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Chapter 1 

IIJ.trod u ct ion 

One of the difficulties of writing mathematica] texts is the paradox that a strict 
proof of an assertion is generally not its most straightforward deduction. Details 
may become important, a down-to-earth point of view is sametimes too limited 
and unavoidable side branches in a proof can confuse the reader. That is the 
reason why this chapter - in contrast with the Chapters 2-5- is writ ten in a 
somewhat loose way. We do not avoid a didactic tone appealing to "m athematica! 
intuition" when we summarize the content ofthis thesis and try to explain its aim. 
Nor do we go into details when we sketch the physical background a.nd history of 
some of the problems. Fina.lly we apologize for summarizing the contents of the 
Cha.pters 2-5 in a non-subsequential order. 

1.1 General Overview of the thesis 

This thesis is concerned with moving boundary problems. Such problems appear 
for example in fluid mechanics when a dump of matter is moving freely according 
to its hydrodynamic velocity. In particular, we wil! consider probieros where this 
velocity mainly depends on the geometrie shape of the matter at that time. We 
call such a momentaneous relation between the velocity field and the geometrie 
sha.pe quasi-static and present a mathematica] formulation of quasi-static moving 
boundary problems in Section 3.1. After restricting ourselves to two-dimensiona.\ 
probieros and after introducing a. time-dependent confermal mapping fro m a. ref­
erence domain to the domain occupied by the ma.tter, we are led in Section 3.2 
to what we cal! a quasi-linear Löwner-Kufareev equation. (We prefer to spel! 
the latter name with two e's although it can a.lso be written as "K ufarev" .) 
This equation can be viewed as a non-linea.r version of the time-honored Löwner­
Kufareev equation ([57, 49]) which was stuclied in the theory of subordination 
chains ([70, 9)) and which played a role in the proof of Bieberbach 's conjecture 
([14, 47]). The importance of the quasi-linear Löwner-Kufareev equation can be 
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4 CHAPTER 1. INTRODUCTION 

illustrated by quoting an open question formulated during the 1994 Conference 
on Complex Analysis and Free Boundary Problems in St. Petersburg ([1]): 
"A framewerk for solving moving boundary probieros is as follows .... Then the 
kinematic boundary condition for the normal velocity Vn of the free boundary 
oü(t) becomes the Löwner-Kufareev type equation ... Ca.n this formulation help 
with the solvability question and with analysis of the geometrie properties of the 
moving boundary? ... " 
We try to make a contri bution to the answer of this question in Section 5.4 where 
we prove the local solvability of quasi-linear Löwner-Kufa.reev equations under 
general conditions. (This section is published in a different form in [43].) The 
proof is based on some estimates on solutions of linea.r Löwner-Kufareev equa­
tions and an iteration technique. Should your main interest lie in the general 
relation between quasi-linear Löwner-Kufa.reev equations and quasi-static mov­
ing boundary problems, we suggest you to read Sections 3.1, 3.2, 5.1 and 5.4 
only. 
Apart from these general considerations we will study two particular moving 
boundary problems in more detail: the one for Stokes flow driven by surface 
tension and the one for Hele-Shaw flow. We postpone the introduetion to these 
problems to the next section . It was R.W. Hopper who derived an equation -
which we eaU Hopper's equation- for the first problem in his inspiring art iele 
"Plane Stokes flow driven by capillarity on a free surface" ([35]). In Section 3.3, 
which is based on [30], we show that if a time-dependent conformat mapping 
satisfies Hopper's equation, then it is a solution for Stokes flow driven by surface 
tension. In Section 3.4 we show that a time-dependent confermal m apping satis­
fies the moving boundary problem for Hele-Shaw flow if and only if this mapping 
satisfies an equation which resembles Hopper's equation. This leads, at the risk of 
confusion, to the introduetion of the name "Hopper equations" : equations which 
resemble the origina.l one in a way made clear in Section 4.1. We realize that these 
narnes do not honour other mathematicians who recognized the significanee of 
a formulation of certain moving boundary probierus in terms of confermal map­
pings ( see e.g. [78, 30]). 
The core of this thesis is the study of Hopper equations in Chapters 4 and 5. 
This study is based on the theory of ordinary and partial differentia.l equations, 
on complex function theory and on some functional analysis. The result is a set 
of propositions and theorems on the properties of solutions and on the existence 
and uniqueness of some classes of solutions. We also show a deep relationship 
between Hopper equations and certain partial differential equations, which we 
will eaU extended Löwner-Kufareev equations . 
Before we summarize the contents of this study of Hopper eq uations in Section 
1.3, we shall first discuss the physical background of the moving boundary prob­
Ieros mentioned. 
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1.2 Physical background 

Most moving boundary problems in mathematica! physics have the following 
constituents: the equations of motion, the dynamic bounda.ry condition and the 
kinematic boundary condition. We present a short int roduetion to the moving 

boundary problem for Stokes flow driven by surface tension and multi-poles a.nd 

for Hele-Shaw flow in the Su bsections 1.2.2 a.nd 1.2.3, respectively. We fi.rst 
discuss two types of equations of motion in Subsection 1.2.1. 

1.2.1 Stokes' and Darcy's equations 

The motion of a viscous Newtonian fluid eau be described by the well-known 

Navier-Stokes equations a.nd the continuity equa.tion ([55, 87]). If the iner tial a.nd 

gravitational farces are negligible and the fluid is incompressible, these e()uations 

reduce to Stokes' equations: 

where 7J is the viscosity constant and where .:!!.(.:f, t) and p(.:f, t) are the hydrody­
namic velocity and the hydrastatic pressure at a point .:fat timet. From now on , 
we shall assume that the unit system is scaled such that 7J = 1. We return to the 
topic in which circumstances Stokes' equations are a good physical approxima­
tion in Subsection 1.2.2. 

As time derivatives do not appear in Stokes' equations, we can suppress the 

variabie t in the notation and write 

( 1.1) 

We note that these equations make sen se on any open su bdomain of IRn for 

any n E IN. Nevertheless, it is important to realize that the Laplacia.n of a 
vector field must be treated with care in order to give it a coordinate-independent 

meaning (see e.g. [2]). As long as Cartesian coordinates are used, no confusion 
can arise, but as we wil! also use cylindrical coordinates in Sections 2.2 a nd 2.4, 
it is convenient to rewrite Stokes' equations in a different notation: 

gij (:f.) \7 i \7 j vk (.:f) = gik (:f.) \7 iP(:f.) 

'Vivi(:f.) = 0 

k = 1, .. , n ( 1.2a) 

( 1. 2b) 

where gis the first fundamental tensor , where 'V; denotes the covariant derivative 

with respect to the variabie x' and where Einstein's summation convention is 
understood. The components of the stress tensor b are given in this notation by 

Tj(:f.) = -p(:f.)bj + 'Vjvi (.:f) + gik(:f.)%ÜIJ'Vkv1(:f.) 

i,j=l, .. ,n ( 1.3) 
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We now turn to other equations of motions. It has been experimenta.lly verified 
that a fl uid in a porous medium can be descri bed by Darcy 's law ( [ 61, 68, 16]): 

JL(.:r, t) = -IJ\Jp(;r, t) 

where IJ is the effective permeability. From now on, we wil! assume that the uni t 
system is scaled such that IJ 1. If the fluid is incompressible , the continuity 
equation reduces to 

V.Q(;r, t) = 0 

We will refer tothese equations of motionsas Darcy's equations. The reader who 
is interested in the circumstances in which Darcy 's equations are a good physical 
approximation is referred to [61]. As time deriva.tives do not appear in Da.rcy's 
equations, we can suppress the variabie t in the notation and write 

JL(.:r) = - Vp(;r) \} .JL(.:r) = 0 ( 1.4) 

It is possible to represent solutions of Stokes' and Darcy's equations in two di­
mensions by analytic functions . We explain what we mean by this statement 
on the basis of Darcy's equations on an open domain G C IR2 . It immediately 
follows from the equations (1.4) that the function p is harmoni e. If we assume 
that G is simply connected, there is a harmonie conjugate of p on G and this 
impties that an analytic function x exists on G such that 

p =-Re x v =x' ( 1.5) 

where we use complex notation. Conversely, it is easily checked that if x is an 

analytic function on an open domain G C JR2 , then the function s p and v defined 
by the relations ( 1.5) satisfy Darcy's equations. We therefore state that a sol ut ion 
of Darcy's equations can be represented by one analytic function. A comparable 
result holds for Stokes' equations : it can be shown that a salution of Stokes' 
equations in two dimensions can be represented by two analytic functions. Vve 
include a proof of this well-known result in Section 2.1. 
These representations turn out to be very useful later on as they constitute a.n 
essential ingredient in the derivation of Hopper equations . This leads to the 
question whether we can generalize the concept of representing functions. Is it 
possible to represent solutions of Stokes' equations in three dimensions in terms 
of generalized analytic functions? We will answer this question affirmatively in 
Chapter 2. More precisely, we will show in Section 2.2 that every axially sym­
metrie salution of Stokes' equations can be represented by two so-called deformed 
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analytic functions and we will show in Section 2.3 that every solution of Stokes' 
equations in three dimensions can be represented by two left monogenie functions 

(the latter section was published in a somewhat different form in [44]) . In spite 
of these results, it turns out that a generalization of Hopper equations for more 
than two dimensions is very hard and may even be impossible. As we will not go 
further into this matter, the quick reader may skip Sections 2.2 a.nd 2.3. 

We end this section by a very short introduetion to multi-poles (see e.g. ['24, 
51, 59]). Let G be an open domain in JR2 containing Q and let p a.nd 12. satisfy 
Stokes' or Darcy's equations on G\{Q} . A souree at !lof strength Q1 ( if Q1 < 0 
we speak of a sin k) can be modelled by 

where 8 denotes Dirac's delta function. One checks that this rela.tion in complex 
notation corresponds to 

v(z z)- Q1 -t const. 
' 21rz 

if r = lzl -t 0 ( 1.6) 

In the same way, a multi-pole of order n E .bV\ { 1} of st rength Qn > 0 directed 
along (cos cp sin cp )T can be modelled by 

Q é/J 
v(z, z)- _n_ -t const. 

27r? 
if r = lzl -t 0 ( 1. 7) 

1.2.2 Stokes flow driven by surface tension and multi-poles 

Consicier a fiuid with a surface tension coefficient 1 :::= 0 which occupies an open 
domain G c IRn with a compact C2-surface oG. Let the outer domain be occu­
pied by a fiuid without surface tension under a uniform hydrastatic pressure p0 . 

On the basis of both experiments and theory ([93, 74, 8]), a good model for the 
dynamic boundary condition is 

J.. E oG 

where b denotes the streSS tensor and where K(.J..) and 2l(.J..) denote the mean 
curvature and the outward-pointing normal vector at a point .J.. E oG ( [83]) . 
\Ve discuss this boundary condition in combination with Stokes' equations. We 
note that if 1 -j:. 0, it is possible to scale the unit system such that 1 = 1. We 
also note that as only derivatives of the pressure p appear in Stokes' equations, 
we may assume p0 = 0 without loss of generality. We thus obtain the following 
boundary value problem: 

6.Q(.J..) = \1 p(.J..) 'V.J2.(~) = 0 

'b(.J..)2l(.J..) = -~ K(.J..)2l(.J..) 

~EG 

.J.. E oG 
( l.Sa) 

( 1.8b) 
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where 1 = 0, 1. A solution of this problem for 1 = 0 (no surface tension) a.nd 
n = 2 (two-dimensional flow) is given by: 

p(x, y) = 0 

where w, v1 and v2 are arbitrary consta.nts. Such a solution is called a. rigid­
body motion. lt is not difficult to show that rigid-body motions are the only 
solutions of the boundary value problem (1.8) with 1 = 0 ([72]) . As Stokes' 
equations are linea.r, this implies tha.t the solution of bounda.ry value problem 
(1.8) is determined up to a. rigid-body motion. The existence of solutions is 

trea.ted in e.g. [54]. 
In order to obtain a. model of the moving bounda.ry problem for Stokes flow 
driven by surface tension, the kinetic boundary condition has to be formulated. 

It is physically clear what this condition should be if the fluid can move freely : 
the bounda.ry moves according to the hydrodyna.mic velocity a.nd beha.ves a.s a. 
membrane. However , we postpone a. precise mathematica.! formula.tion in termsof 
Lagrange coordinates to Section 3.1 because some technica! details are involved . 
Here, we suffice with the following loose formulation: 

~Q({f,t) = 'Vp({f, t) 'V.Q({f,t) = 0 

'b({f, t)J1({f, t) = -11\:({f, t)Jl({f, t) 

V({f, t) = Q({f, t) 

tE f ,{fE Gt 

tE f,{fE àGt 

tEf,{fEàGt 

( 1. 9a) 

(1.9b) 

( 1.9c) 

where V denotes the velocity of the boundary. The moving boundary problem 
for Stokes flow driven by surface tension and multi-poles can be formulated in 
the same way. (That is the rea.son why we did not put 1 = 1: although the only 
solutions of problem (1.9) with 1 = 0 are the rigid-body motions, the solutions 
of the moving bounda.ry problem for Stokes flow driven by multi-poles are not 
trivia.l.) The moving bounda.ry problem ( 1.9) is called quasi-stat ic beca.use the 
dyna.mics only come in via. the kinetic boundary condition. A moving bound­
a.ry problem like this one is often stuclied in combination with in itia.! data given 
by a. doma.in Go. In most applica.tions, one is mainly interested in the sha.pe 
evolution t ---+ G1 of the salution of such a.n init ia] va.lue problem; the pressure 
a.nd velocity fields are of minor importance. We return to this pointinSection 3.1. 

Although this thesis a.ims to be a mathematica! study, we make some comments 
on the question under which physica.l circumsta.nces this model is a. good ap­
proximation. The most important reduction that is made is t he disregard of 
the gra.vitational and inertial forces . These forces a re negligible indeed if the 
dimensionless Suratman and Bond number are small (see [35, 12], see also [52]). 
However, a lot of other approximations are implicitly made: it is assumed that 
the fl.uid is Newtonian and perfectly incompressible, that the viscosity and surface 
tension coefficients are constant, that the London-Van der Waals forces can be 
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neglected, etc. Under which circumsta.nces these approximations can be justified 
inevitably remains somewhat arbitrary. Nevertheless, the analytic solutions of 

the moving boundary problem ( 1.9) obtained so far are in good agreement with 
experimental data ([37, 36, 94]). A good account of numerical solutions and their 
significanee for industrial applications can be found in [90]. 

1.2.3 Hele-Shaw flow 

Consicier an incompressible ftuid m a porous medium which accupies an open 
domain G C IRn where a souree of strength Q1 is placed at z;. = Q. If we assume 
that this ftuid is in hydrodynamic equilibrium with the ftuid in the outer domain 
under a uniform pressure p0 and if we neglect the viscosity terms, we get the 
following model: 

.Y.(z:.) = - 'Vp(z;.) 

p(z;.) = Po 

z;.EG 

z;. E àG 

(1.10a) 

(1.10b) 

As only derivatives of the pressure p appear in Darcy's equations, we may put 
p0 = 0 without loss of generality. It is not difficult to show that this boundary 
value problem has a unique salution by rewriting it as a Dirichlet problem for the 
pressure p (see also Section 3.4). 
If the fluid can move freely, we obtain the following quasi-static moving bound­
ary problem by formulating the kinetic boundary condition as in the previous 
subsection : 

.Y.(Z:., t) = - 'Vp(z;., t) 

p(z;., t) = 0 

V(z;., t) = .Y.(z:., t) 

tE I, z;. EGt 

tE I,z;.E àGt 

tE I, z;. E àGt 

(l .lla) 

(l.llb) 

(l.llc) 

We note that the strengthof the souree is admitted to be time-dependent. This 
problem is referred to as the rnaving boundary problem for Hele-Shaw flow. lts 
study has a long history ([39, 79, 77]); its applications concern ground-water flows 
and oil production ([16, 67, 62]) . 

1.3 Introduetion to Hopper and extended 
Löwner-Kufareev equations 

In Section 1.1 we stated that the study of Hopper equations in Chapters 4 and 
5 is the core of this thesis. Before we turn to the results of this study, we sketch 
the features of Hopper's equation, the equation for a time-dependent conformal 
mapping D which solves the rnaving boundary problem for Stokes flow driven by 
surface tension. We do not present this equation at this place because this would 
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require an introduetion toa lot of notational matters (we suggest the reader to 
take a glance at equation (3.17) at page 52). The right-hand side of this equation 
is an expression where the mapping n and its derivatives appear; the highest 
time derivative is of order one. The left-hand side is an unknown time-dependent 
analytic function 0. (In the origina.! artiele [35], in equation 22, the left-hand 
side is denoted by 1/J .) We stress that this function cannot be considered a. given 
function; it can only be determined a. posteriori. However , we know a.n important 
property of this function (): it is analytic on its doma.in for all fixed times . The 
origin ofthis property lies in the possibiüty to represent a. two-dimensional Stokes 
flow by analytic functions. 
At first, Hopper's equation doesnotseem todetermine the time evolution of the 
mapping D.: if we substitute a particular mapping D. at a fixed time, we obtain a 
relation between two unknown functions, namely () and ~~. However, the knowl­
edge that the function ()is analytic does seem todetermine the time evolution of 
the mapping D. in some way or another. In Hopper's own words ([35]) : " .. . the 
requirement that 1/J((, t) be a function analytic ... , determines uniquely D(O', t) 
and therefore D.((, t) . ... " 
This statement is based on Hopper's observation that if we make the Ansatz 
that nis a time dependent-polynomial -i .e. we substitute a parameterised time­
dependent polynomial in Hopper's equation- we obtain the time evolution of D. by 
requiring the function () to be analytic -i.e. wegetaset of differentia.l equations 
for the coefficients in the parameterisation . De Graaf eaUs this the "cancellation 
of singularities" ([30]) as the singularities in the various terms on the right-hand 
side of Hopper 's equation must compensate each other to make bath sides of the 
equation analytic. It is shown in Hopper's artiele that such a procedure also 
works if we make the Ansatz that D. is a partial fraction mapping. 
Inspired by these results, we showinSection 4.1 that the substitution of a properly 
parameterised rational function in a Hopper equation leads to a set of differen­
tial equations for the parameters by calculating Cauchy integrals and applying 
the residue theorem. We note that this result is a generalisation of the afore­
mentioned results in the sense that polynomial and partial fraction mappings are 
particular types of rational mappings and in the sense that Hopper's equation is a 
particular type of Hopper equation. Moreover, some of the differential equations 
found in this way by substituting a partial fraction mapping in a Hopper equation 
can be considered algebraic equations, i.e. they lead to conserved qua.ntities , and 
are therefore easier to handle then the equations found by Hopper (see e.g. [7] 
where it is also shown that bath sets of equations are equivalent) . 
Does the plain fact tha.t a Hopper equation fora rationat mapping is equivalent to 
a set of differential equations prove the existence of rational solutions? No, first 
it has to be shown that this set of equations is solvable. We do so after employing 
some theory of ordinary differential equations and some complex function theory 
in Section 4.2: Theorem 4.18 on page 78 states that the aforementioned set of 
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differential equations has a unique maximal solution under general conditions. 
As aresult we find that the moving boundary probieros for Stokes flow dri ven by 
surface tension and for Hele-Shaw flow have rational solutions. We note that this 
proves Hopper's conjecture on the existence of polynomial and partial fraction 
solutions ([35]). 
Although these results are satisfactory, one may expect globa.l solvability in some 
cases, for e.g. Stolces flow driven by surface tension and fo r Hele-Shaw flow with 
a source, i.e. Q1 > 0. However, a. rigorous proof of global solva bility of the set 
of differential equations obtained by substituting a rational function in the eer­
responding Hopper equations turns out to be complicated beca.use of technica] 
difficulties. This is illustrated in Sectien 4.3, where we prove this global solvabil­
ity for a special class of partial fraction mappings. This section also illust rates 
that the algebraic relations conesponding to the aforementioned conserved quan­
tities behave in a way one may expect . 

Let us take a breath for a moment and consider the results obta.ined so far. 
We may get the vague notion that Hopper equa.tions a.nd time-dependent ratio­
na] mappings are designed for each other. It is at least somewhat bewildering 
that the considerations in Chapter 4 are independent of the precise form of the 
Hopper equation and, remember, are also independent of the values of the an­
alytic function in the left-hand side. Together with these wonders, doubts may 
appear as it has not yet been shown for example that a rational mapping satisfy­
ing a Hopper equation cannot evolve into a non-rational mapping. Moreover: is 
there anything to state on the properties of non-ration al solutions? To put things 
even more insubstantially: can we mathematically understand the concept of a 
Hopper equation? 
In order to answer these questions to some extent, we introduce the extended 
Löwner-Kufareev equation: a first order partial differential equation of a certa.in 
type for functions which depend on a complex and a real variable. The name 
of this equation is based on the fact that the characteristics of this equation are 
determined by an ordinary differentia.l equation of exactly the same type as the 
ordinary differential equation which underlies the non-extended Löwner-Kufareev 
equation. We show in Section 5.2 that the singularities of a solution of a n ex­
tended Löwner- K ufareev equation move along these characteristics and cannot 
simply appear, disappear or change their nature (that is: a pole of order two 
remains a pole of order two, a branch point remains a branch point, etc. ). 
These results can be used to deduce properties of solutions of Hopper equations 
if we assume in advance that these solutions are very smooth, i.e. analytically 
extendable. More precisely, we show in Subsection 5.3.2 that a smooth salution Q 
of a Hopper equation corresponds toa solution of an extended Löwner-Kufareev 
equation and wethen show that this implies a rule for the propagation of singu­
larities of the mapping !1. In particular, we find that a smooth salution which is 
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rational at some fixed time must be rationa.l for all other times. The implications 
for the rnaving boundary probierus for Stokes flow driven by surface tension and 
multi-poles and for Hele-Shaw flow with a sou ree are as fellows. First of all , 
singularities of smooth solutions tend to move to infinity in a.ccordance with the 
belief that the domains occupied by the fluid s tend to become circular. Secondly, 
singularities of smooth solutions cannot simply appear, disappear or change their 
nature; this assertien can be considered as a guide on how to guess a proper 
Ansatz. Finally, rational solut ions exist and are unique in the class of smooth 
solutions. 
We stress that the relation between solutions of Hopper equ ations and of ex­
tended Löwner-Kufareev equ ations only appears if the solu t ion s of the Hopper 
equations are assumed to be analytically extendable. However, it is shown in 
Subsectien 5.3.3 that some of the properties mentioned auove can be deduced 
in another way by making assumptions of a different type. W hat we actu ally 
show is: a mapping that is almast linear, wh ich satisfies a Hopper equation and 
which is rational at some fixed time, is rational for all other t imes. We prove 
this assertien on the basis of the results obtained in Chapter 4 and on a. lemma. 
that states under which condit ions a linearized version of a Hopper equation ha.s 
a unique solution. This lemma itself is proved in Appendix C on the basis of a 
theorem on strongly continuous semi-groups of operators . 



Chapter 2 

Representations of Stokes 
Flows 

In this chapter we consider solutions of Stokes' equations: 

612_ =\lp. \1.12_ = 0 (2.1) 

in two and three dimensions (see also Subsection 1.2.1). It is we\1-known that 
a salution of Stokes' equations in two dimensions ca.n be represented by a pair 
of a.nalytic functions ([48, 45]). For the convenience of the reader we show in 
Section 2.1 how this result ca.n be obta.ined. The exposition is such that the 
generalisa.tions in the subsequent sections become better understandable: we 
show in Section 2.2 that an axially symmetrie salution of Stokes' equ at ions in 
three dimensions can be represented by a pair of what we wiU ca.ll deformed 
a.nalytic functions a.nd we showinSection 2.3 tha.t the general salution of Stokes' 
equa.tions in three dimensions ca.n be represented by a. pair of left monogenie 
functions. We fina.lly show in Section 2.4 how the representa.tions of the Sections 
2.1 a.nd 2.2 ca.n be used to rewrite bounda.ry va.lue problem (1.8). 

2.1 Two-dimensional Stokes flow 

Let G C IR2 be an open, simply connected doma.in a.nd let 12_ a.nd pon G sa.tisfy 
Stokes' equa.tions (2.1). As 12_ is solenoida.l a.nd a.s Gis simply connected, a. function 
'Ij; on G exists, called the stream function, such that 

Let D and D denote the Cauchy-Riemann and the anti-Cauchy-Riemann opera­
tors times two: 

13 
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The equations (2.1) are equivalent to the foUowing equations in complex nota.tion: 

DDv = Dp V= -Di'l/; (2.2) 

As the function pis smooth, a real function (J exists on G, which we wi\1 cal) the 
auxiliary function, such that 

p = !:o.(J = DD(J (2.3) 

It is clear that (J is not unique: if g is an arbitrary real harmonie function on G, 
then the function 

ij = (J + g (2.4) 

is also an auxiliary function, 1.e. ij satisfies f:o.ij = p. We defi ne the complex 

valued function F on G by 
F=(J+i'l/J (2 .5) 

It follows immediately from the relations (2.2),(2.3) and (2.5) that F satisfies 

DDDF = 0 (2.6) 

lt can be shown ([28]) that every smooth complex valued function f on a simply 
eonneeted domain G C JR2 satisfying 

can be written as 

n,m E IN 

n m 

J """' -k-1 + """' k - 1 -h = ~z 9k ~z k 
k = 1 k=1 

(2.7) 

(2 .8) 

where g~c, k = 1, ... , n and hk, k = 1, ... , m are analytie funetions; if n = 0 or 
m = 0, similar results hold. For n = 2 and m = 1 this implies tha.t there is a.n 
analytie function <p and a complex va.lued, harmonie funetion x such that 

F = z<p +x (2 .9) 

It follows immediately from relation (2.4) that the funetion F = ij+ i'l/; ean be 
written as: 

F = z<p +X+ g (2.10) 

Now we perfarm what physicists may call a gauge transformation: we ehoose the 
function g sueh that x = x + g is an analytie function (take g = i( -Im x+ x), 
where X denotes a harmonie conjugate of Re x). We omit the tildes a.nd find tha.t 
F ean be written as in formula (2.9) where <p and x are now bath analytic 
funetions. vVe eonclude tha.t every Stokes flow on an open two-dimensional, 
simply eonneeted doma.in ean be represented by a pair of analytie functions. 
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The relations (2.2),(2.3),(2.5) and (2.9) lead to the following expressions for p 
and Q: 

p = 4y1,x 

V] = Xy2,y - YIP1 ,y - Yl + X2,y 

V2 = Y'Y1 ,x - Xy2,x - y2 - X2,x 

(2.11) 

where IPI = Re ip, 1P2 = Im ip, etc .. These relations can be written m complex 
notation as 

p = 4Re ip1 V = -ip + Zip1 + X' (2.12) 

We also obtain the following expression for the matrix T conesponding to the 
stress tensor ( see expression ( 1.3)): 

T = ( -2CTyy 

2CTxy 
(2.B) 

Remark 2.1 It is easily checked that if lP and x are analytic functions on some 
open domain G C IR.2 , then the functions p, v1 and v2 defined by the relations 
(2.12) satisfy Stokes' equations. 

Remark 2. 2 One can obtain the same representations of Stokes flow in terms 
of analytic functions in different ways [30, 82, 45, 64]. One possible way to 
get the representation starts with the remark that the two rows of the matrix 
T conesponding to the stress tensor can be considered to be solenoidal vector 
fields . This implies the existence of functions r1 and r2 on G such that 

(2.14) 

The symmetry of the stress tensor -corresponding to the conserva.tion of a.ngula.r 
momenturn [55]- implies the identity r1 ,x = r2,y a.nd this in turn implies the 
ex.istence of a. function pon G, called the Airy function, such that 

The expressions (2.12) then follow aftersome other considerations [4.5] . 
We notice that the Airy function times two is a special auxiliary function: 

(2.15) 

(2.16) 

Substituting the relations (2.15) into identity (2.14) and camparing the result 
with identity (2.13), we come to the condusion that we gauged the auxiliary 
function such that it is twice the Airy function. vVe notice that it is also possible 
to gauge the auxiliary function for example such that x is anti-analytic or such 
that x is purely imaginary. 
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Remark 2.3 The constant and linear pa.rts of the Taylor series of the function s 
<pand x are not interesting from the dynamica! point of view. To illustrate this, 
we consider the special case: 

<p = az + b x= cz + d (2.17) 

with a, b, c, dE d7 and calculate the pressure and the components of the velocity 
by means of expressions (2.11). We ftnd 

So, linear representing functions correspond to rigid-body motions (see also Sub­
section 1.2.2). These relations also show that the functions <p and x are not 
uniquely determined by the pressure and the velocity. However, one checks that 
if we identify Stokes flows which differ only by a constant pressure and a rigid 
body motion and if we identify analytic functions which differ only by a linear 
function, then the correspondence between Stokes flows and pairs of analytic 
functions is one-to-one. 

Example 2.4 We consider a disc of radius R of viscous fluid with surface tension 
coefficient 'Y and density p rotating around the origin of the coordinates with a 
uniform angular velocity w. We have the following solution of boundary value 
pro blem ( 1.8): 

p( x ) y) = 'Y IR .:Q(x, y) = (w y - wxf 

So, the pressure is constant and the particles in the disc accelerate without the 
presence of a force in contradietien to Newton 's laws. This can happen because 
Stokes' equations have been derived from the Navier-Stokes equat ions by mak­
ing some approximating assumptions (see Section 1.2). Without neglecting the 
inertial force, the pressure in the rotating disc is found to be: 

We now remark that if wis relatively large, the approximations lead ing to Stokes' 
equations are not allowed as the inertial force is proportion al to w 2 . 

2.2 Axially symmetrie Stokes flow 

In this section we wil! study axially symmetrie solutions of Stokes' equations on 
aJdally symmetrie domains G C JR3 . We will show in Subsectien 2.2.2 that such 
solutions can be represented by what we will call deformed ana.lytic functions. 
We will explain in Subsectien 2.2.1 what deformed analytic functions are and 
which properties they possess. 
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2.2.1 Deformed analytic functions 

Definitions 2.5 A domain G C IR.2 is called symmetrie if (r, z) E G implies 
( -r, z) E G. A function f on a symmetrie domain G is called symmetrie if 
f(r, z) = f( -T, z) for all (T, z) E G. A function f on a symmetrie domain Gis 
called anti-symmetrie if f(r, z) =- f( -r, z) for all (T, z) EG. A pair p = (p1 p2 f 
of real differentiable functions p1 and P2 on an open symmetrie doma.in G is called 
a deformed analytic function if p1 is symmetrie, P2 is anti-symmetrie and if these 
functions satisfy the following equations on G: 

(2.18) 

We will call these equations the deformed Cauchy-Riemann equations. Wedefine 

the deformed Cauchy-Riemann operator D by 

D= 

and we define the operator D by 

Finally, we define the second order differential operators ](1 and ](2 by 

Remarks 2.6 The subset Ie = {(0, z) E G} of a symmetrie domain G is not 
empty, otherwise G would not be connected. In the following we wil! assume 
.Q E Ie. vVe notice that for every simply connected and symmetrie domain, the 

set Ie is connected. 
It is clear that a deformed analytic function p satisfies Dp = 0 by definition. 

Notice that at infinity (i.e. for r -+ ±oo ), the operator D corresponds to the 
Cauchy-Riemann operator àz times two, with (r, z) identified with (x, y). In the 
same wa.y, the operator D corresponds to 2i8z. The operator 

corresponds to two times the anti-Cauchy-Riemann operator Oz, but we wil! use 
this operator in the following only once. The reader can check for himself that a 
theory of differentiation and primitivation of deformed analytic functions -as we 
will present in this subsection- would fail if Dis regardless replaced by D. 
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Example 2.7 Let G C IR? be an open symmetrie domain su ch t hat Ie op IR . 
Let a E IR be such that (0 , a) rf. Ie. The fun ction p defined by 

is deformed analytic on G. 

Lemma 2.8 Let p = (p1 p2 f be a deformed analytic fun ction on an open, 
symmetrie domain G C IR2. Then p1 , P2 E C00 ( G) and P1 and P2 satisfy 

Pro of 
As p1 is a differentiable function on G, it can be considered as a di stribution in 

D'(G) (see e .g. [95]). Consiclering derivations in the sense of distributions, we 
find 

K1P1 =((ar+ 1/r)ar + a; )Pl = az ((ar + 1/ r)p2 + azPl ) = 0 

The operator ](1 corresponds to the Laplacian in three dimensions in cylindrical 
coordinates with the derivatives with respect to the azimuthal variabie rjJ omitted. 
So, ]( 1 is an elliptic operator and it follows that p1 E C00 ( G) [80]. I t is then easily 

checked that P2 E C00 (G) and K 2P2 = 0. D 

Lemma 2.9 Let G C IR2 be an open, simply connected and symmetrie domain. 

Ij a symmetrie ju netion P1 satisfies ]( 1 p1 = 0 on G, then a unique ju netion p2 

exists on G such that p = (p1 p2 )Y is a defo rmed analytic funct ion. Ij an an ti­

symmetrie function P2 satisfies K2P2 = 0 on G, then a fundion p1 exists on G, 
unique up to a constant, such that p = (p1 p2)T is a deformed analytic function. 

Proof 
We only prove the first assertien; the second assertion can be proved in a sim i lar 
way. 

Ex.ist ence . Let the symmet rie function p1 sa tisfy K 1p1 = 0 on G. One checks 
that the 1-form won G defined by 

w( r, z) = -razPl ( r, z )dr + rar Pl ( r, z)dz 

is closed , i.e. dw = 0. Because of this , a nd as G is simply connected, we can 
define a funct ion P2 on G by 

1 J(r ,z) 
P2 ( r, z ) = - w ( p, Ç) 

r (O,O) 
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without specifying the path of integration. One checks that p2 is wel! defined 
on Ie. One also checks that the function p2 is anti-symmetrie, differentiable and 
satisfies 

Uniqueness. Let P1 be a symmetrie differentiable function on G and let p2 and f52 

both satisfy equations (2.18) on G. lt follows that the function Q on G defined 

by 
Q(r,z) = r(p2(r,z)- f52(r,z)) 

satisfies 

and is therefore identical toa constant C. This constant C equals 0 as Q(O , 0) = 0, 

and it follows that P2 is identical to P2. D 

Lemma 2.10 Let p be a deformed analytic function on an open, simply connected 
and symmetrie domain G C IR2 . Then Dp is deformed _analytic on G. M oreover, 
a deformed analytic function P exists on G such that D P = p. 

We eaU ~Dp the derivative of pand we will denote this function as p'. We call 
2P a primitive of p. One easily checks that two primitives of a deformed regular 
function differ by a constant in the first entry. 
Pro of 
The first assertion immediately follows from Lemma 2.8 as 

- ( 0 DD = K, 

The proof of the second assertion runs as follows. With use of the deformed 
Cauchy-Riemann equations (2.18), it can be shown that the 1-forms w1 and w2 
on G defined by 

w1(r,z) = P2(r, z )dr+ p1 (r, z )dz 

wz(r, z) = -rp1(r, z)dr + rp2(r, z )dz 

are closed, i.e. dw1 = dw2 = 0. Because of this, and as Gis simply connected, we 
can define functions P 1 and P2 on G by 

J(r,z) 
P1 (r,z) = w 1 (p , Ç) 

(0,0) 

1 J(r,z) 
P2(r,z) =- w2(p,Ç) 

T (0,0) 

without specifying the path of integration. We notice that P2 is well defined on 
Ie, that P1 is symmetrie, that P2 is anti-symmetrie and that P1 and P2 satisfy 
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This implies that the function P = HPt P2f is deformed a.nalytic a.nd satisfies 

DP = p. 0 

The three lemma.s given above show that deformed ana.lytic functions possess 
properties which resembie the properties of analytic fu nctions. These properties 
will be used in the next subsection. We close this subsection by showing that 
also a kind of Weierstrass-approach to deformed analytica,! func t ions exists; that 
is: we will show that a deformed analytic function is a.na.lytic in the sense that it 
can be written as a kind of Taylor-series. 

Definitions 2.11 The polynomia.ls ln and mn for n E JN0 are defined on JR.l by 

( ) [~] ( -l)kn! 2k n-2k 

ln r,z = t'o (n- 2k)!(k!)24kr z 

[(n-1)/2] ( l)k+l 1 
""" - n . 2k+1 n -2k-1 mn ( r, z) = 6 2 k r z 
k=O (n- 2k- l)!(k!) 2(k + 1)4 

mo(r, z) = 0 

The functions Ln and m_n for n E JN on .IR2 /{(0,0)} are defined by 

2n- 1 2 2 -n 
Ln(r, z )= - 4 -ln-t(r,z)JrJ(r +z) 

n(2n-l) , 2 2 -n 
m_n(r,z)= ( )mn-t(r,z)JrJ(r +z) 

4n-1 
n # 1 

m_t(r,z)=O 

Finally we define for all n E ~ 

Proposition 2.12 The function Tn with n E JN0 is, up to a multiplicative con­
stant, the only deformed analytic function homogeneaus on JR2 of order n. lts 
derivative is given by 

T~ = nTn-1 

Moreover, we have for all n, k E JN0 and all R > 0: 

Pro of 

j Tn · T-(k+l) ds = (2 - Óno)Ókn 
J(r,z)J=R 

(2.19) 

(2.20) 

The polynomial ln, n E lNo is homogeneaus of order n and satisfies ](1ln = 0. 
(The definition of ln, nElNis obtained from LapJace's representation of harmonie 
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polynomials in JR3 , see e.g. [60]) . As /(1 is the La.placian in three dimensions with 
the derivatives with respect to the azimuthal variabie <P omitted , and as there is 

-up toa multiplicative constant- only one harmonie polynomial of order n E JN0 

on JR3 independent of the variabie <P, the polynomia.lln is -up toa multiplica.tive 

constant- the only homogeneaus polynomial of order n sa.tisfying J(1ln = 0. The 
first a.ssertion now follows from Lemma. 2.9 and the ea.sily established rela.tion 

1 lor mn(r,z)=--Oz pln(p,z)dp 
r o 

Relation (2.19) can be checked by differentiation . 

The polynomials Pn, n E lNo and Rn, n E INo defined by 

Pn(t) = ln( Jl=ti, t) 
Rn(t) = -2(1- t2t 112mn+1 ( Jl=ti, t) 

n E Il1lo 

tE[-1,1] 

tE[-1,1] 

are the Legendre and the Jacobi polynomials (with a= (J = 0) norma.lized in the 
standard way (see e.g. [84]). We have the following orthogonality relations: 

j l 2 
Pn(t)h(t) dt = -- Ónk 

-1 2n + 1 

j l 2 8(n+1) 
Rn(t)Rk(t)(1- t ) dt = ( )( ) Ónk 

-1 2n+3 n+2 

for all n, k E IN0 . Noticing that the functions Ln and m_n for n E IN are 
homogeneaus of order -n, we get from the first orthogonality relation for all 
n, k E JN0 and all R > 0: 

j lnl_(k+l} ds 

l(r,z)I=R . 

= 1: ln(Rcos <P, Rsin <P)l-(k+l}(R cos <P, Rsin <P)R d<P 

= 2k+ 1 Rn-(k+l)+lj1f ln(cos<P,sin<P)lk(cos <P, sin<P)Icos<PI d<P 
4 -1f 

= 2k + 1 Rn-k jl ln( Jl=ti, t)lk( ~' i) dt = Ónk 
2 -1 

In the sa.me way, we get for all n , k E INo and all R > 0: 

j mnm- (k+l) d.s = bnk( l - bno) 
j(r,z}I=R 

These last two identities lead to identity (2 .20). 0 
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Proposition 2.13 Let p be a deformed analytic fundion on the open disc ER , 
R > 0. The Ju netion p can be represented by a series 

00 

p = L CkTk (2.21) 
k=O 

that converges uniformly on each disc ER' with R' < R. The r:oefficients are 
given by: 

k E INo (2.22) 

Pro of 
We start by making some estimates. As IPk(t )i < 1 for all /.,; E INo and all 
t E [ -1, 1], we have 

k E INo (2.23) 

This leads to the following (non-sharp) estimate for mk>k E IN0 : 

and to the following estirnate for l_k> k E IN: 

(2.25) 

Let p = (p1 p2 )T be a deformed analytic function on ER, let R' < R and 
choose R" such that R' < R" < R. As Pt satisfies KtPt = 0 on ER, this 
function p1 corresponds toa harmonie function pon the bal! ËR = {(x, y, z) E 

JR3 I x 2 + y2 + z2 < R}. The function p can be represented by a series of 
hornogeneous, harmonie polynomials that converges uniformly on ËR" ([60]). 
This corresponds to a representation of p1 on ER" by a series 

00 

Pt = L Cklk 
k=O 

with Ck = J Pt l_(k+l) ds 

](r ,z)I=R" 

It follows straightforwardly frorn inequality (2.23) that 

k E INo 

where M denotes the maximurn of jp1 j on ER" · It follows from inequality (2.25 ) 
that for all (r,z) E ER' 

ICklk(r,z)l < rrM(k + l)(R'/R")k = a~o 
lkcklk-t(r,z)l < rrMk(k+ l)R'-1(R' / R")k = bk 

k E !No 

k E IN 
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where the positive numbers a~:, k E !No and bk. /;; E IN are such tha.t the series 
Lk=O a~: and 2::~1 bk both converge. Hence, we ca.n a.pply Weierstrass' criterion 
for uniform convergence of a series of functions ([46]) a.nd find tha.t the series 
I:~o ckh and Lk=l kcklk converge uniformly on BR'· By means of th is result, 
some sta.ndard theorems from analysis a.nd Lemma 2.9, wethen get for all (r, z) E 

ER': 

(r, z) 

P2( r, z) = ~ j -paçpl (p, Ç) dp + pappl (p, Ç) d~ 
(0,0) 

= -~] paz (fCklk(p, z) ) dp = -~] p (fkcklk-l(p, z) ) dp 
o k=O o k=l 

= f:_ck (-~Oz] plk(p,z)dp) = fCkmk(r,z) 
k=l o k=O 

One then argues, using inequality (2.24) and the arguments given above, tha.t 
the series in the right-hand side converges uniformly on ER'· We conclude that 
the series in relation (2.21) also converge uniformly. Expression (2.22 ) follows 
straightforwardly from relation (2.19). D 

Remark 2.14 One checks that the coefficients in relation (2.21) arealso given 
by the following Cauchy-type integrals : 

However, a Cauchy-üke approach to the theory of deformed ana.lytic function does 
not exist; the relation a.bove for example does not hold if the path of integration 
is not circular. 

2.2.2 Axially symmetrie solutions of Stokes' equations 

In this subsection we show that it is possible to represent axially symmetrie so­
lutions of Stokes' equations in terms of deformed analytic functions. First we 
explain what we mean by axially symmetrie solutions of Stokes' equations. 
A domain GE IR3 is called axia.lly symmetrie if we can choose cylindrical coor­
dinates (r,l/>,z) such that - after re-coordination of G- we have: (r, l/>,z) EG if 
and only if (r,O,z) EG for all!/> E (-1r,1r]. Solutions of Stokes ' equations (2.1) 
on an ax.ially symmetrie domain G are called axially symmetrie if the function 
p and the components vTl v,p and V z of Q with respect to the orthonormal basis 
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{8r, ~8,p, az} do HOt depend on the variabie ~· Stokes' equa.tions then get the 
following form (see also equations (1.2)): 

Vr,zz - Vz,rz = P,r 

V,P,rr + V,P,zz + (v,pjr)r = K2v,p = 0 

Vz,rr - Vr,rz + ( Vz,r - Vr,z) Ir = P,z 

Vr,r + Vr/r + Vz,z = 0 

(2.26a) 

(2.26b) 

(2.26c) 

(2.26d) 

Since the component v,p decouples, we come to the following definition. 

Definition 2.15 Functions p, Vr and V2 on an open symmetrie domain G C IR2 

are said to satisfy Stokes' equations with ax.ial symmetry if they are sufficiently 
smooth, if pand V2 are symmetrie, if Vr is anti-symmetrie and if they sa.tisfy the 

equations (2.26a), (2.26c) and (2.26d). 

Theorem 2.16 Ij p,vr and V 2 satisjy Stokes' equations with axial symmetry on 
an open, simply connected and symmetrie domain G, then deformed analytic 
junctions <p and x exist such that 

P = -4ip],z 

Vr = T'P2 ,r - Zip2,z - 'P2 + X2,z 

Vz = Tip] ,r - Z ip] ,z + ip] + Xl ,z 

(2.27) 

Conversely, ij 'P and x are dejormed analytic junctions on an open domain G, the 
junctions p, Vr and V 2 given by the expressions (2.27) satisfy Stokes' equations. 

Pro of 
The second assertion is easily proved by differentiation. The first assertion is 
proved as follows. Let p, Vr and V 2 satisfy Stokes' equations with ax.ial symmetry 
on an open , simply connected and symmetrie domain G C IR2 . One ea.sily shows 
that it follows from rela.tion (2 .26d) that an anti-symmetrie function 'Ij; exists on 
G such tha.t 

1 
Vz = -(8r +-)'Ij; 

r 
(2.28) 

Substitution of these relations into equations (2.26a.) and (2.26c) leads to 

(2.29) 

Hence, if we define 

(2.30) 

we find that (p qf is a. deformed analytic function onG. It follows from Lemma 
2.10 tha.t functions 'PI and ip2 exist on G such that the function <p = ( ip1 <p2f 
sa.tisfies 

Dip= o - 1 T 
D<p= --(p q) 

2 
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Lemma 2.8 then implies 

q + ( 8r(8r +~)+a;) (npl + zcpz) 

q + 2(8rcpl + Dz cpz) = 0 

So, a deformed ana.lytical function x= (x1 xz)T on G exists such that 

25 

We remark that it follows from Lemma 2.10 that a deformed analytic function x 
exists such tha t 

-1 I x=x-cp 
The relations (2.27) are now obtained by omitting the tilde and stra.igh tforward 
substitutions and differentiations . 0 

Remarks 2.17 If we identify deformed analytic functions which only ditTer by 
the first two termsin expansion (2.21) and if we a.lso identify axially symmetrie 
solutions Stokes' equations which only ditTer by a uniform pressure and a uni­
form velocity in the z-direction, then the correspondence between pairs ( cp, x) of 
deformed analytic functions and axially symmetrie solutions of Stokes ' equa tions 
is one-to-one (see also Remark 2.3) . 
We further notice that if we substitute <p = -iep into relations (2.11) , omit the 
tilde and rearrange some terms, the resulting relations are completely analogous 
to relations (2.27). 

We end this subsection by a discussion about the generalization of the concept 
of the Airy-function for axially symmetrie Stokes flows. The easiest way to prove 
the existence of the Airy-function in the two-dimensional case was explained in 
Remark 2.2. We cannot copy the line of reasoning in the axially symmetrie case 
as the rows of the matrix conesponding to the stress tensor cannot be considered 
as solenoidal vector fields. The reason for this is that not all Christoffel symbols 
vanish and, loosely speaking, the components of this tensor (with respect to 
the basis {8r, ~8q,, 8z} and its dual) mix up when one cakulates T j;·i (where 
i,j = 1,2,3 correspond to the variables r,i/J and z; see also identity (2.64)). 
However, we can introduce a kind of Airy-function basedon the similarity of the 
identities given in Section 2.1 and the following identities. 
Let a be a function on G such that 

(2.31) 

It follows from relations (2.29), (2.30) and (2 .31) that the function F on G defined 
by 
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satisfies DDDF = 0 (see Remark 2.6). A part icular salution of equation (2.31) 
is given by 

(J" = -z<pl + r<p2 + Xl 

as can be checked by differentiation. This particular auxilia.ry function (J" has the 

property that the function F can be written a.s 

F = U<p +x 

where 

( -z r ) 
u= -r - z 

The comparison of this result with relation (2.9) inspires us to define the Airy­

function in this case a.s 

p = (J" /2 = ( -z<p1 + r<p2 + xi)/2 

We wonder whether this function has any physical interpretation. 

2.3 Three-dimensional Stokes flow 

In this section we show that a salution of Stokes' equa.tions on a dornain G C JR3 

can be represented by a pair of 1eft monogenie functions if this domain G has 
a property which we wi11 call x-normality. In Subsection 2.3.1 we give a short 
intrad uction to the notatien of Clifford analysis ( [13, 22, 21]), recapitu late the 

definition of a left monogenie function and show how Stokes ' equations can be 
written as a third order differential equation . In Subsection 2.3 .2 we give the 
general salution of a class of differential equations, one of which is the mentioned 
third order differential equation. We show in Subsectien 2.3 .3 how this result 
can be used to represent Stokes flows in three dimensions in terms of two left 
monogenie functions. 

2.3.1 Clifford Analysis 

The Clifford algebra Clo,2 is algebraically isomorphic to the algebra IH(IR) of 
quaternions over IR, although its structure is slightly richer (it turns out to be a. 
graded algebra). Insteadof using the quaternionic syrnbols i,j and k we write 
e1, e2 and L. So, the set C lo,2 is a real four-dimensional vector space spanned 
by the basis {1,e1,e2,L}. The Clifford product is denoted by juxtaposition. The 
Clifford product of two elements in C l0 ,2 can be calculated by the following rules: 

• the Clifford product is linear 

• 1 is the identity 
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• the products of the elements e1 , e2 and L is given by 

2 2 2 e1 = e2 = L = -1 

An element A = Ao + A1e1 + A2e2 + A12t E Clo,2; Ao, A1 , A2, A12 E IR can be 
decomposed in what is called the scalar part, the vectorial partand the bivectorial 
part: 

A = (A)o + (A)J + (A)2 

(A)o = Ao 

The operation of grade involution is defined by 

A= (A)o- (Ah+ (A)2 

The Cl0 ,2-valued differential operators D and D are defined by 

The operator D is called the generalized Cauchy-Riemann operator. We notice 

that 

DD = DD = t. (2.32) 

A differentiable Cl0 ,2-valued function f on an open domain G C JR3 is called 
(anti- )left monogenie if it satisfies 

DJ= 0 (Dj= 0) 

One checks that this equation is equivalent with the following, so-called general­
ized Cauchy-Riemann equations: 

Jo ,x - f1 ,y - h,z = 0 
h.x + fo,y + h2,z = 0 
fz.x- h 2,y + Jo,z = 0 
!J2,x + Jz,y- h,z = 0 

We wil! now rewrite Stokes' equations (2.1) in three dimensions in the nota­
tion of Clifford analysis by means of an auxilia ry function. Let G C JR3 be an 
open 2-connected domain and letpand Q be smooth fu nct ions sat isfy ing Stokes' 
equations on G. As Q is a solenoidal vector-field , a vector-field:!:._ on G exists such 
that 

(2 .33) 
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where \7 A '}k denotes the curl of '!k· This vector-field '}k is determined up to a 
gradient of a function and it is easily shown that this function can be chosen such 

that 
(2.34) 

The vector-field '}kis still not unique. If fis a real harmonie function on G, then 
the vector-field 

(2.35) 

also satisf\es the relations (2.33) and (2.34) with '}k replaced by i 
As the function pon G is smooth, a real function IJ on G exists, which we will 
call the auxiliary function, such that 

p :::: Ó.IJ (2.36) 

It is clear that IJ is not unique: if gis an arbitrary real harmonie: function on G, 
then the function 

(2.37) 

is also an auxiliary function , i.e. a satisfies D..a :::: p. 

Next we identify the veetors :Q and '}k with the Clo,2-valued functions v and 'Ij; in 
the following way: 

The equation Ó.:Q = \i'p and the relations (2.33), (2.34) and (2.36) c:an then be 
written as 

DDv:::: Dp v=-D~"P p=DDIJ (2.38) 

It follows immediately from these relations that the function F def\ned by 

F = IJ + ~"p (2.39) 

satisfies 

DDDF = 0 (2.40) 

(see also equation (2.6)). 
lnspired by the results of the previous sections, we ask the following two ques­
tions. First, is it possible to give the general salution of equation ( 2.40) in terms 
of left monogenie functions? This question is answered affirmatively in the next 
subsection. Y..le are then able to represent Stokes flowsin termsof t hree left mono­
genie functions. However, we already remarked that there is some arbitrariness in 
the functions 'Ij; and IJ. This leads to the second question: is it possible to choose 
the functions 'Ij; and IJ such that the mentioned representation of Stokes flows 
can further be reduced? This question is answered affirmatively in Subsection 
2.3.3 where we show that Stokes flows can be represented by two left monogenie 
functions under general conditions. 
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2.3.2 Solutions of DnYJ' f = 0 

In the previous subsection we met the pa.rtia.l differential equation (2.40), where 
Fis a Cl0 ,2-function on an open domain G C IR3 . In this subsection we consider 
the following, more general equation: 

n, mE !No (2.41) 

It turns out that if we lay geometrie restrictions on the Jomain G, then the 
general solution of this equation can be represented in terms of left monogenie 
functions (see also [44]). 
As we already remarked in the previous subsection, left monogenie functions 
are a kind of generalization of analytic functions. In order to make things better 
understandable, we will explain in which sense the propositions in this su bsection 

are generalizations of well-known results on analyt ic functions . For example, 
it is well known that every analytic function has a primitive. In the notation 
of Subsection 2.1 , this means that for every function f on a simply-connected 
domain G that satisfies D f = 0, a function F exists such that 

DF= j DF = 0 

Th is function F can be constructed by a line integral. However , a generalization 
of the concept of primitive functions for left monogenie functions on a doma in 

G c JR3 cannot be based on line integrals. The reason for this is that, roughly 
speaking, left monogenie functions correspond to closed 2-forms and s urface inte­
grats a re therefore preferred above line integrals; see for instanee the generalized 
Cauchy theorem ([22]). This explains why we wil! construct left monogenie prim­
itives in a somewhat different way and why we have to put restrictions on the 
geometry of the underlying domains. 

Definition 2.18 A domain G C IR3 is called x- normal if a plane V : x = a exists 
such that: 

i). V n Gis simply connected 

ii). every line segment connecting a point in G with its orthogonal projection 
on V lies entirely in G 

We note that an x-normal domain is 2-connected. We also note that for ev­
ery axially symmetrie domain which is homeomorphic to a bal! , one can choose 
coordinates such that G is x-normal. 

Proposition 2.19 Let f be a left monogenie function on an openx-normal do­
main G C IR3 . The function D f is left monogenic. Moreover, a left monogenie 
function F on G exists sueh that 

DF= j (2.42) 
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We call D f the derivative of f and Fa primitive of f . 
Proof 
The first assertien follows immediately from identity (2.32) - which implies that 
D and D commute- and the remark that every left monogenie function on a 
domain G is in C 00 ( G) ([13]). The proof of the other assertien runs as follows. 
Let 

(2.43 ) 

be a left monogenie function on G. We wil! prove the existence of functions P, 
Q1 , Q2 and R on G such that the function F defined by 

(2.44 ) 

satisfies 

DF = 0 DF = j (2.45) 

Let V : x = a be the plane to which respectGis x-normaL Consicier the following 
Poisson equation for a real function h on V n G: 

D.h(y, z ) = h,yy(y, z) + h,zz(Y, z) = -q2,x(a , y , z) 

= Pz (a,y, z )- ry(a,y, z ) 

where one ofthe generalized Cauchy-Riemann equations has been used. It can be 
proved ([20]) that as -q2,x E C 00 (V n G), a smooth salution h of this equation 
exists. Next, consider the following set of coupled partial differential equations 
for a real, differentiable function h on V n G: 

!I,y(y ,z) = p(a,y,z)- h,z(y, z ) 

h,z(Y, z) = r(a, y, z) + h,y(y, z) 

One proves by elementary methods that a salution h exists because V n G is 
simply connected and because the condition of compa.tibility is satisfied: 

(p- h,z)z = Pz- h,zz = Pz + h,yy - Pz + ry = (r + h,y )y 

As Gis x-normal, we can define functions Q1 and Q2 on G by 

Q;(x , y, z ) = /;(y , z) + 1x qi(C y, z)df, i= 1, 2 

Using the generalized Cauchy-Riemann equation again, one checks: 

Ql,x = q1 
Q2,x = q2 

QJ ,y + Q2,z = P 
-Q2,y + QI,z = r 

(2.46) 
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In the same way, one constructs functions Pand R satisfying 

Py + Rz = -q1 

-Ry + Pz = -q2 
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(2.47) 

The relations (2.45) follow after substitution of the relations (2.46) and (2.47) 
into identity (2.43). D 

Remark 2.20 As the grade involution of a left monogenie function is anti-left 
monogenie (Dj= 0 =?Dj= DJ= 0), it follows immediately from Proposition 
2.19 that for every anti-left monogenie function jon an open x-norma.l doma.in 
G, an anti-left monogenie function F exists on G such that DF = j. 

Remark 2.21 lt has already been remarked that Proposition 2.19 is a gener­
alization of the theorem which states that every a.nalytic function on a simply 
connected domain G C C has a primitive. The reverse of this statement is also 
true: a connected domain G C C which possesses the property that every ana­
lytica! function on G has a (single-valued, analytic) primitive function on G is 
simply connected. One therefore may ask whether domains G c JR3 exist which 
are notx-normal but do possess the property that every left monogenie function 
on it has a primitive. We give a pa.rtial answer to this question in Appendix A. 

Proposition 2.22 Let n and m be two integersnot both equal to zero, let G C JR3 

be an open x-normal domain and let j be a smooth Cl0 ,2 -valued function on G 
satisjying 

Dn1J j = 0 

Then left monogenie functions gk, k = 1, ... , n and hk, k 
such that 

n m 

j = L xk-1 gk + L xk-1 hk 
k=1 k=l 

Pro of 

(2.48) 

1, ... , m on G exist 

(2 .49) 

The assertions for n = 1, m = 0 and n = 0, m = 1 are trivia!. The assertion for 
an arbitrary pair n , m canthen be proved by two inductîons. Only the following 
step is proven: we assume that the assertion in the proposition holds fora certain 
pair n, mand show that ît holds also for the pair n, m + 1; the other induction 
step can be proved in a similar way. 
Consider the equation 

We assume that left monogenie functions gk> k = 1, ... , n and hk> k 1, ... , m 
exîst such that 

n m 

Dj= L xk- 1 gk + L xk-I hk (2 .50) 
k=1 k=1 
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With the aid of Proposition 2.19, one argues that a set of left monogenie fun c­
tions Gk, k = 1, .. . , n exists satisfying the following n coupled pa.rtial differential 
equations: 

DGn = gn 

DGk + kGk+1 = gk k = l, ... ,n-1 

We check that the function F defined by 

n m+1 k-1 
~ k-1 ~x -

F = 0 x Gk + 0 -k- hk-1 - 1 
k=1 k=2 

(2.51) 

is a particular salution of equation (2.50): 

n 

DF = 2: ((Dxk-l )Gk + xk- 1 DGk) 
k=1 

+ Ë ((n :~~)hk-1 + ;~~ Dhk-1) 
k=2 

n m+1 

2: ((k- 1)xk-2 Gk + xk- 1 Dek) + 2: xk-2 hk-1 
k=1 k=2 
n-1 m + 1 

2: ( kxk-1 Gk+1 + xk-1 DGk) + xn-1 DGn + 2: xk-2 hk-1 
k=l k=2 

n m 

2: xk-1 gk + 2: xk-1 hk 

k=1 k=l 

Hence, a left monogenie function h0 exists on G such that: f = F + h0 . One 
checks that the substitution of this relation into identity (2.51) corresponds to 
relation (2.49) with m replaced by m + 1. 0 

Remark 2.23 The reverse of this proposition also holds: a function f that can 
be written in the form of expression (2.49) sa.tisfies equation (2.48). This can 
easily be verified. 

Remark 2.24 It has been remarked in Section 2.1 that every smooth complex 
valued function f on an open simply connected domain G C IR.2 satisfying equa­
tion (2.7) can be written as in expression (2.8) . It then follows that such a. 
function f a]so can be written a.s 

n m 

f = 2: xk- l gk + 2: xk-l hk 
k=l k = l 

where 9k,k = 1, .. . ,n and hk,k = l, .. . , m are analytic functions. This expres­
sion correspon ds to expression ( 2.49). 
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Remark 2.25 Special cases of Proposition 2.22 are: 

• n = m = 1: a Clo,2-valued harmonie function f can be written as the snm 
of a left monogenie function 9 and an anti-left monogenie function h. If fis 
a. real harmonie function, it is the scalar part of a left monogenie function. 
Compare this result to Proposition 8.6 in [13], where it is shown that every 
real harmonie function on a sta.r-shaped domain can be written a.s the scalar 
part of a left monogenie function. 

• n = 2, m = 1: the general solution of equation (2 .40) m the previous 
subsection is given by 

F = x91 + 92 + h (2.52) 

where 91,92 and h are left monogenie functions. 

• n = m = 2: one easily obtains a representation of biharmonic, real or 
Cl0 ,rvaJued functions in termsof left monogenie functions. 

Remark 2.26 The functions 9k, k = 1, ... , n and hk, k = 1, ... , m in relation 
(2.49) are not uniquely determined. In order to answer the question to which ex­
tent these functions are determined, weneed the general solution of the following 
equations for a smooth function f: 

75"j=Df=O n E IN (2 .53) 

For example, let 91 , 92, h, !h, !h and h be left monogenie functions on an open 
( x-normal) domain such that: 

(see also relation (2 .52)). Applying the operators DD, D and D 2 to bath sicles 
of this relation, we get: 

-2 
D (92 -!h) = 0 

The general solution of equation (2.53) is given in [45] but we wil! not elaborate 
on this result. 

2.3.3 Representations of Stokes flows 

We show in this subsection how the results of the previous subsections can be 
used to represent solutions of Stokes ' equations three dimensions by a pair of left 
monogenie functions ( see also [ 66, 48]). 
Let pand v satisfy Stokes' equations on an open x-normal domain G C JR3 and 
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let a, 1/J and F be as in relations (2.38) a.nd (2.30). It follows from equation (2.40) 
and Proposition 2.22 that F can be written as 

F=xso+x (2.54) 

where <p is a left monogenie function and where x is a Clo,z-valued harmonie 
function. We already remarked in Subsection 2.3.1 that if f and g are real 
harmonie functions on G, then the functions -J; and a defined by: 

(2.55 ) 

play the same role as 1/J and a . It is clear that the function F defined by 

can be written as 

F = xso + x + g + ~n J (2.56) 

Now we want to follow the strategy explained in Subsection 2.1; tha.t is: we want 
to choose f and g such that the function x defined by 

X= X+ 9 +~DJ (2.57) 

corresponds to a. left monogenie function. It turns out that it is impossible to 
gauge f and g such that x is a left monogenie function but we will show that 
these functions can be chosen such that x is anti-left monogenic. Wethen omit 
the tildes and find that F can be written as in relation (2.54) where cp is a left 
monogenie and x is an anti-left monogenie function. So, the next lemma remains 
to be proved. 

Lemma 2.27 Let x be a Clo, 2 -valued harmonie function on an open x-normal 
domain G C JR3 . Then real harmonie functions f and g on G exist such that 

D(x + g + ~ D!) = 0 (2.58) 

Pro of 
We decompose x in the sta.ndard way: 

Let V : x = a be a plane to which respectGis x- normaL It is possible to construct 
functions 91 and F1 on G n V satisfying the following Poisson equations: 

~91(y,z) = (Xo,xx + X1,xy + Xz,xz )l(a,y,z) 

~FI(y, z) = (X12,xx- XZ ,xy + Xl,xz)l(a,y,z) 
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We define a function CJ on G n V by 

ClJ(y,z) = (Xl,x - Xo,y- X12,z)l(a,y,z)- 91 ,y(y,z)- Fl, z( y,z) 

Clz(y, z) = (Xz,x + X12,y- Xo,z)l(a,y,z)- gl ,z(Y, z) + Fl,y(y, z) 

CJ(y, z) = a1 (y, z)- ~CJz(y , z) 
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One checks that CJ is an analytic function of the variabie w = y + 1. z. As G n V 
is simply connected, functions gz and Fz on G n V exist such that 

gz,y = Fz,z = CJl/2 

As G is x-normal , we can define functions g and F on G by 

g(x,y, z) = - 1x(Xo,ç + Xl,y + Xz,z)l(f..y, z) df, + gl(y,z) + g2(y, z ) 

F(x, y, z) = -1x (X12,(- Xz,y + Xl,z)l(~,y,z) df, + F1 (y , z) + Fz(Y, z) 

The following identities can then be checked by differentiation : 

6.g = 6.F = 0 
g,_. = -(xo,x + Xl,y + XÎ,x) Fx = -Xl 2,x + X2,y- Xl ,z 
gy + Fz = Xl,x- Xo,y - X12, z gz - Fy = Xz,x + X12,y - Xo,z 

(2.59) 

Finally, one shows that it is possible to construct a harmonie function f on G 
such that fx = F /2. The identity (2.58) follows from this relation and the rela­
tions (2.59). D 

We are now able to formulate our final result, which can be compared with the 
results obtained in Sections 2.1 and 2 .2. 

Theorem 2.28 Let p and v be smooth functions satisfying Stokes'equations on 
an openx-normal domain G C IR3 . Then left monogenie functions <p and x exist 
on G such that 

P = 2tpo,x 
VJ = X<po,x - Xo,x 
Vz = X<po,y- </)1 - Xl,x- X12,z 

V3 = Xtpo ,z - <pz - X2,x + X12,y 

(2.60) 

Conver·sely, ij <p and x are left monogenie functions on an open domain G C JR3 , 

then the functions p,v1 ,v2 and V3 given by the expressions (2.60) satisfy S tokes' 
equations. 

Pro of 
The proof of the first assertion runs as follows. Let p and v satisfy Stokes ' equa­
tions on G. We showed in the beginning of this subsection that left monogenie 
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functions r.p and x on G exist such that: 

F = !7 + L'I/J = xr.p +X 
p = 6..!7 

The expressions (2.60) follow from these relations. The second a.ssertion can be 
proved by a straightforward differentiation of the rela tions (2.60) in combination 
with the generalized Cauchy-Riemann equations. D 

We end this subsection by remarking that the relation between solutions of Stokes' 
equa.tions and pairs of left monogenie functions is not one-to-one; there are a 
lot of pairs of left monogenie functions which correspond to the trivia.! salution 
p = v = 0 ([45]). The problem which pairs of left monogenie functions correspond 
to the solution where pis constant and v is a rigid-body motion is unsolved. 

2.4 Thaction formulae 

In this section we rewrite the boundary value problem (1.8) in the axially sym­
metrie case with the use of the representations obtained in Section 2.2 . We also 
state the analogous, known result in the two-dimensional case. 

Let G C JR3 be an a.xially symmetrie domain and let V denote the closed half 
plane cjJ = 0 including the z-axis (see Section 2.2). We assume that G contains 
the origin Q, that G is 2-connected and that 8G is a. compact C2-surface. This 
implies that the intersection G of G and V is connected and simply connected 
and tha.t the intersection 1 of 8G and V is a compact C2 -curve. (This curve 
has of course nothing to do with the surface tension coefficient which was also 
denoted by 1 in Chapter 1) . 
Let p, Q E C 2 ( G) sa.tisfy Stokes' equations on G and sa.tisfy the bounda.ry condi­
tion 

;ç, E ac (2.61) 

(see also Section 1.2). It follows from symmetry considerations that pand Q do 
notdepend on the variabie cjJ and it therefore suffices to solve equa.tion (2.61) for 
points ;ç_ on I· 
First we give an expression for the right-hand side of relation (2.61) for points ;ç_ 

on I· Let 1 be parameterized by its arclength s such that r(O) = 0 and z(O) < 0. 
Let ;ç_ = (r(s),O,z(s)) denote a point on I· As the basis n = {8r, ~8,p , 8z} is 
orthonormal, we get the following expression for the outward pointing normal 
vector J1(;ç_) at ;ç_ with respect to this basis n: 

:11(;ç,) = (z(s) o - r(s)f (2.62) 
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where the dot denotes differentiation with respect to s. Let W : z = z( s) be the 
plane through the point~ orthogonal to the z-axis. It is clear that the radius of 
the circle in this plane with cent re ( 0, 0, z( .s)) through the point ::1:. is T( s). It is also 
clear that the inner product of the normal vector of Wand the normalized vector 
tangent to 'Y at ~ is i( s). Together with some standard differen ti al geornetry 
([83]), this leads to the following expression for the right-hand side of relation 
(2.61): 

( 
r(s)- WJf ) 

-~<;;(~) ~(~) = 0 . 
""()+~ Z S r(s) 

~ = (T(.s), 0, z(s)) E 'Y (2.63) 

Next we consider the left-hand side of relation (2.61). The components of the 
matrix T conesponding to the stress tensor b with respect to the basis a and its 
dual are given by expression (1.3): 

( 
-p + 2Vr,r r( ~ ),r Vr ,z + Vz,r ) 

T = r('!!:é.) -p + ~ v-~. r ,r r ~.JJ , Z 

Vr,z + Vz,r V,P,r -p + 2Vz,z 

(2.64) 

Substituting the representations found in Section 2.2 and using identity (2.62), 
we find the following expression fortheleft-hand side of relation (2.61): 

(2.65) 

where ~(.s) = (r(.s) , O,z(.s)) E "( and where tn denotes differentiation in the 
direction of the normal vector .!l· 
Now we substitute identities (2.63) and (2.65) into equation (2.61) , integrate and 
find the following relations: 

Vr(~(.s)) + 2cpz(~(.s)) = i(s)/2 

v,p(~(s)) = ar(s) 
s 

vz(~(s))- 2cp1(~(s)) = -r(s)/2 + 2 j cpz(.~-:~;ji(a) da + (3 

0 

(2.66a) 

(2.66b) 

(2.66c) 

where a and f3 are arbitrary real constants. We cal! equations (2.66) traction 
formulae. It follows from Remark 2.17 that we may take a= f3 = 0 without loss 
of generality. 
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Remark 2.29 Let l denote the lengthof Î· For each sE [0 , l] we ca.n define 

d-s) = (r(-s),O,z(-s )) = (-r(.s) , O, z (s))E 8G 

The integra.nd at the right-ha.nd side of formula (2.66c) ca.n then be considered 
as a. function on [ -/,/]. One checks that this integra.nd is a.n odd function in 

accordance with the symmetry properties of the other termsin relation (2.66c). 

Example 2.30 We consider a bal! of viscous matter. A salution of Stokes' equa.­

tions with boundary condition (2 .61) is given by 

p(r,</>, z) =Po y_(r,</>,z)=Q 

A pair of deformed analytic functions <p and x representing this flow is 

<p(r, z) = -(po/4)Tt(r,z) x(r,z) = 0 

where T1 is defined in Definition 2.11. One checks that equations (2 .66a.) and 

(2.66c) are satisfied. 

We end this section by formulating the a.nalogous, well-known results in the 
two-dimensional case. These results can be obtained in the sa.me way as a.bove 

([35 , 30, 78]) . . 
Let G E JR2 be an open simply connected domain with a. boundary 8G which is a 
compact C2 -curve. Let y_, p E C2 ( G) satisfy Stokes ' equations on G and boundary 

condition (2 .61 ). Let ( <p , x) be a pair of analytic functions on G representing this 
Stokes flow (see Section 2.1). The analogonsof formulae (2.66) are 

Vt(_:-f_(s)) + 2<p1(!!è(s)) = y(s)/2 

v2(.:-f.(s)) + 2<p2(!!è(s)) = -x(s)/2 

where !!è(s) = (x(s),y(s)) E 8G. We rewrite these relations in complex notation , 
substitute relation (2.12) and get the following traction formula (see also [75]): 

v(z) + 2<p(z) = <p(z) + z<p'(z) + x'(z) = n(z)/2 zE àG (2.68) 

We notice that this implies the following relation on àG: 

1 
Vn = 2 - 2Re( <pn) (2 .69) 

where Vn denotes the normal component of y_. 

Remark 2.31 We stress that we did not solve boundary value problem (1.8) 

by these relations . However, the identities above turn out to be useful when we 
consider the moving boundary problem for Stokes flow driven by surface tension 
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and multi-poles in the next chapter. Actually, we wil! use the following, reversed 
result. Let G C IR? be an open domain which boundary àG is a smooth curve 

(e.g. a Liapunov-curve ([81])). Let (<p,x) be a pair of analytic fun ctions on 
G with derivatives which can be extended continuously to G and which satisfy 

boundary condition (2 .68). The conesponding Stokes flow, given by the relations 
(2.12), then satisfies bounda.ry condition (1.8). 
We finally note that the traction formula. for boundary value problem (1.8 ) with 

1 = 0 is 
v(z) + 2<p(z) = <p(z) + z<p'(z) + x'(z) = 0 zE àG (2.70) 
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Chapter 3 

Moving Boundary Problems 

This chapter concerns quasi-stati c rnaving boundary problems. In Sectien 3.1 we 
present a Lagrangian and a geometrie formulation of such problems in a general 
setting. We consider two-dimensional quasi-static moving boundary problems in 
more detail in Section 3.2 where we show a relationship between these problems 
and what we will call quasi-linear Löwner-Kufareev equa.tions. We use these 
considerations in Sectiens 3.3 and 3.4 where we present equations for the solutions 
of the moving boundary problems for Stokes flow driven by surface tension and 
multi-poles and for Hele-Shaw flow. 

3.1 Quasi-static moving boundary problems 

In this sectien we wiJl give two non-equivalent definitions of quasi-static rnaving 
boundary problems. We wiU also return to the moving boundary problems men­
tioned in Chapter 1. 
Let S denote a class of doma.ins in IRn and let F denote a mapping from S to 
vector-fields on IRn: 

F : G E S 1-7 F( G) = 1'.[G] 

such that the domain of the vector-field 1'.[G] contains G: 

Let Go E S and let I be an interval containing 0. 

Definition 3.1 A mapping 

(3.1) 

is said to be a salution of the quasi-stati c moving boundary problem for F with 
initia] data G0 if it satisfies the following conditions: 

41 
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i). i(~, 0) = ~0 for all ~0 E Go 

ii). i is differentiable with respect to the variabiet 

iii) . the mapping i is a homeomorphism from G0 to its image G1 tn S for a.ll 
fixed t E I 

iv). Ü~, t) = 1!.[Gt](i(~, t)) for all (~0 , t) E Go x I 

We note that this definition excludes the possibility of a change of connectivity 
properties of the evoluting domain Gt as all the domains G 1 , t E I are homeo­
morphic, i.e. topologically equivalent. 

Consicier the moving boundary problem (1.9) for Stokes flow driven by surface 
tension. Let S be the class of closed C2 -domains in IR.n, n 2:: 2. It has already 
been remarked in Chapter 1 that a solution of the conesponding boundary value 
problem (1.8) is not unique; in particular, the velocity Q is determined up to a 
rigid-body motion. This implies that the mappingFis not completely specified 
in this case. We can circumvent this problem in the following ways: 
• It is possible to suppress the rigid-body motions. For example, t his can be clone 
as follows. We may assume without ]oss of generality that Q E Go . Wedefine the 
subclass SC S as the set of all domains in S which contain Q. The mapping F 
on Scan then be defined as the mapping from GE S to the unique vector-field 

.1/.[G] that satisfies: 

i). a function P[G] on G exists such that P[G] and 1!.[GJ satisfy Stokes' equations 
on the interior of G and the boundary value problem (1.8) on oG 

ii). 1!.[GJ(Q) = Q 

where 'V x 1!. denotes the (generalized) curl of 1!. 

It is important to realize that although :Fis completely specified in this way -i.e. 
is a single-valued mapping- this does not necessarily imply that the salution of 
the moving boundary problem is unique. 
• It is possible to change Definition 3.1 in such a way th a t Fis a mapping from 
S to classes of vector-fields. In the above mentioned case, the vector-fields in 
such a class differ by a rigid-body motion. It is then understood in condition iv ) 
of Definition 3.1 that the vector-field 1!.[Gt] in the right-hand side is in the class 
F(Gt) for all tE I. 
The moving boundary problem for Hele-Shaw flow can also be formulated in this 
way. 

In several cases one is not interested in all properties of i but mainly in the 
shape evolution t ...... G1 E S determined by it. In the following we wil! consider 
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this shape evolution in more detail. 
Assume that the class S contains only closed C 1-domains and ·let i;_ be a salution 
of the quasi-static rnaving boundary problem for F with initia! data. G0 such tha.t 
i;_ is a diffeomorphism from G0 to Gt for all fixed t E I. Let [ C !Rn be a fixed, 

closed domain of reference with a. smooth bounda.ry (such as the unit bal! , the 
half spa.ce x 1 :::; 0, etc.). We look for mappings 

ll: ({,t) E [x I f-4 ll({,t) E !Rn (a.2) 

such that: 

i). ll is differentiable with respect to t 

ii). ll is a diffeomorphism from [ to G 1 for all fixed tE I 

Such ma.ppings descri he the sha.pe evaJution a.s wel! the mapping !;_ in Defi nition 
3.1 but they do not provide a Lagrangian description of the fluid under consid­
eration in the classica! sense. To put it otherwise, the vector-field 1!. = F( G1) 

on G1 , tE I -to be interpreta.ted a.s the hydrodynamic velocity-is only partia.lly 
determined by such a. mapping n. 
Lemma 3.2 Let the mapping i;_ be as above. There exists a class of mappings ll 
satisfying the conditions i) and ii) above. Each mapping ll of this type satisfies 

for all (~, t) E àG1 x I (3.3) 

where vn,[Gt] (~) denotes the normal component of the vector 1!.[Gt] (~) at a point 

~ E àGt. 

Pro of 
Consicier the class of mappings 

P:({,t)EExi f-4 P({,t)E[ 

such that P is differentiable with respect tot and such that Pis a diffeomorphism 
from [ to itself for all fixed t EI. It is clear tha.t this class is not empty as the 
identity mapping is an element in it (in genera!, this cla.ss is very large) . Let F 
be a diffeomorphism from [ to G0 . One checks that a mapping ll defined by 

ll: ({, t) E [x I f-4 ll({, t) = i;_(F(P({, t)), t) 

with a.n arbitrary Pas above satisfies the conditions i) and ii). 
The proof of the second assertion runs as follows. Let ll satisfy conditions i) and 
ii) above. The trajectory in [ of a. point labelled by :fo E Go is given by 

(3.4) 
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We remark that since i. and g-are homeomorphisms for all fixed t EI, .:fo E àGo 
implies {(.:fa, t) E à[ for all t E I. One checks that g- is differentiable with 
respect to t and we have 

(3.5) 

We differentiate relation (3.4) with respect to the va.riable t , substitute relation 

(3.5) and identity iv) of Definition 3.1, multiply the result from the left with 
Dil(il-(i.(.:f0 , t), t), t) and find 

Dg(g-(i.(.~.0 , t), t), t) {(.:fa, t) = 1L[c,J(i.(.:fo , t))- Ü(il-(i.(.:fo , t), t), t) (3.6) 

This relation holds for all t E I and all .:fo E Go, in particular for all ~0 E 8Go. 
As {(.:fa, t) E à[ for all (.:fa, t) E àG0 x I, {(~0 , t) is tangent to à[. This implies 

that the inner product of the normal vector 1l at a point 1;. = i.(l;.o, t) E DGt (so: 
li.o E G0 , t EI) and the vector at the left-hand side of relation (3.6) equals zero. 

Identity (3.3) follows. 0 

So, relation (3.3) is a necessary condition fora mapping g on [ x I to describe 
the shape evolution of a salution of a moving boundary problem in the sense of 
Definition 3.1. The next example illustrates t hat this condition is also almost 
sufficien t. 

Example 3.3 Let S be the class of closed half planes Vc: x 1 ~ c, c E IR in JR2 . 

Let f denote a real function on IR and let F on S be defined by 

F : Vc E S ..._.. F(Vc) = 1L[Vc] 

1L[Vc] : (x 1 , x 2) E Vc .-. 1L[Vc] (x 1 , x 2) = ( 1 f (x 2) f 
Consicier the quasi-static moving boundary problem for F wi th initia! data V0 . 

Let the reference domain [ be V0 . We define g by 

g : (1;.,t ) E [x IR ..._.. il(~,t) = (x1 + t,x2) 

It is clear that the image of [ under g is Vt for all t E JR. lt is easily checked 
that relation (3.3) holds. However, the moving boundary problem for F only has 
a salution for all t E IR if the initia! value problem 

y(x2, t) = j(y(x2, t )) 

y(x2,0)=x2 (3.8) 

has a solution y on IR2 . It is not difficult to construct functions f such that this 
initia] value problem has a global solution, nor is it difficult to construct functions 
f such that this initia] value problem doesnothave a global solution due to the 
non-smoothness of f or due to the non-com pactnessof the domain of f. 
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It can be shown that relation (3.3) is a suffi.cient condition for a mapping n on 
[.x I to describe the shape evolution of a solution of a moving boundary problem 
in the sense of Definition 3.1 if the domain [. is compact and if the mapping F 
is smooth. We will not go into the proof of this assertion (see for instanee the 
theory of groups of homeomorphisms explained in [17]). However , we formulate a 
slightly more general definition of a quasi-static moving boundary problem which 
qualifies the aforementioned condition to be suffi.cient. 
Let S denote a class of closed C 1 -domains in !Rn and let F denote a mapping 
from S to functions on !Rn: 

F : GES f-4 F(G) = vn,[GJ 

such that the domain of vn,[GJ contains the boundary 8G: 

Vn,[GJ : ;f E ac f-4 Vn,[GJ (~) E IR 

Remark 3.4 This mappingFis another type of mapping as the one in the very 
beginning of this section. We will use the same symbol F throughout this and 
the following chapters to denote several types of mappings that are related to 
quasi-static moving boundary problems. It will always be clear from the context 
which type of mapping is meant. 

Definition 3.5 A mapping 

il: ({,t)EE.xi f-4 il({,t)E!Rn 

is said to be a solution (in the geometrie sense) of the quasi-static moving bound­
ary problem for F with initia! data Go E S if it satisfies the following conditions: 

i). nis differentiable with respect to the variabie t 

ii) . the mapping U is a diffeomorphism from E. to its image G1 in S for all fixed 

tE I 

iii). üm-(;f, t), t) · ~(;f, t) = vn,(ct](;f) for all (;f, t) E 8G1 x I 

Remark 3.6 We return to the moving boundary problems discussed in the Sub­
sections 1.2.2 and 1.2.3. A precise formulation of these problems consists of two 
parts: a mapping F which maps a. domain G to the solution of the conesponding 
boundary value problem (see also page 42) and a mapping U as in Definition 3.5. 
We will notpresent these precise formulations although it is straightforward. We 
only note that in these formulations, the kinematic boundary condition (1.9c) or 
(l.llc) is repla.ced by condition iii) in Definition 3.5 above; this condition ca.n 
roughly be expla.ined by sta.ting that the normal component of the velocity of 
the boundary equa.ls the normal component of the velocity determined by the 
mapping F , tha.t is: determined by the solution of the conesponding bounda.ry 
value problem at tha.t time. 
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3.2 The quasi-linear Löwner-Kufareev equation 

In this section we introduce the qua.si-linear Löwner-Kufareev equation and ex­
plain in which way it is related to quasi-static moving boundary problems in two 
dimensions. 
In the previous section we gave two definitions of solutions of a quasi-static rnaving 
boundary problem. Lemma 3.2 states that in general there are many equivalent 
solutions in the sense of Definition 3.5 conesponding to one salution in the sense 
of Definition 3.1. We want to reduce this arbitrariness by requiring the mapping 
il in Definition 3.5 to satisfy some additional conditions. Sta.ted otherwise, we 
look for a. cla.ss H of diffeomorphisms from [ to doma.ins G in S such that: 

i). for every domain Gin 5, there is a diffeomorphism in H mapping [ to G 

ii). the spa.ce of diffeomorphisms in H mapping [ to a. doma.in G is relatively 
small 

In the case that 5 contains only compact, simply connected domains in JR2 of class 
C 1 ,a, IX > 0, we can make the following, more or less natura.! choices for [ and 
H. The reference domain [is the closed unit disc D in IR2 and H is the class of 
conforma.l mappings from D todomains Gin 5 . The Riemann mapping theorem 
([71, 3]) and the Kellog- Warschawski theorem ([71]) state tha.t both conditions i) 
and ii) are fulfilied; in particular we notice that the space of conformal mappings 
from D toa. doma.in Gin 5 is a. real three-dimensiona.l ma.nifold. 

Remark 3. 7 If 5 contains closed and simply connected domains in JR2 of class 
C 1 •<>, IX > 0 we can make the sa.me choices as above for [ a.n d H by identifying 
JR2 with the complex pla.ne and compactify the complex plane ((;' by extending 
it to the Riemann sphere d7. However, we will only consider compact domains 
although many results in the following can be generalized in this sense. 
In the case that 5 is another class of domains (e.g. doubly connected domains in 
JR2 or domains in JR3 which a re diffeomorphic to the unit bal! ), we cannot choose 
H to be the class of conformal mappings from some reference domain (e.g. an 
annulus or the unit ball in IR3 ) to domains in 5 in generaL The reason is that 
condition i) above is not fulfilied unless all the domains in 5 happen to be of the 
same conformal type (see e.g. [65]). 

In the remaining part of this section we consider the above men t ioned case in 
more detail; that is: 5 contains only compact , simply connected domains in the 

two-dimensional plane of type C 1·a,1X > 0, [ = Dandil on D x I is a salution 
of a quasi-static moving boundary problem in the geometrie sense such that rr is 
a conformal mapping for all fixed t E I. We wil! sametimes ca.ll such mappings 
conformal solutions. From now on we wil! use complex notation. 
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Lemma 3.8 The mapping 

f2 : ((,t) E D x I >-t D((,t) E d7 

is a salution of the quasi-static rnaving boundary problem for F : G >--> vn,[G] 
with initia[ data given by the image of D under· D(- , 0) iJ it satisfie.s the following 
conditions: 

i). n is differentiable with respect to the variabie t 

i i) . f2 is a conformat mapping from D to its image G t in S for all fi xed t E f 

iii). 

Re D((, t) = Vn,[G,J(D((, t)) 
D'((,t)( ID'(( ,t) l 

for a ll ((,t) E aD x J (3.9) 

Conversely, iJ n is a salution of a quasi-static moving boundary problem in the 
sense of Definition 8. 5 and n satisfies condition ii) above, then it also satisfies 
condition iii). 

Pro of 
We only prove the first assertien; the second one can easily he checked. Let n on 
D x I satisfy the conditions i)-iii) above. The conditions i) and ii) of Definition 
3.5 are satisfied; it only remains to he checked that condition iii) is satisfied . 
The normal vector n at a point D( (, t) with ( (, t) E oD x I is given in complex 

notation hy 
D'((,t)( 

n(D((,t)) = ID'((,t)l 

So, we get for all ((,t) E oD x I 

• 1 Vn,[G<](f2((,t))f2'((,t)( 
ReD((, t)n(D((, t) ) =Ren((, t)( ID'((, t)l ID'((, t)l = vn,[Gt](D((, t)) 

The relation iii) in Definition 3.5 then follows from this relation after changing 
the notation and the narnes of the variables . 0 

Remark 3.9 Letnon D x I satisfy the conditions i)-i ii) of Lemm a 3.8 and let 
w and a he differentiahle functions from I to IR and D respectively. It is easîly 
verified that the mapping f2 on D x I defined hy 

n(c t) = n (eiw(t) ( - a(t) t) 
' 1 - a(t)(' 

(3 .10) 

also satisfies the conditions i)-iii) in the lemma. In order to get rid of this 
arhitrariness, the salution should he normalized (see condition ii) on page 46) . 
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To illustrate how this can be clone, we assume that for all t E I there is a point 
((t) E D such that D(((t),t) = 0 (so, 0 is an inner point of G1 for all tE I). It 
follows from the Riemann mapping theorem that there is exactly one mapping D 
on D x I such that: 

D(O,t) = 0 D'(O, t) > o (3.11 ) 

and such that the image of D under D(-, t) is G1. One ca.n construct such nor­
malized solution n -given the mapping n- by solving the equations for a and w 

obtained by substituting the normalization (3.11) into identity (3.10). 

Consicier a quasi-static moving boundary problem for a mapping F : G E S ~ 
vn,(G] where the class S contains only simply connected and compa.ct doma.ins 
G in {;' of class C 1·"', a > 0 such that 0 E G\aG. The latter condition on the 
domains enables us to normaüze solutions in the sense of Remark 3.9. We show 
that such normalized conformal solutions can bedescribed by a partial differential 
equation by rewriting condition iii) in Lemma 3.8. 

Definition 3.10 Let 1{ denot e the space of conformat mappings D on D such 
that the image D(D) of D under D is in S and such that 

D(O) = 0 D'(O) > 0 

For each D E H, we define an analytic function f [n] on D with a continuous real 

part on D by 

R f (() = vn,[D(D)J(D(()) 
e [DJ !D'(()! 

Im f[nJ(O) = 0 

( E aD (3.12a) 

(3.12b) 

Remark 3.11 We say that the function f depends on D in a functional way. 
We will use this terminology ( "depending in a functiona.l way", "functional de­
pendency", etc.) in this and the following chapters to indicate mappings from a 
function space to another function space. 

Lemma 3.12 LetDoE H. A mapping 

D: ((,t)EDxi ~ D((,t)E{; 

is a salution of the quasi-static rnaving boundary problem for F : G ~ Vn,(G] 

with initial data given by the image of D under D0 ij it satisfies the following 
conditions: 

i) . .ï2 is differentiable with respect to the variable t 

i i). D is in H for all fixed t E I 
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iii). 
fl((, t) = D,'((, t)f[f!(·,t)J(()( for all ((,t) E D x I (3 .13) 

Conversely, ij D, satisfies the conditions in Lemma S.B and is nor·malized, then n 
satisfies the conditions above. 

Proof 
Straightforward from Lemma 3.8 . 0 

Example 3.13 We illustrate the notations and definitions by a trivia] examp\e. 
Let S be the class of closed discs Dr C Q7, r > 0. Moving boundary problem 

(1.11) with Q 1 identical to 1 give rise toa mapping F: GE S >--> vn,[G] given by 

1 
V-(()--

n,[Dr] - 211'T 

One checks that Definition 3.10 in this case corresponds to 

1 
f[n,.J ( 0 = -2 2 

1T'T 

where D,r(() = r(. The mentioned moving boundary problem with initia\ data 
given by Dis then equivalent to the initia! value problemgiven by equation (3.13) 
and initia! data D,( (, 0) = (. The solution of this problem is given by 

D,((,t) = J~ + 1( 

An equation for a function D, of the form 

fl((,t) = D,'((,t)f((,t)( 

where f is a given function, is called a linear Löwner-Kufareev equation. We 
consider such equations in Section 5.1. If the function f depends on n in a func­
tional way, we calJ such equation a quasi-linear Löwner-Kufareev equation . (The 
adjective quasi-linear should not be interpretated in the sense used in the theory 
of partial differential equations but in the sense used in the theory of semi-groups; 
see also Appendix C). We consider such equations in Section 5.4. We remark 
that Lemma 3.12 actually states that many two-dimensional moving boundary 
problems with initia\ data can be considered to be initia! value problems for 
quasi-linear Löwner-Kufareev equations. We loosely discuss some advantages of 
this approach to quasi-static rnaving boundary problems. 
First, we note that ~in the formulation given above, see e.g (3.13)~ the func­
tion n does not have to be continuously extendable to àD x I. This enables US 
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to study also quasi-static rnaving bounda.ry problems where the sha.pe evolution 
t E I >--+ C 1 E S is such tha.t not every domain C1 has a. smooth boundary ( cf. 

[34]). We remark that it is possible to solve the problem: i) f a.nalytic in D a.nd ii) 
Re J(() = h((),( E aD, for non-smooth functions h on aD (e.g. hyper-functions 
[56]). In other words: this approach enables us to formulate a quasi-static rnav­
ing boundary problem as soon as the normal component of the velocityQat the 
boundary makes sense in some generalized way. 
Secondly, we note that the formulation above enables us to generalize the concept 
of a salution of a rnaving boundary problem by omitting the condition that such a 
salution is injective for all fixed tE I; we note that this injectivity of the salution 
was implicitly understood by requiring the salution to be diffeomorphic (Defini­

tion 3.5) or conformal (Lemmas 3.8 and 3.12). In the following we will consider 
also solutions of rnaving boundary problems which are only locally injective. 
Thirdly, we remark that the solvability of quasi-linear Löwner-Kufareev equa­
tions is relatively easy to study; we wil! do so in Section 5.4 . 
Finally, we remark that the formulation of a quasi-static rnaving boundary as an 
initia! value problem for a quasi-linear Löwner-Kufareev equation may also be 
useful in numerical studies. To understand this, we write: 

00 00 00 

Do(()= L an,oC D((, t) = L an(t)(n f[oj(() = L Ck,[Qj(t)(k (3 .14) 
n=l n=l k=O 

where we defined 

k E !No 

(It is understood that the Taylor coefficients of n in this relation are given as a 
vector g,_ = (a 1 ,a2 , ... ).) The initia] value problem then gets the form 

án(t) = L l az(t)cq'!_(t)J 
l+k=n 

an(O) = an,O 

An approximative salution of this initia! value problem can be obta.ined by trun­
cating the Taylor-series . Such an approximation of the salution may be more 
appropriate than one where the domain G1 is described by a mesh of points at 
the boundary ([91, 92, 89, 7]). 

The following two sections are concerned with the rnaving boundary problems 
introduced in Section 1.2. The Löwner-Kufareev equation wil! play an impor­
tant role. The solutions wil! be required to be smooth time-dependent locally 
conformal mappings in the following sense: 
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Definition 3.14 A mapping non D x I is said to be a smooth time-dependent 
locally conformal mapping if: 

i). D is analytic on D for all fixed t E I 

ii) . DlaD E C3 (8D) for all fixed tE I 

iii). D' is a non-vanishing function on D x I that is continuously differentiable 
with respect to the variabie t 

The condition ii) may sometimes be wea.kened but we will not go into tha.t matter. 

3.3 Hopper's equation 

In this section we consider Hopper's equation. We show tha.t if a. mapping D 
sa.tisfies this equation, then it is a. solution of the moving bounda.ry problem for 
Stokes flow driven by surface tension. It is shown in the litera.ture ([35, 30, 78]) 
that if Dis a. solution of this problem, then it satisfies Hopper's equation. 

Definition 3.15 Let D be a.n ana.lytic function on D such tha.t its derivative 
has a continuous, non-vanishing extension to D. We define F[n] as the unique 

analytic function on D with a continuous real part on D such that 

1 
Re FrnJ(() = 2ID'(()I ( E oD 

Im F[nj(O) = 0 

We remark that if n E C3(8D), then the deriva.tive F(n] of F[n] can be extended 

continuously to D. 

Definition 3.16 Let f be a. complex va.lued function on a. doma.in G C 67. Let 
R( G) denote the domain obtained by reflecting G with respect to the unit circle: 

R( G) = { ( E (' I 1/( E C} 

The function 7 on R( G) is defined by 

7( () = !(1/() 

Remark 3.17 V\Te used the bar in the previous chapter to denote the complex 
conjugated function; in formula (2.12) for example, x' denotes an anti-analytic 
function with the same domain as x' . From now on , we will always explicitly 
state when 7 denotes the function obtained by complex conjugating f a.nd not 
the function defined above. We note tha.t no confusion can arise on the unit disc 
as, if oD cG, then oD c R(G) a.nd we get 7(() =!(()on oD. 
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lt is not difficult to show that if f is a.nalytic on an open domain G, then f is 
analytic on R( G) and we get 

for all ( E R(G) (3.16) 

Definition 3.18 Let j be a differentiable complex valued function on aD. The 

function f' on aD is defined by 

Remark 3.19 We remark that the relation (3.16) a\so holds in this sense. We 

also make the important remark that if j is ana.lytic on a neighbourhood of aD , 
then the def\nition of f' is consistent with f'(() = dfj(<). 

Proposition 3.20 Let Q be a smooth time-dependent conformat mapping on 
D x I. Ij a continuous function () on D x I exists such that () is analytic on D for 
all tE I and such that the following equation is satisfied for all((, t) E aD x I: 

O((,t) = (n'((,t)IT((,t))- (n'((,t)IT(( , t)Frnu)J(()() ' (3 .17) 

then n is a salution of the moving boundary for Stokes flow driven by surface 
tension. 

We call equation (3.17) Hopper's equation. 
Pro of 
Step 1. We define functions F, x and <j; on D x I by 

F( (, t) = F[n(-,t)J( () 

11( x((,t)=- B(z,t) dz 
2 0 

<j;((,t) = ~ (n'((,t)F((,t)(- D((,t)) 

(3.18a) 

(3.18b ) 

(3.18c) 

Let Gt denote the image of D under D( ·, t). We define functions x and cp on 
{(z, t) E C x I! zE Gt} by 

x(z, t) = x(n-(z, t), t) cp( z, t) = <P( n-( z, t) , t ) 

We note that these functions <p and x have derivatives cp' and x' which can be 
extended continuously to G 1 for all tE/. We finally define functions pand v on 
{(z, t)! E C x I! zE Gt} according to formulae (2.12). It follows from Remark 
2.1 that pand v satisfy Stokes' equations G 1 for all tE/. 
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Step 2. We show that boundary condition (1.9b) with 1 = 1 is fulfilled . It follows 
from relation (3.16) that 

(n'((,t)IT(( , t)F((,t)()' = D((,t) (D'((,t)F(( , t)()'- D'((,t)D'((,t)F((,t)( 
(3.19) 

for all((, t) E 8D x I. lt follows immediately from the detinition of the function 

F that 

F((,t) = -F((,t)+ ID'((,t)l-l for all ((,t) E 8D x I ( 3. 20) 

Now we substitute successively relations (3 .1Sb ),(3 .19),(3.20) and (3.18c) into 
Hopper's equation. We suppress the variables in the notation and note that the 
following identities hold on 8D x I: 

. . 
2x' = e = (D'D) - (D'ITF()' = (D'D)- IT(D' F()' + D'D' F( 

= (D'D)- IT(n' F()'- D'D' F( + (D'D'ID'I-1 

= D'IT + ITU'- IT(D' F()'- D'(D' F() + (ID'I 

= IT(D- D' F()' + D'(D- D' F() + (ID'I 

= IT( -2<;;)' + D'( -2<;;) + (ID'I 

We di vide both si des of this relation by D', rearrange some terms and find 

J; 

Thus, we get 

2 (<p(z, t) + z<p'(z, t) + x'( z, t)) = n(z, t) for all (z, t) E 8G1 x I 

where n(z, t) denotes the normal vector at zE 8G1• It follows from Remark 2.31 
that boundary condition (1.9b) is satisfied indeed for all tE I. 
Step 3. It remains to be checked that n satisfies condition iii) of Lemma 3.8. The 
relation (3.18c) can be written as 

D((, t) _ F( t) _ 2(/;((, t) 
D'((, t)( - (, D'((, t)( 

By means of this relation andrelation (2 .69), we find 

Re { D((,t) } - F t - 2(/;((,t) -
D'((,t)( - ((,) D'((,t)(-

ID'((,t)I- 1 Re (~- 20((,t)D'((,t)(ID'((,t)l-1 ) = 

ID'((,t)I-1 Re (~- 2<p(D((,t),t)n(D((,t),t)) = 

ID'((, t)l- 1vn(D((, t), t) ((, t) E 8D X I 
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It follows from Lemma 3.8 that 0 is a solution of the problem. · D 

Remarks 3.21 Let n on D x I satisfy the conditions i)-iii) of the proposition 
above and let w and f be differentiable real and complex valued functions on I. 
A mapping 0 defined by 

D((, t) = eiw(t)n((, t) + f(t) (3.21) 

also satisfies the conditions i)-iii) in Proposition 3.20. This freedom in the solu­
tion has its origin in the fact that the solution of boundary value problem ( 1.8) 
is determined up to a rigid- body motion. 
The mapping D defined by relation (3.10) generally does not satisfy Hopper's 
equation (although it produces the same shape evolution as D). However, if Def­
inition 3.15 is changed in such a way that F(o] is admitted to have a different 
behaviour at ( = 0 (in particular: is admitted to have a pole of order one in 
( = 0), then this this mappingnis also a solution of Hopper's equation . 

Remark 3.22 We roughly explain the role of the function e in Hopper's equa­
tion . We stress that e should not be considered a given function. Actually, 
Hopper's equation can equivalently be formulated without reference to this func­
tion by stating that the imaginary part of the expression at the right-band side of 
equation (3.17) is the Hilbert transform of the real part of this same expression. 
However, it is clear that, once it is known that D satisfies Hopper's equation or 
this equivalent formulation, then the function e can be determined. We therefore 
stated in the introduetion that this function can be determinded only a posteriori. 

Proposition 3.23 Let Q1 be a real valued function on I and let Qn, n = 2, ... , N 
be complex valued Junelions on I. Let 0 be a smooth time-dependent locally 
conformat mapping on D x I such that D(O, t) = 0 for all t E !. IJ a continuous 
function e on D\ {0} x J exists such that: 

i). e is analytic on D\ {0} for all fixed t E J 

i i). if ( -+ 0 for all t E J 

iii). the following equation is satisfied on oD x!: 

B((,t) = (n'((,t)IT((,t))" -I'(D'((,t)IT((,t)Froc,t)J(()()' (3 .22) 

then D is a solution of the moving boundary problem jor Stokes flow driven by 
surface lension andjor (!' = 1, 0) multi-poles Qn, n = 1, .. , N in z = 0. 

Pro of 
We define the function x' on D\ {0} x I by 

x'(Ct) = ~e(ç,t) 
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(the function x itself is multiple-valued if Q1 is not identica.lly zero). Wedefine 

the function x' on {(z, t) E c x I I zEGt, z ::/= 0} by 

'(z t) = x'(Q-(z, t), t) 
X ' D'(D-(z, t), t) 

The function x' is ana.lytic on G 1\ { 0} for a.ll fixed t E I. Moreover, it follows 
from condition ii) tha.t 

N Q (t) 
x'(z, t)- ""'_n _ __. const. 

~ 21l' zn 
n=l 

if z --; 0 

One then shows tha.t Q is a salution of the problem by reasoning in the same way 
a.s in the proof of Proposition 3.20 (see also (1.7)). D 

We end this section by a proposition that can be considered as a kind of physical 
interpretation of the function 1p tha.t a.ppears in the representation of the solu­
tion of the moving boundary problem for Stokes flow driven by surface tension 
and multi-poles (see also [76] and [4]) . Wedefine the nth moment Cn(G; 1p) of a 
complex valued function 1p on a domain G C IR2 by 

Cn(G; ip) = j [(x+ iytip(x, y) dx dy 

If the function 1p is identical to one, we simply write Cn(G) insteadof Cn(G; 1). 

Proposition 3.24 Let Q be a smooth time-dependent conformat mapping satis­
fying the conditions of Proposition 8.23. Let Gt, t E I denote the image of D 
under D(-, t) as befare and let IPt denote the representing function for the corre­
sponding Stokes flow on the domain G1 that appears in relation (2.12) and which 
is normalized by 

IPt(O) = 0 1p~(O) E IR 

(see Remark 2.8). Then: 

d 
dtCn(Gt) = Qn+I(t)- 2nCn-1(Gt;IPt) 

d 
dtCo(Gt) = Q1(t) 

Pro of 

n?. 1 (3.23a) 

(3.23b) 

We only prove identity (3.23a); the proof of identity (3.23b) runs similarly. Ap­
plying Gauss' theorem a.nd using complex nota.tion, we find: 

dd Cn(G1) = dd 1· { zn dx dy = (2i)-1 dd 1 znz dz 
t t Je, t !ac, 

= (2i)- 1 dd 1 D((, t)niT((, t)D'((, t) d( 
t !ao 
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We suppress the variables in the notation and substitute the rela.tions (3.18c) and 
(3.22): 

:tCn(Gt) = (2i)-1 ~ iD ,nniT,n' d( 

= (2i)- 1 1 nnn-l niTn' + nn(n;IT) d( 
!aD 

= (2i)- 1 1 nnn- l (D'IF[nJ(- 2<,ë)D'IT + n n((D'IT,F[nJO' + B) d( 
faD 

= (2i)- 1 1 (nnn'IT,F101()' + enn - 2nçsnn-1 n'IT d( 
faD 

N 
= 2.:= Qm 1 _nn-mn' d(- 2n 1 rpzn-12 dz 

m=l 2n faD 2z feG, 

= Qn+l- 2nCn- 1(Gt;rpt) 

0 

Remark 3.25 Formula (3.23b) can be considered as the conservation of ma.ss. 
The other identities state in which way the moments Cn( Gt) , n E IN change in 
time. We stress that the relations (3.23) are independent of the value of l ' ; these 
relations hold whether surface tension is present or is not. 

3.4 The Hopper equation for Hele-Shaw flow 

In this section we present several equations with the property that a time de­
pendent confermal mapping satisfies this equation if and only if t his mapping is 
a salution of the rnaving boundary problem for Hele-Shaw flow. We treat three 
well-known equations of this type ([75, 39, 53 , 85]) and add one which resembles 
Hopper's equation. 

Definition 3.26 Let Q1 E IR and let n be an analytic function on D such that 
its derivative has a continuous, non-vanishing extension to D. We define the 
fundion F[~J as the unique analytic function on D with a continuous real part 

on D such that: 

Re F!~](O = 27rl~(cw 
Im F[~J (0) = 0 

( E oD 

The superscript Q1 prevents confusion between t his definition and Definition 3.15. 
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Proposition 3.27 Let Q1 be a real continuous function on a.n interval I C IR. 
Let n be a smooth time-dependent locally conformat mapping on D x I such that 

D(O, t) = 0 D'(O, t) > 0 for all t E I 

The following assertions are equivalent: 

i). D((, t) = D'((, t)F[~(.(,?)](()( 

ii). ReD((, t)D'((, t)( = Ql(t)/27r 

for all ((,t) E D x I 

for all ((,t) E fJD x I 

iii). a continuous function B on D \ { 0} x I exists such that B is analytic on 
D\{0} with a first order pole at ( = 0 with residue Q 1 (t)/1r for all fixed 
t E I and such that the following equation is satisfied for all ( (, t) E fJ D x I: 

..:.. . -J 

B((, t) = D((, t)D'((, t)- D((, t)D ((, t) 

iv). D is a salution of the moving boundary problem Jor Hele-Shaw flow. 

Equation ii) is called the Polubarinova-Galin equation. 
Pro of 
We do not go into all details of the proof as most of the results are already 
established in the literature. First we show i)--+iv) in three steps. We will denote 
the image of D under D( ·, t) by Ct. 
Step 1. Wedefine a multiple-valued function x on D\ {0} x I by 

x((, t) = (Ql(t)/27r) In( 

Wedefine a function X on {(z, t) E IC X I I zE C1 , z i 0} by 

x(z, t) = x(D<-(z, t), t) 

We finally define functions p and v on { ( z, t) E IC x I I z E Ct. z i 0} according to 
the formulae (1.5). One checks that pandvare single-valued and satisfy Darcy's 
equations. 
Step 2. As 

zECt\{O},tEI 

and as[!<-- has a first order zero at z = 0, the function x' has a first order pole at 
z = 0 with a residue Q1(t)/27r for all fixed tE I. So, condition (l.lla) is satisfied 
for all tE I (see also (1.6)). The boundary condition (l.llb) is also satisfied for 
all t E I as 

p(z, t) = -(Q 1 (t)/27r) (Re In D<-(z, t)) = 0 for all zE fJCt and all tE I 
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Step 3. lt remains to be checked that n satisfies condition iii ) of Lemma 3.12. 
We denote differentiation in the direction of the normal vector a.t fJD by Îr and 

we denote differentiation in the direction of the normal vector at 8C1 by tn. We 
get for all ((, t) E fJD x I : 

Re F[~((,tt))](() = (QJ(t)/27r)ID'((,t)i- 2 = ID'((,t) i- 2 :T(Re x((, t)) 

= ID'((, t)l-l :n (Re x(D((, t), t)) = ID'((, t)l- 1vn(D((, t)) (3.24) 

This relation and Lemma 3.12 then imply that n is a salut ion of t he moving 
boundary problem for Hele-Shaw flow. 
The proof of the whole proposition follows from the following implications. 
ii) ___. i) . We define the function f on D x I by 

D( c, t) 
j( (, t) = D'( (, t)( (3.25) 

We note that f is well-defined in ( = 0 and we have Im f(O, t) = 0 for all t E I. 
lt is clear that fis analytic on D and is continuous on D for all t E I. It follows 

from the Polubarinova-Galin equation that 

D(( t) 2 - -· 
Re f((,t) =ReD'( ') = ID'((,t)i - Re D'((,t)(D((,t) 

(, t ( 

= (Q 1(t)/27r)ID((, t)i-2 for all((, t) E fJD x I 

This implies f((,t) = F[~t(.~~l(() for all ((,t) E D x I andrelation i) follows from 

relation (3.25). 
iii)___.ii) . Wedefine the function rf> on D x I by 

4>((, t) = B((, t)- Q;~t) (3.26) 

One checks that rf> is continuous on its domain and analytic on D for all t E I. 
We suppress the variables in t he notation and note that the following identity 
holds on fJD x I: 

Re fH:l'( = ~(DD'( + DD'() = ~((DD'- DIT')= ~(B = Q1 + (rf>/2 (3.27) 
2 2 2 27r 

This relation implies that the function Im (r/> van ishes on the boundary fJD x I. 
As Im (r/> is a harmonie function on D for all fixed tE I, rf> is ident ically zero an d 
(3.27) is just the Polubarinova-Galin equation. 
iv)___.iii) . We first note that it follows from the relations (l.lla) and (l.llb) that 
the continuous function pon {( z, t) E C x I I zE Ct} defined by 

p(z, t) = Q1 (t) In lzl + p(z, t) 
27r 
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sa.tisfies the following Dirichlet problem: 

D.p(z, t) = 0 

' Ql(t) 
p(z, t) = --In lzl 

27T 

zE Gt, tE I 

zE àG1, tE I 

This Dirichlet problem ha.s a. unique solution given by 

Hence, 

a.nd we get 

' QJ (t) ( z ) 
p(z, t) = ~Re In D-(z, t) 

Ql (t) 
Vn(D((, t), t)\(E8D = 27TID((, t)l 

(see a.lso rela.tion (3.24)). It follows from Lemma. 3.12 tha.t D sa.tisfies 

for all ( E D, t E I 

59 

(3.28) 

One then stra.ightforwa.rdly checks tha.t condition iii) is a.lso fulfill ed : ju st put 
B((, t) = Q1(t)j1r(. o 

Proposition 3.28 Let Q1 and D. be as in Proposition ."i.27. The assertions in 
Proposition 3.27 are equivalent to the following assertion: 

v). a continuous function BonD\ {0} x I exists such that B is analytic 
on D\{0} with a fir·st order pole in ( = 0 with residue Q1 (t)j1r for 
all fixed t E I and such that the following equation is satisfied for all 
((,t)EàDxi: 

B((,t) = (n'((,t)IT((,t))"- (n'((,t)IT((,t)F1~((,tt\J()' (3.29) 

As equa.tion (3.29) resembles Hopper's equa.tion, we call it a Hopper equation. 
Pro of 
i),iii)-tv). Let B be the function as in condition iii). We suppress the variables 
in the notation, substitute relation i) and find on àD x I: 

v)-ti). Wedefine the function g on D x I by 

(3.30) 
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lt is clear that gis analytic on D for all tE I. One checks that as nis a. smooth 
time-dependent conformal mapping, the deriva.tive g' has a continuous extension 
to D for all t E I. We show that g is identical to zero. 
We suppress the variables in the notation, substitute relation (3.30) into equation 

(3.29) and findon àD x I: 

o = (D.;IT)- (D.'ITJ[~JO' = (n;IT)- (IT(D- g))' = nn'- IT'n + (ITg)' 

= (D.' F[~J ( + g)D.'- IT' (D.' F[~J ( + g) + (ITg )' 

= ID'I 2(2Re F[~J + gD.' + ITg' = gD' + ITg' + ~~ 

So, the function <P defined as in relation (3.26) is analytic on D for all t E I while 
its boundary values are given by the following re!ation on àD x I: 

if; = gD' + ITg' 

Now we apply Lemma 4.12; this lemma will proved in the next chapter. lt follows 
that there are functions C1 and C2 on I with values in IR and C respectively such 
that 

g = iC1n + c2 
Substitution of this result tagether with relation (3.30) into the norma.lization 

D.(O, t) = 0 D'(O, t) E IR for all t E I 

leads to the condusion that both cl and c2, and hence g, are identically zero. 0 

Remark 3.29 The ana.logons of formulae (3.23 ) for Hele-Shaw flow are 

n E !No 

(see also [76, 4]). These identities -which imply the conservation of the moments 
of the domain except for the area- can easily be obtained by putting cp identical 
zero in the proof of Proposition 3.24: compare relation (3.18c) to assertion i) 
in Proposition 3.27 and note that the reasoning in the proof of Proposition 3.24 
does notdepend on the values of the fuction F (see also Remark 3.25). 

Remark 3.30 The similarity of the Hopper equation (3.29) for Hele-Shaw flow 
and Hopper's equation (in particular equa.tion (3 .22) with 'Y = 1, N = 1) is 
rema rkable. It is therefore interesting to study Hopper equations such as equation 
(3.29) with F[~J replaced by another function that depends on D' in a functional 
way; compare Definitions 3.15 and 3.26. This may lead to regularized roodels of 
Hele-Shaw flow (see also [88, 33]) which are some kind of intermediate between 
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roodels of Stokes flow driven by surface tension and a sink and of Hele-Shaw 
flow . We do not go into this matter because it is difficult to deduce what kind of 
rnaving boundary probieros such Hopper equations describe. We only state that 
such ad hoc methods turn out to work quite wel! . 
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Chapter 4 

Hopper Equations 

It wiJl be shown in Section 4 .1 that a Hopper equation for a. ra.tional function is 
equivalent to a finite set of differential equations. We prove in Section 4.2 that 
this set of equations has a local salution under general conditions. We show in 
Section 4.3 that this set of equations has a global solution in a. particular case. 
A comprehensive introduetion to this chapter can be found in Section 1.3. 

4.1 Rational solutions of Hopper equations 

This section concerns Hopper equations . We show how such an equation reduces 
to a finite set of differential equations if we make the Ansatz that the mapping 
n is a time-dependent ra.tional function. 

In Propositions 3.20, 3.23 and 3.28 we met equations for time-dependent ana­
lytic functions n on D x I of the foUowing form: 

B((,t) = (IT((,t)D'((,t))·- (IT((,t)D'((, t)f((,t)()' ((, t) E an x I (4.1) 

where: 

i). f is a function on D x I which is analytic on D for all fixed t E I ; this 
function may depend on n in a functional way although this is not expressed 
in the notation. 

ii). e is some fun ction on D x I with a prescribed pole at ( = 0; i.e. e is 
analytic on D\{0} with a pole of orderNat ( = 0 for all tE I -where it is 
understood that e is analytic on D if N = 0- and such that 

-2
1 . 1 çn-1 B((,t) d( = an(t) 
7rt ho n=l, .. ,N;tEI 

63 
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In this expression, /o denotes a closed Jordan curve a.round ( = 0 and 

an, n = 1, .. , Nare given complex valued functions on I which may depend 

on n. We stress again that B should not be considered a. given function ; 
only the principal part of its Laurent series is prescribed. 

We cal! equation ( 4.1) a Hopper equation. It turns out that solutions of such an 

equation only exist if a1 is real valued. We note that a Hopper equation is an 

equation on aD x I although the domains of the functions which a.ppea.r in it are 

larger. 
A straightforward construction of solutions n of a Hopper equation doesnotseem 

to exist if f depends on n in a functional way (we return to this point in Cha.pter 

5 and in Appendix C). We therefore follow Hopper ([35]) and make an Ansatz 

for the mapping n: 

( 4.2) 

where M, K(1), .. , K(M) are positive integers and where: 

i). (m, m = 1, .. , Mand CmkJ m = 1, .. , M, k = 1, .. , K(m) are continuously dif­
ferentiable functions from I toD and C' respectively such that the derivative 

D' of the function in expression ( 4.2) does not vanish on D x I 

ii). Im "2:,;:[=1 Cml(t) = 0 for all tE I 

iii). (a) m1 1 m2 implies (m1 (t) 1 (m2 (t) for all tE I 

(b) for all mE {l, .. ,M} and all tE I, there is a k E {l, .. ,K(m)} such 

that Cmk(t) 1 0 

iv). (a) ( 1 is identical to zero unless N = 0 

(b) K(l) 2: N 

Remark 4.1 We discuss the conditions i)-iv) on the parameterization of the 
rational Ansatz. 

The condition i) assures that the function n is a smooth time-dependent locally 

confermal mapping. 

One easily verifies that if n on D x I is a salution of a Hopper equation, then 

the function D defined by relation (3.21) is also a solution. Therefore, we do not 
lose any generality by normalizing n as follows: 

D(O,t) = 0 Im D'(O, t) = 0 for all t E I 

The first normalization is al ready contained in the parametrization of the function 
n in expression ( 4.2). The second normalization is equivalent to condition ii ). 
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The mapping 0 is thus determined by L = 2( M + P) - 1 real time-dependent 
parameters , where P = -z:;[=l K(m). 
Consicier for example a function 0 in expression (4.2) with M = 4, K(m) = 1, 
m = 1, .. , 4, where (z,(4 and cz1 are a.rbitrary functions and where 

One checks that this function is actually the identity : 0((, t) = (. In order to 
avoid that a function can be parameterised in several ways, we require that con­
dition iii) is satisfied : the conditions i)-iii) imply that every norma.lized, rational , 
smooth time-dependent locally conformal mapping with exa.ctly M poles outside 
D can uniquely be parameterized in the form of expression ( 4.2). We note tha.t we 
pay the following price for this: we cannot consider rationat solutions of Hopper 
equations where poles appear or disappear. We wil! show in Chapter 5 tha.t thi s 

is not a loss of generality. 
It can be checked that if the function e in equation ( 4.1) is allowed to have pol es 
in ( = 0 (i .e. N :j; 0) , then a pa.rametrisation as in expression (4.2) only ma.kes 
sense if we put (m(t) = 0 for all tE I and K(m) 2 N forsome mE {1, .. , M} . 

We substitute expression ( 4.2) into equation ( 4.1) and show that this leads toa 
fini te set of different ia! equations for the parameters (. and c ... Before we do so, 
we remark that the function IT is meromorphic on D for all t E I as 

M K(m) 

IT((, t) = L L Cmk(t) ((- (m(t))-k 
m=1 k=1 

To be more precise, IT has poles in ( = (m(t) E D, m E {1, .. , M} of orders 
not larger than K(m) for all t E I. This implies that the function Bon D x I 
defined by relation (4 .1) is analytic on D\{(1(t) , .. , (M(t)} for all fixed tE I . 
Moreover , if B has a singularity in ( = (m(t) , m = 1, .. , M forsome t E I, then 
this singularity is a pole and the order of this pole does not exceed K( m) + 1. 
This implies that the function 0 in expression ( 4.2) is a salution of equa.tion ( 4 .1) 
if a.nd only if it satisfies the following equations for all t E I , all m E { 1, .. , M} 
and all n E {1 , .. , K(m) + 1}: 

2~i f ((- (m(t)t- 1 :t (IT((, t)f2'((, t)) d(-

"Ym(t) 

2~i f ((- (m(t)t- 1 :( (IT((,t)f2'((,t)j((,t)() d( = Ómlan(t) (4 .3) 

"Ym(t) 

where 'Ym(t) , m = 1, .. , Mis a closed Jordan curve in D such that (m(t) is inside 
'Ym(t) and (1(t) is outside 'Ym(t) if l-:{: m . First we calculate the first term in the 
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Ie ft- hand si de: 

"Ym(t} 

Next we calculate the second term in the left-hand side: 
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Substitution of these results for n = K(m) + 1 into equation (4.3) leads to 

K(m)(m(t) Cm K(m)(t)D'((m(t), t) + 

K(m)(m(t) Cm K(m)(t)D'((m(t), t)J((m(t), t) = 0 ( 4.6) 

for all mE {1, .. , M}; this relation holds for m = 1 as K(l) + 1 > N. After 
complex conjugating this equation and rearranging some terms -see also Remark 
4.2 below- we obtain 

(~(t) = -(m(t)J((m(t),t) m=1 , .. ,A1 ( 4. 7) 

Substituting the relations (4.4),(4.5) and (4.7) into equation (4.3), we find for all 
mE {l, .. ,M} and all n E {1, .. ,K(m)} 

(
K(m)-n ( ) ) 

:t ~ Cm k;!n t n,(k+l)((m(t), t) + 

K(m)-n k ( ( ) I (n- 1) L L c~ k+n t; n,(k+l-1}((, t) (!(/)((, t) + _(_J(/+1)((, t)) 
k=O 1=0 l.(k- /). { + 1 (=(m(t) 

= 8m]O.n(t) (4 .8) 

Remark 4.2 In order to obtain relation ( 4.7) from relation ( 4.6), we divided 

this relation by CmK(m}(t). This is notallowed if cmK(m)(t) = 0 forsome tE I. 
Ho wever, one carefully checks that - because of condition iiib) on page 64- relation 
( 4. 7) follows anyway. 

Corollary 4.3 A Ju netion D as in expression ( 4.2) is a solution of equation ( 4.1) 

iJ and only iJ equations ( 4. 7) and ( 4.8) are satisfied. 

Example 4.4 Let M = 1 and let ( 1 beidenticalto zero, i.e. we make the Ansatz 
that nis a polynomial mapping (see also [30]). We change the notation and write 

K 

D( (' t) = L Ck(t)(k 
k=l 

with K ~ N. Equation ( 4.7) is trivially satisfied while the equations ( 4.8) reduce 
to the following set of differential equations: 

() (K -n ) 
at ~ (k + l)ck+J(t)ck+n(t) + 

K-n k J(ll(o t) 
(n- 1) L L(k + 1-l)ck+n(t)ck-l+l(t) l'' 

k=O 1=0 . 

= O.n ( t) ( 4. 9) 
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where n = 1, .. , ](. We define 

!<.." -k+1 
bk(t) = L lci(t)ci+k-1 (t) k = 1, . . , ]{ 

1=1 

d1(t) = JUl (o, t)/l! l=O, .. , K 

and find that this set of equations can be written as 

K-n 
b~(t) + (n- 1) L bn+k(t)dk(t) = an(t) n=l, .. , K (4.10) 

k=O 

Example 4.5 Let N = 0 and K(m) = 1 for all mE {1, .. , M}, i. e. we consider 
a particular type of Hopper equation an·d make the Ansatz that n is a so-ca.lled 

partial fraction mapping ([35]). We change the notation and wri te 

n t _ ~ Am(t) 
((, ) - ( ~1 1- (m(t)( ( 4.11) 

The equations (4.7) remain while the equations (4.8) reduce toa set of M alge­

braic relations: 

m = 1, .. ,M ( 4.12) 

where the quantities qm, m = 1, .. , M do not depend on the variabie t. We 
consider these equations in more detail in Section 4.3. We present a result from 
a numerical study of these equations in Appendix C . 

We end this sectien by counting the tota.l number of equations . As the terms 
nUl( (m( t), t), m = 1, .. , M, l = 1, .. , K( m) in equations ( 4.8) can straightforwardly 
be expressed in termsof the parameters c .. and (., the equations (4.7) a.nd (4.8) 
can be considered as a set of 2( M + P) = L + 1 coupled re al d ifferen t ial eq uations 
for the L parameters c .. a.nd (. (see also Remark 4.1). We show below that the 
imaginary parts of the equations ( 4.8) with n = 1 are linearly dependent. We 
thus end up with not more than L differential equations for L parameters . 
The equations ( 4.8) with n = 1 lead to a set of M - 1 complex valued conserved 
quantities 

K(m)-1 ---:--:-
qm = L Cm k;1(t)n(k+1)((m(t) , t ) 

k=O 
m=2, .. ,M 

while the equation with m = 1 remains: 

1<(1)-J--...,......,-:t E C] k;!l(t)n(k+I)((I(t) , t) = al(t) 
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(If a1 is identical to zero (e.g. if N = 0), this equation also leads toa. conserved 
quantity). The sum of these equations leads to a differential equation fora real 
function A on I defined by 

as 

A(t) = (2it 1 f D.'((, t)IT((, t)d( 

ICI=l 

dd A(t) = (2i)- 1 dd f D.'((,t )IT((,t)d( = 1rdd I=~ f D.'((,t)IT((,t)d( 
t t tm-I 2n 

ICI=l - 'Ym(t) 

M K(m)-1 ( 

= 1r :t L L Cmk~l t)n(k+l)((m(t),t,t) = 1ra1(t) (4.13) 
m=l k=O 

We note that if the mapping D. is conformal - and not only locally conformal- the 
quantity A(t) is the area of the image of Dunder D.(-, t) . The equation ( 4.13) is 
real as both A and a1 are rea.l va.lued. So, the imaginary pa.rts of the equations 
( 4.8) with n = 1 are linearly dependent in deed. We repeat that this leads to the 
condusion that the set of equations for the parameters is not overdetermined. 

4.2 Proof of local existence of solutions 

In this section we reconsider the set of differential equations obtained in the 
previous section by substitution of a rational time dependent mapping n into a 
Hopper equation. We show in Subsectien 4.2.1 that these equations can b e solved 
if the given functions f and an, n = 1, .. , N are continuous with respect to the 
variabie t, by revealing the structure of equations (4.7) and (4 .8). This ena.bles 
US to study a Hopper equation where f and an, n = 1, .. , N depend on n in a 
functional way. In Subsectien 4.2.2 we prove aresult on the solvabi]jty of this 
equa.tion under certain restrictions on the functions f and an, n = 1, .. , N. 

4.2.1 The structure of the equations 

We discuss equations ( 4. 7) and ( 4.8) in the case where f and an, n = 1, .. , N are 
given functions on D x I and I respectively. We assurne that these functions are 
continuous with respect to the variabietand prove tha.t the mentioned equations 
ca.n be solved. First we introducesome notation. 
Insteadof (. or (m,m = 1, .. , M, we write 

In stead of c .. or Cmk, m = 1, .. , M, k = 1, .. , K( M) we write 

_ç= (Re cn,Im cn, .. ,Im c1K(I),Re c2J, .. , .. ,Im Ctvffi'(M)) E IR2P 
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where P = r:,;;::=l K(m). Because we only consider functions D. normalized by 
D.'(O) E IR, we take ç_ in the (2P - 1)-dimensional subspace conesponding to 

Im z::::=l C]m = 0 and we wiJl simply write ç_ E JR2P-l -see also condition ii) on 
page 64. Each g_ = (Ç_, ç_) E JR2M x JR2P-l = JRL corresponds in this wa.y to a. 

rational function n'L given by: 

(4 .14) 

The points in JRL which correspond to functions which are a.nalytic on some 
neighbourhood of D and which have a derivat ive which does not vanish on D 
deserve special attention. 

Definition 4.6 Wedefine the poly-disc DM as the set of points~ E JR2M such 
that: 

(;m-1 +(;m < 1 m = 1, .. ,M 

Wedefine nM;K(l), .. ,K(M) as thesetof points g_ = (~,ç_) E IRL such that: 

i). ~ E DM 

ii). the function D.'L conesponding to g_ by relation (4.14) has a derivative which 

does not vanish on D 

iii). (a) m1 -:f- m2 implies (2m1 -J -:f- (2m2 -J or (2m1 -:f- (2m2 

(b) for every mE {1, .. , M} there is a k E {1, .. , K(m)} such that Cmk i- 0 

The space of functions n:L with Ij_ E nM;K(l), .,K(M) will be denoted by 
yiVI ;K(l), .. ,K(M). 

Remarks 4. 7 vVe make a number of remarks which are helpful later on. 
We note that the spaces nM;K(l),. ,K(M) and yM;K(l), .. ,K(M) differ only by the 

nature of their elements; this can be checked on the basis of the assertion that a 
rational function is completely determined by its poles and a value at a regular 
point. We can characterize the space yM;K(l) , .. ,K(M) also as follows: a function 
D. is a.n element of yM;K(l), .. ,K(M) if and only if: 

i). D. is a meromorphic function on d7 with M poles which alllay outside D 

ii ) . the order of the mth pole does not exceed K (m) 

iii). D.' does not vanish on D 

iv). D.(O) = 0 lm D.'(O ) = 0 
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In the following we will use a shorter nota.tion and write simply D in stead of 
DM, etc.; we implicitly understand that the numbers Mand K(1) , .. , 1\"(M) are 

fixed. 
VVe make the important remark that Ris an open set in JRL. This ca.n s tra.ightfor­
wardly be checked by means of the theorem that states tha.t zeros of polynomials 
in a. complex variabie depend on the coefficients in a. continuous way ([58]). We 
finally notice that the set Ris not connected: there is no continuous pa.th from 

points 9_ ER with z=;;:[=l CJm > 0 to points g_ ER with I:::!.:::l c1m < 0. 

Before we rewrite equations ( 4.7) and ( 4.8), we introduce som e more notation. Let 

]( denote the maximum ofthe numbers K(l), .. , K (M) . Wedefine the mappings 

t,k=0, .. ,1(+1 by 

t : (~, t) E D x I ,__, t(~, t) E CM 

f~(~, t) = j(k)((2m-1- i(2m 1 t) m = 1, .. , M 

Finaliy, we writeg_E JR2N-1in stead ofak>k = l, .. ,N. 
The equations ( 4. 7) can now be written as 

~(t) = Q (~(t),t(~(t), t)) (4 .16) 

where Q is a mapping from IR2M x cM to IR2M. The equations (4.8) can be 

rewritten as follows. We express ,n(ll ((m(t), t), m = 1, .. , M, l = 1, .. , K (m) in 

terrus of the coefficients (. and c .. , differentiate the first term in equation (4.8) 
with respect to the variabie t, use relation (4.7) whenever a. time derivative of 
(m a.ppea.rs, bring every term without time derivatives to the right-hand side 
and skip one of the linear dependent real equations discussed in the end of the 
previous section. Th is leads to an equation of the following form: 

where: 

i). A is a mapping from IRL to M(2P-I)x(2P-1), the space of real 

(2P- 1) x (2P- !)-matrices 

( 4.17) 

ii) . d. is a mapping from JR2M x JR2P-l x C M x·· xC M xJR2N- J to JR2P-l 

Next we apply a proposition that wil! be proved at the end of this subsection. 

Proposition 4.8 The matrix ~Ü) is regular for all g_ E R. 
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The Hopper equation (4.1) fora mappingDas in expression (4.2) is therefore 
equivalent to the following set of equations: 

~ ( t) = Q ( ~ ( t)' t (~ ( t) ' t)) 
f(t) =A,_ (~(t),~(t)) r1 (Gt),f(t),t(~(t ) , t), .. ,tH1 (~(t ) , t),g(t)) 

Let these equations be complemented by initia! data 

(~( 0), ~(0)) = (~, Ço) ER 

We repeat that we assumed that the functions f and an, n = 1, .. , Nare continu­
ous with respect to the variabie t. One then shows that this initia] value problem 
has a unique solution by using the following arguments: 

i). the functions l, k = 0, .. , K + 1 are continuously differentiable with respect 
to ~ and continuous with respecttot 

ii). !lis a continuous function on I 

iii). Q_, d. and 2"!'- are continuously differentiable functions: they depend on their 
arguments in a rational way 

iv). an initia! value problem of this type has a unique maximal solution ([19]) 

Corollary 4.9 Let f be a continuous function on D X I that is analytic on D 
for all fixed t E I . Let an , n = 1, .. , N be continuous funct ions on I (a1 real 
valued). Let D0 be a rationat function such that all singularities of D0 and all 
zerosof D~ lay outside D. Then the Hopper equation (4.1) with initia! data D0 

has a rationat solution. This salution is unique in the class of normalized, smooth 
time-dependent locally conformat and rationat functions with a time-independent 
numbers of poles. 

The last part of this subsectien is devoted to the proof of Proposition 4.8. We 
first prove two lemmas. 

Lemma 4.10 Let q = ((,~)ER and let.±. E JR.2P-l satisfy A(q) .±. = Q. Let D 
denote the function -corre-;ponding to q (so: D = Dq} and let g de;;ote the function 

corresponding to (~, .±.) (so: g = D(~,óf)J. The Juncf.ion <jJ defined by 

<i>= ITg' + D'g (4.18) 

is analytic on an open domain that contains D. 
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Proof 
Part 1. The functions D and g are both analytic on an open domai n that 
contains D. More precisely, the rationa.l functions n and g are a.na,lyt ic on 

C\ { 1/ (I, .. , 1/ (M}. So, the function fjJ is analytic on C\ {(I, .. , Cvr, l/(1, .. , 1/ Cvi}. 
As q_ = (~,ç_) ER implies ~ E V and hence, ICml < 1,m = l, .. ,M, it is sufficient 
to prove that fjJ is ana.lytic on D. 
Part 2. We consider the homogeneous Hopper equation, i.e. equa.tion (4.1) with 

f identically zero: 

B((,t) = D((,t)D'( (, t)+D'((,t)D((,t) ( 4.19) 

where it is understood that B is an analytic function on D for all t E I. We 

substitute the Ansa.tz ( 4.2) into this equation and get equations ( 4 .7) and ( 4.8) 

with jUl((m(t), t) = 0 for all m = 1, .. , M and a.ll l = 0, .. , ]( + 1. So, the 
equivalent equations (4.16) and (4.17) in this casereduce to 

~(t) = Q (~(t), Q) = Q 

A (~(t),r(t)) r(t) = d (~(t),r(t),Q, .. ,Q,Q) = Q 

Conversely, if q_: tE I~--+ q_(t) = (~(t),ç_(t)) ER satisties these equations, then 
Dq(t) is a solution of the homogeneous Hopper equation (see Corollary 4 .3). One 
cfecks that -because only first order derivatives with respect to the variabie t 
appear in the calculations- the following assertion is also true: 

if q_: tE I~--+ q_(t) = (~(t),ç_(t)) ER is such that 

~(0) = Q A(~(O),r(O)H(O) = Q (4.20) 

then the function H'!.(t) satisfies the homogeneous Hopper equation at t = 0; i.e . 

the function 8((, t) defined by (4.19) -with D((, t) = Dq(t)(()- is a.nalytic on D 
for t = 0. -

Part 3. Let q = ((,ç_) E Rand let .;f E JR.2 P-l satisfy A(q) -'f = Q. As Ris a.n 
open set of JiiL (s~ Remarks 4.7), there is an t: such that the mapping 

q_: tE I~--+ q_(t) = (~(t),ç_(t)) = (~,ç_ + :rt ) E !RL 

is such that q_(t) ER for all tE ( -t:,t:). We note that th is mapping is such that 
relations ( 4.20) hold. It then follows from Part 2 that the function fjJ defined by 

is analytic on D, where it ha.s been used that 

The assertion in the lemma follows. D 
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Remark 4.11 We sketch an alternative proof of Parts 2 and 3. It ha.s been 
statedinPart 1 that the function cp is analytic on ·d7\{(1, .. ,(M,1/(1 , .. ,1/(M}· 
Moreover, if cp has a singularity in ( = (m E D, m = 1, .. , M , then this singularity 
is a pole and the order of this pole does exceed K(m) + 1. This implies that cp 
is analytic on an open domain that contains D if the following relations hold for 
all mE {1, .. , M} and all n E {1, .. , K(m) + 1}: 

2~i f ((- (mt-l<P(() d( = 0 ( 4.21) 
'Ym 

where /m, m = 1, .. , Mis a closed Jordan curve in D such that (m is inside lm 

and (i is outside lm if l opm. We substitute relation ( 4.18), calculate the integrals 
as we did in the previous section and find: 

"Ym 

K(m)-n M K(l) __ L L L Xm k+nCfj ~Cm k+nXl j 

k=O 1=1 j=l . 

( ( a ) k+ 1 ( ( ) j) I 
a( 1 - (I( ( =(m 

(4.22) 

for m = 1, .. , Mand n = 1, .. , K(m) while the integrals in the left-hand sicles of 
( 4.21) with n = K( m) + 1 and m = 1, .. , M vanish. One shows by straightforward 
calculations that the relation A_(q) .:f = Q implies that the right -hand sicles of 
identities (4.22) vanish for all m = 1, .. ,J'vl and all n = l, .. , K (m). 

Next we prove an important lemma which has already been used in Section 3.4. 

Lemma 4.12 Let cp, D and g be analytic functions on D and let cp, D' and g' be 
continuously extendable to D, lf D' does not vanish on D and iJ 

cp(() = D(()g'(() + D'(()g(() ( 4.23) 

for all ( E aD, then constants C1 E IR and C 2 E d7 exist such that 

( 4 .24) 

Pro of 
We define functions h, f and p on D by 

h(() = cp(() (4.25a) 
D'(() 

/((,() = ( D(()(~,~~~)'- h'(()) ( -g(() + D(()K,~~))- h(()) 
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- (n1(()g
1
(() +g1( ()) (-g(()+n(o ( gl(()) -h(()) (4.25b) n1(() n~(o 

- rf;(() -- -gl(() 
p((, () = n~(() - g(ç)- n(() n~(() (4.25c) 

We note that the functions handpare continuously extenda.ble toD. We also 
note that h is analytic on D while f and p are rea.l analy tic on D as t hey are 
sums of product s of analytic a.nd ant i-analytic functions. In pa rticular , f is 
differentiable and we can apply Gauss ' th eorem on each disc Dr with 0 < r < 1: 

2rr 

j j Re ( àcf( (, ()) dV = ~ j Re (!( reiB, re- i0)e-i0) df:J ( 4.26) 

Br 0 

We rewrite the integrands in this relation. First we ca.lculate àcf. We omit th e 
variables and stress that IT, g, etc. denote the anti-ana.lytic functi ons ob tain ed 
by complex conjugating n,g, etc.; so nis not the function defîned in Defînition 
3.16. We get 

and this leads to 

I 1 I 12 
Reàcf= n(~~) -h1 ( 4.27) 

Next we rewrite the integran d Re f e -i8J&Dr in the right-hand side of rela tion 
( 4.26). We again omit the variables, we do not indicate that we restr iet the 
functions to àDr and find 

Re je- i1J = 

Re (( -g +n(~~~)- ïï) (ei0 (n (~~~)' _ h1
) _ e- ie ( n~~: +?) )) = 

1 ( - ( .- d ( g1 
) • d g1 

. d - . d -) ) ~Re (-p-2g) -~ndf:J n~ +~d8h-n1 td8 n-/df:Jg = 

-~Re ((p + 2g)i!!_p) = ~ Im (g!!_p) +~.!!._ (Rep Im p) 
r df:J r df:J r df:J 

(4 .28) 

We substitute the relations ( 4.27) and ( 4.28) into relation ( 4.26 ), integrate by 
parts and obtain for all positive r < 1: 

I 
I 1 12 2rr j j IT (~~) - h1 dV = Re j ei8(pg 1)1&o, dB 

B r 0 
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We let r approach to 1. The right-hand side vanishes as both g' and p are 
continuous on D and as p restricted to fJD equals zero as follows from relations 
(4.23) and (4.25c). This leads to the following identity on D: 

One then argues that this implies the existence of a constant C E d7 such that 

g' =CD' 

lt follows from this relation that constants C and C2 exist such that g = CQ + C2 . 

Substitution of this relation into relation (4.23) leadstoRe C = 0. 0 

Remark 4.13 If Q is an univalent function on D such that Q" ca.n be extended 
continuously to D and such that Q' does not va.nish on D, then t his result can 
be proved alternatively as follows. 
We define functions x and (/! on D by 

x(()=- la( if;(z) dz <P(() = g( () 

Let G denote the image of D under Q. We define functions x and 'f! on G by 

x(z) = x(D,_(z)) 

Finally, wedefine the functions pand v according to formulae (2.12). It follows 
from Remark 2.1 that pand v satisfy Stokes' equations. Moreover, one checks that 
the homogeneaus boundary condition is fulfi.lled; i.e. 'L: !l. = Q on fJG as follows 
from the easily established relation Z'f!1 + ïp +x' = 0 on fJG and relation (2.70) . 
This implies ([72]) that p is constant and v is a rigid body motion. Relation 
( 4.24) can then be established by consiclering the homogeneaus Hopper equation 
(4.19) fora fixed t. 

Remark 4.14 Th e condition in Lemma 4.12 that Q has a non-vanishing deriva­
tive cannot regardless be omitted as the following counterexample shows. Let 
the functions n, g and Ij; be defined by 

Ij;(() = 0 

One easily checks that relation ( 4.23) holds but that there a re not any consta.nts 
C1 E IR, C2 E d7 such that relation ( 4.24) hol ds. 

Remark 4.15 If we substitute relation ( 4 .24) into relation ( 4.23 ) , we find Ij; = 
C2D' on fJD. As Ij; and D' are both ana.lytic on D, this implies Ij; = C 2Q' on D. 
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One checks that t his in turn implies that relation ( 4. 24) holds on D <1n d not on ly 
on aD (where it is understood that IT denotes the complex conjugate of D). We 
did not find a way to prove this result directly a.nd we believe tha.t this is not 
easy; the proof of this assertion may be connected with the following exercise: let 
the real functions u and v on an open simply connected doma.in in G C IR2 and 
their product uv be harmonie on G, show that if u is not identically zero, then 
constants c1 , c2 E IR ex.ist such that v = c1 u + c2 ( [ 15]). We finally note th at for 

exa.mple: 4;, D and g analytic on D a.nd continuous on D and 1; = ITg + Dg on 
[)D does not imply 1; = ITg +Dg on D ( take e.g. D(() = g(() = (). 

The previous lemmas enable us to prove Proposition 4.8. 

Proof of Proposition 4.8 
Let g_ = (~,f) be an arbitrary point in n and let ;f E IR2P-l sa.tisfy the equa.tion 
.d.(q) ;f = Q. Let D and g be the rational functions corresponding to q E Rand 
(~,~) E D x IR2P-l respectively. It foUows from Lemma 4.10 that th; functions 
D, g and the function q; defined by ( 4.18) satisfy the conditions of Lemma 4.12. 
So , constants C 1 E IR, C2 E (:' exist such that 

As the functions n and g are normalized by 

D(O) = g(O) = 0 Im D'(O) = Im g'(O) = 0 

we conclude that the constants C 1 and C 2 and hence gare identical to zero. As 

(m1 =P (m2 if m1 # m2 (see condition iiia) of Definition 4.6), this implies Xmk = 0 
for all m = 1, .. ,M and all k = 1, .. ,K(m) and hence ;f = Q. So, A(q_) ;f = .Q 
implies ;f = Q and it follows that A(g_) is regular for all g_ E R. D 

Remark 4.16 It has already been stated that the proof of Proposition 4.8 is 
based on the Lemmas 4.10 and 4.12 which in turn arebasedon the fact that the 
only solutions of boundary value problem (1.8) with 1 = 0 are the rigid-body mo­
tions. So, we can state in retrospect that thesetof differential equations obtained 
by substitution of a rational function into a Hopper equation is uniquely salvabie 
because of the linear structure of these equations a.nd because the solutions of 
the homogeneaus Hopper equation ( 4.19) correspond to rigid-body motions which 
can be suppressed by normalization. 

4.2.2 Functional dependency 

We consider Hopper equations where the functions f and an, n = 1, .. , N depend 
on D in a functional way. As far as the solvability of equations (4.7) a.nd (4.8) 
is concerned, we can repeat the same arguments as in the previous subsection 
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with the exception of the arguments i) and ii) on page 72. In this subsection 
we present sufficient conditions on the funct ions f and an, n = 1, .. , N for the 
equations (4.7) and (4.8) to be solvable. 
The standard norm on R C JRL ca.n be carried over to the space T ( see Definition 

4.6 and Remark 4.7): 

11n:r1 - n:r2 11 = l_q1 - _qzl 
Let A denote the space of analytic functions on D. 

Definition 4.17 A mapping 

F : n E T ~ f [nJ E A 

is called Lipschitz continuous if a constant C exists such that for all n1, nz E T, 
all m E { 1, .. , M} an d all k E { 1, .. , ]( ( M) + 1} 

lfr~IJ ( d~l) - fr~~~ ( ç!,;l) I < c 11n1 - nzll 

where it is understood that : 

j = 1, 2 

A mapping 

a : (n, t) ET x I ~ a[nJ(t) E d7 

is said to be Lipschitz continuous if it is continuous with respect to the variabie 
t and if a constant C ex.ists such that for all n1 , n2 E T and all t E I 

(4.29) 

Theorem 4.18 Let F be a tocally Lipschitz continuous mapping from T to A 
and let aN, n = 1, .. , N be tocally Lipschitz continuous mappings from T x I to 
C ( a1 from T x I to IR ) . Let no be rationat function such that all singularities 
of no and all zeros of n~ tay outside D. Then the Hopper equation ( 4.1) with 
initial data no corresponding to F and an, n = 1, .. , N has a rationat sotution. 
This sotution is unique in the class of normalized, smooth time-dependent locally 
conformat rationat functions with a time-independent number of potes. 

Pro of 
Wedefine mappings t, k = 0, .. , ]( + 1 by 

k ( ) - (k) ( . ) fm q - f[n~J (2m-1 - z(zm m= l, .. ,M 
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It follows immedia.tely from the Lipschitz continuity of F and the property that 

f[n] is analytic on D for all n E T that the ma.ppings j_k, k = 0, .. , X + 1 are 

Lipschitz continuous functions on R. Wedefine the mapping g_ by 

g_: (g_,t)ERxJ,......, 

g_(q_, t) = (aqn~.J(t), Re a2,[n'1]( t), .. , Im a/V,[fl.'!.j( t)) E JR.2N- 1 

The initia! value problem given by the Hopper equation (4.1 ) conesponding toF 
a.nd an, n = 1, .. , N with initia.! data. Do, in the nota.tion explained in Subsection 
4 .2 .1, can now be written as 

((t) = ~ (~(t) , t(cz(t)) 

f.(t) = A-1(g_(t)) d. (g_(t),t(g_(t )), .. ,j_K+1(q_(t )), g_(g_(t), t)) 
q_(O) = CJ.o 

where q_(t) = (~(t),_ç(t)) a.nd where 9_a corresponds to 0 0 . One shows that this 

set of differentia.l equations has a unique solution by using arguments similar to 

those on page 72. D 

We consider the moving boundary problem for Stokes flow driven by surface 
tension with initial data 0 0 ER. It follows from Proposit ion 3.20 a.nd Theorem 

4.18 that this problem has alocal rational salution if the mapping F : n E T,......, 
F[n] defined by Definition 3.15 is locaUy Lipschitz continuous. We show that this 

mapping F has this property. 

An arbitrary function nET can uniquely be written as 

/VI K(m ) (k 

D(() = E E Cmk(1 - (m()k 

The values of F(D) = F[n) in the points (m E D, m = 1, .. , M can be found by 
applying Schwarz' integral relation ([63, 35]): 

- 1 f 1 ( 1 1) 
F[nj((m) = 27ri ID'(z) l z- (m - 2z dz 

lzl=1 

1 M K(l) j-1 

= 27ri f L L JCij (1 _z (Lz)}+1 
lzl=1 1=1 ;=1 

-1 

( - 1-- _!_) dz (4.30) 
z - (m 2z 

The val u es of the kth derivative of F[n) in the points (m E D , m = 1, .. , M can be 

found by differentiating thi s relation: 
- 1 

(k) - - k! f /VI K(l) j-1 
F. (( ) "'"' · z (z- (m)-(1'+1) dz 

[!1) m - 27ri ~ ~ ]Cij (1- (Lz))+ 1 
lzl=1 1=1 ;=1 

( 4.31) 
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Roughly speaking, the integrands of these expressions are smooth functions of 
the coefficients (. and c .. as long as the derivative of D does not vanish on aD . 

To be more precise, it follows from these expressions that for every D0 E T an 
open neighbourhood N C T and a constant C exist such that for all D E N , for 
all mE {1 , .. , M} and all k E {1, .. , K(M) + 1} 

I (k) ((o)) (k) (-)I F[flol (m - F[fll (m < C liDo- Dil 

The other rnaving boundary problems mentioned in the Sections 3.3 and 3.4 can 
be treated analogously. 

Theorem 4.19 Let D0 be a rationat function such that all singularities of Do and 
all zeros of D~ lay outside D . Then the moving boundary problems for Stokes flow 
driven by surface lension and multi-poles and for Hele-Shaw flow with initia! 
data Do have a local rationat solution. This salution is unique in the class of 
normalized, smooth time-dependent locally conformat rationat Junelions with a 
time-independent number of poles. 

We end this section by a discussion why the results obtained so far a.re loca.l 
results. Let 

1 : tE I f-j. 1(t) = D~(t) ET 

denote the unique maximal solution of a problem mentioned in Theorem 4.19. 
In genera.!, the maximal interval I is a strict subset of IR a.nd we ask ourselves 
what can happen at the end point T+ of the interval I= (T_, T+) in these cases. 
It follows from the theory of ordinary differential equations ([31]) that in some 
sen se 

Roughly speaking, the boundary oT has three parts (see Definition 4.6) and we 
have the following possibil.ities in which way 1 approaches this boundary: 

i). One of the singularities of Dq(t) moves to aD as t T T+. We remark that 
the singularities of Dq( t) move in the extended complex plane according to 

the relations ( 4. 7). Ït follows from these relations that the singularities 
move away from D if the rea] part of the function f is non-negative on 
D; we will discuss this property in more detail in Chapter 5. So, for the 
moving boundary problems for Stokes flow driven by surface tension and 
multi-poles and for Hele-Shaw flow with a source, this possibility does not 
occur; i.e. solutions of these problems in T cannot approach that part of 
the boundary aT which consists of functions with singularities on aD. 

ii) . The function D~(t) approaches a function which has a derivative which van­

ishes somewhere on D . Assume that the following limit exists : 

lim Dq(t) = Dq(Tt) E aT 
tTTt - -
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\Ve distinguish two cases ( see e.g. [27]): 

(a.) The function D'!Jt) approaches the function wh ich is identica.l to zero; 

tha.t is: D~(Tt)( () = 0. Th is ca.nnot happen if a 1 is non-n ega.t ive a.s 

follows from rela.tion ( 4.13). 

(b) One of the zeros of n~( t) moves to aD a.s t. T T+. Th ere are two 

reasons why the solutiü'n ca.nnot be ex tend ed rega.rdless beyond this 
point. First, the matrix .d.(q:(T+)) may be singular and the equat ions 
( 4.17), and hence the equations ( 4.8) and ( 4 .1 ) , may be incompatible. 

Secondly, the function Frn~<T+ )l ma.y not exis t. 

iii ) . Two singularities of Dq(t) move to ea.ch other or a singularity va.nishes a.s 
t TT+· We may argue that this cannot occur in genera l by consiclering the 
time inversed problem . We will give a strict proof of this result in t he next 
cha.pter. 

Roughly speaking, the main rea.son why a. non-globa.l solution of a Hopper equa­
tion ca.nnot be extended is the formation of cusps (see [38, 40]). 

4.3 A class of global solutions 

We showed in the previous section that t he moving boundary problem for Stokes 
flow driven by surface tension has alocal solution if the initia] data is a. rational 
function . In this section we show that this problem has a global sol u ti on if the 
ini t ia] data is a rational function of a particular type. 

We reconsider the equations obtained by substitution of a pa.rtial fraction map­
ping in Hopper's equation. We showed in Example 4.5 that Hopper 's equation 
fora mapping n parameterized as in expression (4 .11 ) , reduces toa. set of M dif­
ferential and M algebraic equations. Before we show tha.t these equations have 
a global solution under certain restrictions on the initia] data, we study the al­
gebraic equations ( 4 .12) . 

Wedefine ;r. and D'E. for an element ;f = (x1 , .. , x TVJ) E CM by 

'î.=(x1 , ··,XM) 

Wedefine the hermitian M x M m atrix M(O for an element~ E 7JM by 

k,l=l, .. ,M 

The M a.lgebraic relations mentioned above ca.n now be written as 

(4.32) 
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Before we proceed, we note that the matrix M ( () is positive defi.nite for all 
( E vM such that m 1 f m 2 if (m1 f (m2 . Th-;-p-;:oof of this assertion runs as 
follows. First one proves the following inequali ty for all ç_ E vM and all~ E CM: 

< ~) M(ç_) ~ > ~ IE ~12 
where B is the matrix defi.ned by 

k,l = l , .. ,M 

Secondly, one shows by induct ion that 

M 

ldet BI = rr l(k - (tl 

k,l=l 
k<l 

We show that the equations ( 4.32) with 

(m(O) E ( -1, 1) m= l , .. ,M 

have exactly one proper solution. To be more precise, we prove the following 
lemma. 

Lemma 4.20 Let g_ E IR':(! and let M be a positive definite, symmetrie M x M 
matrix with positive matrix elements. The following set of M quadratic equations: 

(4.33 ) 

has exactly one solution in IR~1 . Th is solution depends on the matr·ix elements 
of M in a continuously differentiable way. 

The proof of this lemma is based on the following lemma. 

Lemma 4.21 Letg_,g_ E IR':(! and let M be a positive definite, symmetrie M x M 
matrix with positive matrix elements. The following set of M quadratic equations: 

( 4 .34) 

has exactly one solution in IR':(!. This solution depends on g_ in a continuously 
differentiable way. 

Proof 
Let P be a permutation matrix and defi.ne 
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One shows that 

P D ,!. r- = D (~,!.) 

and this leads to the following equivalency: 

D,!. ( M ;!;. + g) = g_ if and only if Di ( M i. + g_) = r;_ 

83 

It therefore suffices to prove the assertion in the lemm a under the a.ssumption 

if (4 .35) 

We prove this assertion by induction. The case M = 1 is trivia!. Assume that 
the assertion holds fora certa.in N E IN. Vve show in four steps tha.t the assertion 

then also holds for M = N + 1. 
Step 1. Consicier the following equations: 

k = l , .. ,N; t 2': 0 ( 4 .36) 

As the assertion is a.ssumed to hold for M = N, there is a unique differentiable 
curve 

1 : tE IRo,+ f--7 r(t) = ;!;_(t) E IR~ 

such that ;!;.(t) sa.tisfies equations ( 4.36 ). 
N ext consider the following quadratic equation for x N + 1 : 

( 4.37) 

with xt2': 0, l = 1, .. , N. This equation has exactly one positive solution given by 

where 

( ' 2 l /2)- l xN+l = J(;!;.) = 2qN+l h(;!;.) +eh(;!;.) + c ) 

N 

h(:f.) = ~ MN+l kXk + aN+l 

k=l 

We define a function g by 

g : t E IRo,+ f--7 g(t) = j(;!;_(t))- tE IR 

(4 .38) 

This fun ction g is continuously differentia.ble. One checks that g(t0 ) = 0 if and 
only if i(t0 ) = (:f.(t0 ),t0 ) E IR~+l is a. solution of equations (4 .36 ) and (4 .37). 
So, the number of zerosof g equa.ls the number of solutions in IR!Ij of equa.tion 
(4.34) with M = N + 1. 
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Step 2. We show that g has at least one zero. We differentiate the function f 
with respect to Xk, k = 1, .. , N: 

àj(x) ( 2 )-1/ 2 ( 2 1/2)-1 
~ = -2qN+1 MN+l k h(:f) + c h(:f) + (h(:f) + C) 

UXk 

All partial derivatives are negative and this implies that f on IR~+ is bounded 
by f(Q). We conclude that 

g(f(Q)) = f(:f(f(Q)))- f(Q) -:::: 0 

As g(O) > 0 and as g is continuous, it follows that g has at least one zero. 
Step 3. We show that g is monotonously decreasing and therefore cannot have 
more than one zero. We differentiate the relations ( 4.36) with respect to t: 

and find for all k = 1, .. , N 

Hence, 

(4.39) 

The first two terms in the right-hand side of this identity can be shown to be 
negative by means of the positive definiteness of and the symmetry of the matrix 
M. We omit the variables and show that the third term is bounded by 1 by using 
the symmetry of Mand inequality ( 4.35) : 
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We conclude that g'(t) is negative for all t ~ 0. 
Step 4. Now that we have shown that equation ( 4.33) with M = N + 1 has 
exactly one solution in JR~+I for all g, g_ E JR~+l, it rema.ins to be shown that 
this solution depends on g in a continuously differentiable way. We define the 

function F by 

F: (K,fl:) E JR~+l x JR~+I r-; F(K,fl..) = DI.(M K+fl:) E JRN+I 

This function Fis continuously differentiable. lts J acobian ."L has matrix elements 

k, l = 1, .. , N + 1 

and can therefore be written as 

-b(K, g) = D(t4_I.+<!.l +DI. M = DE ( D~ D(t4_0E.+<!.l + M) 

We note that DE is regular for all.:?:. E JR~+I while the diagonal matrices DI.._ 
and D U::-lE+<!.) are positive definite for all (.:!:., g) E JR~+I x JR~+l. The previous 
results and the inverse function theorem then imply that the solution of equation 
( 4.33) with M = N + 1 depends on gin a continuously differentiable way. D 

This lemma enables us to prove Lemma 4.20 in a. wa.y which resembles the proof 
a.bove but differs from it in some subtie aspects. 

Proof of lemma 4.20 
Consicier the following equations: 

Xk (1=1 
Mk[X[ + MkMt) = qk 

1=1 

k=l, .. ,M-l;t > O 

It follows from Lemma 4.20 that there is a unique differentiable curve 

'Y : tE IR+ r-; 'Y(t) = K(t) E IRt;!-t 

such that .:?:.( t) satisfies the equations ( 4.40 ). 
N ext consider the following quadratic equation for x M: 

XM (t MMkXk) = qM 
k=l 

( 4.40) 
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with Xk > 0, k = 1, .. , M - 1. This eq uation has exa.ct ly one positive solution 
given by 

(4.41) 

where 
M-1 

h(;r) = 2: MMkXk 

k=l 

One checks that the number of solutions in IRr: of equation ( 4.3:n equals the 
number of zerosof the function g defined by 

g : tE IR+ t--+ g(t) = f(çr(t))- tE IR 

One shows that g has exactly one zero as in Step 2 and 3 of the proof of Lemma 
4.21. One then shows that the solution ;rE IRt.;! of equation (4.:~3) depends on 
the matrix elements of M in a continuously differentiable way as in Step 4 with 
some small modifications. D 

Y..le use Lemma 4.20 to prove the following proposition. 

Proposition 4.22 Let Am,O E IR+, m = 1, .. , M, let (m,o E ( -1, 1), m = 1, .. , M 
and let Do be defined by 

M A 
Do= ( 2: m,O 

m=l ( 1 - (m,o() 

The moving boundary problem for Stokes flow driven by surface fension with 
initia! data Do has a global solution. This salution satisfies 

lim D( (, t) = r;;;; ( 
t--+oo V J-1 I'' for all ( E D 

where A denotes the area of the image of D under D0 . 

Pro of 

(4.42) 

Before we start with the actual proof, we present some definitions and estimates. 
We may assume (m1 ,0 i (m2 ,0 if m 1,o i m 2 ,0 . Wedefine 

M 
_A "' An,o 

Qm - m,O L...,. ( 1 ( ( )2 
n=l - m,O n,O 

E = ~ ( min 1 - l(m,o l) 
2 mE{l, .. ,M} 

V~ = { ~ E [-1 + E, 1- E]M I (m 1 i (m2 if m1 i m2} 

Lemma 4.20 enables us to define A(() for each ( E D::' as the unique solution in 
IRt.;! of the M quadratic equations - -
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We fin ally define the function D_ç_, [;__ E v:1 by 

De(() = ( f. Am(() 
- 1- ( ( m=l m 

Next we derive some estimates. We easily obta.in the following inequ ality for all 

( E aD and all [;__ E D~'Vl: 

In the same way we get 

for all ( E aD and all ( E D';'1 . The tirst inequa lity implies that the funct ion 
F[nc] is properly detined- for all [;__ E D~. It follows from these inequalities and 

the -maximum principle for harmonie function s that 

( 4.43) 

for aU ( E D a.nd all { E D~. Finally, it follows from Schwarz' integral relation 
(see also expression (4.31) with k = 1) that: 

IF{n~_J((m)l = 2~i f ID~(z) l - 1 (z - (m)-2 dz < [~ F/A 
lzl=l 

( 4.44) 

for all mE {1, .. , M} and all ç;_ E v:1 . 

We now co me to the act u al pro of of the proposi ti on. lt follows from Proposi­
tion 3.20, the previous sections and the detinitions given above that the rnaving 
boundary problem for Stokes flow driven by surface tension with initia! data D0 

has a global salution if the following initia! value problem has a global solution: 

Cm(t) = - (m(t)F[n_c_(<)J((m(t)) 

(m(O) = (m,O 

(4.45a) 

( 4.45b) 

The right-hand sicles of the differential equations ( 4.45a) depend on [;__ in a Lip­
schitz continuous way as follows from the considerations in the previous section 
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-especially expression ( 4.30)- and Lemma 4 .20 which states that A(O depends on 
~in a continuously differentiable way. It then follows from the theory of ordinary 
differential equations that the initia] value problem ( 4.45) has a local salution; 
see also Theorem 4.18 . Now assume that the maximal salution ~of initia] value 
problem (4.45) is not global. That is (see [31]): assume that aT E IR+ exists 
such that for each compacturn ](CV~ there is at E (0, T) such that ((t) tf. K. 
We show below that for every T E IR+ a compacturn J( C V~1 exists ;;-uch that 

~(t) E ]( for all tE [0, T) and this contradietien leads to the condusion that the 
salution of the problem is global. 
Let T be an arbitrary positive number and assume that the salution ~of initia! 
value problem ( 4.45) exists for all tE [0, T). We first note that inequality ( 4.43) 

implies 
d 2 ~ 
dtl(m(t)l = -l(m(t)l F[n~(tlj((m(t)) < -E y1r/A < 0 ( 4 .46) 

for all mE {1, .. ,M} and all tE [O , T) . As ~(0) E V~, this leads to 

~(t) E V~ for all t E [0, T) 

Secondly, we show that a constant C > 0 exists such that 

( 4.47) 

for all t E (0 , T) and all m 1, m 2 E { 1, .. , M} with m 1 :f m2 . Therefore we consider 
the following relation: 

It follows straightforwardly from the inequalities given above that: 

for all m 1 , m 2 E {1, .. , M} and all t E [0, T). One checks that it follows from 
this inequality that a constant C > 0 as in inequality ( 4.47) exists indeed. We 
conclude that there is a compacturn ]( such that ~(t) E ]( for all tE [0, T). 
We repeat that this leads to the condusion that the salution of the problern exists 
for all t :::0: 0. It follows frorn inequality ( 4.46) that l(m(t)l l 0 if t i oo for all 
mE {1 , .. , M} and this implies (4.42) . D 



Chapter 5 

Löwner-Kufareev equations 

In this chapter we study several types of Löwner-Kufareev equations. We show 
in Sectien 5.1 the existence and uniqueness of solutions of initia! va.lue problerns 
conesponding to linear Löwner-Kufareev equa.tions; sorne of these results are 

known in litera.ture ([69, 23]). In Sectien 5.2 we show the existence and uniqueness 
of solutions of initia] value problerns conesponding to what we call extended linear 
Löwner-Kufareev equations. We also show how isolated singula.rities in t he initia] 

data propagate. In Sectien 5.3 we reconsider Hopper equations . We firs t remark 
tha.t a Hopper equation can be considered as a kind of extended Löwner-Kufareev 
equation for the function ::: = n'IT. The relation between the functions ::: and n 
is treated in Subsectien 5.3.1. Wethen prove in Subsectiens 5.3.2 and 5.3 .3 some 
properties of solutions of Hopper equations on the basis of the results obt ained 
in Sectien 5.2. We finally return in Sectien 5.4 to quasi-linear Löwner-Kufareev 
equations - already introduced inSection 3.2- and provearesult on the solvability. 

5.1 Linear Löwner-Kufareev equations 

The e:x.istence and uniqueness of solutions of initia] va.lue problems corresponding 
to linear Löwner-Kufareev equations are based on the following result (see a.l so 

[49, 50]). 

Lemma 5.1 Let f be a continMus function on D x I such that f is analytic on 
D for all fixed t E I. The initia! value problem 

ij;((, t) = - <p( (, t)f( <p( (, t), t) 

<p(( , O) = ( 
(5.la) 

(5.lb) 

has a unique maximal solution. This salution is univalent for all fixed t E I . 

Proof 
One shows that f' is a continuous function on D x I by using Cauchy's integra.l 

89 
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formula. This implies that fis locally Lipschitz continuous on its domain D x I 

and it follows from Picard's theorem ([18]) that initia! value problem (5.1) has a 
unique maximal salution for all fixed (ED . 
Next we show that for all ( E D, there is an E. > 0 such that t.p is analytic at ( for 
all fixed t E ( -E., E. ). It follows from the theory of ordinary differential equations 
that for all ( E D, there is an E. > 0 and an open neighbourhood N of ( such 
that the sequence of functions t.pn , n E JN0 defined on N X ( -E.,E.) by 

t.po ( (, t) = ( 

t.pn+1((,t) = (-fot t.pn((,r)f(cpn((,r),r) dr 

converges uniformly on campacta in N to cp for all fixed t E ( - E. , E. ). One shows 
by induction that t.pn is analytic on N for aU fixed t E ( -E., E.) and all n E IN. 
Th is implies that cp is analytic in ( for all fixed t E ( -E., E.) ( [27]). It then follows 
from set theoretica] arguments that the maximal salution of initia! value problem 
(5.1) is analytic on its domain for all tE I. 
In order to prove that the function cp is injective on its domain for all fixed tE I, 
we consider the time-inversed problem. It follows from the arguments given above 

that for all fixed TE I and all fixed ( E D, the initia! value problem 

-J;(z,t,T) = 7f;(z,t,T)J(7f;(z,t,T),T- t) 

7/;(z, 0, T) = z 

(5.2a) 

(5.2b) 

has a unique maximal solution. Now, let ( 1 , (2 E D and T E I be such that 
cp( (1 , T) = <p( (2, T). One straightforwardly checks that the functions 7/;1 and 7/;2 

defined by 

bath satisfy initia! value problem (5.2) with z = cp((1 ,T) = cp((2 ,T) on an interval 
that contains 0 and T. The uniqueness of the salution of initia! value problem 
(5 .2) implies 

We conclude that <pis injective on its domain. 0 

Lemma 5.2 Let f be a continuous function on D x I such that f is analytic on 
D for all fixed t E I. Let <p denote the maximal salution of initia! value problem 
( 5.1). The ju netion a defined by 

1 
a(( t)- --

' - zp( (, t) 
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is meromorphic with only a first order singularity at oo for all fixed t E I and is 
the unique maximal salution of the jollotving initial value problem: 

Pro of 

ä((, t) =a((, t)f(a((, t), t ) 

a((,O)=( 

We note that differential equation (5 .3a) is satisfied as 

ëT((,t) = -<p(l/(,t) = f('Ç?((,t),t) = a((,t )f(a((,t),t) 
(<p(l/(,t))2 <p( l/(,t) 

(5.3a) 

(5.3b) 

The assertions in the lemma then foUow immediately from Lemma 5.1. 0 

Initia! value problem (5.1) wil! turn out todetermine the characteris tics of Löwner­
Kufareev equations; this wiU become clear in the proof of Propositions 5.6 and 

5.9. The initia] value problem (5.3) wiU turn out to play an important role in the 

study of Hopper equations; this will become clear in Section 5.3. It is therefore 

important to know the image of the functions <pand a. 

Definition 5.3 Let f be a continuous function on D x I such that fis analytic 
on D for all fixed t E I. Let <p be the maximal salution of initia! value problem 

(5.1) and let a be the maximal salution of initia] value problem (5.3). Wedefine 

Ie as the interval on which the maximal salution <p exists fora fixed ( E D. Let 

B besome subset of C. Wedefine the sets <fJt(B), <p(B) , at( B) and a(B) by 

<fJt(B)={z EDI:l(EBnD : tEie, <p((,t)=z} 

<p(B) = {(z,t) E D x I I :J ( E B : t E Ie, <p((,t) = z } 

at(B) ={zE C\D I :J (EB n (E\D): tE I1g, a((, t) = z} 

a(B) = {(z,t) E (?;\D) x I I :J (EB n (?;\D): tE I 1/(' a((, t ) = z} 

The set at(B) can alternatively be defined by 

at(B) = R( <fJt(R(B))) 

where R denotes reflection with respect to the unit circle (see Definition 3.16) 

The tigure on the next page illustrates this definition. 
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D 

' 

B t = t0 

I 

Lemma 5.4 Let f be a continuous function on D x I such that f is analytic on 

D for all fixed t E I. Ij M E IRo,+, To E I+ = In IRo,+ and r E (0, 1] are such 
that 

then 

Pro of 

max sup Re f((, t) SM 
tE[O,To] (EDr 

{(z,t) E D X [O,To] llzl <re-Mt} C <p(Dr) 

(5.4) 

(5 .5) 

Consicier initia] value problem (5.2) with f res t ricted to Dr x I fora T E [0, T0 ] 

and a fixed z with lzl < re-MT. We show that the maximal sol u ti on of this 
problem exists on an interval that contains [0, T]. Assume that this is not true, 
i.e. assume that the maximal interval is [0, TI) with T1 < T. It follows from the 
theory of ordinary differential equations ([31]) that for every compacturn ]( C Dn 
there is at E [0, T1 ) such that "P(z, t, T) r:j. K. However, as the salution of initia! 
value problem (5.2) satisfies 

·'·( t T) r' J(t/l(z,r,T),T-t) dr 
'f/ z, , = zeJo 

for all tE [0, Tt), we find from inequality (5.4) that 

17/J(z, t, T)l S lz leMT < r 

and this implies that there is a compacturn k C Dr such that 7/J( (, t, T) E k 
for all t E [0, T1 ). This contradiction leads to the condusion that initia! value 
problem (5.2) for all z with lzl < re-MT can be solved on an interval that contains 
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[0, T]. Moreover, we have 11f(z, T , T )l < r. 
Let z with lz l < re-MT, T E [0 , To] be a.rbitra.ry. One verifies that the fu nct ion 

<pon [0, T] defined by 
<p( t) = 1f(z, T- t, T) 

satisfies initia] value problem (5.1) with ( = ?jJ(z, T , T ) E Dr. So: for all z with 

lz l < re-MT, there is a ( E Dr such tha.t <p((, T ) = z. This is equi valent with 

inclusion (5.5). D 

Remark 5.5 It is clear that for aUTo Eh and all rE (0, 1), there is a M E IRo,+ 
such that inequality (5.4) holds . This implies {0} X I C <p(Dr) for all rE (0, 1) . 
We state without proof, although it is st raightforwa.rd , that <p1(D) is a non-em pty, 

open, connected and simply connected subdomain of D for all t EI. 
We not ice that if the real part of f on h is non-positive (i.e. r = 1, M = 0 

a nd T arbitrary in inequality (5.4)) , we get: D x I+ c <p( D). vVe fin all y notice 
that it can be shown in more or less the same way that if the real part of f is 

non-negative, then h C f( for all ( E D. 

Proposition 5.6 Let f be a continuous function on D x I such that f is analytic 

on D for all .fixed t E I. Let flo be an a.nalytic function on D. The initia! va.lue 

problem 

D((, t) = n'((, t)f((, t)( 

fl((, 0) = n o( () 

(5 .6a) 

( 5.6b) 

has a.n unique salution on <p( D). Th is salution is a.na.lytic on its domain 'fit ( D) 
f or all .fixed t E I. Ij 0,0 is locally or globally univalent, then so is this solution 
for all .fixed t E I. 

Equation (5.6a) is called the linear Löwner-Kufareev equation. This result IS 

proved in a slightly different wa.y in e.g. [69]. 

Proof 
Lemma 5.1 states that the maximal salution <pof initia] value problem (5 .1) is 

univalent on its domain for all fixed t E J. T his implies th at we can define a 
function <p ,_ on <p(D) by the rela tion 

<p ,_ ( <p( (, t), t) = ( 

( One can alternat ively define this fun ction by <p,_((,t) = 1f((,t , t ) for all (( ,t) E 

D x I for which the right-hand side makes sense) We differentiate t he relation 

with r espect to t a nd get: 

<p·,_ ( <p( (, t), t) + <p<- 1 ( <p( ( , t), t )<P( (, t) = 
<p <---- ( <p( ( , t) , t) - <p <-1 ( <p( ( , t), t) f ( <p( ( , t ) , t )( = 0 
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One checks that this implies that 'P,_ satisfies the following partial differential 
equation on its domain tp(D): 

( 5.7) 

(It would be more natura! to use the variabiezin this formula in stead of ( but 
there are reasans to do not .) As I'P,_((, t)l < 1 for all((, t) E tp(D), we can define 
a function D on tp(D) by 

( 5.8) 

It is easily checked that this function D satisfies initia! value problem ( 5.6). It is 

clear that D is analytic on its domain 'Pt(D) for all fixed t E I. 
The uniqueness of the salution of the problem is a consequence of the fact that 
tp(D) is the so-called domain of determinacy ([32]) . One can prove this uniqueness 
directly as follows . Let n on 'P(D) be a salution of initia! value problem (5.6). 
One easily checks that 

d -
dtD('P((,t),t) = 0 

and this implies that D((,t) = Do('P<-((,t)); i.e. the salutionnis identical to 
the salution constructed above. 
Let D0 be locally univalent on D; i .e . D~ does not vanish on D. As 'P._ is in­
jective for fixed t E I , 'P,_, does not vanish on tp(D) and it follows immediately 
from relation (5 .8) that D' does not vanish on 'P(D). In other words: Dis locally 
univalent on its domain 'Pt(D) for all fixed t EI. In more or less the same way, 
one proves that Dis globally univalent for all fixed t E I if D0 is globally univalent 
on D. D 

We will construct solutions of a particular type of linear Löwner-Kufareev equa.­
tions in Appendix B by the methad of separation of variables. These solutions of 
initia! value problem (5.6) may exist on a domain that properly includes tp(D); 
the following example shows that such extensions of the unique salution on tp(D) 
are not unique themselves. 

Example 5. 7 Let f on D x IR be identical to 1. One easily checks that the 
domain tp(D) in this case is given by 

tp(D) = D X fR_ U {(z, t) E D x IRo,+ I lzl <e-t} 

Consicier initia) value problem (5.6) with initia) data given by 

Do ( () = J(-=--1 ( E D 

The unique salution D on 'P( D) of this problem is given by 
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This salution can be extended outside <p(D) in severa.l wa.ys by making branch 

cuts for every t > 0 from the points (e-1, t) E à<p(D) to àD x R+· 

The following lemma can be useful if the uniqueness of a salution outside <p(D) 
is to be proved. 

Lemma 5.8 Let f be a continuous function on D x I such tha.t fis ana.lyt ic on 
D for all fixed t E !. Let r > 0 a.nd let D1 a nd D2 b e funct ions on D , x J such 

that D1 and D2 a re a nalytic on Dr for a ll fixed t E !. If D1 and D2 both sat isfy 
initia! value problem (5.6 ), then DJ and D2 are identical. 

Proof 
It is clear that the function D = D1 -D2 on Dr x I solves in itia! value problern ( 5.6) 

with D0 identical to zero. It follows from Cauchy's integra.l formul a that there 

are continuously differentiable functions an, n E Il\1o a.nd continuous fu nct ions 

en, n E !No on I su ch that: 

co co 

D((, t) = L an(t )C J((, i)= L Cn( t)(n 
n=O n =O 

Substituting these relations into in itia! value problem (5.6) with Do identical to 

zero, we get 

n 

k=l 

for all n E JN0 . One shows by indu ction, using some standard results on ordinary 

linear differential equations , that thi s implies an(t) = 0 for all n E !No and all 
tE I. So, Dis identically zero and this implies that D1 and D2 are ident ical. D 

We wil! study the quasi-Enear Löwner-Kufareev in Section 5.4. 

5.2 Extended linear Löwner-Kufareev equations 

We call equation (5.9a) below an extended linear Löwner-Kufareev equation. 
The existence and uniqueness of solutions of initia.! value problems conesponding 
tö such equations can be proved in more or less the same way as we did in 
the previous subsection for the (non-extended) linear Löwner-Kufa reev equat ion. 
We consider in Subsection 5.2.1 the case where the initia! data is given by a n 

analytic function :=:0 on an open su bset of D . In the Subsections 5.2.2 and 5.2.3, 
we consider the same initia! value problem with initi a! data given by a. fu n ction 
:=:0 which is not analytic but is meromorphic or multiple-va.lued. We summarize 
the results in Subsection 5.2.4. 
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5.2.1 Regular Points 

The following proposition on solutions of extended linear Löwner- K ufareev can 
be considered as the analogon of Proposition 5.6. 

Proposition 5.9 Let j and B be continuous functions on D x I such that j and 
B are analytic on D for all fixed t E I. Let B be an open subdomain of D and let 
2 0 be an analytic function on B. The initia[ vahte problem 

:=:((,t) = (2((,t)j((,t)()' +B((,t) 

2((,0) = 2o(() 

(5.9a) 

(5.9b) 

has a unique salution on cp(B). This salution is analytic on its domain cp1(B) for 
all fixed t E I. 

Proof 
Wedefine functions J and Ö on {((, t) E D x I I tE Ie} as follows: 

J ( () t) = j' ( cp( () t)) t )cp( () t) + f ( cp( () t)) t) Ö( (, t) = B( cp( (, t), t) 

Consicier the following initia) value problem for a fixed ( E B : 

~((,t) = ](Ct)~(Ct)+B(Ct) 
~((,0) = 2o(() 

(5.10a) 

(5 .10b) 

The differential relation (5.10a) is an ordinary linear differential equation and 
the initia! value problem has therefore a unique solution on I( C I. Solving this 
initia! value problem for all ( E B and reasoning as in the proof of Lemma 5.1, 
one shows that ~ is analytic on its domain for all fixed t E I. 
Next we define the function 2 on cp(B) by 

2( (, t) = ~( cp ..... ( (, t), t) (5.11) 

We differentiate this function with respect to t, substitute the relations (5.10a) 
and (5.7), and find: 

:=:((, t) = ~(cp-((, t), t) + ~'(cp ..... ((, t), t)cp"-((, t) 

= ](cp-((, t), t)~(cp ..... ((, t), t) + Ö(cp-((, t), t) 

+~'( <p,_( (, t), t)cp..-1( (, t)j( (, t)( 

= (!( (, t) + j'( (, t)()2( (, t) + B( (, t) + 2'( (, t)j( (, t)( 

= (2( (, t)j( (, t)()' + B( (, t) 

We conclude that the function 2 solves initia! value problem (5 .9). It follows 
from relation (5.11) a nd the analyticity of the functions <p ..... and ~ for fixed tE I 
that the function 2 is analytic for fixed tE I. The uniqueness of the salution can 
be shown by means of the arguments given in the proof of Proposition 5.6. D 
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5.2.2 Poles and essential singularities 

The function :=:o in the previous proposit ion is analytic on its doma.in. The next 

proposition deals with a function :=:o which ha.s a. pole or an essential singular­
ity. The proposition can be formulated most easily if we a.gree tha.t a.n essentia.l 

singularity is a pole of order oo. 

Proposition 5.10 Let f and () be continumts fnnctions on D x I such that f 
and () are analytic on D for all fixed t E I. Let (o E D and let N C D be an 

open neighbourhood of ( 0 . IJ :=:o is an analytic function on N\ { (o} with a pole of 
order N E IN 00 at ( = (0 , then the salution of initia.! value problem ( 5.9) has a. 
pole of order N at <p( (o, t) for all fixed t E Ic0 • 

Pro of 
It follows from Proposition 5.9 t hat the salution :=:of initia! value problern (5.9) 

is analytic on <p1(N\ { (o}) = <p1(N)\<p1( { (o}) for all t E I. This implies that for 
all tE !(0 , there is a r(t) E (0, 1) such that :=:is a.nalytic on the punctured disc 

{( E DI 0 < I(- <p((o, t)l < r(t)} CD. lt follows from Cauchy's integra.l formula. 

tha.t there are continuously differentiable functions dn, n E ~ on Ico such tha.t 

00 

:=:((,t)= L dn(t)((-cp((o,t)t 
n = - oo 

for all((, t) E D x I such that 0 < IC- cp((o, t)l < r(t). 
We derive a set of differentia.l relations for the coefficients d_n, n E IN. Before we 

do so, we note that there are continuous functions Cn, n E !No on I(o such that 

00 

f((, t) = L Cn(t)((- cp((o, t)t 
n=O 

Let 1(t) for aU t E I(o denote a simple closed Jordan curve in IPt(N) enclosing 
cp((o, t). Using relations (5.9a) and (5.1a), we get for all n E IN: 

d~n(t) = :t ( 2~i J =:((, t)((- <p((o, t)t- 1 d() 
"Y( t) 

1 f . = 27ri ::::cc t)((- cp((o, t)t-1 d( 

"Y( t) 

- n2:/ J =:((, t)((- cp((o, t) t - 20((o, t) d( 

"Y( t) 

= 2~i J ( (:~((, t)f((, t)()' + ()((, t)) ((- <p((o, t );n- 1 d( 

"Y( t) 
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+ n2~/ j ~(( , t)((- cp((o, t)t-2cp((o, t)f(cp((o, t), t) d( 

"Y( t) 

n -1 f =- 21ri ~((, t)f((, t)(((- <p((o, t)t- 2 d( 

"Y( t) 

n- 1 f 2 + 21ri ~((,t)f(<p((o,t),t)<p((o,t)((- <p((0,t)t- d( 

"Y( t) 

1- n f = 21ri ~((,t)f((,t)((- cp((o,t)t-1 d( 

"Y( t) 

1- n f + cp((o, t) 21ri ~((, t)(f((, t)- f (<p((o, t), t))((- <p((0, t)t-2 d( 

"Y( t) 

1 00 00 

= ~ f L L dk(t)c1(t)((- cp((o, t ))k+l+n-l d( 
2n 

"Y(t) k=-oo 1=0 

1 f 00 00 
+cp((o, t) 2~in L L dk(t)c!(t)((- <p((o, t))k+l+n-2 d( 

"Y(t) k=-oo 1=1 

00 

= (1-n)Ld-(n+l)(t)(q(t)+cp((o,t)q+I(t)) (5.12) 
1=0 

We first consider the case where the order of the pole of ~o is finite, i.e . N ::j:. oo. 
We conclude from the calculations above that the setof function s d_n, n E IN on 
Ic0 solve the following initia! value problem: 

00 

d~n(t) = (1- n) L d-(n+l)(t)( q(t) + <p((o, t)Ci+l(t)) 
1=0 

d n(O) = { 2~i f"(o) ~o(()((- (o)n-1 d( 
- 0 

n = 1, .. , N 

n > N 

(5.13a) 

(5.13b) 

As initia! value problem (5.9) has a unique solution, there is exact]y one set 
of continuously differentiable functions d_n , n E IN on fc0 solving initia! value 
problem (5 .13) and such that L~=l d_n(t)(-n constitutes an analytic function 
on f'\{0} for all fixed tE Ico· Now we remark that it follows from the theory of 
ordinary linear differential equations, and the continuity of the functions c1, l E 
!No and cp with respect to t , that there are functions d_n, n E { 1, .. , N} on I co 
such that 

N - n 

d~n(t) = (1- n) L d-(n+l)(t) ( c1(t ) + <p((o, t)cl+l (t)) 
1=0 

(5.14a) 

(5.14b) 
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for all n E {1 , .. , N}. Hence, d_n equals rLn for all n E {1 , .. , N} and cL n vanis hes 
on I(o for all n > N. We finally remark that it follows from relation (5.14a) for 
n = N, that, as d_N(O) -:j:. 0, d_N does not vanish on J(o . The assertien in the 
proposition for N E IN follows. 
The assertien in the proposit.ion for N = oo can then be shown a.s follows. Let 
~o have an essential s ingularity at ( = (0 a.nd assume that there is a t0 E Ic0 \ {0} 
such that ~ at t = t0 does not have an essential singula.rity at <p((o, t0 ) . As ~ 

at t = to is analytic on some punctured neighborlwod of <p((u, t0 ) , this implies 
that ~ at t = to has a finite order pole in ( = <p((o, t0 ) (or can be extended 
analytically in ( = <p((0 , t 0 )). Next one considers the time-inversed problem and 
shows by the assertion proved above (or by Proposit.ion 5.9) that:::: at t = t0 has 

a finite order pole at ( = (0 (or can be extended analytically at ( = (0 ) . This 
contradiction leads to the condusion that ~ has an essential singularity in <p((0 , t) 
for all t E J (o . D 

Because we will need the result later on, we also consider wha.t happens with a. 
pole of ~0 at ( = 0 if the function Bis analytic on D \ {0} with a pole at ( = 0. 

Proposition 5.11 Let f and be a continuous function on D X I such that f is 
analytic on D for all fixed t E J and let B be a continuous function on D\ {0} x J 
such that B is analytic on D\ { 0} with a pole of an order not larger than N E IN 
at ( = 0 for all fixed t E I . Let N C D denote an open neighbourhood of ( = 0. 
Ij ~0 is an analytic function on N\ { 0} with a pole of an order not larger than N 
in ( = 0, then the salution of initial value problem (5.9) has a pole of an order 
not larger than N in ( = 0 for all t E !. 

Proof 
1t follows from Proposit.ion 5.9 that the salution ~of initia] value problem (5 .9) 

is analytic on <p1(N\{O}) for all t EI. It follows from Remark 5.5 tha.t there 
is no t E I such that if!t(N\ {0}) = 0. We define the fun ctions j and iJ on 
{ ( (, t) E D x J I t E Je} as in the beginning of the proof of Proposit.ion 5. 9. As 
the function ip is univalent on some open neighbourhood of ( = 0 for all t E I 
- see Lemma 5.1-, the function è ha.s a pole of an order nat larger than N at 

( = 0 for all fixed t E J. 
Consicier the following initia) va.lue problem for a fixed ( E N: 

Ë((, t) = ]((, t)Ë((, t) +iJ((, t)(N 

Ë((, 0) = ~o(()(N 
(5.15a) 

(5 .15b) 

One shows as in the proof of Proposit.ion 5.9 that the unique salution Ë is ana.lyti c 
on its domain for all fixed t E J. In particular, as <p( O, t ) = 0 for all t E J , this 
salution is analytic at ( = 0 for all tE J. One checks that the function Ë defined 
by 

Ë((, t) = Ë((, t)/(N 
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has a pole of an order not larger than N in ( = 0 and solves initia.! value problem 

(5 .15). It is then easily shown that the funct ion =: defined as in relation (5 .11) 

has a pole of an order not larger than N at ( = 0 and solves initia! va.lue problem 
(5.9). 0 

Remark 5.12 The proof of this proposition can alternatively be based on the 

relations ( 5 .12) with slight modifications. 

5.2.3 Branch points 

The function :=:0 in Propositions 5.9 and 5.10 is single-valued on its domain . In this 

subsection, we consider fundions :=:0 which are multiple-valued . A comprehensive 
account of multiple-valued analytic functions is given in e.g. [10] and [3]. We will 

mainly consider multiple-valued functions on an open punctered neighbourhood 
of a point (o E <['. We impücitly understand that such a function is not single­
valued (i.e. such a function cannot be expanded in a Laurent series). Conversely, 
an analytic function on an open domain is understood to be single-valued unless 
it is explicitly stated that it is multiple-valued . 
We recapitulate ( cf. [3]) that a multiple-valued analytic function =: on an open 

punctured neighbourhood of a point ( 0 E <[' has a. branch point of order n E IN 
if and only if the function =:n defined on an open punctured neighbourhood of 

( = 0 by 
(5.16) 

is analytic while there is no k E JN0 smaller than n such that the function =:k 

defined in the same way is a.nalytic. The point (o is then called an ( ordinary ) 
algebraic branch point if the principal part of the Laurent series of =:n contains 
only a finite number of terrus (vanishes). Otherwise the branch point is called 
transeendentaL If there is no n E IN such that the function =:n defined above is 
a.nalytic on its domain, then the branch point is called logarithmic. The results 
proved below are most easily formulated if we agree that a logarithmic branch 
point is of order oo. The proof of the analogon of Propositions 5.9 and 5.10 where 
the initia! data is given by a mu!tiple-valued function is based on the following 

lemma. 

Lemma 5.13 Let g, h and 1/J be analytic Junelions on an open neighbourhood 
of a point Co E C where g does not vanish and where 1/J is univalent. Let =: 
be a multiple-valued analytic function on an open punr:tured neighbourhood of 
(o = 1/J( Co). Th is ju netion =: has a ( ( ordinary) algebra ie) branch point of order 
n E IN ij and only ij the function ~ defined on an open punctured neighbourhood 
of Co by 

~( () = :=:( 1/1( () )g( () + h( () ( 5 .17) 

has a ((ordinary) algebraic) branch point of order n at ( 0 . 
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Pro of 
Befare we start with the actual proof of the lemma, we note that the rela.tion 

(5.17) implies the relation 

(with einsome open punctured neighbourhood of ( 0 ). This relation implies that 

the function :=:: can be written as 

(5.18) 

where g, hand ~are analytic functions on a.n open neighbourhood of eo where g 
does not va.nish and where ~ is univa.lent. 
Part 1. Let the multiple-valued analytic function :=::have a bra nch point of order 
n E IN at eo. We show that the function ~ defined by rel at ion (5.17) has a branch 

point of order n at ( 0 . Vve first prove that the function ~n defined on an open 

punctured neighbourhood of e = 0 by 

(5.19) 

is a.nalytic. It ca.n straightforwardly be shown ( cf. [23]) that, as 'Ij; is univalent 
on its domain, a univalent function u on an open neighbourhood of e = 0 exists 

such that 

u(et+l = 1/J(êo + cn+l)- i/J(Co) 

This implies that the function :§:n can be written as 

:§:n(() = :§:((o +en+!) 

= ::::( i/J(êo + c+l ))g((o +en+ I)+ h( êo + c+l) 

= ::::(eo + u(et+1 )g((o + c+l) + h((o + cn+l) 
= ::::n(u(())g((o + c+l) + h((o + en+l) (5 .20) 

This relation, tagether with the analytic properties of the functions in the right­
hand side, implies that the function :§:n is indeed an ana.lytic fun ction on some 

open punctured neighbourhood of e = 0. 
We next show that there is no k E IN0 smaller than n such that the function 
:§:k defined as :§:n (see rela.tion (5.19)) is a.na.lytic on an open punctured neigh­
bourhood of e = 0. Assume that this is not true, i.e. let k E {0 , 1 , .. , n - 1} 
be such that :§:k is analytic on an open punctured neighbourhood of e = 0. It 
follows from relation (5.18) a.nd the reasoning above ( replacing functions with a. 
tilde by functions without a. tilde a.nd contariwise) that the function :=::~; defined 
as :=::n in relation (5.16) is analytic on an open punctured neighbourhood of e = 0. 
However, this contradiets the cha.racteriza.tion of a branch point of :=:: of order n 



102 CHAPTER 5. LÖWNER-KUFAREE\1 EQUATIONS 

at (0 as we gave it in the beginning of this subsection. Tagether with the result 
above, this leads to the condusion that ~ has a branch point of order n at Co if 
2 has a branch point of order n at (0 . 

Part 2. We next show that if 2 has an (ordinary) algebraic branch point of order 
nat (0 , then the function ~ has an (ordinary) algebraic branch point of order 
n at (0 . If 2 has an ordinary algebraic branch point of order n at ( 0 , then the 
function 2n defined by relation (5.16) is not on ly analytic on some open punc­

tured neighbourhood of ( = 0 but is analytic on a whole neighbourhood of ( = 0. 
It then immediately fellows from relation (5.20) that the function ~n defined by 
relation (5.19) is analytic at ( = 0. This in turn implies that the branch point 
of~ at ( 0 is an ordinary algebraic branch point. lt can be shown in more or less 
the same way that if :=: has an algebraic branch point of order n at ( 0 , then the 
function ~ has an algebraic branch point of ordernat ( 0 . 

Part 3. We have shown in Parts 1 and 2 that ~ has a ((ordinary) a.lgebraic) 
branch point of ordernat (0 if :=: has a ((ordinary) a.lgebraic) branch point of 
ordernat ( 0 . It follows from relation (5.18) and this result (replacing the func­
tions without a tilde by the functions with a tilde and contariwise) that :=: has a 
((ordinary) algebraic) branch point of ordernat ( 0 if ~ has a ((ordinary) alge­

braic) branch point of order n at (o. The statement in the lemma follows from 
these two assertions. 0 

Remark 5.14 As a branch point which is not of finite order is of order oo, it 
follows immediately from this lemma that a multiple-valued analytic function :=: 
on an open punctured neighbourhood of a point ( 0 has a branch point of order 
oo at ( 0 if and only if the function ~ defined by relation (5.17)- with g, hand '1/J 

as in Lemma 5.13- has a branch point of order oo at (o. 

Proposition 5.15 Let f and e be continuous Junelions on D x I such tha.t f 
and e are analytic on D for all fixed t E I. Let ( 0 E 1J and let N C D be an 
open neighbourhood of (a. IJ :=:0 is a multiple-valued analytic function on N\ { (0 } 

with a branch point of order N E IN 00 at ( = (0 , then the salution of initia! 

value problem ( 5.9) ha.s a branch point of order N at cp( (o, t) for all fixed t E I(o . 
M oreover, ij the branch point of :=:0 is ( ordinary) algebraic, then the branch point 
of:=: is (ordinary) algebraic for all fixed t E I(o. 

Pro of 
We can define a function :=:on cp(N)\ { (o} exactly as in the proof of Proposition 
5.9. It is clear that as :=:o is now multiple-valued, this function :=: may also be 
multiple-va.lued (see in particular relation (5.11) where Ë is the salution of initia! 
value problem (5.10)). Proposition 5.9 states that the thus defined function :=: 
solves initia.! value problem (5.9) in the sense tha.t if :=:0 is made single-valued by 
making a. cut ]( in N from (o to ûN and choosing a branch of ::::0 , this determines 
a branch cut 'Pt(K) in the doma.in of:=: for all fixed t E I -as the mapping cp is 
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univalent on its domain for all fixed tE I- and a branch of the function := which 
uniquely solves the conesponding initia! value problem . 
In order to reveal the character of the function :=: on its domain IPt(N\ { (0}) for 
a fixed t E Ico, we reconsider its construction given in the proof of Proposition 
5.9. More particularly, we determine in which way this function := depends on 
the initia] data. given by the function :=0 on N\ { (0 } . The proof of Proposition 

5.9 starts with the definition of the functions } a.nd ê on { ( (, t) E D x I I t E Je}. 
The precise form of these functions is notimportant for the following discussion; 
what is essential is that these functions are both analytic on their domains for 
all fixed t E J. The next step in the proof is the observation that initia] value 
problem (5.10) has a unique solution. This solution ~is given by 

t 

:§((, t) = :=0(()efo' Î( ( ,T)dT + j B((, r)ef; Ï (( ,TJ)dT1dr 

0 

as can be verified directly. Hence, this function := can be written as 

Ë((, t) = :=0(()§((, t) + h.((, t) 

where g and hare functions on{((, t) E D x I I tE Je} which are analytic for all 
fixed t E I. This implies that the function :=on ~P(N\ { (o}) defined as in relation 
(5.11) can be written as 

:=:( (, t) = :=o( lP._((, t), t)g( (, t) + h( (, t) (5.21) 

where g and hare functions on 1p(N) which are analytic on their domains VJ 1(N) 
for all fixed t E I . We note that the function lP<- is univalent on its domain for 
all fixed tE I and that the function g does not vanish. So, fora fixed tE Ic0 , the 
function :=1 defi.ned by :=1(() = :=((, t) can be written as 

where 1/;11 g and h are analytic function on an open neighbourhood of lP( (0 , t) 
where 1/;1 is univalent and where g does not vanish. The assertion in the p ropo­
sitien then follows from Lemma 5.13. D 

5.2.4 Propagation of isolated singularities 

The Propositions 5.10 and 5.15 can be considered as assertions on the propa­
gation of isolated singularities of solutions of extended linear Löwner-Kufareev 
equations. The isolated singularities of a function :=: satisfying an extended linear 
Löwner-Kufareev equation move along the cha.racteristics determined by equa­
tion (5.la). A pole or a branch point cannot a.ppear and can only disappear 
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if the conesponding characteristic reaches the boundary of the unit disc. We 
note that if the real part of the function f that appears in the extended linear 
Löwner-Kufareev equation is non-negative, then the cha.racteristics cannot reach 
the boundary of the unit disc -see Remark 5.5- and the number of poles and 
branch points is conserved. It is needless to state that these assertions are in 
complete accordance with Proposition 5.9. We finally note that the order of a 
pole or branch point cannot change in the sense that the order of the pole or 
branch point at <p( (o, t) is the same for all t E Ic0 . We stress that these assertions 
are only true for solutions of extended linear Löwner-Kufareev equations where 
the function () is analytic on D x I; if the function () is admitted to have poles, 
then singularities may appear ar disappear a.s the proof of Proposit ion 5.11 shows. 

5.3 Hopper equations reconsidered 

In the previous chapters we met the Hopper equation which ca.n be written a.s: 

(n'((, t)IT((,t)) ·= (n'((,t)IT(( ,t )f((,t)()' +B(( ,t ) (5.22) 

(For the details on how to read this equation we refer to Section 4.1.) This Hopper 
equation ca.n be regarcled a.s a. kind of extended Löwner-Kufa.reev equation for 
the function D/IT. There are nevertheless three important differences between 
the Hopper equations introduced in Section 4.1 and the extended linear Löwner­
Kufareev equations for:::: = D'IT considered in Section 5.2 . First, a function n 
is said to sa.tisfy a Hopper equation if t he relation (5.22) holds on 8D x I while 
a function :=: is said to satisfy an extended linear Löwner-Kufareev equation if 
this same relation -with a different interpretat ion of the prime, see Definition 
3.18- holcis on some open domain contained in D x I. Secondly, the function () 
that appears in a Hopper equation should not be considered to be given while 
the function () in the right-hand side of an extended Löwner-Kufareev is a given 
function. Thirdly, the function f in a Hopper equation may depend on n in 
a functional way while the function f in an extended linear Löwner- K ufareev 
equation does nat. We ca.n summa.rize these differences by sta.ting t hat a Hopper 
equation is an extended quasi-linear Löwner-Kufareev equation restricted to 8D x 
I where the function () that appears remains undetermined. 
This view on Hopper equations turns out to be fruitful. In the Subsections 5.3 .2 
and 5.3.3 we show how the results obtained in the previous section ca.n be used 
to prove properties of solutions of Hopper equations. In order to make the above 
explained point of view on Hopper equa.tions more convincing, we reveal the 
relation between the functions :::: = n'ITiao and n in Subsection 5.3.1. 
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5.3.1 The inverse problem 

We explained above that a Hopper equation can be considered to be a kind of 

Löwner-Kufareev equation for the function ::: = D'IT/eD· Theorem 5.20 below 
states for which functions ::::on àD there is a loca.lly confermal mapping n such 

that::: = D'IT/eD· We first show that if such a function D exist, then it is almost 
unique. 

Proposition 5.16 Let Dk, k = 1, 2 be continuous junctions on D such that: 

ii). Dk is analytic on D and does not vanish on àD 

iii). the derivative Dk on D can be extended continuously to D and Dk does nol 
vanish on D 

Ij 

n;n1laD = n;D2IeD 
then there is a re al constant a such that nl = é)( n2 . 
Pro of 
We first show that D1 has only a finite number of zeros . Assume that t his is not 

true, i.e. let D1 have an infinite number of zeros. As D is compact, there is an 
accumulation point (o E Dof zeros. As D-1 is continuous and does not have any 
zeros on àD, this point ( 0 lies in D. Since D-1 is analytic on D, this impLes that 
D-1 is identically zero on D and hence on D. This contradiets assumption ii) in 
the proposition and we are led to the condusion that D1 has only a finite number 
of zeros. We denote these zeros outside 0 by (n, n = 1, .. , N. It follows from the 
other assumptions in the proposition that all these ze ros lay in D and are of fi rst 
order. 
The function h on C\D defined by 

is therefore meromorphic and has only a finite number of first order poles. It 
follows from the assumptions in the proposition that this function can be extended 
continuously to aD: 

( E àD (5.23) 

The function in the right-hand side can in turn be extended analytically on D. 
It then follows from the principle of analytic continuatien ([26]) that h is a mero­
morphic function on C with a finite number of poles which are all of first order. 
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It is then straightforward to show that there are numbers Cn E 67, n = 0, .. , N 
such that 

We note that 

N 
'Ç"' Cn 

h( () = co + L.." 
n=l (- 1/ (n 

h(() =Co+ t Cn(n( 
n=l (n- ( 

( 5. 24) 

( 5.25) 

It follows from the relations (5 .23) that the following relation holds on àD: 

n; = h(lï'n] + 7ïn;) 

We multiply hoth si des of this identity hy IT~=l ( (n - () and get 

n; (()ft ((n- () = h(() fi ((n- () (((k- c?lï'(() ~1~(~ + ((k - ()lïn;(o) 
n=l 
n # k 

for all ( E àD and for an arhitrary k E {1, .. , N}. After suhstitution of the 
identities (5.24) and (5.25), it can be checked that all terms that appear in this 
relation are continuous functions on àD which can he extended analytically on D 
(ohserving that i11 has first orderzerosin ( = (n ,n = 1, .. N). This implies that 
the relation above holds for all ( ED. In particular, it holds for ( = (k, k = 1, .. , N 
and we find for all k = l , .. ,N: 

h( ) ITN ( () ( (2-"'( )) _ ((kn;((k))2 fiN ( ) 
0 = (k (n- k 2 kfkH] (k = 2q n~((k) (n - (k 

n =1 n=l 
n#k n#k 

This implies Ck = 0 for k = 1, .. , N and we find that h is ident ically a constant 
Co . Substition of this result into relation (5.23) leads to n2 = conJ on àD with 
lcol = 1. The assertion in the proposition follows . 0 

Before we formulate a theorem that states under which conditions a function ::: 
on àD is such that there is a locally conformal mapping such that ::: = il'ITiaD, 
we introduce some nota.tions and definitions. 
In the following we denote the HiJhert transfarm of a function f on àD hy H.(f ). 
We will write H.(f( ()) in stead of H.(f)( () as this wil! make formu lae ea.sier 
to write down. It is known that the Rilhert transfarm of a. Hölder continuous 
function is Hölder continuous ( [86]). 

Definition 5.17 Wedefine K1 asthespace of functions::: on àD such that: 



5.3. HOPPER EQUATIONS RECONSIDERED 107 

i). 2 is Hölder continuous 

ii). 2 does not vanish on àD 

iii). the function Pon àD defined by 

P(() = ~(H(ln 12(() 1) -lm ln(2(0 0) (5.26) 

is single-valued and has a Hölder continuous derivative. 

Remark 5.18 lt follows from the conditions i) and ii) that 7-l(ln 121) is a properly 
defined function on àD. It then follows from the Argument Principle ( cf. [15]) 
that Pis single-valued if and only if the increase of the argument of:=:(() as ( 
tranverses àD in the positive direction is -27r . This implies for example that 
among the functions :=:n(() = (n,n E 2Z, the function ::::_1 is the only one in K 1 . 

Definition 5.19 Wedefine K2 as the space of functions Don D such that: 

i). Dis analytic on D 

ii). D' can be extended continuously to a function on D such that D' lao 1s 
Hölder continuous 

iii). D(() = 0 if and only if ( = 0 

iv) . the function D' does not vanish on D 

Theorem 5.20 Ij D E Kz, then the junction:::: on àD defined by 

is in K 1 and satis.fies 

2 (()( t:-1-i(Im ln2:(()() = 1 + i((P(() + i'H(P)(()) ' ( E àD 
12( OI -

(5.27) 

( 5. 28) 

where the junction P is defined by relation (5.26). Conversely, ij a junction 
:::: E K 1 satisfies equation (5.28), a junction D E K 2 exists such that relation 
(5.27) holds. 

Proof 
Part 1. Let DE K 2 and let 2 be defined by relation (5 .27). We prove that 2 E K 1 

and that :=: satisfies equation (5.28) . 
It is easily checked that :=: satisfies condition i) and ii ) of Definition 5.17 as D 
satisfies condition ii) , iii) and iv) of Definition 5.19. In order to show that :=: 
satisfies condition iii) of Definition 5.17, we calculate P. Wedefine r , a E IR by 
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.1!'(0) = ré", omit the variables a.nd note that the following ident ities hold on 
àD: 

P = ~(H(In j=:j)- Im ln(=:()) = ~H(In j.I!'ITj)- ~Im ln(D'IT() 

= ~1{ (Re In ( n'z)) +~~mIn ( n'z) 

= ~Im In ( n'%)- a+ ~Im Jn ( n'z) 

= ~Im In ( ID'Iz) 
2

- a= Im In (z) -a (5.29 ) 

where we used the observation tha.t .1!'.1!/( is a.n a.na.lytic function on D with a. 
non-vanishing continuous extension to àD. It follows from this rela.tion tha.t Pis 
single-va.lued a.nd has a Hölder continuous derivative on àD. We conclude that 
=: E K1. 
In order to show that =: sa.tisfies equa.tion (5.28 ), we calcula.te both sides of this 
equa.tion. We aga.in omit the variables a.nd find fortheleft-hand side: 

::::( -H(Im ln(::ö:()) _ .I!'IT( -H(Im ln(D'O( )) _ 
j:=:( - ID'ITI e -

.\!'IT( 'H(Im in(%) -'H(Im ln(D')) _ .\!'IT( -lnJDJ - 1 In JO ' I _ .\!'( 
j.I!'Die e - ID'Dire r e - n 

Next we ca.lcula.te the right-ha.nd side of equation (5.28): 

1 + i((P + iH(P))' = 1 + i(~m In(%)- a+ iH(rm In(%)- a))'= 

1 + i((Im In(~)- i (Re In(%) - r))' = 1 + ( (tn (%) )' = .\!~( 
It follows immedia.tely from these identities tha.t the function :=: sa.tisfies equa.tion 
(5.28). 
Part 2. Let:::: E K1 sa.tisfy equa.tion (5.28). Wedefine the function non àD by 

where 

.\!(() = (rei(P(()+i'H(P(())) (5.30) 

l ( 2 '1T In J::ö:(ei0 ) Jd8 
r=e•'ITJo (5.31 ) 

It is ea.sily checked tha.t as:=: satisfies condition iii) of Definition 5.17, this function 
nis differentia.ble on àD. It follows from relation (5.28) tha.t equation (5.27) is 
sa.tisfied as 

.I!'IT = rei(P+iH(P)) (1 + i((P + iH(P))') (re-i(P-i'H(P)) 

2- -
= r .::. e-2H(P)e-H(Im ln(::ö:()) = .::. eln J::ö:J-H(lm ln(::ö:())f''H(Imln(::ö:()) = :; 

j::::j j::::j - -
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It remains to be shown that Q on 8D can be extended to a. function on D in 
K2 . lt immediately follows from relation (5.30) that the function Q on 8D can 
be extended to an analytic function on D. It also follows from this rela.tion tha.t 
D(() = 0 if a.nd only if ( = 0. In order to show tha.t t he conditions ii ) a.nd iv) 
in Definition 5.19 are a.lso satisfied, we note tha.t the following identities hold on 
8D: 

7-L(ln 1:=:1) - P = ~ ( H(ln 1:=:1 ) + lm In(:=:()) 

= ~ ( H( Re In (n~n)) + Im In ( n'ITc) ) 
In ( (~') 

= Im In D'- 0: (5 .32) 

where 0: E IR is such tha.t D'(O) = reie1. The left-hand side of this identity 
is single-valued as =: sa.tisfies condition iii) of Definition 5.17 (see a.lso Remark 

5.18). This implies tha.t the function Im ln D' is single-valued on àD and it 
follows from the Argument Principle that D' does not vanish on D. We fina.lly 
note the function D satisfies condition ii) of Definition 5.19 because of relation 
(5.32) and because :=: satisfies conditions i) a.nd iii) of Definition 5.17. D 

Remark 5.21 It is clear that the right-hand side of equa.tion (5.28) ca.n be ex­

tended ana.lytically on D. The left-hand side ofthis equation can also be extended 
analytically on D , wha.tever the fun ction ::: E K1 is , as it ca.n be written as 

:=:( e - 1-I(Im In(!:()) = ei(Im ln(!:()+i1-l(lm In(!:()) 

1=1 

This implies that Theorem 5.20 also holds if equation (5.28) is replaced by the 
equation 

Re:=:(()(= 1:=:(()1 (1- Im P'(()() e1-l( lm In(!:(()()) (5.33) 

which is obtained from equation (5.28) by ta.king the real part of both sicles and 
multiplying by 1=1e1-l(lm In(!:()). 

Remark 5.22 We note that the proof of Theorem 5.20 is constructive in the 
sense tha.t if a function =: E K1 satisfies equation (5.28), then a function Q such 
that D'Di aD :=: is ea.sily obta.ined from rela.tion (5.30) and Schwarz' integral 
formula: 

1 .l:p(z)~dz D(() = (re'4iCJ' z ( z-() ( E D ( 5.34) 
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where the integral is over àD. It IS not difficult to prove that the function 
Del', a E IR defined by: 

I 

ll,( Ç) ~ ,•• ( 2 / ze,:, f 1" lOlwil .(::'" dw dz) ' ( E D (5.35) 

can be extended continuously toa function on D in K2 that satisties D~DCl' l an = 
:=:. The advantage of the last expression over the first one is that no singular 
integrals appear in the expression in the right-hand side of relation (5.35) while 
the function P - defined in Definition 5.17- in the right-hand side of rela.tion 

(5.34) is related to the function :=:via a Hilbert transfarm (which can be obtained 
only directly by calculating an integral with the singular Hilbert-Cauchy kernel , 
see e.g. [86]). 

It turns out that some of the geometrie properties of the image of D under n can 

relatively easy be revealed from the function D'ITiaD· Befare we show how this 
can be clone, we introduce some definitions. We adopt the convention ( cf. [23]) 
that a function non D is called starlike (convex) if: 

i) . n is univalent on D 

ii). D(O) = 0 

iii). the image of D under nis starlike with respect to the origin ( is convex) 

Definition 5.23 We define KÎstar) as the space of functions :=: E K1 such that 

the function P, defined in Definition 5.17, satisfies 

for all 8 E IR (5.36) 

We define KÎccnvex) as the space of function s :=: E K1 such that the function Q 
defined on aD by 

Q(() = ~(H(ln 1:=:(()1) + Im In(:=:(()()) 

has a Hölder continuous derivative and satisfies 

for all 8 E IR ( 5.37) 

Proposition 5.24 IJ a function :=: E KÎstar) (:=: E KÎconvex)) satisfies equation 

(5.28), then every function DE Kz such that D'ITian =:::: is starlike (convex). 
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Proof 
Part 1. Let:::: E K\star) . As the function P sa.ti siies inequ ality (5 .36 ) , we have 

(1- lm P'(()() 2: 0 for all ( E aD 

If the function:::: satisfies equation (5.28), it also satisfies equation (5.33 ) a.nd we 

get 

Re ::::( ()( 2: 0 for all ( E aD 

Let D E IC2 be a function such tha.t D'ITiaD = ::::. We find 

for all ( E aD 

It then foUows immediately from the maximum principle for ha rmonie fun ction 
that this inequality also holds for all (ED. The assertion on star-like functions 
in the proposition then follows immediately from a theorem - formulated in e.g. 
[23]- which states that an analytic fun ction n with D(O) = 0 su ch that 

is starlike. 

Re (D'(() > 0 
D(() 

for all ( E D 

Part 2. lt follows from Proposition 5.16 that it is sufficient to prove that if a 

function:::: E K\convex) satisfies equation (5.28), then an arbitrary function DE /Cz 
such that D'ITiaD = :::: is convex. One checks that there is function n E K 1 such 
that 

D'lao = rei(Q+i'H(Q)) 

where r is defined as in relation (5 .31). As :::: E K~convex), the function Q IS 

continuously differentiable and satisfies inequality (5.37). This implies 

for a ll ( E aD 

lt then follows from the maximum principle for harmonie functions that 

( (D"(()) 
Re 1+ D'(() > 0 for all ( E D 

The assertion on convex functions in the proposition then follows immedia tely 
from a theorem -formulated in e.g. [23]- which states that an analytic fun ction 
n with D(O) = 0 that satisfies this inequaüty, is convex. D 
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Example 5.25 We consider the functions =:.a ,b with a, b E IR on f)D defined by 

=:,a ,b(eiB) = e2acosB(b + e-iB) 

It fellows from Definition 5.17 and Remark 5 .18 that =:.a,b E K 1 if fbf ::j:. 1 and if 
the increase of the argument of 1 + b( as ( transverses f)D is equal to zero . This 

implies that 3a,b E K1 if and only if fbf < 1. It fellows from Theerem 5.20 and 
the straightforward calculations of the expressions in equation (5 .28) that there 

is a function n E Kz such that relation (5.27) holds with =:. replaced by =:.a,b if 
and only if a= band fbl < 1. This function n, which we will now denote by Da, 
can be constructed by one of the relations given in Remark 5.22. We get: 

lt fellows from Proposition 5.24 that all these functions Da with faf < 1 are 
star-like, and hence univalent, as 

8eP(é8 ) = 8e(asinB) = acosB 2 -1 for all BE IR 

The function Da with fa[ < 1 is then convex if and only if 

iB aieie 
80Q(e ) = acosB + lm 211 + aéli[ > -1 for all B E IR 

This inequality holds if and only if fa[ < (3- VS)/2. 

5.3.2 Analytically extendable mappings 

We show in this su bsection how the results on extended linear Löwner- K ufareev 
equations can be used to prove properties of solutions of Hopper eq uations. Before 
we do so, we first sketch the line of reasoning. 
Let the mapping n on D x I be a salution of a Hopper equation (5.22). We 
assume for the sake of simplicity that the function Bis analytic on D for all tE I; 
the case where B has a prescribed pole in ( = 0 is treated later on. The functions 
f and B can -so to speak a posteriori- be considered as given functions. We 
then consider initia! value problem (5 .9) with initia! data given by relation (5.38) 
below. Proposition 5.9 states that t his problem has a unique salution 3 on an 
open subdomain of D x I. The function D'IT can be considered as a salution of 
this problem on 8D x I. 1f the domains of the functions =:. and D'IT have some 
overlap, we may be able to show that these functions are identical: the salution 
3 is unique and analytic fun ctions which are locally the same are globalJy the 
same. This in turn may enable US to deduce properties of the salution n of the 
original problem. However, it is in general not possible to show without further 
assumptions that the domains of the function s =:. and D'IT have some overlap . 
Therefore we assume in the next proposition that the function n is analytically 
extenda.ble. 
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Proposition 5.26 Let n be a smooth time dependent locally conformal mapping 
on D x I satisfying a Hopper equation where the function () is analytic on D for 

all t E I. Let D be analytir:ally extendable to D 1 +e, t: > 0 for all fixed t E I. Ij 
n at t = 0 is analytically extendable on an open domain B = D u B 0 , then n is 

analytically extendable toD U (0'1(Bo) ) for all fixed tE I . 

The mapping O't was defined in Definition 5.3. 
Pro of 
Part 1. As nis analytic on Dl+e for a.ll fixed t EI, the function D'IT is a.na.lytic 
on the a.nnulus A1 = {( E C I (1 + é)-1 < 1(1 < 1 + é} for all fixed tE I. One 
carefully checks that this implies that relation (5.22 ) holds for all((, t) E A2 x I 
where A2 = {( E C I (1+t:)-1 <[(I< 1}. 
Part 2. Consicier the initia! value problem given by equation (5.9) where f a.nd 
e are the functions which appear in the Hopper equation (5.22) and initia! data 
given by 

:=:((, 0) = D'((, O)IT(C 0) ( 5.38) 

Proposition 5.9 states that this initia! value problem has a so1ution :=: on 
cp(R(B) n D) = cp(R(Bo)) such that :=:is analytic on cp1(R(B0)) for a.U tE I. One 
carefully checks that because A2 C R(Bo), there is an annulus 
A3 = {( E C I (l+é)-1 ::; r 1 < 1(1 < r 2 ::; 1} and an open interval Î C I 
containing 0 such that A3 x J C cp(R(Bo)). Proposition 5.9 also states that 
the salution of the initia! value problem is unique on the domain of determinacy 
cp(R(B0 )). As A3 x J c A2 x I , this implies that the functions :=: and D'IT 
are identical on this subdomain A3 x J. We draw two conclusions from this 
observation: 

i). the function :=: on cp1(R(B0 ) n D ) can be extended as an analytic function 

on <pt(R(Bo)) U A2 for all fixed tE J 

ii). the function D'IT on A2 can be extended analytically on A2 U cp1( R( B0 )) for 
all t E J. As D' is a non-vanishing function on D for all fixed t E I ::::> J, 
it follows th at the function IT on R(DJ+e) can be extended analyti cally on 
cp1(R(Bo)) = R(0'1(Bo)) for all fixed t E J. This is equivalent with stating 
that non Dl+e: can be extended analytically on 0'1(B0 ) for all fixed tE J. 

Part 3. One shows that this statement-nis analytically extendable on 0'1(B0 )­

does not only hold for all t E 1 but for all t E I by using some set-theoretica! 
arguments and the condusion i) above. 0 

Remark 5.27 It is assumed in Proposition 5.26 that t he function n is a.na.­
lytically extendable to Dl+., for all t E I. The necessity of requiring n to be 
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analytically extendable outside D has its origin in Part 2 of the proof and is al­
ready explained in the beginning of this subsect ion. We may have formulated the 
proposition under the less restrictive condition that Dis analytically extendable 
on some open domain Et for all t E I such that there is a continuous mapping 

Î : tE I ~---> Î(t) E oD nEt . 

In order to illustrate the significanee of Proposition 5.26 we consider some special 
cases. We use the same notation and make the same assumptions as in the 
proposition; i.e. in the following the function Don D x I denotes a smooth time­
dependent locally conformal mapping that is analytically extenda.ble outside D 
and which satisfies a Hopper equation. 
First we consider the case where E = ('\ { (0 } with ( 0 E ('\D; i.e. ( 0 is the only 
singularity of the function D at t = 0. It fo!Jows from Proposition 5.26 that the 

fu netion D is analytically extendable on D U at(~\ { (o}) = "t\ a 1( { (o}) for a.ll fixed 
t E I. lt follows from Lemma 5.2 and Definition 5.3 that the singularity ((t) of 
the function D uniquely solves initia] value problem (5.3): 

((t) = ((t)f(((t) , t) 

((0) = (o 

If the real part of the function f is positive definite on D x I , the singularity 
tends to move to infinity as 

:tl((t)l 2 = IC(tWRe J(((t), t) > o 

(We remark that also if the real part of the function fis not positive definite, the 
singularity cannot rea.ch the boundary of the unit disc as this would contradiet 
the assumption tha.t D is analytically extendable; so: a 1 ( { ( 0 }) :f. 0).) So to spea.k, 
the singularity of D can be obtained by reflecting the trajectory determined by 
equation (5.1a) which passes through ((0 , 0) with respect to the unit circle. 
Secondly, we consider the case where Dat t = 0 is a rational function with M poles 
at (m,o,m = l, .. ,M of order K(m),m = 1, .. ,M. It follows from Proposition 
5.26 that the function D is analytically extendable on C minus a set of M points 
outside D for all t E I. One shows that the function D'D sat isfies equation 

(5.22) on (D X I)\{a((m,o, t)}~=J· It then follows from Proposition 5.10 tha.t the 
function D'IT is meromorphic on D with M poles of order](( m) , m = 1, .. , M for 
all fixed tE I. As the function D' does not vanish on its domain, this implies that 
the function IT is meromorphic on D with M poles of order K( m ), m = 1, .. , M 
for all fixed t E I. We conclude that the function D is a rational function with 
M pol es of order ]( ( m), m = 1, .. , M for all fixed t E I. We note that the po les 
(m(t), m = 1, .. , M satisfy equation (5.3a): 

(:n (t) = (m(t)f((m(t), i) 
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lt is easily checked tltat th ese equations a re equivrtiPnt lo tl 1r: r:qua.tions (tl .7) . We 

note that if (m,O = oo, then (m(t) = ')() for all tE { and th is implies that i! nat 
t = 0 is a polynomial of order N (i.e. M = 1, }\' ( l ) = N, ( 1 ,u = X>), thr>n ll is a 
polynomial of order N for all t EI. 
Th e case where the function n on D 1+c at t = 0 is a branch of iln a lgeh rair: 

function can be treated almast analogously apart from sorne tedni ca l diffi cul ties . 

We not e that an a lgebraic function can be characteri zed hy t he property th at. such 

function has only a finite nurnber of a lgebraic bra nch poi nts([:{]). lt can he sho wn 

- by reasoning as above and applying Propositio n .').1.')- that if n at l = 0 is a 

M-va lued algebraic function at t = 0, t hen Dis a M-valued algehraic funct ion 

for all t E I. 

Remark 5.28 The function n in Proposition .5 .26 is req uired to sat isfy a Hop per 

equation where the function ()is analytic on D for all hxed tE /. If the funct ion 

() is analyti c on D\ {0} with a pole of a n order not la rger th a n N E IN for all 
fixed t E I, then the statements made a bove hold only with d7 replaced by (['. 

For exa.mple, if Dat t = 0 is a rational function with M poles outside oo of order 

K(m) , m = 1, .. , M and a pole at oo of an order not larger than N , then n is a 

rat ional function with M poles outside oo of order K (m ), m = 1, .. , Mand a pole 

at oo with an order not larger than N for all t E I. This assertion can be proved 
in more or less the same way as we did above -with special attention to the point 

R(oo) = 0- with use of Proposition 5.11. 

Corollary 5.29 Let D be a smooth time-dependent locally conformat mapping 
on D x I satisfying a Hopper equation. Let n be analytically extendable outside 

D for all fixed t E I . Ij .12 at t = 0 is a polynomiat, rationat or algebraic function 
then .12 is polynomiat, rationat or atgebraic ju netion for all t E I . 

We end this subsection with a. discussion of what these results imply for so­

lutions of the rnaving boundary problems discussed in Chapter 3. Consicier a 

smooth-time dependent locally conformal mappingnon D x I solving the rnav­

ing bounda.ry problem for Stokes flow driven by surface t ension and mul ti-poles 
or for Hele-Shaw-fiow with a souree a nd assume that nis analytically extendable. 

lt has been remarked in Ch apter 3 tha.t this mapping n must sa.tisfy the con e­
sponding Hopper equation. Corollary 5.29 and the remark th at the real par t of 

the function f that appears in the conesponding Hopper equations is posit ive, 

enables us to draw the following conclusions: 

i) . Singula.rities of the mapping n cannot a ppear or disappear; the only ex­

ception is a pole at oo if a1 (or Q1 ) is not identically zero. An isolated 
singularity cannot cha nge its character. 

i i) . If the mappingnis a rational function at t = 0 , then nis a ra tionat function 
for all tE I with the sa.me number a.nd order of poles . \Ve reca pit.u late t hat 
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Theorem 4.19 states that the solution of the conesponding initial value 
problem is unique in the class of rational functions with a fixed number of 
poles. It follows that the solution is even unique in the class of analytically 
extendable functions. 

iii). The singularities of the mapping Q tend to move to infinity. The radius of 

the largest disc on which the function Q is analytic for some fixed t E I is 
monotonously increasing with time. 

We stress that these conclusions can only be made under the a.ssumption tha.t Q 

is analytically extendable outside D for all t E I . Without this assumption , we 
cannot exclude the possibiüty that Q at t == 0 is analytic on some open domain 
containing D while Q has a. set of singularities lying densein 8D for all tE I\ {0}. 
It may be possible to show that this cannot happen by means of the method s 
explained in [6, 5] and [73] in which a slightly different model is studied. 

5.3.3 Mappings in the neighbourhood of the identity 

We showed in the previous SU bsection that a solution n of a Hopper equation 
such that Q at t == 0 is rational remains rational if it is a priori known that the 
function Q is a.nalytically extendable. In this subsection we prove a compara.ble 
result; if stead of requiring Q to be analytically extendable, we lay certain re­
strictions on the function f that appears in the Hopper equation. 

Definition 5.30 We define S as the space of analytic functions f on D such 
that the derivative f' is continuously extendable to D and such that the Taylor 
coefficients en, n E IN0 of f satisfy 

00 

Re Co~ L lcnl (5.39) 
n=1 

Proposition 5.31 Let Q on D x I be a smooth time-dependent locally conformal 
mapping satisfying a Hopper equation where e is analytic on D fo r all t E I and 
where the ju netion f is in S for all fixed t E I+ = I n IRo,+. IJ Q at t == 0 is a 
rationat Ju netion with M po les of order J( ( m)' m = 1, .. , MI then n is a rationat 
function with M poles of order K(m), m = 1, .. , M for all tE I+. 

Pro of 
Part 1. We first show that there is a T0 E I n IR+ such t hat Q is a rational 
function with M poles of order K(m), m = 1, .. , M for all tE [0 , T0 ). 

It fellows from Corollary 4.9 that there is a T0 > 0 and a smooth t ime-dependent 
locally conformal mapping ti on D x [0, T0 ) such that: 
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i). Dlt=a = Dlt=a 

ii) . D is a rational function for all t E [0, Ta) with M poles of order K(m), 

m=l, .. ,J\.1 

iii). there is a continuous function ê on D x [0, Ta) , such that ê is an analytic 
function on D for all tE [0, Ta) and such tha.t for all ((, t) E aD x [0 , Ta): 

ë((,t) = (n'((,t)n(ct)) ·_ (n'((,t)n(c,t)J((,t)()' 

It can easily be checked that the function ::::on aD x [0, Ta) defined by 

::::((, t) = D'((, t)IT((, t)- ti'((, t)D((, t) 

solves the initia! value problem 

2((, t) = ('=:((, t)f((, t)()' + 8((, t)- Ö((, t) 

::::((,0) = 0 

((,t) E aD x [O,Ta) 

( E aD 

We decompose the functions :::: and 8 - ê by 

00 00 

:=:((, t) = L dn(t)C 8((, t)- Ö((, t) = L an(t)C 
n=-oo n=a 

and find that the initia! value problem can be written as 

00 

dn(t) = (n + 1) L q(t)dn-k(t) + an(t) n E lZ 
k=a 

n E lZ 

( 5.40) 

where a_n(t) = 0 for all n E IN and all tE [0, Ta). It will be shown in Appendix 
C, see Remark C.4 , that the condition f E S for all t E I ::) [0, Ta) then implies 
d_n(t) = 0 for all n E IN and all tE [0, Ta). We conclude that the function ::::on 
aD can be analytically extended on D for all t E [0, Ta) . 
Now we rewrite relation (5.40) on aD X [0, Ta) as 

IT = (?Üi' + ::::) /D' 

One checks that it follows from the properties of t he functions appearing in the 
right-hand side of this relation that the function IT on aD can be extended as 
a meromorphic function on D with M poles of order k(m), m = 1, .. , M for all 
t E [0, Ta). This implies that the function Dis a rational function with M poles 
of order K(m), m = 1, .. , M for all tE [0, Ta). 
Part 2. It remains to be shown that D is not only a rational function wit h M 
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poles of order K( m), m = 1, .. , M for all tE [0, Ta) forsome Ta E In IR+ but for 
all t E I+. Let T denote the supremum of all Ta E I such that n is a rationat 

function with M poles of order K(m), m = 1, .. , M for all tE [0 , Ta). We assume 
that T is not the right boundary of I and show that this leads toa contradiction . 

As n is a continuous function, there is a constant C E IR such that 

m~ max ID((, t)l::; C 
(ED tE[a,T] 

Let U denote the space of rational functions with at most M poles outside D of 

orders not larger than K(m) , m = 1, .. , M equipped with the sup-norm on D. Let 

Uc denote the ballof radius C in U. This space Uc is compact and this implies 

that the sequence of functions Dn E Uc, n E IN defined by 

Dn ( () = n ( (, ( 1 - ~) T) 
has a subsequence converging in Uc. This implies that nat t = T, that is : the 
limit of Dn as n __, oo, is a rational function (with at most M poles outside D 
of orders not larger than K(m), m = 1, .. , M) . Reasoning as in Part 1, one then 
shows that there is an E > 0 such that n is a ration al function for all t E [T, T + E) 
and hence for all tE [0, T + E). It then follows from Proposition 5.10 that nis a 
ration al function with M poles of order K( m), m = 1, .. , M for all t E [0, T + E) 
as: 

i). nat t = 0 is a rational function with M poles of order K(m), m = 1, .. , M 

ii). Re f((,t) 2 0 for all ((,t) E D x I 

In other words, T is not the supremum of all Ta E I such that n is a. rational 

function with M potes of order K(m), m = 1, . . , M for all tE [0 , Ta). 0 

Remark 5 .32 The function n in Proposition 5.31 is required to sat isfy a Hopper 
equation where fJ is analytic on D for all fixed tE I. If the function ()is analytic 
on D\ {0} with a prescribed pole in ( = 0 for all t E I, then a si mi lar assertion 
can be formutated; see also Remark 5.28. 

Consider a smooth time dependent locally conformat mapping n on D x I that 
satisfies Hopper's equation and which is rational at t = 0. It follows from Propo­
sition 5.31 that f! is rationat for aU fixed t E h if it is known that F[O(·,t)] E S 
for all t E I+. Th is leads to the following problem: how can we characterize the 
space ;:~--(s) of functions non D such that : 

i). n is anatytic on D, f!(O ) = 0 

ii). f!' ca.n be extended continuously toa non-vanishing fun ction on D 
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iii). the function F[n] has Taylor coefficients en , n E JN0 such that inequality 
(5.39) holds 

We will not elaborate on this problem but only makesome remarks. First we note 
that the expressions ( 4.30) and ( 4.31) can be used to characterize the f u n ctions 
in _F<-(S) by their Taylor coefficients. Secondly, we remark that the condition iii) 

implies tha.t a function n E :r-(S) is in some sensein the neighbourhood of the 

function !2'(0)(; this explains the title of this subsection. Finally we remark that 
the methods expla.ined in e.g. [6],[73] may lead to an affirmative answer to the 
following question: can it be shown that for each salution n of Hopper's equation 

such that n at t = 0 is in :P-(S), there is aT E IR+ such that F[D(-.t)J E S for 

all t E [0, T)? 

5.4 Quasi-linear Löwner-Kufareev equations 

In this section we prove a theorem on the local solvability of quasi-linear Löwner­
Kufareev equations. The proof of this theorem is basedon estimates on solutions 
of linear Löwner-Kufareev equations and an iteration technique. Most of these 
estimates, given in Subsection 5.4.1, can be found in [43] in a somewhat sha.rper 
formulation . 

5.4.1 Preliminary Results 

We start by making some estimates on the solutions of initia! value problem (5.6) 
fora l.inear Löwner-Kufareev equation. In this subsection, f denotes a continuous 

function on D x I, where I is an open interval that contains IRo,+, such that f 
is analytic for all fixed t E I and such that : 

Re f( (, t) ::; 0 for all ( (, t) E D x IRo,+ (5.42) 

We note that a Löwner-Kufareev equation where the function fin the right-hand 
side has a non-positive definite real part corresponds toa shrinking domain (see 
relation (3.12a)). 

Lemma 5.33 Let f be bounded on D x [0, T] for all T 2: 0; i.e. a continuous 
function Mo on IRo,+ exists such that 

max sup IJ((, r)l::; Mo(t) 
TE[O,t] (ED 

Ij the derivative of the function Do is bounded, then the salution of initia! value 
problem ( 5.6) satisfies for all t E IRo,+ 

sup ID((, t)- Do(()!::; tMo(t) sup I D~(()I 
(ED (ED 
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Pro of 
It has already been stated in Remark 5.5 that inequality (5.42) implies that r.p(D) 
contains D x I+. It is easily checked that the solution of initia! value problem 
(5.2) for arbitrary T 2 0 therefore has a domain tha.t contains D x [0, T]. It is 
not difficult to show that this sol u ti on 1/J satisfi.es the following integra.l equa.tion: 

t 

1/J((,t,T) = ( + J 1/J((,T,T)f('t/J((,T,T),T- T) dT 
0 

This implies 

11/J((,t,T)- (I~ t Mo(T) ( 5.43) 

for all ( E D, all T 2 0 and all t E [0, T]. The solution of initia! value problem 
(5.6) is given by relation (5.8): 

So: 

D((,t) = !10(r.p,_((,t)) = !10(1/J((,t,t)) 

,P((,t,t) 

D((,t)-!10(()= j D~(z)dz 
( 

(5.44) 

a.nd the inequality in the lemma follows straightforwardly from inequality ( 5.43).0 

Lemma 5.34 Let the function f be such that: 

i). a continuous function M 0 on IRo,+ exists such that: 

max sup IJ((, T)l ~ Mo(t) 
-rE[ü,t] (ED 

ii). a continuous function M 1 on IRo,+ exists such that: 

max sup Re(!((, t) + !'((, t)() ~ M 1 (t) 
-rE[O,t] (ED 

IJ the derivative of the function Do is bounded, then the salution of initial value 
problem (5.6) satisfies for all t1 2 tz 2 0: 

sup ID((, ti)- .!1((, tz)/ ~ (t1- t 2)M0(ti)et 1 M1 (tJ) sup /.!1~(()/ 
(ED (ED 
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Proof 
Part 1. It fellows straightforwardly from relations (5.2) that the derivative of 'Ij; 
can be written as 

t 

f (f(,P(( ,-r ,T) ,T --r)+ i'( 1/J( (,t,T) ,T - -r )l/J(( ,-r,T)) d-r 

'1/J'((, t, T) = eo 

The condition ii) in the lemma then implies for all T 2: 0 and all tE [0, T]: 

sup 1'1/J'((, t, T)l::; etMJ(T) 
(ED 

Part 2. It fellows from the theory of erdinary differential equations that 

'1/J('l/J((, t, T), T, T- t) ='Ij;((, t + T, T ) 

for all ( E D and aU T, t, T 2: 0 such that t + r ::; T. With the use of this rela.tion 
for T = t 1 , t = t 1 - t2 and r = tz, we get from the result obta.ined in Pa rt 1 for 

all t1 2: tz 2: 0: 

,P((,t1-tz,t1) 

= sup 
(ED 

J '1/J'(z, tz, tz) dz ::; e11 Ml(t1 ) sup 1'1/J((, t1- tz, tl)- ( I 
(ED 

( 

The assertion in the lemma then follews from relation (5.44), this inequality and 
inequality (5.43) . D 

We end this section with a lemma on the solutions !11 and !12 of initia! value 
problems given by: 

nk(Ct) = n~(Ct) fk((,t)( k = 1, 2 

nk((,O)=f!o(() k=1,2 

(5 .45a) 

(5.45b) 

where / 1 and h both possess the properties mentioned in the beginning of this 
su bsection. The conesponding functions 'Ij; ( see rela.tions ( 5.2)) are denoted by 

'l/Jk,k=1,2. 

Lemma 5.35 Let the functions !1 and h be such that: 

i) . a continuous function C1 on IRo,+ exists such that 

max sup IJ{((,r)l::; Cr (t) 
rE[O,t] (ED 
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ii). a continuous Junction C2 on IRo,+ exists such that: 

max sup lh((,r)l 'S C2(t) 
TE[O,t] (ED 

Ij the derivative of the junction D0 is bounded, then the solutions D1 and D2 of 
initia[ value problems ( 5.45) satisfy for all t E IRo,+: 

Pro of 

sup ID1((, t)- D2((, t)l 'S 
(ED 

tet(Ct(t)+C2 (t)) sup ID~(()I max sup lh((, t)- h((, t)l (5 .46) 
(ED TE[O,t](ED 

Reasoning as before, we get for all T 2:' 0 and all t E [0, T] : 

sup l1f!1((, t, T)- 1f!2((, t, T)l = 
(ED 

t 

sup j(7f!1((,r,T )f 1(7f!1((,r,T),T-r)-7f!2((,r,T)f2(7f!2((,r,T),T-r))dr 'S 
(ED 0 

t sup 17f!l((,r,T)IIh(7f!I((,r,T),T-r)-h(7f!2((,r,T),T-r)l dr + 
Jo (ED 

ft sup l7f!1((,r,T)IIf1 (7f!2((,r,T),T- r)- h(7f!2((,r,T),T- r)l dr + 
Jo (ED 

ft sup l1f!1((, T, T)- 1f!2((, T, T)llh(7f!2((, T, T), T- r)l dr 'S 
Jo (ED 

ft sup 17f!J((,r,T)-7f!2((,r,T)I·(IJ;((,T-r)l+lh((,T-r)l) dr + 
Jo (ED 

ft sup lh((,T-r)-h((,T-r)ldr (5.47) 
Jo (ED 

As the last term can be estimated by 

t sup lh((,T-r)-h((,T-r)ldr<St max sup lh((,r)-h((,r)l Jo (E D TE[O,T] (ED 

we get from inequality (5.47) and the lemma of Grönwall ([31]): 

sup l7f!1((,t,T)-1/J2((,t,T)I 'S 
(ED 

t eT(CJ(T)+C2 (T) max sup lh((,r)- h((,r)l (5.48) 
TE[O,T] (ED 
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Substitution of this result into the rela.tion 

1/!t((,t ,t ) 

Dl((,t)-D2((,t) = j D~(z)dz 
'lh((,t,t) 

leads to the assertion in the lemma. 

5.4.2 Existence of solutions 

123 

[] 

We return to initia! value problems for quasi-linear Löwner-Kufareev equations; 
see Section 3.2. We show that these problems havealocal salution if the mapping 
F is smooth in the foUowing sense: 

Definition 5.36 Let 1-l denote the space of all bounded univalent function s on 
D equiped with the sup-norm. Let A denote the space of analytic functions on 
D with a bounded derivative and a non-positive definite real part. A mapping 
F : 7-l~---+ A is called Lipschitz continuous if a constant f{ exist such that 

for all !11, !12 E 7-l. 
A mapping F : 7-l~---+ A is called continuous with respect to the derivative if the 
functional 

is continuous. 

F' : DE 1-l I--+ sup lf{oJI 
(ED 

Theorem 5.37 Let the mapping F : 1-l ~---+ A be Lipschitz continuous and con­
tinuous with respect to the derivative on an open neighbourhood of a function 
!1o E 1-l which has a bounded derivative . Then the initial value problem given by 

D((,t) = D'((,t)f[O(-,t)j( 

!1( (, 0) = !1o( () 

(5.49a) 

(5.49b) 

has a local solution. This salution is univalent for all fixed t in its domain. 

Proof 
Part 1. At this stage we do not bother whether the functions Dn to be defined 
are in a neighbourhood of Do. Let Dn for each n E IN0 be defined by 

Do((, t) = Do(() 

{ fln+I((,t) = D~+l((,t)f[On(-,t)j(( )( 
Dn+l ( (, 0) = Do(() 
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It follows from Proposition 5.6 that the functions Dn are properly defined on 

D X IRo,+ if the functions fn, n E !No defined by 

are continuous. We prove by induction that these functions possess the following 

properties: 

i) . fn is continuous 

ii). sup(ED IJ~((, t)/ is a continuous function of the variabiet 

As Do does not depend on t, neither does Jo and it is clear that fu possesses these 
properties. Now let fn for an arbitrary n E JN0 have the mentioned properties. 

It follows from Proposition 5.6 that Dn+l is properly defined as the salution of 
the initia! value problem given above (i.e. the function Dn+l on D x Ro.+ exists 
and is unique). It follows from the same proposition that Dn+l is univalent for 
all fixed t E IRo.+ and the function fn+l is therefore wel! defined . .Moreover, it 
follows from Lemma 5.34 that for all t 1 , t2 2:: 0 there is a constant k such that 

One checks that this inequality, the Lipschitz continuity of the mapping F and 
the continuity of fn+l with respect to the first variable, imply the continuity of 
fn+l· The continuity of the function sup(ED IJ~+ I((, t)/ then follows from the 
continuity of the mapping F with respect to the derivative. 
Part 2. We show that for every d > 0, there is a T > 0 such that for all non­
negative t < T and all n E llVo: 

sup /Dn((, t)- Do(()/< d 
(ED 

Wedefine constants M, C and T by 

M = sup /Jo(()/ C = sup /D~(()/ 
(ED (ED 

d 
T = C(M + Kd) 

and prove by induction that for all non-negative t ::; T and all n E IN: 

lvf n 
sup /Dn((,t)- Do(()/::; -1_ L (CKt)k 
(ED \ k=l 

" 

(5.50) 

(5.51) 

The inequality for n = 1 can easily be shown. Wethen assume that this inequality 
holds fora certain n E IN, apply Lemma 5.33 and we find that for all tE [0, T]: 

sup /Dn+J((, t)- Do(()/::; Ct max sup /fn((,T)/::; 
(ED rE[O,tJ (ED 
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Ct max sup (lfn((, T)- fo(()l + lfo(() l) :S 
rE[O,t] (ED 

Ct (M + K max sup IDn( (, T)- Do( () I) < 
rE[O,t] (ED 

n M n+1 
MCt max L (CKt)k:::; --:;- L (CKt) k 

rE[O,t] k=O ]~ k=l 
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Inequality (5.51) for all non-negative t:::; Tand all n E IN follows. The inequality 
(5.50) for arbitray n E IN0 and all tE [0, T) is a direct consequence. 
Part 3. It follows from the result deduced in Part 2 and from the continui ty of 
F with respect to the derivative that there exists aT > 0 and numbers K2, K3 
such that for all n E IN0 and all non-negative t < T 

sup IJ~( (, t)l < Kt 
(ED 

sup lfn((, t)l < K2 
(ED 

Wedefine L = CeT(K1+K2 ), apply Lemma 5.35 and find for arbitrary n E IN and 

all non-negative t < T: 

sup IDn+t((,t)-Dn((,t)I:S 
(ED 

Lt max sup lfn((,T)- fn+l((,T) I :S 
tE[O,t] (ED 

LI<t max sup IDn((,T)-f2n-t((,T)I 
tE[O,t] (ED 

One then shows in the standard way that Dn, n E INo is a Cauchy-sequence in 
H for all fixed t < T = min{T, (LK)- 1 }. So, Dn is a sequence of univalent 
functions converging uniformly to an analytic function Dn, n E INo on D for all 
non-negative t < f. One shows by standard techniques ( cf. [27]) that the func­
tion n on D x [0, 'Î') thus defined satisfies initia] value problem (5.49) and ts 
univalent for all tE (0, T). 0 

Remark 5.38 Direct applica tions of this theorem for standard moving boundary 
problems are restricted for two reasons. The first reasou is that F maps into the 
space of functions which have a non-positive real part. We already remarked that 
this corresponds to rnaving boundary problems where the domain is shrinking. If 
one wants to generalize the theorem is such a way that F maps into a space that 
contains also functions which have real parts which are not purely negative, the 
same methods only apply if these functions can be extended analytical\y outside 
D. The second reason is that the conditions on the mappingFin the theorem can 
be formulated as conditions on how smooth the normal component of the velocity 
depends on the shape of the boundary (see Section 3.2). For problems such as 
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the ones discussed in Sections 3.3 and 3.4, it is non-trivia] -and it may even be 
impossible- to show that these conditions are sa.tisfied indeed . We present in 
Appendix C another point of view on this problem. 



Appendix A 

Domains of left monogenie 
functions without primitives 

In Seetion 2.3 we met the following problem : do domains G C JR3 exist wh ieh 
are nat x-normal but do possess the property that every left monogenie function 
on G has a primitive? Unfortunately, we eannot a.nswer this question but the 
proposition below aetually shows that a domain G whieh is sueh that every left 
monogenie function on G has a primitive must have geometrie properties which 
resem bie x-normality. 

Proposition A.l Let G C IR3 be a domain such that a curve 1 C G exists with 
the following properties: 

i). ~~ connects two points P1 and P2 with the same y- and z-coordinates such 
that the line segment connecting P1 and P2 is not entirely in G 

i i). the orthogonal projection i' of 1 on a plane V : x = a is such that G j i' is 
connected. 

Then a left monogenie function on G exists which does not have a primitive. 

Proof 
We may assume without loss ofgenerality that P 1 = (x1 ,0,0) and P 2 = (x2 ,0,0) 
with x 1 > 0, x 2 < 0 while the origin 0 is not in G. Consicier the function 

x- ye1 - ze2 
e( x, y, z) = -2 3 r 

(x,y,z) EG (A.l) 

I 
where r = ( x 2 +y2 + z 2 ) 2. One checks that this a properly defined, left monogenie 
function on G. We assume that a left monogenie primitive function 
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on G exists and show that this leads toa contradiction. This proves the propo­
sition. 
The relations DE= e, DE= 0 imply that the function Q = Q 1 satisfies 

~Q = 0 (A.2) 

On G minus the x-axis, Q can be written as 

xy y 
Q(x,y,z) = ( 2 + 2 ) - 2 + 2 + i(x,y,z) y z r y z 

(A.3) 

Substituting this relation into relations (A.2) , we find that the fun ction i on G 
minus the x-axis satisfies 

ix = 0 ~i= 0 (A.4) 

Now consider the restrietion j of i to the intersection ê of G and the plane 
vl: x= Xj. It follows from the relations (A.4) that jon G\{(0,0 )} is harmonie. 
It follows from relation (A.3) that j can be extended continuously to (0, 0) as 

lim ](y, z ) = lim Q(x1 ,y,z)=Q(x1 ,0,0) 
(y,z)-->(0,0) (y,z)-->(0,0) 

and this implies that j is harmonie on ê. 
Let 1 be a curve with the properties as mentioned in the proposition and let N 
be a simply connected neighbourhood of its projection i' -condition ii) implies 
that such a neighbourhood of exists. It follows from the relat ions (A.4) and the 
monodromy theorem ([3)) that i on some neighbourhood of 1 does not depend 
on the variabie x. In particular this implies: 

lim i(x2, y, z) = lim i(x1, y, z) = Q(x 1 , 0, 0) 
(y,z)-->(0,0) (y,z)-->(0,0) 

On the other hand, it follows from relation (A.3) that this limit does not exis t 
because: 

-X2Y 1 . 1 
lim i(x2, y, 0) = lim 
y-->0 y-->0 

--....::....::...----,-1 +- + Q(xz, y, 0) = Q(x2 , 0, 0) + 2 hm 
y2(x~+y2)ï y y-.0 y 

We conclude that there is no primitive E of e. 0 

We discuss why the conditions i) and ii) in Proposition A.l can not regardlessly 
be replaced by the condition that Gis not x-normal. A glance at the proof shows 
that the domain G in the proposition must be such that every real function i 
on G satisfying equation (A .4) can be considered as a function of the variables y 
and z only. We say that a function i on a domain G C JR3 can be considered as 
a function of the variables x and y if: 

(x1,y,z),(xz,y,z) EG implies i(x1,y,z) = i( x2,y,z) 
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First we treat an example which shows that not every domain G C JR3 has this 
property. Consicier the domain 

{ (x, y, z) E JR3 I x E ( -1r, 1r), ( y - cos x) 2 + ( z - sin x/ < 1} 

We define the function f on G by 

f(x, y, z) = Im i~ dw 

where i is the orthogonal projection of a path Î in G from (0 , 1, 0) to (x, y, z) on 
the plane V: x = 0 which is identified with the complex w-plane. One checks that 
f is well-defined, satisfies differential equations (A .4) but can not be considered 
to be a function of the variables x and y as 

j(-~,-1,0) = -7!" J ( 56", -1, 0) = 7r 

N ext we show that even if the domain Gis such that its projection G on the plane 
V : x = 0 is simply connected, then a function f on G may exist that satisfies 
equations (A.4) but which cannot be considered as a function of the variables y 
and z only. It is possible to construct a non-compact Riemannian surface ([3, 25]) 
such that: 

i). the projection of G on the plane V :x= 0 is simply connected 

ii). the points P1 = (1,0,0) and Pz = (-1,0,0) are in G 

iii). for every point (x, y, z) EG and for all tE ( -~,~),(x+ t, y, z) EG implies 

t = 0 

It follows from Weierstrass' product theorem (also called: Weierstrass' theorem 
for the construction of a meromorphic function with prescribed poles and zeros, 
[25]) for non-compact Riemannian surfaces that an analytic function g on H 
exists with precisely one zero in ( 1, 0, 0) E H. We may assume Re g( -1 , 0, 0) f= 0 
(if Reg( -1, 0, 0) = 0 then Re ig( -1, 0, 0) f= 0). 
Now we define the open domain G C IR3 by 

3 1 1 
G={(x,y, z )EIR I :ltE(-2'2) (x+t,y,z)EH} 

and we define the function f on G by 

j(x, y, z ) =Re g(x + t, y, z) 

where t is the unique number in(-~,~) such that (x+ t,y,z) EH. We notice 

that the projection G of G on V is the open unit disc, that the above constructed 
function f satisfies equations (A.4) but that this function cannot be considered 
to be a function of the variables y and z. 
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Remark A.2 It follows immediately from the construction given above that an 
analytic function g on D (in the sense of Weierstrass, [11]) ex.ists such that: 

i). for every z E D there is a path from z0 = 0 to z along which g can be 

extended analytically 

ii) . the so obtained analytica] function gis not single-valued. 

We stress that this does not contradiet the monodromy theorem. 

We end this appendix with a lemma which states under which conditions a domain 
G C JR3 is such that every function f on G satisfying equations (A.4) can be 
considered to be a function of two variables. 

Lemma A.3 Let G C JR3 be an open domain such that : 

i). the orthogonal projection ë of G on the plane V :x = 0 is simply connected 

i i). there is a point .f.o E G such that every path i' in ë starting at the projection 
i.o of .f.o is the projection of a path Î starting at .f.o 

Let the function f on G sa.tisfy different ia[ equations (A .4). Th en f can be con­
sidered to be a function of the variables y and z only. 

Proof 
First we make the following remark. Let !f = (x, y, z) be an arbitrary point in 
G. There is an E > 0 such that the hall Be(!f) with radius E and centre !fis a 

subdomain of G. As ~~ = 0 on Be(.f.), the function f restricted to Be(.f.) can be 
considered a function of the variables y and z only and therefore it makes sense 
to consider the projected function Jon the projection Ëe(f.) of Be(.f.) on V. This 
function J is harmonie on Be(.f.). 
Let f.o be a point as in the lemma. We will show that it is possible to extend the 
function ( or function element) Jon Êe0 (f.o) harmonically along every path i' in ë 
startingat i,0 . Let i' be an arbitrary path in ë startingat i.o and let Î be a path 
in G starting in !fa such that its projection on V is i' -such a Î exists because 
of condition ii). As Î is compact (it is the image of [0, 1] under a continuous 
mapping) and as the distance between Î and àG (if it exists) is non-zero, it is 
possible to cover Î with a finite number of balls Bn, n = 0, .. , N in G. It follows 
from the remark made above that the projected functions fn, n = 0, .. , Non Ên 
are harmonie. As the path i' is covered by {Én};;'=0 , this construction leadstoa 
harmonie extension of Jon Beo (f.o) along i'. 
As the function / 0 thus can be extended harmonically along every path in the 
simply connected domain ë, it follows from the monodromy theorem that all 
these extensions lead to the same result. To be more precise: given two paths )'1 

and 1'2 at ë starting at i.o and en ding at a point i E G, we find ]1 (i.) = fz(i) 
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where ];, i= 1, 2 denotes the function (or function element) in a neighbourhood 
of i; obtained by extending Jon Ëó(xo) along the path f;. 
Now, let .:?;,1 = (x 1 , y, z) and .:?;,2 = (x2, y, z) be arbitrary points in G with the same 
y- and z-coordinates. As G is connected, there are pa.ths IJ and 1 2 from .:fo 

to .:ft and .:?;,2 respectively. We can extend the function Jon Ëó(x0 ) harmonically 
along the projectionsof the paths i'; of the paths /i, i= 1, 2 on V as we showed 

above. As the end points of the paths 71 and 1'2 are the same, namely (y , z) E C, 
we get f1(y, z ) = J2(y,z) and this implies f(xt,y, z ) = j (x2,y, z ). 0 
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Appendix B 

Separation of variables in 
linear Löwner-K ufareev 
equations 

We show in this appendix that the initia] value problem for a linea.r Löwner­
Kufareev equation can be solved by the method of separation of variables if the 
function f that appears in this equation does not depend on the variabie t . 

Let f be an analytic function on an open, simply con.nected domain B C I[' that 
contains 0 and consider the initia! value problem 

n((, t) = n'((, t)f(()( 

n((,O) = no(() 

(B.la) 

(B .lb) 

where no is an analytic function on B. We assume that there is a solution n of 
equation (B.la) of the following form : 

f2((,t) = u(g(t)7f;(()) 

where u is an arbitrary analytic function and where g and 1/J are functions to be 
determined. A solution of this form exists indeed if there is a constant C E I[' 

such that the following differential equations can be solved: 

g(t) = Cg(t) 

7/J'(()f(()( = C7f;(() 

(B.2a) 

(B.2b) 

First we consider equation (B.2b) on an open neighbourhood of ( = 0. One 
verifles that a non-trivia] solution of this equation exists if and only if f(O) of. 0 
and C = nf(O) with n E IN. This solution, which is unique up toa multiplicative 
constant, has a zero of order n in ( = 0. As we will require the function 7/J to 
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be univalent later on (see relation (B.4)), we put n = 1 and solve the equations 
(B.2): 

where ](1 and /(2 are arbitrary constants. This function 1/J is univalent in some 
open neighbourhood of ( = 0. We remark that 1/J is injective on àDr C B, r > 0, 
and hence univalent on Dr ([23]), if the relation 

(B.3) 

implies {}1 = 82 modulus 27r for all k E ~. Furthermore, the function 1/J is well­
defined on the whole domain B of f if the function f does not have any zeros. 
One verifies that if f does have a zero at a point (o, then the behaviour of the 
function 1/J at ( 0 depends on the value of f'((o): 

i). if there is a n E IN such that n(0 /'((o) = f(O), then 1/J is analytic at ( = (o 
with a zero of order n 

ii). if there is a n E IN such that n(o/'((0 ) =- f(O), then 1/J has a pole of order 

n in ( = (o 

iii). otherwise there is no salution of equation (B.2b) in the class of meromorphic 
functions on B; in particular, if f'((o) = 0 then 1/J has an essential singularity 
in ( = (0 , and if (of'((o)/ /(0) E IR\~ then 1/J is multiple-valued 

So, differential equation (B.2b) has a non-trivia! analytic solution on B such that 
1/J'(O) =f 0 if and only if f(O) =f 0 and for every zero(; E B,i = l, .. ,N of f there 
is a n; E IN such that n;J'( (;)(; = /(0). The general solution of this equation is 
then given by 

It follows that the function D on an open domain N c tf7 x IR defined by 

(B.4) 

is a sol u ti on of initia! value problem (B .1). We note that it demands some analysis 
to determine the domain N of D; in particular, this domain depends on the 
subdomain on which the function 1/J is univalent. However, it follows from the 
construction above that {0} x IR C N. 



Example B.l Let the function f on D be given by: 

f( () = ( + 1 
(- 1 
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and let D0 be the identity. We solve the conesponding initia\ value problem (B.1) 
in the way explained above. We put K 2 = 1 and find 

( 
'Ij;(()= (( + 1)2 

(We note that 'Ij; is analytic on D in accordance with the observation that f does 
not have any zeros on D; the pole in ( = -1 has order two according to the 
analysis presented above. We also note that 'Ij; is univalent on D according to the 
remark made above; see relation (B.3)) . This function, that is called the Koebe 
function ([70]), maps the unit disc D univalently on C minus a slit S on the real 
axis from 1/4 to infinity. The inverse function 'Ij;,_ on C \S is given by 

We get the solution of the initia! value problem from relation (B.4): 

One verifies that the domain of this function is given by 

{((, t) E D x JR_ I ( rJ [-1 + 2e-1(1-~), 1) c IR} u (D x IRo,+) 

We note that Dis well-defined on D for all tE IRo,+, according to Remark 5.5 and 
the fact that the real part of f on D is negative. It turns out that the function 
D(-, -t), tE IRo,+ is just the inverse of the function D(-, t) and this implies that 
the image of Dunder D(-, t), tE IRo,+ is the unit disc minus a slit on the real axis 
from -1 + 2e1(1- V1- e-t) to 1. We finally remark that this solution can also 
be obtained by solving initia! value problem (5.1) ; one gets the following identity: 

cp((, t) = D((, -t) 

We stress that this identity does not hold in generaL 
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Appendix C 

Existence of solutions of 
Hopper equations 

This appendix is concerned with the solvability of Hopper equations under gen­
eral conditions. We certainly do not establish a complete proof; we only show 
some ingredients in the hope that this may contribute to the understanding of 
Hopper equations. 

It is clear from the considerations in Chapter 5 that the solvability of a Hop­
per equation is related with the existence of solutions of the following initia! 
value problem for a function :=: on äD x I: 

3((,t) = (3((,t)f((,t)()' +B((,t) 

:=:((, 0) = :=:o 
(C.la) 

(C.lb) 

where :=:o is a given function on aD and where the functions f and B are assumed 
to be decomposable in the following way: 

00 00 

f((, t) = 2: Cn(t)C B((, t) = 2: an(t)C 
n=O n=O 

We wiJl explain the precise role of these functions at the end of this appendix. 
We decompose :=: and :=:0 as: 

00 00 

:=:o((, t) = L dn,o(t)C 
n=-oo n=-oo 

and find that initia! value problem (C.l) can be written as 
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00 

dn(t) = (n + 1) L Ck(t)dn-k(t) + an(t) 
k=O 
00 

dn(t) = (n + 1) L q(t)dn-k(t) 
k=O 

n E !No 

n E ZZ\ !No 

n E ZZ 

(C.2a) 

( C .2b) 

(C.2c) 

(A camparabie set of equations al ready appeared in the proof of Proposition 
5.31). In the Chapters 4 and 5, the time interval I -in which the variabie t 
took its values- was open and the functions :=: , f and B were typically contin­
uous on their domains. It turns out thai if we want to discuss the existence 
of solutions, it is more appropriate to consider time intervals [0, T], T E IR+ 
and to consider time dependent functions in L 2(8D). That is , we assume that 
c(t) = (co(t),c1(t), .. ) E /2 and a(t) = (ao(t),a1(t), .. ) E l2 for all tE [O,T], take 
2:::::"00 ldn,ol 2 < oo and look for solutions :=: such that 2:::::"00 ldn(tW < oo for all 
tE [0, TJ. 
We first consider differential equations (C.2b) with n E { -2, -3, .. } in this con­
text; the equation with n = -1 is trivia! while the equations (C.2a) will be 
considered later on. We can rewrite the mentioned set of equations as fellows . 
Wedefine b(t), tE [0, T] and b0 by 

b(t) = (d-2(t) , d_3(t), ... ) ba = ( d-2,0, d-3,o , ... ) 

For each c = (co, c1 , .. ) E l2 , we define the operator A( c) by 

00 

A ( C) = - L Cn N J n 

n=O 

where N and ln, n E !No are operators conesponding to the matrices with ele­
ments given by 

The equations (C.2b) and (C.2c) can then be written as 

b(t) = A(c(t))b(t) 

b(O) = b0 

Proposition C.l Ij c: t E I ...... c(t) E l2 is such that: 

i). Re co(t) ;::: 2:::=1 lcn(t)l for all t E [0, T] 

k, l E IN 

(C.3a) 

(C.3b) 

ii). the function M on [0 , T] defined by: M(t) = L~o nlcn(t)l is continuous 



then the initial value problem ( C.3) has a unique l2 -valued solution. 

Pro of 
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It foUows from a theorem formulated in (42] (see also [41]) th at it is suffi. cient to 
check that the famil y of operators {A(t)}tE[O,Tj where A(t) = A(c(t )), sa.t isfies 
the following three conditions: 

i). A(t) is a n infinitesima.l genera tor of a C0-semigroup on l2 for all fi xed t E 

[O,T] 

ii) . there is a Banach-space h, continuously and densely embedded in l2 , a nd 
an isomorphism S from h to /2 such that the operator B(t), tE [0, T] on l2 

defined by 
B(t) = S A(t)S,_- A(t) ( C.4) 

is bounded for all t E [0, T]; moreover, t ~ B(t) is continuous with respect 
to the operator norm 

iii). A(t) is a bounded operator from h to l 2 for all tE [0, t]; moreover , t ~ A(t) 
is continuous with respect to the operator norm 

Befare we check that these conditions are indeed satisfied , wedefine the Hilbert 
space h by 

00 

n=1 
00 

((ut,U2, ... ),(vl,v2, ···))h = l:n2u n Vn 

n=l 

It is not diffi.cult to show that h is continuously a nd densely embedded in l 2 . It 
is clear that V(N) = h, that N is a self-adjoint, positive definite operator and 
that N is an isomorphism from h to l 2 such that 

for all u E h 

Now we show that the conditions i)-iii) above are indeed satisfied . 
Condition i) . We write: 

A(t) = -Q(t) + At(t) 

Q(t) = (Re c0 (t) )N 
00 

At(t) = -(Im co(t))N - L cn(t)N Jn 
n=l 

(C.S) 

It follows directly from results proved in [29] that A(t), t E [0, T] is a generator 
of a C0-semigroup of contractions if 

Re (u, A(t)u) ~ 0 

Re (Q(t)u, A(t)u):;; 0 

for all u E h 

for all u E h 

(C.6a) 

(C.6b ) 
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We only prove the first inequality; the second one can be proved in a. similar way. 
We first note that for aU n E IN and all k , l E ffi/: 

00 

(VNlnVN._)kl = L Vk8kmbm+njJï- 1 8jl = Jkiisk+nl 
m,j=l 

and this implies 
n E INo 

The inequality (C .6a) then follows from condition i) in the proposition as 

Re (u, A(t)u) =-Re (u, Q(t)u) +Re (u , A1(t)u) 

and as 

(C.7) 

I Re (u, A1(t)u)l :S l(u, E cn(t)N lnu)l :SE lcn(t) (VNu, VN lnVN,_ VNu)l 

00 

:S L I en( t)lll VN ull 2 :S (Re co( t) )I( u, Nu )I = (u, Q( t)u) ( C.8) 
n=l 

for all u E hand all tE [0, T ]. 
Condition ii). We put S = N and find 

00 

B(t) = L Cn(t)N (Jn- N JnN,_) 
n=l 

(C.9) 

In order to show that B( t) is a bounded operator on l2 for all t E [0, T], we first 
note that 

<--- (k(l- k)) 
(N (Jn - N JnN )hl = l bk+nl 

for all n E IN0 , and this implies 

IIN (Jn- N lnN,_) 11 :S sup kkn = n 
kEN + n 

k, l E IN 

n E INo 

It then follows from condition ii) in the proposition that the mapping t ~ B(t ) 
is continuous for aU t E [0, T] as 

00 

I IE( t)ll :S L nlcn( t)l = M ( t) 
n =l 

Condition iii). We have for all u E hand all tE [0, T]: 
00 00 

IIA(t)ull12 = 11 L Cn(t)N lnui ii2 :S L lcn(t)IIIN l null12 

n =O n =O 
00 

n=O 

The continuity of the mapping t ~ A(t) follows . 0 
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Remark C.2 Let Lï(iJD) denote the subspace of L2(8D) containing those func­
tions u E L2(8D) such that 

271" J ei(1-n)B u( éB) d() = 0 for all n E !No 

0 

(This space L2(iJD) can be identified with a partienlar Hardy-space, see e .g. [95]). 
Let p- denote the projection operator from Lz(iJD) onto L2(8D). One checks 
that the Hilbert space h introduced in the proof is isomorphic to p-(H 1(8D)), 
where H 1(8D) denotes the Sobolev space of functions u E L2 (iJD) with a. gener­
alized derivative u' in L 2(8D). One also checks that the operator B(t) , tE [0, T] 
on l 2 corresponds to the operator B(t) on L2(8D) defined by: 

Ë(t) : u E L2(8D) ~-t P-(Ê(t)1t) E Lï(iJD) 

( Ê(t)u) (é8) = -ie-i1J g8 ( Bf(;~e,t) l él>u(é'") d4>) 

lt follows from this expression that the condition ii) in the proposition cannot be 
weakened very much; the estimates in the proof are quite sharp. 

Remark C.3 We note that a forma! substitution 

dn(t) = e(n+1)Ctdn(t) 

én(t) = enCtcn(t) 

éo ( t) = co ( t) + C 

n E LZ 

n E IN 

for some C E C' in the equations (C.2b) (and (C.2a)) leads to a same set of 
equations with en and dn replaced by Cn and dn. Th is observation can be used to 
reeoversome of the results obtained in Subsection 5.3.3 : if it is assumed that the 
function f or 2 can be extended analytically, then it is possible to choose C E IR+ 
such that the conditions in the proposition reduce to much weaker conditions. We 
do not go into the details of this consideration as the results will not be stronger 
than the results obtained before. 

Remark C.4 The proof of inequality (C.6a) was completely based on the in­
equality Re co(t) 2:: L~=l icn(t)i. This implies that the uniqueness of the solution 
of initia! value problem (C.3) can be proved without reference to condition ii) in 
the proposition . We show this result explicitly because we used it in the proof of 
Proposition 5.31. 
Let b: t ~-t b(t) E l2 be a solution of initia! value problem (C.3) with b0 = 0 and 
with c: t ~-t c(t) E lz such that it satisfies condition i) in the proposition . We get 
for all tE [0, T]: 

d 
dt lb(t)l 2 = 2Re (b(t), A(c(t))b(t )) ~ 0 
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This inequality, tagether with lb(O)I 
b(t) = 0, for aU tE [0, T]. 

I bol 0, implies lb(t)l 0, and hence 

We return to initia! value problem (C.2). Proposition C.l states that the initia! 
value problem given by (C.2b) and (C.2c) has a unique salution under general 
conditions. The remaining part of the initia! va.lue problem , given by (C.2a) and 
(C.2c), can then easily be solved by iteration. Roughly speaking, the solutions 
dn , n E lNo exhibit in general a typically exponential behaviour 

d ~ d (n+l) J' co(T )dT 
n ,..,_, n,oe 0 

and do not constitute a function =: which is in L2(aD) fora fixed t > 0. However , 
this does not mean that a Hopper equation does nothave a salut ion in general 
it is important to realize that t he function e that figures in a Hopper equ ation is 
undetermined and that the function =:is actually an abbrevation of the function 
D'IT (we are not looking fora salution =:of ini t ia! value problem (C.l) but for 
a function n such that :::: = D'IT solves this initia! value problem). So , the 
question is not whether initia! value problem (C .2) can be solved fora given set 
of functions an, n E lNo, but the question is whether functions an, n E lNo exist 
such that initia! value problem (C.2) has a solution with the property that a time 
dependent (locally) conformal mapping n on D x [0, T] exist such that for aU 
((, t) E aD x [0, TJ: 

00 

n =-oo 

This question remains unanswered; we only make some comments on how this 
problem may be solved. 
First one must try to show that for each function ::::_ -in some proper space of 
functions on aD such as H 1(aD), see remark C.2- with the property 

211' 

j e-ine=:_ ( eiO) dO = 0 

0 

for all n E lNo 

there exists a unique function .::.+ -m the same space of functions- with the 
property 

2rr 

j einB=:+ ( ei8) d() = 0 

0 

for all n E lN 

such that the function =: = =:_ +=:+ satisfi es equation (5 .28) (in some generalized 
sense). 
Secondly, one shows that for each function d from [0, T] to some subspace of !2 

-such as h, see again remark C.2- there is a function a from [0, T] to /2 such that 



143 

the equations (C.2a)- are satisfied . This problem is probably nothard to solve 
because of the structure of the equations (C.2a.). 
In order to establish a proof of the existence of solutions of Hopper equations 
where the function f depends on n in a functional wa.y, one should generalize 
Proposition C.l in such a way that the function c ma.y depend on the function b 
in a functional way. This is possible as the proof of this proposition is ba.sed on 
a theorem which has been generalized in this sense (see e.g. [42]). 
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Appendix D 

Same numerical results 

It has been shown in Section 4.1 that a Hopper equation for a rational time­
dependent conformal mapping is equivalent to a set of differential equations. ln 
order to illustrate the usefulness of this equivalency, we present a numerical resul t 
from [7]. The figures below are the output of a Mathematica program which solves 
the mentioned equations in the following case (see also Example 4.5): 

!1( t) _ ~ Am(t) 
(, - ( !;:1 1- (m(t)( 

with initia! given by 

AI(O) = 0.140 A2(0) = 0.240 A3(0) = 0.141 
(I(O) = -0.850 (2(0) = -0.500i (3(0) = 0.900 

o-o 0 
. .... . •-' 
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G lossary and Index 

INo,INoo 
IR+, IRo,+ 
Dr 
c 
I 

s.-
[aJ 

7 

!' 

j = j' 

IN u {O},JN u {oo} 
{x E IR I x> 0}, {x E IR I x 2 0} 
{zECIIzl<r} 
CU { oo}, Riemann sphere 
open interval of IR containing 0 
vector (in a finite dimensional vector space) 
tensor of order two 

( ~: ) 
inverse of operator or mapping S 
largest integer smaller than or equal to number a 

i) complex conjugate or grade involution (see page 27) 
of function or number f 

ii) function obtained by refiecting function f with 
respect to the unit circle (see Defi.nition 3.16) 

i) derivative of function f with respect to variabie in 
complex plane or on unit circle (see Definition 3.18) 

ii) derivative of deformed analytic function (see page 17) 

derivative of function f with respect to variabie t 

analytic The adjective analytic is used in the sense of holomorphic: a complex 
valued function on an open domain G C C is analytic on G if it is single-valued 
and satisfi.es the Cauchy-Riemann equations. If a function is multiple-valued or 
meromorphic (and analytic in another, more general sense), it is a\ways explicitly 
stated. 
complex notation After identifying IR2 with C, we rewrite J(x,y) as f( z, z), 
Q = (v1 v2)T as v = v1 + iv2, etc .. 
conformal A (locally) confermal mapping on an open domain is nothing more or 
less than a (locally) univalent function. A confermal mapping on a closed domain 
G C C can be defined as an injective orientation preserving diffeomorphism with 
the property of preserving angles. The following characterization may be more 
convenient: nis (locally) injective on G, the restrietion of n to the interior of G 
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is an analytie function and the derivative D' on the interi01· of G ean be extended 
eontinuously toa non-vanishing funetion onG. A smooth time-dependent loeally 
eonformal mapping is defined in Definition 3.14. 
domain Throughout the text, with the exeeption of Seetions 3.1 and 3.2, we only 
eonsider open domains: open eonnected subsets of !Rn. A closed domain in the 
sense used in Seetions 3.1 and 3.2 is: a subset of !Rn whieh is t he ciosure of an 
open domain. A domain is then an open or a closed domain. 
univalent A function is said to be (loeaUy) univalent if it is analytie and (loea lly ) 
injeetive. 

deformed analytie 17 
funetional dependeney 48 
Hopper equation 64 
Hopper's equation 52 
left monogenie 27 
Löwner- K ufareev equation 

extended linear 95 
extended quasi-linear 104 
linear 93 
quasi-linear 49 

rnaving boundary problem 
for Hele-Shaw flow 9 
for Stokes flow driven by... 8 
geometrie salution of 45 
salution of 41 

rigid- body motion 8 
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Summary 

The starting point of this study is Hopper's equation . This is an evolution 
equation for a time-dependent conformal mapping from the unit disc to a two­
dimensional domain occupied by a viscous fluid satisfying Stokes' equations and 
driven by surface tension. Generalizations of this equation we eaU Hopper equa­
tions. We show that some other moving boundary problems from fluid mechanics 
can be treated by means of these generalizations. An example is the Hele-Shaw 
flow. As a consequence of the fact that various problems can be modelled by one 
type of equation, regularized and mixed models can be considered too. However, 
only the introductory chapter sketches some physical background of this all; our 
main interest lies in the mathematics . 
At a first glance, Hopper's equation is somewhat peculiar since a "free" function 
figures in it. The values of this function are not prescribed but it has to be an­
alytic. A direct construction of solutions seems to be almost impossible because 
of this indeterminacy. That is why we try to find solutions by making an Ansatz. 
That is, we parametrize a rationat conformal mapping with an arbitrary number 
of poles of arbitrary order, substitute this into a Hopper equation and obtain a 
finitesetof differential equations for the time-dependent parameters . It is proved 
by means of complex analysis and the theory of ordinary differential equations 
that this set of equations has alocal solution. We stress that exact solu t ions can 
thus be obtained; we do not make any mathematica! approximations . Thus we 
have generalized and proved Hopper 's conjecture on the existence of polynomial 
and partial fraction solutions. Moreover, we have established a number of con­
served quantities. On the basis of these quanities, global existence of solutions 
for a class of problems is demonstrated. 
These considerations show a deep relationship between Hopper equations and 
time-dependent rationat solutions. We reveal this relationship by studying a 
particular type of partial differential equation that we call the extended Löwner­
Kufareev equation . Wededuce how singularities such as poles and branch points 
of solutions of such an equation propagate. This leads tosome rules for the prop­
agation of singularities of solutions of Hopper equations . Such propagation rules 
in turn imply the conservation of certain properties of solutions of the aforemen­
tioned problems. For example, a salution that is polynomial, rational or algebraic 
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at a certain instant, must be polynomial, rationa.l or algebraic at all times. 
We finally approach Hopper equations from the theory of semi-groups of opera­
tors. We sketch the lines of a proof of the assertion that Hopper equations can be 
solved uniquely under general conditions. An important ingredient to this proof 
is the result that a conformal mapping n on the unit disc is determined by the 
values of D'TI on the boundary of the disc. 
The other pa.rts of this thesis concern closely related subjects. We mention a. few 
of them . 
It has already been remarked that a "free function" appears in Hopper's equa­
tion. The origin of this function lies in the possibility to represent solutions of 
Stokes' equations in two dimensions by a pair of analytic functions . We prove 
that solutions of Stokes' equations in three dimensions can be represented by a 
pair of left monogenie functions with values in a Clifford algebra. Jf the solution 
is axially symmetrie, it can be represented by "deformed" analytic functions. 
We also treat moving boundary problems in a general framework. It turns out 
that many of these probierus can be modelled by a quasi-linear Löwner-Kufareev 
equation. We prove a theorem on the existence of solutions of the related initia] 
value probierus by an iteration method. 



Samenvatting 

Het uitgangspunt van deze studie is Hopper's vergelijking. Dit is een evolutie­
vergelijking voor een tijdsafhankelijke conforme afbeelding van de eenheidsschijf 
naar een twee-dimensionaal domein dat ingenomen wordt door een visceuze vloei­
stof die voldoet aan Stokes' vergelijkingen en beweegt onder de invloed va.n de 
oppervlaktespanning. Generalisaties van deze vergelijking noemen we Hopper­
vergelijkingen. We tonen aan dat met deze generalisaties ook andere bewegende­
randproblemen uit de stromingsleer te behandelen zijn, zoals bijvoorbeeld de 
Hele-Shaw-stroming . Als gevolg van het feit dat uiteenlopende problemen met 
één type vergelijking gemodelleerd kunnen worden, zijn ook voor de hand lig­
gende mengvormen behandelbaar . We gaan in het inleidende hoofdstuk echter 
maar kort in op de fysische achtergrond van dit alles; de aandacht richt zich 
vooral op de wiskunde. 
De Hopper-vergelijking is op het eerste gezicht wat merkwaardig, aangezien er een 
"vrije" functie in voorkomt waarvan alleen het karakter bepaald is: deze functie 
is analytisch, maar heeft geen a priori voorgeschreven waarden. Deze onbepa.ald­
heid maakt dat een rechtstreekse constructie van oplossingen onmogelijk lijkt. 
Daarom wordt geprobeerd oplossingen te vinden via een Ansatz. Dat wil zeggen, 
we parametriseren een rationale conforme afbeelding met een willekeurig aantal 
polen van een willekeurige orde, substitueren deze in de Hopper-vergelijking en 
vinden een stelsel differentiaalvergelijkingen voor de tijdsafhankelijke parameters. 
Met behulp van complexe analyse en de theorie van gewone differentiaalvergelij­
ken tonen we aan dat dit stelsel uniek oplosbaar is. Het blijkt nu dat aldus exacte 
oplossingen verkregen worden. Daarmee hebben we Hopper's hypothese over het 
bestaan van polynomiale oplossingen veralgemeend en bewezen. Bovendien heb­
ben we gaandeweg een aantal behouden grootheden gevonden. Hiervan uitgaande 
bewijzen we voor een klasse van problemen het bestaan van globale oplossingen. 

Het blijkt aldus dat er een diep verband bestaat tussen Hopper-vergelijkingen 
en tijdsafhankelijke rationale conforme afbeeldingen. Dit verband wordt inzichte­
lijk gemaakt door een partiële-differentiaalvergelijking te beschouwen die wij de 
uitgebreide Löwner-Kufareev-vergelijking noemen . We leiden af hoe singularitei­
ten zoals polen en vertakkingspunten van oplossingen hiervan zich voortplanten. 
Dit leidt dan tot een aantal regels voor de voortplanting van singulariteiten van 
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oplossingen van Hopper-vergelijkingen. Uit deze regels blijkt vervolgens dat ze­
kere eigenschappen van oplossingen van de bovengenoemde problemen behouden 
blijven: een oplossing die op een tijdstip polynomiaa.l, rationaal of algebraïsch is , 
is dat voor alle tijden. 
Ten slotte worden Hopper-vergelijkingen benaderd vanuit de theorie van semi­
groepen van operatoren. vVe schetsen de contouren van een bewijs dat Hopper­
vergelijkingen onder zeer algemene voorwaarden uniek oplosbaar zijn. Een be­
langrijk ingrediënt hierbij is het resultaat dat een conforme afbeelding n op de 
eenheidsschijf vrijwel geheel bepaald is door de wa.arden van D'IT op de rand van 
de eenheidsschijf. 

De overige delen van het proefschrift behandelen onderwerpen die nauw ver­
want zijn aan deze beschouwingen. We noemen enkele hiervan. 
We hebben al opgemerkt dat in Hopper 's vergelijking een functie verschijnt waar­
van alleen bekend is dat zij analytisch is. De herkomst van deze functie ligt in de 
mogelijkheid oplossingen van Stokes' vergelijkingen in twee dimensies te represen­
teren door een stel analytische functies. We bewijzen dat oplossingen van Stokes ' 
vergelijkingen in drie dimensies te representeren zijn door een stel links-monogene 
functies met waarden in een Clifford-algebra. In het a,Uaalsymmetrische geva l kan 
men volstaan met, wat wij noemen, gedeformeerd analytische functies . 
Verder worden bewegende-randproblemen behandeld in een algemeen kader. Het 
blijkt dat veel van deze problemen gemodelleerd kunnen worden door een quasi­
lineaire Löwner-Kufareev-vergelijking. We bewijzen een existentiestelling over 
het bijbehorende beginwaardeprobleem door een iteratie-techniek te gebruiken. 
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-I-

Laat l1 op {( E Cll(l < 1} x [O,oo) een tijdsafhankelijkeconforme afbeelding 
zijn die een oplossing beschrijft van het bewegende-randprobleem voor Stokes­
stroming gedreven door oppervlaktespanning. Als l1 op t = 0 polynomiaal, 
rationaal, algebraïsch, stervormig of convex is, dan is l1 dat voor alle t 2: 0. 
Zie ook hoofdstuk 5 van dit proefschrift. 

-2-

In de uitleg van het ontstaan van ~usps in Hele-Shaw-stroming zoals gegeven 
in [1], worden de begrippen domein en bereik verwisseld; deze uitleg is dan 
ook onjuist. 

-3-

De wiskundige problemen die ontstaan door singulariteiten in Hele-Shaw­
stroming kunnen worden omzeild door een gemodificeerd model te beschouwen 
dat gebaseerd is op een regularisatie van de bijbehorende Hopper-vergelijking. 
Zie ook hoofdstuk 3 van dit proefschrift. 

-4-

Laat D de eenheidsschijf zijn in C en laat L:; ( 8D) de ruimte zijn van quadra­
tisch integreerbare functies f waarvoor geldt 

2n 
J e-inB f(éB) d() = 0 
0 
2n 

f eiO f (ei8) dO E ffl+. 
0 

voor alle n E INo, 

Voor alle functies ::=;_ E L2(8D) bestaat er een Co E IR zodanig dat voor a lle 
c > Co er één functie :::;+ E L2 ( 8D)L en één functie l1 in de Sobolev-ruimte 
H 1 ( 8D) bestaat zodanig dat: 

i). !1' E Lï(8D), 

ii). de voortzetting van !1' op I5 heeft geen nulpunten in D, 

iii) . !1'(()!1(() = ::::+(() + ::::_(() + c( voor bijna alle ( E 8D. 

-5-

Het is puur conservatisme dat oliemaatschappijen sommige gevallen van 
"coning" niet tegengaan door olie de grond in te pompen. 



-6-

Het verschil tussen de ijktheorieën van Chisholm en Farwell en andere the­
orieën over contravariante afgeleiden van spinoren, is enkel een verschil in 
interpretatie van het begrip ijktransformatie. 
Vergelijk (2},{3}. 

-7-

Zij Clo,n de Clifford-algebra behorend bij een n-dimensionale ruimte met een 
negatief definiet inproduct. Het inproduct van twee basiselementen eA en eB, 

waarbij A en B geordende, niet-lege deelverzamelingen zijn van V = {I, .. , n}, 
wordt gegeven door 

eA · eB = * ( .::1 (a, b) * eA 1\ eB + .::2( a, b )eA 1\ *eB), 

waarbij a = ~A, b = ~B, * de Hadge-ster-afbeelding is en .::1 en t: 2 gegeven 
worden door 

é I (a, b) = c-~· b) ( -1 )[(b+l )/2l+ab+a+b+l 

é2(a,b) = c-~··) (-l)l(a+l)/2]+ab+{n-l)(a+b)+l, 

waar [ ] het entier aangeeft. 
Zie ook (4},(5}. 

-8-

De toepasbaarheid van de theorie van monogene functies met waarden in 
een Clifford-algebra is voor het oplossen van problemen uit de stromingsleer 
beperkt, doordat de compositie-eigenschap ontbreekt wanneer meer dan twee 
variabelen een rol spelen. 

-9-

Wie de richting van de tijd wil begrijpen, moet vroeger opstaan. 
Vergelijk (6}. 

-10-

Nederland is buiten Amsterdam nog te leeg. 
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