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Modeling and Analysis of Finite Phased Arrays of

Microstrip Antennas - An Eigenvector Approach

D. J. Bekers S. J. L. van Eijndhoven A. A. F. van de Ven∗

P-P. Borsboom† A. G. Tijhuis ‡

Abstract — In this paper, a model is developed to
determine characteristics of finite phased arrays of
microstrip antennas. This model concerns a finite
array of simple elements: perfectly conducting, in-
finitely thin, narrow rings, excited by voltage gaps
and positioned in free or above a ground plate. The
currents on the rings, and from that the electromag-
netic field, are calculated by a moment method. Di-
mension analysis is carried out to reduce numerical
effort and to acquire insight in the array behaviour.
The first step is made towards determining the array
characteristics by linking the eigenvalue behaviour
of the moment impedance matrix to mutual cou-
pling.

1 INTRODUCTION

Recently Thales Nederland has realized new radar
systems consisting of large phased arrays of micro-
strip antennas. The arrays consist of about 1000
rectangular microstrip loops, positioned on an an-
tenna face of about 16 m2. The systems scan in azi-
muth by rotation and in elevation by phase shifts.

For analysis and design of such arrays, infinite
array models are used, but these models cannot ac-
count for edge effects and differences between an-
tenna elements. Therefore, there is need for a finite
array model that can also provide insight in the
characteristics describing the qualitative behaviour
of large phased arrays. Characteristics should re-
late the array geometry to typical parameters, like
side lobe level, gain, and scattering parameters.
Simulation of a finite array taking into account the
complex antenna element geometry requires unre-
alistic computing time. Hence, we have developed
a model based on simple elements to find the char-
acteristics. In this way, we hope to find underly-
ing structures that will decrease computation times
drastically for more realistic configurations.

In this paper, we show the modeling and analy-
sis aspects of finite arrays of one specific element.

∗Department of Mathematics and Computing Sci-
ence, Eindhoven University of Technology, P.O. Box
513, 5600 MB, Eindhoven, The Netherlands, e-mail:
d.j.bekers@tue.nl

†Department JRS-TU Antenna, Thales Nederland, P.O.
Box 40, 7550 GD, The Netherlands

‡Department of Electrical Engineering, Eindhoven Uni-
versity of Technology, P.O. Box 513, 5600 MB, Eindhoven,
The Netherlands

Moreover, we present the first step towards deter-
mining characteristics of such arrays. This step is
based on relating the eigenvalue behaviour of the
impedance operator to mutual coupling aspects.

2 MODELING AND ANALYTICAL AS-
PECTS

We choose annular-shaped microstrips, or rings, as
elements, which are infinitely thin and perfectly
conducting. Reasons for this choice are twofold.
Firstly, a ring is the most simple loop geometry
to be described mathematically and secondly, the
modes on this geometry can be described analyti-
cally. The ring widths 2bq are much smaller than
the wavelength, the ring circumferences 2πaq, and
the distances between the rings. In other words,
kbq ¿ 1, βq = bq/aq ¿ 1, and bp/(|cp − cq| − ap −
aq) ¿ 1, see Figure 1. The current can be then av-
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Figure 1: Two rings and their corresponding geo-
metry parameters and local coordinate systems.

eraged with respect to the ring widths and its com-
ponent perpendicular to the centerlines of the rings
can be neglected. The arrays are planar positioned
in free space or above an infinitely wide ground
plate, see Figure 2. Arbitrary sub-collections of
rings are excited at a certain frequency, with cor-
responding wavelength λ and wave number k, by a
prescribed tangential excitation field on the rings
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Figure 2: Geometry of an array of two rings above
a ground plate.

originating from external sources (planar waves) or
local feeds (delta gaps, finite voltage jumps, prox-
imity coupled small rings). The local feeds can be
positioned arbitrarily on or near the rings.

A spatial time-harmonic representation of the
electromagnetic (EM) fields is used. The tangential
excitation field (Eex)tan is related to the current J
by the so-called (infinite dimensional) impedance
operator consisting of an integro-differential oper-
ator L and a trace operator ( · )tan. The integral
operator, described by a Green’s kernel, relates the
magnetic vector potential to the current, and the
differential operator relates the scattered electric
field to the magnetic vector potential. The trace
operator restricts a vector field to the surface S of
the rings and takes its tangential component. The
resulting equation, i.e.

(LJ)tan = −(Eex)tan, on S, (1)

is tackled by a moment method, expanding the cur-
rent into a finite number of expansion functions.
Knowing the current, the EM far field is determined
analytically.

On each ring surface Sq a parameter representa-
tion described by an angle ψq is chosen, see Figure
1, which can be extended straightforwardly to a
global coordinate system. As aforementioned, the
current J is averaged with respect to the widths
2bq of the rings and directed along their center
lines, J|Sq (rq, ϑq) = wq(ϑq)eϑq . Based on dimen-
sion analysis of (L · )tan, the test functions used
in the moment impedance matrix calculation are
averaged with respect to the ring widths. Test
functions with only tangential components on the
rings are chosen. By this procedure, the Green’s
kernel is averaged with respect to the local radial
coordinates on the rings, resulting in an adjusted
integral operator with logarithmic singular kernel
and an adjusted differential operator. Moreover,
the moment impedance matrix components reduce
to double and single integrals in case of mutual-

and self-coupling, respectively. The expansion and
test functions are chosen as eigenfunctions of the
Sturm-Liouville, or Helmholtz, part of the differen-
tial operator resulting in entire domain functions
of sine or cosine type, i.e. wq(ϑq) = cos nϑq and
wq(ϑq) = sin nϑq . The numbers of expansion func-
tions Ncos,q and Nsin,q can differ per ring. The
resultant matrix equation ZI = V for the expan-
sion coefficients I is solved by LU-decomposition.
The moment impedance matrix is a diagonal dom-
inant block matrix, each block representing the in-
teraction of test and expansion functions defined on
specific rings. The diagonal and off-diagonal blocks
are diagonal and dense matrices, respectively. More
details of the analysis are described in [1].

3 RELATIONS BETWEEN EIGENVA-
LUES AND MUTUAL COUPLING

The described method in itself provides little physi-
cal insight and is computationally intensive for
large arrays. Since we seek characteristics of ar-
rays, we express the current on the rings as a li-
near combination of the eigenvectors Un of the mo-
ment impedance matrix, the coefficients being the
inverted eigenvalues νn,

I =
N∑

n=1

Xn

νn
Un . (2)

Here, the coefficients Xn depend on the level of or-
thogonality of the eigenvectors described by their
Gramm matrix. For orthonormal eigenvectors,
Xn = (V •Un), where ( . • . ) is the Euclidean inner
product. The eigenvalues νn are the same as the
eigenvalues of the corresponding averaged finite di-
mensional impedance operator resulting from the
asymptotic analysis of (L · )tan mentioned above.
The eigenvectors Un are one-to-one related to the
eigenfunctions of this operator. The components of
each Un are the expansion coefficients of such an
eigenfunction with respect to the finite basis of the
expansion functions. Each eigenfunction represents
an eigencurrent of the array.

The eigenvalues νn of a solitaire ring are found as
the diagonal components of the moment impedance
matrix Z. Each νn belongs to exactly one expan-
sion (eigen)function cos ζ(n)ϑ or sin ζ(n)ϑ. More-
over, cosine and sine expansion functions of equal
‘frequency’ n have equal eigenvalues.

For arrays with uniform (but variable) ring geo-
metry, the eigenvalues of arrays can be divided into
groups such that each group relates to an eigen-
value of a solitaire ring. The corresponding (non-
orthogonal) eigenvectors are perturbed with respect
to the (orthogonal) eigenvectors of the same array



in which mutual coupling is disregarded. For a fixed
number of rings, the spread of the eigenvalues in
each group is a measure of mutual coupling between
the eigenvectors, or eigencurrents, in the groups. A
large spread corresponds to a high degree of mu-
tual coupling, whereas a small spread corresponds
to a low degree. For arrays with a uniform number
of expansion functions, each group consists of Nr

eigenvalues, where Nr is the number of rings.

4 NUMERICAL RESULTS

Validation of the implementation of the presented
model for arrays of rings has been described in
[1]. Here, we describe results of the eigenvalue
and eigenvector analysis of the previous section.
First, we consider the behaviour of the eigenva-
lues of a solitaire ring, which we order ascend-
ingly. Figure 3 and 4 show this behaviour for seve-
ral values of ka and several values of h/λ. For
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Figure 3: First 10 eigenvalues, normalized on the
smallest eigenvalue, of a solitaire ring in free space
as function of their indices for several values of ka;
+ : ka = 0.838, ∗ : ka = 0.942, × : ka = 1.047,
◦ : ka = 1.152, 4 : ka = 1.257. Other parameters:
b/λ = 0.005, Ncos = 10, Nsin = 0. Solid line:
y = x2, dashed line: y = 8x2/5, dashed-dotted
line: y = 23x2/10.

all results, the eigenvalues νn correspond to the
expansion functions with ‘frequency’ ζ(n), where
ζ = (1, 2, 0, 3, 4, 5, ...). Both figures show that the
eigenvalues νn tend as n2 for n ≤ 10, which is the
same behaviour as the eigenvalues of the Helmholtz
operator exhibit. This implies that the Helmholtz
part of the (averaged) differential operator domi-
nates the (averaged) integral operator with loga-
rithmic singular kernel. For n > 10, this dominance
loses strength; the eigenvalues tend as n

√
n . How-

ever, this behaviour is of lesser importance, because
the current in (2) will be described by the first few
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Figure 4: First 10 eigenvalues, normalized on the
smallest eigenvalue, of a solitaire ring in half space
as function of their indices for several values of h/λ;
+ : h/λ = 0.1, ∗ : h/λ = 0.15, × : h/λ = 0.2,
◦ : h/λ = 0.25, 4 : h/λ = 0.3. Other parameters:
ka = 1.257, b/λ = 0.005, Ncos = 10, Nsin = 0.
Solid line: y = 9x2/10, dashed line: y = 13x2/18.

terms of the series due to the quadratic behaviour
of the eigenvalues for n ≤ 10.

To investigate how many expansion functions we
need to obtain accurate results for the first M eigen-
values, we have carried out numerical tests for seve-
ral geometries of Nr rings, Nr = 1, 2, 10, 20, 40, 60.
Uniform but variable numbers of cosine expansion
functions are prescribed on the rings. The results
show that for Ncos ≥ 3, all M = NrNcos eigenva-
lues are determined up to 0.5%.

Finally, we study the spread of the inverted eigen-
values in each of the groups for several array geome-
tries. Figure 5 shows the maximum and minimum
absolute inverted eigenvalues of the four eigenvalue
groups of line arrays of 2, 4, ..., 60 rings with uni-
form spacing 3λ/5. The arrays have uniform ring
geometry and a uniform number of expansion func-
tions per ring. We observe that the first group
has the largest spread for all numbers of rings, fol-
lowed by the third group. The other two groups
have a much smaller spread. Hence, mutual cou-
pling effects are mainly incorporated in the 1st and
3rd group. In half space, we observe similar be-
haviour, see Figure 6, but now the 3rd group has
the largest spread for all numbers of rings, followed
by the 1st group. Again the other two groups have
much smaller spread. Moreover, groups with higher
group number n, which appear for larger num-
bers of expansion functions, will also have much
smaller spread, because the spread decreases as n
increases. Therefore, mutual coupling is mainly de-
scribed by the first and the third group of eigenva-
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Figure 5: Maximum and minimum absolute in-
verted eigenvalues of the four eigenvalue groups of
line arrays of 2, 4, ..., 60 rings in free space with
spacing 3λ/5; +: 1st group, ∗: 2nd group, 4: 3rd
group, ◦: 4th group. Other parameters: kaq =
2π/5, βq = 1/40, ψq = 0, Ncos,q = 4, Nsin,q = 0.

lues and eigenvectors. These groups correspond to
the eigenvalues of one ring with cosine eigenfunc-
tions of ‘frequency’ ζ(1) = 1 and ζ(3) = 0. Due
to the quadratic behaviour of the eigenvalues, the
mutual coupling incorporated in the first group will
be of more importance for determining the current
I than the third group.
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Figure 6: Maximum and minimum absolute in-
verted eigenvalues of the four eigenvalue groups of
line arrays of 2, 4, ..., 60 rings in half space with
spacing 3λ/5; +: 1st group, ∗: 2nd group, 4: 3rd
group, ◦: 4th group. Other parameters: kaq =
2π/5, βq = 1/40, ψq = 0, h = λ/4, Ncos,q = 4,
Nsin,q = 0.

For line arrays with uniform but variable spacing,
ring geometry, and number of expansion functions,
as we have considered, the moment impedance ma-

trix Z is of block Toeplitz type, see [2]. The numeri-
cal convergence of the upper bounds of each of the
groups and the numerical divergence of some of the
lower bounds can be related to theorems in [2, Ch.
4, 6] on the singular values of block Toeplitz matri-
ces. The divergent lower bounds indicates that the
Fourier series induced by the block Toeplitz matrix
is not bounded, see [2, Sec. 4.4, 6.4].

The CPU times of a Matlab implementation on
a HP PC with Windows NT, an Intel Pentium
IV processor at 1.0 GHz, and 256 Mb of RAM are
2min. 36 sec. and 38 min. for constructing Z of
arrays of 10 and 40 rings with 8 expansion func-
tions. For 4 expansion functions, these times are
only 17.1 sec. and 3min. 45 sec. If the Toeplitz
structure of Z is used for line arrays, then the CPU
times for 8 expansion functions reduce to 12.3 sec.
and 1 min. 47 sec. Note that the CPU time for con-
structing Z dominates the total CPU time for sol-
ving ZI = V ; inversion of Z requires in all afore-
mentioned cases less than 1 sec.

5 CONCLUSIONS

We have developed a tool for analyzing finite ar-
rays of rings, or more specifically, for determining
the characteristics of such arrays. A first step to-
wards this determination has been made by linking
mutual coupling to the behaviour of the eigenvalues
of the moment impedance matrix.

6 PROSPECTS

A more detailed study of the eigenvalues and their
relation to mutual coupling is still in progress.
Moreover, the behaviour of the eigenvectors will be
topic of further research. An approximation tech-
nique is under development to calculate the eigen-
vectors of an array with mutual coupling from the
eigenvectors of the same array in which mutual cou-
pling is disregarded. By this technique, compu-
tational effort should be reduced further, also for
more realistic configurations.
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