
If Y is a set of sets, then U Y denotes the union of all elements of Y. If A is a set,

3

then IAI is the number of elements in A, JP(A) denotes the set of all subsets of A and
18(A) denotes the set of all multisets (bags) over A, i.e. the set of all functions from A
to IN!). Please note: Infinitely many copies of the same element can appear in a bag
and a bag can contain infinite many different elements.
For b E 18(A) and x some element: x E b iff x E A and b(x) > O.
For A, B sets, x E 18(A) and y E 18(B):

- x<;;y iff
- x = y iff
- x Uy =

- x\y

Va Ex: a E B 1\ x(a) :<; yea).
x <;; y 1\ Y <;; x.
AaEAUB : ifaEA\Bthenx(a)

else if a E B \ A then yea)
else x(a) + yea) fi fi..

A a E A : if a E B then (0 .!!l.!hlP(a) - yea))
else x(a) ft.

- x n y = x \ (x \ y).

Please notice that x n y = y n x.

Sets can be viewed as bags. If S is a set, then the corresponding bag S E 18(S) is
defined as A s E S : 1. So we can apply the operations above to sets and bags. For
a bag-valued function j with finite domain A = {at, ... ,an}, mrng(f) denotes the
multisetrange of j, defined as mrng(f) = feat) U ... U f(a n). We also write UaEA f(a)
for mrng(f).
If x is a bag over A, then # x is the number of elements in x, i.e. # x = LaEA x(a).
x is infinite iffVk E INa: 3B <;; A : LaEB x(a) > k, otherwise x is finite.

For clarity, we sometimes use the following notation in proofs:

A

{} 1: Hint why A is equivalent with B :}

B.

4

2 Transition system

In this section we formalize a general notion of a discrete system which is called a
tmnsition system. We shall use transition systems to describe the semantics of the Actor
and Des models. We also mention several relationships between transition systems in
order to mutually compare them.

A transition system consists of a finite or countable set of states of which some are
initial. The system starts with an initial state and then moves from one state to another.
Actually, a transition system is a directed graph. Most frameworks incorporate, in some
form, a transition system.

Definition 2.1 Transition system
A transition system is a triple (S, L, T), where:

- S is a finite or countable set;

- L r;;, S;

-Tr;;,SxS.

S is called the state space, L the set of initial states and T the tmnsition relation.
o

This definition of a transition system can be found in [3]. In literature, also other
classes of transition systems are described, for instance see [8,11,12,17]. They differ
from ours in mainly two items, viz.:

- There is only one initial state;

- The transition relation T has been replaced by a set of actions A and a relation
R r;;, S x A x S, where (s, a, Sf) in R if action a can make the system move from
state s to state Sf.

Hence, there may be different transitions between two states, while in Defini·
tion 2.1 only the existence of a transition can be indicated.

All these classes of transition systems can be transformed into each other, but we shall
not elaborate it here.

A transition system may have several states which are never reachable, i.e. the system
can never get there when started in an initial state. In some sense these states are
superfluous, yet we do not require all states be reachable. When specifying a transition
system one may not know which states are reachable and which are not. It may also
be convenient to define the state space too large.

5

Relationships between transition systems

One of our primary goals is to compare transition systems. We would like to characterize
the behaviour of these systems with expressions as 'system A is more powerful than
system B,' 'system A simulates system B' or 'system A is in fact the same as system
B.'
Several approaches to compare transition systems have been described in literature,
e.g. observation equivalence [12] and bisimulation equivalence [8], but they consider
other classes of transition systems and application areas. We shall introduce our own
similarity relationshlps. It would be an interesting topic for further research to relate
all classes of transition systems and their comparison techniques.

When developing a new system, we compare several designs with each other and with
the existing system. In these cases we have a specification of some transition system
and one or more implementations. All implementations can be roughly divided up
into three classes: Incorrect implementations, correct but incomplete implementations
and both correct and complete implementations. An incorrect implementation can do
more than is specified. A correct implementation performs allowed actions only, but
it might be incomplete, i.e. the specification allows a larger set of actions than the
implementation actually can do. See Figure 2.1.

Incorrect implementations

Partitioning line I .. - +-------------------1

Correct but incomplete implementations

Partitioning line II - - - +------------------~

Correct and complete implementations

/

Figure 2.1 Three classes of implementations

In this subsection, we introduce some concepts to make the comparisons between dis
crete systems more precise. We only consider transition systems here. Consequently,
if we like to compare two systems described in different frameworks, we have to find
representations of them on the level of transition systems first.
We distinguish different transition systems by means of uppercase letters of the be
ginning alphabet. Their state spaces, initial states and transition relations are distin
guished by subscripts.
First, we apply a reduction on any transition system such that all states are reachable
and the transition relation is reflexive.

6

Definition 2.2 Reduced transition system
Let (S,L,T) be a transition system. Its reduction (S,£,T) satisfies:

s = {s E S I 3n E INa : 3so, ... , Sn E S :

So E L " Sn = S " 'Ii E {1, ... , n} (S'_1,8.) E T}

T = { (s, s') E S x Sis = s' V (s, s') E T}

o

This reduction gives just the information we need to determine the behaviour of a
transition system. All similarity relationships will be based hereupon.
We map reachable states of a system A onto reachable states of a system B by a
total function f E SA --> SB. Hence, all reachable states of system A have to have a
correspondent in system B. In fact, they are partitioned into classes and each class
of A corresponds to a reachable state of B. The sizes of the classes are a measure for
the efficiency of system A as compared with system B.
Now we define the first relationship between transition systems: Realization.

Definition 2.3 Realization
Let A and B be transition systems. A realizes B with respect to function f iff

- '1(s, s') E TA (J(s),J(s')) E TB

o

Intuitively, we say 'A realizes B' if we have a mapping to project states of A onto states
of B such that the mapped behaviour of A is also behaviour of B. In terms of Figure
2.1, the realization relation formalizes partitioning line I.
Without proof we mention that the realization relation is transitive:

Lemma 2.1
Let A realize B w.r.t. functiou f and let B realize C w.r.t. function g.

Then A realizes C w.r.t. go f.
o

The definition of the realization relation as such is not useful in many practical cases.
The point is that it has been based on reachable states and we do not know in advance
which states are reachable and which are not. However, it can often be proven that
all reachable states have certain properties in common. One might speak of system
invariants. In the following lemma, S can be regarded as a set of states for which these
invariants hold. It can be used in several practical cases.

Lemma 2.2
Let S be a set and J a function with the following properties:

- 'is E S : 'is' E SA (s,s') ETA =} s' E S

- J(LA) ~ LB

- 'is,s' E S : (s,s') ETA =} f(s) = f(s') V (f(s),f(s'») E TB

Then A realizes B with J.

Proof: See appendix.
o

7

(1)

(2)

(3)

(4)

(5)

If all transitions of system A correspond to a transition of B, then A realizes B. This
is a special case of Lemma 2.2.

Lemma 2.3
Let J E SA --+ SB, J(LA) ~ LB and suppose

'i(s,s') ETA: (J(s),f(s')} E TB .

Then A realizes B with function J.
o

Consequently,

Lemma 2.4
If SA = SB, LA ~ LB and TA ~ TB, then A realizes B with the identical function.
o

Notice that A may realize B even if the transition relation of A is empty. If A realizes
B then we consider B at least as powerful as A.
We are now introducing a stronger relationship: Simulation, in which we also require
that behaviour of B is, under the image of J, behaviour of A.

Definition 2.4 Simulation
A simulates B with respect to function f iff

o

- A realizes B with respect to f

- f is surjective

- V(t, t') E TB 'Iso E f-1(t) : 3n E INo : 381, ... ,8n E f-1(t) :

3sn+1 E f- 1(t') : Vi E {O, ... ,n} : (8;,S;+1) E TA

Without proof we mention that the simulation relation is transitive, too:

Lemma 2.5
Let A simulate B w.r.t. function f and let B simulate C w.r.t. function g.
Then A simulates C w.r.t. go f.
o

Lemma 2.2 can be extended for the simulation relation.

Lemma 2.6
Let S be a set and f a function with additional properties:

- 'Is E S : 'Is' E SA (s, s') E TA => s' E S

- f(L A) = LB

- 'Is,s' E S : (s,s') E TA => f(s) = f(s') V (I(8),1(S')) E TB

- V(t,t') E TB : 'Iso E f-1(t) n S : 3s1, ... ,sn E f-1(t) :

8

(1)

(2)

(3)

(4)

(5)

3sn+1 E r1(t') : Vi E {O, ... ,n} : (S;,S;+l) E TA (6)

Then A simulates B with f.

Proof: See appendix.
o

Simulation with an injective function implies that both systems simulate each other.
We omit the proof.

Lemma 2.7
Let A simulate B with function I and suppose: I is injective.
Then B simulates A with 1-1.
o

9

This property gives rise to an equivalence relation on the set of transition systems.
Finally, we have come to the strongest relationship: Equivalence.

Definition 2.5 Equivalence
Two transition systems A and B are equivalent iff a bijective function I
exists with the following properties:

-Vs,s'ESA

Notation: A ~ B.
o

(s,s') E TA {o} (I(s),f(s'» E TB .

It is straightforward to see that equivalence equals simulation with an injective func
tion.

Lemma 2.8
A ~ B iff an injective function I exists such that A simulates B with I.
o

We shall use the following lemma in a subsequent section to prove the equivalence of
two systems.

Lemma 2.9
Let I E SA --> SB be an injective, not necessary surjective function. Assume further
more:

- V(t, t'} E TB t E rng(f) => t' E rng(f)

- I(LA) = LB

-VS,S'ESA (s,s') E TA {o} (I(s),f(s'» E TB

Then A ~ B.

Proof: See appendix.
o

In the next section, we present a formal model for Actor systems.

(1)

(2)

(3)

10

3 Actor model

In this section, we present a formal model for Actor systems. It has been based upon
[1], but we assume only one actor machine of each actor to be present at each moment.

Agha [1] has already introduced a formal model, he however uses recursive domain
equations. This method has some disadvantages, for instance it is not immediately
clear whether such an equation has solutions, and if so, which ones. Often a complex
fixpoint theory is needed to find a minimal solution (e.g. see [2,14,15,16]). Therefore
we choose a different approach.
In order to give a non-recursive definition for actors, we introduce so· called local states,
i.e. for every actor some internal memory. We have thus introduced over-specification,
a designer might not want to bother about local actor states as we force him to do. We
do not regard this as a disadvantage, on the contrary we feel that our model is easier
to understand and use. It has been illustrated with some examples.

Agha introduced a method to generate different names for new communications and new
actors. In this method, each new name is an extension of an existing communication
name with some element. All initial configurations should be such that no name of
an actor or communication is a prefix of another name. He proved that this property
remains invariant when the Actor system evolves. Consequently, no new name can
equal an already existing name.
This method has a nice feature: All new names can be computed locally. To justify
its usage, we show that all name-giving mechanisms are isomorphic to it, before we
formalize Actor systems.

Index problem

Let [be a countable set of indices (names) and f E [_ IP([) a function that assigns
to each index a set of new indices, such that:

Vi,j El : i -I j =} f(i) n f(j) = 0

Vi E [: 3io E [\ U rng(f) : 3n E INo : i E r(io)

(1)

(2)

According to Eq. 1, all images under f are disjunct. Eq. 2 implies that each index can
be reached from an initial index in finitely many steps. This is the most general form
of a name-giving mechanism.
We construct an isomorphic set of indices X, X ~ INo', and a function 9 E X _ IP(X).
Here, each index will be a finite string of natural numbers and every new index will be
an extension of the original index with one number. Let:

- [= {io, it, ... } be an enumeration of [with order, i.e. io < it <

- [0 = [\ U rng(J) (all initial indices)

- l' E ([\ [0) - [such that 1'(j) = i iff j E f(i), Vi,j.

Please note: l' exists and has been defined unambiguously.

- rEI -dVo with r = A i E I : if i E 10 then #{i E 10 I j < i}

clE. #{ j E J(J'(i)) I j < i}1i

Function r assigns to each i E I a local number.

11

Now we construct a function h which maps every i E Ion a string of natural numbers:

- h := Ai E I : if i E 10 then (r(i)) clE. h(J'(i))&r(i) ft

- X := rng(h)

Hence, h E I -> X. Function h has been defined recursively and due to Eq. 2, the
recursion is fi1lite~ Consequently, X ~ INo•.

Lemma 3.1
h is injective.

Proof.
Let i,j E I and suppose h(i) = h(j). We prove i = j. Since Ih(i)1 = Ih(j)1 we have
i,j E 10 or i,j E 1\10 • If i,j E 10 then rei) = r(j) and from the definition of r it
follows that i = j. Next, assume i,j E I\Io. Then h(J'(i)) = h(J'(j)) and rei) = r(j).
Consequently, Ih(J'(i))1 = Ih(J'(j))1 = Ih(i)l- 1 and with induction to the length of
h(i) it follows that J'(i) = f'(j). Hence, i,j E J(J'(i)) and they have the same local
number, so i = j.
o

This means that the inverse of function h, h-l, exists. We now define function g:

-g:= AxEX: {x&nlnEINolln<#J(h-l(x))}

Theorem 3.1 Index problem
(I,J) is isomorphic to (X,g) with respect to h.

Proof.
Function h is a bijection from I to X. What remains to prove is that for all i E I
h(J(i)) = g(h(i)).

o

h(J(i)) = {h(j) I j E J(i)} = {h(J'(j)) & r(j) I j E J(i)} =

{h(i)&n I n< #J(i)} = {h(i)&n I n< #J(h-l(h(i)))}

g(h(i)) .

Now we formalize the Actor system.

12

Formal model

The readers unfamiliar with the Actor model should read the informal description in
[1].
We construct an Actor system out of three sets and a complex function over these sets.
The sets specify, respectively,

- tags, i.e. communication names and actor names,

- values of messages,

- states of actors.

We assign to each actor a state. This state can be seen as some local information.
For example, an actor that forwards the previous message when the current message
arrives, should be able to remember one message. If all messages are natural numbers,
then its state is a natural number.
We explicitly mention that the set of message values and the set of actor states do
not deal with acquaintances. A communication will consist of a message value and a
possibly empty set of acquaintance names. An actor always has a state and a set of
acquaintances.

Definition 3.1 Actor system
An Actor system is a quadruple (l, M, A, B), where:

- I is a finite, ordered set

1* is the set of all possible tags, which has been ordered lexicographically. Since
a tag belongs to a communication or an actor, we define A := 1* and 7 I'
and we use A for actor names and 7 for communication names.

- M is a countable set

M is the set of message values.
M := M X lP(A), the set of all nameless communications.

- A is a countable set

A is the set of actor states.
A := A X lP(A), actor states with acquaintances.

- B E A X 7 X M -+ (7 f> A X M) X (A f> A) X A
B is the behaviour function. It assigns to an actor state (A), a communication
name (7) and a communication (M): A set of named communications to actors
(7 f> A X M), some new actors (A f> A) and a replacement behaviour (A).

For B, the following constraints should hold: (All free variables universally quantified)

13

If B((a, V), t, (m, W) = (J, g, (aa, VV)), then:

o

- dom(J) n dom(g) = 0
New actors and new communications should be named differently.

- dom(f) and dom(g) are finite

An actor should not produce an infinite amount of new communications or
actors.

- t' E dom(f) U dom(g) => 3i E I : t' = t & i

New names are an extension of the received communication name.

- (a', (m', W')) E rng(f) => a' E V U W U dom(g)

/I W' ~ V U W U dom(g)
Messages can be sent to well-known actors only and such a message may contain
no unknown actor names. Please note:
V = Acquaintances of the actor itself;
W = Acquaintances of the received communication;
dom(g) = Newly created actor names.

- (a', V') E rng(g) => V' ~ V U W U dom(g)

The acquaintances of newly created actors should be well-known.

- VV ~ V U W U dom(g)
All new acquaintances of the actor itself should be well-known, too.

We use partial functions over a set of names to denote sets of named elements. For
example, let f E T f+ M, then f corresponds with a set of named communications.
A configuration of an Actor system consists of a finite set of actor names and for each
actor name:

- An actor state with acquaintances (A);

- A set of named communications (T f+ M).

A configuration can thus be described as an element of A f+ A X (T f+ M). We call
the set of all possible configurations of an Actor system the state space.

Definition 3.2 State space
Let an Actor system be given. Its state space S satisfies:

o

S = {sEAf>Ax(Tf>M)

}

11I((a,V),!) E rng(s) : V ~ domes)

1\ lI(m, W) E rng(f) : W ~ domes)

1\ IIN,N' E Names(s) : N of N' * N n N' = 0
1\ IIn,n'EUNames(s): ((3uEI*: nou=n') * n=n')

1\ U N ames(s) is finite

where Names(s) = {domes)} U
aEdom(s)

N ames(s) is the union of all sets of names in configuration s.

14

According to the first constraint on S, all acquaintances should be part of the config
uration. The second constraint asserts that all names are different and because of the
third constraint, no name is a prefix of another one. Finally, the last restriction states
that the number of communications and actors is always finite.
In a given configuration, each actor that has a communication may consume it, produce
new communications and actors and replace its behaviour. We call an assignment of
communications to actors an event.

Definition 3.3 Event function

The event function E of an Actor system with state space S satisfies:

E = A s E S : {e E A f> T I dome e) of 0 1\ dome e) ~ dome s)

1\ lIa E dom(e) : e(a) E dom(s2(a))}.

o

For any configuration s, the event function gives all possible events. Such an event
e E E(s) unambiguously determines another configuration Q(s,e), namely the resulting
one when all communications are processed. Before we give Q(s, e), we introduce two
auxiliary functions.

Definition 3.4 (3, Jl
Let s E S, e E E(s) and a E dom(e).

- (3(s,e,a) := B(sl(a),e(a),s2(a)(e(a)))

-Jl(s,e):= AaEA: {(t,m) I 3a'Edom(e) (t,(a,m)E{31(S,e,a')}

o

15

In this definition, f3(s, e, a) is the behaviour of actor a when processing communication
era) in configuration s and /1(s,e) gives for every actor name a E A the set of new
communications with tags sent to a when event e occurs in configuration s.

In configuration Q(s,e), each actor a E A has a set /1(s,e)(a) of additional named
communications. Moreover, Q(s,e) differs from s in the following two aspects:

- Each a E dom(e) gets a new actor state with acquaintances, namely f33(s,e,a).
Furthermore, communication e(a) has been disappeared. .

- For each a E dome e) we have a set dom(f32(s, e, a)) of new actors. Each new
actor a' E dom(f32(s, e, a» gets 132 (s, e, a)(a') as state with acquaintances.

These considerations give rise to next definition.

Definition 3.5 Transition junction, transition relation
The transition function Q of an Actor system satisfies:

Q E 8 X rng(E) f+ 8 such that dom(Q) = {(s,e) I s E 8 " e E E(s)}

and for s E 8, e E E(s) :

Q(s,e) = A a E dom(e) : (/13(s,e,a),

s2(a) \ {(e(a),s2(a)(e(a»)} U /1(s,e)(a»)

U A a E domes) \ dom(e) : (sl(a), s2(a) U /1(s,e)(a»)
U UP a' E dom(/12(s,e,a)) : (/12(s,e,a)(a'), /1(s,e)(a'»)

I a E dom(e)}

The transition relation T of an Actor system satisfies:

T ~ 8 x 8 and

T = {(s,Q(s,e») Is E 8" e E E(s)}.

o

We do not formally prove the correctness of our transition function, i.e., Q(s, e) E
8. Instead we remark that for every new configuration, all acquaintances must be
part of it since an actor sends messages to well-known actors only and these messages
have no unknown actor names. Moreover, no name can be a prefix of another name
because we adopted the name-generating mechanism of Agha. At last, the number of
communications and actors must be finite, as an actor can only produce a finite amount
of new communications and actors.
Please note: If L is a set of initial configurations of an Actor system with state space
8 and transition relation T, i.e. L ~ 8, then the triple (8, L, T) is a transition system.
This property enables us to compare an Actor system with a system described in a
completely different model that also specifies a transition system, using the relationships

16

from Section 2. In Section 5, we implement any Actor system in the Des model and we
compare the resulting Des with the original Actor system in this way.
We proceed with three examples of simple Actor systems.

Example 3.1 Changing behaviour
Consider the following informal description of a behaviour. For n E INa:

Dn = "Accept a natural number m, return to sender m * n and become Dn+1."

We construct an Actor system (I, M, A, B) in which actors with this behaviour may
appear.

I .- {D,1,2}

M .- INa

A .- INa U {user}

We do not describe B for user. User is a so-called external actor.
We assume: An actor with the above described behaviour has no acquaintances and
every communication sent to it has exactly one acquaintance, namely the sender.
For n E A \ {user}; t,et E 1* and m EM:

B((n,0),t, (m,{et}» := ({(t&D,(et,(n*m,0»)},

0,
(n + 1,0)

) .

We can playa transition game for this Actor system. Our configurations are constituted
from partial functions and we have no method to picture them yet. Instead, we simply
describe configurations by enumerating all partial functions involved.
Suppose we have an initial configuration So with one user u and one actor b with
behaviour 03, while b has just received two communications from u: A seven and an
eight.

So = {(b, ((3,0), {((D),(7,{u}», ((1), (8,{u}»}»,

(u, ((user, {b,u}), 0»}

Please notice that u has two acquaintances, namely b and itself.
Dependent on the selected communication, there are two possibilities for the next con
figuration 81:

81 = {(b, ((4,0), {((1),(8,{u}»}»,

(u, ((user, {b,u}), {((O,D),(21,0»)}»}

or Sl {(b, ((4,0), {((D), (7, {u}» }»,
(u, ((user, {b,u}), {((1,D),(24,0»}»}.

17

Assuming only b consumes a communication, we have two possibilities for the last
configuration S2, too:

S2 = {(b, ((5,0),0)),

(u, ((user, {b,u}), {((O,O),(21,0)), ((I,O),(32,0))}))}

or S2 = {(b, ((5,0),0)),

(u, ((user, {b,u}), {((O,O), (28, 0)), ((I,O),(24,0))}))}.

In the end, u has received either a 21 and a 32 or a 28 and a 24. Nondeterminism has
come up.
o

The following example has been taken from [IJ:

Example 3.2 Recursive factorial
We construct an Actor system (I, M, A, B) with three kinds of actors:

- Users;

- Factorial actors;

- Customers.

Users send communications to factorial actors. Again, users are external actors whose
behaviour we shall not formalize.

1 .- {O,I}
M .- INo (Only numbers need be send.)

A .- {user,jac} U IN!

Factorial actors have one acquaintance, namely their own name. Communications
arriving at a factorial actor have merely the sender as acquaintance.
For m,t,a E 1* and n E M:

B((fac,{m}),t,(n,{a})).- jfn=O

then ({(t&O,(a,(1,0)))},

0,
(fac, {m})

)
else ({(t&O,(m,(n-l,{t&I})))},

{(t&I,(n,{a}))},
(fac, {m})

)

ft·

18

A customer also has one acquaintance, namely the actor which a response must be
sent to. Communications destined for customers have no acquaintances. For n E INl ,

k E M and a,t E I*:

B«n,{a}), t, (k,0») .- ({(t&0,(a,(n.k,0»)},
0,
(n,{a})

) .

Please note: The replacement behaviour of a customer is irrelevant, for a customer
receives no communications anymore after the first one.
Let us play the transition game again. Assume we have an initial configuration So with
an user u and a factorial actor m, where u has just send a 3 to m.

So = {em, ((fac,{m}), {(t,(3,{u}»)}»),
(u, «user,{m,u}), 0»)}

The system then evolves to final configuration 87.

87 = {(m, «(fac,{m}), 0»),
(t 0(0,0,1), «I,{t a (0,1)}), 0»,

(t 0(0,1), «2, {t a (I)}), 0»),

(t a (1), «3, {u}), 0»),
(u, «user,{m,u}), {(to (0,0,0,0,0,0,0),(6,0»)}»)} .

Configuration 87 has three redundant actors: to (1), to (0,1) and to (0,0,1). These
actors could as well be deleted from the system.
o

Our model allows an actor to deterministically select among acquaintance names, be
cause the set of names has been ordered lexicographically. In Example 3.3 we have
constructed a behaviour sel for returning messages to the acquaintance with lowest
name.

Example 3.3 Acquaintance selection
Let (I, M, A, B) be an Actor system with additional properties:

o E I;

sel E A

and for t E I*, m E M and V E JP(r),

B((sel, 0), t, (m, V» = if V = 0
then (0, 0, (sel,0))

else ({(t&O, (min(V),(m, V)))},

0,
(sel,0)

)

ft·

19

We assume an actor with local state sel to have no acquaintances itself. Such an actor
selects the lowest actor name out of the set of received acquaintance names and returns
the communication to it.
o

Serializability of events

An event in which several actors process communications can be split up into a number
of events, all occurring after each other. The resulting configuration is the same in
both cases. We call this property serializability of events. In order to prove it, we first
introduce several lemmas.

Events that may occur in a given configuration might also occur if new actors and new
communications are added. In both cases, the behaviour of an actor being part of such
an event is equal. This is expressed in Lemma 3.2.

Lemma 3.2
'Vs,s'ES: 'VeEE(s)
If dom(s) <;; dom(s') and Va E dom(e) 81(a) = sl(a) II s2(a) <;; s2(a), then:

- e E E(s') ;

- 'Va E dom(e) : (3(s,e,a) = (3(s',e,a);

- 'Va E A : I'(s,e)(a) = I'(s',e)(a) .

Proof.
The first point directly follows from Definition 3.3.
The second property can be directly derived from the definition of (3 and the last
assertion is an immediate consequence of the second one.
o

Next lemma is a direct consequence of the definition of (3:

Lemma 3.3
'Vs E S : 'Ve,e' E E(s) 'Va E dom(e n e') (3(s,e,a) = (3(s,e',a) .
o

Assume we split up an event e of a configuration s into two events e' and e". The set
of new communications that resul ts when e is processed in s, equals the union of these
sets if e' and e" were processed in s.

Lemma 3.4
'tis E S : 'tie E E(s) : 'tI DI , D2 E dom(e) :
If DI UD2 = dom(e) and DI nD2 = 0 and DI ,D2 -#0, then:

-efD1 E E(s) and efD2 EE(s);

- 'tIa E A : ,,(s,e)(a) = ,,(s,e f Dl)(a) U ,,(s,e f D2)(a) .

Proof: See appendix.
o

20

If actor a creates a new actor a' in event e then a is the only one in e being able to
send communications to a'. This property is a special case of next lemma, that is, if
D is a singleton.

Lemma 3.5
'tis E S : 'tie E E(s) : 'tiD C;; dom(e) :
'tIa ED: 'tIa' E dom(,82(s,e,a» : ,,(s,e)(a') = ,,(s,efD)(a').

Proof: See appendix.
o

We are now able to prove the serializability property.

Theorem 3.2 Serializability of events
Let s E S, e E E(s), Dl and D2 C;; dom(e) and suppose dom(e) = D1UD2, D1nD2 = 0,
Dl -# 0 and D2 -# 0.
Then e f Dl E E(s), e f D2 E E(Q(s,e f DI» and

Proof: See appendix.
o

As an Actor system evolves, some present actors might get superfluous. The last
configuration of Example 3.2 included three customers which would never receive a
communication anymore. Another example regarding redundant actors is concerned
with forwarders [1], i.e. actors that only forward received communications to other
ones. An interesting topic for future research would be to give sufficient conditions for
deleting an actor from the system. Such an Actor system might ultimately reach an
empty configuration, i.e. a configuration without actors.
In the next section we introduce briefly our model of discrete event systems, called Des
model.

21

4 Des model

In this section we describe a mathematical model for discrete event systems, called the
Des model. We shall not extensively discuss its motivations and properties, instead we
refer to [5].
Like Predicate/Transition nets [4] and Coloured nets [10], the Des model is an extension
of the elementary Petri Net model [17]. A major difference with the Actor model
from the previous section is the topology: In a Des, the number of components and
their interaction structure are fixed, whereas an Actor system exhibits dynamic process
creation. We have developed a tool called EXSPECT [6,7] to specify and simulate a
Des. Hence, specifications of systems described as Des are suitable for prototyping. We
start with an informal treatment.

A Des consists of two kinds of components: Processors and channels, which correspond
to transitions and places in Petri nets. A processor is connected with several input
and output channels. To each channel a type is associated and to each processor a
function. The signature of the function of a processor is such that the types of the
input parameters are identical to the types of the input channels and the types of the
output parameters of the function correspond to the types of the output channels. A
channel may be shared by several processors as input or output channel. The channels
may contain so-called triggers (tokens in Petri nets). A trigger has a value that belongs
to the type of the channel. More than one trigger of the same value may reside in a
channel, so a channel contains a bag over its type (cf. notations).
For each processor, every input channel has a multiplicity, which gives the number of
triggers the processor needs from that channel to operate. At each moment a transition
can occur, which means that the configuration of triggers in the channels may change.

Such a transition happens instantaneously and is executed by the processors. A pro
cessor that has enough triggers in each input channel may pick as many triggers as it
needs and produce a finite amount of new triggers for its output channels, according
to its function. Several processors may produce triggers for the same output channel.
A channel having always exactly one trigger can be seen as a memory of the system.
We call such a channel a store. If a processor wants to use the store, it picks out the
trigger and instantaneously places back a new trigger into the store. In fact, it replaces
the trigger. A store can even be a database. In this case, its type is very complex.
A configuration of triggers distributed over channels is called a state.

The Des model actually resembles Coloured nets very much. The selection of tokens
differs, in our model a processor has to accept all triggers, whatever their values may
be, whereas in Coloured nets a transition might refuse certain tokens because of their
colours. But we can simulate such a refusal by simply placing back undesirable triggers.

The systems we consider may be part of another, much larger system. In this case,
communications take place from our system to its environment and vice versa. We
regard the environment as a Des too, i.e. as a system with processors and channels,
but we do not know the specification of those processors and the channel structure.
Processors with an unknown specification are called black box processors. A black box
processor which only produces triggers for our well-known system may be modeled as a
single channel containing an infinite amount of triggers. Such a channel represents an
input stream. It will never get empty, since a processor consumes only a finite amount

22

of triggers in a finite time interval.
To indicate the processors and channels and their input and output relations, we use a
diagram technique where processors are represented by triangles and channels by circles.
For input/output relations we use arrows and for each input channel we mention its
multiplicity, except for input channels with multiplicity one, which is the default value.
See Figure 4.1 for an example.
We now formalize the Des framework.

Environment Known system

Figure 4.1

Definition 4.1 Discrete event system
A discrete event system (Des) is a quadruple (R,C,I,O), where R is a function-valued
function, C and 0 are set-valued functions and I is a bag-valued function, such that:

- dom(I) = dom(O) = dom(R), finite or countable sets.

- Vi E dom(R) : I(i) E lB(dom(C)) 1\ I(i) of 0 1\ I(i) is finite

1\ O(i) E IP(dom(C)).

- Vi E dom(R) R(i) E {b E lB({(c,w) IcE dom(C) 1\ wE C(c)})

I Vc E dom(C): L b((c,w)) = I(i)(c)}
wEC(c)

-+ lB({(c,w) IcE O(i) 1\ wE C(c)}).

- Vi E dom(R) Vb E dom(R(ill : R(i)(b) is finite.

- Vi E dom(C) C(i) is finite or countable.

Dom(R) is called the set of processor indices, denoted by P,

dom(C) is called the set of channel indices, denoted by K
and for all PEP, k E K:

o

- J(p) is called the bag of input channels of p, where
J(p)(k) is the multiplicity of channel k;

- O(p) is the set of output channels of p;
- R(p) is the reaction function of p;
- C(k) is the type of channel k.

23

We shall use these symbols strictly for the concepts defined. When we consider different
Des'ses we distinguish them by means of subscripts.

Definition 4.2 Trigger set, state space, event set
Let a Des be given. Then

Q := {(k, w) IkE K 1\ wE C(k)}

S .- IB(Q)

E .- {e E P f+ IB(Q) I dom(e) f- 0, dom(e) is finite
andVp E dom(e) : e(p) E dom(R(p))} .

Q is called the trigger set, S is called the state space and E is called the event set.
o

Please note that an event is an assignment of a bag of triggers to a processor such that
for each input channel k with multiplicity m exactly m triggers are chosen.

Definition 4.3 Event function
The event function F of a Des satisfies:

FE S --+ IP(E) and

VsES: F(s)={eEE I mrng(e)~s}.

o

Hence, e E F(s) only if s contains enough triggers to supply all the processors of
dom(e). Note that e E F(mrng(e)), for all events e E E. It is easy to verify that for all
s, tin S: If s ~ t then F(s) ~ F(t).
We next define the transition function, which assigns to a state s and an event e E F(s)
a new state.

Definition 4.4 Transition function, transition relation
The transition function T of a Des satisfies:

T E 5 x E -1+ 5 such that dom(T) = {(s,e) leE F(s)}

and for s E 5, e E F(s) :

T(s,e) = s \ mrng(e) U U R(p)(e(p)).
pEdom(e)

The transition relation of a Des is:

{(s,t) E 5 X 5 I Ole E F(s) : T(s,e) = t} .

Elements of the transition relation are called transitions.
o

24

We also use the symbol T to denote the transition relation. It is easy to verify that the
graph (5, L, T), where 5 is the state space of a Des, L a collection initial states and T
its transition relation, forms a transition system.
A Des cannot evolve from a finite state (i.e. a state with finitely many triggers) to an
infinite state or vice versa. This is expressed by Lemma 4.1.

Lemma 4.1
Let T be the transition relation of a Des. Then

'I(s, s') E T : s is finite ¢> s' is finite.

Proof.
Each processor consumes and produces a finite amount of triggers and in an event only
finitely many processors perform an action.
o

We have true parallelism in our model: Processors may execute simultaneously. As in
an Actor system, we have serializability of events, too. Without proof we mention that
it is always possible to split up an event for more than one processor into other events,
such that the successive execution of these events, in any order, ends in the same state
as the original compound event.

Theorem 4.1 5erializability of events
Let a Des be given and let s E 5 and e E F(s) such that Idom(e)1 ~ 2. Let further
DbD2 C dom(e) such that IDri ~ 1, ID21 ~ 1, Dl n D2 = 0 and Dl U D2 = dom(e).
Then erDl E F(s), etD2 E F(T(s,e[Dl)) and

o

25

Please notice the resemblance with Theorem 3.2. For more results on the Des model,
see [5J. In the next section we show that any Actor system can be implemented in an
equivalent Des.

26

5 Implementation of Actor systems as Des'ses

In this section, we present two implementations of any Actor system as Des. The first
one is really very simple, we use only one processor here. Consequently, all parallelism
is lost and this Des only realizes the original Actor system. But it might be useful in
order to very quickly obtain a prototype of the Actor system. The second one will be
equivalent with the Actor system, thus maintaining all parallelism, but it has processors
with infinitely many output channels and therefore it needs some adjustments to make
it suitable for EXSPECT. This will be done in two steps, yielding a Des that simulates
the original Actor system.

5.1 First implementation

In this subsection, we implement an arbitrary Actor system in a simple Des. Let an
Actor system (I, M, A, B) with transition system (S, L, T) be given. We shall construct
a Des (RR, ee, II, 00) with transition system (SS, LL, TT) that realizes the Actor
system. To avoid ambiguities we denote symbols referring to the Actor system with
one character and symbols referring to the Des with two identical characters.

The Des consists of one processor and two channels. See Figure 5.1. Channel com
contains communications. Channel act is a store for a table of actor names with
corresponding behaviours (local states). Processor p repeatedly takes a single commu
nication from com. This communication is destined for some actor a in the table of
act. Then p processes the communication: New communications are send to com, the
behaviour of a is updated and possible new actors are added to the table.

Figure 5.1 The des

Now we formalize Des (RR, ee, II, 00). It is constructed from the Actor system
(I,M,A,B):

ee = {(com, T X (A X M», (act, A f+ A)} ,
II = 00 = {(p, {com, act})}

and for t E T, a E A, iii E M and I E A f+ A

RR(p)({(com, (t, (a, iii»), (act, f)}) =

{(com, B,(f(a), t,iii»,

(act, I[a: B3 (f(a),t,iii)] U B2(f(a),t,iii)}

Please review Section 3 for those symbols not defined here. Please note that a (partial)
function can be considered as a set of tuples.

27

The Des has been defined completely apart from its initial states. It implicitly defines
a state space SS and a transition relation TT. However, not every possible state s E SS
is allowed. Communications from com have a communication name and the name of
the destination actor. Every such actor name should of course be present in the table
of act. The same should hold for the names of acquaintances, both actor acquaintances
and communication acquaintances. Furthermore, no single (actor or communication)
name may be the prefix of another name, particularly no name may be present more
than once. Next, the number of actors and communications should be finite. Finally,
act should store exactly one partial function. We shall choose the initial states such
that all these constraints are met. From the definition of Actor systems it follows that
all these properties remain invariant when the Des evolves, if it is initiated correctly.
For the Des we define a set AS of allowed states:

AS = { {(com, b), (act, {J})} E SS

I bE 18(T X (A X M)), f E A f> A and

- lI(t,(a,(m, V))) E b : a E dom(f) 1\ V ~ dom(f)

- II (a, V) E rng(f) : V ~ dom(f)

- b and dom(f) are finite

- lIa, a' E dom(f) : lI(t, r), (t', r') E b

aefa'l\ teft' =}

,3x E 1* : a a X = a' V t a X = t' V a a X = t V t a X = a

}

We also define a mapping 9 E AS -+ S, where S is the state space of the Actor system:

9 := >. {(com, b), (act, {J})} E AS :

(.A aEdom(f) : (J(a), {(t,m) I (t,(a,m))Eb})).

It can easily be verified that 9 is a total, surjective and injective function.
We finally define the set of initial states LL of the Des:

Hence, LL C;; AS and g(LL) = L. Without proof we mention that the Des cannot
escape from the set of allowed states. It follows from the construction of the Des and
the constraints on B (see Definition 3.1).

Lemma 5.1
lis E AS : lis' E SS (s, s') E TT =} s' E AS.
o

The Des realizes the Actor system.

Theorem 5.1
(SS, LL, TT) realizes (S, L, T) with g.

Proof: See appendix.
o

28

Consequently, all the actions of the Des are correct. Actually, the Des can perform
each one-step action of the Actor system, i.e. every action of a single actor. As any
Actor system has serializability of events, the Des can reach every possible state the
Actor system might evolve to. So this prototype is not too bad, despite of the lost of
parallelism. It's no use adding one or more processors in parallel with p, since only one
processor at a time can use store act.
We proceed with a better implementation of the Actor model into the Des model, where
all parallelism will be maintained.

5.2 Second implementation

Again, we consider an Actor system (I, M, A, B) with transition system (S, L, T). We
construct a Des D' = (R',C',I',O') with transition system (S',L',T') and we shall
prime every symbol referring to D'.
D' will be a chain consisting of a countable number of processors and channels. See
Figure 5.2. Each processor has a name a and two input channels with multiplicity
one. One of them, CO" is used to collect communications for a and the other one, b,,,
is a kind of pseudo-store for the behaviour of a. This channel will contain at most one
trigger. In case ba is empty, a is not (yet) present in the Actor system, otherwise a
really exists. The actor population will always be finite when the system starts with a
finite one, because an actor produces only finitely many new actors.
Each processor has every channel in the system as output channel, so it can send
communications to every processor in the system and it can initiate another processor
a' by sending a trigger to bal. Of course, bal must then be empty, but this is guaranteed
by construction. The equivalence of both systems will be proved.
We start with a formal specification of D'.

D' := (R',C',I',O'), where:

dom(R') = A = I*; dom(C') = U {ca,ba } ;
aEA

C' = U {(ca , T X M), (ba , A)} ;
aEA

I' = U {(a, {ca,ba })} ;
aEA

0' = U {(a, dom(C'))}
aEA

and for a E A, t E T, in E M and a E A:

R'(a)({(c",(t,m)), (b",Ii)}) =

{(c"",(tt,mm)) I (tt,(aa,mm)) E B.(Ii,t,m)} U

{(b"",aa) I (aa,aa) E B2(Ii,t,m)} U

{(b", B3(1i, t, m))}

29

Dom(R') is countable, because I is finite. D' implicitly defines a state space S', an
event function F' and a transition relation T'. Before we define a set of initial states
for D', we give a function g E S -> S' which maps every configuration of the Actor
system onto a state of the Des.

g := AS E S : {(b",s.(a)) I a E domes)} U

{(c",(t,m)) I a E domes) A (t,m) E s2(a)}.

The set of initial states L' will then be:

L' := g(L).

D' consists of countable many identical processors. Figure 5.2 shows a schematic repro
duction. A thick line represents an infinite number of input/output relations.

Output to

}
every channel
in the system
(including b"l

A single processor

Lemma 5.2
g is injective.

Proof.

• • •

Des D'

Figure 5.2

This can easily be seen by interpreting g: For each actor a in the configuration, its
behaviour is mapped on pseudo. store b" and its communications are mapped on channel

30

Ca. For each actor name 0;' that is not part of the configuration, ba , and Ca ' are empty.
Hence, no two different configurations of the Actor system are mapped onto the same
state of D'.
D

Events of the Actor system can be transformed into events of the Des and vice versa.

Lemma 5.3
'Is E S : 3h E E(s) --> F'(g(s))

Proof: See appendix.
D

h is bijective.

Now we can prove the equivalence of both systems.

Theorem 5.2
(S,L,T) ~ (S',L',T').

Proof: See appendix.
D

We have constructed an equivalent Des D' for each Actor system. It has a processor a
for each actor name 0; E A. Not every processor will be used. For example, consider
some channel with a communication named t E T. Since A = T, a processor t exists.
Due to the uniqueness of names, it will never be initiated in this case.
The number of processors in D' is, of course, infinite. We have chosen the initial states
such that D' always starts with a finite actor population and we have already mentioned
that this population will always remain finite. The only problem with D' is that it
consists of processors with infinitely many output channels. In the remainder of this
section, we describe a method to simulate these processors with systems consisting of
processors with finitely many output channels, which enables us to actually implement
D' in EXSPECT.

5.3 Processors with countable many output channels

The Des model allows to specify processors with countable many output channels. In
this subsection, we decompose such a Des into another one where each processor has
only finitely many output channels. So this subsection differs from the previous two
in the sense that we are not transforming Actor systems into Des'ses, we are only
considering Des'ses among themselves.

Let a Des be given with countable many processors, all of them being able to com
municate with each other. Such a processor has infinitely many output channels. We
assume each processor to have one input channel. This case can easily be generalized
for processors with more input channels.
We show that such a Des can be decomposed into another one where each processor
has only finitely many output channels. We shall use a two-steps construction. First,

31

we construct another system having one additional processor and channel, where each
originally present processor has left only one output channel. The added processor,
however, still has countable many output channels. Step two is to overcome this prob
lem. We prove that the thus arisen Des simulates the original one.

5.3.1 Step one

In a system with processors with countable many output channels, we can built in a new
channel in which those processors can place their triggers. We shall call this channel
collect. Furthermore, we need a processor, called distributor, that has to transport these
triggers to their destination. Then distributor will still have countable many output
channels, but in the new system it will be the only one. Step two (see below) shows a
way to also replace this one.

We start with a formal specification of the original system (Des D), where we require
each processor to have exactly one input channel. Next, we construct the new system
(Des D') and we shall prime every symbol referring to it. After that we prove that D'
simulates D.

The original system

D = (R,C,I, 0) with processors P = {P<hPl, oo.}; channels K = {CO,Cl, ... };

I = U {(Pi, {C;} n; (Each processor has a single input
iEN, channel with multiplicity one)

o = U {(Pi, Kn; (Output to every channel)
ieNo

and set of initial states L. See Figure 5.3. D implicitly defines a trigger set Q, a state
space S, an event function F and a transition relation T.

The new system

D' = (R',C',I',O') with processors p' = P U {distributor}; K' = K u {collect};

C' = C u {(collect, Qn ;
I' = I U {(distributor, {collect})} ;

0' = {(distributor, Kn U oX pEP : {collect}

and for i E !No and W E C(Ci):

R'(distributor)({(collect, (Ci,W))}) = {(Ci,W)},

R'(Pi)({(Ci,W)}) = {(collect,q) I q E R(Pi)({(Ci,W)})}.

See Figure 5.3. The set of initial states will be: L' := L. Please note: Collect is always

32

empty at start.
D' implicitly defines a trigger set Q', a state space S', an event function F and a
transition relation T'.

Theorem 5.3
D' simulates D.

System D

Proof: See appendix.
o

• • • • • •

System D'

Figure 5.3

This result allows us to replace every system D with a system D'. We remark that
this transformation can easily be generalized for processors with two input channels
instead of one. Applied on the second implementation of the previous section it yields
a system with only two processors with infinitely many output channels: A distributor
for communications and a distributor for behaviours. The next step concerns these
two.

5.3.2 Step two

This step addresses the problem of replacing a single processor with countable many
output channels with a chain of simple processors with finitely many output channels.
Consequently, this chain will be of infinite length. Such a chain of processors can be
implemented. The implementation starts with an empty chain and when the system
evolves, this chain grows larger and larger. Whenever we need a new output channel, we

33

activate a new processor, while we assume the existence of an infinite, but countable
chain of relatively simple processors on a conceptual level. Such a simple processor
accepts various communications and picks out those destined for a particular output
channel. Other communications are simply forwarded.
We could actually do without step one, but that would lead towards an enormous burst
of new processors and channels: Every single processor should then be replaced with
an infinite amount of other processors, while the original system already consisted of
infinitely many processors.
We elaborate this step in the same way as the former one.

The processor with couutable many output channels

D = (R,C,I,O) with Po E P; {ho} U {CO,CI, .•. } ~](;

C :::l {(ho, INo X Y)} U U {(Ci, Y)} ;
ieNo

I ;2 {(po, {hom; (The input channel has multiplicity one)

o :::l {(Po, {CO,CI, ... })}

and for n E INo and y E Y:

R(po)({(ho,(n,y))}) = {(cn,y)}

where Y is an arbitrary type. Des D has a set of initial states L and embodies some
unknown part. See Figure 5.4.

The chain

D' = (R',C',I',O') wl'th P' = P U { } T.('](U {h h } PI,P2, ... ; 11 = I, 2, •.. ;

C' = C U U {(hi, INi X Y)} ;
ieNl

I' = I U U {(Pi, {hi})} ;
iENl

0' = 0 r(p \ {Po}) u U {(Pi, {hi+!, Cim
ieNo

and for i E INo, n E IN; and y E Y :

R'(Pi)({(hi, (n, y))}) =

if i = n

then {(Ci,Y)}

else {(hi+!,(n,y))}

ft.

All other processors remain unchanged. For pEP \ {Po} and b E dom(R(p))

34

R'(p)(b) = R(p)(b).

See Figure 5.4. The initial states: L' .- L. Hence, channels h
"

h2 , ••• are initially
empty.

WELL
KNOWN

PART

/ /
UNKNOWN

PART

/ /
System D

WELL
KNOWN

PART
~--------~----------~ Po

/ /
SAME

UNKNOWN
PART

/ /

Theorem 5.4
D' simulates D.

Proof: See appendix.
o

System D'

Figure 5.4

PI • • •

The above result allows us to replace every such processor having countable many
output channels by a chain of processors with only finitely many output channels.

35

If we apply both steps to the second implementation, then we obtain a Des that sim
ulates the original Actor system because of the transitivity of the simulation relation.
Moreover, it can be implemented in EXSPECT.

36

6 Concluding remarks

In this paper, we first introduced transition systems to describe discrete event systems
in general and we formalized and analyzed their behaviours. After that we presented
two formal models for discrete event systems: The Actor model and the Des model.
The main difference is their topology: The former exhibits dynamic process creation,
whereas the latter has a fixed interaction structure. The semantics of both models are
in terms of transition systems, which gives a powerful tool to compare Actor systems
and Des'ses with each other.
In Section 3, we developed the Actor model without using recursive definitions. We
proved the serializability of events. Our model is well-suited to prove other properties of
Actor systems as well. Furthermore, we proved that every name-generating mechanism
is isomorphic to the one introduced by Agha.
Section 4 gives a brief overview of the Des model. Despite of its static topology, we
constructed in Section 5 an equivalent Des for each Actor system and we decomposed
it into an implement able one.

In further research, we shall mainly be engaged in three topics. At first, we intend to
further explore the different classes of transition systems and their similarity relation
ships. The next topic is about Actor systems. In Section 3 we mentioned that we are
interested in sufficient conditions for deleting an actor. We have also in mind to com
pare our Actor model with other formalisms of Actor systems. For example, Janssens
and Rozenberg [9J have proposed a formal Actor model based on graph grammars. We
would also like to investigate the modelling power of Actor systems. Are they really
useful for many practical cases? Our model might help us to answer this question and
the prototypes could also contribute. Lastly, we are working on a formal decomposi
tion/composition theory for Des'ses and we are interested in comparing the Des model
with other models coming from literature to describe discrete event systems.

Our experiences with Des'ses are very promising. We have described a lot of systems
coming from literature and practice as Des, including Petri nets and Actor systems,
and we have built a tool, called EXSPECT, to prototype Des'ses.

37

References

[lJ Agha G.A.: ACTORS: A model of concurrent computation in distributed sys
tems.
MIT Press, 1986.

[2J Bos R., C. Hemerik: An introduction to the category-theoretic solution of re
cursive domain equations.
Computing Science Notes 88/15, Eindhoven University of Technology, 1988.

[3J Gammelgaard A.: Implementation Conditions for Delay Insensitive Circuits.
In: Lecture Notes in Computer Science 365 pp. 341-355, eds. E. Odijk, M. Rem
and J .-C. Syre, Springer-Verlag, 1989.

[4J Genrich H.J.: Predicate/Transition Nets.
In: Lecture Notes in Computer Science 254 pp. 207-247, eds. W. Brauer, W. Reisig
and G. Rozenberg, Springer-Verlag, 1987.

[5J Hee K.M. van, P.M.P. Rambags: Discrete Event Systems: Concepts and basic
results.
Computing Science Notes 88/18, Eindhoven University of Technology, 1988.

[6J Hee K.M. van, L.J. Somers, M. Voorhoeve: Executable Specifications for
Distributed Information Systems.
In: Information System Concepts: An In-depth Analysis pp. 139-156, eds. E.D.
Falkenberg and P. Lindgreen, North-Holland, 1989.

[7J Hee K.M. van, L.J. Somers, M. Voorhoeve: EXSPECT, the functional part.
Computing Science Notes 88/20, Eindhoven University of Technology, 1988.

[8J Hesselink W.H.: Deadlock and Fairness in Morphisms of Transition Systems.
In: Theoretical computer Science 59 pp. 235-257, North-Holland, 1988.

[9J Janssens D., G. Rozenberg: Actor Gmmmars.
In: Mathematical Systems Theory vol. 22 no. 2 pp. 75-107, ed. S.A. Greibach,
1989.

[10J Jensen K.: Coloured Petri Nets.
In: Lecture Notes in Computer Science 254 pp. 248-299, eds. W. Brauer, W. Reisig
and G. Rozenberg, Springer-Verlag, 1987.

[11 J Kaldewaij A.: A Formalism for Concurrent Processes.
Ph.D. Thesis, Eindhoven University of Technology, 1986.

[12J Milner R.: A calculus of communicating systems.
Lecture Notes in Computer Science 92, Springer, Berlin, 1980.

[13J Peterson J .L.: Petri net theory and the modeling of systems.
Prentice-HaIl, 1981.

38

[14] Scott D.: Data Types as Lattices.
In: SIAM Journal on Computing vol. 5 no. 3 pp. 522-587, 1976.

[15] Smyth M.B., G.D. Plotkin: The Category-Theoretic Solution of Recursive
Domain Equations.
In: SIAM Journal on Computing vol. 11 no. 4 pp. 761-783, 1982.

[16] Tarski A.: A Lattice- Theoretical Fixpoint Theorem and its Applications.
In: Pacific Journal of Mathematics vol. 5 pp. 285-309, 1955.

[17] Thiagarajan P.S.: Elementary Net Systems.
In: Lecture Notes in Computer Science 254 pp. 26-59, eds. W. Brauer, W. Reisig
and G. Rozenberg, Springer-Verlag, 1987.

39

Appendix

This appendix includes proofs.

Proof Lemma 2.2.
From Eqs. 1 and 2 it follows that SA ~ S. We first show "Is E SA : f(s) E SB. Let
S E SA, then 3n E INo : 3so, ... ,Sn E SA : So E LA A Sn = S A Vi E {l, ... ,n} :
(Si_I,Si) ETA. Then f(so) E LB, Si E S for all i E {O, ... ,n} and using Eq. 5 we
have for all i E {l, ... ,n}, f(Si-I) = f(8i) or (J(Si-,),J(Si») E TB, hence 3m :::: n :
3to, ... ,tm E SB: to E LB A tm = f(s) A Vi E {l, ... ,m}: (ti_I,ti) E TB, i.e. f(s) E SB.
Next, let (s,s') ETA. We have already showed f(s),f(s') E SB. What remains to
prove is f(s) = f(s') V (J(s),f(s'») E TB.
(s,s') E TA implies s = s' V (s,s') ETA. If s = s' then f(s) = f(s') else with Eq. 5 it
follows that f(s) = f(s') or (t(s),j(s')) E TB.
o

Proof Lemma 2.6.
Since S ~ SA, we can apply Lemma 2.2. So we already know that A realizes B with f.
First, we prove the surjectivity of f for SA --> SB. Let t E SB, then 3m E INo :
3to, ... ,tm E SB : to E LB A tm = t A Vi E {l, ... ,m} : (ti-"ti) E TB. We
show t E f(SA) by induction. If m = 0 then by Eq. 4, 3s E LA : f(s) = t and
LA ~ SA. If m > 0 then we may assume 3so E SA : f(so) = tm-I. Eqs. 1 and 2 imply
SA I:;; S, i.e. So E S. Applying Eq. 6 yields 3s

"
... ,Sn E f-I(tm_I) : 3sn+I E f-I(tm):

Vi E {O, ... ,n} : (Si,Si+I) ETA, i.e. Sn+I E SA and f(sn+I) = tm = t.
Next, let (t,t') E TB and So E SA such that f(so) = t. If t = t' then (t(so),j(so)) =
(t,t') ETA, else with Eq. 6 it follows that 3SI, ... ,Sn E f-I(t) : 3sn+I E f-I(t') :
Vi E {O, ... ,n}: (Si,Si+I) ETA. Since So E SA, also si E SA, hence (Si_I,Si) E TA for
alliE {l, ... ,n+l}.
o

Proof Lemma 2.9.
Note: f E SA --> SB. First we prove the surjectivity of f for SA --> SB. Let t E SB,
then 3n E INo: 3to, ... ,tn E SB: to E LB A tn = t A Vi E {l, ... ,n}: (ti_I,ti) E TB.
We show t E f(SA). By Eq. 2, to E LB = f(LA) hence 3so E LA : f(so) = to. Applying
Eq. 1 n times yields Vi E {l, ... , n} : 3si E SA : ti = f(Si) and then using Eq. 3 n times
leads to Vi E {l, ... ,n}: (Si-I,Si) ETA, i.e. sn E SA and f(sn) = tn = t.
Next, let s,s' E SA. By the bijectivity of f and Eq. 3, (s,s') E TA {o} s = s' V
(s,s') E TA {o} f(s) = f(s') V (t(s),f(s'») E TB {o} (J(s),j(s'») E TB.
o

Proof Lemma 3.4.
e E E(s) means dom(e) ~ dom(s) and for all a E dom(e), e(a) E dom(S2(a)). Since
dom(e f D,) i' 0 and dom(e f D,) ~ dom(e), we have e f D, E E(s). Analogously
e f D2 E E(s). Using the definition of p and Lemma 3.3 we derive:

p(s,e)(a)

{(t,m) 1 30" E dom(e) (t,(a,m) E .8,(s,e,a')}

40

= {(t,m) 1 3a' E D, (t,(a,m)) E ,8,(s,e,a')} U

{(t,m) 1 3a' E D2 (t,(a,m)) E ,8,(s, e, a')}

= {(t,m) 1 3a' E D, (t,(a,m)) E ,8,(s,e fD"a')} U

{(t,m) 1 3a' E D2 (t,(a,m)) E ,81(s,efD2,a')}

= J.I(s,e f DIl(a) U J.I(s,e f D2)(a) .

o

Proof Lemma 3.5.
Let s E S, e E E(s), D <;; dom(e), a E D and a' E dom(,82(s,e,a)), then D i- 0.
If D = dom(e) then the assertion holds. Assume D C dom(e), then J.I(s,e)(a') =
J.I(s,e f D)(a') U J.I(s,e f(dom(e) \ D))(a'), according to Lemma 3.4.
Let D':= dom(e) \ D. It satisfies to show J.I(s,e fD')(a') = 0.
J.I(s,e fD')(a') = {(t,m) 13a" ED': (t,(a',m)) E ,81(s,e fD', a")}. Let (t,(a',m)) E
,81 (s, e f D', a") for some a" E D' to get a contradiction. The fourth constraint on
B (see Definition 3.1) requires a' be either an acquaintance, i.e. a' E domes), or

a newly created actor, i.e. 3i E I : a' = e(a").i. We have a' rt dome s) because
a' E dom(,82(s,e,a)). Moreover, a' E dom(,82(s,e,a)) implies 3i' E I : a' = e(a).i'.
Consequently, a' = e(a").i = e(a).i'. Hence, e(a") = e(a) and all names in configura.
tion s are different, so a" = a. Contradiction.
o

Proof Theorem 3.2.
By Lemma 3.4, e f DI E E(s) and e f D2 E E(s). Let s' := Q(s,e f DI), then by the
definition of Q and Lemma 3.3,

s' = >. a E DI : (,83(s,e f DI,a),

s2(a) \ {(e f DI(a), s2(a)(e f DI(a)))} U J.I(s,e f DI)(a))
U >. a E domes) \ DI : (sl(a), s2(a) U J.I(s,e f Dt)(a))
U U {>. a' E dom(,82(s, e[DI, a)) : (,82(s, ef DI, a)(a'), 1'(s, e f DI)(01'))

laEDd

>. a E DI : (,83(s,e,a), s2(a) \ {CeCa), s2(0I)(e(a)))} U J.I(s,e r DIl(a))
U >. a E domes) \ DI : (sl(a), S2(0I) U J.I(s,e f DI)(OI))

U U {>. a' E dom(,82(s,e,a)) : (,82(s,e,a)(a'), J.I(s,e f DIl(a'))

laEDd

D2 <;; dom(s)\DI, hence 'Va E D2 : s,(a) = s~(a) and s2(a) <;; s;(a). Since domes) <;;
dome s') and e f D2 E E(s), the conditions of Lemma 3.2 are satisfied. Consequently,
e r D2 E E(s'). Then,

Q(s', e f D2)

1: Def. Q *

>. a E D2 : (,83(s',efD2,a),

s~(a) \ {(e f D2(a), s~(a)(e f D2(a)))} U p(s',e f D2)(a))
U >. a E domes') \ D2 : (s~(a), s~(a) U p(s',e f D2)(a))
U UP a' E dom(,82(s',efD2,a)) : (,82(s',efD2,a)(a'),p(s',efD2)(a'))

I aEDd

= 1: Substitution, Lemma 3.2, Lemma 3.3 :}

>. a E D2 : (,83(s,e,a),

s2(a) U p(s,efDl)(a)\ {(eta), s~(a)(e(a)))} U p(s,efD2)(a))

U >. a E Dl : (,83(s,e,a),

41

s2(a) \ {CeCa), s2(a)(e(a)))} U p(s,e f D1)(a) U p(s,e f D2)(a))
U >. a E domes) \ (Dl U D2) : (sl(a), s2(a) U p(s,e f D1)(a) U p(s,e f D2)(a))

U UP a' E dom(,82(s,e,a)) (,82(s,e,a)("'),
pes, e f DIl(a') U pes, ef D2)(a'))

I a E D1 }

U UP a' E dom(,82(s,e,a)) (,82(s,e,a)(a'), p(s,efD2)(a')) I a E D2}

= 1: For a E D2 we have s~(a)(e(a)) = s2(a)(e(a)), Lemma 3.4, Lemma 3.5 :}

>. a E Dl U D2 : (,83(s,e,a), s2(a) \ {(e(a), s2(a)(e(a)))} U p(s,e)(a))

U >. a E domes) \ (Dl U D2) : (sl(a), s2(a) U p(s,e)(a))

U UP a' E dom(,82(s,e, a)) : (,82(s,e,a)(a'), p(s,e)(a')) I a E Dl U D2}

= 1: dom(e) = Dl U D2, def. Q :}

Q(s,e) .

o

Proof Theorem 5.1.

We use Lemma 2.2. What remains to prove is 'Is,s' E AS : (s,s') E TT =} g(s) =
g(s') V (g(s),g(s')) E T.
Let s,s' = {(com,b), (act,{J})}, {(com,b'), (act,{J'})} E AS and assume (s,s') E
TT. Then a communication (t,(a,fh)) E b exists such that b' = b \ {(t,(a,fh))} U
Bl(f(a),t,fh) and J' = i[a : B3(f(a),t,fh)] U B2(J(a),t,fh). Moreover, {(a,t)} E
E(g(s)) and ,8(g(s), {(a,t)},a) = B(f(a),t,fh) and p(g(s), {(a,t)}) = >. a' E A :
{(t',fh') I (t',(a',fh')) E Bl(J(a),t,fh)}. By def. Q (the transition function of the
Actor system),

Q(g(s), {(a, tn)

= {(a, (B3 (f(a),t,m), {(t',m') I (t',(a,m')) E b} \ {(t,m)} U

{(t',m') I (t',(a,m')) E B 1(f(a),t,m)}))}

U >. a' E dom(f) \ {a} :

(f(a'), {(t',m') I (t',(a',m')) E b} U

((t',m') I (t',(a',m')) E B1(f(a),t,m)})

U >. a' E dom(B2(f(a),t,m)) :

(B2(f(a),t,m)(c/), {(t',m') I (t', (a', m')) E B1(f(a),t,m)})

= >. a' E dom(f') :

(f'(a'), ((t',m') I (t',(a',m')) E b\ {(t,(a,m))}UBtCf(a),t,m)})

= g({(com, b'), (act, {J'})})

= g(s') .

Hence, (g(s),g(s')) E T.
o

Proof Lemma 5.3.
First we give function h. Let s E S, then

h .- >. e E E(s) : >. a E dome e) :

{(bo,sl(a)), (co, (e(a),s2(a)(e(a))))} .

Clearly, h is injective. We prove h(E(s)) = F'(g(s)).

o

h(E(s)) = h({e E A f> T I dom(e)"l0 II dom(e) ~ domes) II

dome e) is finite II

Va E dom(e) : e(a) E dom(s2(a))})

= {e' E A f> S' I dom(e') "I 0 II dom(e') ~ domes) II

dom(e') is finite II

Va E dom(e') : e'(a) ~ g(s) II

e'(a) E dom(R'(a))}

= 1: no two different processors share an input channel :}

{e' E A f> S' I dom(e') "I 0 II mrng(e') ~ g(s) II

dome e') is finite II

Va E dom(e') : e'(a) E dom(R'(a))}

= F'(g(s)).

42

Proof Theorem 5.2.
According to Lemma 2.9 we only need to prove:

1. V(t,t') E T' : t E rng(g) * t' E rng(g);

2. "Is,s' E S : (s,s') E T ¢} (g(s),g(s')) E T' .

We start with 2. Let s, s' E S.

(s,s')ET

¢} 1: def. T :}

3e E E(s) : s' = Q(s,e)

¢} 1: def. Q :}

3eEE(s)
s' = A a E dom(e) : (,83(s,e,a),

S2(a) \ {(e(a), S2(a)(e(a))}} U p(s, e)(a))
U A a E dom(s) \ dom(e) : (s1(a),s2(a) U p(s,e)(a))

U U {A a' E dom(,82(s,e,a)) : (,82(s,e,a)(a'),p(s,e)(a'))

I a E dom(e)}

¢} 1: def. g, g is injective (Lemma 5.2) :}

3e E E(s) :
g(s') = {(c",(t,iii)) I a E A 1\ (t,iii) E p(s,e)(a}}

U ((b",,83(s,e,a)) I a E dom(e)}

U {(c", (t,iii)) I a E dom(e) 1\ (t,iii) E s2(a)}

\ {(c",(e(a),s2(a)(e(a)))) I a E dom(e)}

U ((b",s1(a)) I a E dom(s) \ dom(e)}

U {(c", (t,iii)) I a E dom(s)\ dom(e) 1\ (t,iii) E s2(a)}

U {(b"",82(s,e,a)(a')) I a E dom(e) 1\ a' E dom(,82(s,e,a)}}

¢} 1: rearrange :}

3e E E(s) :

g(s') = ((b",s1(a)) I a E dom(s)}
U {(c", (t,iii)) I a E dom(s) 1\ (t,iii) E s2(a)}

\ {(b",s1(a)) I aEdom(e)}

\ {(c",(e(a),s2(a)(e(a)))) I a E dom(e)}

U {(c",(t,iii)) I a E A 1\ (t,iii) E p(s,e)(a)}
U ((b"",82(s,e,a)(a')) I a E dom(e) 1\ a' E dom(,82(s,e,a)}}

U {(b",,83(s,e,a)) I a E dom(e)}

43

{o} 4: def. g, def. h, def. 1', def. f3 *
3e E E(8) :

g(s') = g(s) \ U {h(e)(Il) I Il E dom(e)}

U {(c,,, (t,m))
I Il E A A 31l' E dom(e) :

(t, (Il, m)) E BI (8, (Il'), e(Il'), S2(Il')(e(Il')))}

U ((b""a) I 31l E dom(e) :

(Il', a) E B2(s, (Il), e(Il), 82(Il)(e(Il)))}

U {(b",B3(8'(Il),e(Il),s2(1l)(e(Il)))) III E dom(e)}

{o} 4: def. h, def. R' *
3e E E(8) : g(s') = g(s) \ mrng(h(e)) U U"Edom(h(e))R'(Il)(h(e)(Il))

{o} 4: Lemma 5.3, e' = h(e) *
3e' E F'(g(8)) : g(8') = g(8) \ mrng(e') U U"Edom(e') R'(Il)(e'(Il))

{o} 4: def. T' *
(g(8),g(8')) E T' .

Next, we turn to 1-

44

Let (t, t') E T', then 3e' E F'(t) : t' = t \ mrng(e') U U"Edom(e') R'(Il)(e'(Il)). Suppose
t E rng(g). The injectivity of 9 and the bijectivity of h allow us to define s' :=
Q(g-I(t),h-'(e')). Hence, 8' E S and because of the totalness of g, 8' E dom(g).
Similar to the above it follows that g(s') = t', so t' E rng(g).
o

Proof Theorem 5.3.
We define V' := {8 E S' I EqEQ 8((collect,q)) i' w}, i.e. V' consists of the states in
S' with finitely many triggers in channel collect. Obviously, L' ~ V'. We also define a
function f E S' -; S:

f := ,\ 8 E S' : (8rQ) U {q E Q I (collect,q) E 8}.

Clearly, f is total and surjective, f(L') = L and for all 8,8' E S' : f(s U 8') =
f(8) U f(8') and if 8' <;; s then f(8 \ 8') = f(8) \ f(8'). We claim: D' simulates D with
f. Using Lemma 2.6 we have to prove:

'Is E V' : 'Is' E S' : (8,8') E T' => 8' E V'

V8,S' E V' : (8,8') E T' => f(s) = f(8') V (f(8),j(8')) E T

V(t, t') E T : '180 E f-'(t) n V' : 3s" ... ,8n E f-'(t) : 38n+1 E f-'(t')

Vi E {O, ... ,n} : (8i,Si+') E T'

(1)

(2)

(3)

45

1. Let s E V', then collect has finitely many triggers. Let s' E S' and suppose (s,s') E
T'. As only finitely many processors can perform an action and each processor
produces finitely many triggers, s' can have only finitely many additional triggers
in channel collect. Hence, s' E V'.

2. Let (s,s') E T', then Ole E F'(s) : s' = s \ mrng(e) U u"Edom(e) R'(p)(e(p)). Note:
For p E dom(e) \ {distributor}, f(e(p)) = e(p) and f(R'(p)(e(p))) = R(p)(e(p)) and
if distributor E dome e), then f(R'(distributor)(e(distributor)) = f(e(distributor)).
We distinguish two cases. If dom(e) n P = 0 then dom(e) = {distributor}, hence
f(s) = f(s'). Case dom(e) n P t- 0, we define e' := e f P. Then dom(e') t
o and f(s') = f(s) \ f(mrng(e)) U UPEdom(e) f(R'(p)(e(p))) = f(s) \ mrng(e') U
UPEdom(e') R(p)(e'(p)), i.e. (f(s),f(s'))E T.

3. Let (t, t') E T and let So E f-1(t) n V'. We define b := So f(Q' \ Q), then #b t- w,
so 3n E INa : n = #b.

o

Let q}, ... , qn E Q such that b = UiE{l, .,' ,n} {(collect, qi)}' We define for i E {I, ... n},
Si := (so fQ) U {qj I 1:S: j:S: i} U {(collect,qj) I i < j:S: n}. Then f(Si) = t
and because of def. R'(distributor), (Si-1, Si) E T'. Furthermore, Sn = t. (t, t') E T
implies Ole E F(t) : t' = t \ mrng(e) U UvEdom(e) R(p)(e(p)). Notice that e E F'(s).
We define Sn+1 := t \ mrng(e) U UPEdom(e)R'(p)(e(p)), then (Sn,Sn+1) E T' and
f(sn+1) = t'.

Proof Theorem 5.4.
Please note: Q c Q'. We define V':= {s E S' I s f(Q' \ Q) is finite}, i.e. V' consists of
the states in S' with finitely many triggers on the way to their destination. Obviously,
L' ~ V'. We also define a function 9 : Q' -> Q that maps triggers of D' to triggers of
D. Triggers in {h" h2' ... } are mapped onto their destination channel. For all q E Q:

g(q) := q

and for all i E IN
"

n E INi and y E Y:

g((hi,(n,y))) := (cn,y).

Next, we define a function f E S' -> S:

f :=)., BE S' : {g(q) I q E s} .

Clearly, f is total and surjective, f(L') = L and for all s, s' E S' : f(sUs') = f(s)U f(s')
and if s' ~ s then f(s \ s') = f(s) \ f(s'). We use Lemma 2.6 again to prove the
simulation property. We have to prove the same three items as in step one:

'Is E V' : 'Is' E S' : (s, s') E T' => s' E V'

'Is,s' E V' : (s,s') E T' => f(s) = f(s') V (f(s),f(s')) E T

(1)

(2)

'1(t, t') E T 'Iso E J-I(t) n V' : 3sI , ... ,Sn E J-I(t) 3sn+I E J-I(t')

ViE{O, ... ,n}: (Si,Si+I)ET'

46

(3)

1. The same argument can be used here, but now for channels hI, h2 , ••• instead of
channel col/ect.

2. Let (s,s') E T', then 3e E F'(s) : s' = s\mrng(e)U UPEdom(e) R'(p)(e(p». Dom(e)
can have three kinds of processors:

From {PI,P2, ... };
Po;
From the 'UNKNOWN PART'.

For p E {PI,P2, ... }, J(e(p» = J(R'(p)(e(p». If Po E dom(e), then for some
n E INo and y E Y, e(po) = {(ho,(n,y»}. J(e(po» = e(po) and J(R'(po)(e(po») =
{(cn,y)} = R(po)(e(Po». For p E 'UNKNOWN PART', J(e(p» = e(p) and
J(R'(p)(e(p))) = R(p)(e(p».
Let X := dom(e)\{pI,P2, ... }. If X = 0 then J(mrng(e» = f(UPEdom(e) R'(p)(e(p))),
hence J(s) = J(s'). Case X -10 then J(s') = J(s) \ (UpEX e(p» U UpEX R(p)(e(p»,
i.e. (f(s),J(s'» E T.

3. Let (t,t') E T and So E rI(t) n V', then 3e E F(t) : t' = t \ mrng(e) U
UPEdom(e) R(p)(e(p» and So has only finitely many triggers in hI, h2, These trig
gers can be forwarded to their destination in n := L(h;,(m,Y»Eso f(Q'\Q)(m - i + 1)
single· processor events. Thus we have a sequence SI, ... , Sn E J- I (t) such that
(Si-I,Si) E T' for all i E {I, ... n} and Sn f(Q' \ Q) = 0, i.e. Sn = t. Consequently,
e E F'(sn). If Po E dom(e) then e(Po) = {(ho,(m,y»} for some m E INo,y E Y
and J(R'(po)(e(Po))) = {(cm,y)} = R(po)(e(Po)). For p E dom(e) \ {Po}, i.e.
p E 'UNKNOWN PART', we already have J(R'(p)(e(p))) = R(p)(e(p». We define
Sn+I := Sn \ mrng(e) U UPEdom(e)R'(p)(e(p», then (Sn,Sn+1) E T' and J(Sn+I) =
J(sn) \ J(mrng(e» U UPEdom(e) J(R'(p)(e(p))) = t \mrng(e) U UPEdom(e) R(p)(e(p» =
t'.

o

In this series appeared :

No. Author(s) Title
85/01 RH. Mak The fonnal specification and

derivation of CMOS-circuits

85/02 W.M.C.J. van Overveld On arithmetic operations with
M-out-of-N-codes

85/03 W.J.M. Lemmens Use of a computer for evaluation
of flow films

85/04 T. Verhoeff Delay insensitive directed trace structures satisfy
H.M.L.J.Schols the foam rubber wrapper postulate

86/01 R Koymans Specifying message passing and
real-time systems

86/02 G.A. Bussing ELISA, A language for fonnal
K.M. van Hee specifications of infonnation
M. Voorhoeve systems

86/03 Rob Hoogerwoord Some reflections on the implementation
of trace structures

86/04 GJ. Houben The partition of an infonnation
J. Paredaens system in several parallel systems
K.M. van Hee

86/05 Jan L.G. Dietz A framework for the conceptual
Kees M. van Hee modeling of discrete dynamic systems

86/06 Tom Verhoeff Nondetenninism and divergence
created by concealment in CSP

86/07 R Gerth On proving communication
L. Shira closedness of distributed layers

86/08 R. Koymans Compositional semantics for
RK. Shyamasundar real-time distributed
W.P. de Roever computing (Inf.&Control 1987)
R Gerth
S. Arun Kumar

86/09 C. Huizing Full abstraction of a real-time
R Gerth denotational semantics for an
W.P. de Roever OCCAM-like language

86/10 J. Hooman A compositional proof theory
for real-time distributed
message passing

86/11 W.P. de Roever Questions to Robin Milner - A
responder's commentary (IFIP86)

86/12 A. Boucher A timed failures model for
R. Gerth extended communicating processes

86/13 R Gerth Proving monitors revisited: a
W.P. de Roever fIrst step towards verifying

object oriented systems (Fund.
Informatica IX -4)

86/14 R Koymans Specifying passing systems
requires extending temporal logic

87/01 R Gerth On the existence of sound and
complete axiomatizations of
the monitor concept

87/02 Simon 1. Klaver Federatieve Databases
Chris F.M. Verberne

87/03 G.l. Houben A formal approach to distributed
I.Paredaens information systems

87/04 T.Verhoeff Delay-insensitive codes -
An overview

87/05 RKuiper Enforcing non-determinism via
linear time temporal logic specifIcation.

87/06 RKoymans Temporele logica specifIcatie van message
passing en real-time systemen (in Dutch)

87/07 RKoymans Specifying message passing and real-time
systems with real-time temporal logic

87/08 H.M.l.L. Schols The maximum number of states after
projection

87/09 1 Kalisvaart Language extensions to study structures
L.RA. Kessener for raster graphics
W.lM. Lemmens
M.L.P. van Lierop
FJ. Peters
H.M.M. van de Wetering

87/10 T.Verhoeff Three families of maximally nondeter-
ministic automata

87/11 P.Lemmens Eldorado ins and outs
Specifications of a data base management
toolkit according to the functional model

87/12 K.M. van Hee and OR and AI approaches to decision support
A.Lapinski systems

87/13 lC.S.P. van der Woude Playing with patterns
searching for strings

87/14 1. Hooman A compositional proof system for an occam-
like real-time language

87/15 C. Huizing A compositional semantics for statecharts
R Gerth

W.P. de Roever

87/16 H.M.M. ten Eikelder Normal forms for a class of formulas
I.C.P' Wilmont

87117 K.M. van Hee Modelling of discrete dynamic systems
G.-1.Houben framework and examples
I.L.G. Dietz

87/18 C.W.A.M. van Overveld An integer algorithm for rendering curved
surfaces

87/19 A.1.Seebregts Optimalisering van file allocatie in
gedistribueerde database systemen

87/20 G.I. Houben The R2 -Algebra: An extension of an
I. Paredaens algebra for nested relations

87/21 R. Gerth Fully abstract denotational semantics
M. Codish for concurrent PROLOG
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the
Mobius Sequence

88/02 K.M. van Hee Executable Specification for Information
G.I. Houben Systems
L.I. Somers
M. Voorhoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples

88/04 G.I. Houben The Nested Relational Algebra: A Tool to Handle
I.Paredaens Structured Information
D.Tahon

88/05 K.M. van Hee
G.I. Houben

Executable Specifications for Information Systems

L.I. Somers
M. Voorhoeve

88/06 H.M.I.L. Schols Notes on Delay-Insensitive Communication

88/07 C. Huizing Modelling Statecharts behaviour in a fully
R. Gerth abstract way
W.P. de Roever

88/08 K.M. van Hee A Formal model for System Specification
G.1. Houben
L.I. Somers
M. Voorhoeve

88/09 A. T.M. Aerts A Tutorial for Data Modelling
K.M. van Hee

88/10 I.C. Ebergen A Formal Approach to Designing Delay Insensitive
Circuits

88/11 G.I. Houben A graphical interface formalism: specifying nested
1.Paredaens relational databases

88/12 A.E. Eiben Abstract theory of planning

88/13 A. Bijlsma A unified approach to sequences, bags, and trees

88/14 H.M.M. ten Eikelder Language theory of a lambda-calculus with
R.H. Mak recursive types

88/15 R. Bos An introduction to the category theoretic solution
C. Hemerik of recursive domain equations

88/16 C.Hemerik Bottom-up tree acceptors
lP.Katoen

88/17 K.M. van Hee Executable specifications for discrete event
G.J. Houben systems
L.l Somers
M. V oorhoeve

88/18 K.M. van Hee Discrete event systems: concepts and basic
P.M.P. Rambags results

88/19 D.K. Hammer Fasering en documentatie in software engineering.
K.M. van Hee

88/20 K.M. van Hee EXSPECT, the functional part
L. Somers
M. V oorhoeve

89/1 E.Zs.Lepoeter-Molnar Reconstruction of a 3-D surface from its normal
vectors

89/2 R.H. Mak A systolic design for dynamic programming
P.Struik

89/3 H.M.M. Ten Eikelder Some category theoretical properties related to
C. Hemerik a model for a polymorphic lambda-calculus

89/4 J.Zwiers Compositionality and modularity in process
W.P. de Roever specification and design: A trace-state based

approach

89/5 Wei Chen Networks of Communicating Processes and their
T.Verhoeff (De-)Composition
J.T.Udding

89/6 T.Verhoeff Characterizations of Delay-Insensitive Communicati-
on Protocols

89n P.Struik A systematic design of a paralell program for
Dirichlet convolution

89/8 E.H.L.Aarts A general theory of genetic algorithms
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee Discrete event systems: Dynamic versus static
P.M.P. Rambags topology

89/10 S.Ramesh

89/11 S.Ramesh

A new efficient implementation of CSP with
output guards

Algebraic specification and implementation
of infinite processes

	Abstract
	1. Introduction
	2. Transition system
	3. Actor model
	4. Des model
	5. Implementation of Actor systems as Des'ses
	6. Concluding remarks
	References
	Appendix

