EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Moving boundary problems in relation with equations of
Léwner-Kufareev type

Citation for published version (APA):

Klein Obbink, B. (1995). Moving boundary problems in relation with equations of Léwner-Kufareev type. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit
Eindhoven. https://doi.org/10.6100/IR449236

DOI:
10.6100/IR449236

Document status and date:
Published: 01/01/1995

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://doi.org/10.6100/IR449236
https://doi.org/10.6100/IR449236
https://research.tue.nl/en/publications/e93ff4a9-2da3-463a-b87e-793cad71ff19

Moving Boundary Problems
in relation with equations of
Lowner-Kufareev type

B. Klein Obbink



MOVING BOUNDARY PROBLEMS

IN RELATION WITH EQUATIONS OF
LOWNER-KUFAREEV TYPE

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof.dr. J.H. van Lint, voor
een commissie aangewezen door het College
van Dekanen in het openbaar te verdedigen op
vrijdag 1 december 1995 om 16.00 uur

door
BART KLEIN OBBINK

Geboren te Amsterdam



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. J. de Graaf
en
prof.dr. R.M.M. Mattheij

ISBN 90-386-0107-7



Contents

1 Introduction 3
1.1  General Overview of the thesis . . . . .. ... ... .. ... ... 3
1.2 Physical background . . . . . . ... ... e 5

1.2.1 Stokes’ and Darcy’s equations . . . . .. ... .. ... ... 5

1.2.2  Stokes flow driven by surface tension and multi-poles . . . . 7

1.2.3 Hele-Shaw flow . . . .. ... ... .. ... ... ... .. 9
1.3 Introduction to Hopper and extended

Lowner-Kufareev equations . . . .. . .. ... ... .. ...... 9

2 Representations of Stokes Flows 13
2.1 Two-dimensional Stokes flow . . . . ... ... .. ... .. ... . 13
2.2 Axially symmetric Stokes flow . . . . . . ... .00 16

2.2.1 Deformed analytic functions . . . . .. ... ... ... ... 17
2.2.2 Axially symmetric solutions of Stokes’ equations . . . . .. 23
2.3 Three-dimensional Stokes flow . . . . . . . ... . ... ... .. .. 26
2.3:1 Clifford Analysis = 2 ¢ ¢ o 25 ¢ 5 2 mwm 3 mm s 8% 8 26
2.3.2 Solutions of D"D™ f=0. . . . . . . 29
2.3.3 Representations of Stokes flows . . . . . ... . ... ... . 33
2.4 Traction formulae . . . . . ... ... 36

3 Moving Boundary Problems 41
3.1 Quasi-static moving boundary problems . ... .. ... ... ... 41
3.2 The quasi-linear Lowner-Kufareev equation . . . .. ... ... .. 46
3.3 Hopper’sequation . . .. ... ... 51
3.4 The Hopper equation for Hele-Shaw flow . . . . . . . . .. ... .. 56

4 Hopper Equations 63
4.1 Rational solutions of Hopper equations . . . . . ... .. ... ... 63
4.2 Proof of local existence of solutions . . . . . .. ... .. ... ... 69

4.2.1 The structure of the equations . . . .. ... .. ... ... 69
4.2.2 Functional dependency . . . . . ... ... L. 77



2
4.3 A class of global solutions . . . . ... ... L
5 Lowner-Kufareev equations
5.1 Linear Lowner-Kufareev equations . . . . ... ... .. ... ...
5.2 Extended linear Lowner-Kufareev equations . . . . . .. ... ...
521 Repular PoIlitS . : v ww 2 5 s+ wwm s 20 mp 38 #3838 3
5.2.2 Poles and essential singularities . . . . . ... ... ... ..
523 Branchpoints. .. ... .. ...
5.2.4 Propagation of isolated singularities . . . .. . .. .. ...
5.3 Hopper equations reconsidered . . . . . . .. ... ... ... ...
5.3.1 The inverse problem . . ... ... ... . ... ... ..
5.3.2 Analytically extendable mappings . . . ... .. ... ...
5.3.3 Mappings in the neighbourhood of the identity . . . . . .. '
5.4 Quasi-linear Lowner-Kufareev equations . . . . . .. .. ... ...
5.4.1 Preliminary Results . . ... ... ... ... .. ......
5.4.2 Existence of solutions . . . . ... ... ... ... .. ...
A Domains of left monogenic functions without primitives
B Separation of variables in linear Lowner-Kufareev equations
C Existence of solutions of Hopper equations
D Some numerical results
Glossary and Index
References
Summary
Samenvatting

CONTENTS

Curriculum Vitea

137

145

147

149

157

159

161



Chapter 1

Introduction

One of the difficulties of writing mathematical texts is the paradox that a strict
proof of an assertion is generally not its most straightforward deduction. Details
may become important, a down-to-earth point of view is sometimes too limited
and unavoidable side branches in a proof can confuse the reader. That is the
reason why this chapter —in contrast with the Chapters 2-5- is written in a
.somewhat loose way. We do not avoid a didactic tone appealing to “mathematical
intuition” when we summarize the content of this thesis and try to explain its aim.
Nor do we go into details when we sketch the physical background and history of
some of the problems. Finally we apologize for summarizing the contents of the
Chapters 2-5 in a non-subsequential order.

1.1 General Overview of the thesis

This thesis is concerned with moving boundary problems. Such problems appear
for example in fluid mechanics when a clump of matter is moving freely according
to its hydrodynamic velocity. In particular, we will consider problems where this
velocity mainly depends on the geometric shape of the matter at that time. We
call such a momentaneous relation between the velocity field and the geometric
shape quasi-static and present a mathematical formulation of quasi-static moving
boundary problems in Section 3.1. After restricting ourselves to two-dimensional
problems and after introducing a time-dependent conformal mapping from a ref-
erence domain to the domain occupied by the matter, we are led in Section 3.2
to what we call a quasi-linear Lowner-Kufareev equation. (We prefer to spell
the latter name with two e’s although it can also be written as “Kufarev”.)
This equation can be viewed as a non-linear version of the time-honored Lowner-
Kufareev equation ([57, 49]) which was studied in the theory of subordination
chains ([70, 9]) and which played a role in the proof of Bieberbach’s conjecture
([14, 47]). The importance of the quasi-linear Léwner-Kufareev equation can be

3



4 CHAPTER 1. INTRODUCTION

illustrated by quoting an open question formulated during the 1994 Conference
on Complex Analysis and Free Boundary Problems in St. Petersburg ([1]):

“A framework for solving moving boundary problems is as follows. ... Then the
kinematic boundary condition for the normal velocity V,, of the free boundary
09Q(t) becomes the Lowner-Kufareev type equation... Can this formulation help
with the solvability question and with analysis of the geometric properties of the
moving boundary?...”

We try to make a contribution to the answer of this question in Section 5.4 where
we prove the local solvability of quasi-linear Lowner-Kufareev equations under
general conditions. (This section is published in a different form in [43].) The
proof is based on some estimates on solutions of linear Lowner-Kufareev equa-
tions and an iteration technique. Should your main interest lie in the general
relation between quasi-linear Lowner-Kufareev equations and quasi-static mov-
ing boundary problems, we suggest you to read Sections 3.1, 3.2, 5.1 and 5.4
only. _

Apart from these general considerations we will study two particular moving
boundary problems in more detail: the one for Stokes flow driven by surface
tension and the one for Hele-Shaw flow. We postpone the introduction to these
problems to the next section. It was R.W. Hopper who derived an equation -
which we call Hopper’s equation— for the first problem in his inspiring article
“Plane Stokes flow driven by capillarity on a free surface” ([35]). In Section 3.3,
which is based on [30], we show that if a time-dependent conformal mapping
satisfies Hopper’s equation, then it is a solution for Stokes flow driven by surface
tension. In Section 3.4 we show that a time-dependent conformal mapping satis-
fies the moving boundary problem for Hele-Shaw flow if and only if this mapping
satisfies an equation which resembles Hopper’s equation. This leads, at the risk of
confusion, to the introduction of the name “Hopper equations”: equations which
resemble the original one in a way made clear in Section 4.1. We realize that these
names do not honour other mathematicians who recognized the significance of
a formulation of certain moving boundary problems in terms of conformal map-
pings (see e.g. [78, 30]).

The core of this thesis is the study of Hopper equations in Chapters 4 and 5.
This study is based on the theory of ordinary and partial differential equations,
on complex function theory and on some functional analysis. The result is a set
of propositions and theorems on the properties of solutions and on the existence
and uniqueness of some classes of solutions. We also show a deep relationship
between Hopper equations and certain partial differential equations, which we
will call extended Lowner-Kufareev equations.

Before we summarize the contents of this study of Hopper equations in Section
1.3, we shall first discuss the physical background of the moving boundary prob-
lems mentioned.
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1.2 Physical background

Most moving boundary problems in mathematical physics have the following
constituents: the equations of motion, the dynamic boundary condition and the
kinematic boundary condition. We present a short introduction to the moving
boundary problem for Stokes flow driven by surface tension and multi-poles and
for Hele-Shaw flow in the Subsections 1.2.2 and 1.2.3, respectively. We first
discuss two types of equations of motion in Subsection 1.2.1.

1.2.1 Stokes’ and Darcy’s equations

The motion of a viscous Newtonian fluid can be described by the well-known
Navier-Stokes equations and the continuity equation ({55, 87]). If the inertial and
gravitational forces are negligible and the fluid is incompressible, these equations
reduce to Stokes’ equations:

nAu(z,t) = Vp(z,1) V.y(z,t) =0

where 7 is the viscosity constant and where v(z,t) and p(z,t) are the hydrody-
namic velocity and the hydrostatic pressure at a point z at time ¢. From now on,
we shall assume that the unit system is scaled such that n = 1. We return to the
topic in which circumstances Stokes’ equations are a good physical approxima-
tion in Subsection 1.2.2.

As time derivatives do not appear in Stokes’ equations, we can suppress the
variable ¢ in the notation and write

Av(z) = Vp(z) Voa(z) =0 (1.1)

We note that these equations make sense on any open subdomain of IR™ for
any n € IN. Nevertheless, it is important to realize that the Laplacian of a
vector field must be treated with care in order to give it a coordinate-independent
meaning (see e.g. [2]). As long as Cartesian coordinates are used, no confusion
can arise, but as we will also use cylindrical coordinates in Sections 2.2 and 2.4,
it is convenient to rewrite Stokes’ equations in a different notation:

99(2)ViVio*(e) = g*(2)Vip(z) k=1,.,n (1.2a)
Viv'(z) =0 (1.2b)
where ¢ is the first fundamental tensor, where V; denotes the covariant derivative

with respect to the variable z' and where Einstein’s summation convention is
understood. The components of the stress tensor T are given in this notation by

T%(z) = —p(2)6} + V;v'(z) + ¢ (2)g1j(z) Vir'(z)
i =1,.m (1.3)
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We now turn to other equations of motions. It has been experimentally verified
that a fluid in a porous medium can be described by Darcy’s law ([61, 68, 16]):

v(z,t) = -vVp(z,1)

where v is the effective permeability. From now on, we will assume that the unit
system is scaled such that v = 1. If the fluid is incompressible, the continuity

equation reduces to
V.a(z,t) =0

We will refer to these equations of motions as Darcy’s equations. The reader who
is interested in the circumstances in which Darcy’s equations are a good physical
approximation is referred to [61]. As time derivatives do not appear in Darcy’s
equations, we can suppress the variable ¢ in the notation and write

v(z) = —Vp(z) V.a(z)=0 (1.4)

It is possible to represent solutions of Stokes’ and Darcy’s equations in two di-
mensions by analytic functions. We explain what we mean by this statement
on the basis of Darcy’s equations on an open domain G C IR?. It immediately
follows from the equations (1.4) that the function p is harmonic. If we assume
that G is simply connected, there is a harmonic conjugate of p on G and this
implies that an analytic function x exists on G such that

p=—Rex v=x' (1.5)

where we use complex notation. Conversely, it is easily checked that if x is an
analytic function on an open domain G C IR?, then the functions p and v defined
by the relations (1.5) satisfy Darcy’s equations. We therefore state that a solution
of Darcy’s equations can be represented by one analytic function. A comparable
result holds for Stokes’ equations: it can be shown that a solution of Stokes’
equations in two dimensions can be represented by two analytic functions. We
include a proof of this well-known result in Section 2.1.

These representations turn out to be very useful later on as they constitute an
essential ingredient in the derivation of Hopper equations. This leads to the
question whether we can generalize the concept of representing functions. Is it
possible to represent solutions of Stokes’ equations in three dimensions in terms
of generalized analytic functions? We will answer this question affirmatively in
Chapter 2. More precisely, we will show in Section 2.2 that every axially sym-
metric solution of Stokes’ equations can be represented by two so-called deformed
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analytic functions and we will show in Section 2.3 that every solution of Stokes’
equations in three dimensions can be represented by two left monogenic functions
(the latter section was published in a somewhat different form in [44]). In spite
of these results, it turns out that a generalization of Hopper equations for more
than two dimensions is very hard and may even be impossible. As we will not go
further into this matter, the quick reader may skip Sections 2.2 and 2.3.

We end this section by a very short introduction to multi-poles (see e.g. [24,
51, 59]). Let G be an open domain in IR? containing 0 and let p and v satisfy
Stokes’ or Darcy’s equations on G\{0}. A source at 0 of strength @, (if Q1 < 0
we speak of a sink) can be modelled by

V.a(z) = Q16(z)

where ¢ denotes Dirac’s delta function. One checks that this relation in complex
notation corresponds to

v(z,%) — Q—l_ — const. ifr=12/ -0 (1.6)
In the same way, a multi-pole of order n € IN\{1} of strength @, > 0 directed
along (cos ¢ sin ¢)T can be modelled by

Qre'
2rZ"

v(z,%)

— const. fr=]zl-0 (1.7)

1.2.2 Stokes flow driven by surface tension and multi-poles

Consider a fluid with a surface tension coeflicient ¥ > 0 which occupies an open
domain G C IR™ with a compact C?-surface 0G. Let the outer domain be occu-
pied by a fluid without surface tension under a uniform hydrostatic pressure pg.
On the basis of both experiments and theory ([93, 74, 8]), a good model for the
dynamic boundary condition is

T(z)n(z) + v&(z)n(z) = —pon(z) z € 8G

where T denotes the stress tensor and where x(z) and n(z) denote the mean
curvature and the outward-pointing normal vector at a point z € G ([83]).

We discuss this boundary condition in combination with Stokes’ equations. We
note that if v # 0, it is possible to scale the unit system such that v = 1. We
also note that as only derivatives of the pressure p appear in Stokes’ equations,
we may assume po = 0 without loss of generality. We thus obtain the following
boundary value problem:

Av(z) = Vp(z) V.alz)=0 zelG (1.8a)
I(z)n(z) = —vx(z)n(z) z € 0G (1.8b)
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where v = 0,1. A solution of this problem for vy = 0 (no surface tension) and
n = 2 (two-dimensional flow) is given by:

p(z,y) =0 vz,y) =wly —2)7 + (0 v)’

where w, v, and v, are arbitrary constants. Such a solution is called a rigid-
body motion. It is not difficult to show that rigid-body motions are the only
solutions of the boundary value problem (1.8) with v = 0 ([72]). As Stokes’
equations are linear, this implies that the solution of boundary value problem
(1.8) is determined up to a rigid-body motion. The existence of solutions is
treated in e.g. [54].

In order to obtain a model of the moving boundary problem for Stokes flow
driven by surface tension, the kinetic boundary condition has to be formulated.
It is physically clear what this condition should be if the fluid can move freely:
the boundary moves according to the hydrodynamic velocity and behaves as a
membrane. However, we postpone a precise mathematical formulation in terms of
Lagrange coordinates to Section 3.1 because some technical details are involved.
Here, we suffice with the following loose formulation:

Awple,1) = Vp(a,1) V.a(z,t)=0 tel,ze G (1.9a)
T(z,t)n(z,t) = —vk(z,t)n(z,t) tel,z€0G,  (1.9b)
V(z,t) = v(z,1) tel,z € dG,  (1.9¢)

where V denotes the velocity of the boundary. The moving boundary problem
for Stokes flow driven by surface tension and multi-poles can be formulated in
the same way. (That is the reason why we did not put v = 1: although the only
solutions of problem (1.9) with v = 0 are the rigid-body motions, the solutions
of the moving boundary problem for Stokes flow driven by multi-poles are not
trivial.) The moving boundary problem (1.9) is called quasi-static because the
dynamics only come in via the kinetic boundary condition. A moving bound-
ary problem like this one is often studied in combination with initial data given
by a domain Gy. In most applications, one is mainly interested in the shape
evolution t — G} of the solution of such an initial value problem; the pressure
and velocity fields are of minor importance. We return to this point in Section 3.1.

Although this thesis aims to be a mathematical study, we make some comments
on the question under which physical circumstances this mode] is a good ap-
proximation. The most important reduction that is made is the disregard of
the gravitational and inertial forces. These forces are negligible indeed if the
dimensionless Suratman and Bond number are small (see [35, 12], see also [52]).
However, a lot of other approximations are implicitly made: it is assumed that
the fluid is Newtonian and perfectly incompressible, that the viscosity and surface
tension coefficients are constant, that the London-Van der Waals forces can be
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neglected, etc. Under which circumstances these approximations can be justified
inevitably remains somewhat arbitrary. Nevertheless, the analytic solutions of
the moving boundary problem (1.9) obtained so far are in good agreement with
experimental data ([37, 36, 94]). A good account of numerical solutions and their
significance for industrial applications can be found in [90].

1.2.3 Hele-Shaw flow

Consider an incompressible fluid in a porous medium which occupies an open
domain G C IR™ where a source of strength @ is placed at z = 0. If we assume
that this fluid is in hydrodynamic equilibrium with the fluid in the outer domain
under a uniform pressure pg and if we neglect the viscosity terms, we get the
following model:

) = ~Vp(z) V.a(z) = Q16(z) z€G (1.10a)
p(z) = po z € 0G (1.10b)

As only derivatives of the pressure p appear in Darcy’s equations, we may put
po = 0 without loss of generality. It is not difficult to show that this boundary
value problem has a unique solution by rewriting it as a Dirichlet problem for the
pressure p (see also Section 3.4).

If the fluid can move freely, we obtain the following quasi-static moving bound-
ary problem by formulating the kinetic boundary condition as in the previous
subsection:

v(z,t) = =Vp(z,t) Voa(z,t)=Q1(t)é(z) tel,zeG, (l.lla)
p(z,t) =0 tel,zedG, (1.11b)
V(z,t) = v(z,t) tel,zedG, (l.1lc)

We note that the strength of the source is admitted to be time-dependent. This
problem is referred to as the moving boundary problem for Hele-Shaw flow. Its
study has a long history ([39, 79, 77]); its applications concern ground-water flows
and oil production ([16, 67, 62]).

1.3 Introduction to Hopper and extended
Lowner-Kufareev equations

In Section 1.1 we stated that the study of Hopper equations in Chapters 4 and
5 is the core of this thesis. Before we turn to the results of this study, we sketch
the features of Hopper’s equation, the equation for a time-dependent conformal
mapping  which solves the moving boundary problem for Stokes flow driven by
surface tension. We do not present this equation at this place because this would
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require an introduction to a lot of notational matters (we suggest the reader to
take a glance at equation (3.17) at page 52). The right-hand side of this equation
is an expression where the mapping Q and its derivatives appear; the highest
time derivative is of order one. The left-hand side is an unknown time-dependent
analytic function 6. (In the original article [35], in equation 22, the left-hand
side is denoted by 1.) We stress that this function cannot be considered a given
function; it can only be determined a posteriori. However, we know an important
property of this function 6: it is analytic on its domain for all fixed times. The
origin of this property lies in the possibility to represent a two-dimensional Stokes
flow by analytic functions.

At first, Hopper’s equation does not seem to determine the time evolution of the
mapping Q: if we substitute a particular mapping Q at a fixed time, we obtain a
relation between two unknown functions, namely 8 and %. However, the knowl-
edge that the function 6 is analytic does seem to determine the time evolution of
the mapping Q in some way or another. In Hopper’s own words ([35]): “... the
requirement that 1((,t) be a function analytic ..., determines uniquely Q(a,t)
and therefore Q((,1). ...”

This statement is based on Hopper’s observation that if we make the Ansatz
that © is a time dependent-polynomial —i.e. we substitute a parameterised time-
dependent polynomial in Hopper’s equation— we obtain the time evolution of Q by
requiring the function 8 to be analytic —i.e. we get a set of differential equations
for the coefficients in the parameterisation. De Graaf calls this the “cancellation
of singularities” ([30]) as the singularities in the various terms on the right-hand
side of Hopper’s equation must compensate each other to make both sides of the
equation analytic. It is shown in Hopper’s article that such a procedure also
works if we make the Ansatz that  is a partial fraction mapping.

Inspired by these results, we show in Section 4.1 that the substitution of a properly
parameterised rational function in a Hopper equation leads to a set of differen-
tial equations for the parameters by calculating Cauchy integrals and applying
the residue theorem. We note that this result is a generalisation of the afore-
mentioned results in the sense that polynomial and partial fraction mappings are
particular types of rational mappings and in the sense that Hopper’s equation is a
particular type of Hopper equation. Moreover, some of the differential equations
found in this way by substituting a partial fraction mapping in a Hopper equation
can be considered algebraic equations, i.e. they lead to conserved quantities, and
are therefore easier to handle then the equations found by Hopper (see e.g. [7]
where it is also shown that both sets of equations are equivalent).

Does the plain fact that a Hopper equation for a rational mapping is equivalent to
a set of differential equations prove the existence of rational solutions? No, first
it has to be shown that this set of equations is solvable. We do so after employing
some theory of ordinary differential equations and some complex function theory
in Section 4.2: Theorem 4.18 on page 78 states that the aforementioned set of
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differential equations has a unique maximal solution under general conditions.
As aresult we find that the moving boundary problems for Stokes flow driven by
surface tension and for Hele-Shaw flow have rational solutions. We note that this
proves Hopper’s conjecture on the existence of polynomial and partial fraction
solutions ([35]).

Although these results are satisfactory, one may expect global solvability in some
cases, for e.g. Stokes flow driven by surface tension and for Hele-Shaw flow with
a source, i.e. )7 > 0. However, a rigorous proof of global solvability of the set
of differential equations obtained by substituting a rational function in the cor-
responding Hopper equations turns out to be complicated because of technical
difficulties. This is illustrated in Section 4.3, where we prove this global solvabil-
ity for a special class of partial fraction mappings. This section also illustrates
that the algebraic relations corresponding to the aforementioned conserved quan-
tities behave in a way one may expect.

Let us take a breath for a moment and consider the results obtained so far.
We may get the vague notion that Hopper equations and time-dependent ratio-
nal mappings are designed for each other. It is at least somewhat bewildering
that the considerations in Chapter 4 are independent of the precise form of the
Hopper equation and, remember, are also independent of the values of the an-
alytic function in the left-hand side. Together with these wonders, doubts may
appear as it has not yet been shown for example that a rational mapping satisfy-
ing a Hopper equation cannot evolve into a non-rational mapping. Moreover: is
there anything to state on the properties of non-rational solutions? To put things
even more insubstantially: can we mathematically understand the concept of a
Hopper equation?

In order to answer these questions to some extent, we introduce the extended
Lowner-Kufareev equation: a first order partial differential equation of a certain
type for functions which depend on a complex and a real variable. The name
of this equation is based on the fact that the characteristics of this equation are
determined by an ordinary differential equation of exactly the same type as the
ordinary differential equation which underlies the non-extended Léowner-Kufareev
equation. We show in Section 5.2 that the singularities of a solution of an ex-
tended Lowner-Kufareev equation move along these characteristics and cannot
simply appear, disappear or change their nature (that is: a pole of order two
remains a pole of order two, a branch point remains a branch point, etc.).
These results can be used to deduce properties of solutions of Hopper equations
if we assume in advance that these solutions are very smooth, i.e. analytically
extendable. More precisely, we show in Subsection 5.3.2 that a smooth solution
of a Hopper equation corresponds to a solution of an extended Lowner-Kufareev
equation and we then show that this implies a rule for the propagation of singu-
larities of the mapping Q. In particular, we find that a smooth solution which is
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rational at some fixed time must be rational for all other times. The implications
for the moving boundary problems for Stokes flow driven by surface tension and
multi-poles and for Hele-Shaw flow with a source are as follows. First of all,
singularities of smooth solutions tend to move to infinity in accordance with the
belief that the domains occupied by the fluids tend to become circular. Secondly,
singularities of smooth solutions cannot simply appear, disappear or change their
nature; this assertion can be considered as a guide on how to guess a proper
Ansatz. Finally, rational solutions exist and are unique in the class of smooth
solutions.

We stress that the relation between solutions of Hopper equations and of ex-
tended Lowner-Kufareev equations only appears if the solutions of the Hopper
equations are assumed to be analytically extendable. However, it is shown in
Subsection 5.3.3 that some of the properties mentioned above can be deduced
in another way by making assumptions of a different type. What we actually
show is: a mapping that is almost linear, which satisfies a Hopper equation and
which is rational at some fixed time, is rational for all other times. We prove
this assertion on the basis of the results obtained in Chapter 4 and on a lemma
that states under which conditions a linearized version of a Hopper equation has
a unique solution. This lemma itself is proved in Appendix C on the basis of a
theorem on strongly continuous semi-groups of operators.



Chapter 2

Representations of Stokes
Flows

In this chapter we consider solutions of Stokes’ equations:
Dv=Vp. Vao=0 (2.1)

in two and three dimensions (see also Subsection 1.2.1). It is well-known that
a solution of Stokes’ equations in two dimensions can be represented by a pair
of analytic functions ({48, 45]). For the convenience of the reader we show in
Section 2.1 how this result can be obtained. The exposition is such that the
generalisations in the subsequent sections become better understandable: we
show in Section 2.2 that an axially symmetric solution of Stokes’ equations in
three dimensions can be represented by a pair of what we will call deformed
analytic functions and we show in Section 2.3 that the general solution of Stokes’
equations in three dimensions can be represented by a pair of left monogenic
functions. We finally show in Section 2.4 how the representations of the Sections
2.1 and 2.2 can be used to rewrite boundary value problem (1.8).

2.1 Two-dimensional Stokes flow

Let G C IR? be an open, simply connected domain and let » and p on G satisfy
Stokes’ equations (2.1). As v is solenoidal and as G is simply connected, a function
1 on G exists, called the stream function, such that

v=(v v)l = (y — )T

Let D and D denote the Cauchy-Riemann and the anti-Cauchy-Riemann opera-
tors times two:

D=20;=0,+i0, D=20,=0,-id,

13
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The equations (2.1) are equivalent to the following equations in complex notation:
DDv=Dp v=-Dip (2.2)

As the function p is smooth, a real function o exists on G, which we will call the
auxiliary function, such that

p= Ao = DDo (2.3)

It is clear that o is not unique: if g is an arbitrary real harmonic function on G,
then the function
c=0+g (2.4)

is also an auxiliary function, i.e. & satisfies AG = p. We define the complex

valued function F on G by
F=c+w (2.5)

It follows immediately from the relations (2.2),(2.3) and (2.5) that F* satisfies
DDDF =0 (2.6)

It can be shown ([28]) that every smooth complex valued function f on a simply
connected domain G C IR? satisfying

D"D™f = (2)"™020™f = 0 n,m € IN (2.7)

can be written as B ~
f=327 g+ ) (2.8)

k=1 k=1
where gp,k = 1,...,n and hg,k = 1,...,m are analytic functions; if » = 0 or

m = 0, similar results hold. For n = 2 and m = 1 this implies that there is an
analytic function ¢ and a complex valued, harmonic function x such that

F=zp+x (2.9)

It follows immediately from relation (2.4) that the function F = & + i1h can be
written as:

F=%p4+x+g (2.10)
Now we perform what physicists may call a gauge transformation: we choose the
function ¢ such that ¥ = x + ¢ is an analytic function (take g = i(—Im x + x),
where Y denotes a harmonic conjugate of Re x). We omit the tildes and find that
F can be written as in formula (2.9) where ¢ and x are now both analytic
functions. We conclude that every Stokes flow on an open two-dimensional,
simply connected domain can be represented by a pair of analytic functions.
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The relations (2.2),(2.3),(2.5) and (2.9) lead to the following expressions for p
and v:

p= 4991 &
V1 = TPy — YP1,y — 1+ Xoy (2.11)
V2 =YP12 —TP22 — Y2 — X2

where ¢; = Re ¢, v2 = Im ¢, etc.. These relations can be written in complex
notation as _

p=4Re ¢’ v=—p+z2¢0 + X (2.12)
We also obtain the following expression for the matrix T corresponding to the
stress tensor (see expression (1.3)):

T = ( —20yy 204y ) (2.13)

200y —204

Remark 2.1 It is easily checked that if ¢ and x are analytic functions on some
open domain G C IR?, then the functions p, v; and v, defined by the relations
(2.12) satisfy Stokes’ equations.

Remark 2.2 One can obtain the same representations of Stokes flow in terms
of analytic functions in different ways [30, 82, 45, 64]. One possible way to
get the representation starts with the remark that the two rows of the matrix
T corresponding to the stress tensor can be considered to be solenoidal vector
fields. This implies the existence of functions 7 and 7, on G such that

T = ( My N ) (2.14)

T2y —T2,z

The symmetry of the stress tensor —corresponding to the conservation of angular
momentum [55]- implies the identity 7, = 72, and this in turn implies the
existence of a function p on G, called the Airy function, such that

Ty = py Ty = Pz (215)

The expressions (2.12) then follow after some other considerations [45].
We notice that the Airy function times two is a special auxiliary function:

1

D= —%Trace(T) = —5(—pyy — pez) = A(p/2) (2.16)

Substituting the relations (2.15) into identity (2.14) and comparing the result
with identity (2.13), we come to the conclusion that we gauged the auxiliary
function such that it is twice the Airy function. We notice that it is also possible
to gauge the auxiliary function for example such that x is anti-analytic or such
that x is purely imaginary.
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Remark 2.3 The constant and linear parts of the Taylor series of the functions
o and x are not interesting from the dynamical point of view. To illustrate this,
we consider the special case:

pw=az+b X=cz+d (2.17)

with a,b,c,d € € and calculate the pressure and the components of the velocity
by means of expressions (2.11). We find ’

p = 4aq vy = 2ay — by + ¢4 vy = —2a9z — by — ¢y

So, linear representing functions correspond to rigid-body motions (see also Sub-
section 1.2.2). These relations also show that the functions ¢ and x are not
uniquely determined by the pressure and the velocity. However, one checks that
if we identify Stokes flows which differ only by a constant pressure and a rigid
body motion and if we identify analytic functions which differ only by a linear
function, then the correspondence between Stokes flows and pairs of analytic
functions is one-to-omne.

Example 2.4 We consider a disc of radius R of viscous fluid with surface tension
coefficient y and density p rotating around the origin of the coordinates with a
uniform angular velocity w. We have the following solution of boundary value
problem (1.8):

p(z,y) =v/R  w(z,y) = (wy —we)’
So, the pressure is constant and the particles in the disc accelerate without the
presence of a force in contradiction to Newton’s laws. This can happen because
Stokes’ equations have been derived from the Navier—Stokes equations by mak-
ing some approximating assumptions (see Section 1.2). Without neglecting the
inertial force, the pressure in the rotating disc is found to be:

1
p(z,y)=v/R+ §w2p(ac2 +y° - R?)

We now remark that if w is relatively large, the approximations leading to Stokes’

equations are not allowed as the inertial force is proportional to w?.

2.2 Axially symmetric Stokes flow

In this section we will study axially symmetric solutions of Stokes’ equations on
axially symmetric domains G C IR3. We will show in Subsection 2.2.2 that such
solutions can be represented by what we will call deformed analytic functions.
We will explain in Subsection 2.2.1 what deformed analytic functions are and
which properties they possess.
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2.2.1 Deformed analytic functions

Definitions 2.5 A domain G C IR? is called symmetric if (r,2) € G implies
(-r,z) € G. A function f on a symmetric domain G is called symmetric if
f(r,z) = f(—=r,2) for all (r,z) € G. A function f on a symmetric domain G is
called anti-symmetric if f(r,2) = — f(=7,2) forall (r,2) € G. A pairp = (p1 p2)7
of real differentiable functions p; and p; on an open symmetric domain G is called
a deformed analytic function if py is symmetric, p, is anti-symmetric and if these
functions satisfy the following equations on G

1
drp1 = 0.p2 0.pr = —(0- + )P (2.18)

We will call these equations the deformed Cauchy-Riemann equations. We define
the deformed Cauchy-Riemann operator D by

o, -0,
D'(az 8T+})

and we define the operator D by

N T
p-(5 %)

Finally, we define the second order differential operators K’y and K5 by
1 1
Ky = (0, + )0, + 82 Ko =0,(0, + =) + 2
7 T

Remarks 2.6 The subset I = {(0,2) € G} of a symmetric domain G is not
empty, otherwise G would not be connected. In the following we will assume
0 € Iz. We notice that for every simply connected and symmetric domain, the
set I5 is connected.

It is clear that a deformed analytic function p satisfies Dp = 0 by definition.
Notice that at infinity (i.e. for r — +00), the operator D corresponds to the
Cauchy-Riemann operator 0z times two, with (r, z) identified with (z,y). In the
same way, the operator D corresponds to 2:8,. The operator

mn _ ar+% az
P %)

corresponds to two times the anti-Cauchy-Riemann operator 0., but we will use
this operator in the following only once. The reader can check for himself that a
theory of differentiation and primitivation of deformed analytic functions —as we
will present in this subsection— would fail if D is regardless replaced by D.
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Example 2.7 Let G C IR? be an open symmetric domain such that /s # IR.
Let a € IR be such that (0,a) ¢ Ig. The function p defined by

pl(m, 2} = (% 4 (2 - @))% 1
’ r1 (l—(z—a)(rZ-}-(z—a)?)_?)

is deformed analytic on G.

Lemma 2.8 Let p = (p; pg)T be a deformed analytic function on an open,
symmetric domain G C IR®>. Then py,p; € C®°(G) and py and p, satisfy

Kipi = Kapy =0

Proof

As p; is a differentiable function on G, it can be considered as a distribution in
D'(G) (see e.g. [95]). Considering derivations in the sense of distributions, we
find

Kipy = ((8: + 1/7)8, + 02)p1 = 8, ((8; + 1/7r)p2 + 8.p1) = 0

The operator K; corresponds to the Laplacian in three dimensions in cylindrical
coordinates with the derivatives with respect to the azimuthal variable ¢ omitted.
So, Ky is an elliptic operator and it follows that p; € C°°(G) [80]. It is then easily
checked that p; € C*°(G) and K,p, = 0. a

Lemma 2.9 Let G C IR? be an open, simply connected and symmetric domain.
If a symmetric function p; satisfies K1py = 0 on G, then a unique function py
exists on G such that p = (p; p2)T is a deformed analytic function. If an anti-
symmetric function py satisfies Kopy = 0 on G, then a function py exists on G,

unique up to a constant, such that p = (p; p2)7 is a deformed analytic function.
Proof

We only prove the first assertion; the second assertion can be proved in a similar
way.

Existence. Let the symmetric function p; satisfy Kyp; = 0 on G. One checks
that the 1-form w on G defined by

w(r,z) = —10,p1(r, 2)dr + r0,p1(r, 2)d=

is closed, i.e. dw = 0. Because of this, and as G is simply connected, we can
define a function p, on G by

1 [(n2)
p?(Tvz)_ V/( w(paé)

7 J(0,0)
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without specifying the path of integration. One checks that p, is well defined
on Ig. One also checks that the function p, is anti-symmetric, differentiable and
satisfies

1
(87 + ;)pQ = —azpl asz = arp]

Uniqueness. Let p; be a symmetric differentiable function on G and let p; and py
both satisfy equations (2.18) on G. It follows that the function @ on G defined
by

Q(T’Z) = T(p2(Ta Z) - ﬁ2(7“v Z))

satisfies

0,Q = 82Q =0
and is therefore identical to a constant C'. This constant C equals 0 as Q(0,0) = 0,
and it follows that p; is identical to ps. a

Lemma 2.10 Let p be a deformed analytic function on an open, stmply connected
and symmetric domain G C IR®. Then Dp is deformed analytic on G. Moreover,
a deformed analytic function P exists on G such that DP = p.

We call %[)p the derivative of p and we will denote this function as p’. We call
2P a primitive of p. One easily checks that two primitives of a deformed regular
function differ by a constant in the first entry.

Proof

The first assertion immediately follows from Lemma 2.8 as

- (0 —K,
DD = ( K,y 0 )

The proof of the second assertion runs as follows. With use of the deformed
Cauchy-Riemann equations (2.18), it can be shown that the 1-forms w; and w;
on G defined by

wi(r, 2) = po(r, 2)dr + py(r, 2)dz

wo(r, z) = —rpy(r, 2)dr + rpa(r, 2)dz

are closed, i.e. dwy = dwy = 0. Because of this, and as G is simply connected, we
can define functions P; and P, on G by

(7,2) 1 (r,2)
P = [ ens)  Bna=1 [ enlpe)
(0,0) T J(0,0)
without specifying the path of integration. We notice that P, is well defined on
I, that Py is symmetric, that P, is anti-symmetric and that P; and P, satisfy

1
0-Py = 0. P, = po 0. P :—(3r+;)P2=P1



20 CHAPTER 2. REPRESENTATIONS OF STOKES FLOWS
This implies that the function P = 3(py p2)T is deformed analytic and satisfies
DP =p. @)

The three lemmas given above show that deformed analytic functions possess
properties which resemble the properties of analytic functions. These properties
will be used in the next subsection. We close this subsection by showing that
also a kind of Wejerstrass-approach to deformed analytical functions exists; that
is: we will show that a deformed analytic function is analytic in the sense that it
can be written as a kind of Taylor-series.

Definitions 2.11 The polynomials , and m, for n € INy are defined on R? by

[n/2] 1Yt
Ia(r,2) = S
= (n—2k)!(k!)%4
[(n=1)/2] e
| (=1)"*1n! 2k+1 n—2k-1
Mi(75.2) = 1; (n — 2k — 1)!(EN22(k + 1)4F n#0

mo(r,2) =0

The functions {_, and m_,, for n € IN on IR?/{(0,0)} are defined by

LonlP2¥ = 2n4— lln_l(r, 2)|r|(r® + 227"
mon(r,2) = o, (7 )7 n# i

Finally we define for all n € Z
Ty = (ln mn)T

Proposition 2.12 The function T,, with n € INg is, up to a multiplicative con-
stant, the only deformed analytic function homogeneous on IR* of order n. Its
derivative is given by

T.,IL = ’flTn_l (219)
Moreover, we have for all n,k € INg and all R > 0:
/ s Ty 85 =03 = BB (2.20)
[(r,2)|=R

Proof
The polynomial [,,n € INy is homogeneous of order n and satisfies A/, = 0.
(The definition of [,,n € IV is obtained from Laplace’s representation of harmonic
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polynomials in [R3, see e.g. [60]). As I is the Laplacian in three dimensions with
the derivatives with respect to the azimuthal variable ¢ omitted, and as there is
—up to a multiplicative constant— only one harmonic polynomial of order n € IVy
on IR3 independent of the variable ¢, the polynomial /, is —up to a multiplicative
constant— the only homogeneous polynomial of order n satisfying Kyl, = 0. The
first assertion now follows from Lemma 2.9 and the easily established relation

1. [
Wi (7, 2) = —;82/0 pl.(p,2)dp n € INy

Relation (2.19) can be checked by differentiation.

The polynomials P,,n € INg and R,,n € INy defined by
Po(t) = 1 (V1 —12,1) te-1,1]
Rn(t) = =2(1 = t2)"V2m, 11 (V1 — 12,1) te[-1,1]

are the Legendre and the Jacobi polynomials (with & = § = 0) normalized in the
standard way (see e.g. [84]). We have the following orthogonality relations:

1 2
14&“”“”ﬁ22n+1

1 _ 8(n+1)
[ B R~ ) di = s b

5nk

for all n,k € INg. Noticing that the functions {_, and m_, for n € IN are
homogeneous of order —n, we get from the first orthogonality relation for all
n,k € INg and all R > 0:

lnl—(k+1) ds
(r.2)|=R

= l.(Rcos ¢, Rsin ¢>)l_(k+1)(R cos ¢, Rsin ¢)R d¢

= %%ER"_('“H)“ Ln(cos ¢, sin ¢)lr(cos ¢, sin @)| cos | dd

1
= %T+1R”"°/ L(V1 =12, ), (V1 — 12,1) dt = 6,
-1
In the same way, we get for all n,k € INg and all R > 0:

MM _ (k1) €8 = nk(1 = bno)
[(r,2)|=R

These last two identities lead to identity (2.20). a
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Proposition 2.13 Let p be a deformed analytic function on the open disc BR,
R > 0. The function p can be represented by a series

p= chTk ('2.21)
k=0

that converges uniformly on each disc Brr with R’ < R. The coefficients are
given by:

1
(e, 0)T = Hp(">(o,0) k € IN - (222)

Proof
We start by making some estimates. As |Pg(t)] < 1 for all & € INy and all
t € [-1,1], we have

|l(r, 2)| < (r* + 2)¥/7 k € INo (2.23)

This leads to the following (non-sharp) estimate for my, k € INy:

1 4 k [ - 3
matr )| = | [ p0uti(p,2) do| < [ pllees(p, )l do < k2 4 42 (220

and to the following estimate for {_p, k € IV:

2k -1
4

Eal

[_i(r, 2)| < (r% + 2)ED2p|(r2 4 22)7F < Z(r2 + 22)7F2 (2.25)

[\

Let p = (; pg)T be a deformed analytic function on Bg, let R’ < R and
choose R” such that R < R” < R. As py satisfies K1p;y = 0 on Bg, this
function p; corresponds to a harmonic function  on the ball Br = {(z,y,2) €
R® | 2% + y* + 22 < R}. The function p can be represented by a series of
homogeneous, harmonic polynomials that converges uniformly on Br« ([60]).
This corresponds to a representation of p; on Bgrr by a series

P = chlk with cp= / P1 (k1) ds
k=0 I(r.2)|=R"
It follows straightforwardly from inequality (2.23) that
lex] < TM(k+1) (R k € INo

where M denotes the maximum of |p| on Bgu. It follows from inequality (2.25)
that for all (r,2) € Brs

lexli(r, 2)| < *M(k + 1)(R'/R")* = a, k € INg
\kerlp—a (7, 2)| < TMkE(k + 1)RYR'/R")F = by, ke N
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where the positive numbers ax,k € INg and b,k € IN are such that the series
Y oheoar and 3 p2, bi both converge. Hence, we can apply Weierstrass’ criterion
for uniform convergence of a series of {unctions ([46]) and find that the series
Y oreo il and Yopz, kexly converge uniformly on Bg:. By means of this result,
some standard theorems from analysis and Lemma 2.9, we then get for all (7, 2) €
Br::

(le)
1
pa(r,2) = - / —p0ep1(p, &) dp + p0,p1(p, €) dE
(0,0)

_%/pﬁz (chlk(p,z)> dp = —%/p (chklk_l(p,z)> dp
k=0 k=1

0

Zc;c (—— /Plk (p,2 dp) chmk (r,2)

One then argues, using inequality (2.24) and the arguments given above, that
the series in the right-hand side converges uniformly on Bg:. We conclude that
the series in relation (2.21) also converge uniformly. Expression (2.22) follows
straightforwardly from relation (2.19). a

Remark 2.14 One checks that the coefficients in relation (2.21) are also given
by the following Cauchy-type integrals:

1

2 — ko / P-T-(kt1) ds
|(r,2)|=R

g =

However, a Cauchy-like approach to the theory of deformed analytic function does
not exist; the relation above for example does not hold if the path of integration
is not circular.

2.2.2 Axially symmetric solutions of Stokes’ equations

In this subsection we show that it is possible to represent axially symmetric so-
lutions of Stokes’ equations in terms of deformed analytic functions. First we
explain what we mean by axially symmetric solutions of Stokes’ equations.

A domain G € IR? is called axially symmetric if we can choose cylindrical coor-
dinates (7, ¢, z) such that —after re-coordination of G- we have: (r,¢,2) € G if
and only if (7,0, 2) € G for all ¢ € (—m,7]. Solutions of Stokes’ equations (2.1)
on an axially symmetric domain G are called axially symmetric if the function
p and the components v,,v4 and v, of v with respect to the orthonormal basis
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{0,,18,,8,} do not depend on the variable ¢. Stokes’ equations then get the
following form (see also equations (1.2)):

Vrzz = Vzrz = Pir (2.26a)
Vpyrr + Vg,20 + (v/7), = Kavs =0 (2.26b)
Voyrr — Vryez + (Vo — 0r2) /T = Do (2.26¢)
Vrp + 0 [T+ 0,, =0 (2.26d)

Since the component v4 decouples, we come to the following definition.

Definition 2.15 Functions p,v, and v, on an open symmetric domain G C IR?
are said to satisfy Stokes’ equations with axial symmetry if they are sufficiently
smooth, if p and v, are symmetric, if v, is anti-symmetric and if they satisfy the
equations (2.26a), (2.26c) and (2.26d).

Theorem 2.16 If p,v, and v, satisfy Stokes’ equations with azial symmetry on
an open, simply connected and symmetric domain G, then deformed analytic
functions ¢ and x exist such that

p=—4d¢1,
Vp = TP2r — 202 — P2 + X2,z (2.27)
Vy = TP1r — 2012+ 01+ X1,z

Conversely, if ¢ and x are deformed analytic functions on an open domain G, the
functions p, v, and v, given by the expressions (2.27) satisfy Stokes’ equations.

Proof

The second assertion is easily proved by differentiation. The first assertion is
proved as follows. Let p, v, and v, satisfy Stokes’ equations with axial symmetry
on an open, simply connected and symmetric domain G C IR%. One easily shows

that it follows from relation (2.26d) that an anti-symmetric function 4 exists on
G such that

6=  Bo=—(Bt %yp (2.28)

Substitution of these relations into equations (2.26a) and (2.26¢) leads to

0(Ka)=Bp  — (B + %)(1\'2@1)) = Bp (2.29)

Hence, if we define
q =K (2.30)

we find that (p ¢)7 is a deformed analytic function on G. It follows from Lemma
2.10 that functions ¢; and ¢, exist on G such that the function ¢ = (1 @9)7
satisfies

. 1
Dy =0 Dp=~2(p 9"
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Lemma 2.8 then implies

Ko(b+ror1+202) = ¢+ (8r(ar +1)+ 53) (ren + 202)
q+t 2(ar‘;01 + 82992) =0

So, a deformed analytical function x = (x; x2)7 on G exists such that
Y =-rpo1 — 2o+ X2

We remark that it follows from Lemma 2.10 that a deformed analytic function ¥
exists such that

X¥=x-¢
The relations (2.27) are now obtained by omitting the tilde and straightforward
substitutions and differentiations. a

Remarks 2.17 If we identify deformed analytic {functions which only differ by
the first two terms in expansion (2.21) and if we also identify axially symmetric
solutions Stokes’ equations which only differ by a uniform pressure and a uni-
form velocity in the z-direction, then the correspondence between pairs (¢, x) of
deformed analytic functions and axially symmetric solutions of Stokes’ equations
is one-to-one (see also Remark 2.3).

We further notice that if we substitute ¢ = —iyp into relations (2.11), omit the
tilde and rearrange some terms, the resulting relations are completely analogous
to relations (2.27).

We end this subsection by a discussion about the generalization of the concept
of the Airy-function for axially symmetric Stokes flows. The easiest way to prove
the existence of the Airy-function in the two-dimensional case was explained in
Remark 2.2. We cannot copy the line of reasoning in the axially symmetric case
as the rows of the matrix corresponding to the stress tensor cannot be considered
as solenoidal vector fields. The reason for this is that not all Christoffel symbols
vanish and, loosely speaking, the components of this tensor (with respect to
the basis {0, +04,0,} and its dual) mix up when one calculates T‘ ; (where
1,7 = 1,2,3 correspond to the variables 7,¢ and z; see also ldentxty (2.64)).
However, we can introduce a kind of Airy-function based on the similarity of the
identities given in Section 2.1 and the following identities.

Let o be a function on G such that

Kioc=p (2.31)

It follows from relations (2.29), (2.30) and (2.31) that the function F on G defined
by
F=(o )
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satisfies DDDF = 0 (see Remark 2.6). A particular solution of equation (2.31)
is given by

0=-zp1 + T2+ X1
as can be checked by differentiation. This p.érticular auxiliary function o has the
property that the function F’ can be written as

F=up+x

o= (22

The comparison of this result with relation (2.9) inspires us to define the Airy-
function in this case as

where

=0/2=(-zp1+ 192+ x1)/2

We wonder whether this function has any physical interpretation.

2.3 Three-dimensional Stokes flow

In this section we show that a solution of Stokes’ equations on a domain G C R®
can be represented by a pair of left monogenic functions if this domain G has
a property which we will call z-normality. In Subsection 2.3.1 we give a short
introduction to the notation of Clifford analysis ([13, 22, 21]), recapitulate the
definition of a left monogenic function and show how Stokes’ equations can be
written as a third order differential equation. In Subsection 2.3.2 we give the
general solution of a class of differential equations, one of which is the mentioned
third order differential equation. We show in Subsection 2.3.3 how this result
can be used to represent Stokes flows in three dimensions in terms of two left
monogenic functions.

2.3.1 Clifford Analysis

The Clifford algebra Cly; is algebraically isomorphic to the algebra IH(IR) of
quaternions over IR, although its structure is slightly richer (it turns out to be a
graded algebra). In stead of using the quaternionic symbols ¢, and k we write
e1,e2 and ¢. So, the set Cly, is a real four-dimensional vector space spanned
by the basis {1, e, ez,¢}. The Clifford product is denoted by juxtaposition. The
Clifford product of two elements in Clg 2 can be calculated by the following rules:

e the Clifford product is linear

e 1 is the identity
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o the products of the elements ey, e5 and ¢ is given by
e% = e% =2 =1
€1€2 = —€2€1 = L LE1 = —€1L = €9 €l = —LEp = €7

An element A = Ag + Areq + Aqsey + AjqL € Clo]g; Ao, Ay, Az, A12 € IR can be
decomposed in what is called the scalar part, the vectorial part and the bivectorial
part:

A= (A)o+ (Ah+(A):
(A)o = Ao (A) = Ayey 4+ Azes (A)2 = Ajat

The operation of grade involution is defined by
A= (A - (A1 + (A
The Clg-valued differential operators D and D are defined by
D = 08, + 10y + €20, _5382—618y—€283

The operator D is called the generalized Cauchy-Riemann operator. We notice
that
DD=DD=A (2.32)

A differentiable Cly-valued function f on an open domain G' C IR® is called
(anti-)left monogenic if it satisfies

Df=0 (Df =0)

One checks that this equation is equivalent with the following, so-called general-
ized Cauchy-Riemann equations:

fO,x - fl,y - f2,z =0
fl,x + fO,y =+ f]?,z =0
foe— fr2y+ fo=0
fl?,z + f2,y - f],z =0

We will now rewrite Stokes’ equations (2.1) in three dimensions in the nota-
tion of Clifford analysis by means of an auxiliary function. Let G C IR® be an
open 2-connected domain and let p and v be smooth functions satisfying Stokes’
equations on G. As v is a solenoidal vector-field, a vector-field ¥ on G exists such
that B

v=-VAp (2.33)
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where V A 9 denotes the curl of ¥. This vector-field v is determined up to a
gradient of a function and it is easily shown that this function can be chosen such
that

V=0 (2.34)

The vector-field 9 is still not unique. If f is a real harmonic function on G, then
the vector-field

p=y+Vf (2.35)

also satisfies the relations (2.33) and (2.34) with 9 replaced by i
As the function p on G is smooth, a real function o on G exists, which we will
call the auxiliary function, such that

p=Ac (2.36)

It is clear that o is not unique: if g is an arbitrary real harmonic function on G,
then the function
g=0+g (2.37)

is also an auxiliary function, i.e. & satisfies Agd = p.
Next we identify the vectors » and 3 with the Clp z-valued functions v and ¥ in
the following way:

v = vy + v2€1 + v3€2 Y = 1+ haer + Paer

The equation Ay = Vp and the relations (2.33), (2.34) and (2.36) can then be
written as

DDv=Dp wv=-Diyp p=DDo (2.38)
It follows immediately from these relations that the function F' defined by
F=0+w (2.39)
satisfies .
DDDF =0 (2.40)

(see also equation (2.6)).

Inspired by the results of the previous sections, we ask the following two ques-
tions. First, is it possible to give the general solution of equation (2.40) in terms
of left monogenic functions? This question is answered affirmatively in the next
subsection. We are then able to represent Stokes flows in terms of three left mono-
genic functions. However, we already remarked that there is some arbitrariness in
the functions ¥ and o. This leads to the second question: is it possible to choose
the functions % and o such that the mentioned representation of Stokes flows
can further be reduced? This question is answered affirmatively in Subsection
2.3.3 where we show that Stokes flows can be represented by two left monogenic
functions under general conditions.
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2.3.2 Solutions of D"D™ f =0

In the previous subsection we met the partial differential equation (2.40), where
Fis a Clp »-function on an open domain G C IR3. In this subsection we consider
the following, more general equation:

D"D™f=0 n,m € INg (2.41)

It turns out that if we lay geometric restrictions on the domain G, then the
general solution of this equation can be represented in terms of left monogenic
functions (see also [44]).

As we already remarked in the previous subsection, left monogenic functions
are a kind of generalization of analytic functions. In order to make things better
understandable, we will explain in which sense the propositions in this subsection
are generalizations of well-known results on analytic functions. For example,
it is well known that every analytic function has a primitive. In the notation
of Subsection 2.1, this means that for every function f on a simply-connected
domain G that satisfies Df = 0, a function F exists such that

DF=f DF =0

This function F’ can be constructed by a line integral. However, a generalization
of the concept of primitive functions for left monogenic functions on a domain
G C IR® cannot be based on line integrals. The reason for this is that, roughly
speaking, left monogenic functions correspond to closed 2-forms and surface inte-
grals are therefore preferred above line integrals; see for instance the generalized
Cauchy theorem ([22]). This explains why we will construct left monogenic prim-
itives in a somewhat different way and why we have to put restrictions on the
geometry of the underlying domains.

Definition 2.18 A domain G C IR is called z-normal if a plane V : z = a exists
such that: '

i). VNG is simply connected

ii). every line segment connecting a point in G with its orthogonal projection
on V lies entirely in G

We note that an z-normal domain is 2-connected. We also note that for ev-
ery axially symmetric domain which is homeomorphic to a ball, one can choose
coordinates such that G is z-normal.

Proposition 2.19 Let f be a left monogenic function on an open z-normal do-
main G C IR®. The function Df is left monogenic. Moreover, a left monogenic
function F on G exists such that

DF=f (2.42)
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We call Df the derivative of f and F a primitive of f.

Proof

The first assertion follows immediately from identity (2.32) —which implies that
D and D commute- and the remark that every left monogenic function on a
domain G is in C*°(G) ([13]). The proof of the other assertion runs as follows.
Let

f=p+qer+ qer+r (2.43)

be a left monogenic function on G. We will prove the existence of functions P,
@1, @2 and R on G such that the function F defined by

F = (P + Q161 + Qgez + RL)/2 (244)

satisfies

DF =0 DF =¥ (2.45)

Let V : z = a be the plane to which respect G is z-normal. Consider the following
Poisson equation for a real function f; on V N G:

AfZ(yaz) = f2,yy(?/,z) + f2,zz(yaz) = _(]Z,z(a’yaz)
= pz(a,y, z) - Ty(a” Y, Z)

where one of the generalized Cauchy-Riemann equations has been used. It can be
proved ([20]) that as —g2 . € C*°(V N G), a smooth solution f, of this equation
exists. Next, consider the following set of coupled partial differential equations
for a real, differentiable function f on VN G:

fl,y(ya Z) = p(a’yvz) - f2,z(y’z)
fi:(9,2) = r(a,y,2) + fay(y, 2)

Omne proves by elementary methods that a solution f; exists because V N G is
simply connected and because the condition of compatibility is satisfied:

(P - f2,z)z =Pz — f2,zz = Pz + f2,yy — Pz + Ty = (T + fZ,y)y
As G is z-normal, we can define functions Q1 and @, on G by
Qi(zayaz):fi(y)z)+/ qi(fayaz)dé 1=1,2
Using the generalized Cauchy-Riemann equation again, one checks:

Qiz=q Qiy+Qsz=p

Q2,z =2 ~Q2,y + Q],z =T (246)
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In the same way, one constructs functions P and R satisfying

P,=p Py+Rz:—(]1

By=17 _Ry +P.=—-q (2‘47)

The relations (2.45) follow after substitution of the relations (2.46) and (2.47)
into identity (2.43). a

Remark 2.20 As the grade involution of a left monogenic function is anti-left
monogenic (Df = 0= Df = D f = 0), it follows immediately from Proposition
2.19 that for every anti-left monogenic function f on an open z-normal domain
G, an anti-left monogenic function F exists on G such that DF = f.

Remark 2.21 It has already been remarked that Proposition 2.19 is a gener-
alization of the theorem which states that every analytic function on a simply
connected domain G C € has a primitive. The reverse of this statement is also
true: a connected domain G C € which possesses the property that every ana-
lytical function on G has a (single-valued, analytic) primitive function on G is
simply connected. One therefore may ask whether domains G C IR® exist which
are not z-normal but do possess the property that every left monogenic function
on it has a primitive. We give a partial answer to this question in Appendix A.

Proposition 2.22 Letn and m be two integers not both equal to zero, let G C IR®
be an open z-normal domain and let f be a smooth Clyo-valued function on G
satisfying

D"D"f =0 (2.48)

Then left monogenic functions gr, k = 1,...,n and hy, k = 1,...,m on G exist
such that

m

3
= Z 21 g + Z 21 hy (2.49)

k=1 k=1
Proof
The assertions for n = 1, m = 0 and n = 0, m = 1 are trivial. The assertion for
an arbitrary pair »,m can then be proved by two inductions. Only the following
step is proven: we assume that the assertion in the proposition holds for a certain
pair n,m and show that it holds also for the pair n,m + 1; the other induction
step can be proved in a similar way.
Consider the equation

D*D"™* f = (D"D™Y(Df) =0

We assume that left monogenic functions gx, £ = 1,...,n and hy, k = 1,...,m

exist such that
m

Df=3 a"Tg+> a5k (2.50)
k=1

k=1
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With the aid of Proposition 2.19, one argues that a set of left monogenic func-
tions G,k = 1,...,n exists satisfying the following n coupled partial differential
equations:

EGn = 0gn
EGk+ka+] = gk k=1,..,n—-1

We check that the function F' defined by

m+1 mk—l

F=3% a"" Gt 3 o b (2.51)
k=2

k=1

is a particular solution of equation (2.50):

I
[+] =

DF ((Exk_’ )Gk + 2kl EGQ

=
1l
—

mt1 k-1 k-1
— gt
+]§2 ((D P l)hk—l + 1 —th—l)
- mt1

((k‘ - l)xk_z G + e EG}J + Z zk? hi_1
k=2

-

S x>
[l
—

m+1
= (kxk“l Gry1 + zk1 ﬁG’k) +z" ' DG, + Z 252 R

k=2

ol
I
o

m
21 g + Z 1y
k=1

I
hE

x>~
It
—_

Hence, a left monogenic function hg exists on G such that: f = F + hg. One
checks that the substitution of this relation into identity (2.51) corresponds to
relation (2.49) with m replaced by m + 1. ]

Remark 2.23 The reverse of this proposition also holds: a function f that can
be written in the form of expression (2.49) satisfies equation (2.48). This can
easily be verified.

Remark 2.24 It has been remarked in Section 2.1 that every smooth complex
valued function f on an open simply connected domain G C IR? satisfying equa-
tion (2.7) can be written as in expression (2.8). It then follows that such a
function f also can be written as

n

F=S 0+ Y by

k=1 k=1

where gr,k =1,...,n and ﬁk,k = 1,...,m are analytic functions. This expres-
sion corresponds to expression (2.49).
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Remark 2.25 Special cases of Proposition 2.22 are:

e n =m = 1: a Clyy-valued harmonic function f can be written as the sum
of a left monogenic function g and an anti-left monogenic function h. If fis
a real harmonic function, it is the scalar part of a left monogenic function.
Compare this result to Proposition 8.6 in [13], where it is shown that every
real harmonic function on a star-shaped domain can be written as the scalar
part of a left monogenic function.

e n =2 m = 1: the general solution of equation (2.40) in the previous
subsection is given by
F=zg1+g,+h (2.52)

where g1, g2 and h are left monogenic functions.

e n = m = 2: one easily obtains a representation of biharmonic, real or
Clp o-valued functions in terms of left monogenic functions.

Remark 2.26 The functions gx, ¥ = 1,...,n and hg, & = 1,...,m in relation
(2.49) are not uniquely determined. In order to answer the question to which ex-
tent these functions are determined, we need the general solution of the following
equations for a smooth function f:

D'f=Df=0 née N (2.53)

For example, let g1, g2, h, ¢1, g2 and h be left monogenic functions on an open
(z-normal) domain such that:

s+ g th=adi + G+ h

(see also relation (2.52)). Applying the operators DD, D and D? to both sides
of this relation, we get:

D(gi~§1)=0 D(g2-g2)=0 D'(h—-h)=0
The general solution of equation (2.53) is given in [45] but we will not elaborate
on this result.

2.3.3 Representations of Stokes flows

We show in this subsection how the results of the previous subsections can be
used to represent solutions of Stokes’ equations three dimensions by a pair of left
monogenic functions (see also [66, 48]).

Let p and v satisfy Stokes’ equations on an open z-normal domain G' C IR® and
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let o, % and F be as in relations (2.38) and (2.39). It follows from equation (2.40)
and Proposition 2.22 that F' can be written as

F = TP+ X ('2.54)

where ¢ is a left monogenic function and where x is a Clyo-valued harmonic
function. We already remarked in Subsection 2.3.1 that if f and g are real
harmonic functions on G, then the functions ¥ and & defined by:

b=4%+Df F=o+g (2.55)

play the same role as 9 and o. It is clear that the function F defined by

F=6+m,[~)

can be written as

F=zp+x+g+:Df (2.56)

Now we want to follow the strategy explained in Subsection 2.1; that is: we want
to choose f and g such that the function x defined by

X=x+g+.Df (2.57)

corresponds to a left monogenic function. It turns out that it is impossible to
gauge f and g such that yx is a left monogenic function but we will show that
these functions can be chosen such that y is anti-left monogenic. We then omit
the tildes and find that F' can be written as in relation (2.54) where ¢ is a left
monogenic and x is an anti-left monogenic function. So, the next lemma remains
to be proved.

Lemma 2.27 Let x be a Clyz-valued harmonic function on an open z-normal
domain G C IR3. Then real harmonic functions f and g on G exist such that

D(x+g+tDf)=0 (2.58)

Proof
We decompose x in the standard way:

X = Xo + X1€1 + X2€2 + X12t

Let V : 2 = a be a plane to which respect G is z-normal. It is possible to construct
functions g; and F; on G NV satisfying the following Poisson equations:

Ag1(Y, 2) = (Xoaz + X1,2y + X2,52)|(a,4,2)
AFl(y’ Z) = (Xl?,xz - X2,2y T Xl,a:z)

(axywz)
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We define a function ¢ on GNV by

0’](?], Z) = (Xl,a; — X0y — X12,z)|(a,y,z) - gl,y(yaz) - Fl,z(ya 3)
02(y,2) = (X2,2 + X129 = X0,2)|(a,,2) = 91,2(¥> 2) + Fuy(¥, 2)
J(y, Z) :.Gl(yVZ) - LU?(ya Z)

One checks that o is an analytic function of the variable w = y + 2. AsGnNV
is simply connected, functions g; and F, on G NV exist such that

Goy = Fo,=01/2 92z:=—Fay=0:/2

As G is z-normal, we can define functions g and F on G by

g(z,y,2) = —/ (X0 + X149 + X2,2)|(6,9,2) €€ + 91(y, 2) + 92(y, 2)
T
Fz,y,2) = —/ (ize = X2 + X1,2) (60,2 € + Fi(y, 2) + Fa(y, 2)

The following identities can then be checked by differentiation:

Ag=AF =0 _ :
9z = —(Xoz + X194+ X2,2) Fo=—=x122:+ X2y — X1,z (2.59)
gy+Fz = X1,z — X0,y — X12,2 gz_Fy :X2,J:+X12,y_XO,Z

Finally, one shows that it is possible to construct a harmonic function f on G
such that f, = F/2. The identity (2.58) follows from this relation and the rela-
tions (2.59). O

We are now able to formulate our final result, which can be compared with the
results obtained in Sections 2.1 and 2.2.

Theorem 2.28 Let p and v be smooth functions satisfying Stokes’equations on
an open z-normal domain G C IR®. Then left monogenic functions ¢ and x ezist
on G such that
p= 2990,50
V1 = TP,z — X0,z (260)
V2 =ZPo,y —¥1 — X1,z — X12,z
V3 = TWPo,z — P2 — X220 T X2,y
Conversely, if ¢ and x are left monogenic functions on an open domain G C IR>,

then the functions p,v1,v2 and vy given by the expressions (2.60) satisfy Stokes’
equations.

Proof
The proof of the first assertion runs as follows. Let p and v satisfy Stokes’ equa-
tions on GG. We showed in the beginning of this subsection that left monogenic
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functions ¢ and x on G exist such that:

F=o+wp=zp+Y
p:AO' "U:—DHZ)

The expressions (2.60) follow from these relations. The second assertion can be
proved by a straightforward differentiation of the relations (2.60) in combination
with the generalized Cauchy-Riemann equations. a

We end this subsection by remarking that the relation between solutions of Stokes’
equations and pairs of left monogenic functions is not one-to-one; there are a
lot of pairs of left monogenic functions which correspond to the trivial solution
p = v = 0 ([45]). The problem which pairs of left monogenic functions correspond
to the solution where p is constant and v is a rigid-body motion is unsolved.

2.4 Traction formulae

In this section we rewrite the boundary value problem (1.8) in the axially sym-
metric case with the use of the representations obtained in Section 2.2. We also
state the analogous, known result in the two-dimensional case.

Let G C IR® be an axially symmetric domain and let V denote the closed half
plane ¢ = 0 including the z-axis (see Section 2.2). We assume that G contains
the origin 0, that G is 2-connected and that 8G is a compact C?-surface. This
implies that the intersection G of G and V is connected and simply connected
and that the intersection vy of &G and V is a compact C?-curve. (This curve
has of course nothing to do with the surface tension coefficient which was also
denoted by 7 in Chapter 1).

Let p,v € C%(G) satisfy Stokes’ equations on G and satisfy the boundary condi-
tion

L(z) n(z) = —&(z) n(z) z €0G (2.61)

(see also Section 1.2). It follows from symmetry considerations that p and v do
not depend on the variable ¢ and it therefore suffices to solve equation (2.61) for
points z on 7.

First we give an expression for the right-hand side of relation (2.61) for points z
on 7. Let 7 be parameterized by its arclength s such that »(0) = 0 and 2(0) < 0.
Let z = (7(s),0,2(s)) denote a point on 7. As the basis o = {8,,104,0,} is
orthonormal, we get the following expression for the outward pointing normal
vector n(z) at z with respect to this basis a:

n(z) = (2(s) 0 ~7(s))” (2.62)
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where the dot denotes differentiation with respect to s. Let W : z = z(s) be the
plane through the point -z orthogonal to the z-axis. It is clear that the radius of
the circle in this plane with centre (0,0, z(s)) through the point z is 7(s). [t is also
clear that the inner product of the normal vector of W and the normalized vector
tangent to y at z is z(s). Together with some standard differential geometry
([83]), this leads to the following expression for the right-hand side of relation

(2.61):
#(s) — 2
-&(z) n(z) = 0 z=(r(s),0,2(s)) ey  (2.63)
() + Helie

Next we consider the left-hand side of relation (2.61). The components of the
matrix T" corresponding to the stress tensor I with respect to the basis « and its
dual are given by expression (1.3):

-p+ er,r T(B,,‘i),r Vr z + Vg r
T= r(%), —p 4 B Vg2 (2.64)

T T

Uz + Vzr Vg,r =pet 2vz,z

Substituting the representations found in Section 2.2 and using identity (2.62),
we find the following expression for the left-hand side of relation (2.61):

L(z)n(z) =
2{ (vz(z(s)) 2(,01(30(5 ) }
—7(s) 2 (%2)|¢ (
2 {2 (un(a(5)) + 262(())) + (0r(2(5)) + 202(z(s))) 22}
(2.65)
where z(s) = (r(s),0,2(s)) € v and where aa_,, denotes differentiation in the
direction of the normal vector n.

Now we substitute identities (2.63) and (2.65) into equation (2.61), integrate and
find the following relations:

or(2(5)) + 2p2(2(s)) = 2(s)/2 (2.66a)
vg(z(s)) = ar(s) (2.66b)

wn(als) - 2ea(a(e)) = ()2 +2 [ PEDH D dr s 5 (260

where o and 8 are arbitrary real constants. We call equations (2.66) traction
formulae. 1t follows from Remark 2.17 that we may take o = 8 = 0 without loss
of generality.
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Remark 2.29 Let [ denote the length of v. For each s € [0,/] we can define
z(—s) = (r(-5),0,2(—s)) = (-7(s),0,2(s)) € 8G

The integrand at the right-hand side of formula (2.66¢) can then be considered
as a function on [—[,l]. One checks that this integrand is an odd function in
accordance with the symmetry properties of the other terms in relation (2.66c).

Example 2.30 We consider a ball of viscous matter. A solution of Stokes’ equa-
tions with boundary condition (2.61) is given by

p(r,¢»z):P0 2(T1¢13)2Q

A pair of deformed analytic functions ¢ and x representing this flow is

@(r,2) = =(po/4)Tr(r, 2) x(r,z)=0

where T; is defined in Definition 2.11. One checks that equations (2.66a) and
(2.66¢) are satisfied.

We end this section by formulating the analogous, well-known results in the
two-dimensional case. These results can be obtained in the same way as above
([35, 30, 78)).

Let G € IR? be an open 51mply connected domain with a boundary 0G which is a
compact C?-curve. Let v,p € C*(G) satisfy Stokes’ equations on G and boundary
condition (2.61). Let (¢, x) be a pair of analytic functions on G representing this
Stokes flow (see Section 2.1). The analogons of formulae (2.66) are

v(2(s)) + 2¢1(2(s)) = y(s)/2
va(2(s)) + 22(z(s)) = —2(s)/2

where z(s) = (z(s),y(s)) € 0G. We rewrite these relations in complex notation,
substitute relation (2.12) and get the following traction formula (see also [75]):

v(2) + 20(2) = ¢(2) + 2 (2) + X' (2) = n(2)/2 z € 0G (2.68)

We notice that this implies the following relation on 9G:

1
U =g~ 2Re(m) (2.69)

where v, denotes the normal component of v.

Remark 2.31 We stress that we did not solve boundary value problem (1.8)
by these relations. However, the identities above turn out to be useful when we
consider the moving boundary problem for Stokes flow driven by surface tension
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and multi-poles in the next chapter. Actually, we will use the following, reversed
result. Let G C IR? be an open domain which boundary 4G is a smooth curve
(e.g. a Liapunov-curve ([81])). Let (¢, x) be a pair of analytic functions on
G with derivatives which can be extended continuously to G and which satisfy
boundary condition (2.68). The corresponding Stokes flow, given by the relations
(2.12), then satisfies boundary condition (1.8).

We finally note that the traction formula for boundary value problem (1.8) with
vy=20Iis

v(2) + 20(2) = p(2) + 2¢'(2) + X'(2) = 0 z €0G (2.70)
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Chapter 3

Moving Boundary Problems

This chapter concerns quasi-static moving boundary problems. In Section 3.1 we
present a Lagrangian and a geometric formulation of such problems in a general
setting. We consider two-dimensional quasi-static moving boundary problems in
more detail in Section 3.2 where we show a relationship between these problems
and what we will call quasi-linear Lowner-Kufareev equations. We use these
considerations in Sections 3.3 and 3.4 where we present equations for the solutions
of the moving boundary problems for Stokes flow driven by surface tension and
multi-poles and for Hele-Shaw flow.

3.1 Quasi-static moving boundary problems

In this section we will give two non-equivalent definitions of quasi-static moving
boundary problems. We will also return to the moving boundary problems men-
tioned in Chapter 1.
Let S denote a class of domains in IR™ and let F denote a mapping from S to
vector-fields on [R™:

F:GeS v F(G)=uygq

such that the domain of the vector-field V(g contains G:
v iz €G = yg(z) € R"
Let Go € S and let I be an interval containing 0.
Definition 3.1 A mapping
(2o t) € Gox I w i(zg,1) € R (3.1)

is said to be a solution of the quasi-static moving boundary problem for F with
initial data Gy if it satisfies the following conditions:

41
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i) 2(Zg,0) =z for all 2y € Gy
ii). Z is differentiable with respect to the variable ¢

ili). the mapping Z is a homeomorphism from Gy to its image G, in S for all
fixedt el

iv). &(zg,t) = vig,)(2(2g, 1)) forall (zo,1) € Go x T

We note that this definition excludes the possibility of a change of connectivity
properties of the evoluting domain Gy as all the domains G,,t € I are homeo-
morphic, i.e. topologically equivalent.

Consider the moving boundary problem (1.9) for Stokes flow driven by surface
tension. Let S be the class of closed C?-domains in [R”,n > 2. It has already
been remarked in Chapter 1 that a solution of the corresponding boundary value
problem (1.8) is not unique; in particular, the velocity v is determined up to a
rigid-body motion. This implies that the mapping F is not completely specified
in this case. We can circumvent this problem in the following ways:

o [t is possible to suppress the rigid-body motions. For example, this can be done
as follows. We may assume without loss of generality that 0 € Gp. We define the
subclass § C S as the set of all domains in S which contain 0. The mapping F
on S can then be defined as the mapping from G € $ to the unique vector-field
(g that satisfies:

i). a function pg) on G exists such that pjg) and yig) satisfy Stokes’ equations
on the interior of G and the boundary value problem (1.8) on 0G

ii). v5)(0) =0 V x gyl =0

where V X v denotes the (generalized) curl of v

It is important to realize that although F is completely specified in this way —i.e.
is a single-valued mapping- this does not necessarily imply that the solution of
the moving boundary problem is unique.

o It is possible to change Definition 3.1 in such a way that F is a mapping from
S to classes of vector-fields. In the above mentioned case, the vector-fields in
such a class differ by a rigid-body motion. It is then understood in condition iv)
of Definition 3.1 that the vector-field vj¢,) in the right-hand side is in the class
F(Gy) forall t € I.

The moving boundary problem for Hele-Shaw flow can also be formulated in this
way.

In several cases one is not interested in all properties of Z but mainly in the
shape evolution ¢t — G, € S determined by it. In the following we will consider



3.1. QUASI-STATIC MOVING BOUNDARY PROBLEMS 43

this shape evolution in more detail.
Assume that the class S contains only closed C'-domains and let Z be a solution
of the quasi-static moving boundary problem for F with initial data Gg such that
Z is a diffeomorphism from Go to G, for all fixed ¢t € I. Let £ C IR™ be a fixed,
closed domain of reference with a smooth boundary (such as the unit ball, the
half space z; < 0, etc.). We look for mappings

Q:()eéxI — Q1) e R (3.2)

such that:
i). Q is differentiable with respect to ¢
ii). Q is a diffeomorphism from £ to G, for all fixed t € J

Such mappings describe the shape evolution as well the mapping Z in Definition
3.1 but they do not provide a Lagrangian description of the fluid under consid-
eration in the classical sense. To put it otherwise, the vector-field » = F(G))
on Gy,t € I —to be interpretated as the hydrodynamic velocity— is only partially
determined by such a mapping Q.

Lemma 3.2 Let the mapping & be as above. There exists a class of mappings Q
satisfying the conditions i) and i) above. Each mapping Q of this type satisfies

UL (z,1),1) - n(z,t) = Vn 6] (2) for all (z,t) € 0Gy x I (3.3)

where vy, (¢,](z) denotes the normal component of the vector vig,j(z) at a point

Proof

Consider the class of mappings

P:(6,t)eEXxT — P& e’

such that P is differentiable with respect to ¢t and such that P is a diffeomorphism
from & to itself for all fixed ¢ € I. It is clear that this class is not empty as the
identity mapping is an element in it (in general, this class is very large). Let F
be a diffeomorphism from £ to Gp. One checks that a mapping  defined by

Qi(e)eExT — Q1) = ZEP(E D)D)

with an arbitrary P as above satisfies the conditions i) and ii).
The proof of the second assertion runs as follows. Let Q satisfy conditions i) and
ii) above. The trajectory in £ of a point labelled by z, € Gy is given by

§(£07t) = Q‘—(i(ﬁmt)’t) (34)
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We remark that since Z and Q are homeomorphisms for all fixed t € I, z4 € 0Go
implies {(zg,t) € O for all t € I. One checks that 0 is differentiable with
respect to ¢ and we have

Q (z,1) = —DQ7(z,t) U (z,1),1) (t,z) € I x G, (3.5)

We differentiate relation (3.4) with respect to the variable ¢, substitute relation
(3.5) and identity iv) of Definition 3.1, multiply the result from the left with
DQ(Q ™ (%(zg,1),t),t) and find

DQ(Qh(i(QOst)’t)vt) é(%at) = .Q[Gz](i(%at)) - Q(Q‘_(i(zf)vt))t)a t) (36)

This relation holds for all ¢ € I and all zy € Gy, in particular for all zy € 3Go.
As &(zq, 1) € OE for all (zg,t) € dGo X I, &(zq,1) is tangent to E. This implies
that the inner product of the normal vector n at a point z = Z(zg,1) € 0G, (so:
2o € Go,t € I') and the vector at the left-hand side of relation (3.6) equals zero.
Identity (3.3) follows. a

So, relation (3.3) is a necessary condition for a mapping @ on £ x I to describe
the shape evolution of a solution of a moving boundary problem in the sense of
Definition 3.1. The next example illustrates that this condition is also almost
sufficient.

Example 3.3 Let S be the class of closed half planes V, : z; < ¢,c € IR in R%.
Let f denote a real function on IR and let F on S be defined by
F o VeeS — F(Vo) =1y
vy 1 (1,22) € Ve vy (z1,22) = (1 f(z2))7
Consider the quasi-static moving boundary problem for F with initial data Vj.
Let the reference domain £ be V. We define Q by
Q: (@)EEXR — Qat) = (214 1,22)

It is clear that the image of £ under Q is V, for all t € IR. 1t is easily checked
that relation (3.3) holds. However, the moving boundary problem for F only has
a solution for all ¢ € IR if the initial value problem

Y(z2,t) = f(y(z2,1))
y(22,0) = 29 (3.8)

has a solution y on IR?. It is not difficult to construct functions f such that this
initial value problem has a global solution, nor is it difficult to construct functions
f such that this initial value problem does not have a global solution due to the
non-smoothness of f or due to the non-compactness of the domain of f.
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It can be shown that relation (3.3) is a sufficient condition for a mapping § on
& x I to describe the shape evolution of a solution of a moving boundary problem
in the sense of Definition 3.1 if the domain £ is compact and if the mapping F
is smooth. We will not go into the proof of this assertion {see for instance the
theory of groups of homeomorphisms explained in [17]). However, we formulate a
slightly more general definition of a quasi-static moving boundary problem which
qualifies the aforementioned condition to be sufficient.

Let S denote a class of closed C'-domains in [R™ and let F denote a mapping
from S to functions on IR™:

F : Ge§S » F(G)= Vn (G
such that the domain of v, (] contains the boundary 9G:
UplG)  LTE 0G - Un,[G’](Q) € R

Remark 3.4 This mapping F is another type of mapping as the one in the very
beginning of this section. We will use the same symbol F throughout this and
the following chapters to denote several types of mappings that are related to
quasi-static moving boundary problems. It will always be clear from the context
which type of mapping is meant.

Definition 3.5 A mapping
Q (el xI — Q¢ t)e R”

is said to be a solution (in the geometric sense) of the quasi-static moving bound-
ary problem for F with initial data G € S if it satisfies the following conditions:

i). Q is differentiable with respect to the variable ¢

ii). the mapping @ is a diffeomorphism from & to its image G, in S for all fixed
tel

iii). Q7 (z,1),t) n(z,t) = v 6,(2) for all (z,t) € 0G, x T

Remark 3.6 We return to the moving boundary problems discussed in the Sub-
sections 1.2.2 and 1.2.3. A precise formulation of these problems consists of two
parts: a mapping F which maps a domain G to the solution of the corresponding
boundary value problem (see also page 42) and a mapping { as in Definition 3.5.
We will not present these precise formulations although it is straightforward. We
only note that in these formulations, the kinematic boundary condition (1.9¢) or
(1.11¢) is replaced by condition iii) in Definition 3.5 above; this condition can
roughly be explained by stating that the normal component of the velocity of
the boundary equals the normal component of the velocity determined by the
mapping F, that is: determined by the solution of the corresponding boundary
value problem at that time.
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3.2 The quasi-linear Lowner-Kufareev equation

In this section we introduce the quasi-linear Lowner-Kufareev equation and ex-
plain in which way it is related to quasi-static moving boundary problems in two
dimensions.

In the previous section we gave two definitions of solutions of a quasi-static moving
boundary problem. Lemma 3.2 states that in general there are many equivalent
solutions in the sense of Definition 3.5 corresponding to one solution in the sense
of Definition 3.1. We want to reduce this arbitrariness by requiring the mapping
) in Definition 3.5 to satisfy some additional conditions. Stated otherwise, we
look for a class H of diffeomorphisms from £ to domains G in S such that:

i). for every domain G in S, there is a diffeomorphism in ‘K mapping £ to G

ii). the space of diffeomorphisms in H mapping £ to a domain G is relatively
small

In the case that S contains only compact, simply connected domains in JR? of class
CY¥ o > 0, we can make the following, more or less natural choices for £ and
H. The reference domain £ is the closed unit disc D in IR? and H is the class of
conformal mappings from D to domains G in 5. The Riemann mapping theorem
([71, 3]) and the Kellog-Warschawski theorem ([71]) state that both conditions i)
and ii) are fulfilled; in particular we notice that the space of conformal mappings
from D to a domain G in S is a real three-dimensional manifold.

Remark 3.7 If S contains closed and simply connected domains in /R? of class
CY* o > 0 we can make the same choices as above for £ and H by identifying
IR? with the complex plane and compactify the complex plane € by extending
it to the Riemann sphere €. However, we will only consider compact domains
although many results in the following can be generalized in this sense.

In the case that S is another class of domains (e.g. doubly connected domains in
IR? or domains in IR® which are diffeomorphic to the unit ball), we cannot choose
H to be the class of conformal mappings from some reference domain (e.g. an
annulus or the unit ball in IR®) to domains in S in general. The reason is that
condition i) above is not fulfilled unless all the domains in S happen to be of the
same conformal type (see e.g.[65]).

In the remaining part of this section we consider the above mentioned case in
more detail; that is: S contains only compact, simply connected domains in the
two-dimensional plane of type C1* o > 0, £ = D and Q on D x I is a solution
of a quasi-static moving boundary problem in the geometric sense such that Q is
a conformal mapping for all fixed t € J. We will sometimes call such mappings
conformal solutions. From now on we will use complex notation.
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Lemma 3.8 The mapping
Q : (()eDxI — QU t)eC

is a solution of the quasi-static moving boundary problem for F : G +— v, g
with initial data given by the image of D under Q(-,0) if it satisfies the following
conditions:

). Q 1s differentiable with respect to the variable t

i). Q is a conformal mapping from D to its image G, in S for all firedt € I
e Q(C)t) — vm[Gz](Q(C’t))
(¢, 1)¢ 1 (¢, 8
Conversely, if Q is a solution of a quasi-static moving boundary problem in the

sense of Definition 3.5 and Q satisfies condition 1) above, then it also satisfies
condition 11).

R

for all ((,1) € 0D x I (3.9)

Proof

We only prove the first assertion; the second one can easily be checked. Let 2 on
D x I satisfy the conditions i)-iii) above. The conditions i) and ii) of Definition
3.5 are satisfied; it only remains to be checked that condition iii) is satisfied.
The normal vector n at a point Q((,t) with ((,t) € 8D X I is given in complex

notation b
- n(C, 1) = D
’ 1(¢, 1)

So, we get for all (¢,t) € 0D x [

Un (G (UG D)) () ¢ ol o
(¢ 1Y) = Vn,(6 (U(, 1))

The relation iii) in Definition 3.5 then follows from this relation after changing
the notation and the names of the variables. o

Re (¢, t)n(SU(¢, 1)) = Re Q'(¢,1)¢

Remark 3.9 Let  on D x I satisfy the conditions i)-iii) of Lemma 3.8 and let
w and o be differentiable functions from I to IR and D respectively. It is easily
verified that the mapping  on D x I defined by

5 B iw(t) § — ()
Q1) = 0 <e e )C,t> (3.10)

also satisfies the conditions i)-iii) in the lemma. In order to get rid of this
arbitrariness, the solution should be normalized (see condition ii) on page 46).



48 CHAPTER 3. MOVING BOUNDARY PROBLEMS

To illustrate how this can be done, we assume that for all ¢t € I there is a point
((t) € D such that Q(¢(1),t) = 0 (so, 0 is an inner point of G, for allt € I). It
follows from the Riemann mapping theorem that there is exactly one mapping
on D x I such that:

Q(0,¢) =0 Q'(0,1) >0 (3.11)
and such that the image of D under §(-,2) is G;. One can construct such nor-
malized solution Q —given the mapping Q- by solving the equations for o and w
obtained by substituting the normalization (3.11) into identity (3.10).

Consider a quasi-static moving boundary problem for a mapping ¥ : G € § —
Un (6] Where the class S contains only simply connected and compact domains
G in € of class C*, o > 0 such that 0 € G\AG. The latter condition on the
domains enables us to normalize solutions in the sense of Remark 3.9. We show
that such normalized conformal solutions can be described by a partial differential
equation by rewriting condition iii) in Lemma 3.8.

Definition 3.10 Let M denote the space of conformal mappings  on D such
that the image Q(D) of D under Q is in S and such that

Q(0)=10 Q'0)>0
For each € H, we define an analytic function fig) on D with a continuous real
part on D by
Vi@ (RC)
Re fio)(¢ :’[,— (€dD 3.12a
Im f[Q](O) =0 (3.12b)

Remark 3.11 We say that the function f depends on  in a functional way.
We will use this terminology (“depending in a functional way”, “functional de-
pendency”, etc.) in this and the following chapters to indicate mappings from a
function space to another function space.

Lemma 3.12 Let Qg € H. A mapping
Q : (()eDxI —» Q) eC

15 a solution of the gquasi-static moving boundary problem for F : G s Vn [G]
with initial data given by the image of D under Qg if it satisfies the following
conditions:

). Q is differentiable with respect to the variable t

i). Q isinH for all fizedt € I
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iii).

¢, 1) = Q¢ 1) fiag(€)C forall (¢,1) e D x I (3.13)

Conversely, if Q) satisfies the conditions in Lemma 3.8 and is normalized, then §)
satisfies the conditions above.

Proof »
Straightforward from Lemma 3.8. Q

Example 3.13 We illustrate the notations and definitions by a trivial example.
Let S be the class of closed discs D, C €,r > 0. Moving boundary problem
(1.11) with @Q; identical to 1 give rise to a mapping F : G € § + v, 5] given by

1
vn,[D_r](C) = 5 (e 0D,

2rr
One checks that Definition 3.10 in this case corresponds to

1

2nr?

fra(Q) =

where §,.(¢) = r{. The mentioned moving boundary problem with initial data
given by D is then equivalent to the initial value problem given by equation (3.13)
and initial data Q((,0) = (. The solution of this problem is given by

A1) = /= +1¢

An equation for a function  of the form

Q¢ L) = Q)

where f is a given function, is called a linear Lowner-Kufareev equation. We
consider such equations in Section 5.1. If the function f depends on © in a func-
tional way, we call such equation a quasi-linear Lowner-Kufareev equation. (The
adjective quasi-linear should not be interpretated in the sense used in the theory
of partial differential equations but in the sense used in the theory of semi-groups;
see also Appendix C). We consider such equations in Section 5.4. We remark
that Lemma 3.12 actually states that many two-dimensional moving boundary
problems with initial data can be considered to be initial value problems for
quasi-linear Lowner-Kufareev equations. We loosely discuss some advantages of
this approach to quasi-static moving boundary problems.

First, we note that —in the formulation given above, see e.g (3.13)- the func-
tion Q) does not have to be continuously extendable to 8D x I. This enables us
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to study also quasi-static moving boundary problems where the shape evolution
t € I — G, € S is such that not every domain G; has a smooth boundary (cf.
[34]). We remark that it is possible to solve the problem: i) f analytic in D and ii)
Re f(¢) = h((),( € 8D, for non-smooth functions h on 0D (e.g. hyper-functions
[56]). In other words: this approach enables us to formulate a quasi-static mov-
ing boundary problem as soon as the normal component of the velocity v at the
boundary makes sense in some generalized way.

Secondly, we note that the formulation above enables us to generalize the concept
of a solution of a moving boundary problem by omitting the condition that such a
solution is injective for all fixed ¢t € I; we note that this injectivity of the solution
was implicitly understood by requiring the solution to be diffeomorphic (Defini-
tion 3.5) or conformal (Lemmas 3.8 and 3.12). In the following we will consider
also solutions of moving boundary problems which are only locally injective.
Thirdly, we remark that the solvability of quasi-linear Lowner-Kufareev equa-
tions is relatively easy to study; we will do so in Section 5.4.

Finally, we remark that-the formulation of a quasi-static moving boundary as an
initial value problem for a quasi-linear Lowner-Kufareev equation may also be
useful in numerical studies. To understand this, we write:

()= anol™  QUGH =Y aa()C* fig(Q) =D et (3.14)
n=1 n=1 k=0

where we defined

2m

B i ”n,[ﬂ](Q(eid))) —ikd
Ck,fﬂ = G / ,Q'(eiqbﬂ € d¢ k€ _UVO

(It is understood that the Taylor coefficients of Q in this relation are given as a
vector a = (a1, as,...).) The initial value problem then gets the form

(1) = Z Lai(t)er fa(oy)

l+k=n
an(0) = anp

An approximative solution of this initial value problem can be obtained by trun-
cating the Taylor-series. Such an approximation of the solution may be more

appropriate than one where the domain G, is described by a mesh of points at
the boundary ([91, 92, 89, 7]).

The following two sections are concerned with the moving boundary problems
introduced in Section 1.2. The Lowner-Kufareev equation will play an impor-
tant role. The solutions will be required to be smooth time-dependent locally
conformal mappings in the following sense:
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Definition 3.14 A mapping Q on D x [ is said to be a smooth time-dependent
locally conformal mapping if:

i). Q is analytic on D for all fixed t € [
ii). Q|,p € C3(0D) for all fixed t € I

iii). ' is a non-vanishing function on D x I that is continuously differentiable
with respect to the variable ¢

The condition ii) may sometimes be weakened but we will not go into that matter.

3.3 Hopper’s equation

In this section we consider Hopper’s equation. We show that if a mapping Q
satisfles this equation, then it is a solution of the moving boundary problem for
Stokes flow driven by surface tension. It is shown in the literature ([35, 30, 78])
that if Q is a solution of this problem, then it satisfies Hopper’s equation.

Definition 3.15 Let {2 be an analytic function on D such that its derivative
has a continuous, non-vanishing extension to D. We define Flq) as the unique
analytic function on D with a continuous real part on D such that

1

Im Fig(0) = 0
We remark that if € C3(8D), then the derivative F['Q] of Fiq) can be extended

continuously to D.

Definition 3.16 Let f be a complex valued function on a domain G C €. Let
R(G) denote the domain obtained by reflecting G with respect to the unit circle:

R(G)={(eC |1/ € G}
The function f on R(G) is defined by

f(Q) = £(1/C)

Remark 3.17 We used the bar in the previous chapter to denote the complex
conjugated function; in formula (2.12) for example, x’ denotes an anti-analytic
function with the same domain as Xx’. From now on, we will always explicitly
state when f denotes the function obtained by complex conjugating f and not
the function defined above. We note that no confusion can arise on the unit disc

as, if 9D C G, then 0D C R(G) and we get f(() = f(() on OD.
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It is not difficult to show that if f is analytic on an open domain G, then f is
analytic on R(G) and we get

7 =-F()/¢ for all ¢ € R(G) (3.16)

Definition 3.18 Let f be a differentiable complex valued function on 9D. The
function f’ on 0D is defined by

iy _ () . _ipdf(e?)
fe7) = =g = —te™" —

Remark 3.19 We remark that the relation (3.16) also holds in this sense. We
also make the important remark that if f is analytic on a neighbourhood of 0D,

then the definition of f’ is consistent with f'(¢) = %((Q

Proposition 3.20 Let Q be a smooth time-dependent conformal mapping on
D xI. If a continuous function § on D x I ezists such that 8 is analytic on D for
all t € I and such that the following equation is satisfied for all ((,1) € 0D X I:

0(¢,1) = (O~ (GOAUC ) Fae(O)) (3.17)

then Q is a solution of the moving boundary for Stokes flow driven by surface
tension.

We call equation (3.17) Hopper’s equation.

Proof
Step 1. We define functions F, ¥ and ¢ on D x I by
F(¢,1) = Fia(.(€) (3.18a)
_ 1 /¢
X(¢,t) = 5/0 8(z,t) dz (3.18b)
B(0,1) = 5 (VG OFG 00 - ¢ 1) (3.18¢)

Let Gy denote the image of D under Q(-,t). We define functions y and ¢ on
{(2,t) e C xI|z€ G} by

x(z,1) = X(Q7(2,1),1) p(2,1) = ¢(Q27(2,1),1)

We note that these functions ¢ and x have derivatives ¢’ and x’ which can be
extended continuously to G, for all t € I. We finally define functions p and v on
{(z,t)] € € x I| z € G} according to formulae (2.12). It follows from Remark
2.1 that p and v satisfy Stokes’ equations G, for all ¢ € I.
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Step 2. We show that boundary condition (1.9b) with y = 1 is fulfilled. It follows
from relation (3.16) that

(Q(¢,DRUC, OFC, 1)) = TUC 1) (¢, O 1C) — (0T, OFC 1)
(3.19)
for all ({,t) € 0D x I. It follows immediately from the definition of the function
F' that

F((,1) = =F((, 1) + |0 for all ((,t) € 0D x I (3.20)

Now we substitute successively relations (3.18b),(3.19),(3.20) and (3.18¢) into
Hopper’s equation. We suppress the variables in the notation and note that the
following identities hold on 0D x I:

=0 =(0) - (VAFC) = (0) - YLFCY + YVFT
(QQ) QQF - QUFC+ Q™!
= Q0+ Q0 - QQF) - V(QFC) + |9
=Q(Q - VFC) + Q0 - QFC) + |9
= Q(-2¢) + Q'(-2¢) + (10|
We divide both sides of this relation by Q’, rearrange some terms and find

¢ X\ _ 2
2(7+ 05 + Q’)_IQ’I

Thus, we get
2 (cp(z,t) +z¢'(2,t) + X’(z,t)) = n{2;1) for all (2,t) € 0G, x I

where n(z,t) denotes the normal vector at z € 3G,. It follows from Remark 2.31
that boundary condition (1.9b) is satisfied indeed for all ¢ € 1.

Step 3. It remains to be checked that {2 satisfies condition iii) of Lemma 3.8. The
relation (3.18¢) can be written as

Q¢ 29(¢,1)
vcn - TN T e

By means of this relation and relation (2.69), we find

Q¢ C2p((,1)
¢ {9'« t><}‘F“’” G0

0" ‘Re(%—w CHAN(C ) =
26017 Re (5 — 26(0(6, ), H0UC0,0)) =
12'(¢, )] on(QC, 1), 1) (¢,1)€8D x I
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It follows from Lemma 3.8 that Q is a solution of the problem. - a

Remarks 3.21 Let Q on D x [ satisfy the conditions i)-iii) of the proposition
above and let w and f be differentiable real and complex valued functions on /.
A mapping Q defined by

8(C,1) = e#OQ(¢,1) + £(1) (3.21)

also satisfies the conditions i)-iii) in Proposition 3.20. This freedom in the solu-
tion has its origin in the fact that the solution of boundary value problem (1.8)
is determined up to a rigid-body motion.

The mapping Q) defined by relation (3.10) generally does not satisfy Hopper’s
equation (although it produces the same shape evolution as Q). However, if Def-
inition 3.15 is changed in such a way that Fig) is admitted to have a different
behaviour at ( = 0 (in particular: is admitted to have a pole of order one in
¢ = 0), then this this mapping £ is also a solution of Hopper’s equation.

Remark 3.22 We roughly explain the role of the function 6 in Hopper’s equa-
tion. We stress that 6 should not be considered a given function. Actually,
Hopper’s equation can equivalently be formulated without reference to this func-
tion by stating that the imaginary part of the expression at the right-hand side of
equation (3.17) is the Hilbert transform of the real part of this same expression.
However, it is clear that, once it is known that {2 satisfies Hopper’s equation or
this equivalent formulation, then the function € can be determined. We therefore
stated in the introduction that this function can be determinded only a posteriori.

Proposition 3.23 Let )1 be a real valued function on I and let Q,,n = 2,....N
be compler valued functions on I. Let Q be a smooth time-dependent locally
conformal mapping on D x I such that Q(0,t) = 0 for allt € I. If a continuous
function 6 on D\{0} x I exists such that:

i). 0 is analytic on D\{0} for all fizedt € I
). 0(¢,t) — ZQ/:] Q—;g%%%) — const. if (-0 forallt eI
ii1). the following equation is satisfied on 0D X I:

6(C,1) = (V(C0T(C D) = 7 (¢ HRC B Fag, () (3.22)

then Q s a solution of the moving boundary problem for Stokes flow driven by
surface tension and/or (v = 1,0) multi-poles Qn,,n = 1,..,N in z = 0.

Proof
We define the function ¥’ on D\{0} x I by

2(0,0) = 5000,
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(the function y itself is multiple-valued if @4 is not identically zero). We define
the function x’ on {(z,t) € C x I| z€ G,z # 0} by

, X2 (2,1),1)
X0 = a0

The function x’ is analytic on G;\{0} for all fixed ¢t € I. Moreover, it follows
from condition ii) that

2w 2"

N
n(t ;
X'(z,t)—ZQ ()—>const. if z—0
n=1

One then shows that  is a solution of the problem by reasoning in the same way
as in the proof of Proposition 3.20 (see also (1.7)). a

We end this section by a proposition that can be considered as a kind of physical
interpretation of the function ¢ that appears in the representation of the solu-
tion of the moving boundary problem for Stokes flow driven by surface tension
and multi-poles (see also [76] and [4]). We define the nth moment C,,(G; ) of a
complex valued function ¢ on a domain G C IR? by

Cn(Gi ) = //G(m +1y)"¢(z,y) dz dy

If the function ¢ is identical to one, we simply write C\,(G) in stead of C\,(G; 1).

Proposition 3.24 Let Q2 be a smooth time-dependent conformal mapping satis-
fying the conditions of Proposition 3.23. Let Gy,t € I denote the image of D
under Q(-,t) as before and let ¢, denote the representing function for the corre-
sponding Stokes flow on the domain G, that appears in relation (2.12) and which
18 normalized by

¢i(0) =0 ¢i(0) € R
(see Remark 2.3). Then:
d
Ecn(Gt) = Qn+1(t) = 2nCr1(Gy; 1) n2>1 (3.23a)
d
ECO(Gt) = (1) (3.23b)

Proof
We only prove identity (3.23a); the proof of identity (3.23b) runs similarly. Ap-
plying Gauss’ theorem and using complex notation, we find:

d d n a1 d .
ECH(GQ—E//LZ dz dy = (21) Eﬂéc,z z dz

d —
= 75§ QGG O &
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We suppress the variables in the notation and substitute the relations (3.18¢) and
(3.22):

d Cod
SCalG) = (20)7 2 ADQ 00’ d¢

- (21')-1?{ nQTONQ + QM QD) dC
oD
= (20)7! 7@ _n0 T (@Y Pl - 26)00 + (DAY + 6) o

= (26)] ]g (@ Fa0) + 60" ~ 206" R d(

N
2
=S 9n f grmrg 24 omoiz g
©®
o 211 Jop 2t Jag,

= Qnt1 — 2nCr_1(Gy; 1)
a

Remark 3.25 Formula (3.23b) can be considered as the conservation of mass.
The other identities state in which way the moments C,(G;),n € IV change in
time. We stress that the relations (3.23) are independent of the value of 7; these
relations hold whether surface tension is present or is not.

3.4 The Hopper equation for Hele-Shaw flow

In this section we present several equations with the property that a time de-
pendent conformal mapping satisfies this equation if and only if this mapping is
a solution of the moving boundary problem for Hele-Shaw flow. We treat three
well-known equations of this type ([75, 39, 53, 85]) and add one which resembles
Hopper’s equation.

Definition 3.26 Let @1 € IR and let  be an analytic function on D such that
its derivative has a continuous, non-vanishing extension to D. We define the
function F[g]‘ as the unique analytic function on D with a continuous real part

on D such that:

@
2m|QV(Q)]?

Im F21(0) =0

Re F[‘g]l(g) = (eaD

The superscript ()1 prevents confusion between this definition and Definition 3.15.
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Proposition 3.27 Let ) be a real continuous function on an interval I C IR.
Let  be a smooth time-dependent locally conformal mapping on D x I such that

Q(0,¢) =0 Q'0,t) >0 forallt € J
The following assertions are equivalent:
). Q1) = ¢ HERY0C for all (¢,¢) € D x [
i). Re Q(¢, )V (¢, 1) = Q1(2)/2m for all (¢,t) € @D x I

i1). a continuous function 6 on D\{0} x I ezists such that 0 is analytic on
D\{0} with a first order pole at ( = 0 with residue Q1(t)/m for all fized
t € I and such that the following equation is satisfied for all ((,t) € 0D x I:

8(¢,t) = D¢, (¢, 1) — G OT(C, 1)

w). Q is a solution of the moving boundary problem for Hele-Shaw flow.

Equation ii) is called the Polubarinova-Galin equation.

Proof

We do not go into all details of the proof as most of the results are already
established in the literature. First we show i)—iv) in three steps. We will denote
the image of D under Q(-,t) by G,.

Step 1. We define a multiple-valued function ¥ on D\{0} x I by

X(¢, 1) = (Q1(t)/27) In¢
We define a function x on {(z,t) € € x I'| 2z € G,z # 0} by

X(Z)t) = )Z(Q(_(Z’ t)7 t)

We finally define functions p and v on {(2,t) € € xI | z € Gy, z # 0} according to
the formulae (1.5). One checks that p and v are single-valued and satisfy Darcy’s
equations.
Step 2. As

_ Ql(t)ﬂt_l(‘z’ t)

X'(z,t) = 20— (.1) z € G\{0},tel

and as Q° has a first order zero at z = 0, the function x’ has a first order pole at
z = 0 with a residue Q(¢)/27 for all fixed t € I. So, condition (1.11a) is satisfied
for all ¢t € I (see also (1.6)). The boundary condition (1.11b) is also satisfied for
allt el as

p(z,t) = =(Q1(t)/27)(Re In Q™ (2,1)) =0 forall z€ 0G,and all t € T
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Step 3. It remains to be checked that Q satisfies condition iii) of Lemma 3.12.
We denote differentiation in the direction of the normal vector at d.D by — and

we denote differentiation in the direction of the normal vector at G, by . We
get for all ((,t) € D x I:

Re i ')(0) = (@ (0/2mI2(¢, 0] m«m*geﬁm»

= 0G0 5= (Re X(O(G,1),0) = 1960 0a(UGD) (324)

This relation and Lemma 3.12 then imply that Q is a solution of the moving
boundary problem for Hele-Shaw flow.

The proof of the whole proposition follows from the following implications.
ii)—i). We define the function f on D x I by

(¢, 1)

(¢, 1)¢
We note that f is well-defined in ( = 0 and we have Im f(0,¢) = 0 forall t € 1.
It is clear that f is analytic on D and is continuous on D for all ¢ € I. It follows
from the Polubarinova-Galin equation that

fl¢.) = (3.25)

Re J(6,4) = Re guetl < 0/, 0] Re (G, 07(¢, 1)
= (Q1(1)/2m)|UC, )2 for all (¢,t) € 8D x I

This implies f((,t) = F[QI(-(,?)](O for all (¢,t) € D x I and relation i) follows from

relation (3.25).
iii)—ii). We define the function ¢ on D x I by

@11
T
One checks that ¢ is continuous on its domain and analytic on D for all ¢t € I.

We suppress the variables in the notation and note that the following identity
holds on 0D x I:

¢((,1) = 0(¢,1) - (3.26)

Re Q0 = %(QWU QQ¢) = %4(69' = (0 = %49 _ & (62 (3:27)

This relation implies that the function Im (¢ vanishes on the boundary oD x I.
As Im (¢ is a harmonic function on D for all fixed ¢ € I, ¢ is identically zero and
(3.27) is just the Polubarinova-Galin equation.

iv)—iii). We first note that it follows from the relations (1.11a) and (1.11b) that
the continuous function p on {(2,t) € € x I'| z € G} defined by

Q1(

(et = Dy, |2l + p(z,1)
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satisfies the following Dirichlet problem:
A15(‘”)—0 z€Gutel
B(z,t) = ()1l| z€0G,,tel

This Dirichlet problem has a unique solution given by

Bz 1) = Q;it)Re (ln Q'—(Zz,t)>
Hence,
p(z,1) = Q21—7(rt)Re(ln Q7 (z,1))
and we get
e e ) (3.28)

(see also relation (3.24)). It follows from Lemma 3.12 that Q satisfies
(¢, 1) = (¢ OFER Y ()¢ forall (eD,tel

One then straightforwardly checks that condition iii) is also fulfilled: just put
0(¢, 1) = Q1(t)/mC. s

Proposition 3.28 Let ()1 and ) be as in Proposition 3.27. The assertions in
Proposition 3.27 are equivalent to the following assertion:

v). a continuous function 8 on D\{0} x I ezists such that 6 is analytic
on D\{0} with a first order pole in {( = 0 with residue Q1(1)/m for
all fired t € I and such that the following equation is satisfied for all
(¢,t)e 0D x I:

8¢, 1) = (Y(¢0G1) - (600 0 FES ) (3.29)

As equation (3.29) resembles Hopper’s equation, we call it a Hopper equation.
Proof

1),ili)—v). Let  be the function as in condition iii). We suppress the variables
in the notation, substitute relation i) and find on 0D x I:

6 =00 - 00 = () - (A0 = (V) - (VAFG Y
v)—i). We define the function g on D x I by

9(C,2) = Q¢ 1) - Q¢ ) Far i (0)¢ (3.30)
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It is clear that g is analytic on D for all ¢ € . One checks that as £ is a smooth
time-dependent conformal mapping, the derivative g’ has a continuous extension
to D for all t € I. We show that g is identical to zero.

We suppress the variables in the notation, substitute relation (3.30) into equation

(3.29) and find on 0D x I:
6= () - (R = (90) - (AQ - g)) = QY - T2+ (Qg)’
= (VFEHT+9)0 - Q(QFRC+9) + ()
= |°C2Re Fg) + 79" + 0g' = 30’ + Qg + %
So, the function ¢ defined as in relation (3.26) is analytic on D for all ¢ € I while
its boundary values are given by the following relation on 0D X I:

¢ =790+ Qg’

Now we apply Lemma 4.12; this lemma will proved in the next chapter. It follows
that there are functions C7 and C, on [ with values in IR and € respectively such
that

g =1C1Q+C,

Substitution of this result together with relation (3.30) into the normalization
Q0,)=0 Q(0,0)e R forall t € 1
leads to the conclusion that both C7 and C,, and hence g, are identically zero. O

Remark 3.29 The analogons of formulae (3.23) for Hele-Shaw flow are

d
‘lﬂcn(gt) = bn0Q1(2) n € INg

(see also [76, 4]). These identities —which imply the conservation of the moments
of the domain except for the area— can easily be obtained by putting ¢ identical
zero in the proof of Proposition 3.24: compare relation (3.18¢) to assertion 1)
in Proposition 3.27 and note that the reasoning in the proof of Proposition 3.24
does not depend on the values of the fuction F (see also Remark 3.25).

Remark 3.30 The similarity of the Hopper equation (3.29) for Hele-Shaw flow
and Hopper’s equation (in particular equation (3.22) with v = 1,N = 1) is
remarkable. It is therefore interesting to study Hopper equations such as equation
(3.29) with F[gl replaced by another function that depends on ' in a functional
way; compare Definitions 3.15 and 3.26. This may lead to regularized models of
Hele-Shaw flow (see also [88, 33]) which are some kind of intermediate between
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models of Stokes flow driven by surface tension and a sink and of Hele-Shaw
flow. We do not go into this matter because it is difficult to deduce what kind of
moving boundary problems such Hopper equations describe. We only state that
such ad hoc methods turn out to work quite well.
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Chapter 4

Hopper Equations

It will be shown in Section 4.1 that a Hopper equation for a rational function is
equivalent to a finite set of differential equations. We prove in Section 4.2 that
this set of equations has a local solution under general conditions. We show in
Section 4.3 that this set of equations has a global solution in a particular case.
A comprehensive introduction to this chapter can be found in Section 1.3.

4.1 Rational solutions of Hopper equations

This section concerns Hopper equations. We show how such an equation reduces
to a finite set of differential equations if we make the Ansatz that the mapping
Q is a time-dependent rational function.

In Propositions 3.20, 3.23 and 3.28 we met equations for time-dependent ana-
lytic functions © on D x I of the following form:

o¢,1) = (AUCHVC,0) - (TUGHAGOAGD) . () edDxT (41)
where:

i). f is a function on D x I which is analytic on D for all fixed ¢ € I; this
function may depend on ) in a functional way although this is not expressed
in the notation.

ii). 6 is some function on D x I with a prescribed pole at ( = 0; i.e. 8 is
analytic on D\{0} with a pole of order N at ( = 0 for all ¢t € I-where it is
understood that # is analytic on D if N = 0- and such that

o TG dC=0nt)  m=1.,Nel

271 Joyg

63
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In this expression, g denotes a closed Jordan curve around { = 0 and
an,n = 1,.., N are given complex valued functions on / which may depend
on . We stress again that 6 should not be considered a given function;
only the principal part of its Laurent series is prescribed.

We call equation (4.1) a Hopper equation. It turns out that solutions of such an
equation only exist if ay is real valued. We note that a Hopper equation is an
equation on 0D x I although the domains of the functions which appear in it are
larger.

A straightforward construction of solutions §2 of a Hopper equation does not seem
to exist if f depends on Q in a functional way (we return to this point in Chapter
5 and in Appendix C). We therefore follow Hopper ([35]) and make an Ansatz
for the mapping Q:

K (m) Ck
ka(t)(l — Cm(t)C)k

<

M
Q((J) = Z (4'2)
m=1

where M, K (1),.., K(M) are positive integers and where:

k=1

). ¢mym=1,..,M and cpr,m =1,.., M,k =1,.., K(m) are continuously dif-
ferentiable functions from I to D and € respectively such that the derivative
Q' of the function in expression (4.2) does not vanish on D x [

i), Im "M epa(t) =0foralltel

iii). (a) my # mq implies (m, (t) # (m,(2) forall t € I

(b) for all m € {1,..,M} and all t € I, there is a k € {1,.., K(m)} such
that cmi(t) #0

iv). (a) ¢y is identical to zero unless N =0

(b) K(1)2 N

Remark 4.1 We discuss the conditions i)-iv) on the parameterization of the
rational Ansatz.

The condition i) assures that the function  is a smooth time-dependent locally
conformal mapping.

One easily verifies that if & on D x I is a solution of a Hopper equation, then
the function Q defined by relation (3.21) is also a solution. Therefore, we do not
lose any generality by normalizing  as follows:

Q(0,¢) =0 Im Q'(0,t) =0 forall t € J

The first normalization is already contained in the parametrization of the function
) in expression (4.2). The second normalization is equivalent to condition ii).
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The mapping Q is thus determined by L = 2(M + P) — 1 real time-dependent
parameters, where P = Z%:l K(m).

Consider for example a function Q in expression (4.2) with M = 4, K(m) = 1,
m = 1,..,4, where (3,(4 and cq; are arbitrary functions and where

=0 (=G cn1=1 ex=-cy ¢4 =0

One checks that this function is actually the identity: Q((,t) = (. In order to
avoid that a function can be parameterised in several ways, we require that con-
dition iii) is satisfied: the conditions i)-iii) imply that every normalized, rational,
smooth time-dependent locally conformal mapping with exactly M poles outside
D can uniquely be parameterized in the form of expression (4.2). We note that we
pay the following price for this: we cannot consider rational solutions of Hopper
equations where poles appear or disappear. We will show in Chapter 5 that this
is not a loss of generality.

It can be checked that if the function 6 in equation (4.1) is allowed to have poles
in ( =0 (i.e. N #0), then a parametrisation as in expression (4.2) only makes
sense if we put (,,(¢) =0 forallt € I and K(m) > N for some m € {1,.., M}.

We substitute expression (4.2) into equation (4.1) and show that this leads to a
finite set of differential equations for the parameters (. and ¢... Before we do so,
we remark that the function {2 is meromorphic on D for all t € T as

K(m)

M
§(<>t) = Z Z ka(t) (C - (m(t))_k

m=1 k=

—_

To be more precise,  has poles in ( = (n(t) € D,m € {1,.., M} of orders
not larger than K (m) for all ¢ € I. This implies that the function § on D x I
defined by relation (4.1) is analytic on D\{(;(t), ..,Cm(1)} for all fixed t € I.
Moreover, if § has a singularity in { = m,m =1,..,M for some t € I, then
this singularity is a pole and the order of this pole does not exceed K(m) + L.
This implies that the function Q in expression (4.2) is a solution of equation (4.1)
if and only if it satisfies the following equations for all t € I, all m € {1,.., M}

and all n € {1,.., K(m)+ 1}:

= f «- G A )
Ym(t
o (=Tl o (G OGN 1) d = bman(t) (43)
’Ym(t)

where y,,(t),m = 1,.., M is a closed Jordan curve in D such that (,,(t) is inside

Ym(t) and (i(t) is outside v, () if [ # m. First we calculate the first term in the
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left-hand side:

o €~ G 5 (R 006,0) d =

Ym(t)
e 2 (€~ GG O D) e+
Ym ()
1 o= TS /
s $ (1= D= GO TRV, Y & =
Ym(t)
9 1 K(m) oo ” k() [.H)
= = G ¢ = ()T dC | +
= (27”%?5) 3 3 RGO - )
. K(m) oo
oD 5 3 ot @, 0 - G2 g
’Ym(l) k=1 (=0 !
0 =y ka+n(t) (k+1)
(1—5nK(m)+1)§ :L:?) X (), 1) | +
. K(m)-n+1 -—Cm k+n—-1(t) (k1)
(n = 1)Cn(® kZ I kit Q) (CaD), 1) (4.4)

Next we calculate the second term in the left-hand side:

1 —n1 0 (5 / _
L j:{ | (€ = Gl 57 (BUCHVCDSAC 1) de =

5§ (= 1)(C = Gl GO OG0 de =

2T
¥ (t)

21
om (t) k=1

n—1 K(m)
— - ’7{ ( E ka(t)(( - (m(t))n_z—k) (Cm( )+< (m( ))

oo
(ZZ : ’“—”(cm(w,t)f“')(cm(t),t)(c~<m—(t))’) 4 =

10]0 ])']I

(m)—n+1 k

(n—l>{<m<t 2 ZC"”“ ‘.l.t) QDG (D), 1)/ O(CaD), 1) +
k=0

K(m)—

nk
(1=8n k(my+1) D Zc’”"“ Q“*‘ D(Cm (1), 1) FOCn (D), )} (4.5)

k=0 [=0 (
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Substitution of these results for n = K'(m) + | into equation (4.3) leads to
]((m)gm(t) Cm K(m)(t)Q/(Cm(t)» t) +

K (m)m (1) m 1 (m) ()L ((m (1), 1) ((m(2),1) = 0 (4.6)

for all m € {1,.., M}; this relation holds for m = 1 as K(1)+ 1 > N. After
complex conjugating this equation and rearranging some terms —see also Remark
4.2 below—- we obtain

(1) = =Cn (1) f(Cn(D), ) m=1,.,M (4.7)

Substituting the relations (4.4),(4.5) and (4.7) into equation (4.3), we find for all
m € {l,..,M}and all n € {1,.., K(m)}

K(m)-n —F—
ﬁ( 3 %kk—wg(km(m,t)) +

o1 k=0

K(m)-n k PR |
(n=1)3 > (%Q““‘”(QU (f<“(<.,t) F i, t)))

k=0 I=0 I+1 E=Comlt)
= 6m1 an(t) (48)

Remark 4.2 In order to obtain relation (4.7) from relation (4.6), we divided
this relation by ¢, g (m)(#). This is not allowed if ¢, f(m)(t) = O for some ¢ € I.
However, one carefully checks that —because of condition iiib) on page 64— relation
(4.7) follows anyway.

Corollary 4.3 A function § as in ezpression (4.2) is a solution of equation (4.1)
if and only if equations (4.7) and (4.8) are satisfied.

Example 4.4 Let M = 1 and let {; be identical to zero, i.e. we make the Ansatz
that Q is a polynomial mapping (see also [30]). We change the notation and write
57

Q1) =) er(t)CF

k=1

with K > N. Equation (4.7) is trivially satisfied while the equations (4.8) reduce
to the following set of differential equations:

5 K-n N —
- ( ST (k+ 1)Ck+1(t)ck+n(t)> +
k=0

K-n k (l) 0 t
(n=1) 3 Dok +1 = Dargn@esroa (L2
k=0 =0 ’

= an(t) (4.9)
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where n = 1, .., . We define

K—-k+1
bi(t) = Z lei(D)ergr-1(1) k=1,..,K
=1
di(t) = fO0, 1)/ 1=0,.,K
and find that this set of equations can be written as
) K-n
bo(t) +(n—1) Z btk (1)di(t) = an(t) n=1.K (4.10)
k=0

Example 4.5 Let N = 0 and K(m) =1 for all m € {1,.., M}, i.e. we consider
a particular type of Hopper equation and make the Ansatz that 2 is a so-called
partial fraction mapping ([35]). We change the notation and write

M
Q(C,1) = ¢ Z_j] % (4.11)

The equations (4.7) remain while the equations (4.8) reduce to a set of M alge-
braic relations:

Am(D) f: Axt) m=1,..M (4.12)

g = A — = Loy :
i1 (1= CGe(B)¢m(2))?

where the quantities ¢,,m = 1,..,M do not depend on the variable t. We

consider these equations in more detail in Section 4.3. We present a result from

a numerical study of these equations in Appendix C.

We end this section by counting the total number of equations. As the terms
QO((n(t),t),m=1,..,M,l=1,.., K(m)in equations (4.8) can straightforwardly
be expressed in terms of the parameters c.. and (., the equations (4.7) and (4.8)
can be considered as a set of 2(M + P) = L+1 coupled real differential equations
for the L parameters c.. and (. (see also Remark 4.1). We show below that the
imaginary parts of the equations (4.8) with n = 1 are linearly dependent. We
thus end up with not more than L differential equations for L parameters.

The equations (4.8) with n = 1 lead to a set of M — 1 complex valued conserved
quantities

K(m)-1 m—)
Gm= Y (G, m=2,.,M
k=0 '
while the equation with m = 1 remains:

K(1)-1

>, ot G, = )

k=0 k:'

9
ot



4.2. PROOF OF LOCAL EXISTENCE OF SOLUTIONS 69

(If a; is identical to zero (e.g. if N = 0), this equation also leads to a conserved
quantity). The sum of these equations leads to a differential equation for a real
function A on I defined by

= (2) ?{Q(t 1)d(

I¢]=1
as
Ly - @ § aconcod-r2 5 L § g ome
dt dtl ' ’ ’ dt “ 2ri ’ ’
(=1 - ym(t)

d M K(m)-1

Z Z mk+1 t) k+1)(m,t):fra1(t) (4.13)
m 1

We note that if the mapping Q is conformal —and not only locally conformal- the
quantity A(t) is the area of the image of D under Q(-,t). The equation (4.13) is
real as both A and ay are real valued. So, the imaginary parts of the equations
(4.8) with n = 1 are linearly dependent indeed. We repeat that this leads to the
conclusion that the set of equations for the parameters is not overdetermined.

4.2 Proof of local existence of solutions

In this section we reconsider the set of differential equations obtained in the
previous section by substitution of a rational time dependent mapping ) into a
Hopper equation. We show in Subsection 4.2.1 that these equations can be solved
if the given functions f and a,,n = 1,.., N are continuous with respect to the
variable ¢, by revealing the structure of equations (4.7) and (4.8). This enables
us to study a Hopper equation where f and a,,n = 1,.., N depend on £ in a
functional way. In Subsection 4.2.2 we prove a result on the solvability of this
equation under certain restrictions on the functions f and a,,n =1,..,N.

4.2.1 The structure of the equations

We discuss equations (4.7) and (4.8) in the case where f and a,,n = 1,.., N are
given functions on D x I and I respectively. We assume that these functlons are
continuous with respect to the variable ¢t and prove that the mentioned equations
can be solved. First we introduce some notation.

In stead of (. or {n,m=1,.., M, we write

QZ (Re (1,Im (1,...,Im <M) € RzM
In stead of c.. or ¢, m=1,..,M, k= 1,.., K(M) we write

= (Re c11,Im enr, oy Imoeggery, Re cory ey Imoeprpear)) € R*F



70 CHAPTER 4. HOPPER EQUATIONS

where P = Y"M_ [ (m). Because we only consider functions Q normalized by
Q'(0) € R, we take ¢ in the (2P — 1)-dimensional subspace corresponding to
Im Z%’:l ¢1m = 0 and we will simply write ¢ € IR2P~" —see also condition ii) on
page 64. Each ¢ = ({,¢) € R*M x R*P-1 = JRL corresponds in this way to a
rational function ), given by:

M
Q(¢) = E kam (4.14)

The points in IRV which correspond to functions which are analytic on some
neighbourhood of D and which have a derivative which does not vanish on D
deserve special attention.

Definition 4.6 We define the poly-disc DM as the set of points (e R*M such
that:
C%m—l +<22m <1 m = l,.A,M

We define RM#(1),»K(M) 35 the set of points g=((c) € IRE such that:
i). (e DM

ii). the function £, corresponding to g by relation (4.14) has a derivative which

does not vanish on D

iil). (a) mq # my implies (3m, -1 # (2my—1 OT (2my F (2m,
(b) for every m € {1,.., M} thereis a k € {1,.., K(m)} such that ¢,k # 0

The space of functions Q; with g € RMK1),K(M) will be denoted by
TMK (1)K (M) -

Remarks 4.7 We make a number of remarks which are helpful later on.

We note that the spaces RMiK(1):K(M) and 7M:K(1)..K(M) {iffer only by the
nature of their elements; this can be checked on the basis of the assertion that a
rational function is completely determined by its poles and a value at a regular
point. We can characterize the space 7MK(1):-K(M) 3156 as follows: a function
Q is an element of 7M:K(1).K(M) if and only if:

i). Qis a meromorphic function on € with M poles which all lay outside D
ii). the order of the mth pole does not exceed K (m)

iii). © does not vanish on D

iv). Q0)=0  Im Q(0)=0
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In the following we will use a shorter notation and write simply D in stead of
DM | etc.; we implicitly understand that the numbers M and K(1), (M) are
fixed.

We make the important remark that R is an open set in /R, This can straightfor-
wardly be checked by means of the theorem that states that zeros of polynomials
in a complex variable depend on the coefficients in a continuous way ([58]). We
finally notice that the set R is not connected: there is no continuous path from
points ¢ € R with Z,A,’L’:l ¢1m > 0 to points ¢ € R with IR 1)

Before we rewrite equations (4.7) and (4.8), we introduce some more notation. Let
K denote the maximum of the numbers K(1),.., K(M). We define the mappings
¥ k=0,.,K+1by

fFognenpxr o ffgect
FEGY) = FB(Gmet — iCam, 1) m=1,..,M

Finally, we write @ € IR*N~lin stead of ax,k = 1,.., NV.
The equations (4.7) can now be written as

OEITONNEOR) (4.16)
where b is a mapping from R*M x €M to R*™. The equations (4.8) can be
rewritten as follows. We express Q([)((m—(t),t), m=1,.,M,l =1,..K(m)in
terms of the coefficients (. and c.., differentiate the first term in equation (4.8)
with respect to the variable ¢, use relation (4.7) whenever a time derivative of
(m appears, bring every term without time derivatives to the right-hand side
and skip one of the linear dependent real equations discussed in the end of the
previous section. This leads to an equation of the following form:

A(C(0.60) &t) = 4 (), 0, LD, o LR Da)  (417)

where:

i). Ais a mapping from RL to MZFP-1)x(2P-1)

(2P — 1) x (2P — 1)-matrices

, the space of real

K+2

Y e N
ii). dis a mapping from IR*M x R?P-1 x € M x .. x€ M x R?N-1 o [R?P1
Next we apply a proposition that will be proved at the end of this subsection.

Proposition 4.8 The matriz A(q) is regular for all g € R.
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The Hopper equation (4.1) for a mapping Q as in expression (4.2) is therefore
equivalent to the following set of equations:

¢ = b (o, £1¢wn)
o) = A7 (¢, e(t) 4 (C(8),et), L)1), -, S, 1), al0))

Let these equations be complemented by initial data

(€(0),(0)) = ((pr0) €R

We repeat that we assumed that the functions f and a,,n = 1,.., N are continu-
ous with respect to the variable ¢. One then shows that this initial value problem
has a unique solution by using the following arguments:

i). the functions ik, k=0,..,K+1 are continuously differentiable with respect
to ( and continuous with respect to ¢

ii). ais a continuous function on [/

iii). b,d and A are continuously differentiable functions: they depend on their
arguments in a rational way

iv). an initial value problem of this type has a unique maximal solution ([19])

Corollary 4.9 Let f be a continuous function on D x I that is analytic on D
for all fized t € I. Let ap,n = 1,..,N be continuous functions on I (a; real
valued). Let Qg be a rational function such that all singularities of Qo and all
zeros of Q) lay outside D. Then the Hopper equation (4.1) with initial data Qo
has a rational solution. This solution is unique in the class of normalized, smooth
time-dependent locally conformal and rational functions with a time-independent
numbers of poles.

The last part of this subsection is devoted to the proof of Proposition 4.8. We
first prove two lemmas.

Lemma 4.10 Let g = (Q,g) € R and let z € IR*F-1 satisfy é(g) z=0. Let Q
denote the function corresponding to q (so: Q = Q,) and let g denote the function
corresponding to ((,z) (so: g = Q¢ q))- The function ¢ defined by

6=0¢ + Q7 (4.18)

is analytic on an open domain that contains D.
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Proof

Part 1. The functions §) and g are both analytic on an open domain that
contains D. More precisely, the rational functions  and ¢ are analytic on
C\{1/¢1,-,1/Cp}. So, the function ¢ is analytic on €\{(y,..,Cpr, 1/Cry oy 1/ (M)
As g = ({,¢) € R implies ( € D and hence, |(n] < 1,m = 1,.., M, it is sufficient
to p_rove—fhat ¢ is analytic_on D.

Part 2. We consider the homogeneous Hopper equation, i.e. equation (4.1) with
f identically zero:

6(C,1) = DUC V(1) + Q¢ HRC 1) (4.19)

where it is understood that 6 is an analytic function on D for all ¢t € 1. We
substitute the Ansatz (4.2) into this equation and get equations (4.7) and (4.8)
with fO(Cn(t),1) = 0 for all m = 1,..,M and all | = 0,..,K + 1. So, the
equivalent equations (4.16) and (4.17) in this case reduce to

() =b(c),0) =

(¢(t),c®) &) = d (¢(8),¢(1),0,,0,0) = 0

Conversely, if ¢ : t € I — g(t) = (((2),c(t)) € R satisfies these equations, then
Q1) is a solution of the homogeneous Hopper equation (see Corollary 4.3). One
checks that —because only first order derivatives with respect to the variable ¢

appear in the calculations— the following assertion is also true:
if g:t €I g(t)=(((t),c(t)) € R is such that

{0)=0  A(¢(0),¢(0))&(0) = 0 (4.20)

then the function Qq(t) satisfies the homogeneous Hopper equation at ¢ = 0; i.e.
the function 6((,t) defined by (4.19) —with Q((,t) = Q(y)(¢)- is analytic on D
fort = 0.

Part 3. Let g = ((,c) € R and let z € IR*P~1 satisfy A(g)z = 0. As R is an
open set of RE (se—e Remarks 4.7), there is an ¢ such that the mapping

g:teIm g(t) = ({(1),c(t) = (e +at) € R

is such that g(¢) € R for all t € (—¢,¢). We note that this mapping is such that
relations (4.20) hold. It then follows from Part 2 that the function ¢ defined by

$(0) = Q) (O 1) () + L (O 2) ()

is analytic on D, where it has been used that

||>>

8
bt ( MO) Qgaen(€) = ¢ (€)

The assertion in the lemma follows. O
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Remark 4.11 We sketch an alternative proof of Parts 2 and 3. It has been
stated in Part 1 that the function ¢ is analytic on €\{(i,..,C(ar, 1/C1y -, 1/}
Moreover, if ¢ has a singularity in ( = (,, € D,m = 1,.., M, then this singularity
is a pole and the order of this pole does exceed K(m) + 1. This implies that ¢
is analytic on an open domain that contains D if the following relations hold for
al me{l,.,M}and all n € {1,.., K(m)+ 1}:

1
ori

FC- T80 d¢ = (4.21)

Ym

where v,,,m = 1,.., M is a closed Jordan curve in D such that (,, is inside v,
and (; is outside v,, if [ # m. We substitute relation (4.18), calculate the integrals
as we did in the previous section and find:

1

5 $C=Tor () de =

Ym
K()

s () ()|

form =1,.,M and n = 1,.., K(m) while the integrals in the left-hand sides of
(4.21) with n = K(m)+1and m = 1,.., M vanish. One shows by straightforward
calculations that the relation A(g) z = 0 implies that the right-hand sides of
identities (4.22) vanish for all m = 1,.., M and all n = 1,.., K (m) .

K(m)—n

%)

~

k=0 =Cm.

(4.22)

—_
<.

Next we prove an important lemma which has already been used in Section 3.4.

Lemma 4.12 Let ¢,Q and g be analytic functions on D and let ¢, and g’ be
continuously extendable to D. If Q' does not vanish on D and if

$(¢) = Q(Q)g'(¢) + '(O)9(0) (4.23)

for all ( € D, then constants C; € IR and Cy € € exist such that

g=1C1Q+ C, (4.24)
Proof
We define functions h, f and p on D by
$(¢)
h() = 4.25
©= g (4250)

1160 = (200 () -7 (-0 + AL - w00
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—(ﬂ'(<>g,((?)+g<<>)( <<>+Q(<>(g,(é.)))—m> (4.25b)
(6,0 = 28 _ 5y - o2 (4.250)

We note that the functions k and p are continuously extendable to D. We also
note that h is analytic on D while f and p are real analytic on D as they are
sums of products of analytic and anti-analytic functions. In particular, f is
differentiable and we can apply Gauss’ theorem on each disc D, with 0 < » < I:

/ Re (0¢f(¢.()) /Re reie,re_ig)E'_if)) do (4.26)

We rewrite the integrands in this relation. First we calculate 9, f. We omit the
variables and stress that Q,7, etc. denote the anti-analytic functions obtained
by complex conjugating 2, g, etc.; so Q is not the function defined in Definition
3.16. We get

def = Q@ <—§+§é—ll _ h)—+(§2@—h_) (ﬁ (g_)_ h')
5 (+008)-3)- (57) (+9(5)

and this leads to

Re & f = [ (4.27)

Next we rewrite the integrand Re fe™*®|5p, in the right-hand side of relation
(4.26). We again omit the variables, we do not indicate that we restrict the
functions to 8D, and find

Re fe~* =

=d (¢ d d—~ . d
— | % —h—-=i—0—i—7) ] =
dé (Q > T Q’ldé) ’d99>>
2 d 1 d
== Im (g@p) 70 (Re p Im p) (4.28)

We substitute the relations (4.27) and (4.28) into relation (4.26), integrate by
parts and obtain for all positive 7 < 1:

{/hte)

dé
8D,

2m
dv = Re/ ¢?(pg")
0
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We let 7 approach to 1. The right-hand side vanishes as both ¢’ and p are
continuous on D and as p restricted to 8D equals zero as follows from relations
(4.23) and (4.25c¢). This leads to the following identity on D:

1\
— g_ Y
n(%) =

One then argues that this implies the existence of a constant C € € such that
g/ — CQ/

It follows from this relation that constants C and Cj exist such that ¢ = CQ+C,.
Substitution of this relation into relation (4.23) leads to Re C = 0. a

Remark 4.13 If Q is an univalent function on D such that ” can be extended
continuously to D and such that €’ does not vanish on D, then this result can
be proved alternatively as follows.

We define functions ¥ and ¢ on D by

¢
WO=-[ o4 FO =90
Let G denote the image of D under Q. We define functions x and ¢ on G by

x(2) = X(Q7(2)) p(z) = 927 (2))

Finally, we define the functions p and v according to formulae (2.12). It follows
from Remark 2.1 that p and v satisfy Stokes’ equations. Moreover, one checks that
the homogeneous boundary condition is fulfilled; i.e. T n = 0 on 3G as follows
from the easily established relation Z¢’ + % + x’ = 0 on &G and relation (2.70).
This implies ([72]) that p is constant and v is a rigid body motion. Relation
(4.24) can then be established by considering the homogeneous Hopper equation
(4.19) for a fixed t.

Remark 4.14 The condition in Lemma 4.12 that  has a non-vanishing deriva-
tive cannot regardless be omitted as the following counterexample shows. Let
the functions 2, ¢ and ¢ be defined by

Q) = V¢ +¢? W)=V~ ) =0

One easily checks that relation (4.23) holds but that there are not any constants
Ci1 € R,Cy € € such that relation (4.24) holds.

Remark 4.15 If we substitute relation (4.24) into relation (4.23), we find ¢ =
CyY on D. As ¢ and Q' are both analytic on D, this implies ¢ = C2Q’ on D.
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One checks that this in turn implies that relation (4.24) holds on D and not only
on 8D (where it is understood that { denotes the complex conjugate of Q). We
did not find a way to prove this result directly and we believe that this is not
easy; the proof of this assertion may be connected with the following exercise: let
the real functions  and v on an open simply connected domain in G C IR? and
their product wv be harmonic on G, show that if u is not identically zero, then
constants ¢y, ¢y € IR exist such that v = ¢yu 4 ¢, ([15]). We finally note that for
example: ¢,Q and g analytic on D and continuous on D and ¢ = Qg + Qg on
dD does not imply ¢ = Qg + Qg on D (take e.g. Q(() = g({) = ().

The previous lemmas enable us to prove Proposition 4.8.

Proof of Proposition 4.8

Let ¢ = (¢, c) be an arbitrary point in R and let z € IR*F~1 satisfy the equation
A(g) z = 0. Let  and g be the rational functions corresponding to ¢ € R and
(C,—i) € D x IR*P~1 respectively. It follows from Lemma 4.10 that the functions
Q, g and the function ¢ defined by (4.18) satisfy the conditions of Lemma 4.12.
So, constants Cq € IR,Cy € € exist such that

g =112+ C
As the functions © and g are normalized by
Q0)=g(0)=0 Im Q'(0) = Im ¢'(0) = 0

we conclude that the constants C7 and C, and hence g are identical to zero. As
Gy 7 L I B9 # my (see condition iiia) of Definition 4.6), this implies z,,x = 0
for all m = 1,..,M and all £ = 1,..,K(m) and hence z = 0. So, A(gq) z = 0
implies z = 0 and it follows that A(q) is regular for all ¢ € R. o O

Remark 4.16 It has already been stated that the proof of Proposition 4.8 is
based on the Lemmas 4.10 and 4.12 which in turn are based on the fact that the
only solutions of boundary value problem (1.8) with v = 0 are the rigid-body mo-
tions. So, we can state in retrospect that the set of differential equations obtained
by substitution of a rational function into a Hopper equation is uniquely solvable
because of the linear structure of these equations and because the solutions of
the homogeneous Hopper equation (4.19) correspond to rigid-body motions which
can be suppressed by normalization.

4.2.2 Functional dependency

We consider Hopper equations where the functions f and a,.n = 1,.., N depend
on Q in a functional way. As far as the solvability of equations (4.7) and (4.8)
is concerned, we can repeat the same arguments as in the previous subsection
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with the exception of the arguments i) and ii) on page 72. In this subsection
we present sufficient conditions on the functions f and a,,n = 1,.., N for the
equations (4.7) and (4.8) to be solvable.
The standard norm on R C IR can be carried over to the space 7 (see Definition
4.6 and Remark 4.7):

[

4

ol =1g;, — g,

Let A denote the space of analytic functions on D.

Definition 4.17 A mapping
F:QeT f[Q]E.A

is called Lipschitz continuous if a constant C exists such that for all ,,Q, € T,
allme{l,.,M}and all k € {1,.., K(M)+ 1}

f[(!;)] ( 79)) - f[((lzcz)] ( 53))} < C | - Q|

where it 1s understood that:

M K(m)

GO=>Y 3 O —

m=1 k=1 1*(73)()

A mapping
a: ()eTxI — aqgqt)el

is said to be Lipschitz continuous if it is continuous with respect to the variable
t and if a constant C exists such that for all Q;,Q, € 7 and allt € [

o, () = ey (8)] < C 121 - Qo] (4.29)

Theorem 4.18 Let F be a locally Lipschitz continuous mapping from T to A
and let an,n = 1,.., N be locally Lipschitz continuous mappings from T x I to
C (a1 from T x I to IR ). Let Qo be rational function such that all singularities
of Qo and all zeros of QU lay outside D. Then the Hopper equation (4.1) with
wnitial data Qo corresponding to F and a,,n = 1,..,N has a rational solution.
This solution is unique in the class of normalized, smooth time-dependent locally
conformal rational functions with a time-independent number of poles.

Proof
We define mappings ik,k =0,.,K+1by

fFig=(geRr — ffgec
fk (q) ((l; (C2m l_lch) m = ]-7"aM
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It follows immediately from the Lipschitz continuity of F and the property that
fiy is analytic on D for all Q € 7 that the mappings ik,k =0,.,+1 are
Lipschitz continuous functions on R. We define the mapping a by

a: (gl)eERXT —

a(g,1) = (a1,[q,)(1), Re azq (1), -, Im a q,)(1)) € R*N-T

The initial value problem given by the Hopper equation (4.1) corresponding to F
and an,n = 1,.., N with initial data g, in the notation explained in Subsection
4.2.1, can now be written as

) =b (¢, f’mm)

9(0) = g,
where ¢(t) = ({(t),c(t)) and where g, corresponds to 9. One shows that this
set of differential equations has a unique solution by using arguments similar to
those on page 72. O

We consider the moving boundary problem for Stokes flow driven by surface
tension with initial data Qg € R. It follows from Proposition 3.20 and Theorem
4.18 that this problem has a local rational solution if the mapping F : Q € 7 —
Fiq) defined by Definition 3.15 is locally Lipschitz continuous. We show that this
mapping F has this property.

An arbitrary function Q € 7 can uniquely be written as

M K(m) Ck

‘Q(C Z Z ka <)

m=1 k=1

The values of F(2) = Fg; in the points (m € D,m =1,..,M can be found by
applying Schwarz’ integral relation ([63, 35]):

Fia)(Gm) = ﬁ f m <z——l—é_m ~ 21—Z> dz

|z|=1
M K() IR
1 2 1 1
= SN e . dz (4.5
= =R YT (o m) e e
lz|=1 "= /=

The values of the kth derivative of Fig) in the points (m € D,m=1,..,M can be
found by differentiating this relation:

zl‘l

M K(l) L1 -

ZZ]QJ — (z)

=1 53=1

(z=Cu)~ 0 dz  (4.31)
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Roughly speaking, the integrands of these expressions are smooth functions of
the coefficients (. and c.. as long as the derivative of Q does not vanish on 9.D.
To be more precise, it follows from these expressions that for every Qp € 7 an
open neighbourhood A/ C 7 and a constant C exist such that for all Q € NV, for
alme {1,..,M}and all k€ {1,.., K(M)+ 1}

(]) (@) _ ptk) (7=
Floo) (Cm ) - Fig (Gn)
The other moving boundary problems mentioned in the Sections 3.3 and 3.4 can
be treated analogously.

<C % -0

Theorem 4.19 Let Qg be a rational function such that all singularities of Qo and
all zeros of QU lay outside D. Then the moving boundary problems for Stokes flow
driven by surface tension and multi-poles and for Hele-Shaw flow with initial
data Qo have a local rational solution. This solution is unique in the class of
normalized, smooth time-dependent locally conformal rational functions with a
time-independent number of poles.

We end this section by a discussion why the results obtained so far are local
results. Let
y:tel - ’y(t):Qq(t)ET

denote the unique maximal solution of a problem mentioned in Theorem 4.19.
In general, the maximal interval [ is a strict subset of IR and we ask ourselves
what can happen at the end point T4 of the interval I = (T_,T4) in these cases.
It follows from the theory of ordinary differential equations ([31]) that in some
sense

Q) — 0T if 11Ty

Roughly speaking, the boundary 07 has three parts (see Definition 4.6) and we
have the following possibilities in which way v approaches this boundary:

i). One of the singularities of Q,(;) moves to 8D as t | ;. We remark that
the singularities of {2,,) move in the extended complex plane according to
the relations (4.7). It follows from these relations that the singularities
move away from D if the real part of the function f is non-negative on
D; we will discuss this property in more detail in Chapter 5. So, for the
moving boundary problems for Stokes flow driven by surface tension and
multi-poles and for Hele-Shaw flow with a source, this possibility does not
occur; i.e. solutions of these problems in 7 cannot approach that part of
the boundary 07 which consists of functions with singularities on d.D.

ii). The function Q. approaches a function which has a derivative which van-

ishes somewhere on D. Assume that the following limit exists:

im Q) = Qqry) € 9T
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We distinguish two cases (see e.g. [27]):

(a) The function Q) approaches the function which is identical to zero;
that is: Qi(T+)(<) = 0. This cannot happen if a; is non-negative as
follows from relation (4.13).

(b) One of the zeros of Qg(z) moves to 9D as t | Ty. There are two
reasons why the solution cannot be extended regardless beyond this
point. First, the matrix A(g(Ty)) may be singular and the equations
(4.17), and hence the equations (4.8) and (4.1), may be incompatible.
Secondly, the function F’[Qq(T+>] may not exist.

iii). Two singularities of .,y move to each other or a singularity vanishes as
t 1 T1. We may argue that this cannot occur in general by considering the
time inversed problem. We will give a strict proof of this result in the next
chapter.

Roughly speaking, the main reason why a non-global solution of a Hopper equa-
tion cannot be extended is the formation of cusps (see [38, 40]).

4.3 A class of global solutions

We showed in the previous section that the moving boundary problem for Stokes
flow driven by surface tension has a local solution if the initial data is a rational
function. In this section we show that this problem has a global solution if the
initial data is a rational function of a particular type.

We reconsider the equations obtained by substitution of a partial fraction map-
ping in Hopper’s equation. We showed in Example 4.5 that Hopper’s equation
for a mapping Q parameterized as in expression (4.11), reduces to a set of M dif-
ferential and M algebraic equations. Before we show that these equations have
a global solution under certain restrictions on the initial data, we study the al-
gebraic equations (4.12).

We define T and D < for an element z = (z4,..,zp) € € M by

z =(Z1,-,TMm) D . = diag(z1,..,z0m)

We define the hermitian M x M matrix M(() for an element { € DM by
Mu(¢) =1 - GG)™? kil=1,..M

The M algebraic relations mentioned above can now be written as

DawM(((1)) A(t) = ¢ = DamM(((0)) A(0) (4.32)
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Before we proceed, we note that the matrix M(() is positive definite for all

(€ DM such that m, # my if (ny # (m,. The proof of this assertion runs as
follows. First one proves the following inequality for all ¢ € DM and all z € CM:

where B is the matrix defined by
B = (¢)*! kil=1,...M

Secondly, one shows by induction that

M

jdet B =TT o~
k=
kl<ll

We show that the equations (4.32) with
Am(O)GR.;. Cm(O)E(_lvl) m=1,.,M

have exactly one proper solution. To be more precise, we prove the following
lemma.

Lemma 4.20 Let q € JR]):[ and let M be a positive definite, symmetric M x M
matriz with positive matriz elements. The following set of M quadratic equations:

D (g g) =q (4.33)

has ezactly one solution in ]Ri”. This solution depends on the matriz elements
of M in a continuously differentiable way.

The proof of this lemma is based on the following lemma.

Lemma 4.21 Letga,q € ﬂ%y and let M be a positive definite, symmetric M x M
matriz with positive matriz elements. The following set of M quadratic equations:

D:(Mz+a)=g (4.34)

has ezxactly one solution in JRQ”. This solution depends on a in a continuously
differentiable way.

Proof
Let P be a permutation matrix and define

(B}
Il
I~
[Es)
=
[l
I~
=
[igs]
1

&
o
ISH

T

I

a
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One shows that

Mo

D:

I

“ =D

and this leads to the following equivalency:
Qz(&@%‘@) =¢ if and only if Qi(£§+g) =
It therefore suffices to prove the assertion in the lemma under the assumption
g <q if k> (4.35)

We prove this assertion by induction. The case M = 1 is trivial. Assume that
the assertion holds for a certain N € IN. We show in four steps that the assertion
then also holds for M = N + 1.

Step 1. Consider the following equations:

N
Tk (EMklxl+MkN+]t+ak> = qx k=1, N;22>0 (4.36)
=1

As the assertion is assumed to hold for M = N, there is a unique differentiable

curve
y i t€ Ros = (1) =z(t) € RY

such that z(t) satisfies equations (4.36).
Next consider the following quadratic equation for zy41:

N+1
IN+1 (Z Mpy11z1 + aNH) = gN+1 (4.37)
=1

with z; > 0,/ = 1,.., N. This equation has exactly one positive solution given by

_ _ \ 2 12\ 7! .
2v41 = f(2) = 241 (Blz) + (h(2)? + C)/?) (4.38)
where
N
h(e) = ZMN'HW’C""‘INH C=4qnnMyiins
k=1

We define a function ¢ by
g i t€Roy —g(t) = flz(t))-tER

This function g is continuously differentiable. One checks that g(Zp) = 0 if and
only if Z(t0) = (z(t0),t0) € IRfH is a solution of equations (4.36) and (4.37).
So, the number of zeros of g equals the number of solutions in lRf‘;’ of equation
(4.34) with M = N + 1.
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Step 2. We show that g has at least one zero. We differentiate the function f
with respect to zp, k= 1,..,N:

df(z)
0z

7 (k@) + (a2 + €))7

= =2qny1 Mgk (h@)z * C>

All partial derivatives are negative and this implies that f on R(’)\{+ is bounded
by f(0). We conclude that

9(f(9) = f(=(£(0))) - f(0) <0

As g(0) > 0 and as g is continuous, it follows that g has at least one zero.
Step 3. We show that ¢ is monotonously decreasing and therefore cannot have
more than one zero. We differentiate the relations (4.36) with respect to ¢:

:it (t)< ()>+$k t) (ZMHZI )+MkN+1) =0

=1

and find forall k = 1,.., N

l

. uw< )
ax(t) = — > Mugi(t) + My

qk =1

2
k() zx(t)?
= M 1) Mz, — M
Min 41 (Z: km() QkMkNH (Z . ) g N
Hence
s d
(1) = % (F(a(t) “”‘Zau -1

(4.39)

The first two terms in the right-hand side of this identity can be shown to be
negative by means of the positive definiteness of and the symmetry of the matrix
M. We omit the variables and show that the third term is bounded by 1 by using
the symmetry of M and inequality (4.35):

_Z Of 2} My N
o 0T g
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N

= 2qn 41 (R + C) V2 b (B2 4+ CYHTTY o
k=1 v

Al gN ~ T
—2 +1,2 772 2 2
<h E ” T My < (2 MN+1k-$lc> (E A4N+1klk>
k=1 k=1 k=1

2 Min 1 My g1k

<1

We conclude that ¢'(t) is negative for all ¢ > 0.

Step 4. Now that we have shown that equation (4.33) with M = N + 1 has
exactly one solution in Rﬁ_’"’l for all a,q € IRfI\_/H, it remains to be shown that
this solution depends on a in a continuously differentiable way. We define the
function £ by

F:(z,a) € RYY' x R{*' — F(z,0)= D:

(M z+a) € RN

This function F is continuously differentiable. Its Jacobian J has matrix elements

8F- z, N+1
Jyilz,; 0) = # = b (Z Mpz, +a | +2eMy kI=1,.,N+1
n=1

and can therefore be written as

J(z,0) = Dimera) + D:M=D- (&'_ D(nzta) + &)

We note that D is regular for all z € IRJXJrl while the diagonal matrices D"
and D (Mz+a) are positive definite for all (z,a) € IRQ'H X Rf‘”. The previous
results and the inverse function theorem then imply that the solution of equation
(4.33) with M = N + 1 depends on a in a continuously differentiable way. O

This lemma enables us to prove Lemma 4.20 in a. way which resembles the proof
above but differs from it in some subtle aspects.

Proof of lemma 4.20
Consider the following equations:

M-1
Ty (Z Mklzz-{—MkMt) = qx k=1,.,.M—-1;t>0 (4.40)
=1
It follows from Lemma 4.20 that there is a unique differentiable curve
y:te Ry — (1) =2(t) € RY™

such that z(t) satisfies the equations (4.40).
Next consider the following quadratic equation for zps:

M
T M (Z MMkzk) =qum

kel
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with z, > 0,k = 1,.., M — 1. This equation has exactly one positive solution
given by

ey = f(z) = 2qu (h(z) + (h(z)? + C)) (4.41)
where

= Z My, C =d4qmMmm

One checks that the number of solutions in R} of equation (4.33) equals the
number of zeros of the function ¢ defined by

g:leRy —g(t)=f(z(t))—te R

One shows that g has exactly one zero as in Step 2 and 3 of the proof of Lemma
4.21. One then shows that the solution z € H%Q{’ of equation (4.33) depends on
the matrix elements of M in a continuously differentiable way as in Step 4 with
some small modifications. a

We use Lemma 4.20 to prove the following proposition.
Proposition 4.22 Let Apog € Ry,m=1,..,M, let (0 € (-1,1),m=1,..,. M
and let Qg be defined by

‘CZ 1—<mo<)

The moving boundary problem for Stokes flow driwen by surface tension with
inttial data Qg has a global solution. This solution satisfies

tli}n;()Q(C,t) =/A/7r( for all ( € D (4.42)

where A denotes the area of the image of D under Qg.

Proof
Before we start with the actual proof, we present some definitions and estimates.
We may assume (m, , # (myp if Mmi0 # m20. We define

Ll m°z(1—<mo<no)

1 .
€=3 (w%‘.‘.‘lm 1- Icm,ol>

Mz{ée[_l+5’l_£]M|<m17é€mz ifm17ém2}

Lemma 4.20 enables us to define A(({) for each ( € DM as the unique solution in
IRi’I of the M quadratic equations

D ao (M(Q) AQ) =4
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We finally define the function QQQ € DM by

M
Zz CmC

Next we derive some estimates. We easily obtain the following inequality for all
( € 9D and all ( € DM:

M Am(g)

%) =

£ M Am(Q)An(g) 2 £ M 1/2 .
>_(Z (1= (mGn)? ZZ(Z%> = VA

|
N

for all ( € 0D and all { € DM The first inequality implies that the function
Fiq, is properly defined for all ¢ € DM 1t follows from these inequalities and

the maximum principle for harmonic functions that

e2/1/A < Re Fa,)(0) < 2e7 /1 /A (4.43)

for all { € D and all € DM . Finally, it follows from Schwarz’ integral relation
(see also expression (4.31) with k& = 1) that:

‘F{Qd(ém)’: AT | < S fiA ()

l2|=1
for all m € {1,.., M} and all { € D.
We now come to the actual proof of the proposition. It follows from Proposi-
tion 3.20, the previous sections and the definitions given above that the moving

boundary problem for Stokes flow driven by surface tension with initial data Qg
has a global solution if the following initial value problem has a global solution:

Cm(1) = =Cn(1) Flg 1)(Cm (1)) (4.452)
(m(0) = Cmyo (4.45b)

The right-hand sides of the differential equations (4.45a) depend on ( in a Lip-
schitz continuous way as follows from the considerations in the previous section
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~especially expression (4.30)—and Lemma 4.20 which states that A({) depends on
{ in a continuously differentiable way. It then follows from the theory of ordinary
differential equations that the initial value problem (4.45) has a local solution;
see also Theorem 4.18. Now assume that the maximal solution ¢ of initial value
problem (4.45) is not global. That is (see [31]): assume that a T € IR, exists
such that for each compactum K C DM there is a t € (0,T) such that ((t) € K.
We show below that for every T' € IR, a compactum K C DM exists such that
((t) € K for all t € [0,T) and this contradiction leads to the conclusion that the
solution of the problem is global.

Let T be an arbitrary positive number and assume that the solution { of initial
value problem (4.45) exists for all ¢t € [0,7"). We first note that inequality (4.43)
implies

d
ZlCn ()] = =G ()] Flay)(Gm(1)) < —e%y/7/4 <0 (4.46)
for all m € {1,.., M} and all ¢ € [0,T). As ((0) € DM, this leads to

{(t) e DM for all ¢ € [0,T)

Secondly, we show that a constant C' > 0 exists such that

I(m1(t) - (mz(t)l 2 C (4'47)
for all t € [0,T) and all my,m, € {1,.., M} with m; # mq. Therefore we consider
the following relation:
éml (t) - C’mz(t) = _<m1 (t)F[Qs(t)](<m1 (t)) + sz(t)F[Qg(g)](Cm (t))

F[Q<(,_)](<m1 (Z)) - F[QC(l)](sz(t))
= _(le (t) - (mz(t)) F[Qs(t)](cml(t)) + (m'z (t) = (m (i) — (m _(i)

It follows straightforwardly from the inequalities given above that:
F[Q((;)](le (t)) - F[Q((,)](le (t)) 2 4
= y <(C+ /A

ij(t) - sz(t)
for all my,my € {1,..,M} and all t € [0,T). One checks that it follows from
this inequality that a constant C > 0 as in inequality (4.47) exists indeed. We
conclude that there is a compactum K such that {(t) € K for all t € [0,T").
We repeat that this leads to the conclusion that the solution of the problem exists
for all ¢ > 0. It follows from inequality (4.46) that [(,(t)] | 0 if ¢ T oo for all
m € {1,.., M} and this implies (4.42). a

F[Q_q_(t)]((ml (t)) + sz(t)




Chapter 5

Lowner-Kufareev equations

In this chapter we study several types of Lowner-Kufareev equations. We show
in Section 5.1 the existence and uniqueness of solutions of initial value problems
corresponding to linear Lowner-Kufareev equations; some of these results are
known in literature ([69, 23]). In Section 5.2 we show the existence and uniqueness
of solutions of initial value problems corresponding to what we call extended linear
Lowner-Kufareev equations. We also show how isolated singularities in the initial
data propagate. In Section 5.3 we reconsider Hopper equations. We first remark
that a Hopper equation can be considered as a kind of extended Lowner-Kufareev
equation for the function = = Q'Q). The relation between the functions = and Q
is treated in Subsection 5.3.1. We then prove in Subsections 5.3.2 and 5.3.3 some
properties of solutions of Hopper equations on the basis of the results obtained
in Section 5.2. We finally return in Section 5.4 to quasi-linear Lowner-Kufareev
equations —already introduced in Section 3.2—and prove a result on the solvability.

5.1 Linear Lowner-Kufareev equations

The existence and uniqueness of solutions of initial value problems corresponding
to linear Lowner-Kufareev equations are based on the following result (see also
(49, 50]).

Lemma 5.1 Let f be a continuous function on D X I such that f is analytic on
D for all fized t € I. The initial value problem

Qb((at) = _99((7t)f(90((’t)’t) (51&)
©(¢,0)=¢ (5.1b)

has a unique mazimal solution. This solution is univalent for all fized t € 1.

Proof
One shows that f’ is a continuous function on D x I by using Cauchy’s integral

89
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formula. This implies that f is locally Lipschitz continuous on its domain D x I
and it follows from Picard’s theorem ([18]) that initial value problem (5.1) has a
unique maximal solution for all fixed ( € D.

Next we show that for all { € D, thereis an € > 0 such that ¢ is analytic at { for
all fixed t € (—¢,¢). It follows from the theory of ordinary differential equations
that for all ( € D, there is an ¢ > 0 and an open neighbourhood A of { such
that the sequence of functions ¢,,n € INy defined on V' x (—¢,¢) by

QDO(C’t) = (
99n+](<7t) =(- ~/O @n(CaT)f((Pn(CvT)’T) dr

converges uniformly on compacta in NV to ¢ for all fixed t € (—¢,¢). One shows
by induction that ¢, is analytic on AV for all fixed t € (—¢,¢) and all n € IV.
This implies that ¢ is analytic in ¢ for all fixed ¢ € (—¢,¢) ([27]). It then follows
from set theoretical arguments that the maximal solution of initial value problem
(5.1) is analytic on its domain for all t € 1.

In order to prove that the function ¢ is injective on its domain for all fixed t € 7,
we consider the time-inversed problem. It follows from the arguments given above
that for all fixed T' € I and all fixed ¢ € D, the initial value problem

(2,1, T) = (2,8, T)f((2,1,T), T — 1) (5.2a)
¥(2,0,T) = z (5.2b)

has a unique maximal solution. Now, let (;,{2 € D and T' € I be such that
©((,T) = ¢((2,T). One straightforwardly checks that the functions 1, and 1,
defined by

(1) = 9(G1, T - 1) Pa(t) = (G2, T — 1)
both satisfy initial value problem (5.2) with 2 = ¢((;,T) = ({2, T) on an interval
that contains 0 and 7. The uniqueness of the solution of initial value problem
(5.2) implies

G = 9(61,0) = 9i(T) = %2(T) = ¢((2,0) = (2

We conclude that ¢ is injective on its domain. a

Lemma 5.2 Let f be a continuous function on D x I such that f is analytic on
D for all firedt € I. Let ¢ denote the mazimal solution of initial value problem
(5.1). The function o defined by

_ 1
-~ B(¢,)

a(¢,1)
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s meromorphic with only a first order singularity at co for all fivred t € I and is
the unique maximal solution of the following initial value problem:

d’((,t) = O’((,t)?(d((,l),t) (533)
0(¢,0)=¢ (5.3b)

Proof
We note that differential equation (5.3a) is satisfied as

N S N (SR =
6(¢,1) = —==—=== = === 0((, 1) f(a((, 1), 1)
(p(1/¢, )2 w(1/(,1)
The assertions in the lemma then follow immediately from Lemma 5.1. a

Initial value problem (5.1) will turn out to determine the characteristics of Léwner-
Kufareev equations; this will become clear in the proof of Propositions 5.6 and
5.9. The initial value problem (5.3) will turn out to play an important role in the
study of Hopper equations; this will become clear in Section 5.3. It is therefore
important to know the image of the functions ¢ and o.

Definition 5.3 Let f be a continuous function on D x [ such that f is analytic
on D for all fixed t € I. Let ¢ be the maximal solution of initial value problem
(5.1) and let o be the maximal solution of initial value problem (5.3). We define
I as the interval on which the maximal solution ¢ exists for a fixed ( € D. Let
B be some subset of C. We define the sets ¢;(B), ¢(B),o,(B) and o(B) by

pu(B)={z€D|3CeBnD: tel, o((1)=2z2}
o(B)={(z,t)e DxI|3¢€eB: tel, ¢(1t)==z}
o(B)={ze€€\D|3¢(e Bn(C\D): tel o((,t) = 2}

o(B) = {(2,t) € (C\D)x I|3¢€ Bn(C\D): tel z o((,1)=2}

The set 04(B) can alternatively be defined by
o(B) = R(p:(R(B)))
where R denotes reflection with respect to the unit circle (see Definition 3.16)

The figure on the next page illustrates this definition.
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99!0(4) =0

Lemma 5.4 Let f be a continuous function on D X I such that f is analytic on
D for all fizedt € I. If M € Ry +,To € I+ = INIRy 4+ and r € (0,1] are such
that

t) < 4
D% sup Re f((,t) < M (5.4)
then
{(,t) € D x[0,To] | |2] < re™*} C (D) (5.5)
Proof

Consider initial value problem (5.2) with f restricted to D, x I for a T € [0, 7o)
and a fixed z with |2| < re”™MT. We show that the maximal solution of this
problem exists on an interval that contains [0,7]. Assume that this is not true,
i.e. assume that the maximal interval is [0,77) with T3 < T. It follows from the
theory of ordinary differential equations ([31]) that for every compactum K C D,,
there is a t € [0,7}) such that ¥(z,¢,T) ¢ K. However, as the solution of initial
value problem (5.2) satisfies

Y(z,t,T) = sedy IW(z7T).T=1)dr
for all ¢t € [0,T}), we find from inequality (5.4) that
[9(2,8,T)| < |2]eMT < 7

and this implies that there is a compactum K c D, such that »((,t,T) € K
for all ¢ € [0,77). This contradiction leads to the conclusion that initial value
problem (5.2) for all z with |2| < re=MT can be solved on an interval that contains
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[0,T]. Moreover, we have |(z, T,T)| < r.
Let z with |z| < re=MT T € [0,T0] be arbitrary. One verifies that the function
@ on [0,T] defined by

‘1‘9(1) = "/)(ZvT - tsT)

satisfies initial value problem (5.1) with ¢ = ¥(z,T,T) € D,. So: for all z with
|z < re"MT  there is a ( € D, such that (¢, T) = z. This is equivalent with
inclusion (5.5). O

Remark 5.5 It is clear that forall 7y € 74 and all » € (0, 1), thereisa M € R 4
such that inequality (5.4) holds. This implies {0} x I C ¢(D,) for all r € (0,1).
We state without proof, although it is straightforward, that ¢,( D) is a non-empty,
open, connected and simply connected subdomain of D for all t € [.

We notice that if the real part of f on [y is non-positive (i.e. 7 = I,M =0
and T arbitrary in inequality (5.4)), we get: D X [y C (D). We finally notice
that it can be shown in more or less the same way that if the real part of f is
non-negative, then I, C I for all ( € D.

Proposition 5.6 Let f be a continuous function on D X [ such that f is analytic
on D for all fizedt € I. Let Qg be an analytic function on D. The initial value
problem

Q(¢,1) = Q' (¢, 1) f(¢,1)¢ (5.6a)
(¢, 0) = Qo(¢) (5.6b)

has an unique solution on ¢(D). This solution s analytic on its domain ¢, (D)
for all fized t € I. If Qq is locally or globally univalent, then so is this solution
for all fized t € I.

Equation (5.6a) is called the linear Lowner-Kufareev equation. This result is
proved in a slightly different way in e.g. [69].

Proof

Lemma 5.1 states that the maximal solution ¢ of initial value problem (5.1) is
univalent on its domain for all fixed ¢ € I. This implies that we can define a
function ¢~ on ¢(D) by the relation

e (e(¢,1),1) = ¢

(One can alternatively define this function by ¢ ((,t) = ¥((,t,t) for all (¢,t) €
D x I for which the right-hand side makes sense.) We differentiate the relation
with respect to ¢t and get:

@ (@((, 1), 1) + o (@((, 1), 1)((, 1) =
O (0(¢,1),1) = 7 (@(¢, ), ) f(((, 1), 1) = 0
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One checks that this implies that ¢ satisfies the following partial differential
equation on its domain ¢(D):

= (C,1) = TGOS (5.7)

(It would be more natural to use the variable z in this formula in stead of { but
there are reasons to do not.) As |07 ((,t)| < 1 for all (¢,t) € p(D), we can define
a function Q on ¢(D) by

Q¢ 1) = Qo™ ((11)) (5.8)

It is easily checked that this function Q satisfies initial value problem (5.6). It is
clear that Q is analytic on its domain (D) for all fixed t € [.

The uniqueness of the solution of the problem is a consequence of the fact that
(D) is the so-called domain of determinacy ([32]). One can prove this uniqueness
directly as follows. Let  on (D) be a solution of initial value problem (5.6).
One easily checks that i

Z0(p((,1),0) = 0

and this implies that Q((,t) = Qo(@((,1)); i.e. the solution Q is identical to
the solution constructed above.

Let o be locally univalent on D; i.e. Qf does not vanish on D. As ¢ is in-
jective for fixed t € I, o’ does not vanish on ¢(D) and it follows immediately
from relation (5.8) that Q' does not vanish on ¢(D). In other words: Q is locally
univalent on its domain ¢;(D) for all fixed ¢ € I. In more or less the same way,
one proves that Q is globally univalent for all fixed ¢t € I if £ is globally univalent
on D. a

We will construct solutions of a particular type of linear Lowner-Kufareev equa-
tions in Appendix B by the method of separation of variables. These solutions of
initial value problem (5.6) may exist on a domain that properly includes ¢(D);
the following example shows that such extensions of the unique solution on ¢(D)
are not unique themselves.

Example 5.7 Let f on D x IR be identical to 1. One easily checks that the
domain ¢(D) in this case is given by

@(D)=DxIR_ U {(2,t) € Dx Ry 4| |2| < e '}
Consider initial value problem (5.6) with initial data given by
Q%) =vi-1 (€D
The unique solution Q on ¢(D) of this problem is given by

Q¢ 1) =/et( -1
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This solution can be extended outside ¢(D) in several ways by making branch
cuts for every ¢ > 0 from the points (e~ t) € d¢(D) to D x R..

The following lemma can be useful if the uniqueness of a solution outside (D)
is to be proved.

Lemma 5.8 Let f be a continuous function on D x I such that f is analytic on
D for all fixed t € I. Let » > 0 and let 2; and Q5 be functions on D, x I such
that Q7 and Q4 are analytic on D, for all fixed ¢t € I. If 1 and 5 both satisfy
initial value problem (5.6), then Q; and Q; are identical.

Proof

It is clear that the function Q = Q; -0 on D, X[ solves initial value problem (5.6)
with Qg identical to zero. It follows from Cauchy’s integral formula that there
are continuously differentiable functions a,,n € INy and continuous functions
Cnyn € INg on [ such that:

Q¢ 1) = Y an(t)(" flG 1) = ealt)C
n=0 n=0

Substituting these relations into initial value problem (5.6) with g identical to
zero, we get

in(1) = (1 = 620) znj ka(t)en—i(t)

k=1
a,(0)=0

for all n € INg. One shows by induction, using some standard results on ordinary
linear differential equations, that this implies a,(t) = 0 for all n € [Ny and all
t € I. So, Q is identically zero and this implies that Q; and Q5 are identical. O

We will study the quasi-linear Lowner-Kufareev in Section 5.4.

5.2 Extended linear Lowner-Kufareev equations

We call equation (5.9a) below an extended linear Lowner-Kufareev equation.
The existence and uniqueness of solutions of initial value problems corresponding
to such equations can be proved in more or less the same way as we did in
the previous subsection for the (non-extended) linear Lowner-Kufareev equation.
We consider in Subsection 5.2.1 the case where the initial data is given by an
analytic function Zg on an open subset of D. In the Subsections 5.2.2 and 5.2.3,
we consider the same initial value problem with initial data given by a function
=0 which is not analytic but is meromorphic or multiple-valued. We summarize
the results in Subsection 5.2.4.
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5.2.1 Regular Points
The following proposition on solutions of extended linear Lowner-Kufareev can

be considered as the analogon of Proposition 5.6.

Proposition 5.9 Let f and 8 be continuous functions on D x I such that f and
0 are analytic on D for all firedt € 1. Let B be an open subdomain of D and let
Zo be an analytic function on B. The initial value problem

2(¢,1) = (Z(G 0 F(G)C) +6(¢,t) (5.92)
Bl¢; 0) = Epl() (5.9b)

has a unique solution on @(B). This solution is analytic on its domain @((B) for
all fizedt € 1.

Proof
We define functions f and 8 on {((,t) € D x I |t € I;} as follows:
FGH = PG D0(G 1) + F(9(C 1)) 6(¢,1) = 0(0((:1),1)
Consider the following initial value problem for a fixed { € B:
2(6,1) = FGOEG D +0(¢,0) (5.100)
2(¢,0) = Zo(¢) (5.10b)

The differential relation (5.10a) is an ordinary linear differential equation and
the initial value problem has therefore a unique solution on /¢ C I. Solving this
initial value problem for all { € B and reasoning as in the proof of Lemma 5.1,
one shows that = is analytic on its domain for all fixed t € I.

Next we define the function = on ¢(B) by

2(¢,1) = Z(e7 (¢, 1), 1) (5.11)

We differentiate this function with respect to ¢, substitute the relations (5.10a)
and (5.7), and find:

8, 8) + E'(07(¢ 1), )9 (¢ 1)
1), 1)2(" (¢, 1), ) + (¢ (¢, 1), 1)
+E (07 (6 ), (G DA, 1)
= (f(¢ )+ FGOE(C ) + 06, 1) + Z(¢ ) F(EG )¢
= (E(GO D) +6(¢,1)
We conclude that the function = solves initial value problem (5.9). It follows
from relation (5.11) and the analyticity of the functions ¢~ and = for fixed t € [

that the function = is analytic for fixed ¢t € I. The uniqueness of the solution can
be shown by means of the arguments given in the proof of Proposition 5.6. O
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5.2.2 Poles and essential singularities

The function =g in the previous proposition is analytic on its domain. The next
proposition deals with a function =y which has a pole or an essential singular-
ity. The proposition can be formulated most easily if we agree that an essential
singularity is a pole of order co.

Proposition 5.10 Let f and 8 be continuous functions on D x I such that f
and 8 are analytic on D for all fizedt € I. Let (o € D and let N C D be an
open neighbourhood of (5. If Z¢ is an analytic function on N\{(o} with a pole of
order N € INy, at ( = (o, then the solution of initial value problem (5.9) has a
pole of order N at ©((o,t) for all fized t € I,.

Proof

It follows from Proposition 5.9 that the solution = of initial value problem (5.9)
is analytic on @, (M\{(o}) = @t(M)\@i({(o}) for all ¢ € I. This implies that for
all t € I¢,, there is a 7(t) € (0,1) such that = is analytic on the punctured disc
{CeD|0<|C—p(lo,t)] <r(t)} C D. It follows from Cauchy’s integral formula
that there are continuously differentiable functions d,,,n € Z on JI¢, such that

2 =Y da()(¢ = 0(Co, 1))

n=—0oo

for all (¢,t) € D x I such that 0 < |( — ¢((o,1)| < 7(1).
We derive a set of differential relations for the coefficients d_,,n € IN. Before we
do so, we note that there are continuous functions ¢,,n € INg on I¢, such that

(oo}

FG1) =) ea(®)(C = 9(Co,1))"

n=0

Let y(t) for all ¢ € I, denote a simple closed Jordan curve in ¢¢(N) enclosing
©(Co,1). Using relations (5.9a) and (5.1a), we get for all n € IV:

d 1

al) = 3 | 57 § EEHE = (6ot d

¥(t)

2_1{2 ]{ E(¢ (¢~ 9(Co ) dC
¥(t)

_ng;il f Z(¢,1)(C = 9(Coy )" 2(Co, 1) dC
¥(t)
. = ! \n—1

(1)
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(€0, )" %0(Cos ) f(0( o, 1), 1) dC

n—1

-z fE(C,t)f(c,t)C(C-v(co,t))”‘zdC

2T

(1)
$ (DIl 0,060, 1D = 960, ) G

n—1
2w

1—-n

(t)
- f 2¢O F(G (¢ = (o)™ dC
(t)

27

~

(G0, ) § Z(C OG0 = F0(G0r1) D) — (Gos )" dC
W(i)

=S § 3 L dac - el )
() =—00 [=0
t9(lor1) y{ 2 D et~ ol )T de
~(t) k=-0c0 I=1
= {1 =) Z d— (i (8) (1) + @(Cor D)ersr (1)) (5.12)
=0

We first consider the case where the order of the pole of =g is finite, i.e. N # oo.
We conclude from the calculations above that the set of functions d_,,n € IV on

I¢, solve the following initial value problem:
dn(t) = (1= 1) D d_guny () (ca(®) + (Co, et (1)) (5.132)
1=0
1 = n—1
— 2m Jv(0) :O(C)(C—CO) dC N = ]-)")N
d_»(0) { 0 ns N (5.13b)

As initial value problem (5.9) has a unique solution, there is exactly one set
of continuously differentiable functions d_,,n € IV on I¢, solving initial value
problem (5.13) and such that $°72; d_,(¢)(™™ constitutes an analytic function
on €\{0} for all fixed ¢t € I;,. Now we remark that it follows from the theory of
ordinary linear differential equations, and the continuity of the functions ¢;,1 €
INoy and ¢ with respect to t, that there are functions d_p,n € {1,..,N} on I,
such that

()= (1-n) i @ e + @l Dera()  (5.142)

d_n(0) = d_,(0) (5.14b)
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foralln € {1,..,N}. Hence, d_, equals d_, for all n € {1,.., N} and d_,, vanishes
on I¢, for all n > N. We finally remark that it follows from relation (5.14a) for
n = N, that, as d_n(0) # 0, d_y does not vanish on /. The assertion in the
proposition for N € IV follows.

The assertion in the proposition for N = oo can then be shown as follows. Let
Zp have an essential singularity at {( = (o and assume that there is a ty € I, \{0}
such that = at ¢ = {p does not have an essential singularity at ©((o,%0). As =
at t = 1o is analytic on some punctured neighborhood of ¢((y,%p), this implies
that = at ¢ = %o has a finite order pole in ( = ¢((p,%p) (or can be extended
analytically in ¢ = ¢((o,%0)). Next one considers the time-inversed problem and
shows by the assertion proved above (or by Proposition 5.9) that = at t = ¢, has
a finite order pole at ( = (o (or can be extended analytically at ( = (p). This
contradiction leads to the conclusion that = has an essential singularity in ¢((o,1)
for all t € I¢,. a

Because we will need the result later on, we also consider what happens with a
pole of =g at { = 0 if the function 6 is analytic on D\{0} with a pole at { = 0.

Proposition 5.11 Let f and be a continuous function on D x I such that f is
analytic on D for all fizedt € I and let 0 be a continuous function on D\{0} x I
such that 6 is analytic on D\{0} with a pole of an order not larger than N € IN
at ( =0 for all fitedt € I. Let N C D denote an open neighbourhood of ( = 0.
If Zo is an analytic function on N\{0} with a pole of an order not larger than N
in ( = 0, then the solution of initial value problem (5.9) has a pole of an order
not larger than N in ( =0 for allt € I.

Proof

It follows from Proposition 5.9 that the solution = of initial value problem (5.9)
is analytic on ¢y(M\{0}) for all ¢t € I. It follows from Remark 5.5 that there
is no t € I such that ¢, (M\{0}) = 0. We define the functions f and 6 on
{(¢,t) € D x I|t€ I} as in the beginning of the proof of Proposition 5.9. As
the function ¢ is univalent on some open neighbourhood of ( = 0 for all t € T
~see Lemma 5.1-, the function # has a pole of an order not larger than N at
( =0 for all fixed t € [.

Consider the following initial value problem for a fixed ( € NV:

2(¢1) = FCHEC D +6(¢,0¢ (5.15)
2(¢,0) = Zo(¢)¢" (5.15b)

One shows as in the proof of Proposition 5.9 that the unique solution = is analytic
on its domain for all fixed ¢t € I. In particular, as ¢(0,t) = 0 for all ¢ € I, this
solution is analytic at ( = 0 for all ¢ € I. One checks that the function = defined
by

2(¢,1) = =(¢ /¢
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has a pole of an order not larger than N in ( = 0 and solves initial value problem
(5.15). It is then easily shown that the function = defined as in relation (5.11)
has a pole of an order not larger than N at { = 0 and solves initial value problem

(5.9). a

Remark 5.12 The proof of this proposition can alternatively be based on the
relations (5.12) with slight modifications.

5.2.3 Branch points

The function =g in Propositions 5.9 and 5.10 is single-valued on its domain. In this
subsection, we consider functions Zp which are multiple-valued. A comprehensive
account of multiple-valued analytic functions is given in e.g. [10] and [3]. We will
mainly consider multiple-valued functions on an open punctered neighbourhood
of a point (o € €. We implicitly understand that such a function is not single-
valued (i.e. such a function cannot be expanded in a Laurent series). Conversely,
an analytic function on an open domain is understood to be single-valued unless
it is explicitly stated that it is multiple-valued.
We recapitulate (cf. [3]) that a multiple-valued analytic function = on an open
punctured neighbourhood of a point (; € € has a branch point of order n € IV
if and only if the function =, defined on an open punctured neighbourhood of
¢(=0by

Za(0) = E(Go + ¢**) (5.16)

is analytic while there is no k € INg smaller than n such that the function =
defined in the same way is analytic. The point (o is then called an (ordinary)
algebraic branch point if the principal part of the Laurent series of =, contains
only a finite number of terms (vanishes). Otherwise the branch point is called
transcendental. If there is no n € IV such that the function =, defined above is
analytic on its domain, then the branch point is called logarithmic. The results
proved below are most easily formulated if we agree that a logarithmic branch
point is of order co. The proof of the analogon of Propositions 5.9 and 5.10 where
the initial data is given by a multiple-valued function is based on the following
lemma.

Lemma 5.13 Let g,h and ¢ be analytic functions on an open neighbourhood
of a point (o € € where g does not vanish and where P 1s univalent. Let =
be a multiple-valued analytic function on an open punctured neighbourhood of
o = ¥((o). This function = has a ((ordinary) algebraic) branch point of order
n € IN if and only if the function E defined on an open punctured neighbourhood
of o by )

Z(0) = 2(#(€))g() + A(¢) (5.17)

has a ((ordinary) algebraic) branch point of order n at (o.
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Proof
Before we start with the actual proof of the lemma, we note that the relation
(5.17) implies the relation

=€) = MY (0))
9(¥=(¢))

(with ¢ in some open punctured neighbourhood of {3). This relation implies that
the function = can be written as

=(¢) = Z(%(0))a(0) + A(¢) (5.18)

where g, h and ¥ are analytic functions on an open neighbourhood of {y, where §
does not vanish and where 1 is univalent.

Part 1. Let the multiple-valued analytic function = have a branch point of order
n € IN at (o. We show that the function = defined by relation (5.17) has a branch
point of order n at Co. We first prove that the function =, defined on an open
punctured neighbourhood of ( = 0 by

Zn(¢) = Z(lo + ") (5.19)

is analytic. It can straightforwardly be shown (cf. [23]) that, as 9 is univalent
on its domain, a univalent function ¢ on an open neighbourhood of { = 0 exists
such that

2} =

o (O™ = (o + ") — 9(Co)

This implies that the function £, can be written as

E4(0) = E(lo + Y
= Z(9(lo + C"T)a(lo + ) + Ao + ¢V
=Z(Co + ()" g(lo + ") + h(Go + (")
= Za(0(())g(o+ ") + A(Go + (M) (5.20)

This relation, together with the analytic properties of the functions in the right-
hand side, implies that the function =, is indeed an analytic function on some
open punctured neighbourhood of { = 0.

We next show that there is no k € INg smaller than n such that the function
Z; defined as =, (see relation (5.19)) is analytic on an open punctured neigh-
bourhood of ( = 0. Assume that this is not true, i.e. let £ € {0,1,..,n — 1}
be such that = is analytic on an open punctured neighbourhood of ¢ = 0. It
follows from relation (5.18) and the reasoning above (replacing functions with a
tilde by functions without a tilde and contariwise) that the function =, defined
as =, in relation (5.16) is analytic on an open punctured neighbourhood of { = 0.
However, this contradicts the characterization of a branch point of = of order n
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at (o as we gave it in the beginning of this subsection. Together with the result
above, this leads to the conclusion that = has a branch point of order 7 at Co if
= has a branch point of order n at (.

Part 2. We next show that if = has an (ordinary) algebraic branch point of order
n at (o, then the function = has an (ordinary) algebraic branch point of order
n at fo. If = has an ordinary algebraic branch point of order n at (p, then the
function =, defined by relation (5.16) is not only analytic on some open punc-
tured neighbourhood of ( = 0 but is analytic on a whole neighbourhood of ( = 0.
It then immediately follows from relation (5.20) that the function =, defined by
relation (5.19) is analytic at ( = 0. This in turn implies that the branch point
of Z at (o is an ordinary algebraic branch point. It can be shown in more or less
the same way that if = has an algebraic branch point of order n at (p, then the
function = has an algebraic branch point of order n at Ca.

Part 3. We have shown in Parts 1 and 2 that = has a ((ordinary) algebraic)
branch point of order n at (o if = has a ((ordinary) algebraic) branch point of
order n at (p. It follows from relation (5.18) and this result (replacing the func-
tions without a tilde by the functions with a tilde and contariwise) that = has a
((ordinary) algebraic) branch point of order 7 at (o if = has a ((ordinary) alge-
braic) branch point of order n at Co. The statement in the lemma follows from
these two assertions. a

Remark 5.14 As a branch point which is not of finite order is of order oo, it
follows immediately from this lemma that a multiple-valued analytic function =
on an open punctured neighbourhood of a point (o has a branch point of order
00 at (o if and only if the function = defined by relation (5.17) - with g, h and 9
as in Lemma 5.13- has a branch point of order oo at fo.

Proposition 5.15 Let f and 6 be continuous functions on D x I such that f
and 6 are analytic on D for all fired t € I. Let (o € D and let N C D be an
open neighbourhood of (o. If Zg is a multiple-valued analytic function on N\{(o}
with a branch point of order N € Ny, at ( = (o, then the solution of initial
value problem (5.9) has a branch point of order N at ¢©((o,t) for all fired t € I¢,.
Moreover, if the branch point of Z¢ is (ordinary) algebraic, then the branch point
of E is (ordinary) algebraic for all fized t € Ip,.

Proof

We can define a function = on ¢(AN)\{(o} exactly as in the proof of Proposition
5.9. It is clear that as Zp is now multiple-valued, this function = may also be
multiple-valued (see in particular relation (5.11) where = is the solution of initial
value problem (5.10)). Proposition 5.9 states that the thus defined function =
solves initial value problem (5.9) in the sense that if =g is made single-valued by
making a cut X in N from (g to N and choosing a branch of =g, this determines
a branch cut ¢,(K) in the domain of = for all fixed ¢ € I —as the mapping ¢ is
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univalent on its domain for all fixed ¢ € I- and a branch of the function = which
uniquely solves the corresponding initial value problem.

In order to reveal the character of the function = on its domain ¢;(AM\{(o}) for
a fixed t € I, we reconsider its construction given in the proof of Proposition
5.9. More particularly, we determine in which way this function = depends on
the initial data given by the function =g on M\{(o}. The proof of Proposition
5.9 starts with the definition of the functions f and § on {(¢,t) e Dx I |t € I;}.
The precise form of these functions is not important for the following discussion;
what is essential is that these functions are both analytic on their domains for
all fixed t € I. The next step in the proof is the observation that initial value
problem (5.10) has a unique solution. This solution = is given by

[1]x

t
(C,1) = Zp(¢)elo CT 4 /é(g,r)efff(@”)d” dr
0

as can be verified directly. Hence, this function = can be written as

2(¢,t) = Zo()g(¢, t) + (¢, 1)

where § and & are functions on {((,t) € D x I |1 € I} which are analytic for all
fixed ¢ € I. This implies that the function = on (N \{(o}) defined as in relation
(5.11) can be written as

2(¢,1) = Zo(¢ (¢ 1), 1)g(Co 1) + h(C, 1) (5:21)

where g and h are functions on ¢(A') which are analytic on their domains ¢,(N)
for all fixed ¢t € I. We note that the function ¢~ is univalent on its domain for
all fixed t € 1 and that the function g does not vanish. So, for a fixed ¢ € I¢,, the
function Z; defined by Z,(¢) = =((,t) can be written as

Z4(€) = Eo(¥u(€))g(C) + A(C)

where 1,9 and h are analytic function on an open neighbourhood of ¢((o,1)
where 1), is univalent and where g does not vanish. The assertion in the propo-
sition then follows from Lemma 5.13. a

5.2.4 Propagation of isolated singularities

The Propositions 5.10 and 5.15 can be considered as assertions on the propa-
gation of isolated singularities of solutions of extended linear Lowner-Kufareev
equations. The isolated singularities of a function = satisfying an extended linear
Lowner-Kufareev equation move along the characteristics determined by equa-
tion (5.1a). A pole or a branch point cannot appear and can only disappear
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il the corresponding characteristic reaches the boundary of the unit disc. We
note that if the real part of the function f that appears in the extended linear
Lowner-Kufareev equation is non-negative, then the characteristics cannot reach
the boundary of the unit disc —see Remark 5.5- and the number of poles and
branch points is conserved. It is needless to state that these assertions are in
complete accordance with Proposition 5.9. We finally note that the order of a
pole or branch point cannot change in the sense that the order of the pole or
branch point at (o, ) is the same for all ¢ € I,,. We stress that these assertions
are only true for solutions of extended linear Lowner-Kufareev equations where
the function 6 is analytic on D x [; if the function 4 is admitted to have poles,
then singularities may appear or disappear as the proof of Proposition 5.11 shows.

5.3 Hopper equations reconsidered

In the previous chapters we met the Hopper equation which can be written as:

(26 HCH) = (K¢ HRCHAGE) +6(C,1) (5:22)

(For the details on how to read this equation we refer to Section 4.1.) This Hopper
equation can be regarded as a kind of extended Lowner-Kufareev equation for
the function Q’Q. There are nevertheless three important differences between
the Hopper equations introduced in Section 4.1 and the extended linear Lowner-
Kufareev equations for = = Q') considered in Section 5.2. First, a function Q
is said to satisfy a Hopper equation if the relation (5.22) holds on @D x I while
a function = is said to satisfy an extended linear Lowner-Kufareev equation if
this same relation —with a different interpretation of the prime, see Definition
3.18- holds on some open domain contained in D x /. Secondly, the function 8
that appears in a Hopper equation should not be considered to be given while
the function @ in the right-hand side of an extended Léwner-Kufareev is a given
function. Thirdly, the function f in a Hopper equation may depend on € in
a functional way while the function f in an extended linear Lowner-Kufareev
equation does not. We can summarize these differences by stating that a Hopper
equation is an extended quasi-linear Lowner-Kufareev equation restricted to 9D x
I where the function 6 that appears remains undetermined.

This view on Hopper equations turns out to be fruitful. In the Subsections 5.3.2
and 5.3.3 we show how the results obtained in the previous section can be used
to prove properties of solutions of Hopper equations. In order to make the above
explained point of view on Hopper equations more convincing, we reveal the
relation between the functions = = Q’maD and 2 in Subsection 5.3.1.



5.3. HOPPER EQUATIONS RECONSIDERED 105

5.3.1 The inverse problem

We explained above that a Hopper equation can be considered to be a kind of
Lowner-Kufareev equation for the function = = Q'Q|,,. Theorem 5.20 below
states for which functions = on 0D there is a locally conformal mapping € such
that = = Q'Q|, . We first show that if such a function Q exist, then it is almost

unique.

Proposition 5.16 Let Qi k = 1,2 be continuous functions on D such that:
7). Qi(0) =0 '
ii). Q 1s analytic on D and does not vanish on 0D

i1). the derivative Q) on D can be extended continuously to D and Q) does not
vanish on D

If L L
QQQ1|3D = 9'292155)

then there is a real constant a such that Q; = €'“Q,.

Proof

We first show that £; has only a finite number of zeros. Assume that this is not
true, i.e. let Q; have an infinite number of zeros. As D is compact, there is an
accumulation point (o € D of zeros. As Q; is continuous and does not have any
zeros on 0D, this point (o lies in D. Since Q4 is analytic on D, this implies that
Q4 is identically zero on D and hence on D. This contradicts assumption ii) in
the proposition and we are led to the conclusion that €, has only a finite number
of zeros. We denote these zeros outside 0 by (,,n = 1,.., N. It follows from the
other assumptions in the proposition that all these zeros lay in D and are of first
order.

The function h on €\D defined by

_ W)
Q)
is therefore meromorphic and has only a finite number of first order poles. It

follows from the assumptions in the proposition that this function can be extended
continuously to 0D:

h(¢)

WO _ %)
00 - %O

The function in the right-hand side can in turn be extended analytically on D.
It then follows from the principle of analytic continuation ([26]) that h is a mero-
morphic function on € with a finite number of poles which are all of first order.

h(¢) (€dD (5.23)
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It is then straightforward to show that there are numbers ¢, € C,n = 0,.., N
such that

o+Z _1/<n (5.24)
We note that
N —r2
RO =T+ Z el RO=Y (5.25)
n=1 \>"

It follows from the relations (5.23) that the following relation holds on 9.D:
Q) = h(K'Qy + Q)
We multiply both sides of this identity by H,]y:l((n — () and get

N

o c)H O = HOTI (6 = (16 - RO + (6. - Rt 0)
ot

for all ( € 8D and for an arbitrary £ € {1,..,N}. After substitution of the
identities (5.24) and (5.25), it can be checked that all terms that appear in this
relation are continuous functions on 0.0 which can be extended analytically on D
(observing that ©, has first order zeros in ( = (,,n = 1,..N). This implies that
the relation above holds for all { € D. In particular, it holds for { = (¢, k=1,.., N
and we find forall k=1,..,N:

N ’ N
= h{¢) IT (¢ = ) (%MQI(Q ') k% IT (6= k)
o i

This implies ¢y = 0 for £ = 1,.., N and we find that h is identically a constant
¢p. Substition of this result into relation (5.23) leads to Q; = ¢ on 4D with
|co| = 1. The assertion in the proposition follows. a

Before we formulate a theorem that states under which conditions a function =
on 4D is such that there is a locally conformal mapping such that = = Q'Q|;p,
we introduce some notations and definitions.

In the following we denote the Hilbert transform of a function f on 0.D by H(f).
We will write H(f({)) in stead of H(f)(¢) as this will make formulae easier
to write down. It is known that the Hilbert transform of a Holder continuous
function is Holder continuous ([86]).

Definition 5.17 We define K1 as the space of functions = on D such that:
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i). = is Holder continuous
ii). = does not vanish on 0D

iii). the function P on 0D defined by

1 - -
P(¢) = 5 (I 2(ON) - Im In(2(¢)0)) (5.26)
is single-valued and has a Holder continuous derivative.

Remark 5.18 It follows from the conditions i) and ii) that H(In |Z|) is a properly
defined function on @D. It then follows from the Argument Principle (cf. [15])
that P is single-valued if and only if the increase of the argument of =Z(() as
tranverses 0D in the positive direction is —27. This implies for example that
among the functions =,(¢) = (", n € Z, the function =_; is the only one in K.

Definition 5.19 We define K, as the space of functions Q on D such that:
i). Q is analytic on D

ii). Q' can be extended continuously to a function on D such that Q| is
Holder continuous

iii). Q(()=0ifand only if { =0
iv). the function ©’ does not vanish on D

Theorem 5.20 If Q € Ky, then the function = on 0D defined by

2 =005y (5.27)
is in Ky and satisfies
li((%cle-”(‘m In=(04) = 1 4 i((P(() - z’H(P)(g))' (€D (5.28)

where the function P is defined by relation (5.26). Conversely, if a function
= € K1 satisfies equation (5.28), a function Q € K, ezists such that relation
(5.27) holds.

Proof

Part 1. Let Q € K, and let = be defined by relation (5.27). We prove that = € K4
and that = satisfies equation (5.28).

It is easily checked that = satisfies condition i) and ii) of Definition 5.17 as
satisfies condition ii), iii) and iv) of Definition 5.19. In order to show that =
satisfies condition iii) of Definition 5.17, we calculate P. We define r,@ € IR by
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Q(0) = re*™, omit the variables and note that the following identities hold on
0D:
1 a a 1 o~ 1 —
P= 5(H(ln [Z]) - Im 1n(20)) = SH(In Q) — 2T (@)
1 Q 1 0
= Ql—-— — QO —
27’[ <Re ln< <>> + 2Im ln( C)
1 ,Q 1 —Q
= Elm In <QZ> —a+§lm In <Q C>
1 0\? Q
= —Im ln<Q' —) —a=Im In (——)—a 5.29
sim In (1] < (5.29)

where we used the observation that Q'Q/( is an analytic function on D with a
non-vanishing continuous extension to D. It follows from this relation that P is
single-valued and has a Holder continuous derivative on 0D. We conclude that
= e K.

In order to show that = satisfies equation (5.28), we calculate both sides of this
equation. We again omit the variables and find for the left-hand side:

=C —H(m In(2¢)) _ Q'QCe H(Im In(Q/7¢)) _
= Q|

QA 3(m In(%) ,~H(Im In(e)) _ % pe—nll—1 Inje] _ Q'¢

RN [%9)] Q
Next we calculate the right-hand side of equation (5.28):
. . , . Q Q
1+ 4i(P+H(P)) =1+ z((lm In <Z) —a+1tH (Im In Z) - a)) =

(
tricm n(2) =i (rem (2) o) =14c (m (2)) = 2

It follows immediately from these identities that the function = satisfies equation

(5.28).
Part 2. Let = € K satisfy equation (5.28). We define the function £ on 8D by
Q) = CTei(P(<)+'iH(P(<))) (5.30)
where
a1 16
T = ein 7 In =) 109 (5.31)

It is easily checked that as = satisfies condition iii) of Definition 5.17, this function
(2 is differentiable on 0D. It follows from relation (5.28) that equation (5.27) is
satisfied as

Q= ret(P+(P) (1+iC(P + iH(P))") Zre—i(P—iH(P))

2

T
_ o~ 2H(P),

(
|

~H(Im In(2¢)) = = In|Z|-H(Im In(Z()) H(ImlIn(Z())

[1]
]
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It remains to be shown that £ on 8D can be extended to a function on D in
Ko. It immediately follows from relation (5.30) that the function Q on 9D can
be extended to an analytic function on D. It also follows from this relation that
Q(¢) = 0 if and only if ( = 0. In order to show that the conditions ii) and iv)
in Definition 5.19 are also satisfied, we note that the following identities hold on
0D:

H(n [=])~ P = 2 (#(n [2]) + ImIn(=0)

% <H<Re In (Q<Q>> +Im In (Q’ﬁg))

1 Qo 1 %
-2—Im 1n< c > —a+§lm In (W)

=Im InQ -« (6.32)

where o € IR is such that Q'(0) = re’®. The left-hand side of this identity
is single-valued as = satisfies condition iii) of Definition 5.17 (see also Remark
5.18). This implies that the function Im InQ’ is single-valued on 6D and it
follows from the Argument Principle that Q' does not vanish on D. We finally
note the function Q satisfies condition ii) of Definition 5.19 because of relation
(5.32) and because = satisfies conditions i) and iii) of Definition 5.17. a

Remark 5.21 It is clear that the right-hand side of equation (5.28) can be ex-
tended analytically on D. The left-hand side of this equation can also be extended
analytically on D, whatever the function = € K, is, as it can be written as

=C ~H(Im 1n(20)) _ ,i(Im In(Z0)+iH(Im In(2())

|._(|

This implies that Theorem 5.20 also holds if equation (5.28) is replaced by the
equation

Re Z(¢)¢ = [E(¢)] (1 = Im P'(¢)¢) eMIm In(E()0)) (5.33)

which is obtained from equation (5.28) by taking the real part of both sides and

multiplying by |E|eH(Im In(Z¢))

Remark 5.22 We note that the proof of Theorem 5.20 is constructive in the
sense that if a function = € K, satisfies equation (5.28), then a function Q such
that Q'Q|;, = Z is easily obtained from relation (5.30) and Schwarz’ integral

formula:
2,

Q(¢) = (Te“]_"fp(z)" z—¢ (eD (5.34)
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where the integral is over dD. It is not difficult to prove that the function
Q4,0 € IR defined by:

Qu(() = e 2/zeﬁ §InlE(w) gty de g, (eD (5.35)
0

can be extended continuously to a function on D in K that satisfies Q,Qu|sp =
=. The advantage of the last expression over the first one is that no singular
integrals appear in the expression in the right-hand side of relation (5.35) while
the function P — defined in Definition 5.17- in the right-hand side of relation
(5.34) is related to the function = via a Hilbert transform (which can be obtained
only directly by calculating an integral with the singular Hilbert-Cauchy kernel,
see e.g. [86]).

It turns out that some of the geometric properties of the image of D under Q can
relatively easy be revealed from the function Q'Q|,,. Before we show how this
can be done, we introduce some definitions. We adopt the convention (cf. [23])
that a function Q on D is called starlike (convex) if:

i).  is univalent on D
ii). 20)=0

iii). the image of D under Q is starlike with respect to the origin (is convex)

Definition 5.23 We define /C%Star) as the space of functions = € K; such that
the function P, defined in Definition 5.17, satisfies

BeP(e%) > ~1 for all 8 € IR (5.36)

We define lcgcom'ex) as the space of functions = € K, such that the function Q
defined on 0D by

1 _ —
Q) = 5 (Mn (O + Im W(Z(C)0)
has a Holder continuous derivative and satisfies

9Q(e%) > —1 for all 6 € IR (5.37)

Proposition 5.24 If a function = € ICgSLar) (= € ngconvex)) satisfies equation
(5.28), then every function Q € Ky such that Q| ,, = = is starlike (convez).
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Proof
Part 1. Let = € /Cgsm). As the function P satisfies inequality (5.36), we have

(1—Tm P'(C)¢) > 0 for all ¢ € 8D

If the function = satisfies equation (5.28), it also satisfies equation (5.33) and we
get

Re Z(¢)( >0 forall ( € 0D
Let € K3 be a function such that Q'Q|,, = Z. We find
Re 43((5) = Q)| 7*Re Q(OQ(C)C >0 for all ( € 0D

It then follows immediately from the maximum principle for harmonic function
that this inequality also holds for all ( € D. The assertion on star-like functions
in the proposition then follows immediately from a theorem —formulated in e.g.
[23]- which states that an analytic function Q with ©(0) = 0 such that

()
(<)

Re >0 forall ( € D

is starlike.
Part 2. It follows from Proposition 5.16 that it is sufficient to prove that if a
function = € ICgconvex) satisfies equation (5.28), then an arbitrary function € K,
such that Q'Q|,p = = is convex. One checks that there is function € K such
that

Qlgp = ret(@+H(Q))

(convex)

where 7 is defined as in relation (5.31). As = € K; , the function @ is
continuously differentiable and satisfies inequality (5.37). This implies

Q") _ o ; /
v =R ic(QUO) +iM(Q(() > -1 for all ( € D

It then follows from the maximum principle for harmonic functions that

Re

Re <l + (3’;({())) >0 forall ( € D

The assertion on convex functions in the proposition then follows immediately
from a theorem —formulated in e.g. [23]- which states that an analytic function
Q with ©(0) = 0 that satisfies this inequality, is convex. a
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Example 5.25 We consider the functions =, with a,b € IR on 0D defined by
Ea,b(eio) — eZacosﬁ(b+ e—iﬁ)

It follows from Definition 5.17 and Remark 5.18 that =, € Ky if [b| # 1 and if
the increase of the argument of 1 + b( as ( transverses D is equal to zero. This
implies that Z,, € Ky if and only if |b] < 1. It follows from Theorem 5.20 and
the straightforward calculations of the expressions in equation (5.28) that there
is a function @ € Kj such that relation (5.27) holds with = replaced by =, if
and only if @ = b and |b| < 1. This function Q, which we will now denote by Q,,
can be constructed by one of the relations given in Remark 5.22. We get:

Q.(¢) = CeaC

It follows from Proposition 5.24 that all these functions Q, with |a] < 1 are
star-like, and hence univalent, as

B9 P(e”?) = Bp(asinf) = acosf > —1 forall 6 € R
The function , with |a| < 1 is then convex if and only if
0 aieie
(99@(62 ):ac059+1m mz—l forall 8 € IR

This inequality holds if and only if |a| < (3 — v/5)/2.

5.3.2 Analytically extendable mappings

We show in this subsection how the results on extended linear Lowner-Kufareev
equations can be used to prove properties of solutions of Hopper equations. Before
we do so, we first sketch the line of reasoning.

Let the mapping Q on D x I be a solution of a Hopper equation (5.22). We
assume for the sake of simplicity that the function 8 is analytic on D for all ¢ € I;
the case where 6 has a prescribed pole in ( = 0 is treated later on. The functions
f and 6 can -so to speak a posteriori- be considered as given functions. We
then consider initial value problem (5.9) with initial data given by relation (5.38)
below. Proposition 5.9 states that this problem has a unique solution = on an
open subdomain of D x I. The function Q'Q can be considered as a solution of
this problem on dD x I. 1f the domains of the functions = and ©'Q have some
overlap, we may be able to show that these functions are identical: the solution
Z is unique and analytic functions which are locally the same are globally the
same. This in turn may enable us to deduce properties of the solution Q of the
original problem. However, it is in general not possible to show without further
assumptions that the domains of the functions = and Q'Q have some overlap.
Therefore we assume in the next proposition that the function Q is analytically
extendable.
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Proposition 5.26 Let Q be a smooth time dependent locally conformal mapping
on D x I satisfying a Hopper equation where the function 0 is analytic on D for
allt € I. Let Q be analytically extendable to Dyyeye > 0 for all fizedt € 1. If
Q at t = 0 is analytically extendable on an open domain B = D U By, then Q is
analytically extendable to D U (04(By)) for all fired t € I.

The mapping o, was defined in Definition 5.3.
Proof
Part 1. As § is analytic on Dq4. for all fixed ¢t € I, the function Q' is analytic
on the annulus 4; = {C € € | (1 +¢&)7" < [¢] < 1+ ¢} for all fixed t € [. One
carefully checks that this implies that relation (5.22) holds for all (¢,t) € Ay x [
where Ay = {C e C|(1+¢e) ! < (] < 1}.
Part 2. Consider the initial value problem given by equation (5.9) where f and
6 are the functions which appear in the Hopper equation (5.22) and initial data
given by

E(¢,0) = 2'(¢,0)9(¢, 0) (5-38)

Proposition 5.9 states that this initial value problem has a solution = on
©(R(B)N D) = ¢(R(Bo)) such that = is analytic on ¢,(R(Bp)) for all t € I. One
carefully checks that because A, C R(By), there is an annulus

As ={CeC | (14+¢e)" <r <|¢] <ry <1} and an open interval [ C I
containing 0 such that Az x I C @(R(Bo)). Proposition 5.9 also states that
the solution of the initial value problem is unique on the domain of determinacy
©(R(By)). As Az x I C Aq x I, this implies that the functions = and Q'Q
are identical on this subdomain A4z X I. We draw two conclusions from this
observation:

i). the function = on ¢;(R(Bo) N D) can be extended as an analytic function
on ¢(R(Bo))U Aj for all fixed t € T

ii). the function Q'Q on A, can be extended analytically on A, U ¢, (R(By)) for
all t € I. As Q' is a non-vanishing function on D for all fixed t € I D I,
it follows that the function & on R(D;,.) can be extended analytically on
@i(R(Bo)) = R(ay(By)) for all fixed t € I. This is equivalent with stating
that Q on Dj4. can be extended analytically on ¢4(Bg) for all fixed ¢ € I.

Part 3. One shows that this statement —{ is analytically extendable on o,(Bo)-
does not only hold for all £ € I but for all ¢ € I by using some set-theoretical
arguments and the conclusion i) above. a

Remark 5.27 It is assumed in Proposition 5.26 that the function £ is ana-
lytically extendable to D4, for all ¢ € I. The necessity of requiring  to be
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analytically extendable outside D has its origin in Part 2 of the proof and is al-
ready explained in the beginning of this subsection. We may have formulated the
proposition under the less restrictive condition that £ is analytically extendable
on some open domain By for all ¢ € I such that there is a continuous mapping
y:tel — v(t)edDnB,.

In order to illustrate the significance of Proposition 5.26 we consider some special
cases. We use the same notation and make the same assumptions as in the
proposition; i.e. in the following the function Q on D x I denotes a smooth time-
dependent locally conformal mapping that is analytically extendable outside D
and which satisfies a Hopper equation.

First we consider the case where B = €\ {(o} with (o € €\D; i.e. (o is the only
singularity of the function § at ¢t = 0. It follows from Proposition 5.26 that the
function Q is analytically extendable on DUa,(€\{(o}) = C\oy({(o}) for all fixed
t € I. It follows from Lemma 5.2 and Definition 5.3 that the singularity ((¢) of
the function © uniquely solves initial value problem (5.3):

{(t) = COFC(), )

If the real part of the function f is positive definite on D x I, the singularity
tends to move to infinity as

LI = 1C0Re FC(1),1) > 0

(We remark that also if the real part of the function f is not positive definite, the
singularity cannot reach the boundary of the unit disc as this would contradict
the assumption that Q is analytically extendable; so: ¢;({(o}) # 0).) So to speak,
the singularity of £ can be obtained by reflecting the trajectory determined by
equation (5.1a) which passes through ((o,0) with respect to the unit circle.
Secondly, we consider the case where Q at ¢ = 0is a rational function with M poles
at (mo,m = 1,.., M of order K(m),m = 1,.., M. It follows from Proposition
5.26 that the function Q is analytically extendable on € minus a set of M points
outside D for all t € I. One shows that the function Q'Q satisfies equation
(5.22) on (D x I)\{0(Cm.0,t)}M_,. Tt then follows from Proposition 5.10 that the
function Q'Q) is meromorphic on D with M poles of order K'(m),m = 1,.., M for
all fixed ¢t € I. As the function ©’ does not vanish on its domain, this implies that
the function & is meromorphic on D with M poles of order K(m),m = 1,.., M
for all fixed t € I. We conclude that the function Q is a rational function with
M poles of order K(m), m = 1,.., M for all fixed ¢t € I. We note that the poles
(m(t),m = 1,.., M satisfy equation (5.3a):

<m(t) = Cm(t)T(Cm(t)’ t)
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It is easily checked that these equations are equivalent to the equations (4.7). We
note that if (;, 0 = 00, then (,,(t) = ~ for all t € [ and this implies that if Q at
t = 0is a polynomial of order N (i.e. M =1, K(L)=N,( =), then Qis a
polynomial of order N for all ¢t € [I.

The case where the function © on Dy, at ¢ = 0 is a brauch of an algebraic
function can be treated almost analogously apart from some technical difficulties.
We note that an algebraic function can be characterized by the property that such
function has only a finite number of algebraic branch points ([3]). It can be shown
-by reasoning as above and applying Proposition 5.15- that if Q at ¢t = 0 is a
M -valued algebraic function at ¢t = 0, then Q is a M-valued algebraic function
forall t € [.

Remark 5.28 The function © in Proposition 5.26 is requnired to satisfy a Hopper
equation where the function 6 is analytic on D for all fixed ¢t € /. If the function
6 is analytic on D\{0} with a pole of an order not larger than N € IV for all
fixed t € I, then the statements made above hold only with € replaced by €.
For example, if Q at ¢ = 0 is a rational function with M poles outside 0o of order
K(m),m =1,..,M and a pole at co of an order not larger than N, then Q is a
rational function with M poles outside oo of order I{(m),m = 1,.., M and a pole
at oo with an order not larger than N for all ¢ € I. This assertion can be proved
in more or less the same way as we did above —with special attention to the point
R(00) = 0— with use of Proposition 5.11.

Corollary 5.29 Let Q be a smooth time-dependent locally conformal mapping
on D x I satisfying a Hopper equation. Let Q) be analytically extendable outside
D for all firtedt € I. If Q att = 0 is a polynomial, rational or algebraic function
then £ 1s polynomial, rational or algebraic function for allt € I.

We end this subsection with a discussion of what these results imply for so-
lutions of the moving boundary problems discussed in Chapter 3. Consider a
smooth-time dependent locally conformal mapping Q on D x I solving the mov-
ing boundary problem for Stokes flow driven by surface tension and multi-poles
or for Hele-Shaw-flow with a source and assume that () is analytically extendable.
It has been remarked in Chapter 3 that this mapping © must satisfy the corre-
sponding Hopper equation. Corollary 5.29 and the remark that the real part of
the function f that appears in the corresponding Hopper equations is positive,
enables us to draw the following conclusions:

i). Singularities of the mapping { cannot appear or disappear; the only ex-
ception is a pole at oo if a; (or (7) is not identically zero. An isolated
singularity cannot change its character.

ii). If the mapping Q is a rational function at ¢t = 0, then Q is a rational function
for all ¢ € / with the same number and order of poles. We recapitulate that
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Theorem 4.19 states that the solution of the corresponding initial value
problem is unique in the class of rational functions with a fixed number of
poles. It follows that the solution is even unique in the class of analytically
extendable functions.

iii). The singularities of the mapping  tend to move to infinity. The radius of
the largest disc on which the function Q is analytic for some fixed t € I is
monotonously increasing with time.

We stress that these conclusions can only be made under the assumption that Q
is analytically extendable outside D for all ¢ € /. Without this assumption, we
cannot exclude the possibility that © at ¢ = 0 is analytic on some open domain
containing D while  has a set of singularities lying dense in 3D for all ¢ € I'\{0}.
It may be possible to show that this cannot happen by means of the methods
explained in [6, 5] and [73] in which a slightly different model is studied.

5.3.3 Mappings in the neighbourhood of the identity

We showed in the previous subsection that a solution {2 of a Hopper equation
such that € at ¢t = 0 is rational remains rational if it is a priori known that the
function Q is analytically extendable. In this subsection we prove a comparable
result; if stead of requiring Q to be analytically extendable, we lay certain re-
strictions on the function f that appears in the Hopper equation.

Definition 5.30 We define S as the space of analytic functions f on D such
that the derivative f’ is continuously extendable to D and such that the Taylor
coefficients ¢,,n € INy of f satisfy

Re ¢p > Z lenl (5.39)
n=1

Proposition 5.31 Let Q on D x I be a smooth time-dependent locally conformal
mapping salisfying a Hopper equation where 8 is analytic on D for allt € I and
where the function f isin S for all fizedt € Iy = INRoy. IfQatt=01isa
rational function with M poles of order I (m),m = 1,.., M, then Q is a rational
function with M poles of order K(m),m =1,..,M for allt € I .

Proof

Part 1. We first show that there is a Ty € I N R4 such that Q is a rational
function with M poles of order K(m),m = 1,.., M for all t € [0, Tp).

It follows from Corollary 4.9 that there is a Ty > 0 and a smooth time-dependent
locally conformal mapping Q on D x [0,To) such that:
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i). mt:o = Q|t-_—0

ii). Q is a rational function for all ¢ € [0,Tp) with M poles of order K (m),
m=1,..,.M

iii). there is a continuous function 8 on D x [0,Ty), such that 8 is an analytic
function on D for all t € [0,7p) and such that for all (¢,t) € 9D x [0, Tp):

6(¢.1) = (V600 0) — (KRG DA HC)

It can easily be checked that the function = on 0D x [0,Tp) defined by

Z(¢,1) = QG ONC ) — V(DAY (546)

solves the initial value problem

S(¢,1) = (BN +6(C,1) - 6(¢,1)  (¢,1) € 9D x [0,Tp)
Z(¢,0)=0 (€dD

We decompose the functions = and 6 — § by

E(G )= ), da(t)" 8(C,1) = 8(¢,1) = Y an(t)C”
n=-0co n=0
and find that the initial value problem can be written as
da(t) = (n+ 1) ce(t)dn-i(t) + an(t) neZ
k=0
dn(o) =0 nexZ

where a_,(¢) = 0 for all n € IV and all ¢t € [0,Tp). It will be shown in Appendix
C, see Remark C.4, that the condition f € S for all t € I D [0,7p) then implies
d_n(t)=0forall n € IV and all t € [0,T). We conclude that the function = on
0D can be analytically extended on D for all t € [0, 7).

Now we rewrite relation (5.40) on 0D x [0,Tp) as

Q= (a0 +2) /0

One checks that it follows from the properties of the functions appearing in the
right-hand side of this relation that the function Q on dD can be extended as
a meromorphic function on D with M poles of order k(m),m = 1,.., M for all
t € [0,Tp). This implies that the function Q is a rational function with M poles
of order K(m),m=1,.., M for all ¢t € [0,T5).

Part 2. It remains to be shown that € is not only a rational function with M



118 CHAPTER 5. LOWNER-KUFAREEV EQUATIONS

poles of order K (m),m = 1,.., M for all t € [0,T,) for some Ty € I N IR, but for
all ¢ € I,. Let T denote the supremum of all 7y € I such that Q is a rational
function with M poles of order K(m),m = 1,.., M for all t € [0,Tp). We assume
that T is not the right boundary of I and show that this leads to a contradiction.
As Q is a continuous function, there is a constant C' € IR such that

max max |Q(C,1)] < C
¢eD t€[0,T)

Let U denote the space of rational functions with at most M poles outside D of
orders not larger than K(m), m = 1,.., M equipped with the sup-norm on D. Let
Uc denote the ball of radius C in Y. This space U is compact and this implies
that the sequence of functions Q, € Uc,n € IN defined by

20 =2 (6.0~ 2)7)

has a subsequence converging in Uc. This implies that Q at ¢t = T, that is: the
limit of , as n — oo, is a rational function (with at most M poles outside D
of orders not larger than K(m),m = 1,.., M). Reasoning as in Part 1, one then
shows that there is an ¢ > 0 such that Q is a rational function for all t € [T',T+¢)
and hence for all t € [0,7 + ¢). It then follows from Proposition 5.10 that Q is a
rational function with M poles of order K(m),m = 1,..,M for all t € [0,T + ¢)
as:

1). Q at t =0 is a rational function with M poles of order K(m),m=1,..,. M
ii). Re f(¢,t) > 0forall ((,t)e Dx I

In other words, T' is not the supremum of all Ty € I such that Q is a rational
function with M poles of order K{(m), m = 1,.., M for all t € [0, Tp). O

Remark 5.32 The function Q in Proposition 5.31 is required to satisfy a Hopper
equation where § is analytic on D for all fixed ¢t € I. If the function 6 is analytic
on D\{0} with a prescribed pole in { = 0 for all ¢ € I, then a similar assertion
can be formulated; see also Remark 5.28.

Consider a smooth time dependent locally conformal mapping Q on D x I that
satisfies Hopper’s equation and which is rational at ¢ = 0. It follows from Propo-
sition 5.31 that  is rational for all fixed ¢ € Iy if it is known that Fig(.,y € S
for all ¢t € 1. This leads to the following problem: how can we characterize the
space F(S) of functions  on D such that:

i). Qis analytic on D, (0) =0

ii). £ can be extended continuously to a non-vanishing function on D
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iii). the function Fjg; has Taylor coefficients c,,n € IVo such that inequality
(5.39) holds

We will not elaborate on this problem but only make some remarks. First we note
that the expressions (4.30) and (4.31) can be used to characterize the functions
in F<(S8) by their Taylor coefficients. Secondly, we remark that the condition iii)
implies that a function Q € F(S) is in some sense in the neighbourhood of the
function Q'(0)¢; this explains the title of this subsection. Finally we remark that
the methods explained in e.g. [6],[73] may lead to an affirmative answer to the
following question: can it be shown that for each solution Q of Hopper’s equation
such that Q at ¢t = 0is in F(§), there is a T € IRy such that Fig(. ) € S for
all t €[0,7)?

5.4 Quasi-linear Lowner-Kufareev equations

In this section we prove a theorem on the local solvability of quasi-linear Lowner-
Kufareev equations. The proof of this theorem is based on estimates on solutions
of linear Lowner-Kufareev equations and an iteration technique. Most of these
estimates, given in Subsection 5.4.1, can be found in [43] in a somewhat sharper
formulation.

5.4.1 Preliminary Results

We start by making some estimates on the solutions of initial value problem (5.6)
for a linear Lowner-Kufareev equation. In this subsection, f denotes a continuous
function on D X I, where [ is an open interval that contains IRg 4, such that f
is analytic for all fixed ¢t € I and such that:

Re f(¢,1) <0 for all (¢,£) € D x Ro 4 (5.42)

We note that a Lowner-Kufareev equation where the function f in the right-hand
side has a non-positive definite real part corresponds to a shrinking domain (see
relation (3.12a)).

Lemma 5.33 Let f be bounded on D x [0,T] for all T > 0; t.e. a continuous
function My on IRy + exists such that

max su ST < Mo(t
max sup |1(¢,7)] < Moft)

If the derwative of the function Qg is bounded, then the solution of initial value
problem (5.6) satisfies for all t € IRg +

sup |Q(¢,t) — Qo(()] < tMo(t) sup [Qo(()
¢eD ¢eD
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Proof

It has already been stated in Remark 5.5 that inequality (5.42) implies that (D)
contains D x I;. It is easily checked that the solution of initial value problem
(5.2) for arbitrary T' > 0 therefore has a domain that contains D x [0,T]. It is
not difficult to show that this solution 1 satisfies the following integral equation:

t
YELT) = C+ [ 9(Em TG T),T = 17) dr
0
This implies
|¢(C>taT) - C| <t MO(T) (543)

forall ( € D,all T > 0 and all t € [0,7]. The solution of initial value problem
(5.6) is given by relation (5.8):

Q¢ 1) = Qo™ (¢, 1) = Qo(¥(¢,1,1)) (5.44)
So:
Y((,t,t)
Q(C,1) - Q(C) = / Q(2) d=
¢

and the inequality in the lemma follows straightforwardly from inequality (5.43).0

Lemma 5.34 Let the function f be such that:

i). a continuous function Mo on IRg 4 ezists such that:

max su ,7T)| < Mo(t
max sup /(7)) < Mo(®)

). a continuous function My on IRo 4 ezists such that:

max_sup Re(f((, 1)+ f/(¢,1)¢) < My(t)
TE[O.L] CeD

If the derivative of the function Qg is bounded, then the solution of initial value
problem (5.6) satisfies for all t; >t > 0:

sup [Q(¢,11) = QC, t2)] < (41 — t2) Mo(t )" ™M () sup |Q4(¢)
CeD (eD
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Proof
Part 1. It follows straightforwardly from relations (5.2) that the derivative of 1
can be written as

t

uT) [ (¢ T T =)+ /(¢ T),T=7)(¢,7,T)) dr
P((,t,T)=e°

The condition ii) in the lemma then implies for all T > 0 and all ¢t € [0,T]:

sup [¢'((,1,T)] < e (D)
¢eD

Part 2. It follows from the theory of ordinary differential equations that

p((8,T), 7, T =) = 9((t+7,T)

for all ( € D and all T,t, 7 > 0 such that t+ 7 < T. With the use of this relation
for T =1y, t =t — t2 and 7 = 1, we get from the result obtained in Part 1 for
all t] Z tg 2 0:

sup |9(C,t1,t1) —=9((,t2,22)| = sup [$(P(¢,ti—12, 1), 2, t2) — $((, T2, 12)]
(eD (eD

P({,t1—t2,t1)

= sup / 1/),(Z,t2,t2) dz S ethl(h) sup |1/)(<7t1 - tzatl) - <|
CeD . ¢eD

The assertion in the lemma then follows from relation (5.44), this inequality and
inequality (5.43). ]

We end this section with a lemma on the solutions €, and Q5 of initial value
problems given by:

(1) = U(C,Df(C D k= 1,2 (5.452)
Q4(C,0) = Qo(C) k=12 (5.45b)

where f; and f, both possess the properties mentioned in the beginning of this
subsection. The corresponding functions 9 (see relations (5.2)) are denoted by
Yr, k= 1,2.

Lemma 5.35 Let the functions fi and f, be such that:

i). a continuous function Cy on IRg 4 ezists such that

max_ su (¢, < Cit
. sup [(C,7)] < Gyl
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it). a continuous function Cy on IRy 4 exists such that:

max_ sup |f2((,7)| < Ca(t)
76[0 t] ¢eD

If the derivative of the funciion Qg is bounded, then the solutions Q1 and Q5 of
initial value problems (5.45) satisfy for allt € IRo 4:

sup |Q‘1(cut) - Q2(<7t)| S
¢eD

te!C1O+C2) sup |Q4(()] max sup |fi((,1) — fo((, )] (5.46)
ceD T€[0,t] ¢ceD

Proof
Reasoning as before, we get for all 7 > 0 and all ¢t € [0, T:

sup lw](47 t)T) - d’z(CJ)T)I =
¢eD

t
?gg /(’l[)]({,T,T)f](T,Z)](C,T,T),T—T)—?,bz((,T,T)fg('(/lz(g,T,T),T—T))dT S
0
11
| sup (¢ m DA T)LT = 7) = A m T).T =) dr +
0 (eD
11
A Egg |¢](<) T7T)| |f1(¢2(<aT7T)aT - T) - f2(¢2((aT’T)aT - T)| dr +
t
/ sup |,¢)1(C’T7T) - 1/)2(<’T7T)| |f2(¢2(C7T1T)7T_ T)| dr _<_
0 (eD
t
/0 21618 |¢1(C)T>T) - d)?(CaTaT” ) (|fl’(<?T - T)| + |f2(CaT - T)l) dr +
t
/ sup |A((,T —71)— f2((,T - 7)|dr (5.47)
0 (eD

As the last term can be estimated by

t
/ up [/1(G,T=7) = fi(.T =)l dr <t max sup [£(C,7) = fl¢,7)
0 (eD

7€[0,T} ¢
we get from inequality (5.47) and the lemma of Gronwall ([31]):
sup I"/)](Cv t>T) - ¢2((, taT)| S
¢eD

¢ TOMIAD mar sup |(6,7) = fo6,7) (5.48)
TG[OT] ¢eD
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Substitution of this result into the relation .
Pi(( t.t)
UG-G = [ hz)ds
D2 (¢ 4t)
leads to the assertion in the lemma. ‘ |

5.4.2 Existence of solutions

We return to initial value problems for quasi-linear Lowner-Kufareev equations;
see Section 3.2. We show that these problems have a local solution if the mapping
F is smooth in the following sense:

Definition 5.36 Let H denote the space of all bounded univalent functions on
D equiped with the sup-norm. Let A denote the space of analytic functions on
D with a bounded derivative and a non-positive definite real part. A mapping
F :H — Ais called Lipschitz continuous if a constant K exist such that

sup | fia,1(¢) = fia) (Ol £ K[| — Q|
¢eD

for all Qy,Q, € H.
A mapping F : H — A is called continuous with respect to the derivative if the
functional
F': QeH  sup|figl
¢eD

is continuous.

Theorem 5.37 Let the mapping F : H — A be Lipschitz continuous and con-
tinuous with respect to the derivative on an open neighbourhood of a function
Qo € H which has a bounded derivative. Then the initial value problem given by

Q¢ 1) = Q¢ fiagi (5.492)
(¢, 0) = Qo(¢) (5.49b)

has a local solution. This solution is univalent for all fized t in its domain.

Proof
Part 1. At this stage we do not bother whether the functions Q, to be defined
are in a neighbourhood of Qg. Let Q,, for each n € INy be defined by

Qo(¢,1) = Qo(()

{ Qa1 (1) = Q1 (1) fran (€€
Qn+1(<a0) = QO(()
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It follows from Proposition 5.6 that the functions §2, are properly defined on
D x IRg 4 if the functions f,,n € IV, defined by

f2(G1) = flan(€)

are continuous. We prove by induction that these functions possess the following
properties:

i). fn is continuous
ii). supeep |f4(¢,t)] is a continuous function of the variable

As Qg does not depend on t, neither does fp and it is clear that f, possesses these
properties. Now let f, for an arbitrary n € IVy have the mentioned properties.
It follows from Proposition 5.6 that 2,41 is properly defined as the solution of
the initial value problem given above (i.e. the function Q,41 on D x Rg 4 exists
and is unique). It follows from the same proposition that ,4; is univalent for
all fixed ¢t € IR 4+ and the function f,4; is therefore well defined. Moreover, it
follows from Lemma 5.34 that for all #;,1, > 0 there is a constant k£ such that

sup |Qn41(¢t) — Qny1((,12)| < klty — 22
CeD

One checks that this inequality, the Lipschitz continuity of the mapping F and
the continuity of f,1; with respect to the first variable, imply the continuity of
fat1. The continuity of the function sup,ep |f]41(¢, )| then follows from the
continuity of the mapping F with respect to the derivative.

Part 2. We show that for every d > 0, there is a T > 0 such that for all non-
negative t < T and all n € INy:

sup |Qa(C,1) = Qo(Q)] < d (5.50)
(eD

We define constants M,C and T by

d

M = ?lelg |f0(C)| C = ?:g |Qo(<)| T= m

and prove by induction that for all non-negative t < T and all n € IV:

w n
sup |Qn.(C, — 5T (CK)F 5.51
CEgl (¢,t) - £ ¥ ; (1) (5.51)

o

The inequality for n = 1 can easily be shown. We then assume that this inequality
holds for a certain n € IV, apply Lemma 5.33 and we find that for all ¢ € [0, T):

sup [Qn41((,t) = Qo(¢)| < Ct max sup |fn((,7)| <
¢eD T€[0,t] ¢eD
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Ct max sup (1fa(¢,7) = (Ol + [ fo(O)]) <

T€[0,t] {E

Ct | M+ K max_sup |[Q,((,7)— Qo(()] | <
T€[0,t] ¢eD

MCt max (CKt)* (CKUk

M
r€[0,1] - K

uM+

Inequality (5.51) for all non-negative t < T and all n € IV follows. The inequality
(5.50) for arbitray n € INg and all ¢t € [0,T) is a direct consequence.

Part 3. It follows from the result deduced in Part 2 and from the continuity of
F with respect to the derivative that there exists a T > 0 and numbers Ko, /(3
such that for all n € INg and all non-negative t < T

sup |fL(¢ 1) < K1 sup [fa(C, 1) < K2
CED ¢(eD

We define L = CeT(K1+K2) a3pply Lemma 5.35 and find for arbitrary n € IV and
all non-negative t < T":

?up |Qn+1(<at) - Qn((at)l <

Lt max sup |fn(¢,7) = fap1((,7)] <
tel0,t] ¢eD

LKt max sup |Q,(¢,7) — Qn1((, 7))
€04 ceb

One then shows in the standard way that Q,,n € [Ny is a Cauchy-sequence in
H for all fixed ¢t < T = min{T,(LK)"'}. So, Q, is a sequence of univalent
functions converging uniformly to an analytic function Q,,n € INg on D for all
non-negative t < 7. One shows by standard techniques (cf. [27]) that the func-
tion © on D x [0,T) thus defined satisfies initial value problem (5.49) and is
univalent for all ¢ € [0, 7). a

Remark 5.38 Direct applications of this theorem for standard moving boundary
problems are restricted for two reasons. The first reason is that F maps into the
space of functions which have a non-positive real part. We already remarked that
this corresponds to moving boundary problems where the domain is shrinking. If
one wants to generalize the theorem is such a way that F maps into a space that
contains also functions which have real parts which are not purely negative, the
same methods only apply if these functions can be extended analytically outside
D. The second reason is that the conditions on the mapping F in the theorem can
be formulated as conditions on how smooth the normal component of the velocity
depends on the shape of the boundary (see Section 3.2). For problems such as
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the ones discussed in Sections 3.3 and 3.4, it is non-trivial —and it may even be
impossible~ to show that these conditions are satisfied indeed. We present in
Appendix C another point of view on this problem.



Appendix A

Domains of left monogenic
functions without primitives

In Section 2.3 we met the following problem: do domains G C IR® exist which
are not z-normal but do possess the property that every left monogenic function
on G has a primitive? Unfortunately, we cannot answer this question but the
proposition below actually shows that a domain G which is such that every left
monogenic function on G has a primitive must have geometric properties which
resemble z-normality.

Proposition A.1 Let G C IR® be a domain such that a curve v C G ezists with
the following properties:

i). v connects two points Py and P, with the same y- and z-coordinates such
that the line segment connecting P, and P, is not entirely in G

it). the orthogonal projection ¥ of v on a plane V : x = a is such that G/7 is
connected.

Then a left monogenic function on G exists which does not have a primitive.

Proof
We may assume without loss of generality that P, = (24,0,0) and P, = (z,,0,0)
with 1 > 0,22 < 0 while the origin O is not in G. Consider the function

T —yer — zéy

e(z,y,z)= -2 (z,y,2) €G (A.1)

r3

where 7 = (z2+y2+z2)%. One checks that this a properly defined, left monogenic
function on G. We assume that a left monogenic primitive function

E =P+ Qe+ Qrea + Re

127
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on (G exists and show that this leads to a contradiction. This proves the propo-
sition.
The relations DE = e, DE = 0 imply that the function Q = @ satisfies

Q:=%  AQ=0 (A2)

On G minus the z-axis, () can be written as

Q(z,9,7) = ——2 Y ¥ f(z,9,2) (A.3)

(v2+ 22)r T oy? 4 22

Substituting this relation into relations (A.2), we find that the function f on G

minus the z-axis satisfies
fe=0 Af=0 (A4)

Now consider the restriction f of f to the intersection ~G~' of G and the plane
Vi iz = z;. It follows from the relations (A.4) that f on G\{(0,0)} is harmonic.
It follows from relation (A.3) that f can be extended continuously to (0,0) as

lim  f(y,z) = lim 21,9, 2) = Q(z1,0,0
(v,2)—(0,0) (v,2) (y,z)—»(o,o)Q( 1,Y,2) = Q1 )

and this implies that f is harmonic on G.

Let 7 be a curve with the properties as mentioned in the proposition and let A/
be a simply connected neighbourhood of its projection 4 —condition ii) implies
that such a neighbourhood of exists. It follows from the relations (A.4) and the
monodromy theorem ([3]) that f on some neighbourhood of v does not depend
on the variable z. In particular this implies:

lim z9,Y,2) = Iim z1,9, — )0,0
(v,2)—(0,0) Hz2,9,2) (3,2)=(0,0) f(z1,9y,2) = Q(z )

On the other hand, it follows from relation (A.3) that this limit does not exist
because:

. ; - 1

lim f(ZQ,y,O) = lim %_F - +Q(227ya0): Q((EQ,0,0)—}—Qllm l

y—0 y—0 yZ(zz + y2)2 Yy y—0 Yy
We conclude that there is no primitive E of e. a

We discuss why the conditions i) and ii) in Proposition A.1 can not regardlessly
be replaced by the condition that G is not z-normal. A glance at the proof shows
that the domain G in the proposition must be such that every real function f
on G satisfying equation (A.4) can be considered as a function of the variables y
and z only. We say that a function f on a domain G C IR® can be considered as
a function of the variables z and y if:

(I],?J,Z),(ZQ,ZJ,Z)EG ]mphes f(zlayaz):f(z%y\'z)
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First we treat an example which shows that not every domain G C IR® has this
property. Consider the domain

{(z,y,2) € R® ‘ z € (-m7), (y—cosz)® + (2 —sinz)? < 1}
We define the function f on G by

flz,y,2z)= Im/ E3 dw
5w
where 7 is the orthogonal projection of a path ¥ in G from (0, 1,0) to (z,y, 2) on
the plane V' : z = 0 which is identified with the complex w-plane. One checks that
f is well-defined, satisfies differential equations (A.4) but cannot be considered
to be a function of the variables z and y as

f(_%’,—l,[)):—ﬂ' f(%>_la0):ﬂ-

Next we show that even if the domain G is such that its projection G on the plane
V iz = 0 is simply connected, then a function f on G may exist that satisfies
equations (A.4) but which cannot be considered as a function of the variables y
and z only. It is possible to construct a non-compact Riemannian surface ([3, 25])
such that:

i). the projection of G on the plane V : z = 0 is simply connected
if). the points P, = (1,0,0) and P, = (-1,0,0) are in G

iii). for every point (z,y,2) € Gandforallt € (-1,3), (z+1¢,y,2) € G implies
t=20

It follows from Weierstrass’ product theorem (also called: Weierstrass’ theorem
for the construction of a meromorphic function with prescribed poles and zeros,
[25]) for non-compact Riemannian surfaces that an analytic function g on H
exists with precisely one zero in (1,0,0) € H. We may assume Re g(—1,0,0) # 0
(if Re g(-1,0,0) = 0 then Re ig(—~1,0,0) # 0).

Now we define the open domain G C IR® by

11
G={(s,9,2)€ R’| 3te(-5,5) (z+ty,2) € H)
and we define the function f on G by
f(z,y,2) = Re g(z +1,y,2)

where t is the unique number in (-1, 1) such that (z +t,y,2) € H. We notice
that the projection G of G on V is the open unit disc, that the above constructed
function f satisfies equations (A.4) but that this function cannot be considered
to be a function of the variables y and 2.
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Remark A.2 It follows immediately from the construction given above that an
analytic function ¢ on D (in the sense of Weierstrass, [11]) exists such that:

i). for every z € D there is a path from 2y = 0 to z along which g can be
extended analytically

ii). the so obtained analytical function g is not single-valued.
We stress that this does not contradict the monodromy theorem.

We end this appendix with a lemma which states under which conditions a domain
G C IR3 is such that every function f on G satisfying equations (A.4) can be
considered to be a function of two variables.

Lemma A.3 Let G C IR® be an open domain such that:
i). the orthogonal projection G of G on the plane V : z = 0 is simply connected

it). there is a point zo € G such that every path 7 in G starting at the projection
Z, of zy is the projection of a path v starting at z,

Let the function f on G satisfy differential equations (A.4). Then f can be con-
sidered to be a function of the variables y and z only.

Proof

First we make the following remark. Let z = (z,y, 2) be an arbitrary point in
G. There is an ¢ > 0 such that the ball B.(z) with radius € and centre z is a
subdomain of G. As % = 0 on B.(z), the function f restricted to B.(z) can be
considered a function of the variables y and z only and therefore it makes sense
to consider the projected function f on the projection B. (z) of Bs(z) on V. This
function f is harmonic on B.(z).

Let z, be a point as in the lemma. We will show that it is possible to extend the
function (or function element) fon BEO (zg) harmonically along every path ¥ in G
starting at Z,. Let 4 be an arbitrary path in G starting at Z, and let ¥ be a path
in G starting in zq such that its projection on V is ¥ —such a vy exists because
of condition ii). As vy is compact (it is the image of [0,1] under a continuous
mapping) and as the distance between vy and dG (if it exists) is non-zero, it is
possible to cover ¥ with a finite number of balls B,,,n = 0,..,N in G. It follows
from the remark made above that the projected functions fn,n =0,.,N on B,

are harmonic. As the path 7 is covered by {B,}N_,, this construction leads toa
harmonic extension of f on B.,(z,) along 7.

As the function fy thus can be extended harmonically along every path in the
simply connected domain G, it follows from the monodromy theorem that all
these extensions lead to the same result. To be more precise: given two paths 9,
and 9, at G starting at Z, and ending at a point Z € G, we find fl(:n) fa(&)
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where f;,7 = 1,2 denotes the function (or function element) in a neighbourhood
of Z; obtained by extending fon 35(@) along the path 7;.

Now, let z; = (z1,¥, 2) and 2, = (27, y, 2) be arbitrary points in G with the same
y— and z—coordinates. As G is connected, there are paths v; and v, from z,
to z; and z, respectively. We can extend the function f on BE(I_()) harmonically
along the projections of the paths 4; of the paths 7;,7 = 1,2 on V' as we showed
above. As the end points of the paths ¥; and 7, are the same, namely (y, 2) € G,
we get f1(y,z) = fg(y,z) and this implies f(z1,y,2) = f(z2,¥, 2). a
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Appendix B

Separation of variables in
linear Lowner-Kufareev
equations

We show in this appendix that the initial value problem for a linear Lowner-
Kufareev equation can be solved by the method of separation of variables if the
function f that appears in this equation does not depend on the variable t.

Let f be an analytic function on an open, simply connected domain B C € that
contains 0 and consider the initial value problem

Q1) = (1) FC)C (B.1a)
Q(¢,0) = Qo(C) (B.1b)

where g is an analytic function on B. We assume that there is a solution Q of
equation (B.la) of the following form:

Q¢ 1) = u(g(t)$(C))

where © is an arbitrary analytic function and where g and 7 are functions to be
determined. A solution of this form exists indeed if there is a constant C € €
such that the following differential equations can be solved:

g(1) = Cy(t) (B.2a)
PO = CH(C) (B.2b)

First we consider equation (B.2b) on an open neighbourhood of ( = 0. One
verifies that a non-trivial solution of this equation exists if and only if f(0) # 0
and C = nf(0) with n € IN. This solution, which is unique up to a multiplicative
constant, has a zero of order n in { = 0. As we will require the function % to
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be univalent later on (see relation (B.4)), we put n = 1 and solve the equations

(B.2):

¢
[t o
o(t) = Kyl O $(C) = Kageo
where K7 and K, are arbitrary constants. This function 1 is univalent in some
open neighbourhood of ( = 0. We remark that 4 is injective on 0D, C B,r > 0,
and hence univalent on D, ([23]), if the relation

62
/ f.(f:gi)g) df = 27k (B.3)
01

implies 8; = 8 modulus 27 for all £k € Z. Furthermore, the function % is well-
defined on the whole domain B of f if the function f does not have any zeros.
One verifies that if f does have a zero at a point (5, then the behaviour of the
function v at (o depends on the value of f'((o):

i). if there is a n € IN such that n(o f'({o) = f(0), then % is analytic at { = (o
with a zero of order n

ii). if there is a n € IV such that n{of'((o) = —f(0), then % has a pole of order
nin (= (o

iii). otherwise there is no solution of equation (B.2b) in the class of meromorphic
functions on Bj; in particular, if f/({s) = 0then 9 has an essential singularity
in ¢ = (o, and if o f'({o)/f(0) € IR\Z then 9 is multiple-valued

So, differential equation (B.2b) has a non-trivial analytic solution on B such that
¥'(0) # 0 if and only if f(0) # 0 and for every zero (; € B,1 = 1,.., N of f there
is a n; € IN such that n; f'((;)(; = f(0). The general solution of this equation is
then given by

- 1(L9 Noong
P(C) = Ko H(C _ Q)"‘ef"( (Z(%_l)‘z.ﬂ <_<1.) d¢
=1

It follows that the function  on an open domain /' C € X IR defined by

Q¢ ) = Qo (7 O(())) (B.4)

is a solution of initial value problem (B.1). We note that it demands some analysis
to determine the domain N of ; in particular, this domain depends on the
subdomain on which the function v is univalent. However, it follows from the
construction above that {0} x R C V.
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Example B.1 Let the function f on D be given by:

_ ¢+l
and let Qg be the identity. We solve the corresponding initial value problem (B.1)
in the way explained above. We put K, = 1 and find

_ ¢
(We note that 9 is analytic on D in accordance with the observation that f does
not have any zeros on D; the pole in ( = —1 has order two according to the

analysis presented above. We also note that 1 is univalent on D according to the
remark made above; see relation (B.3)). This function, that is called the Koebe
function ([70]), maps the unit disc D univalently on € minus a slit S on the real
axis from 1/4 to infinity. The inverse function ¥~ on € \S is given by

W0 = -1+ ¢ (1- VI=0)

We get the solution of the initial value problem from relation (B.4):

ez(é—;l) (C +1-(¢+1)2- 4e-¢<>

One verifies that the domain of this function is given by

Q((,t) =-1+

{(¢,)eEDxR_|(g[-1+271-V1—-¢),1)CR}U(D x IRy )

We note that Q is well-defined on D for all t € Ry 4, according to Remark 5.5 and
the fact that the real part of f on D is negative. It turns out that the function
Q(-,—1),t € IRo + is just the inverse of the function (-, ¢) and this implies that
the image of D under Q(-,t),t € IRy + is the unit disc minus a slit on the real axis
from —1 + 2e!(1 — v/1 —e~*) to 1. We finally remark that this solution can also
be obtained by solving initial value problem (5.1); one gets the following identity:

e((,1) = Q¢ -1)

We stress that this identity does not hold in general.
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Appendix C

Existence of solutions of
Hopper equations

This appendix is concerned with the solvability of Hopper equations under gen-
eral conditions. We certainly do not establish a complete proof; we only show
some ingredients in the hope that this may contribute to the understanding of
Hopper equations.

It is clear from the considerations in Chapter 5 that the solvability of a Hop-
per equation is related with the existence of solutions of the following initial
value problem for a function = on 9D x I:

2(¢,1) = (E(G OG0 +0(C,t) (C.1a)
2(¢,0) ==, (C.1b)

where Zj is a given function on 0D and where the functions f and 6 are assumed
to be decomposable in the following way:

FCD =S e 0D =S an(t)C?
n=0 n=0

We will explain the precise role of these functions at the end of this appendix.
We decompose = and Zj as:

B = ), da(t)™ Zo((t)= D dao(t)(”

n=-—0oo n=-—0o0

and find that initial value problem (C.1) can be written as
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da(t) = (n+1) f: ce(t)dn_i(t) + an(t) n € INy (C.2a)
k=0

da(t) = (n+ 1) i k() dn_i(t) ne Z\IN,  (C.2b)
k=0

dn(0) = dno neZ (C.2¢)

(A comparable set of equations already appeared in the proof of Proposition
5.31). In the Chapters 4 and 5, the time interval / —in which the variable ¢
took its values— was open and the functions =, f and 8 were typically contin-
uous on their domains. It turns out that if we want to discuss the existence
of solutions, it is more appropriate to consider time intervals [0,7],7 € R4
and to consider time dependent functions in L,(0D). That is, we assume that
c(t) = (co(t), c1(t),..) € Iz and a(t) = (ao(t),a1(t),..) € I for all t € [0,T], take

o ldno|? < co and look for solutions = such that 3% |d,(1)]* < oo for all

tef0,T].
We first consider differential equations (C.2b) with n € {=2,-3,..} in this con-
text; the equation with » = —1 is trivial while the equations (C.2a) will be

considered later on. We can rewrite the mentioned set of equations as follows.
We define b(t),t € [0,T] and by by

b(1) = (d_s(t), d_s(2),...) bo = (d_20,d_3,0,...)

For each ¢ = (¢, ¢1,..) € I3, we define the operator A(c) by

Ale) = — Z cnNJy,
n=0
where N and J,,n € INy are operators corresponding to the matrices with ele-
ments given by
Ny = ké (Jn)kt = bnikt k,le I
The equations (C.2b) and (C.2¢) can then be written as
b(t) = A(c(t))b(t) (C.3a)
b(0) = b (C.3b)
Proposition C.1 Ifc:t € I — ¢(t) € I3 1s such thai:
i). Reco(t) > 3002 |en(t) for all ¢t € [0, 7]
i). the function M on [0,T] defined by: M(t) = 502, nlca(t)] is continuous
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then the initial value problem (C.3) has a unique l,-valued solution.

Proof

It follows from a theorem formulated in [42] (see also [41]) that it is sufficient to
check that the family of operators {A(t)},co.7) where A(t) = A(c(t)), satisfies
the following three conditions:

i). A(t) is an infinitesimal generator of a Cy-semigroup on [, for all fixed ¢ €
[0,T]

ii). there is a Banach-space h, continuously and densely embedded in I, and
an isomorphism S from A to [; such that the operator B(t),t € [0,T] on [,
defined by

B(t) = SA(t)S™ — A(t) (C.4)
is bounded for all t € [0,T]; moreover, t — B(t) is continuous with respect
to the operator norm

iii). A(t) is a bounded operator from h to I3 for all ¢ € [0, t]; moreover, t — A(t)

is continuous with respect to the operator norm

Before we check that these conditions are indeed satisfied, we define the Hilbert
space h by

h= {(U1,U2,...) € ly| Zn2|un|2 < OO}

n=1
[e o)
(w1, 82, ...), (01,02, ...) ) = Z n*u,v,
n=1

It is not difficult to show that h is continuously and densely embedded in /. It
is clear that D(N) = h, that N is a self-adjoint, positive definite operator and
that N is an isomorphism from A to [, such that

INulli, = ||ulln for all w € h (C.5)

Now we show that the conditions i)-iii) above are indeed satisfied.
Condition i). We write:

A(t) = -Q(1) + A (2)
Q(t) = (Re co(t))N A1(t) = =(Im ¢o(t))N — Z el )N Jy
n=1
It follows directly from results proved in [29] that A(t),¢ € [0,T] is a generator
of a Cy-semigroup of contractions if
Re (u, A(t)u) <0 forall u € h (C.6a)
Re (Q(t)u, A(t)u) <0 forallu e h (C.6b)
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We only prove the first inequality; the second one can be proved in a similar way.
We first note that for all n € IV and all £,] € IN:

(VNLVNT) = 3 VESimbmin VT 651 = \Jk/16tm1
m,j=1

and this implies
IVNJ. VN || <1 n e N (ELT)
The inequality (C.6a) then follows from condition i) in the proposition as
Re (u, A(t)u) = —Re (u, Q(t)u) + Re (u, A;(t)u)
and as

u,ch t)N J,u)

n=1

smemeP (Re co(t))|(u, Nu)| = (u,Q(1)u) (C.8)

IRe (u, Ay( (t) (VNu, VNI VN "~ VNu)

n=1

for all w € h and all t € [0, 7).
Condition ii). We put § = N and find
o0
B(t) =) ca(t)N (Jn — NJ,N7) (C.9)
n=1
In order to show that B(t) is a bounded operator on [y for all ¢ € [0, T], we first
note that

(N (Jp = NJ,N)), (k(l' ))mn: k,le N

l
for all n € INg, and this implies

IN (Ju = NJN")|| < sup
k

n
N/{:+n:n 'IZEWO
(=

It then follows from condition ii) in the proposition that the mapping t — B(1)
is continuous for all ¢ € [0,T] as

[ee]

IB@)I| < ) nlea(t)] = M(2)

n=1

Condition iii). We have for all u € h and all t € [0,T]:

Al = |l ch ON Jnulli, < Z len (DN Tnufli,
n=0
> lea®) [ nulls < M(@)]lulln

n=0

The continuity of the mapping t — A(t) follows. a



141

Remark C.2 Let L7 (3D) denote the subspace of L,(dD) containing those func-
tions u € Ly(0D) such that

2T
/ei(l—n)ﬂu(eié’) 4o =0 for all n € INg
0

(This space L; (0D) can be identified with a particular Hardy-space, see e.g. [95]).
Let P~ denote the projection operator from Ly(0D) onto L, (0D). One checks
that the Hilbert space h introduced in the proof is isomorphic to P~ (H'(0D)),
where H1(AD) denotes the Sobolev space of functions w € L,(0D) with a gener-
alized derivative u’ in Ly(3D). One also checks that the operator B(t),t € [0,T]
on I, corresponds to the operator B(t) on L; (D) defined by:

B(t) : we L3(9D) ~ P~(B(t)u) € L7 (3D)
(B(tyu) (%) = —ie % (Mséﬂfe%(ew) d¢)

It follows from this expression that the condition ii) in the proposition cannot be
weakened very much; the estimates in the proof are quite sharp.

Remark C.3 We note that a formal substitution

dn(t) = e*T1C g, (1) neZ
En(t) = e"Clen(t) nelN
Zo(t) = Co(t) + C

for some C € € in the equations (C.2b) (and (C.2a)) leads to a same set of
equations with ¢, and d,, replaced by ¢, and d,,. This observation can be used to
recover some of the results obtained in Subsection 5.3.3: if it is assumed that the
function f or = can be extended analytically, then it is possible to choose C € IR
such that the conditions in the proposition reduce to much weaker conditions. We
do not go into the details of this consideration as the results will not be stronger
than the results obtained before.

Remark C.4 The proof of inequality (C.6a) was completely based on the in-
equality Re ¢o(t) > 3 o2, |ea(t)]. This implies that the uniqueness of the solution
of initial value problem (C.3) can be proved without reference to condition ii) in
the proposition. We show this result explicitly because we used it in the proof of
Proposition 5.31.

Let b :t — b(t) € I3 be a solution of initial value problem (C.3) with by = 0 and
with ¢ : ¢t — ¢(t) € [5 such that it satisfies condition i) in the proposition. We get
for all ¢ € [0,T]:

2 b(t)I? = 2Re (b(1), A(e(t))b(1)) < 0
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This inequality, together with |b(0)] = |bo| = 0, implies |b(t)] = 0, and hence
b(t) =0, for all t € [0,7T].

We return to initial value problem (C.2). Proposition C.1 states that the initial
value problem given by (C.2b) and (C.2c) has a unique solution under general
conditions. The remaining part of the initial value problem, given by (C.2a) and
(C.2¢), can then easily be solved by iteration. Roughly speaking, the solutions
d,,n € INg exhibit in general a typically exponential behaviour

dn oy dn Oe(n+1)f°‘ co(T)dr

and do not constitute a function = which is in L,(9D) for a fixed t > 0. However,
this does not mean that a Hopper equation does not have a solution in general:
it is important to realize that the function 6 that figures in a Hopper equation is
undetermined and that the function = is actually an abbrevation of the function
Q'Q) (we are not looking for a solution = of initial value problem (C.1) but for
a function  such that = = Q'Q solves this initial value problem). So, the
question is not whether initial value problem (C.2) can be solved for a given set
of functions a,,n € Vg, but the question is whether functions a,,n € Ny exist
such that initial value problem (C.2) has a solution with the property that a time
dependent (locally) conformal mapping Q on D x [0,T] exist such that for all
(¢,t) € 0D x [0,T]:
(00 Z d
n=—0oo

This question remains unanswered; we only make some comments on how this
problem may be solved.

First one must try to show that for each function =_ —in some proper space of
functions on D such as H'(8D), see remark C.2— with the property

27
/e“i"GE_(ei(’) d6 = 0 for all n € INo
0

there exists a unique function =4 —in the same space of functions— with the
property

2w
/emeEJr(eig) do =0 for all n € IV
0

such that the function = = Z_ + = satisfies equation (5.28) (in some generalized
sense).

Secondly, one shows that for each function d from [0,7] to some subspace of I,
—such as h, see again remark C.2-there is a function a from [0,T] to /5 such that
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the equations (C.2a)- are satisfied. This problem is probably not hard to solve
because of the structure of the equations (C.2a).

In order to establish a proof of the existence of solutions of Hopper equations
where the function f depends on Q in a functional way, one should generalize
Proposition C.1 in such a way that the function ¢ may depend on the function b
in a functional way. This is possible as the proof of this proposition is based on
a theorem which has been generalized in this sense (see e.g. [42]).



144 APPENDIX C. SOLUTIONS OF HOPPER EQUATIONS



Appendix D |

Some numerical results

It has been shown in Section 4.1 that a Hopper equation for a rational time-
dependent conformal mapping is equivalent to a set of differential equations. In
order to illustrate the usefulness of this equivalency, we present a numerical result
from [7]. The figures below are the output of a Mathematica program which solves
the mentioned equations in the following case (see also Example 4.5):

2 An(t)
U =C), —F
mz__l 1- Cm(t)c
with initial given by

A1(0) = 0.140  A4,(0) = 0.240  A3(0) = 0.141
¢1(0) = —0.850 (3(0) = —0.500i (3(0) = 0.900

" wl
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Glossary and Index

INg, IN, IN U {0},_LNU{OO}
Ry, Ry + {zeR|z>0},{ze R|z>0}
, el <)

€ U {o0}, Riemann sphere

open interval of IR containing 0

vector (in a finite dimensional vector space)
tensor of order two

e (2)
2

S inverse of operator or mapping S
[a] largest integer smaller than or equal to number a

MRl ~&y

1) complex conjugate or grade involution (see page 27)
of function or number f
ii) function obtained by reflecting function f with
respect to the unit circle (see Definition 3.16)
f! i) derivative of function f with respect to variable in
complex plane or on unit circle (see Definition 3.18)
ii) derivative of deformed analytic function (see page 17)
f = derivative of function f with respect to variable 2

analytic The adjective analytic is used in the sense of holomorphic: a complex
valued function on an open domain G C € is analytic on G if it is single-valued
and satisfies the Cauchy-Riemann equations. If a function is multiple-valued or
meromorphic (and analytic in another, more general sense), it is always explicitly
stated.

complex notation After identifying IR with €, we rewrite f(z,y) as f(z,2),
v = (v v)T as v = vy + 10y, etc..

conformal A (locally) conformal mapping on an open domain is nothing more or
less than a (locally) univalent function. A conformal mapping on a closed domain
G C € can be defined as an injective orientation preserving diffeomorphism with
the property of preserving angles. The following characterization may be more
convenient: Q is (locally) injective on G, the restriction of  to the interior of G
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is an analytic function and the derivative Q' on the interior of G can be extended
continuously to a non-vanishing function on G. A smooth time-dependent locally
conformal mapping is defined in Definition 3.14.

domain Throughout the text, with the exception of Sections 3.1 and 3.2, we only
consider open domains: open connected subsets of IR™. A closed domain in the
sense used in Sections 3.1 and 3.2 is: a subset of JR™ which is the closure of an
open domain. A domain is then an open or a closed domain.

univalent A function is said to be (locally) univalent if it is analytic and (locally)
injective.

deformed analytic 17
functional dependency 48
Hopper equation 64
Hopper’s equation 52
left monogenic 27
Lowner-Kufareev equation
extended linear 95
extended quasi-linear 104
linear 93
quasi-linear 49
moving boundary problem
for Hele-Shaw flow 9
for Stokes flow driven by... 8
geometric solution of 45
solution of 41
rigid-body motion 8
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Summary

The starting point of this study is Hopper’s equation. This is an evolution
equation for a time-dependent conformal mapping from the unit disc to a two-
dimensional domain occupied by a viscous fluid satisfying Stokes’ equations and
driven by surface tension. Generalizations of this equation we call Hopper equa-
tions. We show that some other moving boundary problems from fluid mechanics
can be treated by means of these generalizations. An example is the Hele-Shaw
flow. As a consequence of the fact that various problems can be modelled by one
type of equation, regularized and mixed models can be considered too. However,
only the introductory chapter sketches some physical background of this all; our
main interest lies in the mathematics.

At a first glance, Hopper’s equation is somewhat peculiar since a “free” function
figures in it. The values of this function are not prescribed but it has to be an-
alytic. A direct construction of solutions seems to be almost impossible because
of this indeterminacy. That is why we try to find solutions by making an Ansatz.
That is, we parametrize a rational conformal mapping with an arbitrary number
of poles of arbitrary order, substitute this into a Hopper equation and obtain a
finite set of differential equations for the time-dependent parameters. It is proved
by means of complex analysis and the theory of ordinary differential equations
that this set of equations has a local solution. We stress that exact solutions can
thus be obtained; we do not make any mathematical approximations. Thus we
have generalized and proved Hopper’s conjecture on the existence of polynomial
and partial fraction solutions. Moreover, we have established a number of con-
served quantities. On the basis of these quanities, global existence of solutions
for a class of problems is demonstrated.

These considerations show a deep relationship between Hopper equations and
time-dependent rational solutions. We reveal this relationship by studying a
particular type of partial differential equation that we call the extended Lowner-
Kufareev equation. We deduce how singularities such as poles and branch points
of solutions of such an equation propagate. This leads to some rules for the prop-
agation of singularities of solutions of Hopper equations. Such propagation rules
in turn imply the conservation of certain properties of solutions of the aforemen-
tioned problems. For example, a solution that is polynomial, rational or algebraic
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at a certain instant, must be polynomial, rational or algebraic at all times.

We finally approach Hopper equations from the theory of semi-groups of opera-
tors. We sketch the lines of a proof of the assertion that Hopper equations can be
solved uniquely under general conditions. An important ingredient to this proof
is the result that a conformal mapping £ on the unit disc is determined by the
values of Q'Q on the boundary of the disc.

The other parts of this thesis concern closely related subjects. We mention a few
of them.

It has already been remarked that a “free function” appears in Hopper’s equa-
tion. The origin of this function lies in the possibility to represent solutions of
Stokes’ equations in two dimensions by a pair of analytic functions. We prove
that solutions of Stokes’ equations in three dimensions can be represented by a
pair of left monogenic functions with values in a Clifford algebra. If the solution
is axially symmetric, it can be represented by “deformed” analytic functions.
We also treat moving boundary problems in a general framework. It turns out
that many of these problems can be modelled by a quasi-linear Lowner-Kufareev
equation. We prove a theorem on the existence of solutions of the related initial
value problems by an iteration method.



Samenvatting

Het uitgangspunt van deze studie is Hopper’s vergelijking. Dit is een evolutie-
vergelijking voor een tijdsafhankelijke conforme afbeelding van de eenheidsschijf
naar een twee-dimensionaal domein dat ingenomen wordt door een visceuze vloei-
stof die voldoet aan Stokes’ vergelijkingen en beweegt onder de invloed van de
oppervlaktespanning. Generalisaties van deze vergelijking noemen we Hopper-
vergelijkingen. We tonen aan dat met deze generalisaties ook andere bewegende-
randproblemen uit de stromingsleer te behandelen zijn, zoals bijvoorbeeld de
Hele-Shaw-stroming. Als gevolg van het feit dat uiteenlopende problemen met
één type vergelijking gemodelleerd kunnen worden, zijn ook voor de hand lig-
gende mengvormen behandelbaar. We gaan in het inleidende hoofdstuk echter
maar kort in op de fysische achtergrond van dit alles; de aandacht richt zich
vooral op de wiskunde.
De Hopper-vergelijking is op het eerste gezicht wat merkwaardig, aangezien er een
“vrije” functie in voorkomt waarvan alleen het karakter bepaald is: deze functie
is analytisch, maar heeft geen a priori voorgeschreven waarden. Deze onbepaald-
heid maakt dat een rechtstreekse constructie van oplossingen onmogelijk lijkt.
Daarom wordt geprobeerd oplossingen te vinden via een Ansatz. Dat wil zeggen,
we parametriseren een rationale conforme afbeelding met een willekeurig aantal
polen van een willekeurige orde, substitueren deze in de Hopper-vergelijking en
vinden een stelsel differentiaalvergelijkingen voor de tijdsafhankelijke parameters.
Met behulp van complexe analyse en de theorie van gewone differentiaalvergelij-
ken tonen we aan dat dit stelsel uniek oplosbaar is. Het blijkt nu dat aldus exacte
oplossingen verkregen worden. Daarmee hebben we Hopper’s hypothese over het
bestaan van polynomiale oplossingen veralgemeend en bewezen. Bovendien heb-
ben we gaandeweg een aantal behouden grootheden gevonden. Hiervan uitgaande
bewijzen we voor een klasse van problemen het bestaan van globale oplossingen.
Het blijkt aldus dat er een diep verband bestaat tussen Hopper-vergelijkingen
en tijdsafthankelijke rationale conforme afbeeldingen. Dit verband wordt inzichte-
lijk gemaakt door een partiéle-differentiaalvergelijking te beschouwen die wij de
uitgebreide Lowner-Kufareev-vergelijking noemen. We leiden af hoe singularitei-
ten zoals polen en vertakkingspunten van oplossingen hiervan zich voortplanten.
Dit leidt dan tot een aantal regels voor de voortplanting van singulariteiten van
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oplossingen van Hopper-vergelijkingen. Uit deze regels blijkt vervolgens dat ze-
kere eigenschappen van oplossingen van de bovengenoemde problemen behouden
blijven: een oplossing die op een tijdstip polynomiaal, rationaal of algebraisch is,
is dat voor alle tijden.

Ten slotte worden Hopper-vergelijkingen benaderd vanuit de theorie van semi-
groepen van operatoren. We schetsen de contouren van een bewijs dat Hopper-
vergelijkingen onder zeer algemene voorwaarden uniek oplosbaar zijn. Een be-
langrijk ingrediént hierbij is het resultaat dat een conforme afbeelding © op de
eenheidsschijf vrijwel geheel bepaald is door de waarden van Q'Q op de rand van
de eenheidsschijf.

De overige delen van het proefschrift behandelen onderwerpen die nauw ver-
want zijn aan deze beschouwingen. We noemen enkele hiervan.
We hebben al opgemerkt dat in Hopper’s vergelijking een functie verschijnt waar-
van alleen bekend is dat zij analytisch is. De herkomst van deze functie ligt in de
mogelijkheid oplossingen van Stokes’ vergelijkingen in twee dimensies te represen-
teren door een stel analytische functies. We bewijzen dat oplossingen van Stokes’
vergelijkingen in drie dimensies te representeren zijn door een stel links-monogene
functies met waarden in een Clifford-algebra. In het axiaalsymmetrische geval kan
men volstaan met, wat wij noemen, gedeformeerd analytische functies.
Verder worden bewegende-randproblemen behandeld in een algemeen kader. Het
blijkt dat veel van deze problemen gemodelleerd kunnen worden door een quasi-
lineaire Lowner-Kufareev-vergelijking. We bewijzen een existentiestelling over
het bijbehorende beginwaardeprobleem door een iteratie-techniek te gebruiken.
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-1-

Laat Q op {¢ € €||(] < 1} x [0,00) een tijdsafhankelijke conforme afbeelding
zijn die een oplossing beschrijft van het bewegende-randprobleem voor Stokes-
stroming gedreven door oppervlaktespanning. Als Q op ¢t = 0 polynomiaal,
rationaal, algebraisch, stervormig of convex is, dan is { dat voor alle ¢ > 0.
Zie ook hoofdstuk 5 van dit proefschrift.

9.
In de uitleg van het ontstaan van cusps in Hele-Shaw-stroming zoals gegeven
in [1], worden de begrippen domein en bereik verwisseld; deze uitleg is dan
ook onjuist.

-3-
De wiskundige problemen die ontstaan door singulariteiten in Hele-Shaw-
stroming kunnen worden omzeild door een gemodificeerd model te beschouwen
dat gebaseerd is op een regularisatie van de bijbehorende Hopper-vergelijking.
Zie ook hoofdstuk § van dit proefschrift.

4-

Laat D de eenheidsschijf zijn in C en laat L; (9D) de ruimte zijn van quadra-
tisch integreerbare functies f waarvoor geldt

2 .
Je ™0 f(e%)do =0 voor alle n € INg,
0

2r X

Jelf(e®)do e IR,.

0

Voor alle functies =_ € L;(0D) bestaat er een co € IR zodanig dat voor alle
¢ > ¢ er één functie =4 € L7 (dD)* en één functie O in de Sobolev-ruimte
H'(0D) bestaat zodanig dat:

i). e L;(8D),
ii). de voortzetting van )’ op D heeft geen nulpunten in D,
1). Q(ONC) = Z4(¢) + Z-(¢) + <€ voor bijna alle ¢ € 8D.

)

ii

-5-

Het is puur conservatisme dat oliemaatschappijen sommige gevallen van
,yeconing” niet tegengaan door olie de grond in te pompen.



-6-

Het verschil tussen de ijktheorieén van Chisholm en Farwell en andere the-
orieén over contravariante afgeleiden van spinoren, is enkel een verschil in
interpretatie van het begrip ijktransformatie.

Vergelisk [2],[3].
A

Zij Cly » de Clifford-algebra behorend bij een n-dimensionale ruimte met een
negatief definiet inproduct. Het inproduct van twee basiselementen e4 en eg,
waarbij A en B geordende, niet-lege deelverzamelingen zijn van V = {1, ..,n},
wordt gegeven door

es-eg = *(e,(a,b) xeq Nep+eqy(a,bles A *63),

waarbij a = §A, b = {B, * de Hodge-ster-afbeelding is en &, en e, gegeven
worden door

el(a, b) — 2—5“ (_1)[(b+1)/2]+ab+a+b+l
52(a,b) — (_1)[(a+1]/2]+ab+(n—l)(a+b)+],

2—6,4
2

waar [ ] het entier aangeeft.
Zie ook [4],[5].

-8-
De toepasbaarheid van de theorie van monogene functies met waarden in
een Clifford-algebra is voor het oplossen van problemen uit de stromingsleer
beperkt, doordat de compositie-eigenschap ontbreekt wanneer meer dan twee
variabelen een rol spelen.

-9
Wie de richting van de tijd wil begrijpen, moet vroeger opstaan.
Vergeligk [6].

-10-

Nederland is buiten Amsterdam nog te leeg.
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