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Approximating multiple arrival streams by using aggregation

Marcel van Vuuren, Ivo J.B.F. Adan

Eindhoven University of Technology, P.O. Box 513,5600 MB, Eindhoven, The Netherlands
E-mail: m.v.vuuren@tue.nl.i.j.b.fadan@tue.nl

Abstract: In this paper we consider the superposition of independent Coxian arrival streams. We
propose a method to efficiently approximate the superposition process, based on state space aggrega­
tion. The method is applied to the ECkjG/1 queue and to an inventory control model. Simulation
results show that the method accurately estimates peiformance characteristics and that it significantly
outperforms two-moment approximations.

Keywords: superposition, Markovian arrival process, aggregation, queueing system, inventory con­
trol.

1 Introduction

Systems fed by multiple anival streams are very common in practice. For example, in a production
line, the input to a work station is the output of the machines in the upstream station. Another example
is a wholesale house where many retailers place replenishment orders. In this paper we consider
the superposition of independent anival streams, each with independent Coxian distributed inter­
arrival times. A complicating feature of the superposition is that its inter-arrival times may be no
longer independent. Further, an exact description of the superposition is computationally not feasible,
because the state space explodes when the number of ~ival streams and the number of phases of the
Coxian distributions increase. Therefore accurate and efficient approximations are needed. However,
not much work has been done in approximating multiple arrival streams. Usually multiple arrival
streams are approximated by a renewal process, the inter-arrival times of which are determined by a
two-moment fit. Thus dependencies between successive inter-arrival times are completely ignored.
For example, this approach was employed by Van Vuuren et al. [10] in a production environment and
by Smits et al. [8] in an inventory environment. In general, this approximation can lead to severe
errors. A more sophisticated method has been developed by Albin [1] and Whitt [11]. They also
approximate the superposition by a renewal process, but the second moment of the inter-arrival time
is determined differently: the squared coefficient of variation of the inter-arrival time is determined as
a convex combination of the squared coefficients of variation obtained from the so-called asymptotic
and stationary-interval approximations. This method gives reasonable results for an EGdG/1 queue,
but Van Nyen et al. [7] applied the method to a production-inventory system and concluded that it
may result in serious errors. Mitchell [5] developed a method to fit a matrix exponential distributed
process on a correlated anival process leaving the first order properties invariant. This method works
well, but it cannot handle the specific correlation structure of multiple anival streams. The method
assumes that the magnitude of the correlation coefficients decreases in the lag and that the correlation
coefficients are all positive or alternating in sign. Typically, these assumptions are not satisfied by
superpositions of anival streams.

The superposition of independent Coxian anival stream can be exactly described by a Markovian
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Arrival Process (MAP), but as indicated above, its state space grows exponentially in the number of
streams and in the number of phases of the Coxian distributions. We propose to aggregate the state
space, i.e., to aggregate the states in which the total number of completed phases is the same. The
number of aggregate states grows polynomially, instead of exponentially. The approximate arrival
process is obtained by assuming the aggregate process is again a MAP. To obtain the parameters of
this MAP we develop two algorithms, one for Coxian arrival streams and another (more efficient) one
for the case that all streams have identical mixed-Erlang inter-arrival times.

We use the aggregation method to approximate the performance of a ECkJG/1 queue and of an
inventory control model. The results are compared with a two-moment fit and the method of Whitt
and Albin. Simulation results show that the aggregation method is very accurate and it works much
better than the other ones. The average errors in performance characteristics of a ECkJG/1 queue·
are around 2% and for the inventory control model, they are around 0.2%. So we can conclude that the
aggregate (compact) MAP provides an efficient and accurate tool to describe multiple arrival streams,
and it opens the door to the use of powerful matrix-analytical techniques to approximately evaluate
the performance of L GI /G/ s queues.

2 Model and Aggregation

We consider the superposition of m independent arrival processes, labeled 1, ... ,m. Arrival process
i = 1, ... , m has independent Coxianki distributed inter-arrival times with parameters Vi,j and Pi,j

with j = 0, ... , ki - 1; the phase-diagram is shown in Figure 1. Note that the family of Coxiank
distributions is dense in the family of all distributions on (0,00), see, e.g., [2].

Pi,O

1- Pi,l
I---~- - - - - - ----~

Pi,l 1

Figure 1: A phase diagram of the Coxian distribution of the inter-arrival time of the i-th arrival process.

The superposition of Coxian arrival processes can be described by a Markovian Arrival Process
(MAP), a useful model for point processes (see [3]). A MAP is defined in terms of a continuous­
time Markov process with finite state space, {O, ... , k - I} say, and generator Ao + AI- The element
AO,ij denotes the intensity of transitions from i to j accompanied by an arrival, whereas for i =I j
element AO,ij denotes the intensity of the remaining transitions from i to j and the diagonal elements
AO,ii are negative and chosen such that the row sums of Ao + Al are zero. For example, for a single
Coxian arrival stream with parameters k, Vi, and Pi, i = 0, ... , k - 1, the transition rate matrices Ao
and Al (of dimensionk x k) are given by:
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(2)

AO,(i,i) = -Vi. for i = 0, ... , k - 1, (1)

AO,(i,i+1) = (1 - Pi)Vi, for i = 0, ... , k - 2,

A1,(i,O) = PiVi, for i = 0, ... , k - 1,

and all other entries are zero. The long-run fraction of time 7Ti that this MAP is in state i is equal to

rrj:~ (1 - Pj)
7Ti = C '

where C is the normalization constant. For more information on MAPs. the reader is referred to [6].

The superposition of m independent Coxian arrival processes can be described as a MAP with states
(jl. 22, ... ,jm), where ji = 0, ... , ki - 1 represents the number of completed phases of the inter­
arrival time of arrival process i. The number of states is k1 ... km , which grows exponentially in the
number of arrival streams. Therefore, to keep the size of the state space limited, we aggregate the
state space as follows. We take together all states with the same total number of completed arrival
phases, i.e., aggregate state i corresponds to the set of states Ul, )2, ... , jm) with j1 +... + jm = i,
where i runs from 0 to K = k1 + ... + km - m. Note that K grows polynomially in m. To illustrate
the aggregation procedure we show in Figure 2 the phase diagram of the superposition of two Erlang4
arrival processes; the aggregated states are indicated by the rings.

Completed phases of process 1

Figure 2: A phase diagram of the superposition of two Erlang4 arrival processes and its aggregation.

For the aggregated process we can exactly determine the fraction of time 7Ti spent in state i. and the
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number of transitions per time unit Ti,j from state i to j. Then the transition rate from i to j is given by
gi,j =Ti,j/7ri' Note that rates % with i >] correspond to arrivals; the ones with i < j do not. Figure
3 shows the aggregated states and their transition rates for the example in Figure 2. An efficient
algorithm for computing the transition rates gi,j is presented in the next section. The aggregated
process is, in general, not Markovian and the sojourn times in the states may not be exponential
(except when for each stream Vi,j = Vi,] = 0, ... , ki -1; then the sojourn time in an aggregated state
is exponential with parameter VI + ... + vm ). Now, the crucial step is that we treat the aggregated
process again as a MAP with transition rates qi,j and thus we act as if the sojourn times are exponential
and the transitions are memoryless. Further the rates qi,j with i > ] (corresponding to arrivals) are put
in the matrix Al and the rest are put in Ao. So, for the example of two Erlang4 arrival streams, we use
Figure 3 as flow diagram for the MAP obtained from aggregation. This procedure yields a compact.
MAP approximately describing the original arrival process and that naturally preserves some of the
dependencies present in the original process.

J.L3 J.L4 J.L5 J.L6

Figure 3: A diagram of the aggregated MAP of the superposition of two Erlang4 arrival processes.

In Section 3 we develop algorithms to efficiently compute the transition rates of the aggregated MAP.

Remark 1 The superposition of m identical Coxian2 arrival streams can be described by a MAP with
states ]2 denoting the number of streams in the second phase of the Coxian inter-arrival time (the other
m - jz streams are in the first phase). Thus the number of states is linear in m. Now the proposed
aggregation does not help, i.e., it leads to exactly the same states as the original arrival process.

3 Transition rates of the aggregated MAP

The MAP obtained by aggregation has a special structure. The process is skip-free to the right; it
can jump from state i to i + 1, but it is not possible to make larger jumps to the right. Transitions
to the right do not correspond to arrivals. Hence, the transition rate matrix Ao has negative elements
on the diagonal and non-zero elements on the super-diagonal; the other elements are zero. Note that,
in case of m arrival streams with ErlangI,... ,ki distributed inter-arrival times with parameters Vi and
Pi,j with j = 0, ... , k i - 1, the time the aggregated process spends in each state is exponentially
distributed with parameter V = 2::'1 Vi. So, in this special case, the diagonal elements of Ao are all
equal to -v. The aggregated process can make large jumps to the left; these transitions correspond
to an arrival. This means that the transition matrix Al is a lower triangular matrix. In the following
section we present a method to find the transition matrices Ao and AI. In Section 3.2 we describe a
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more efficient method for the special case of identical Erlangk-I,k arrival streams.

3.1 Coxian arrival streams

To determine the transition rates of the aggregated process we aggregate the Coxian arrival streams
one by one, i.e., we aggregate the first two streams, then add the third one and so on. Below we
describe how to add an arrival stream.

Suppose we have aggregated a number of arrival streams and now we want to add the next stream,
with transition rates Ao and Al and state-space {O, ... ,kl -I}. The long-run fraction of time spent
in state i is 7ri (see (1) and (2)). The transition rates of the aggregated streams are Bo and B I and the
state space is {O, ... , k2 - I}. Obviously, the number of states k2 depends on the number of streams
that is aggregated. The long-run fraction of time the aggregated process spends in state i is f.i. Let us
refer to these processes as process 1 (the new stream) and process 2 (the ones already aggregated).

By aggregating process 1 and 2 we obtain a process with state space {O, ... , kg} where kg = kl +
k2 - 2. Now we want to determine its transition rates Co and CI and the long-run fraction of time 'TJi

it spends in state i. Since process 1 and 2 are independent of each other, we immediately have

min(i,kl-I)

7Ji = L 7rjf,i-j,

j=max(O,i-k2+1)
i = 0, ... , kg. (3)

To determine the number of transitions per time unit out of state i, note that, if process 1 is in state
j and process 2 in state i - j, the total number of transitions out of these states is 7rjf,j-i(Ao,(j,j) +
BO,(i-j,i-j»)' Hence, adding over all feasible states yields

min(i,kl-I)

'TJiCO,(i,i) = L 7rjf,i-j (Ao,(j,j) + BO,(i-j,i-j») ,

j=max(O,i-k2+l)

Similarly we obtain, for all i = 0, ... , kg - 1,

i = 0, ... , kg. (4)

min(i,kl-2) min(i,kl-I)

'TJiCO,(i,HI) = L 7rjf,i-j Ao,(j,j+I) + L 7fjf,i-j B o,(i-j,i-j+I),

j=max(O,i-k2+1) j=max(O,i-k2+2)

and for all i = 1, ... , kg and 1= 1, ... , i,

min(i,kl-I) min(i-l,kl-I)

'TJiCI,(i,i-l) = .2: 7rj~i-jAI,(j,j-l) + L 7rjf,i-j BI ,(i-j,i-j-l)'

i=max(l,i-k2+1) i=max(O,i-k2+1)

(5)

(6)

The time needed to determine the transition rates Co and CI is O(k~ min(k1, k2)). Hence, the
time complexity to aggregate m Coxiank; arrival streams is O(mK2kmax) where K = I:~I ki
and kmax = max(k l , ... , km ).

5



3.2 Identical mixed Erlang arrival streams

For identical arrival streams we can develop a simpler and more efficient algorithm to determine the
transition rates of the aggregated arrival process. Suppose we have m arrival streams, each with
Erlangk-I,k distributed inter-arrival times with parameters p and 11-. The number of states of the
aggregated process is (k -1)m + 1. First we use (3) to determine the long-run fraction of time 7ri the
aggregated process spends in state i, where i = 0, ... , (k - l)m. Second we determine the transition
rates A o and Al of the aggregated process in one go. Of course, the rate at which we leave a state is
always equal to 1/ = mp., so

AO,(i,i) = -1/ i = 0, ... , (k - l)m. (7)

To determine the transition rates we start with the last state (k - l)m and then work our way back to
the front. From state (k -1)m we can only jump to state (k - 1)(m - 1), thus

AI,«k-l)m,(k-I)(m-I)) = 1/. (8)

State i with (k - 1)(m - 1) + 1 ::; i ::; (k - l)m can only be reached from state i - 1. Hence,
application of the balance principle to state i yields

and thus, by (7),

7ri .
Ao(i-Ii) = --1/,, , 7ri-1

i = (k - 1)(m - 1) + 1, ... , (k - l)m. (9)

State i with 1 ::; i ::; (k - 1)(m - 1) can be reached from state i-I, but also from i + k - 2 and
i + k - 1. So, by application of the balance principle to state i we obtain

7ri 7ri+k-1 A 7ri+k-2
AO,(i-l,i) = --1/ - --- I,(i+k-I,i) - ---AI,(i+k-2,i),

7ri-l 7ri-1 7ri-1
(10)

valid for all i = 1, ... , (k -1)(m -1). Note that a transition from state i + k - 2 to i corresponds to
the completion of the k -lth and last phase of an inter-arrival time (and thus to an arrival); a transition
from i + k - 1 to i corresponds to the completion of the kth phase. Since the fraction of inter-arrival
times consisting of k - 1 phases is p (the rest consists of k phases), it follows that the ratio of the
number of transitions per time unit from state i + k - 2 to i and the number of transitions per time
unit from state i + k - 1 to i is equal to p/(1 - p). Thus

7ri+k-2(1 - p)AI ,(i+k-2,i) = 7ri+lpAI,(i+k-l,i),

which can be rewritten as

(11)i = k - 2, ... , (k - l)m - 1.
7ri+l(l- p)

A I ,(i,i-(k-2)) = 7riP AI,(i+I,i+l-(k-I)),

Finally, the transition rates from states ito i - (k - 1) for i = k - 1, ... , (k":" l)m can be found by
using that the rate at which we leave a state is always 1/, so we get

AI,(i,i-(k-I)) = 1/ - A I ,(i,i-(k-2)) - AO,(i,i+l) , i = k - 1, ... , (k - l)m. (12)

Using the equations (7)-(12) the transition rates can be determined recursively. The other rates in Ao
and Al are 0. The time complexity of this algorithm is only O(m2k2).
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t ~ 0,

4 Numerical Results

In this section we investigate how accurate the aggregated MAP describes the superposition of arrival
streams. To do so we use simulation. First, in Section 4.1, we consider the 'ECkjG /1 queue. We
compare the mean waiting time (W) and the probability that the system is empty (Pe) for the real
system with the corresponding characteristics for:

(i) the system where the inflow is the aggregated !'JAP;

(ii) the GIIG/1 system where the first two moments of the inter-arrival time match with the first
two moments of an arbitrary inter-arrival time of the superposition of arrival streams (see [10]);

(iii) the GIIGII system where the first two moments of the inter-arrival time are determined ac­
cording to the method of Whitt [11] and Albin [1].

The distribution of the inter-arrival time in (ii) and (iii) is determined by matching the first two mo­
ments, i.e., we use a mixed Erlang or Coxianz distribution, depending on whether the squared coeffi­
cient of variation is less or greater than 1 (see, e.g., [9]). More specifically, let 11>' and c~ denote the
mean and squared coefficient of variation of the inter-arrival time. If 1/k =:; c~ =:; 1I (k - 1) for some
k = 2,3, " ., then the mean and squared coefficient of variation of the Erlangk_l,k distribution with
density

t k- Z tk- 1
.( (t) - k-l -p.t (1 ) k -/l-t
Ja -pj,L (k_2)!e + -pJ.l (k_l)!e ,

matches with 1/>.. and c~, provided the parameters p and j,L are chosen as

J-l=(k-p)>.. (13)

Second, in Section 4.2, we consider an inventory control system, consisting of a central stock point
that faces demand from several retailers. The inter-arrival times of orders from a retailer are assumed
assumed to be Coxian distributed. We compare the fraction of demand delivered from stock ((3) and
the average inventory level (I) for the real system with the corresponding characteristics for:

(i) the inventory system with an aggregated MAP demand process;

(ii) the inventory system where the demand process is a renewal process, the first two moments of
the inter-arrival times of which match with the first two moments of an arbitrary inter-arrival
time of the superposition of the demand processes of the retailers.

Now we can not compare it with the system with a renewal demand process, the first two moments of
the inter-arrival times of which are determined by the method of Whitt [11] and Albin [1]. The reason
is that their method is specifically designed for 'EGi/Gll queues.

In Section 4.3 we briefly discuss the results. All simulation results have 95% confidence intervals, the
widths of which are smaller than 1%.
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4.1 The I:CkjG/l queue

We have simulated systems with identical arrival processes and systems with different arrival pro­
cesses. We start with the identical arrival processes.

The inter-arrival times of the m identical arrival processes are Erlangk-l,k distributed with squared
coefficient of variation c~. We vary the number of arrival streams between 2, 5 and 10. The squared
coefficient of variation of the inter-arrival times are varied between 0.4, 0.2 and 0.1. The service
times are exponentially distributed, Erlangk distributed or deterministic, depending on the squared
coefficient of variation Cd. We vary c~ between 1, 0.2 and O. The parameters of the Erlang distributions
are determined according to (13). Note that we only consider arrival streams, the inter-arrival times
of which have a squared coefficient of variation less than 0.5; the reason is that the aggregation is
exact when the squared coefficient of variation is greater or equal to 0.5 (see Remark 1). Finally, the
occupation rate p of the queueing system is varied between 0.8 and 0.9. This results in a total of 54
test cases. A summary of the results can be found in Table 1.

Real system Error in W Error in Pe
compared with Avg. 0-5 % 5-10 % 10-15 % > 15% Avg. 0-5 % 5-10% 10-15 % > 15 %

Aggregated MAP 1.6% %.3% 3.7 % 0.0% 0.0% 3.3 % 74.1 % 25.9% 0.0% 0.0%
Whitt and Albin 4.8% 66.7% 22.2 % 9.3 % I.lf% 10.9% 5.6% 48.2% 25.9% 20.4%
Two moment fit 34.8 % 0% 1.8 % 11.1 % 87.0% 10.9% 5.6% 48.2% 25.9% 20.4%

Table 1: Overall results for the queueing system with identical arrival streams.

In case of nonidentical arrival streams we use m = 5 arrival streams. The arrival rates are varied
between the sets (0.6, 0.8,1.0,1.2,1.4) and (1, 1, 1, 1, 1) and the squared coefficients of variation of
the inter-arrival times are varied between the sets (0.2, 0.25, 0.3, 0.4, 0.5) and (0.3,0.3,0.3,0.3,0.3).
The case in which both the rates and the squared coefficients of variation are the same is left out. The
rest of the parameters are the same as in case of identical streams. This leads to 18 test cases. A
summary of the results is presented in Table 2.

Real system Error in W Error in P.
compared with Avg. 0-5 % 5-10 % 10-15 % > 15 % Avg. 0-5 % 5-10 % 10-15 % >15%

Aggregated MAP 2.8% 83.3% 16.7 % 0.0% 0.0% 1.2 % 100.0 % 0.0% 0.0% 0.0%
Whitt and Albin 15.7% 16.7 % 16.7 % 33.3 % 33.3 % 9.0% 0.0% 72.2% 27.8 % 0.0%
Two moment fit 31.5 % 0.0% 0.0% 0.0% 100.0 % 9.0% 0.0% 72.2% 27.8 % 0.0%

Table 2: Overall results for the queueing system with different arrival streams.

4.2 Inventory control system

For the inventory control system we also make a distinction between identical and different order
arrival processes. We start with the first case.

The inventory control system consists ofone stock point, facing demand from m retailers. A schematic
representation of the inventory system is shown in Figure 4. The stock point is controlled by an
(s, nQ)-installation stock policy; for more information see Smits [8]. The batch size Q is varied
between 800 and 900, the reorder level s is varied between 900 and 1000 and the replenishment lead­
time L is exactly 8 time units. The number of retailers m is varied between 2, 5 and 10. The batch
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Retailer

External su
Retailer

Retailer

Retailer

Figure 4: Schematic representation of the inventory system.

sizes of all orders have mean /1 where m/1 = 150 and squared coefficient of variation 0.5. The number
of retailers m is varied between 2, 5 and 10. The average time between two successive orders of a
retailer is 1 time unit and the squared coefficient of variation c~ is varied between 0.4, 0.2 and O.l.
Again, the distribution of the inter-arrival time of an order is Erlangk_l,k, the parameters of which are
determined by (13). This gives 36 test cases. Table 3 summarizes the results of these tests.

Real system Error in I Error in (3
compared with Avg. I 0-1%11-2%12.3%\ >3% Avg. I 0-1 % I 1-2 % I 2-3 % I > 3 %

Aggregated MAP 0.14% 1100.0% I 0.0% I 0.0% I 0.0% 0.D9% 1 100.0 % I 0.0% I 0.0% I 0.0%
Two moment fit 3.53 % 0.0 % 8.3 % 33.3 % 58.4 % 1.85 % 0.0 % 6J.J % 38.9 % 0.0 %

Table 3: Overall results for the inventory system with identical order streams.

In case of different order arrival processes we use m = 5 retailers. The arrival rates of the orders il
are varied between (0.6,0.8,1.0,1.2,1.4) and (1,1,1,1,1) and the squared coefficients of variation
c1 are varied between (0.2,0.25,0.3,0.4,0.5) and (0.3,0.3,0.3,0.3,0.3). The case in which both the
rates and the coefficients of variation are the same is left out. The rest of the parameters are the same
as in case of identical order arrival processes. This leads to 12 cases. The results are summarized in
Table 4.

Real system Error in I Error in f3
compared with Avg. I U-1 % I 1-2 % I 2-3 % I > 3 % Avg. I 0-1 % I 1-2% I 2-3 % I > 3 %

Aggregated MAP 0.26 % , 100.0 % I 0.0 % I 0.0 % I 0.0 % 0.19 % I 100.0 % I 0.0 % I 0.0 % I 0.0 %
Two moment fit 4.06 % 0.0 % 0.0 % 16.7 % 83.3 % 2.22 % 0.0 % 25.0 % 75.0 % 0.0 %

Table 4: Overall results for the inventory system with different order streams.

4.3 Discussion

We see from the results in the previous sections that use of the aggregated (compact) MAP gives much
better results than the other two methods, both for the queueing system and the inventory control
system. As expected, the method of Whitt and Albin predicts the mean waiting time better than
the two moment method. But their performance is the same for the probability of an empty system
Pe· Further we see that the results for different arrival streams are about the same as for identical
streams. However, the results of Whitt and Albin's method get worse in case of different arrival
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streams. Overall we can say that use of the aggregated MAP works very well for both systems. It
outperforms the two moment methods, but of course, the price to be paid is that it is more complicated
to analyze a model with a MAP than one with a (renewal) phase-type arrival stream.

5 Conclusions and future research

In this paper we proposed to use an aggregated MAP for the (approximate) description of the super­
position of Coxian arrival streams. Simulation results suggest that the aggregated MAP captures the
characteristics of the superposition of arrival streams very well. Application to a queueing model and .
an inventory control model leads to average errors in predicting performance characteristics around
2%. So we may conclude that aggregated MAP can be very useful to accurately approximate super­
positions of arrival processes.

In future work we will try to use MAP descriptions for both the arrival and service process in the
EGdGjs and the EGdGjsjK queue. The resulting (approximate) models may be analyzed ef­
ficiently by the matrix geometric method and the spectral expansion method (see, e.g. Bertsimas
[4]). The ultimate goal is to use these models to evaluate the performance of queueing networks with
blocking [10].
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