

A class of on-line scheduling algorithms to minimize total
completion time
Citation for published version (APA):
Lu, X., Sitters, R. A., & Stougie, L. (2002). A class of on-line scheduling algorithms to minimize total completion
time. (SPOR-Report : reports in statistics, probability and operations research; Vol. 200211). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/2002

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/b65e5e07-6a4c-4340-8df6-ca88c218fe10

A class of on-line scheduling algorithms to minimize total

completion time

X. Lu∗† R.A. Sitters∗ L. Stougie∗‡

Abstract

We consider the problem of scheduling jobs on-line on a single machine and on identical
machines with the objective to minimize total completion time. We assume that the jobs
arrive over time. We give a general 2-competitive algorithm for the single machine problem.
The algorithm is based on delaying the release time of the jobs, i.e., making the jobs artificially
later available to the on-line scheduler than the actual release times. Our algorithm includes
two known algorithms for this problem that apply delay of release times. The proposed
algorithm is interesting since it gives the on-line scheduler a whole range of choices for the
delays, each of which leading to 2-competitiveness.

We also show that the algorithm is 2α competitive for the problem on identical machines
where α is the performance ratio of the Shortest Remaining Processing Time first rule for the
preemptive relaxation of the problem.

1 Introduction

Scheduling jobs on a single machine with the objective to minimize the total completion time (also
sometimes called latency) is a fundamental problem in scheduling theory. Many off-line as well
as on-line algorithms have been proposed for this problem. We consider the on-line model where
the jobs arrive over time, i.e., jobs are available for processing from their given release times, but
the jobs are unknown to the algorithm before their release times. Hoogeveen and Vestjens [5]
show that no deterministic on-line algorithm can have a competitive ratio smaller than 2. Several
algorithms with competitive ratio matching this lower bound have been given in the literature.
Phillips, Stein and Wein [7] presented a 2-competitive algorithm based on the optimal preemptive
schedule. Hoogeveen and Vestjens used the idea of shifted release times to obtain a 2-competitive
algorithm. The same idea was used by Stougie (cited in Vestjens [10]) who obtained a third
algorithm. However, 2-competitveness of this algorithm was never proved.

Our algorithm, which we call SSPT, contains these last two algorithms as a special case. SSPT
is described in Section 2. The proof that the algorithm is 2-competitive is found in Section 3.
The proof implies directly 2-competitiveness of the algorithms of Hoogeveen and Vestjens and
of Stougie. It is simpler and more elegant than the competitiveness proof in [5], and the first
competitiveness proof of Stougie’s algorithm.

Although the corresponding off-line problem is already strongly NP-hard for the single machine
[6], polynomial time approximation schemes for the problem on identical machines have recently
been given independently by many people. The approximation scheme given by Afrati et al.[1]
even applies if the objective is the total sum of weighted completion times and for a fixed number
of unrelated machines.

∗Department of Mathematics, Technische Universiteit Eindhoven, P.O.Box 513, 5600 MB Eindhoven, The
Netherlands. e-mail: {x.lu, r.a.sitters, l.stougie}@tue.nl.

†East China University of Science and Technology, Shanghai 200237, China. e-mail: xwlu@ecust.edu.cn.
‡CWI, P.O. Box 94079, 1090GB Amsterdam, The Netherlands. e-mail: stougie@cwi.nl.

1

In the absence of release times the problem on identical machines is easily solved by scheduling
the jobs in order of increasing processing times [3]. This algorithm is well-known as the Shortest
Processing Time first rule (SPT).

In the competitive analysis of our algorithm the preemptive version of the problem plays
an important role. In this version the processing of any job may be preempted at any time
and continued any time later. Schrage [8] showed that, if jobs have release times, the Shortest
Remaining Processing Time first rule (SRPT), always produces an optimal preemptive schedule
for the single machine problem. The problem with release times and preemption on identical
machines is NP-hard [4]. SRPT is an on-line approximation algorithm for this problem. We do
not know of a bound smaller than 2 on the worst-case performance ratio of SRPT. The bound of
2 has been shown by Phillips et al. [7].

For the on-line problem of scheduling jobs on m identical parallel machines (without preemp-
tion), Chekuri et al. [2] gave an on-line algorithm that is 3 − 1/m-competitive. They construct
a preemptive schedule on one machine, and use the order of completion times of the jobs in this
schedule to make a non-preemptive schedule on identical machines. In Section 3 we show, very
simply, that, when applied to identical machines, our SSPT-algorithm is 4-competitive for any
number of machines, which is worse than the 3 − 1/m. However, we give a nice property of our
algorithm which suggests that this ratio may be improved considerably. More specifically, we show
that if the SRPT-rule for the preemptive version of the problem is α-competitive, then SSPT is
2α-competitive for the non-preemptive problem. This makes it interesting to try to improve the
bound of 2 on the competitive ratio of SRPT in [7]. We do show that this bound cannot be lower
than 12/11 for the preemptive problem on 2 machines. Vestjens [10] showed that for an
arbitrary number of machines no preemptive algorithm can be better than 22/21
competitive. We can also show that SSPT has a competitive ratio of at least 2 on any number
of machines, which leaves an interesting gap with the lower bound on the competitive ratio of
any on-line algorithm for the problem of 1.309 proved by Vestjens [10]. An on-line algorithm with
competitive ratio smaller than 2, which we conjecture to exist, would be a divergence from the
general phenomenon in on-line scheduling in which competitive ratio’s of algorithms for multiple
machine problems are higher than those for their single machine counterparts (see [9]).

2 The SSPT-algorithm

Formally, an instance of the on-line scheduling problem is given by n jobs Jj (j = 1, . . . , n) and m
machines Mi (i = 1, . . . ,m). Each job Jj (j = 1, . . . , n) has a given processing time pj and release
time rj . A machine can process only one job at a time and a job can be processed by only one
machine at a time. The processing of a job cannot start before its release time. If preemption is
not allowed, then a job must be processed without interruption on one machine. If preemption
is allowed we may interrupt the processing of a job and continue it at the same time on another
machine or at a later moment on any machine. The first moment at which job Jj is processed is
referred to as its starting time Sj , and the time at which a job is completed is referred to as its
completion time Cj . We say that a machine is idle at time t if it is not processing any job during
an open interval containing t.

The problems that we study here concern finding non-preemptive schedules for which the sum,
taken over all jobs, of completion times is minimal. The sum of completion times is also called the
latency in the literature. The algorithm is to construct a feasible schedule on-line, meaning that
for any t > 0, the schedule restricted to the interval [0, t] must be constructed without knowledge
of the jobs that are not released before time t, i.e., those jobs with rj > t.

The idea behind our algorithm is to delay the time at which jobs become available for process-
ing to the algorithm, by increasing the release times and to apply the SPT rule to the available
jobs. Since the release times are shifted before applying SPT, we call this algorithm Shifted SPT
(SSPT). The idea was used before by Hoogeveen and Vestjens [5], and Stougie (cited in [10]) who
delayed the release time of a job j until time max(rj , pj) and rj +pj , respectively. Both algorithms
are 2-competitive for a single machine, although a 2-competitiveness of the algorithm by Stougie

2

has never been proved before this paper. We generalize their idea and show that the release time
of any job may be delayed, independently of any other job, until any moment between these two
values without reducing the competitive ratio of the algorithm.

Algorithm SSPT
Make job j available for processing at a time r′j , where r′j is an arbitrary number in the interval
[max{rj , pj} , rj + pj]. At any moment a machine becomes available, schedule from among the
available jobs the one with shortest processing time.

Hoogeveen and Vestjens [5] showed that no deterministic on-line algorithm can be better than
2-competitive for the single machine problem. We shall use the idea behind their proof later to
give a lower bound on the competitive ratio of our SSPT-algorithm for identical machines. For
that reason we include their result.

Theorem 1 (Hoogeveen and Vestjens [5])
There is no deterministic on-line algorithm A and ε > 0 such that A is (2−ε)-competitive for a
single machine.

Proof. Assume that some algorithm A is 2 − ε-competitive for some small number ε > 0. We
define the following job sequence. Job J1 with processing time p1 = 1 is released at time 0. If
S1 > 1 − ε, then no more jobs are given and the competitive ratio becomes (S1 + 1)/1 > 2 − ε.
A contradiction. So we may assume that S1 ≤ 1 − ε. Then n − 1 jobs are presented at time
1/2 + S1/2, each with processing time 0.
The total completion time of the schedule produced by A is at least n(S1+1), whereas the optimal
schedule has total completion time n(1/2 + S1/2) + 1. We see that the competitive ratio tends to
2 if n tends to infinity, which contradicts the assumption that A is 2− ε-competitive. �

Vestjens [10] showed that for any number of identical machines, no algorithm can be better than
1.309-competitive.

3 Competitive analysis of SSPT

To prove competitiveness results for the SSPT algorithm we give a few more preliminaries. As-
sume that σ is a schedule produced by algorithm SSPT for some instance I. Let Sj and Cj be,
respectively, the starting and completion time of job Jj (j ∈ {1, . . . , n}) in this schedule.

Given I and σ we define another instance I(σ) as follows. For each job Jj of instance I we
define a job, also denoted by Jj , for instance I(σ) with the same processing time pj but with
shifted release time r̄j = min{Sj , 2rj + pj}. Thus, the instance I(σ) is obtained from I by shifting
the release times over an appropriate length of time. It is not hard to prove that the optimal value
of instance I(σ) is at most twice the optimal value of instance I.

Lemma 1 Let C∗(I) and C∗(I(σ)) be the total completion time of an optimal non-preemptive
schedule for, respectively, I and I(σ). Then C∗(I(σ)) ≤ 2C∗(I).

Proof. Let σ∗ be an optimal schedule for I. We define the schedule σ̄∗ by multiplying all
completion times by a factor of 2. To be precise, we define the starting time of job Jj by S̄∗

j =
2C∗

j − pj . Notice that C∗
j ≥ rj + pj . Therefore, S̄∗

j ≥ 2rj + pj , and the schedule σ̄∗ is feasible for
I(σ) and has total completion time 2C∗(I). �

If preemption is allowed, then the Shortest Remaining Processing Time first rule (SRPT) can be
used to construct a feasible preemptive schedule on-line. At any moment the SRPT-rule chooses
to process the jobs that have smallest remaining processing time, where the remaining processing
time of job j at time t is defined by pj minus the time that job j has been processed until time t.

3

We say that a schedule σ is an SRPT schedule for an instance I if it can be obtained by applying
the SRPT-rule to instance I.

Our results on the competitiveness of SSPT follow almost directly from the following theorem.

Theorem 2 For any instance I on identical machines, any schedule σ, produced by algorithm
SSPT, is an SRPT-schedule for the corresponding instance I(σ).

Proof. First we notice that no job in σ starts before its release time in I(σ) (by the definition of
the release times in I(σ)). Therefore, σ is a feasible schedule for instance I(σ).

We define Ja(t) = {j|r′j ≤ t < Sj}, and J̄a(t) = {j|r̄j ≤ t < Sj}. Notice that r′j ≤ r̄j and
therefore J̄a(t) ⊆ Ja(t) for all t ≥ 0.

We are now ready to prove that the SRPT-rule is satisfied, i.e. at any moment t, under the
SSPT-schedule σ the machines either process all jobs that are available but not yet completed,
or they process the m jobs that have smallest remaining processing time among all jobs that are
available at time t in instance I(σ).

If J̄a(t) = ∅ then the SRPT-rule is clearly satisfied. Now take an arbitrary job h ∈ J̄a(t) and
an arbitrary job k that is being processed at time t. Such a job k exists since h ∈ J̄a(t) ⊆ Ja(t)
and therefore no machine is idle at time t. We have to show that Ck−t ≤ ph. If job h was available
to SSPT at time Sk, i.e. if h ∈ Ja(Sk), then by definition of SSPT we have Ck − t ≤ pk ≤ ph.
So now assume h /∈ Ja(Sk). By definition of SSPT we have rh + ph > Sk. On the other hand
we have Ck = Sk + pk ≤ 2Sk, since job k is not released before time pk by SSPT. We obtain
Ck − t < 2rh + 2ph − t = r̄h + ph − t ≤ ph. �

Schrage [8] showed that the SRPT-rule, produces an optimal preemptive schedule for the single
machine problem. Hence, together, Theorem 2 and Lemma 1 imply that SSPT is 2-competitive
on a single machine.

Theorem 3 Algorithm SSPT is 2-competitive for a single machine.

Unfortunately, SRPT is not optimal for the problem with preemption on parallel identical machines
(see Proposition 1 below). Phillips et al. [7] showed that SRPT is 2-competitive for the preemptive
problem on identical machines. This bound together with Theorem 2 and Lemma 1 implies
immediately that SSPT is 4-competitive for the on-line scheduling problem (without preemption)
on identical machines. More generally, we have the following theorem.

Theorem 4 Algorithm SSPT is 2α-competitive for the on-line scheduling problem on identical
parallel machines, where α is the competitive ratio of the SRPT-rule for the preemptive relaxation
of the problem.

We are able to improve the bound to 4 − 1/m, which is still larger than the bound given by
Chekuri et al. [2]. However, finding the performance ratio of SRPT on identical machines seems
a very interesting problem on its own. We conjecture that this ratio is much smaller than 2,
which, if true, would decrease the competitive ratio of SSPT considerably. We also remark that
we are actually interested in the performance of SRPT with respect to the optimal non-preemptive
schedule. Notice that the value of a preemptive schedule is a lower bound on the value of an optimal
non-preemptive schedule. The following proposition gives a lower bound on the performance of
SRPT, which also applies on the ratio between the value of the preemptive SRPT-schedule and
the value of an optimal non-preemptive schedule.

Proposition 1 The algorithm SRPT on identical machines is not α-competitive for α < 12
11 .

Proof. We define the instance with 2 machines and jobs 1,2,3,4 and 5 having processing times
p1 = p2 = p4 = p5 = 1 and p3 = 2 + ε and release times r1 = r2 = r3 = 0, and r4 = r5 = 2. SRPT
gives completion times C1 = 1, C2 = 1, C3 = 4 + ε and C4 = C5 = 3, summing to 12 + ε, whereas
the non-preemptive schedule induced by the starting times S1 = S3 = 0, S2 = 1, S4 = 2, and
S5 = 2 + ε has total completion time 11 + 2ε. The lemma follows by choosing ε sufficiently small.

�

4

Notice that the optimal schedule in the proof is a non-preemptive schedule. The proof is given for
the problem on 2 machines. Making m copies of the instance in the proof yields the same lower
bound for 2m machines. For odd numbers of machines we get a slightly weaker lower bound.

Proposition 1 implies that, through Theorem 4, we will not be able to prove a competitive
ratio lower than 24/11 for SSPT. This does not mean that SSPT can not be better than 24/11
competitive. On the other hand, an instance of the scheduling problem with only one job released
at time 0 and having processing time 1, shows that SSPT can not have a competitive ratio lower
than 2 on any number of machines. Even if SSPT would be 2-competitive, the challenging question
remains if an on-line algorithm for the problem on multiple machines exists with competitive ratio
strictly less than 2. We recall that Vestjen’s lower bound is 1.309 [10]. A competitive ratio strictly
smaller than 2 would be a divergence from the general phenomenon in on-line scheduling in which
competitive ratio’s of algorithms for multiple machine problems are higher than those for their
single machine counterparts (see [9]).

References

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis, M. Queyranne,
M. Skutella, C. Stein, M. Sviridenko, Approximation schemes for minimizinge average
weighted completion time with release dates, Proceedings of the 40th IEEE Symposium on
Foundations of Computer Science, New York City, NY, October 1999.

[2] C. Chekuri, R. Motwani, B. Natarajan, C. Stein, Approximation techniques for average com-
pletion time scheduling, SIAM Journal on Computing 31, (2001), 146–166.

[3] R.W. Conway, W.L. Maxwell, L.W. Miller, Theory of Scheduling, Addison-Wesley, Reading,
Massachusetts, 1967.

[4] J. Du, J.Y-T. Leung, G.H. Young, Minimizing mean flow time with release time constraint,
Theoretical Computer Science 75, 1990, 347–355.

[5] J.A.Hoogeveen, A.P.A. Vestjens, Optimal on-line algorithms for single-machine scheduling,
Proceedings 5th International Conference on Integer Programming and Combinatorial Opti-
mization, Vancouver, British Columbia, Canada, June 3-5, 1996, Lecture Notes in Computer
Science 1084, Springer, Berlin, 404–414.

[6] J.K.Lenstra, A.H.G.Rinnooy Kan, P.Brucker, Complexity of machine scheduling problems,
Annals of Discrete Mathematics 1, (1977), 343–362.

[7] C. Phillips, C. Stein, J. Wein, Minimizing average completion time in the presence of release
dates, Networks and matroids; Sequencing and scheduling, Mathematical Programming 82,
(1998), 199–223.

[8] L. Schrage, A proof of the shortest remaining processing time processing discipline, Operations
Research 16 (1968), 687–690.

[9] J. Sgall, On-line scheduling, in A. Fiat, G.J. Woeginger (eds.), Online algorithms: the state
of the art, Lecture Notes in Computer Science 1442, Springer, Berlin, 1998, 196–231.

[10] A.P.A.Vestjens, On-line Machine Scheduling, Ph.D. thesis, Department of Mathematics and
Computing Science, Technische Universiteit Eindhoven, Eindhoven, the Netherlands, 1997.

5

