

ACCEL : a tool for supporting concept generation in the early
design phase
Citation for published version (APA):
Ivashkov, M. (2004). ACCEL : a tool for supporting concept generation in the early design phase. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Built Environment]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR578193

DOI:
10.6100/IR578193

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR578193
https://doi.org/10.6100/IR578193
https://research.tue.nl/en/publications/94b39162-5b1b-4b9f-b9ff-c29c31c4a8e1

ACCEL: a Tool for Supporting
Concept Generation in
the Early Design Phase

PROEFONTWERP

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus, prof.dr. R.A. van Santen,
voor een commissie aangewezen door het College voor Promoties

in het openbaar te verdedigen op
dinsdag 15 juni 2004 om 16.00 uur

door

Maxim Ivashkov

geboren te Minsk, Wit-Rusland

De documentatie van het proefontwerp is goedgekeurd door
de promotoren:

prof.ir. P.G.S. Rutten
en
prof.dr.ir. B. de Vries

Copromotor:
dr.ir. C.W.A.M. van Overveld

“ACCEL: a Tool Supporting Concept Generation in the Early
Design Phase.”
ISBN 90-6814-581-9
Copyright © Maxim Ivashkov 2004
All rights reserved.
Printed by the Eindhoven University Press, Eindhoven, The Netherlands.
Published as issue 84 in the Bouwstenen series of the Faculty of
Architecture, Building and Planning of the Eindhoven University of
Technology.

Contents
LIST OF ACRONYMS ..1

LIST OF SYMBOLS ..3

CHAPTER 1. INTRODUCTION...5

1.1 PROBLEM DEFINITION...6
1.2 THE STAKEHOLDERS ..8
1.3 MODELING APPROACH ...10

1.3.1 Knowledge management ...10
1.3.2 Linguistics ...11
1.3.3 The mechanism of questions and answers ..12

1.4 THE DOMAIN OF THE EARLY DESIGN PHASE..13
1.4.1 The organization domain ..14

Design team...14
Stakeholders ..15

1.4.2 The product domain ..16
The design problem...16
Solutions..18

1.4.3 The process domain ..18
1.5 OUTLINE OF THE RESULTS OF THIS THESIS ..19

CHAPTER 2. AN OPERATIONAL MODEL OF THE DESIGN PROCESS21

2.1 INTRODUCTION...21
2.1.1 The basic assumptions ..21
2.1.2 Intention of the model and the outline ..21
2.1.3 Position of the model...22

2.2 DESCRIPTIVE PURPOSE ...23
2.2.1 State-transition model ...23
2.2.2 A structure for the product..25

2.3 A FORMALISM FOR PRODUCT KNOWLEDGE...27
2.3.1 Introduction...27
2.3.2 Basic ingredients of the formalism..28

The set of concepts..28
The set of solution concepts..29
The set of attributes...29
Attribute types...32
Structures for concepts..33

2.3.3 The decision space VD ...34
2.3.4 The objective space VO..37
2.3.5 The contextual space VC..38
2.3.6 The auxiliary space VA ..39
2.3.7 Summary..39

2.4 PRODUCT MODELS..40
2.4.1 Basic definitions ..40
2.4.2 Definition of the product model ..41
2.4.3 Classes of product models and the scope of our formalism....................43
2.4.4 Development of product models..44
2.4.5 Summary..45

2.5 REFLECTIONS .. 46
2.5.1 Formal definition of questions and answers .. 46
2.5.2 Categories of questions .. 47
2.5.3 Example .. 48

2.6 COMPUTATIONAL OPERATIONS.. 50
2.6.1 Introduction .. 50
2.6.2 Mathematical programming problems ... 50

2.7 GENETIC-BASED OPTIMIZATION: SPEA ... 52
2.7.1 Pareto optimality .. 53
2.7.2 Fitness assignment.. 54
2.7.3 Diversification strategy .. 55
2.7.4 Density preservation... 56
2.7.5 Elitism strategy... 56

CHAPTER 3. ACCEL .. 59

3.1 INTRODUCTION.. 59
3.1.1 The tool structure ... 60
3.1.2 Top-down approach.. 61
3.1.3 Bottom-up approach ... 61
3.1.4 Outline .. 63

3.2 REQUIREMENTS ANALYSIS... 63
3.2.1 Functional requirements .. 63
3.2.2 Additional functional requirements .. 64
3.2.3 The choice of C++.. 65
3.2.4 Context and constraints .. 65

3.3 ACCEL DOCUMENT: OBJECT ORIENTED DATA MODEL.................................... 66
3.3.1 Syntax ... 66
3.3.2 Everything is a function.. 67
3.3.3 Data structure... 67
3.3.4 XML format of data storage ... 68

XML Constructs ... 69
XML example... 69

3.4 ACCEL MANAGER: EVALUATION SEMANTICS ... 70
3.4.1 Parser ... 70
3.4.2 Factory of functions.. 71
3.4.3 Evaluation of expressions... 72
3.4.4 Error handling.. 73

3.5 SPECIAL FUNCTIONS .. 74
3.5.1 Function ALT() ... 74
3.5.2 Function ASKUSER() ... 74
3.5.3 Reference function .. 75

3.6 ACCEL GUI: GRAPHICAL USER INTERFACE ... 77
3.6.1 Spreadsheet... 79
3.6.2 Properties view... 82
3.6.3 AskUser dialog ... 83
3.6.4 Sensitivity dialog .. 84
3.6.5 Trace View.. 85

3.7 OPTIMIZATION WITH ACCEL.. 87
3.7.1 Optimization dialog .. 87

Top part .. 87

Central part..88
Bottom part ...88

3.7.2 Tightening constraints method..88
3.7.3 Optimization example..89

CHAPTER 4. CASE STUDIES..91

4.1 INTRODUCTION...91
4.2 AIR-CONDITIONING SYSTEM FOR A SWIMMING POOL..92

4.2.1 Introduction...92
4.2.2 Design solutions ..93
4.2.3 Objectives..94

Prices ...95
Price over 5 years ..96
Air distribution quality..97

4.2.4 Contextual information ...98
4.2.5 Auxiliary (intermediate) information ..98
4.2.6 Representation in ACCEL and optimization ...99
4.2.7 Analysis of the model ..100

Range analysis...100
Analytical sensitivity analysis...100
Graphical sensitivity analysis..101

4.2.8 Conclusions ...102
Our conclusions...102
Conclusions of our expert ...103

4.3 TRANSPORTATION SYSTEM FOR WTC..103
4.3.1 Introduction...103
4.3.2 Manual generation of solutions ..104

Group 1 ...105
Group 2 ...106
Group 3 ...106

4.3.3 Objective values ..107
Contextual values ..108

4.3.4 Analysis of the results ...108
4.3.5 Conclusions ...109

4.4 EARLY EXPERIMENTS ...109
4.4.1 The second year...110

First experiment ..110
Second experiment ..110
Third experiment...110

4.4.2 The third year..112

CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS........................113

5.1 RESULTS ..113
5.2 COMPLIANCE WITH INITIAL OBJECTIVES...114
5.3 RECOMMENDATIONS FOR DESIGN COURSES..114
5.4 RECOMMENDATIONS FOR SOFTWARE DEVELOPMENT115
5.5 EPILOG...115

APPENDIX A. SPEA ALGORITHM..117

APPENDIX B. SYNTAX OF ACCEL...118

APPENDIX C. DESIGNING WITH ACCEL.. 121

APPENDIX D. RESULTS OF WTC PROJECT ... 123

APPENDIX E. COFFEE PROBLEM... 125

BIBLIOGRAPHY... 130

SUMMARY... 135

SAMENVATTING ... 137

ACKNOWLEDGEMENT ... 139

BIOGRAPHICAL NOTE .. 140

List of Acronyms

ACCEL Attributes Concepts Constraints Evaluation Language

CAD Computer Aided Design

D Definition

DAG Directed Acyclic Graph

Ex Example

FHS Fully Hierarchical Structure

FOS Fully Orthogonal Structure

GA Genetic Algorithm

GPS General Problem Solving

GUI Graphical User Interface

HVAC Heating Ventilation Air-Conditioning

MDI Multiple Document Interface

OOD Object-Oriented Design

PPO Product Process Organization model

R Remark

SPEA Strength Pareto Evolutionary Algorithm

VC++ Visual C++

XML eXtensible Markup Language

List of Symbols

aj an attribute
A the set of currently considered attributes
ci a concept
ci.aj a variable
C the set of all considered concepts in the product domain P
f functional dependency
F product model
φ(ci) signature of a concept ci
φ ‘(ci) extended signature
ψ(aj) extension of an attribute aj
g constraint function
lf left constraint of a function f
P the product domain: all knowledge about a product
Q the set of defined operations
qij an operation to obtain values of a variable ci.aj

rf right constraint of a function f
Rj the range of an attribute aj

R’j extended range
si a solution concept
si

d decision variables
si

o objective variables
ci

c contextual variables
ci

a auxiliary variables
S the set of currently considered solutions
vij the value of a variable ci.aj
VD the decision space: all knowledge that designer can decide upon
VO the objective space: all knowledge that enables selection of the solutions
VC the context space: all knowledge that constitutes measured or observed fact
VA the auxiliary space: all intermediate knowledge
vi* the tuple of values (vi0,vi1,vi2,…,vij) which represents a concept ci
vi

d decision values
vi

o objective values
vi

c contextual values
vi

a auxiliary values

CHAPTER 1. INTRODUCTION

The life cycle of any product begins with one or more people expressing needs that
require a new product. We will refer to such people ‘stakeholders’. Stakeholders
express their needs to an ‘organization’, which initiates a design process in order to
deliver a new product. We will refer to people who participate in the design process and
create a future product as ‘designers’. The design process is a complex procedure
involving intermediate phases. Many of the well-known design process models identify
the phases of ‘briefing’ (the analysis of the problem [French, 1971][Hubka, 1992],
clarifying objectives [Cross, 1991]) and ‘conceptual design’, which we consider as the
early design phase because of tight coupling and an intensive interaction between them.
During the briefing phase, the designers collaborate with the stakeholders in order to
translate the needs of the stakeholders into the ‘design problem’. Design problems are
‘ill-defined’, i.e. there is no the single best definition of the problem and a single valid
solution. Therefore during the conceptual phase, the designers simultaneously
reformulate the design problem and generate one or more ‘solution concepts’ for the
problem. The next phase is the ‘detailed design phase’, where selected solutions are
engineered and validated or tested. Advanced computer tools such as CAD tools
(Computer Aided Design), prototyping and simulation can be used to support this
phase. This is followed by the manufacturing phase, where one or more instances of the
final product solution are manufactured. The life cycle of any one product usually ends
with the recycling phase.

In this thesis, we focus on tools to support generation of solution concepts during the
early design phase. The early design phase is characterized by the intensive processes of
‘communication’ and ‘decision-making’, which lead to a build up of knowledge about
the product. Design decisions have a long-term impact and imply significant
investments and the dedication of costs for many years. For instance, building products
may have a life cycle lasting decades. Early design decisions therefore need to
simultaneously take into account wide-ranging considerations such as energy
consumption, environmental aspects, appearance, legislation, manufacturing and
recycling. Broad considerations allow to satisfy the needs of the stakeholders more
efficiently and effectively than could be done with a few limited, sequential
considerations. Any design decisions changed at a later design phase, e.g. during the
detailed design phase or the production phase, will be expensive. The decisions taken
during the early design phase can strongly influence the range of possible product
designs and will reduce manufacturing options. Ill-considered decision-making or
miscommunication can therefore result in inefficient solutions for the product. The
design decisions that cover conceptual design issues are often directive and, at the same
time, restrictive and irreversible, [Rutten, 1998].

Chapter 1.Introduction

6

1.1 Problem definition

The communication and decision-making processes of the early design phase are based
on ‘natural tools’ such as natural languages, intuition, creativity and common sense.
According to Kleban [2001], “in the early design, people tend to rely more on ad hoc
representations (sketches, short memos, etc) and communication (e-mail, hallway
conversations, etc)”. Only at the end of the conceptual phase or at the beginning of the
detailed design phase, available computer support tools become suitable. Early design
decisions are therefore made with both the lack of consistent knowledge and computational
support. Given the complexity and impact of the early decisions, the natural tools do not
provide a sufficient means with which to analyze and validate the decisions made. We
believe that as the amount of consistent knowledge increases, so the impact of the decisions
taken decreases. We therefore have a computational support in the design process after the
moment D and we need to shift this moment back to an earlier moments in the design
process, see Figure 1.

time0

impact ofdecisions amount of consiste
nt

knowledge

dedicated tools
become available

natural
languages,
common sense

D

Briefing Conceptual
Design

Detailed
Design

Construction Re-cycling[…]

Early Design

Phases in
a product
life cycle

Available
tools and
methods

sketches,
design
techniques

instances of a
product

time0

impact ofdecisions amount of consiste
nt

knowledge

dedicated tools
become available

natural
languages,
common sense

D

Briefing Conceptual
Design

Detailed
Design

Construction Re-cycling[…]

Early Design

Phases in
a product
life cycle

Available
tools and
methods

sketches,
design
techniques

instances of a
product

Figure 1. The impact of decisions versus the availability of consistent knowledge

Most CAD tools focus on the detailed design phase (engineering phase) after the
moment D, i.e. after the early design phase; it is difficult to adapt these computational
tools to the earlier phases. It is generally accepted that dedicated design tools are too
inflexible to be adapted to growing needs. According to Akman [1990] “CADs do not
support crucial ingredients of design, namely interaction, creativity”. However, there is
a need for highly expressive computational tools in the early design phase; these would
shift the moment D to the early phases of the design process.

There are various non-computational design methods, which we will call ‘techniques’.
Techniques (e.g. creativity techniques [Glover, 1989], [Bono, 1970], and techniques for
re-engineering such as QFD [Prasad, 1998] and LCA [Berg, 1995]) can be used to
support designers during the early design phase. These techniques are easy to use.
However, they are also limited to certain types of decisions. The formalisms of
techniques limit the possibilities of the designers to express the thoughts behind the
decisions. This in turn means that learning, assessment and operations with the obtained
results become problematic. C. Jones [1992] writes the following about Alexanders’

1.1. Problem definition

7

method [Alexander, 1971], “There is the expression that private thoughts are being
classified to the point where the thinker can make a decision but not to the point where
the results can be tested and understood by others”. From the variety of the available
techniques and methods very few are suitable for the early design phase. These few
techniques are the only artificial tools that the designers have. The management of
complexity is not part of these techniques and is usually non-computational and limited,
e.g. “house of quality” in QFD technique.

Skilled designers rely on their past experience to manage the complexity; we could say
that they operate with large chunks of ‘implicit knowledge’. We will define various
kinds of knowledge in section 1.3.1. New designers do not yet have this type of
experience. Because skilled designers often appear to work in a rather unsystematic
way, some people claim that it does not help designers to learn a systematic approach.
Design literature contains many examples of the resistance of designers to apply
systematic procedures in the early design phase. The designers’ traditional approach is
to try to move fairy quickly to a potential solution, or a set of potential solutions, and to
use this as a means of further defining and understanding the problem. Traditional
approaches to engineering [Pahl, 1984] assume a set of defined functional requirements
for the product. In the early design phase, the problem formulation is not fixed and
solutions with different functionalities can therefore be proposed. Even if the
stakeholders specify a list of functions, they may be vague and incomplete.

According to Hurlimann [1999], “it is often said that modeling skills can only be
acquired in a process of learning-by-doing; like learning to ride a bike can only be
achieved by getting on the saddle. But it is also true – once some basic skills have been
acquired – that theoretical knowledge about the mechanics of bicycles can deepen our
understanding and enlarge our faculty to ride it”. According to Cross [1994], “Many
designers are suspicious of rational methods, fearing that they are a straitjacket, or that
they stifle creativity. This is a misunderstanding […]. Creative methods and rational
methods are complementary aspects of a systematic approach to design. Rather than a
straitjacket, they should be seen as a life jacket, helping the designers – especially the
student designer – to keep afloat”. Several research studies show that a systematic
approach can be helpful to students and that systematic procedures correlate positively
with both the quantity and the quality of the students’ design results [Radcliffe, 1989].

A demonstration of the effectiveness of systematic approaches in the early design phase
is complicated by the lack of computational tools capable of efficiently dealing with the
complexity caused by these approaches. In this thesis we therefore look at both the
development of a systematic procedure and a computational support tool. We define the
addressed design problem as follows:

D. 1 (Problem definition) Develop a systematic procedure and a tool to support generating
concepts in the early design phase:

• to evaluate the application of systematic procedures in the early design phase,

• to increase the complexity of design problems that can be considered during
design courses and to approach the complexity of realistic design problems in
industry,

• to improve the clarity of the decision-making process and the process of
communication as it takes place in the early design phase.

The addressed problem is too complex to allow us to research all the aspects related to
the early design phase. We have therefore narrowed down the subject to considerations

Chapter 1.Introduction

8

of knowledge build up during the design process. We will limit the range of possible
solutions for support to the following means:

1. An operational model of design processes.

2. A software tool for the early design phase, based on a model.

Here, an ‘operational model’ means that we will develop support for the early design
phase using a model that is ‘systematic’ and ‘computational’. The term ‘systematic’
means that a model should explain how solution concepts are generated in an
incremental step-by-step manner. Traditional systematic procedures prescribe several
phases such as analysis, synthesis, evaluation, refinement, and development [Cross,
1991], [Ullman, 1986]. However, these models do not computationally support these
phases. The term ‘computational’ means that the application of the model is supported
by computational operations, such as knowledge evaluation, generation and
optimization of solutions. The operational models require the following two ingredients
to be developed:

1. A state-transitions model (STM) of the considered process. We therefore need to
define the states in the early design phase and to describe transitions from one
state to another.

2. A formalism (formal language) that should allow STM to be formally defined,
so that computerized support is applicable.

The development of software support begins with functional requirements. We position
our target support in the niche between the dedicated design tools and the techniques. It
is unclear which functional requirements a tool in this niche needs to comply with.
Standard approaches to define a list of functional requirements, such as interviewing,
protocol analysis, situational analysis [Sauter, 1997], are of limited use and do not
guarantee the completeness of the list. The support for an early design cannot only be
based on the opinions of few people. Even if many interviews were conducted, this
would not guarantee the completeness of the list. Existing functional requirements, such
as those in Kleban [2001], have the following typical problems:

1. The requirements are introduced without sufficient reasoning and it is therefore
not clear how to analyze them.

2. The requirements lack precision, which is necessary for the development of the
specification.

Therefore, one of the purposes of our operational model is to produce a list of functional
requirements for a support tool. In the next section, we introduce the stakeholders of this
project and we define a set of objectives.

1.2 The stakeholders

In recent years, industry has stressed the need for graduates who are capable of solving
design problems. The Stan Ackermans Institute (SAI) 1 at the Eindhoven University of
Technology (TU/e) organizes eight two-year multidisciplinary full-time programs
leading to the degree of Master of Technological Design. These programs are the
second part of a two-tiered system for training engineers in the Netherlands. The SAI

1 The SAI website can be found at the URL address: http://www.sai.tue.nl/

1.2. The stakeholders

9

initiated this PhD design project with the general problem formulation, “Improve the
understanding of the existing design processes by proposing methods and tools”. After
two and a half years, the project was transferred to the department of Building and
Architecture at the TU/e, where one of the eight SAI programs is located. Here the
project was embedded in the Center for Building and Systems TNO-TU/e.

The Center for Building and Systems TNO-TU/e2 is a joint venture between the TU/e
and TNO. TNO is one of the largest research and technology organizations in Europe.
Its mission is to make scientific knowledge applicable, and to strengthen the innovative
capacity of business and government3. Both the TU/e and TNO cooperate according to
the diagram shown in Figure 2. Within the Center for Building and Systems the project
joined the ‘Strategic Design and IFD’ cluster, and was embedded in the following
research field:

• The strategic Design Support Tools for decisions: the research in this direction
focuses on conceptual models for decision-making and strategic criteria for
design teams for different building concepts and different users of buildings.

TU/e TNO Industry

Applications for the
building industry

Consultancy
and R&D

Fundamental
research

Knowledge
development

TU/e TNO Industry

Applications for the
building industry

Consultancy
and R&D

Fundamental
research

Knowledge
development

Figure 2. Cooperation between TUE and TNO in the context of the Center for Building and

Systems

The ‘initial set of objectives’ for this PhD project were arrived at by considering the
initial assumptions and the requirements of the stakeholders. These objectives are
characterized as SMART according to the following definitions:

• Systematic – a support tool should provide a systematic procedure for concepts
generation in the early design phase

• Multidisciplinary – a support tool should be domain independent and therefore
be applicable in multidisciplinary teams

• Acceptable - a support tool should be approved by the stakeholders and be likely
to be accepted by the designers with multidisciplinary backgrounds, e.g.
students, practicing designers, researchers

• Relevant – a support tool should enable meaningful and useful operations with
the product, which should facilitate the design process

• Teachable – the support should be acceptable for the design education
community and be accompanied by a methodology and examples

2 The website of the Knowledge Centre can be found at the URL address: http://www.kcbs.nl/
3 The TNO website can be found at the URL address: http://www.tno.nl/

Chapter 1.Introduction

10

1.3 Modeling approach

We limit our considerations of the early design phase to knowledge dynamics during
this process. Therefore, the two purposes of this section are 1) to give a definition of
knowledge and consider aspects of knowledge that we need to bring into our model and
2) to introduce a mechanism capable of explaining the dynamics of knowledge in a
systematic way. The formalization of this mechanism forms the core of our modeling
approach to describe, study and support the early design phase.

1.3.1 Knowledge management

We define the term ‘knowledge’ using Knowledge Management science. In its domain,
it is usual to distinguish levels of knowledge, i.e. data, information, understanding and
knowledge [Nooteboom, 1996], where Knowledge Management provides support for
each of the levels [Rosenberg, 2001].

• Data. "External sign material produced by events"

• Information. "Interpretation entails the production of meaning, which transforms
data into information"

• Understanding. "Connects and transforms information into beliefs or claims of
causal or deductive insight"

• Knowledge. "A meaningfully ordered stock of information (interpreted data),
and understanding, plus ability to transform it into actions, which yields
performance".

It is common to distinguish between several dimensions of knowledge, i.e. the social or
organizational dimension and the cognitive dimension. These dimensions are
summarized in the following definition of knowledge, “knowledge is information
combined with experience, context, interpretation, and reflection” [Davenport, 1998].
Dimensions of knowledge are considered to be useful and capable of facilitating
knowledge acquisition. However, at this point it is not yet clear which useful knowledge
dimensions or structures could underlie knowledge in the early design phase. We
therefore need to consider the domain of the early design phase in more detail; we do
this in section 1.4.

The distinction between the explicit and implicit knowledge also brings some clarity
into the application of the natural tools and knowledge acquisition. ‘Explicit knowledge’
refers to knowledge that is transmittable in formal, systematic language. There is also
‘implicit knowledge’, which is personal and therefore hard to formalize and
communicate. The following phrase demonstrates the mechanism of formalization of
knowledge, "we can know more that we can tell" [Polanyi, 1966]. According to
Snowden [Andrews, 2002] there are three rules of Knowledge Management which
govern knowledge discovery:

1. Knowledge can only be volunteered; it can never be conscripted.

2. We only know what we know when we need to know it.

3. We always know more than we can say, and we can always say more than we
can write down.

1.3. Modeling approach

11

Whereas explicit knowledge can easily be recorded in databases, it is more difficult to
record implicit knowledge. This problem has been addressed by the expert systems
experience. Making the knowledge more objective always means a transformation of
the current knowledge [Hatchuel, 1992]. For this reason, the process of transformation
of implicit knowledge into explicit knowledge is often problematic, because tacit
knowledge is not structured before its extraction [Vinck, 1997]. We aim to address this
problem by developing a knowledge structure and a formalism. One way of doing this is
to consider linguistics, which addresses the problems of using natural languages.

1.3.2 Linguistics

Because language is used as a tool to explain thoughts to others, we can consider
problems identified within the domain of linguistics. The main purpose of this section is
to find a foundation on which we can base a formalism and propose improvements for
the application of natural language in the early design phase.

Linguists are concerned with problems similar to design problems. The same text can be
put in different forms that make the text easier or more difficult to understand. In a
similar way as in design problems, linguists see written text as an ill-defined problem.
The quality of the text does not only depend on the text itself, but also on the purpose of
the text. Several equally suitable texts can be produced for the same purpose. Within the
domain of linguistics, language is considered to be a tool to control behavior. Within
our domain of study we consider language to be a tool for better communication and the
systematic generation of consistent and convincing solutions. We present the
linguistics’ view as given in a number of essays written by Eugene Ionesco, the author
of “The Bald Soprano”.

• (Problem of translating thoughts into a language representation) “If we cannot
even begin with a best way of representing the information contained in that
problem, we are certainly no better off regarding any method of solving the
problem. How do we go about determining what counts as an assumption, what
assumptions are important, what kinds of critique are relevant? Where do we
begin? Put more plainly, where is the step-by-step kind of approach that worked
so well for us when we were adding4? “

• (Relation between thoughts and the language) “Because language and thought
do not share a one-to-one relation, yet clearly influence each other, we might
best describe them as loosely coupled. They are connected like two links in a
chain, rather than fused like two pieces of metal welded together. Imagine, if
you will, the way in which two chain links interconnect. If we pull on one link,
the other will tend to be drawn in the same direction as the one it's connected to;
however, even though it will match the first link's angle and position fairly
closely, this other link may not arrive at precisely the same angle. In other
words, the second link will approximate the position of the first within certain
limits. Such is a useful way of thinking about the relationship between thought
and language: they strongly influence each other, but with some room for play.”

• (Limitations of natural languages) “Natural languages are extremely flexible and
allow to express nearly any thoughts in terms of the sentences. Consider this:

4 Here the addition of numbers is considered to be a systematic procedure.

Chapter 1.Introduction

12

even if a person can and does have thoughts for which no words are available, to
what extent are solitary thoughts useful? For example, most of us have
experienced the frustration of trying to say something but being unable to "find
the right words" to express what we mean. At that moment, how useful are those
inexpressible thoughts?”

• (Limitations of artificial languages) “At present, artificial languages, such as
those developed to program computers, cannot undergo natural change, and can
only "express" functions or processes incorporated into their design. We may
think similarly of mathematics, another artificial language developed expressly
for solving certain problems and limiting the ways in which ideas may be
expressed. In both cases, these artificial languages are expressly geared to
preclude the kinds of debates over meaning and word change that characterize
natural languages such as English.” [End of the quote]

1.3.3 The mechanism of questions and answers

Both Knowledge Management and linguistics address the problem of translating
knowledge from its implicit state to its explicit state. We therefore choose a mechanism
that is capable of explaining this transition in a systematic way, so that it is suitable for
further formalization and systematic usage. The purpose of this section is to explain our
choice and provide a link to operations which we will define later on.

We have therefore chosen the mechanism of questions and answers. In daily life, both in
professional and private settings, people are constantly asking questions and exchanging
explanations. Asking questions and giving explanations are special instances of
communication. According to Stempfle [2002], “in a heterogeneous group in which
group members have different levels of understanding, it is highly likely that solution
ideas will not be understood by everyone in the team right away. This will provoke
questions, thus causing the group to go into analysis prior to evaluation”. “If the group
lacks a shared mental model, such a mental model must be built” [Klimoski, 1994].
“This building of a mental model will take place through questioning” [Mohammed,
2001]. “Even if questions are not meant to challenge a solution idea, but simply aim at
filling in facts, thinking in detail about the problem may still cause previously unseen
things to come up during the discussion” [Stempfle, 2002]. “Very few questions can be
answered definitively in the early stage of the design process. Most answers
immediately ask for follow-up questions” [Stempfle, 2002]. Here we aim to enhance
natural way of asking and answering questions with a formalism and a knowledge
structure.

In the previous section we considered natural languages and artificial languages as two
extreme boundaries for the definition of a formalism. According to Veth [1987],
knowledge can be represented by an amalgam of intuitionistic logic, modal logic,
temporal logic, inheritance, and situational calculus. According to Mili [2001], “the
level of abstraction and the expressive power of the modeling language used to describe
decision-making processes dictate the ease with which multiple solution alternatives can
be generated and the insight which can be obtained from them”. Brown [1994] states
that “effectiveness and efficiency of decisions are a direct function of the modeling
language used to represent the decisions”. Kleban [2001] says that “because so little is
known about the product in early design, and because so many possibilities remain open

1.4. The domain of the early design phase

13

to the design team, the processes and information used in early design resist formal
characterization and offer little structure for coordinating group activity”.

We argue that artificial languages are an aid in the early design phase; however, their
application is limited due to their low flexibility and the complexity of directly
transforming implicit knowledge into an explicit form. In our opinion, an intermediate
step is necessary to connect flexible natural languages and precise artificial languages.
We therefore aim to fill in this gap by finding a balance between natural languages and
the strict formalism of artificial languages. From the previous section, we can conclude
that a formalism needs to be positioned between natural languages, in order to enable
sufficient flexibility, and artificial languages, in order to provide operational support.
Another requirement is that such a formalism needs to be rooted in the domain of early
design and must allow the dynamics of knowledge in this domain to be expressed. We
will therefore consider the domain of the early design phase in the next section.

1.4 The domain of the early design phase

We introduce the domain of our study using the Product-Process-Organization model
(the PPO model), which was developed in our group (see section 1.2). The PPO model
is shown in Figure 3. We use this model to describe and to plan the life cycle of design
situations. According to the PPO model [Friedl], four essential domains of concerns in
the design situation can be distinguished: the ‘product domain’, the ‘process domain’,
the ‘organization domain’, and the “context domain’. The dynamics of these domains
constitute the life cycle of the design situation. We therefore need to define the
knowledge content and the major characteristics of the dynamics for these domains
during the early design phase.

Context

Product

Organization

Process

Context

Product

Organization

Process

Figure 3. PPO model for the life cycle of the design situation

The organization domain contains people involved in the design process, as described in
section 1.4.1. Here we will consider two types of people who possess implicit
knowledge, i.e. the stakeholders and the designers. The product domain contains
explicit knowledge about a product to be designed, which we will call the product. The
product domain includes knowledge about the design problem and knowledge about
currently considered solutions for the problem. This domain is introduced in section

Chapter 1.Introduction

14

1.4.2. In the process domain, we consider two paradigms that aim to explain the
phenomenon of designing as described in 1.4.3. The context domain constrains the fixed
world knowledge e.g. laws of the nature, domain knowledge, technologies, regulations5.
We will not consider this domain separately; later on we will include this domain in the
product domain.

1.4.1 The organization domain

We consider two types of participants in the organization, namely the team of designers
and the group of stakeholders, who do not necessarily form a team. We assume that all
the participants share common goals and therefore possess knowledge that is important,
thus creating the necessity to communicate this knowledge. The purpose of this section
is to consider the motives of communication; this will help us to understand how
knowledge is updated.

 Design team

We consider design teams that are composed of designers from multiple discipline
domains.

D. 2 (Designer) A designer is a participant of the organization who makes and evaluates
design decisions about the future product.

Design methodologists generally agree that teams of designers with multidisciplinary
backgrounds allow to enhance each other’s vision and quickly compensate for any lack
of knowledge. We assume that product knowledge is initially packaged implicitly in the
participants, existing as a result of imagination, experience, knowledge about design
theories, earlier design projects etc. In the course of the design process, the designers
communicate and make decisions in order to identify, represent and connect chunks of
knowledge that are relevant for the product.

Successful collaboration in a design team depends much more on the level of
negotiation and agreement than the formal co-ordination and transfer of information
between team members [Austin, 2002]. Some design decisions are the concern of more
than one discipline, e.g. the design of environmental control is the concern of both the
architect and the building service engineer. Substantial communication is therefore
required to enable the design team to function. Lewis [1963] gave a precise description
of an experiment in group communication. This experiment had shown how the
members could be unaware of a misunderstanding that arose between them.

According to Kleban [2001], in the early design phases design teams are only partially
formed. Manufacturing process engineers, reliability engineers, quality control personal
and other specialists typically join the team as the project moves into later phases, e.g.
the detailed design phase. Early design teams face more than just a problem of
organizing large amounts of explicit knowledge: they must also deal with different
human agendas, implicit assumptions and points of view.

5 We assume that contextual knowledge is fixed relatively to rapidly changing knowledge about the
solutions. Contextual knowledge may change but on a larger time-scale, e.g. the time scale of a design
phase.

1.4. The domain of the early design phase

15

 Stakeholders

The stakeholders are another type of participant in the organization. They are people
who express their needs and pay for the final product. Here the payment is not
necessarily financial; it can also be a payment in time or in inconvenience. The
designers may not know who all the stakeholders are beforehand6.

D. 3 The stakeholders are the participants in the organization who influence the product
in the following two ways: 1) stakeholders evaluate the product and make the final
judgment about the solution for the product, 2) stakeholders constrain possible
solutions for the product via decisions, which are fixed for the designers.

Stakeholders can be a part of the organization, but this is not necessarily so. Customers
and users are examples of ‘external stakeholders’ who are physically not part of the
organization. In the architectural design domain, the external stakeholders could be a
commissioner, the legislative government and contractors.

One of the points where miscommunication often occurs is when the stakeholders’
needs are translated into a formulation of the design problem. In our domain of study,
we assume that the needs of the stakeholders are not precise, i.e. the needs express what
should be done and not how it should be done. In some situations the stakeholders can
constrain a part of the solution for the product by making decisions about the future
product. In such a case, the stakeholders can commit all possible solutions to a single
engineering domain. The advantage of the design approach is that the needs can be
looked at from a broader perspective, so that solutions can be found equally well in
different engineering domains, in a combination of engineering domains, or outside any
engineering domain. The early commitment to a certain range of solutions can introduce
risk of overlooking simple but efficient solutions. This can result in a solution for the
problem being overlooked for many years.

Ex. 1 (Ferry disaster) As an example of a stakeholder decision, we now consider the
Estonia ferry disaster [Killander, 1995], which happened in the fall of 1994 in the
Baltic Sea. During a storm, the bow door of the ferry broke and water poured into
the cargo deck. As a consequence, the buoyancy center of the ferry shifted, the
vessel lost stability and sank. After the accident, the Nordic Marine Board decided to
form sealed compartments in the cargo decks like in traditional ships, to ensure
safety during the crossing. This need was expressed to several groups of engineers. In
the following year several variations of the partitioning system were generated.
However, all these solutions lead to the same problems, such as an inability to store
bulky cargo and an increased cargo loading time due to the need to seal the
compartments. The stakeholder’s decision constrained all the solutions to the
mechanical principle of partitioning, and therefore to a single engineering domain.
Later on, more advanced options were identified and presented in Killander [1995],
such as partitioning using plastic foam, see Figure 4. During any emergency, this
foam is injected into the cargo deck and prevents the access of water. This solution
was independently identified some years later and successful research was carried
out on its applicability in the TNO Bouw research laboratories [Bruijn, 2003]. This
example illustrates how the premature definition of the design problem and
commitment to the mechanical principle of partitioning excluded the consideration
of other solution principles.

6 The designers may also overlook a stakeholder; identification of the stakeholders is one of the reasons
for communication.

Chapter 1.Introduction

16

Container with liquid
plastic foam
Container with liquid
plastic foam

Figure 4.Various principles of partitioning

In design literature it is common to represent the stakeholders’ needs using a set of
‘objectives’ and ‘constraints’. According to Cross [1994], “the design objectives might
also be called client requirements, user needs or product purpose. Whatever they are
called they are the mixture of abstract and concrete aims that the design must try to
satisfy or achieve”. Because this mixture can be very complex, we have to distinguish
between the needs that define the design problem from the needs that already suggest
solutions for the problem. This is the topic of the next section.

1.4.2 The product domain

From the definitions of the early design phase, we identify two different ways in which
knowledge about the product develops. Knowledge about the design problem seems to
result from the stakeholders. Knowledge about the solutions seems to result from the
designers. At this point a formal distinction that underlies these differences is not yet
clear. The purpose of this section is to identify characteristics of knowledge about the
product and thus to approach formalization of the participants’ activities and of
knowledge.

 The design problem

The life cycle of any product begins with the needs of the stakeholders that are
expressed as the design problem.

D. 4 (Design problem) The term ‘design problem’ refers to the expression of the
stakeholders’ needs.

Design problems are considered to be ‘ill-defined’. Characteristics of ill-defined
problems are presented in Cross [1994]; Rittel [1984] describes ten properties of design
problems. Here we present some of them:

• There is no definite formulation of the design problem. The information needed
to formulate the design problem depends upon one’s ideas of the design
boundary.

• Design problems have no stopping rule.

• Solutions to design problems are not true or false, but better or worse. Various
stakeholders may make different judgments about the design objectives.

1.4. The domain of the early design phase

17

In Table 1 we compare design problems with well-defined problems which occur in
engineering.

Table 1. Types of problems

Problem Formulation Solution process

1) Well-
defined

Mathematically
defined

Systematic; all possible solutions are fixed within the
boundaries of engineering domains or theories; fast
convergence to a single best solution with the fixed

product structure; the process is computationally
supported

2) Ill-
defined

Assumes causality,
semi-unstructured,

different
formulations are

possible

Iterative; adaptation of the available knowledge from
different discipline domains; converges to several

solution options; solutions may not belong to engineering
domains or theories; very limited computational support;

there is no single best way to proceed

Ex. 2 (Example of a design problem – The hats7) The first cinemas were introduced at the
beginning of the 19th century. The owners of the cinemas faced a problem. The ladies
of that time wore big hats that obstructed the screen from other people. The ladies
refused to remove their hats, as this might jeopardize their beauty. This is an
example of an ill-defined problem, as the problem can be formulated in many ways.
For example, 1) how can you improve the visibility of the screen? Solutions could be
to raise the screen or lower the front chairs. Another formulation could be 2) how
can you keep the frustrated customers? The solution here could be to give customers
without hats a reward or position these customers in the first rows. Yet another
formulation of the problem could be 3) how do you encourage customers to remove
hats? The cinema owners found an original solution to this formulation: at the
entrance all visitors were met by the sign “Only elderly ladies are permitted to wear
hats”.

In the early design phase, the product does not yet exist physically. In this thesis we
therefore assume that the product is identical to the knowledge about the product. The
design literature explains the appearance of the product as the simultaneous
development of the design problem and solutions for the product. Design practitioners
recommend formulating the design problem without formulating the solution to this
problem. This approach does not restrict the initial range of possible solutions and
removes biases that pull the designers towards the standard solutions. We consider this
separation to be a strategy to reduce mental biases and to allow less-standard solutions
to be considered. The stakeholders initially express their needs as the mixture of
objectives and constraints, so that it is difficult to separate them clearly.

According to Cross [1994], “the level at which the problem is defined for or by the
designer is crucial. There is a big difference between being asked to ‘design a telephone
handset’ and to ‘design a telecommunication system’ ”. In this example the terms ‘a
telephone handset’ and ‘a telecommunication system’ refer to the level of the solution,
i.e. it is a stakeholder decision that constrains the range of possible solutions. In the
second case, the constraint allows a wider range of solutions to be considered. The
design problem is still not defined because the objectives are not expressed.

7 This example was presented by V.Timohov at www.trizland.ru (in Russian)

Chapter 1.Introduction

18

 Solutions

We assume that the designers propose a number of solutions for the product. In Lawson
[1980], the following two characteristics of solutions are described, “There is an
inexhaustible number of different solutions and there are no single optimal solutions to
a design problem due to a number of competing objectives, which represent the design
problem”.

Multiple objectives that express the needs of the stakeholders are often competing
objectives such as performance and cost. Such competing objectives are also called
‘conflicting objectives’, because designers can often not clearly see how to satisfy these
objectives equally well with feasible solutions. The solutions need to be analyzed and
explored to resolve conflicts. One well-known theory that provides techniques for the
systematic resolution of conflicts is ‘TRIZ’ (Theory of Innovative Problem Solving), as
described in Altshuller [1991].

If we consider only one of these objectives, the design process can be clearly defined as
a search procedure aimed at a single optimal solution, since the solutions can be
ordered. Indeed, each solution is clearly more powerful or cheaper than another
solution. This fact helps the fast convergence of the search procedures. The situation is
different if we try to order solutions with respect to several objectives at the same time.
In this case, the solutions are only partially ordered, since two solutions can be
‘indifferent’ to each other; this is also called ‘trade-off’. For instance, cars are more
powerful than bicycles, but bicycles are safer than cars. This clearly shows that the
generation of solutions in the presence of multiple objectives adds a further level of
complexity compared to the single-objective case. The participants may have personal
preferences with respect to importance of objectives. As a consequence, the design
process cannot only be seen as a rational search procedure. Multiple views on the design
process become relevant. In the next section we will consider two views of the design
process.

1.4.3 The process domain

There are several paradigms that aim to explain the nature of the design process. We
will consider two of them. One is the ‘General Problem Solving’ [Simon, 1984] design
paradigm (GPS) and the other is the ‘Reflexive Practice’ [Schön, 1991] paradigm (RP).
GPS is characterized as a fully rational search process, and is therefore suitable for
introduction of supporting tools in the design process. GPS assumes that the product
structure exists objectively. For ill-defined problems, the length of the search path
increases. The role of a designer in PS is as a ‘goal-seeking information processing
system’, operating in an objective and knowable reality [Simon, 1992]. Solutions for the
product are obtained in a fully rational and thus objective way. In our opinion, PS is not
well defined in situations with multiple objectives; we therefore consider RP.

In RP every design problem is regarded as being unique. The designer is not simply
searching for solutions, but imposes his or her personal view on the design situation by
means of ‘reflections’ on the design situation: the designer names the relevant factors in
the situation, frames the problem in a certain way, makes moves toward a solution and
evaluate those moves [Schön, 1983]. Because multiple participants form design views,
RP explains multiple formulations of the design problem and the appearance of
divergent (contrasting) solutions.

1.5. Outline of the results of this thesis

19

Dorst [1997] considered both paradigms to be compatible and able to enrich each other.
Both paradigms can be carried out systematically; in GPS this is done by means of
systematic search procedures, in RP it is done using systematic reflections [Reymen,
2001]. We tend to consider the design process to be a combination of these two
paradigms. We identified the mechanism of questions and answers as a mechanism to
underlie the design process. Formal definition of activities that will execute this
mechanism in a systematic way is not yet clear.

1.5 Outline of the results of this thesis

This project was started on the 1st of May 2000 and was finished on the 1st of May
2004. The results presented in this thesis were obtained in an iterative way. The
formulation of the addressed design problem in section 1.1 was refined during the first
year. The defined set of initial objectives in section 1.2 determined our modeling
approach, as it was described in section 1.3, and limited the range of possible solutions
to an operational model of the design process and a support tool for the early design
phase. The model was developed during the first year, as presented in [Ivashkov, 2001].
We claim that the design process can be modeled in terms of concepts, attributes and
values. We formally define these terms in the next chapter. During the first and the
second years early experiments with the model were performed [Ivashkov, 2002]. The
model was applied to teach design methods in postgraduate design courses [Overveld,
2003]. From the moment that we introduced operations involving generation of
solutions and optimization, a support tool became essential; these operations are too
tedious for the designers to carry out, and are not supported by standard tools [Overveld,
Ivashkov, 2003]. The tool was developed during the second and the third years of this
project. The name of the tool is derived from the names of the basic ingredients of the
model, i.e. Attributes Concepts Constraints8 Evaluation Language (ACCEL).

The results of this thesis support concept generation from the definition of the design
problem to the automated generation of optimal solutions and a support of convergence
to few solutions. This is done through the following methodological steps (see
Appendix C): design problem→ product model→ mathematical programming
problem→ genetic algorithm→ optimal solutions→ few (single) optimal solution(s). We
present the results of this PhD project in the following order:

Chapter 2 presents an operational model of the design process. The developed model
has two major characteristics. First, it is a systematic model, which is based on a state-
transitions view of the design process. Second, it is a computational model, which
allows optimal solutions to be computed. In this chapter, we present the developed
formalism and explain how our model can be used to develop product models through
the mechanism of questions and answers, and how to link the product model to an
optimization procedure. We will consider the application of the genetic algorithms to
multi-objective optimization problems.

Chapter 3 introduces ACCEL. We developed this tool according to the functional
requirements that we derived from the model in chapter 2. ACCEL enables the
automation of operations with the product such as an update of the representation, an

8 In the early stages of the project values were called ‘constraints’. The name ‘ACCEL’ was created at
that time, and has not been changed for compatibility reasons.

Chapter 1.Introduction

20

evaluation of knowledge, multi-objective optimization and more. We present a
development approach and describe the major design decisions which underlie the
tool’s syntax, the data-oriented model, the functionality of the tool and the graphical
user interface. As a part of the optimization dialog, we present a method to converge to
few optimal solutions without prioritization of the objectives,

Chapter 4 presents case studies, where we evaluate the developed support. In the first
case study we use our approach to re-engineer an air-conditioning unit for a swimming
pool. In this study, we focus on the methodology of ACCEL and contrast a re-
engineered solution with the original one. We were able to show that our method gives a
significant improvement over traditional design methods In the second case study we
describe how students applied our approach to obtain optimal solutions for a vertical
transportation system for the new World Trade Center in New York. In the third case
study we present our early experiments with our approach before ACCEL became
available.

Chapter 5 presents our results, recommendations and the epilog. We have been using
ACCEL in post-graduate design courses for several years. We have seen that the
developed support tool can be used to effectively teach and support the systematic
generation of optimal solutions for a product in the early design phase. This enables
students to learn various design approaches quickly, to consider more alternative
solutions, and eventually to be better prepared for realistic design problems.

CHAPTER 2. AN OPERATIONAL
MODEL OF THE DESIGN PROCESS

“We believe that only through a clean design theory and formalization
can one arrive at a testable conjectures of design and build computer
models of it”, Akman, Hagen and Tomiyama [1990].

2.1 Introduction

According to [Evbuomwan, 1996] ‘design models’ are the representations of
philosophies or strategies proposed to show what a design is and how it can be
achieved. As with any other model, our model has assumptions (section 2.1.1), an
intention (section 2.1.2), and a story that connects a formalism of the model with the
intention. To better understand the story, we first need to define the scope of our model;
we do this in section 2.1.3. The remainder of the chapter is outlined after the
introduction of the scope.

2.1.1 The basic assumptions

The basic assumptions about the design process are as follows:

• Knowledge is distributed over the participants’ minds and multi-modal
representations, e.g. notes, emails.

• Knowledge can be structured, i.e. represented in terms of elements and relations
between the elements, and given a systematic procedure in terms of smaller and
formally defined incremental steps.

• There are various advantages of imposing such a structure. These advantages
include operational support, easier communication, less confusion, well-
considered decision-making, stimulation of a more systematic generation of
solutions.

2.1.2 Intention of the model and the outline

We formulate the basic intentions of the model in the following steps:

• Define state-transitions of knowledge (section 2.2).

• Define a formalism for generating concepts (section 2.3).

• Facilitate the development of a product model and define functional
requirements for a support tool (section 2.4).

Chapter 2.An operational model of the design process

22

• Formalize and support reflections (section 2.5).

• Formally define operation with knowledge (section 2.6).

2.1.3 Position of the model

In this section, we define the scope of an operational model. For this purpose we use
some dimensions that we obtained from the literature and the PPO model from the
previous chapter. Three purposes of design models are known within the design
research field [Evbuomwan, 1996]:

• Descriptive models are concerned with designers’ actions and activities during
the design process. These models usually emphasize the importance of
generating solution concepts early on in the process.

• Prescriptive models tend to look at the design process from a global perspective,
covering the procedural steps.

• Computational models put an emphasis on the use of numerical and qualitative
computational techniques and artificial intelligence techniques, combined with
modern computing technologies.

Given this classification of models, we define dimensions to describe the scope of
various design models. We did not encounter an identical list of dimensions in the
literature and therefore present it as one of our results.

D. 5 (Dimensions of design models)

• The ‘purpose of a design model’ can be descriptive or prescriptive.

• The ‘field of a design model’ can be in the product domain, in the organization
domain or in the process domain.

• The ‘formalism of a design model’ can be computational (formal) or non-
computational (informal icons, diagrams etc.). Formalism of computational
models is well defined and enables operational procedures, which can be
automated. Non-computational models do not introduce a well-defined
formalism and therefore do not enable computational procedures.

The following list of values defines the scope of our model (also see Figure 5):

1. The purpose is both descriptive and prescriptive. We aim to both give a
systematic description of the design process, and prescribe a formalism for
knowledge build up, that we will couple with the design process.

2. The field is both in the product domain and in the process domain, since we
consider dynamics of knowledge about the product, which results from the
design process via the participants.

3. The model is operational, because we formally define operations with
knowledge and demonstrate their support on the computer.

Note that our model does not prescribe the sequence of steps in the design process. It is
systematic only with respect to representation of steps already taken by the designers.
Our model is therefore compatible with existing design models and methods. We did
observe a positive correlation between the systematic representation of steps in the
design process and the design process itself. Given an overview of product knowledge,

2.2. Descriptive purpose

23

more consideration can be given to planning of future steps in the design process. The
model does not consider organizational aspects of the design process, such as the
number of team members or their roles. Our model is computational with respect to the
design process, as it allows the previous sequences of incremental steps to be kept
during the process. The sequence of steps can be played back so that it becomes
possible to compute the previous states of the design process and to reconsider the
previously made decisions. The major benefits of the model are computational
operations with the expressed product knowledge.

ProcessOrganization

Descriptive

Prescriptive

Computational

Non
Computational

ProductProcessOrganization

Descriptive

Prescriptive

Computational

Non
Computational

Product

Figure 5. The scope of the operational model

We present our model in the following order. In section 2.2 we present the descriptive
purpose of the model, which gives a systematic view on the design process and the
relationship between the design process and knowledge build up. This section
introduces a structure for product knowledge. In section 2.3 we derive a formalism for
concept generation from the structure. In section 2.4 we describe how application of the
formalism leads to development of product models. In section 2.5 we apply our
formalism to describe a Questions Answers mechanism, and define eight ways of
answering questions in design. We use these ways later on to define functional
requirements for a support tool. In section 2.6 we define computational operations with
the expressed knowledge. Finally, in section 2.7, we describe how a genetic algorithm
enables these operations and leads to the generation of the set of optimal solutions for
the design problem.

2.2 Descriptive purpose

We introduce a state-transition model of the design process in section 2.2.1. In section
2.2.2 we introduce a structure for product knowledge.

2.2.1 State-transition model

This section aims to describe the appearance of product knowledge in a systematic way.
We introduce a well-known notion of the ‘state of the product’ and that of the

Chapter 2.An operational model of the design process

24

‘transition’. In the field of design, the state of the design product and the state of the
design process are usually distinguished [Reymen, 2001]. Here we introduce a
somewhat unusual view of the state of the product. The usual assumption is that only
design activities can cause transitions of the product from one state to another. This
assumption excludes transitions of the product due to automated operations. Therefore
transitions in the design process due to the reflections (section 2.5) are considered
separately from transitions due to automated operations (section 2.6). Both types of
transitions (operations) will be described using the same formalism, which makes the
expressed knowledge understandable as for the designers as for representation in the
computer.

The state of the design process PSi refers to information about the design process at a
particular moment in time, i.e. the current focus, the current state of the design method
being executed etc. It is useful to distinguish the states of the design process, since they
allow to track the progress and to come back to the previously made decisions.
Transitions in the design process cause transitions of the product from one state to
another. In our model the state of the product KSi refers to the state of the available
knowledge about the product at a particular moment in time.

The states of the design process and the states of the product are synchronized by
regular translation of the most recent design activities into product transitions. Consider
the state of the design process PSi and the state of the product KSi at some moment in
time, as is depicted in Figure 6.

Transition

Time

Product
knowledge

Design
Process

State PSi

Reflection
activitiesExplorative

activities

Decision
making

activities

Knowledge
updates

Time

Product
Knowledge
State KSi

Product
Knowledge
State KSi+1

Design
Process

State PSi+1
Design
process

Design activities

Flow of activities
Flow of knowledge

Our
support

tool

Transition

Time

Product
knowledge

Design
Process

State PSi

Reflection
activities

Explorative
activities

Decision
making

activities

Knowledge
updates

Time

Product
Knowledge
State KSi

Product
Knowledge
State KSi+1

Design
Process

State PSi+1
Design
process

Design activities

Flow of activities
Flow of knowledge

Our
support

tool

Figure 6. Relationship between the state-transitions of the design product and of the design

process

2.2. Descriptive purpose

25

Designers perform activities for some time, which can be prescribed by a design method
or by common sense. At some point in time, designers stop the design activities and
start to reflect (reflection activities) on the design activities performed since the PSi.
This defines a new state in the design process PSi+1. By reflecting, designers aim to
translate the recently performed design activities in terms of knowledge updates, which
brings the product state KSi into a new state KSi+1. By modeling all the subsequent states
of the design process and the product in a similar way, the design process can be seen as
a sequence PS1,PS2, …PSi,PS1+1, PSi+2,…; the product can be seen as a sequence
KS1,KS2, …KSi,KS1+1, KSi+2,…, where there is one-to-one mapping between PSi and
KSi

9.

Our support tool will be used during the moments of reflection; it is not a tool that will
be used for long periods of time, but systematically for short intervals. Our approach is
complementary to other methods, such as other tools, imagination, communication and
decision-making. Although we have seen that the systematic application of our support
tool enables new, useful design activities, the main focus is the improved use of
currently available explicit knowledge. In section 2.5 we prescribe how clarity of
reflections can benefit from the formalized mechanism of questions and answers.

2.2.2 A structure for the product

In the introduction to this chapter we discussed the motivation for imposing a structure
on product knowledge, such as the easier translation of implicit knowledge to explicit
knowledge, the clarity of communication and the automatic generation and evaluation
of solutions. In our model we therefore aim to identify different spaces of knowledge.
The idea behind the representing product knowledge by means of spaces is based on
General Problem Solving (GPS) paradigm, which was introduced in section 1.4.3. GPS
allows us to deal with well-defined problems and we therefore used it as a starting point
when defining our formalism.

Newell and Simon used the term ‘problem space’, defining it as the metaphoric space in
which the problem solver moves from an initial state of the problem through
intermediate states to a desired state by applying appropriate operators [Newell, 1972].
The problem space consists of all knowledge related to the problem, including
knowledge about the solutions, the context, and the goals. Newell and Simon write, “In
sum, we need to describe the space in which problem solving activities take place. This
space is called therefore the ‘problem space’”. Different problem spaces can be defined
for the same problem. The problem space is used to search for the solutions. In GPS the
term ‘solution’ can refer to the sequence of expressions, the sequence of operators, or
the terminal state of the process, e.g. a crossword puzzle. In GPS the problem and
solutions are not clearly distinguished from each other, for example where the final state
of the problem is the solution. According to Newell, the set of operations for ill-defined
problems is not defined; we are therefore not able to define operations for ill-defined
problems. In our research we aim to model operations (activities) of the designers by
means of several categories of operations, which are specific to the design process. The
major benefit is that based on these categories we distinguish between several
knowledge spaces. These spaces lead to computational benefits, as it will be explained
later on.

9 This is not always the case. Designers can also reflect on design activities related to organizational
aspects.

Chapter 2.An operational model of the design process

26

We encountered some recent attempts to distinguish between knowledge spaces in the
field of design. For instance, Purao [2001] gives the following motivation for the
introduction of the design space, “development of a ‘solution’ i.e. a design, proceeds
through proposals, expansions and challenges. These activities clearly represent moves
within the design space and continue after an initial ‘goal’ state is reached – suggesting
the existence of a separate design space”. The authors claim that activities in the
problem space and the design space clearly represent a dimension orthogonal to the
different activities that a designer may undertake. The authors mention that, “The
significant overlap between the real world objects and the objects-modeled also lead to
blurring of boundaries between the problem and the design space.” A possible reason
for this ‘blurring’ could be an unclear definition of the spaces. Analogously, we aim to
define the spaces based on the activities performed in these spaces and show that these
spaces are orthogonal by imposing an orthogonal structure.

We are able to distinguish four different categories of operations and it is therefore
meaningful to distinguish four different knowledge spaces. We propose the following
knowledge spaces:

• the decision space

• the objective space

• the context space

• the auxiliary space

Formalization of these spaces in one of our major contributions. To clarify these spaces
we consider an example of the design of a heating system for a house.

We define the decision space to consist of all the options the designers can consider to
provide heating, such as different types of radiators, their possible positions, the
available manufacturers, various delivery schedules and different maintenance options.
Knowledge in this space appears from the imagination and existing technical
possibilities. Knowledge in the decision space is operated by means of decisions, i.e. the
designers’ can chose between these options and combine them into solutions.

Knowledge in the objective space is the result of evaluating the available solutions.
This knowledge reflects the preferences of the stakeholders. For instance, the inside
temperature should be within the preferred range; the energy consumption should be
minimal. Constraints also fall in this space. The stakeholders may prefer heating by
means of radiators as opposed to heating by the hot air-flow. The objective space is
therefore meant to enable the ordering and selection of the solutions, while all
knowledge is operated by evaluation procedures.

The outcome of a decision may depend on contextual parameters, which constitute the
contextual space; for instance, the climate, the efficiency of radiators, and the type of
the actual building could play a role. It is necessary for the designers to collect some
contextual knowledge in order to evaluate their solutions. Knowledge in the contextual
space is relatively fixed and exists objectively, because it is obtained by means of
measurement operations.

Knowledge in the auxiliary space provides intermediate knowledge, which is necessary
for the evaluation of the objectives. The designers or the stakeholders are not interested
in this knowledge in itself. For instance, the evaluation of energy consumption and of
the inside temperature is easier if the power of the radiators and the energy losses are
known. Such auxiliary knowledge will require knowledge about the solutions and about

2.3. A formalism for product knowledge

27

the context, such as the climate. The purpose of the auxiliary knowledge space is
therefore to connect knowledge in the decision space and in the context space with the
knowledge in the objective space. We can say that knowledge in the auxiliary space is
operated using modelling (see Figure 7).

The Auxiliary
Space

The Auxiliary
Space

The Objective
Space

The Objective
Space

The Contextual
Space

The Contextual
Space

The Decision
Space

The Decision
Space

Product knowledgeProduct knowledge

Knowledge Flow

Deciding

Measuring

Modeling Evaluating

The Auxiliary
Space

The Auxiliary
Space

The Objective
Space

The Objective
Space

The Contextual
Space

The Contextual
Space

The Decision
Space

The Decision
Space

Product knowledgeProduct knowledge

Knowledge Flow

Deciding

Measuring

Modeling Evaluating

Figure 7. Interrelations between the four knowledge spaces of product knowledge

2.3 A formalism for product knowledge

“In general, whatever you are trying to learn, if you can
imagine trying to explain it to a computer, then you learn what
you do not know about the subject. It helps you ask the right
questions. It is the ultimate test of what you know.” - Knuth
D.E.

2.3.1 Introduction

It is certainly not easy to formalize implicit knowledge. The direct formalization of
implicit knowledge into its mathematical form is beyond most people and it is likely to
stifle natural way of working, creativity and communication. Formalization in terms of
natural languages is easier and more flexible, but this flexibility is accompanied by
imprecision and our continued inability to provide computational support. In this
section we introduce a formalism that aims to provide a smoother translation from the
designers’ thoughts to a formal representation. The characteristic feature of our
formalism is that it resembles the way knowledge is stored in the human memory.
Therefore our formalism is rooted in cognitive psychology. This is a necessary step for
development of an acceptable support tool, which deals with knowledge. Snowden in
[Andrews, 2002] addresses this step from the Knowledge Management point of view:
“We see technology as a tool: If you pick it up and it fits the hand, then it’s useful. If
you have to bio-reengineer your hand to fit your tool, it’s a waste of time. Too many
Knowledge Management solutions – and a lot of Artificial Intelligence- require us to
change the way we think to conform with a mechanical or process view of the world.
Human beings don't work like that.”

Chapter 2.An operational model of the design process

28

Our contribution is that we provide the mathematical meaning to the formalism. The
application of our formalism leads to a more compact representation of knowledge. In
this sense the complexity of applying our formalism is comparable to writing a
summary; it is not an easy task but it leads to the development of product models and
computational operations such as the automated generation and evaluation of solutions.

Object-oriented formalism [Booch, 1993] is the most comparable to our own formalism.
The direct application of the object-oriented formalism in the early design phase is
problematic for a number of reasons, which we consider below.

R.1 (Application of object-oriented formalism in the early design phase) Object-oriented
formalism has been applied since the 1970s, to manage the complexity of large
systems. According to Jones [1979], in the object-oriented approach the main accent
is put on specific characteristics of a concrete or abstract system. An object
possesses integrity which cannot be affected. The properties and the behavior that
the object possesses are unchangeable. In the early design phase it is a serious
limitation; ideas, which can be seen as objects of thoughts, are often combined with
each other. In our formalism we will use the term ‘concept’ instead of ‘object’. The
term ‘concept’ is more appropriate to describe vague and rapidly changing ideas in
the early design phase. Our formalism could therefore also be called a ‘concept-
oriented’ formalism, which is dedicated to the early design phase.

We will gradually describe our formalism in a sequence to show how a concept for the
product could be generated. Knowledge related to the product is initially packaged in
large and implicit chunks of knowledge. Our formalism enables this knowledge to be
packaged so that it can be manipulated and analyzed, and will eventually enable the
generation of solutions in the computer.

We will define product knowledge, i.e. the product domain P, by giving formal
definitions of the four knowledge spaces. The decision space VD will represent the
knowledge of possible decisions, the objective space VO will represent the knowledge of
the stakeholders’ needs, the context space VC will represent the context of the product,
and the auxiliary space VA will represent the intermediate knowledge. In section 2.3.2
we introduce the basic ingredients that will be used to define the space VD in section
2.3.3, the space VO in section 2.3.4, the space VC in section 2.3.5 and the space VA in
section 2.3.6. As this is the most fundamental section of the thesis, we summarize our
results in section 2.3.7.

2.3.2 Basic ingredients of the formalism

We will represent any chunk of knowledge in each of the spaces VD , VO ,VC , VA in
terms of concepts, attributes and their values. These terms are well-known in the fields
of cognitive psychology and design, they are frequently used, and they are domain
independent. Our contribution will be two fold: 1) to increase the precision of these
terms and to relate them to well-defined mathematical terms such as ‘variables’ and
‘functions’ 2) to relate these terms to the four knowledge spaces.

 The set of concepts

There is a considerable body of knowledge about the laws and processes of concept
generation (formation). According to [Solso, 1998] the early definition of ‘concept’ was
“mental images, ideas or processes.” For our purposes we use the word ‘concept’ in a
generic way to refer to anything that is of interest to the designer(s): a solution, a

2.3. A formalism for product knowledge

29

solution feature, a requirement, a stakeholder etc. A concept may refer to any issue that
has or needs a name and that has to be formally defined or distinguished later. Many
people in the field of design associate the word ‘concept’ with the solution concept,
therefore it can be confusing for them to refer to a customer as a concept. However, the
advantage here is that a customer is not excluded from the range of solutions to the
problem. In the hats example in the previous chapter (see Ex. 2), the problem was
solved by changing the attitude of the customers; the customer was a part of the solution
concept. The concepts could also be called ‘things’ or ‘objects’. However, these terms
imply some physical meaning and therefore carry certain mental biases.

D. 6 (Concept) A concept may refer to any issue which has to be distinguished or defined.

We will denote concepts as ci, where i is the unique index of a concept. Each concept
can also be referred to by its unique name as an alternative to referring to by the index.
We will identify the names of the concepts typographically by underlining them.

D. 7 (Set of concepts) The set C :C={ci} is the set of concepts related to the design
product that is currently being considered.

R.2 (Sets) The notion of the set is one of the fundamental notions of mathematics. We
will define a set of concepts to be any defined aggregate (collection) of concepts.
The concepts of a set are called the elements of the set. We use the notation c∈C to
show that an element c belongs to a set C. Elements of the set are such that they can
be distinguished from each other. Although it seems to be intuitively clear, if we look
more closely it is not clear how to distinguish between elements, e.g. are α and a
two different elements? Without additional procedures, it is also no trivial task to
decide whether an element belongs to a set or not. Is 4562934529347 a prime
number or not?

 The set of solution concepts

In this section we will distinguish the solutions concepts from the rest of concepts. We
assume that the design process starts with an initial set of ideas for the solution, which
may be incomplete or infeasible. At a given moment in the design process, the set
S={si} is the set of all currently considered solutions to a problem. Consider the
following example, which we will develop in the course of this chapter.

Ex. 3 (Transportation) In order to design a new product for transportation we generate the
following initial set of solutions: s1=Freight train, s2=Bicycle, s3=Conveyor belt.

Each initial solution si, and in fact any concept, starts off without any explicitly-
represented knowledge; it does have a clear, implicit, non-articulated interpretation
because it can be named and people can imagine what such a concept means. In other
words, there is a large amount of implicit knowledge that is packaged in each of the
suggested concepts. Useful knowledge needs to be identified and transformed into
explicit knowledge. We do not yet know any model that would help us to distinguish
between meaningful and non-meaningful knowledge about the concepts. The next step
is to make elements of a possible knowledge structure about the concepts visible.

 The set of attributes

Knowledge about concepts can be represented in different ways. Within the field of
cognitive psychology, five major models of representing knowledge in the human
memory are recognized [Solso, 1998]. We will use the ‘Set-Theoretical Model’ as a
basis [Meyer, 1976]. This model is used as a basic model for several other models of

Chapter 2.An operational model of the design process

30

representational knowledge, e.g. ‘Semantic Feature-Comparison Model’ [Smith, 1981].
According to the Set-Theoretical Model, concepts are represented in memory as sets of
elements, or collections of information. The set can include instances of a concept (for
example, the concept ‘furniture’ can include the instance of chair, table, couch) and also
attributes, or properties, of a concept (for example, ‘wood’, ‘sit’). According to Soslo
[1998], many experiments were done to demonstrate that word meanings are
represented in the human memory as a bundle of attributes [Wickens, 1970].

For any concept ci, that the designer is explicitly aware of (i.e. a concept that can be
named), we assume that all relevant knowledge that is contained in ci is operated via
one or more attributes that are meaningful for ci. We will use attributes to generate
knowledge about the concepts, since attributes make the elements of knowledge about
concepts visible and operational. We therefore model attributes as functions that allow
to operate with knowledge about the concepts, i.e. the presence of attributes makes
generating concepts an operational procedure. We did not encounter elsewhere this
interpretation of attribute, therefore this is our result.

D. 8 (Attribute) An ‘attribute’ aj is defined as a function that returns a value vij
depending on its argument, where this argument is a concept ci ; ci.aj=vij.

D. 9 (Value) A value has a meaning of information, i.e. interpreted data.

D. 10 (Operation) An Operation qij : qij ∈Q is an action directed towards obtaining of a
value vij.

D. 11 (Set of operations) Q={decide, evaluate, measure, model} is the set of operations
with knowledge.

D. 12 (Variable) The application of an attribute to a concept defines a variable <ci.aj, qij>.

D. 13 (‘Dot’ notation) ‘Dot’ notation is equivalent to the functional notation used in
mathematics, namely aj (ci). ‘Dot’ notation is also symbolic. We represent variables
graphically using a notation similar to the ‘dot’ notation

We will denote attributes using an index, which allows different attributes to be
identified. The index also acts as a history. Attributes with a higher index are added
later than attributes with a lower index (the same holds for the indexes of concepts). We
assume that every attribute has a unique name, so that it is clear what the attribute
means. We will identify the names of the attributes typographically by underlining them
and placing a dot in front of the names.

D. 14 (Set of attributes) The set A :A={aj} is the set of attributes related to the design
product, that is currently being considered.

The meaningfulness of attributes for a concept is subjective and cannot be formally
defined. We represent this subjectivity using the notion of a ‘signature set’.

D. 15 (Signature set) For a concept ci we have the signature set φ (ci) ⊆ A which is the set
of all attributes that for any aj:aj ∈φ(ci) the designer can define qij.

Ex. 4 (Signature set) For the concept Bicycle the signature set might contain the following
attributes: φ(Bicycle)={ .Height, .Number of speeds, .Type of Tires}. For the concept
Freight Train the signature set might contain the following attributes: φ(Freight
Train)=’{.Power, .External Voltage, .Weight}. Note that concepts can have different
signature sets. For instance .Type of tires ∉φ (Freight Train) but .Type of tires ∈ φ
(Bicycle). Note that definition of the signature set stimulates creative thinking. Some
attributes may initially be not elements of the signature.

2.3. A formalism for product knowledge

31

In a similar way, we define a set of concepts that are meaningful for an attribute using
the notion of an ‘extension set’.

D. 16 (Extension set) For an attribute aj we have the extension set ψ(aj) ⊆C which is a set
of concepts to which an attribute aj can be applied by means of an operation qij.

Ex. 5 (Extension set) For the attribute .External Voltage the extension set contains the
following elements: ψ(.External Voltage)={Freight Train , Conveyor Belt}. For
instance, Bicycle∉ψ(.External Voltage).

In our approach, we assume that any concept ci is described using a name, the tuple 10 of
variables with the corresponding tuple of values and the signature set φ (ci) :

D. 17 (Concept) ci =<name, (ci.a0,ci.a1,…,ci.aj), (vi0, vi1, …,vij), φ (ci) >, where ci ∈ψ(aj)
and aj ∈φ(ci) for all j.

We assume that any attribute aj can be described by means of a name, the range Ri
(which determines the attribute type as defined in the next section), and the extension
set ψ(aj).

D. 18 (Attribute) aj =<name, Ri, ψ(aj)>.

Consider the differences between the notion of the variable that is used in mathematics,
the notion of the attribute and the notion of the value. In mathematics, computer
languages, or engineering the variable has a name, for instance ‘x’, which can be
assigned a value, e.g. ‘x=2’. In our formalism, a variable always refers to some attribute
aj of a concept ci, which we will denote as ci.aj. Therefore, in our notation a variable
does not obscure the concept. Every variable needs to be assigned a value, in a similar
way as it is done in mathematics (see Figure 8).

ci . aj = vij

Variable

Attribute

Concept

Value

ci . aj = vij

Variable

Attribute

Concept

Value

Figure 8. The difference between a variable, an attribute and a value

The assignment can be one of the four operations: ‘decide’, ‘evaluate’, ‘measure’,
‘model’. The values of each variable therefore can be obtained by one of the four
operations that determine the knowledge space for a variable and the value. Using the
introduced terminology we can give a definition to the term ‘knowledge space’. We will
represent all knowledge about concepts ci:ci∈C in a knowledge space V by means of
tuples of variables ci.a with the corresponding tuples of values vi and a operation q∈Q
that is used to obtain the values.

D. 19 (Knowledge space) V=<{(ci.a, vi)}, q>, where a⊆φ (ci).

We will come back to this issue in sections 2.3.3 to 2.3.6.

10 Tuples are also called vectors. Strictly speaking this is wrong: vectors are elements of a vector space,
and tuples do not generally satisfy the conditions that are imposed on the vector space.

Chapter 2.An operational model of the design process

32

 Attribute types

The range Rj contains all the allowed values that can result from the application of an aj
to any concept ci. This means that any value vij is such that it is an element of the range
Rj.

Ex. 6 (Range) Note that a range is associated to an attribute, not to a variable. So even
though pen is typically not very long i.e. the value of the variable pen.length may
initially be assumed to vary between 3 and 15 centimeters, the range of the length
Rlength∈[0,∞). We can extend the conventional subset of values and consider the
whole range of the corresponding attribute; in some cases this can facilitate
innovative thinking. For instance, a pen with a length of 20 meters could mean … , a
laser point. For this reason, identifying attributes of any concept is a way to
stimulate creativity.

It is very important to distinguish between different types of attributes since they enable
different relations among the values. We will identify and support four basic types of
the attributes, as shown in Table 2. The types we distinguish are similar to those in Boer
[1999].

Table 2. Types of attributes

Type Description Examples

Rank 1.
NOMINAL
 (Names,

Uniqueness)

Values cannot be put in order,
and it does not make sense to
talk about “greater than” or
“less than”. Equality and
inequality are the only

meaningful relations between
two items of nominal data.
Nominal values should be

mutually exclusive, and a set of
nominal values can be

exhaustive.

aj=.Taste has a nominal range, where Rj={sweet,
sour, salty, bitter}. Note that numeric data can be

nominal as well, e.g. Belgian or German postal codes.

Rank 2.
ORDINAL

(Rank order)
Relation “≥”

Ordinal scales identify ordered
magnitudes, but they do not
quantify exact differences

between values.

The classic example is rank scores. Tennis player A
may rank 13th in the world, B may rank 22nd, C may
rank 70th. All this says is that A is officially better

than B and B is better than C; it does not say anything
about how much better.

Rank 3.
INTERVAL

 (relative
values without

zero)
Relation
“≥”,”-”

Interval scales are numeric, and
differences between sequential

values are also meaningful.

Temperatures on the Celsius or Fahrenheit scales are
interval variables: there is a physical quantity

associated to the temperature difference 13˚C-10 ˚C,
and the same quantity is associated to the temperature

difference 73 ˚C-70 ˚C (namely, the amount of heat
needed to cause the temperature difference).

Rank 4.
RATIO
(relative

values and
zero)

Relation
“≥”,”-”, “/”

Ratio scales include absolute
numeric measurements (total

counts) of continuous or
discrete phenomena.

A temperature of 6 ˚C is not twice as hot as 3 ˚C, but
a weight of 6 kilograms is exactly twice as heavy as a
weight of 3 kilograms. The Kelvin temperature scale,

in which 0 is genuinely absolute zero, has a ratio
type. In other words, there is no physical quantity that
is twice as large for the interval 0˚C->6 ˚C compared

to the interval 0 ˚C->3 ˚C, whereas there is one for
0˚K->6 ˚K compared to 0˚C->3 ˚K.

2.3. A formalism for product knowledge

33

R.3 We have ranked the types of attributes according to a number of measurable
relations between any two values from a corresponding range. For the nominal type
it makes no sense to talk about these relations, while for the ratio type we can even
talk about the ratio between two values, i.e. the question of how many times one
value is greater than the other is meaningful.

 Structures for concepts

Although no systematic methods exist to guarantee completeness, a common practical
approach is to design a structure for concepts in order to ensure some degree of
completeness. There are numerous examples of this problem, such as generating and
selecting alternative solutions for a design problem, identifying stakeholders and
assembling a product portfolio for a company. Some examples of structures can be
found in Appendix E.

We introduced the ‘attribute’ in order to operate knowledge about individual concepts.
Because the same attribute can be applicable to several concepts, attributes can be used
to distinguish concepts from each other, i.e. structure sets of concepts. In this section we
define two types of structures, namely the Fully Orthogonal Structure (FOS) and the
fully hierarchical structure (FHS). In our opinion the two types of structure can suite
two different purposes. FOS focuses on differences between the concepts and tends to
represent concepts as independent, i.e. orthogonal. Hierarchical structures are based on
some relation between the elements of this structure, such that the relation is reflexive,
asymmetric and transitive. FHS therefore tends to consider concepts as related. Because
of these differences, FOS can be used to study differences between the concepts, i.e.
differentiate concepts. FHS can be used to study relations between the concepts, i.e.
integrate concepts. We will show later that both types of structures can also be used in
combinations. Both types of structures can lead to generation of new ideas. We will
demonstrate mechanisms of generating concepts in the next section, which is dedicated
to the decision space. The two types of structures are formally defined below.

Consider a set of concepts Y and a set of attributes Z.
D. 20 (FOS) We will say that (aj:aj∈Z) and (am:am∈Z) form a fully orthogonal structure on Y

iff11 ∀(ci:ci∈ψ(aj)∧ci∈Y :ci∈ψ(am) ∧ci.aj≠ ci.am).

We will say that orthogonal attributes represent ‘dimensions of the orthogonal
structure’ on Y.

We will now define the hierarchical structure based on “is-a” relation between concepts,
which is also called the ‘inheritance relation’.

D. 21 (is-a relation) (ci:ci∈Y) is-a (cn:cn∈Y) iff φ (ci) ⊇ φ (cn), and ∀(aj: aj∈φ (cn): ci.aj⊆12
cn.aj)), where aj will be called hierarchical attributes.

D. 22 (FHS) We will say that Z forms a fully hierarchical structure of Y iff the is-a relation
holds for all concepts in Y.

11 iff is the abbreviation of ‘if and only if’.
12 The relation “=” holds in cases of single valued attributes.

Chapter 2.An operational model of the design process

34

2.3.3 The decision space VD

All knowledge contained in the decision space VD is defined by the set of decision
variables together with their values.

D. 23 (Decision variable) A decision variable <si.aj, decide> is a variable such that it
constitutes a decision for which the designer has full authority. Thus the values of
decision variables are operated by decisions.

Given this definition, every solution si:si∈S can be represented in the space VD by the
tuple of decision variables, which we denote as si

d. We will refer to the tuple of values
that correspond to si

d as ‘decision values’ and will denote these values by vi
d. The

formal difference between si and any other concept ck is that si has at least one decision
value, while ck has no decision values.

D. 24 (Decision space) Decision space VD is a knowledge space such that VD=<{(si
d, vi

d)},
decide>.

In the following two examples we describe how the decision space can be structured.
The structuring of this space results in useful, systematic design activities for the
following reasons:

• (Identification of decisions) Solutions that are initially distinguished from each
other intuitively become distinguished explicitly by decision values. Comparison
of the solutions makes it easier to identify new attributes, which allow to define
new decision values. If there are two identical solutions for the same tuple of
decision values, but the solutions are intuitively different, then new decision
values need to be found.

• (Generation) Segments of the decision space, which have no corresponding
solutions, become visible. This result can be used to facilitate a brainstorming
session to find new solutions that correspond to empty segments. The empty
segments can be considered systematically.

Ex. 7 (Application of orthogonal structures) We have introduced a number of solutions for
the transportation product (see Ex. 3), which resulted from a brainstorming session.
In order to impose FOS on the obtained solutions in the space Vs we need to
introduce a number orthogonal attributes which would be meaningful for the
solutions and would therefore produce new tuples of decision values. New attributes
can be introduced by identifying the differences between the considered solutions.
We can propose the following orthogonal attributes: a1=.Energy source with the
range R1={diesel, electricity, human power} and a2=.Media with the range R2={air,
ground, sea}. The application of the defined attributes to the found solutions results
in tuples of decision variables and the corresponding tuples of decision values. Each
solution can be positioned in the FOS according to the tuple of decision values, as
shown in Figure 9.

Ex. 8 (Manual generation of solutions) Consider some empty segments in VD. For instance
the tuple (diesel, sea) inspires the new solution Boat, the tuple (diesel, ground)
inspires the new solution Car. For (human power, air) there is no straightforward
feasible interpretation. Designers therefore need to interpret what such a
combination means. In this way the orthogonal structure inspires creative
imagination. Indeed, it was long thought that it would be impossible for a human
being to develop enough power to fly, until a solution which we will refer to as
Manned flight, was actually built. Another solution for this segment is Parachute.
Note that if we add both Manned flight and Parachute the structure is not fully
orthogonal, because within this structure Manned flight= Parachute.

2.3. A formalism for product knowledge

35

diesel

.Energy .Energy
sourcesource

.Media.Media

ground

air

VD

electricity human
power

sea

Bicycle
Train

Car Conveyor

Boat

diesel

.Energy .Energy
sourcesource

.Media.Media

ground

air

VD

electricity human
power

sea

Bicycle
Train

Car Conveyor

Boat

Figure 9. Structuring the decision space VD using design attributes

R.4 (Morphological box) The design literature refers to the described method of
systematic generation of solution alternatives as the ‘morphological chart method’ or
the ‘morphological box’. This method was first introduced by Zwicky [1969], and is
one of the earliest systematic design methods. It is still regarded in the literature as
one of the most useful methods in the early design phase.

For the reasons explained earlier it is advantageous to find orthogonal attributes, since
this allows us to systematically and quickly focus on promising (or empty) regions in
the decision space. In the following sections we will also demonstrate a computational
usage of orthogonal structures. Orthogonal structures are not easy to build because they
require identification of attributes applicable to all concepts that need to be structured.
In order to address decision variables of specific solutions, it is often easier to impose a
fully hierarchical structure on the set of solutions. A typical way to build an is-a
hierarchical structure is to start from a moderately-sized set of concepts and to introduce
new attributes until every concept inherits no more than one concept.

Ex. 9 (Hierarchical structures) We impose a fully hierarchical structure on the decision
space for the problem of finding a new way of transportation. At the top of the
hierarchy is the concept Transport, which has a decision variable Transport.Energy
Source (es), where R es={electricity, human power}. The attribute .Energy Source
allows us to distinguish between therefore between two concepts. We will use
Electric Transport to refer to concepts that have the value Transport.Energy
source=electricity. In order to structure known solutions that are electric transports
we introduce a new attribute .Electricity Supply (els), such that R els={generating,
consuming}. In order to structure concepts that generate electricity themselves, we
introduce a new attribute .Electro Effect (ee), such that R ee ={chemical,
mechanical}. We will refer to a concept that generates electricity chemically as a
Battery Car. We will refer to a concept that generates electricity mechanically as a
Hybrid Car. By continuing this reasoning we arrive at a fully hierarchical structure, as
shown in Figure 10. Other introduced attributes are: .Source Position (sp) with the
range R sp={external, internal} and .Working Part (wp) with the range R wp={legs,
arms}.

For computational reasons, it is necessary to treat hierarchical structures as orthogonal
structures. We therefore need to assume that all solutions have the same signature. This

Chapter 2.An operational model of the design process

36

assumption can only be true in some specific cases. Most of the time solutions will have
different signatures, as in example Ex. 10.

Ex. 10 (Hierarchical structures) Consider the bicycle solution for the transportation product.
According to Figure 10 this solution is represented by the following variables:
(Bicycle.Energy source13, Bicycle. Working part). The following tuple of values
corresponds to these variables (human power, legs). Now assume that for some
reason we want to assign a new value to the variable Bicycle.Energy source, for
instance electricity. Note that the attribute .Energy source is hierarchical in this
case, since Bicycle.Energy source⊂ Muscle Transport.Energy source. The attribute
.Working part may therefore become meaningless for the concept Bicycle. (We
assume that in this case it does, since the attribute .Working part refers to a part of
the human body, which is meaningless in the context of electrically powered
transport).

Transport

Electro Generating Transport.
Electricity Supply=generating

Bicycle.
Working Part=legs

Electric Transport.
Energy Source=electricity

Muscle Transport.
Energy Source=human power

Electro Consuming transport.
Electricity Supply=consuming

Battery Car.
Electro Effect=chemical

Train.
Source Position=external

Electro Car.
Source Position =internal

Hybrid Car.
Electro Effect=mechanical

Wheel chair.
Working Part=arms

Reclining Bicycle.
Body Position=reclined

Sitting Bicycle.
Body Position=sitting

Transport

Electro Generating Transport.
Electricity Supply=generating

Bicycle.
Working Part=legs

Electric Transport.
Energy Source=electricity

Muscle Transport.
Energy Source=human power

Electro Consuming transport.
Electricity Supply=consuming

Battery Car.
Electro Effect=chemical

Train.
Source Position=external

Electro Car.
Source Position =internal

Hybrid Car.
Electro Effect=mechanical

Wheel chair.
Working Part=arms

Reclining Bicycle.
Body Position=reclined

Sitting Bicycle.
Body Position=sitting

Figure 10. Hierarchy of solutions for the transportation product

In order to represent solutions in an orthogonal structure we extend the definition of the
signature.

D. 25 (Extended signature) ‘Extended signature’ (φ ‘) of a set of concepts Y is: φ ‘(Y)=∪(
ci:ci∈Y: φ (ci)).

When an attribute aj:aj∈φ‘(ci)/φ (ci) is applied to a concept ci:ci∈Y the meaning of aj is
not defined. The designer can therefore not assign a value to the variable ci.aj. Since we
want to be able to apply such meaningless attributes, we introduce a new value
‘not_apply’. The range of all aj: aj∈φ ‘(C) is extended with this value such that
R’j=Rj∪{not_apply}. We will call R’j the ‘extended range’.

Ex. 11 (Extended signature) In the previous example the value not_apply needs to be
assigned to the following variables: Solar Car.Body Part, Bicycle.Source Position etc.

13 This variable is inherited from the concept Transport, because Bicycle is-a Transport.

2.3. A formalism for product knowledge

37

We notice that given the same set of attributes FOS is capable to produce more
solutions than FHS allows doing. With n orthogonal attributes, each with at least m
values, we get mn

 segments. In other words, although the required mental effort for an
attribute that has to be orthogonal (to all concepts in a set) is considerable, we need
considerably fewer of them in order to subdivide them into a given number of sub-
collections (i.e. of the order of O(log k) for k concepts). When constructing an
orthogonal structure starting from a random set of concepts, we will encounter empty
segments. Suppose that we have 25 concepts to start with. Suppose also that we only
use attributes that are 2-valued (such as hot-cold, wet-dry, etc.). Then we need at least
five attributes in order to have segments where every segment contains no more than
one concept. However, this gives 32 segments (25=32), so seven of them are empty
(note that we do not encounter empty segments when we build a hierarchy). These
empty segments are very valuable, as they suggest extensions of the initial set of
concepts. In other words, the method of finding orthogonal attributes ‘automatically’
generates new tuples, which can be interpreted as new concepts and can therefore be
given a name.

R.5 (Hybrid structures) If we cannot find all O(log n) attributes for n concepts in a set to
make a fully orthogonal structure, we can start by building an orthogonal structure
with a smaller number of attributes, such as m, m<n. As a result, some segments may
contain several concepts. For these segments, provided there are not too many of
them, we can attempt to build hierarchical structures. The know concepts for each
particular segment can be associated to a root node of a tree to be build for that
segment. So in this case we build an orthogonal structure with one or more
encapsulated hierarchical structures.

2.3.4 The objective space VO

When the set of solutions S has been created, the designer is faced with the problem of
selecting the best ones, i.e. with imposing an order on S. Initially S is not ordered, i.e.
the relation “≥” is not defined between the solutions. We define that all knowledge that
is necessary for selection of the solutions will be contained in the objective space VO.
VO therefore enables the ordering, or at least partial ordering, of the solutions. All
knowledge contained in the objective space VO is defined by the set of objective
variables together with their values.

D. 26 (Objective variable) An objective variable <si.aj, evaluate> is a variable such that it
allows the evaluation of a solution (this means that the range Rj of the corresponding
attribute should enable the relations ‘better than’ or ‘worse than’ between the
values, i.e. Rj should at least be ordinal). The values of the objective variables are
operated by means of evaluation.

Given this definition, every solution si:si∈S can be represented in the space VO by the
tuple of objective variables, which we denote as si

o. We will refer to the tuple of values
that correspond to si

o as objective values and will denote these values as vi
o.

D. 27 (Objective space) Objective space VO is a knowledge space such that VO=<{(si
o , vi

o)},
evaluate>.

D. 28 (Corollary) All attributes aj that allow the evaluation of solutions must be orthogonal
on the set of solutions S. These attributes form an FOS of the space VO. When an
attribute is used to evaluate solutions, we will call it an ‘objective function’ or
‘objective’.

Chapter 2.An operational model of the design process

38

Every solution si can be positioned in the space VO according to the tuple of objective
values vi

o.
Ex. 12 Consider two objectives .Power and .Safety, which allow the transportation means to

be evaluated, i.e., for both attributes an extreme (maximum) value is required when
these attributes are applied to the solutions concepts. We assume that the design
problem is adequately represented by these two objectives. The necessary conditions
are satisfied, indeed, .Safety ∈φ(Transportation) and .Power∈ φ(Transportation).
Thus, according to D. 20, these two attributes form an FOS of VO onto which all
transportation means can be mapped. We can also define ordinal ranges for these
attributes: Rpower={low, average, high}, Rsafety={safe, risky, dangerous}. Given this
FOS, we can position all solutions in the space VO as shown in Figure 11.

low

.Power.Power

.Safety.Safety

risky

safe

VO

average high

dangerous

TrainElectro
Car

Reclining
Bicycle

Sitting
Bicycle

Car

Wheel
chair

low

.Power.Power

.Safety.Safety

risky

safe

VO

average high

dangerous

TrainElectro
Car

Reclining
Bicycle

Sitting
Bicycle

Car

Wheel
chair

Figure 11. Orthogonal structure imposed on VO

2.3.5 The contextual space VC

We assume that all knowledge contained in the contextual space VC will be defined by
the set of contextual variables together with their values.

D. 29 (Contextual variable) A contextual variable <ci.aj, measure> is a variable such that its
value constitutes a fact of the world about a concept ci for which the designer has no
control. Values of contextual variables are therefore operated using observations or
measurements.

Contextual variables will return a unique value, for instance petrol.specific_heat=[2]
kJ/kg K’. Unlike decision variables or objective variables, contextual variables are not
necessarily related to solution concepts. For this reason we do not aim to prescribe any
structure for VC.

Any concept ci:ci∈C can be represented in the space Vc by the tuple of contextual
variables, which we denote as ci

c. We will refer to the tuple of values that correspond to
ci

c as contextual values and will denote these values as vi
c.

D. 30 (Contextual space) Contextual space VC is a knowledge space, such that VC=<{(ci
c ,

vi
c)} , measure>.

2.3. A formalism for product knowledge

39

2.3.6 The auxiliary space VA

We assume that all intermediate knowledge will be contained in the space VA and that it
will be defined by the set of auxiliary variables together with their values.

D. 31 (Auxiliary variable): An auxiliary variable <ci.aj, model> is a variable such that
ci

a ∉VD ∪ VO ∪ VC. Values of auxiliary variables are operated by means of modeling.

Thus, an auxiliary variable is a variable that cannot be classified as a decision variable,
an objective variable, or a contextual variable. In a similar way as in the space VC, the
space VA may contain variables of any concept and not necessarily only solution
concepts. The space VA is therefore unstructured. Any concept ci:ci∈C can be
represented in the space VA by the tuple of auxiliary variables, which we denote as ci

a.
We will refer to the tuple of values that correspond to ci

a as auxiliary values and will
denote these values as vi

a.
D. 32 (Auxiliary space) Auxiliary space VA is a knowledge space such that VA=<{(ci

a , vi
a)},

model>.

Ex. 13 (Auxiliary variables) Auxiliary variables usually refer to internal or intermediate
knowledge about the design product. They do not themselves express any desired
feature of the product. For instance, vibrations in themselves do not add to the
perceived success of a solution, therefore the solutions’ vibration amplitude is a
variable ∈VA, and not ∈VO. Another example is that the power of the heating system
does not add to the perceived success of a solution, but it helps to compute the
inside temperature and the energy consumption.

2.3.7 Summary

In our model we represent the state of product knowledge in terms of concepts and
attributes. We model concepts by tuples of variables with their values (ci.a0=vi0,
ci.a1=vi1,…, ci.aj =vij). We have described all knowledge as initially appearing in
chunks, which are packaged in concepts; the names and values of the concepts therefore
help to identify these chunks. By applying attributes to a concept ci, the designer
accesses and operates the implicit chunks of knowledge about the concept in a
systematic way. Since variables can be operated by four categories of operations, the
knowledge about a concept can be distributed between the four knowledge spaces VD ,
VO , VC , VA , such that ci= ci

d∪ ci
o∪ ci

c∪ ci
a.

Distribution of knowledge over the four spaces has an important consequence. The
same attribute may have four different meanings, which are formally identified by the
four categories of operations. We can demonstrate this in an example, which is
described in Table 3. We have introduced the formalism to represent product knowledge
and we now need to explain how this formalism leads to systematic development of the
product model to complete the description of the product state.

Chapter 2.An operational model of the design process

40

Table 3. Four different meanings for the same attribute name aj=’length’

Category of
a variable

Meaning Operation

Design:
ci.aj∈VD

A designer can decide what the length of a concept ci should be Decide

Objective:
ci.aj∈VO

A concept ci is preferred to other concepts based on the length.
Let us assume that the longer the length is the better. Then if vij

is bigger than vmj, ci is preferred to a concept cm. Length can
also be a constraint. For example if vij>lmax, ci is excluded from

further considerations

Evaluate

Contextual:
ci.aj∈VC

Length represents an observation or a measurement of the fact
about a concept ci. The designer has no freedom to decide what

the length should be

Measure

Auxiliary:
ci.aj∈VA

The length of a concept is an internal knowledge. For example,
a piece of wire can be cut in n segments of an equal length. The

length of a segment is an auxiliary variable which can be
obtained through modeling.

Model

2.4 Product models

In this section we describe the meaning of operations from the category ‘model’ in the
context of our formalism. Operations from this category lead to development of the
product model. In section 2.4.1 we give basic definitions, which will be used to define
the product model in section 2.4.2. In section 2.4.3 we consider different classes of
product models and define the scope of product models that our formalism supports.
Section 2.4.4 is dedicated to problems related to the development of the product model.
In section 2.4.5 we present a summary.

2.4.1 Basic definitions

The basic notion that underlies the product model is ‘functional dependency’. Thus
operation of modeling is done through development of functional dependencies.
Consider a space X which consists of elements vl, and a space Y which consists of
elements vm. If according to some rule f we can find a corresponding element vm for any
element vl , then we can say that there is a function vm =f (vl) with the domain in X and
the range in Y. We depict this functional dependency as a graph in Figure 12.

We will call the element vl ‘independent’ with respect to f, and will denote it graphically
by a star. We will call the element vm ‘dependent’ and we will denote it graphically by a
circle. The functional dependency f will be denoted graphically as an arrow, going from
an independent element to a dependent one. We will call such a graph ‘a directed
functional graph’. An independent element vl is called an argument of f. The dependent
value will be called the ’outcome’ of f.

2.4. Product models

41

YX
f (vl)

vl vm

Domain Range

YX
f (vl)

vl vm

Domain Range

Figure 12. A functional dependency between two elements

We will now consider a functional dependency of n arguments:

vm =fm (v1,v2,…,vn)=fm(X).
We can depict this situation graphically as shown in Figure 13 on the left.

fm (v1,v2,…,vn)

v1

v2

vn

vm

f1 (vl)
f2 (vl)

fn (vl)vl

v1

v2

vn

Functional dependency of n-
arguments

n-dependencies of a single value

fm (v1,v2,…,vn)

v1

v2

vn

vm

f1 (vl)
f2 (vl)

fn (vl)vl

v1

v2

vn

Functional dependency of n-
arguments

n-dependencies of a single value

Figure 13. Functional dependency of n-arguments

A value vl can play the role of an argument in n-functional dependencies f1,f2,..fn, We
can graphically depict this situation as shown in Figure 13 on the right.

In terms of our formalism we will say that if a value vij of a variable ci.aj is obtained by
means of a functional dependency fl, than fl is a modeling operation such that
< ci.aj, fl>= vij.

2.4.2 Definition of the product model

After we have defined a functional dependency, we can define the product model.
D. 33 (Graphical definition of the product model) The product model is a directed acyclic

graph (DAG) that connects values from the spaces VD and VC with the values in VO,
possibly via intermediate values in VA.

We will consider an example of such a graph later on. The term ‘acyclic’ means that the
graph does not have cycles, i.e. it is impossible to get into a value by following any
sequence of outgoing arrows from the value. Several types of graphs are considered in
the literature, such as index dependency graphs, value dependency graphs etc. DAG

Chapter 2.An operational model of the design process

42

corresponds to modular structures [Geofrion, 1988]: “the vertices are the model entities;
an arc is defined if a model is nested within another model”14.

The definition of the product model has several consequences for the formalism, which
we consider below:

• All values in VD are independent, i.e. all decision variables si
d are independent

variables whose values can be decided by the designer15.

• All values in VO are dependent, i.e. all objective variables si
o are dependent

variables whose values result from evaluation and need to be a minimum or
maximum.

• All values in VC are independent, i.e. all contextual variables ci
c are independent

variables whose values are measured and therefore they are constant.

• All values in VA are dependent, i.e. all auxiliary variables ci
a are dependent

variables whose values are not interesting to the designer or the stakeholders in
themselves.

The distinction between dependent and independent variables is well recognized in the
design literature. According to Baarda [1995], “the variables that are singled out are
‘dependent variables’, the ones that are varied to study their impact are the ‘independent
variables’, and those that are constant are ‘parameters’”. An example of a graph can be
found on page 118 in Cross [1994]. The same publication contains the distinction
between design variables, intermediate variables and performance metrics. This enables
the link between our formalism and existing formalisms, which were developed within
the field of engineering. Consider an example of the evaluation of a graph.

Ex. 14 (Evaluation of the product model) In the design of the product for transportation (TR)
we consider: the decision variables Tr.Els (Electricity source), Ext.Med (Media to
transform electricity for externally powered transport) and Int.Btr (Type of battery
for internally powered transport); the contextual variables Wire.R (Efficiency of the
energy transmission via the wire), Air.R (Efficiency of energy transition via the air),
Alc.Ah (Capacity of alkaline battery) and Ni.Ah (Capacity of Ni-Cd battery); the
auxiliary variables Int.P (power of the internally powered transport), Ext.P (power of
the externally powered transport) and Tr.P (Power of the transport) and an objective
variable Tr.Sp (Speed of transport). Suppose we have all functional dependencies as
depicted in the graph in Figure 1416. The evaluation of the product model goes from
right to left. We compute Tr.Sp from Tr.P17. From Tr.P further evaluation can take
one of the two paths i.e. 1 or 2, depending on the current value of Tr.Els. So the
decision values switch the path in which the graph is evaluated.

14 In our terminology, vertices are the values and the arcs are functional dependencies.
15 Variation of design values is one of the design activities. In section 2.6.2 we consider algorithmic
variation of these values.
16 We have developed a special colour scheme for the graphical representation of the spaces. For instance,
the green colour of the decision space is associated by many people with creativity.
17 Tr.Sp also depends on the shape, mass etc. These considerations are omitted as they would complicate
the graph.

2.4. Product models

43

VO

VD

VC

The Decision Space

VA

aj:ci.aj∈Vo

Tr.Els∈{Int;Ext}

Int.Btr∈{Alc;Ni}

Ext.Med∈{Wire;Air}

Alc.Ah=100

Ni.Ah=200

Wire.R=80 Air.R=50

Ext.P

Int.P

Tr.P Tr.Spf1

1
2

The Contextual Space

The Auxiliary Space The Objective Space

VO

VD

VC

The Decision Space

VA

aj:ci.aj∈Vo

Tr.Els∈{Int;Ext}

Int.Btr∈{Alc;Ni}

Ext.Med∈{Wire;Air}

Alc.Ah=100

Ni.Ah=200

Wire.R=80 Air.R=50

Ext.P

Int.P

Tr.P Tr.Spf1

1
2

The Contextual Space

The Auxiliary Space The Objective Space

Figure 14. Product models as graph representations

Consider the functional definition of the product model in our terminology.
D. 34 (Functional definition of the product model): A product model is a function F=F(f1(v),

f2(v),…, fh(v)), where v⊂ VD ∪VC ∪VA , that enables the mapping of decision values
(vd) from n-dimensional space VD to objective values (vo) in h-dimensional space VO,
taking into account m-independent contextual values vc, possibly via k-dependent
auxiliary values va, see Figure 15.

v1
d

v2
d

vn
d

v1
c v2

c vm
c

v1
a

v2
a

vk
a

v1
o

v2
o

vh
o

f1(v)

f2(v)

fh(v)

v1
d

v2
d

vn
d

v1
c v2

c vm
c

v1
a

v2
a

vk
a

v1
o

v2
o

vh
o

f1(v)

f2(v)

fh(v)

Figure 15. Definition of the product model

2.4.3 Classes of product models and the scope of our formalism

The designer can develop different ‘types of product models’. The variety of products
and problems makes it impossible for us to precisely classify all product models.
Models can differ with respect to their precision, representation, etc. Two classes of
product models are distinguished in the literature: ‘structural models’ and ‘functional
models’, both of which can be deterministic or stochastic. Product knowledge is
unstructured and frequently updated; we therefore need to consider structural and
deterministic models. We were guided in our approach by the following consideration:

Chapter 2.An operational model of the design process

44

if the product model can be expressed in a declarative way, then it should be. More
advanced (stochastic) functional models can be built upon the developed product model
in the later design stages. Because these models are more time consuming and present a
new dimension of complexity, we first need to build a basic model and then decide what
needs to be improved.

The purpose of structural models is to model the structural characteristics of the
product. Structural models can be topological or geometrical. Topological models
model the product as a set of elements with relations. These models are built to define
the main ingredients of the product and the positions for them. Topological models can
be represented by graphs or matrices. Geometric models focus on the geometry of the
product.

2.4.4 Development of product models

The product models are provided by the designer. These models constitute functional
dependencies such as the interpretation, the physical causality, economic causality, or
assumed psychological causality. Our formalism describes how the product models can
be developed in small incremental steps. Models can be built or found for many values,
but not for all. Values for many objective variables, such as those related to aesthetics,
usability, or the comfort of the end user, may depend on the subjective opinion of the
stakeholders. These dependencies may not be available or known to the designer. We
therefore need to distinguish between functional dependencies and interpretational
dependencies.

D. 35 (Interpretational dependency) A dependency is ‘interpretational’ iff it cannot be
expressed as a calculated functional dependency f.

Interpretational dependencies can be seen as links in the graph which cannot be
expressed (at least immediately) in terms of mathematical functions. The role of the
designer is therefore to allow such links to be filled in by interpreting the arguments of
the missing dependency and providing the corresponding values.

Ex. 15 (Interpretational dependency) Consider an evaluation of two objective attributes
.Power with the range Rpower={low, average, high}and .Safety with the range
Rsafety={safe, risky, dangerous}. We will use these attributes to evaluate decisions
from the decision space VD. This space is structured using two orthogonal attributes,
e.g. .Energy Source and .Media, and contains solutions that are represented by the
following tuples of decision values: (diesel, ground), (human power, ground), (human
power, air). We assume that there are functions that relate .Power to the media
state and energy state. However, for .Safety we may not have found such functional
dependencies. We therefore have to rely on our own interpretation of safety for each
particular solution. For instance, the designers’ interpretation may result in the
following order: Safety((human power, ground))=safe, Safety((diesel, ground))=risky,
Safety((human power, air))=dangerous. The operation of evaluation here can be
based on intuition and experience, but it can also be linked to measurements, for
instance an estimated number of accidents.

2.4. Product models

45

2.4.5 Summary

The definition of the product model completes the description of the product state. It is
convenient to summarize by relating our formalism to the levels of knowledge that were
described in the context of knowledge management in the introductory chapter.

D. 36 (Data) The meaning of a value as ‘data’ is not defined yet. A value is initially
positioned explicitly in a document or implicitly in a human mind.

D. 37 (Information) We will call a value that was interpreted and related to a variable
‘information’. The meaning of a value as information is defined and related to a
specific but an isolated variable.

D. 38 (Knowledge) If a value is referenced and is used in the product model, we will say
that such a value is meaningful and represents an explicit chunk of knowledge.

We summarize these definitions in Figure 16.

DataData

InformationInformation

KnowledgeKnowledge

v∈NOMINAL∪ORDINAL ∪
INTERVAL ∪ RATIO

v∈NOMINAL∪ORDINAL ∪
INTERVAL ∪ RATIO

v=ci.aj
v=ci.aj

v=ci.aj
v=ci.aj

Values are coupled with isolated
variables

Values are coupled with variables that
play a role in functional dependencies

DataData

InformationInformation

KnowledgeKnowledge

v∈NOMINAL∪ORDINAL ∪
INTERVAL ∪ RATIO

v∈NOMINAL∪ORDINAL ∪
INTERVAL ∪ RATIO

v=ci.aj
v=ci.aj

v=ci.aj
v=ci.aj

Values are coupled with isolated
variables

Values are coupled with variables that
play a role in functional dependencies

Figure 16. The distinction between data, information, and knowledge

In the context of Knowledge Management we stated that it is useful to identify
dimensions of knowledge. For our purposes it is also necessary to show that the
introduced knowledge spaces are orthogonal. On this basis we can state that the four
operations that underlie the spaces are orthogonal as well. We already defined one
orthogonal dimension for knowledge, namely a1=.Dependency, such that R
a1={dependent, independent}. The new dimension that we consider is a2=.Subjectivity,
such that R a2= {objective, subjective}. These two dimensions form an orthogonal
structure for the knowledge spaces and therefore for the four categories of operations
with knowledge; it has four segments, with each knowledge space corresponding to one
segment. Indeed, values in the decision space VD are subjective with respect to the
designers. Values in VO are subjective with respect to the stakeholder18, i.e.
VD.Subjectivity=subjective and VO.Subjectivity=subjective. Values in the context space
VC are objective because they represent world knowledge; values in the auxiliary space
are objective because they typically do not represent the personal interest of the
participants. Thus, VC.Subjectivity= objective and VA.Subjectivity=objective. Using a1
and a2 we impose a fully orthogonal structure on the knowledge spaces, as demonstrated
in Table 4. This structure is one of our results that supports the completeness of the four

18 Many objectives can be evaluated by means of known functional dependencies. However, this does not
guarantee the acceptability of the generated solution concepts by the stakeholders. Therefore the objective
spaces is subjective with respect to the stakeholders.

Chapter 2.An operational model of the design process

46

knowledge spaces and therefore of the four categories of operations with product
knowledge.

Table 4. The structure for the knowledge categories

 Independent Dependent

Subjective 1. VD : designers choices 2 VO: objectives

Objective 3. VC: contextual world knowledge 4. VA: auxiliary

The next step in the definition of our model is to give a formal definition of the
mechanism of questions and answers.

2.5 Reflections

In this section, we prescribe how reflections can be facilitated by means of the
formalized mechanism of questions and answers. This mechanism we explain in terms
of the introduced formalism in section 2.5.1. In section 2.5.2 we consider how our
formalism allows us to distinguish eight different categories of questions and therefore
eight different formats of giving the answers. We will present an example in section
2.5.3.

2.5.1 Formal definition of questions and answers

In this section we define the question and answer mechanism in terms of our formalism.
The purpose of this formalization is two fold: 1) to relate our formalism to conventional
ways the designers work, 2) to enable clearer thinking and communication during the
moments of reflections.

We define any question to address an attribute aj of some concept ci. As an intermediate
step, a question can simply bring a new concept into consideration. Thus, a new
question defines a new variable ci.aj. The purpose of the question is therefore to obtain a
value vij for this variable. For a dependent value vij , the answer conveys a functional
dependency f, which allows us to compute a value by evaluating f. When a new question
is asked, this may cause a transition of the product to a new state due to a new concept
or a new attribute that is contained in the question. The designer can also disregard a
question, i.e. consider it to be irrelevant. The deletion of a question might result in the
deletion of a concept or an attribute from a state of the product; it would definitely result
in the deletion of an answer, i.e. of the value. Table 5 presents the described transitions.

The modeling of questions provides designers with the following guidelines during the
moments of reflections:

• Statements that are not questions or answers to the previously posed questions
are filtered out and need to be interpreted.

• Such filtered-out statements can either be transformed into new questions or are
considered to be no longer relevant and are excluded from further
considerations.

2.5. Reflections

47

In the next section we describe how questions can be analyzed and how eight different
forms of answers to the same questions can be given.

Table 5. Knowledge transitions caused by the question and answer mechanism

Design activity Knowledge updates

Asking a new question Adding ci, aj , ci.aj

Answering a question Assigning vij or adding a functional dependency f to
obtain this value

Revising a previous question Removing, changing ci, aj,, vij

Revising a previous answer Varying vij

2.5.2 Categories of questions

We identified an orthogonal structure for the four knowledge spaces. Asking and
answering questions mechanism produces new knowledge. Therefore it is logical to
distinguish four categories of questions, which correspond to this structure. Earlier in
the chapter we considered two knowledge dimensions: a1=.Dependency, and
a2=.Subjectivity. In order to distinguish between questions that can and cannot be
answered, we now introduce a new orthogonal dimension a3=.Answer availability, such
that Ra3={available, unavailable}. Given these three orthogonal dimensions, we obtain
a structure with eight segments, where each segment corresponds to a category of
questions. By interpreting the corresponding tuple of values of every category and
assigning a name to it, we end up with the structure shown in Table 6.

Table 6. Eight ways of answering questions in design

Answer availability
Variable
category

Available Unavailable

Independent

Design

1) Guessing
Give a provisional answer

(making an educated guess)

2) Deciding
 Give a (possibly multi-
valued) answer, which
combines alternative
answers to a question

Subjective

Dependent

Objective 3) Parametrizing
Composing a functional
dependency taking into

account preferences of the
stakeholders

4) Asking
 Composing an

interpretational dependency

Independent

Contextual

5) Defining
Give a definitive, full and

complete answer

6) Searching
 Searching for an answer O

bjective

Dependent

Auxiliary 7) Modeling
Composing a functional

dependency

8) Postponing
Composing a functional

dependency which will be
evaluated later

Chapter 2.An operational model of the design process

48

We still do not know whether there is a fourth or fifth orthogonal dimension. For these
three dimensions we already needed to conduct a brainstorming session in order to
translate the tuples of values into meaningful names describing the various forms of
answers. For some categories it was fairly easy, such as (dependent, objective,
available)=modeling, (independent, subjective, unavailable)=deciding, (independent,
objective, available)= defining. For some tuples we initially had vague ideas of what
they could mean, e.g. (independent, subjective, available)=guessing, (dependent,
subjective, unavailable)= asking. The addition of a new orthogonal attribute, even if it
only had two values in the range, would require an another eight forms of answers. In
our opinion, it is not likely that we could define so many additional forms. We
therefore consider this orthogonal structure to be complete, and we present it as one of
our results.

We think that there are two applications of this orthogonal structure:

• Designers and in particular student designers, can use this structure to master the
interpretation of questions and to develop an awareness of the various forms of
giving answers and to improve clarity of the reflections. We demonstrate this
application as an example in the next section.

• Developers of operational support tools for the early design phase can consider
the eight forms of answering questions as a list of functional requirements for
support tools. Characteristics of these requirements are that they are a) complete
and b) formally expressed in terms of our formalism; this makes it
straightforward to translate the requirements into a specification. In section 3.2.1
we will follow this guideline and introduce a set of functional requirements for a
support tool.

2.5.3 Example

This section demonstrates an example to each of the possible ways of answering
questions. Consider the design process of a chair and the question, “What material
should the chair be made of?” Formalization of this question results in a new concept
c1=Chair, and a new attribute a1=.Material. Let us assume that R1={plastic, steel,
wood}19. Our purpose is to explain how the question (variable) Chair.Material can be
interpreted, and to assign a value v11 in eight different ways.

1) Guessing. The answer to the question is subjective, i.e. the designer has the
freedom to decide what the answer should be. The answer is given in a definitive
way, for one of two possible reasons: a) the available alternative answers are not
applicable or b) alternative answers are not considered. It is because of b) that
we call this category Guessing. For instance, the designer guesses that the
material should be wood. If alternative answers are considered, then this
question falls into the next category – deciding,

2) Deciding. This is similar to the previous category, but here the designer has
several alternative answers (or no known answers at all). The designer therefore
needs to consider (produce) alternative answers to the question, which is in fact
a design decision. For instance, the material can be wood, plastic or steel. The
set of possible alternatives can be obtained directly from the range of the

19 The set of questions about the possible material follows automatically from considerations of the range.

2.5. Reflections

49

corresponding attribute. We can more clearly see why it is useful to explicitly
identify attributes.

3) Parametrizing. The question addresses an objective variable and the answer
therefore depends on the personal preferences of the stakeholder. If the
preferences are well defined, a functional dependency could be used to compute
an answer. If there is no such dependency, the preferences of the stakeholder
with respect to the possible outcomes need to be acquired. We will refer to
values that express the stakeholder’s personal preferences as ‘parameters’. In
this example, the question about the material requires the stakeholder to order
the possible materials according to his or her personal preference, e.g. (wood,
steel, plastic); in this case a wooden chair is better for the stakeholder than a
steel chair. Note that the stakeholder’s preferences can be conditional and can
depend on some other values of the chair, in which case the question falls into
the next category.

4) Asking. The stakeholder’s preferences may depend on other values of the
product. Suppose that the stakeholder’s opinion about the material depends on a
few values. It would be efficient to only ask the stakeholder about those values.
For example, if the stakeholder’s preference depends on the location of the chair,
the designer might ask the stakeholder, “Would you like a wooden chair in the
garden? And in the office? ” In this case the values for the variable place of the
chair are taken from the range of the attribute .Place, i.e. Rplace={garden,
office},

5) Defining. The question addresses knowledge that we assume to be fixed, i.e.
contextual knowledge. A definite answer can therefore be given. For example, a
stakeholder has expressed the requirement to have a wooden chair.

6) Searching. This is similar to the previous category, but the answer is unknown
or is missing from the documentation. The designer needs to search for the
answer, to ask follow up questions, etc. For instance, the designer can ask a
manufacturer what material the chair should be made of.

7) Modeling. The question is related to an intermediate knowledge, i.e. the
material itself is not important. For instance, the designer considers the material
to be only an indirect means of obtaining an objective value. The designer
considers the question to be related to some existing knowledge, for instance to
the usage of the chair. The material should be wood if the chair is used inside
and the material should be plastic if the chair is used outside. The available
answer represents a known functional dependency, which produces a value.

8) Postponing. This is similar to the previous category, but the answer cannot be
obtained due to incomplete knowledge. In this case the designer expresses a
function dependency which does not deliver a value immediately. In the future
when the product model is complete, the expressed dependency will produce a
value. For example, if Chair.Place=garden then Chair.Material=plastic, if
Chair.Place=office then Chair.Material=wooden. We assume that the Chair.Place
is unknown.

Chapter 2.An operational model of the design process

50

2.6 Computational operations

In the previous section we considered state-transitions due to operations performed by
the designers. The topic of this section is state-transitions due to computational
operations.

2.6.1 Introduction

Besides helping designers to gain a clearer way of thinking and communicating, the
major benefit of formalising the product is the computational usage of formally defined
knowledge about the product. The ability to automate meaningful operations with the
product cannot be overestimated in the early design phase. It is generally agreed that it
is much easier to produce and evaluate solutions if the alternatives are known. We
therefore aim to enable modern computing technologies combined with artificial
intelligence techniques20 and numerical computational techniques in the early design
phase; these are techniques which typically become available in the detailed design
phase.

Operations with knowledge belong to the domain of a branch of mathematics known as
‘operations research’. The goals of operations with knowledge within this domain can
be of two kinds, i.e. a ‘direct goal’ or an ‘inverse goal’. 21 The direct goal is related to
the development of the product model. This is the topic of ‘mathematical modeling’,
which focuses on the development of mathematical models to obtain output
characteristics of the product from the input characteristics of the product. In section 2.4
we described how our formalism supports the development of the product model. This
section focuses on the inverse goal.

The inverse goal is the topic of ‘mathematical programming’, which aims to optimize
the output characteristics of the product model by varying values of the product’s
independent variables. The word ‘programming’ here means planning rather than
implementation of computer support tools. In section 2.6.2 we define the problem of
mathematical programming in terms of our formalism. In section 2.7 we introduce a
genetic algorithm (GA) to deal with the mathematical programming problems.

2.6.2 Mathematical programming problems

We have defined product knowledge as consisting of sets A and C; we have also defined
the spaces VD, VC, VO, and VA, which are related by the product model F. The classical
formulation of the mathematical programming problem (the inverse goal) is similar to
the formulation of the product model (the direct goal) (D. 34), with the exception of the
following differences (see Figure 17):

• optimal output values vo=(v1
o,…vh

o) need to be obtained

• vd=(v1
d,…vn

d) are varied by an algorithmic procedure

20 One of the definitions of Artificial Intelligence is “the ability of machines to do things that require
intelligence”.
21 In the literature, an inverse goal is also called an inverse problem or optimization problem. There are
several kinds of inverse problems in mathematics. See Denn [1969] for some examples.

2.6. Computational operations

51

• a set of m-constraint functions is given: g1(v),…,gm(v)22

v1
d

v2
d

vn
d

v1
c v2

c vm
c

v1
a

v2
a

vk
a

v1
o

v2
o

vh
o

f1(v)

f2(v)

fh(v)

Varied by an
algorithm

g1(v) gm(v)Constraints

Objectives

Objective
values

Contextual values

Auxiliary values

Decision
values

v1
d

v2
d

vn
d

v1
c v2

c vm
c

v1
a

v2
a

vk
a

v1
o

v2
o

vh
o

f1(v)

f2(v)

fh(v)

Varied by an
algorithm

g1(v) gm(v)Constraints

Objectives

Objective
values

Contextual values

Auxiliary values

Decision
values

Figure 17. General formulation of the mathematical programming problem

We extend the classical definition in the following way to provide additional flexibility:

• vd can be manually varied (or fixed) by the designers

• vo can be constrained, so that every f can have the left constraint lf and the right
constraint rf, which determine the range of acceptable outcomes. lf and rf are
subjectively defined by the participants and can be further adjusted during the
decision making.

The adjustment of the constraints on objectives enables convergence to a single optimal
solution. We have therefore defined a method of tightening constraints, which is based
on this mechanism of adjustment and which compensate disadvantages caused by the
classical decision-making methods, which were described in section 2.7.2.

Historically there is a different terminology for describing problems in mathematical
programming. We will therefore reformulate the conventionally used terms using the
ingredients from our model.

D. 39 (Operation) An Operation is an action directed towards the optimization of vd with
respect to the set of h objectives.

R.6 Note that si may include decision values of several concepts. Due to algorithmic
variation, decision values related to hierarchical attributes may affect the signature
of concepts, and therefore the signature of si. We therefore need to deal with the
extended signature of the set of concepts (see D. 25 in section 2.3.3).

D. 40 (Variation) Variation is an operation that leads to a different tuple of values vd,
which can be varied within the range of the corresponding attributes.

D. 41 (Solution) a solution si is a concept such that si
d=vd.

22 Constraint functions limit the range of acceptable solutions. The maximum or minimum values are not
required for the constraint functions.

Chapter 2.An operational model of the design process

52

D. 42 (Solution element) A decision variable <si.aj,decide> of a solution will be called a
‘solution element’.

D. 43 (Inactive solution element) A solution element si.aj is inactive iff aj∈ϕ’(si)/ϕ(si), than
si.aj=not_apply, where not_apply∈ R’j.

R.7 (Evaluation of inactive elements) The evaluation of the product model can take
different paths because of the variation. Using not_apply allows us to skip the
evaluation of inactive elements.

D. 44 (Number of solutions) By the systematic variation of values vd, the total number of
solutions that can be generated by n-decision variables is equal to R’1xR’2x…R’n,
where R’1… R’n are the extended ranges of the attributes related to vn

d.

D. 45 (Optimization) Optimization can mean finding si
d that produce a maximum of F with

respect to all considered solutions, where decision values v1
d…vn

d are to be varied:

 max F(v),
subject to g(v)>0.

D. 46 (Set of optimal solutions) Solutions that were found by means of optimization.

D. 47 (Problem of mathematical programming) The problem of mathematical programming
is to find the set of optimal solutions.

If dim(F) =1 and F is a linear function, then the principle of linear programming [Denn
1969] can be applied; this offers well-developed procedures and computer programs.
There are no general ways to solve problems of non-linear programming. In each
specific case, the approach depends on F and the constraint functions. In the general
case, when dim(F)>1, we do not know what max means. We postpone the definition of
max until section 2.7.2.

Evolutionary algorithms have recently become established [Back, 1997] as an
alternative to the classical methods of dealing with multiple objectives. These
algorithms allow us i) to handle more complex problems and ii) to generate multiple
alternative solutions in a single optimization run. They can also be implemented in a
way that avoids some problems related to the classical methods.

2.7 Genetic-based optimization: SPEA

The term genetic algorithm (GA) stands for a class of optimization methods that
simulate the process of natural evolution. In genetic algorithms, natural selection is
simulated by a stochastic selection process. Selection represents the competition for
resources among living beings; some are better than others and more likely to survive
and to reproduce their genetic information. Each solution is given a chance to
reproduce, depending on its quality. Quality is assessed by evaluating the individuals
and assigning them scalar fitness values. The other principle, variation, imitates the
natural capability of creating “new” living beings by recombination and mutation.

In general, any GA is characterized by three properties:

1. A set of solution candidates is maintained.

2. It undergoes a selection process.

3. It is manipulated by genetic operators, usually in the form of
recombination and mutation.

2.7. Genetic-based optimization: SPEA

53

Analogous to natural evolution, the solution candidates are called ‘individuals’ and the
set of solution candidates is called the ‘population’. Each individual represents a
possible solution, i.e. a vector of decision values, to the problem at hand. The set of all
possible vectors constitutes the decision space VD.

In the course of this PhD project we have looked at several genetic algorithms to enable
the generation and evaluation of solutions in a support tool. We have chosen SPEA
[Zitzler, 1999] since it is a well-documented and tested algorithm. SPEA is an acronym
for Strength Pareto Evolutionary Algorithm. SPEA is a genetic algorithm, in which the
selection process is based on the Pareto principle of optimality, as described in section
2.7.1. SPEA was one of the first algorithms that was extensively compared to several
existing evolution-based methods. Due to its good performance, it has been used as a
reference point by various researchers.

The design of any evolutionary algorithm strives to attain two objectives: a) the distance
of the resulting set of solutions to the Pareto set is to be minimized and b) the achieved
Pareto set should be as diverse as possible. The important decisions that underlie any
GA are therefore: a) the choice of a fitness function (described in section 2.7.2), b) the
choice of a diversification strategy (described in section 2.7.3) and c) the choice of an
elitism strategy, i.e., different ways to prevent non-dominated solutions from being lost
(described in section 2.7.5). The SPEA algorithm was implemented in the context of a
developed software tool. We therefore present the steps of this algorithm with minor
editing in Appendix A.

2.7.1 Pareto optimality

The consequence of multiple competing objectives is that there is usually no single
optimal solution, but rather a set of partially-ordered solutions. The Pareto principle
allows a reduction in the number of solutions that have to be considered (decided).

D. 48 (Dominated solution) According to the Pareto principle, solutions that are worse with
respect to all the objectives should not be considered. Such solutions are called
dominated solutions.

D. 49 (Pareto Optimal solutions) Solutions that are non-dominated are called Pareto
optimal. The set of optimal solutions forms the Pareto set Ps, as shown in Figure 18.
The Pareto set is also called the Pareto front.

VO

f1
Dominated
solution

Dominated
solution

Pareto-set
of optimal
solutions

Pareto-set
of optimal
solutions

f2

VO

f1
Dominated
solution

Dominated
solution

Pareto-set
of optimal
solutions

Pareto-set
of optimal
solutions

f2

Figure 18. Definition of the Pareto set of optimal solutions

The selection of solutions based on the concept of Pareto optimality is only the first step
in solving a multi-objective optimization problem. A decision making process is
necessary to further converge to a single solution. We assume here that there are no

Chapter 2.An operational model of the design process

54

analytical means to prefer one Pareto optimal solution over another. Further selection is
therefore preference based, i.e. some objectives are considered to make a bigger
contribution to the success of the product than others. Here we assume that multi-
objective optimization takes place before the decision-making, and therefore simplifies
the task by reducing the number of solutions that have to be considered.

2.7.2 Fitness assignment

Here we will present some classical approaches of defining max F(v). Classical
approaches, such as the weighting method or the constraint method, transform a multi-
objective problem into a single objective problem. According to the weighting method,
each function fi:fi∈F is assigned a scalar weight wi. The weights are used to compose
the linear objective function y that is going to be maximized.

D. 50 (Weighting method)

 maximize y=w1 ⋅f1(v)+ w2 ⋅f2(v)+…+ wh ⋅fh(v),
 subject to g(v)>0.
Besides some computational disadvantages, this method requires the designer to
prioritize objectives using the weights w1, w2… wh. The weights need to be guessed and
the results therefore require additional analysis. According to the constraint method, h-1
objectives are transformed into constraints. The remaining objective, which can be
chosen arbitrarily, is the resulting objective function that is going to be maximized.

D. 51 (Constraints method)

 maximize y= fh(v),
 subject to ei= fi(v)≥εi

 g(v)>0.

The lower bounds, εi , are the parameters that are varied in order to find multiple Pareto-
optimal solutions. If the lower bounds are not chosen appropriately, there can be no
solution to the corresponding problem. In order to avoid this situation, a suitable range
of values for the ei has to be known beforehand. We may therefore require problem
knowledge that is not available.

The max F(v) is defined in the context of GA using the notion of a fitness function; this
allows solutions to be compared against each other in the presence of multiple
objectives. A fitness function therefore enables the solutions to be ordered, and has to be
either minimized or maximized, depending on a specific GA.

In the selection process, which can be either stochastic or completely deterministic, low-
quality individuals are removed from the population, while high quality individuals are
reproduced. The goal is to focus the search on particular portions of the decision space,
and to increase the average quality within the population. The quality of an individual
with respect to the set of objectives is represented by a scalar value, the so-called
fitness, which is produced by the ‘fitness function’.

The fitness function in SPEA explores the idea of calculating a fitness of solutions on
the basis of a Pareto set [Zitzler, 2002]. What is remarkable here is the fact that fitness
is related to the whole population, while in other Pareto-based techniques an
individual’s raw fitness value is calculated independently of other individuals. SPEA
uses two sets to compute fitness. The set Pt, is the set of considered solutions at the step
t, which has N solutions. Pt is the externally-stored set of Pareto optimal solutions at

2.7. Genetic-based optimization: SPEA

55

step t. For every non-dominated solution si:si∈ Pt, the strength sti is computed, i.e. the
number of solutions that si dominates in the set Pt. The fitness of si is calculated as sti/N.
The fitness of a dominated solution sj:sj∈Pt is computed as 1+SUM(sti) for such si that
dominate sj. Consider the example of fitness assignment in Figure 19.

f1

2/3

2/3

1/3

6/3 7/3
5/3

VOf2

f1

2/3

2/3

1/3

6/3 7/3
5/3

VOf2

Figure 19. Fitness calculation based on the SPEA algorithm

Note that the fitness value of a dominated solution increases if it is dominated by more
Pareto optimal solutions. The fitness function is therefore minimized, i.e. dominated
solutions with smaller fitness values are preferred. This mechanism intuitively reflects
the idea of preferring individuals near the Pareto-optimal front and simultaneously
distributing them along the trade-off surface. The calculation of the fitness of dominated
solutions as 1+SUM(sti) ensures that dominated solutions always have a fitness greater
than Pareto optimal solutions.

2.7.3 Diversification strategy

The diversification of the population is provided by genetic operators, i.e. by
recombination and mutation. These operators are applied to individuals in the
population according to some probabilities that are parameters of the genetic algorithm.
The application of these operators can lead to a fast convergence of a GA to some
solution region. Genetic algorithms might therefore provide an additional means of
improving the diversity of the resulting solutions.

D. 52 (Mutation) Mutation is called an operation which randomly varies a single decision
value of an individual. Mutations are identical to the random variations of values.
Consider an individual si, such that si.aj+3=vij+3=r, where Rj+3={a,b,c,…,z}. The value
vij+3 is randomly mutated to another value from the attribute range, for instance to
d, as shown in Figure 20 a).

The result of a mutation is the same individual but with a changed value. The mutation
operation allows a single solution to be varied. However, the chance of a successful
mutation is low. The mutation operation is usually applied with a low probability.

D. 53 (Recombination) The operation of recombination operates with two individuals
instead of one. Parts of individuals are randomly picked up and a new individual is
created by combining the parts, as shown in Figure 20 b).

Chapter 2.An operational model of the design process

56

u 8

u 8

a 5 3 4

a 5 3 7

si

vij vij+1 vij+2 vij+3 vij+4 vij+5

si

5 1a r 0 0 0 7h 1 0 e

0 7a r 0 e

a) Mutation b) Recombination

s1 s2

s3

u 8

u 8

a 5 3 4

a 5 3 7

si

vij vij+1 vij+2 vij+3 vij+4 vij+5

si

5 1a r 0 0 0 7h 1 0 e

0 7a r 0 e

a) Mutation b) Recombination

s1 s2

s3

Figure 20. The mutation operation

The chance of creating a successful individual by recombination is considered to be
higher than that by mutation, for the following reasons:

• more values of a solution are varied at the same time, and the chance is therefore
greater that a new individual will escape a dominated region in the objective
space

• the operation is not completely random because only the successful individuals
are allowed to be recombined.

2.7.4 Density preservation

SPEA tries to maintain diversity in the current approximation of the Pareto set by
incorporating density information into the selection process: an individual’s chance of
being selected is decreased if the density of individuals in its neighborhood is high. This
issue is closely related to the estimation of probability density functions in statistics.

Nearest neighbor techniques [Silverman, 1986] take the distance of a given point to its
kth nearest neighbor into account in order to estimate the density in its neighborhood.
The estimator is usually a function of the inverse of this distance. SPEA [Zitzler, 2002]
calculates the distance value of each individual to the kth nearest individual and adds
this value to the raw fitness value (fitness is to be minimized). The distance between
individuals is calculated with respect to the objective space.

2.7.5 Elitism strategy

Random effects (genetic operations, selection) can result in good solutions (solutions
with a good fitness value) being lost from the population during the optimization
process. A common way to deal with this problem is to maintain a secondary
population, the so-called archive, to which non-dominated solutions in the population
are copied from each generation. In SPEA the archive is integrated into the selection
process by including archive members in the calculation of the fitness.

The size of the archive is usually restricted due to memory and run-time limitations.
Criteria therefore have to be defined which would allow the size of the archive to be
reduced (so-called pruning). The dominance criterion is most commonly used, i.e.
dominated archive members are removed and the archive comprises only the current
approximation of the Pareto set; density information (less crowded regions are preferred

2.7. Genetic-based optimization: SPEA

57

to crowded regions) [Knowles 1999] and the time that has passed since the individual
entered the archive [Rudolph 2000] can also be used (old individuals are preferred to
new ones).

CHAPTER 3. ACCEL

“Almost everything follows in a natural way from a well-designed
modeling language” [Hurlimann, 1999].

3.1 Introduction

The designers can use our model when thinking about the design and when putting their
thoughts down on paper. The model helps them to identify meaningful product
knowledge and transform it into the product model. In the early stages of the project we
practiced the model using standard tools such as Microsoft Excel. We found that the
most crucial ingredients of the model, i.e. design decisions, multiple objectives and
knowledge categories, were not well supported. From the moment that we introduced
operations involving the generation of solutions and optimization, a support tool became
essential; these operations are too tedious for the designers to carry out, and are not
supported by standard tools. We therefore decided to support these operations using a
software tool. In this chapter we will mainly be concerned with the development process
of the support tool and with a demonstration of its basic functionality. Examples of
more advanced usage, such as the evaluation and methodology of designing with a tool,
are covered in the next chapter.

We knew early on that we did not want to design a support tool packed with built-in
features; from the literature we already had evidence that this type of tool does not
guarantee usefulness. Instead, we wanted to design a tool that was as empty as possible
while still being able to deliver useful operations supporting concepts generation. In this
respect the developed tool is more an environment than a tool capable of direct support
of decision-making. We needed to resist the temptation to provide structures for
products, checklists, and all sorts of recommendations on how the design process should
be done. In this way we made existing approaches compatible with our approach.

We developed a support tool according to our model of the design process, as presented
in the previous chapter. The name of the tool is derived from the names of the basic
ingredients of the model, i.e. Attributes Concepts Constraints23 Evaluation Language
(ACCEL). We use the term ‘user’ to refer to a person who operates ACCEL. This could
be a designer, a stakeholder, an expert, etc. ACCEL provides the user with the following
functionality:

• a graphical user interface for viewing and updating product knowledge
according to our operational model

• a syntax for expressing knowledge

23 In the early stages of the project values were called ‘constraints’. The name ‘ACCEL’ was created at
that time, and has not been changed for compatibility reasons.

Chapter 3.ACCEL

60

• evaluation of knowledge

• multi-objective optimization based on the described genetic algorithm

• a sensitivity analysis and more.

The development of a software tool for the early design phase is similar to the design
situations that we considered in the introduction: many crucial decisions have to be
taken on the way, there are many competing objectives and the design problem is ill-
defined. There are many different ways of handling this complexity. Programming
languages, software development methods and principles, high-level modeling
languages and software tools to aid the development process, are all considered to be
elements of the solution. However, none of the available methods and tools provide a
ready-made solution. The developed operational model does not provide the solution
either. The model allows us to derive what a support tool should do, but not how it
should do it.

3.1.1 The tool structure

If we adhere to design principles, the tool should maintain a clean separation between
the data model and the user interface. Software tools must provide facilities to allow the
exploration and modification of data via a ‘graphical user interface’ (GUI). The tool
needs to deal with the task of maintaining the data consistency between the data model
and the GUI. It can be difficult to integrate the GUI with the data model to create a
complete tool application, while at the same time keeping a clear distinction between
the two. These are the considerations that we took into account when taking decisions
about the structure of ACCEL. All the data is aggregated in the document object. The
document object interacts with the GUI for two reasons: to show the data to the user and
to update the data. Additional functionality is necessary for data management, for
instance the parsing of the user input, the interpretation of the user actions etc. Such
auxiliary functionality is delegated to the ‘application manager’. The structure of
ACCEL is shown in Figure 21.

ACCELACCEL

GUIGUIDocumentDocument Application
Manager
Application
Manager

FrameFrameViewViewConceptsConcepts ParserParser FactoryFactoryAttributesAttributes

ValuesValues

ACCELACCEL

GUIGUIDocumentDocument Application
Manager
Application
Manager

FrameFrameViewViewConceptsConcepts ParserParser FactoryFactoryAttributesAttributes

ValuesValues

Figure 21. The structure of ACCEL

3.1. Introduction

61

Our approach to design of a software tool (which we will call the ‘development’
process) is based on a mixture of the top-down and bottom-up approaches, both of
which are common software development practices. Gilb [1988] refers to the top-down
approach as an ‘evolutionary delivery’. This approach introduces major software
development principles and helps the designer to avoid serious mistakes in software
development projects. We present this approach in section 3.1.2. The bottom-up
approach is based on ‘Object-Oriented Design’ (OOD). OOD enable the flexible
management of software complexity, which results in extendable and maintainable
software architectures. We present this approach in section 3.1.3. The remainder of this
chapter is outlined in section 3.1.4.

3.1.2 Top-down approach

The essence of evolutionary delivery is to produce software systems in small useful
steps as opposed to revolutionary delivery, where the whole system is delivered at the
end of a project. The evolutionary approach prescribes several basic principles, which
are regarded as a set of initial guidelines in software engineering management. The
following definitions are given by Gilb [1988]:

D. 54 “(The invisible target principle) All critical system attributes must be specified
clearly. Invisible targets are usually hard to hit (except by chance).”

We used this principle to approach the formal definition of functional requirements and
to define the set of initial objectives.

D. 55 “(The all-the-holes-in-the-boat principle) Your design solutions must satisfy all
critical attributes simultaneously.”

We aim to evaluate a solution with respect to all objectives, as described in the
concluding chapter.

D. 56 “(The learn-before-your-budget-is-used-up principle) Never attempt to deliver large,
complex systems all at once; try to deliver them in many smaller increments, so that
you can discover the problems and correct them early on.”

The developed tool was delivered in several phases; in each phase the functionality of
the tool was extended with what we considered to be the most valuable functions.

D. 57 “The keep-pinching-yourself-to-see-if-you-are-dreaming principle) Don’t believe
blindly in any one method; use your methods and common sense to measure the
reality against your needs.”

We derived functional requirements for a tool using formal reasoning. We built a tool
from scratch; only the basic graphical components were reused.

We need to clarify the term ‘critical attribute’. Gilb gives the following definition:
D. 58 “(Critical attribute) A critical attribute is one which, if it got out of control, would

threaten the viability of the whole solution.”

3.1.3 Bottom-up approach

Object orientation does not only provide the means to develop software. The same
principles can be used to design software using modeling languages, which are based on
the object-oriented approach to design (OOD approach). The structure of the software

Chapter 3.ACCEL

62

systems can become very complex and barely manageable. There are two major
approaches to manage the complexity: a) system decomposition in terms of algorithms
(functional elements of systems) and b) system decomposition in terms of objects that
interact with each other; the choice of a) or b) is a matter of personal preference. The
same system can be structured using either approach (but not both at the same time).
The advantage of b) is that systems designed using the OOD approach are more flexible
and easier to evolve and update over time. Before we look into the application of an
OOD approach to design of our tool, we first need to introduce the basic OOD
terminology. The following definitions summarize several of the standard texts such as
Booch [1993], Booch [1998] and Gamma [1995].

D. 59 (Class) A ‘class’ is a model of a group of similar objects (real or imaginary) that
describes ‘properties’ and ‘methods’ that determine the behavior of the objects.
We will use the following font to denote classes: class A.

D. 60 (Encapsulation) Encapsulation is known as aggregation in a class of properties, which
are called data members, and methods, which provide operations with data members
and provide secured access to them from other classes.

D. 61 (Types of methods) Different types of methods provide the security. Methods
(properties) of a class can be ‘public’ (accessible by any other classes), ‘protected’
(accessible by the class itself, inherited classes or specially designated classes called
‘friend’ classes), or private (accessible by the class itself and friend’s classes).

D. 62 (Object) An object is an instance of a class.

We will underline the names of objects using the following font: object A.
D. 63 (Abstract class) A class is abstract if it is used to provide a common interface for the

inherited classes via public data and public methods. New objects cannot be
instantiated from the abstract classes.

Various relations can hold between different classes of objects, such as an ‘association’,
‘aggregation’, ‘usage’, etc.

D. 64 (“Is-a” relation) A class A “is-a” class B if A is based on the model of B, i.e.
properties and methods of B are meaningful for A and can be used by A. Class B is
then called a parent class and class A is called a child class. In OOD, the “is-a”
relation is denoted by an outgoing arrow from A to B.

Note that the above definition does not prohibit a class A from having different
properties or methods from a class B. In fact, for some methods, for example with name
P in class A, method P might have a different behavior in class B.

D. 65 (Polymorphism) Polymorphism refers to a variety of different behaviors inherited
from other classes, but represented by the same method name.

Polymorphism is a complementary concept, which makes the “is-a” relation more
practical. It enables the responsibility for executing the right method to be delegated to
objects while executing the program. This is not trivial when dealing with objects of
under-defined classes, i.e. the parent class of an object is known but the specific class of
the object in unknown.

Another relationship between the classes that we will use is called aggregation.
Aggregation is identical to the “part-of” relation between classes. When a class A is
aggregated in a class B, it means that class B is a data member of class A.

D. 66 (Aggregation) A class A is “part-of” a class B if all data and methods that are
encapsulated in A are encapsulated in B. We will denote the Part-of relation using an

3.2. Requirements analysis

63

arrow that goes from the container class to the contained class and contains a
diamond at the container class.

In summary, we can say that encapsulation, inheritance and aggregation are considered
to be the three major principles of the OOD approach to design and implementation.

3.1.4 Outline

We continue this chapter with the definition of functional and software requirements,
which are described in section 3.2. In section 3.3 we present the data model, which is
included in the ACCEL document. Section 3.4 describes the approach taken to interpret
the user input and the evaluation of knowledge. In section 3.5 we describe the support
of some specific forms of giving answers, such as asking, postponing and deciding. The
major decisions underlying the graphical user interface are presented in section 3.6.
Here we will provide short examples of ACCEL usage in order to give the reader an
initial appreciation of the tool’s functionality. More detailed examples are given in the
next chapter, which describes several case-studies. In section 3.7 we present the most
advanced operation that can be done using ACCEL. This section describes how a
designer can optimize solutions in the early design phase. We present an optimization
dialog (which gives the user control of the optimization problem), we present our
method of decision making, and we provide an example.

3.2 Requirements analysis

This section presents a major link between the intuition of the designers and the
operations that are formally defined and supported by ACCEL.

3.2.1 Functional requirements

The definition of the functional requirements of a software tool is the starting point for
the development process. The success of the tool depends heavily on the completeness
and accuracy of the requirements list. The operational model in chapter 2 provided a
formal mechanism to distinguish eight categories of questions. We defined how to give
answers for each category. In this section we translate these results into basic functional
requirements, and give a reference to the section that describes how the requirement is
addressed in the tool. We ensure the completeness of the list by considering three
orthogonal dimensions, i.e. objectivity, dependency and the availability of the answer.
The accuracy of the requirements is provided by the formal nature of the model. The
functional requirements are shown in Table 7. We define these requirements as general
requirements for the operational support of product knowledge.

It is critical for the tool that these functional requirements are satisfied. There are other
functional requirements, which were initially considered to be secondary, such as the
GUI functionality, feedback to the user etc.

Chapter 3.ACCEL

64

Table 7. Basic design activities and the corresponding functional requirements

Design activity Resulting functional requirements Reference

Asking questions Addition of concept, attributes and
variables i.e. ci, aj , ci.aj

3.6.1

Categorizing a question Applying a category for a variable 3.6.1,
3.6.2

Guessing: Give a provisional
answer (making an educated

guess)

Adding a value 3.6.1

Deciding: Give a multi-valued
answer, which combines
alternative answers to a

question

Giving a multi-valued answer 3.5.1

Modeling: Answer is given as a
functional dependency

Adding a functional dependency 3.6.1

Postponing: Postpone giving
the answer

Adding undefined variable 3.5.3

Defining: Give a definitive, full
and complete answer

Adding a value 3.6.1

Searching. Searching for an
answer

Adding a functional dependency
that refers to an external tool

Not
supported

Parametrizing: Composing a
functional expression that takes

into account personal
preferences of the stakeholder

Adding a functional dependency
and values that express personal
preferences of the stakeholder

3.5.3

Asking: Compose and delegate
a question to the stakeholder

Adding a functional dependency
that composes questions and
interface with the user in order to
benefit from interpretive abilities of
the user at all necessary moments

3.5.2,3.6.3

3.2.2 Additional functional requirements

The set of additional requirements follows from the set of functional requirements and
the definition of the model from chapter 2. The additional functional requirements are
to:

• formally distinguish between four categories of variables (see sections 3.6.1 and
3.6.2)

• automate the optimization (generation and evaluation) of solutions (see section
3.7)

3.2. Requirements analysis

65

• support the four types of attributes, namely Nominal, Ordinal, Interval and Ratio
(see section 3.6.2)

• provide syntax for encoding functional dependencies (see section 3.3.1)

• provide a syntactical mechanism for the evaluation of functional dependencies
(section 3.4)

• enable error checking and feedback (see sections 3.4.4 and 3.6.5)

• provide a user interface for all functional requirements (see section 3.6)

• provide support in the form of a help system (see provided installation of
ACCEL)

• automate sensitivity analysis (see section 3.6.4).

3.2.3 The choice of C++

The choice of the programming language and the development environment are
fundamental to any software tool. In this project, the choice of the development
software was determined by the OOD approach and the high demands for the
computational efficiency. We therefore decided to implement the tool using Visual
C++. Our choice was influenced by the following factors:

• Popularity. Visual C++ is popular and well supported. Most developers can
understand this language. There is a powerful development environment that
supports the C++ language, namely Microsoft Developer Studio 6. C++ is well
documented; there are multiple libraries and controls that are capable of
accelerating the development process.

• Computational efficiency. C++ is an extremely efficient language; the
produced programs are computationally faster than programs written in Visual
Basic or Java.

• Familiarity. We are familiar with C++.

3.2.4 Context and constraints

When developing a software tool a number of contextual values have to be made
explicit. One of the values we considered was that the stakeholder (i.e. TU/e) uses one
of latest versions of Microsoft Windows (version Windows 2000 and later) as its
operating system. A constraint was that a total time of four years was available to
develop the tool. The first year was spent developing the model and the defining the
functional requirements. The last year was spent testing the tool and writing this thesis.
Therefore, the actual development time was less than two years. In this period several
working prototypes of the tool were delivered. We decided to have the first working
prototype ready within the first six months.

Chapter 3.ACCEL

66

3.3 ACCEL document: Object oriented data model

We developed the data model by considering types of data, syntax and the basic
operations that would be performed with the data.

3.3.1 Syntax

We will refer to anything that the user inputs into the tool as ‘an expression’.
D. 67 (Syntactical form of an expression) This is the form of an expression as the user

inputs it into ACCEL. We will denote such an expression by pointy brackets, i.e.
<expression>.

According to the functional requirements, an expression may consist of a mixture of the
following elements: ci, aj, vij,, ci.aj. The tool’s syntax enables the analysis and translation
of the expressions typed in by the user into the tool. Thus, using the syntax of ACCEL
transforms expression→<expression>.

The syntax should be familiar and natural to the user, while at the same time being
formal and straightforward to translate into an efficient representation. A natural
language such as English is an extreme example of user friendliness, but it would be
extremely difficult to formally translate expressions written in English. An opposite but
extreme example is machine code, which enables us to represent knowledge in
automatically processable terms, but which is extremely unnatural for non-experts and
is time consuming to learn.

We therefore based the syntax on the notion of a function. We assume that the user is
familiar with the general syntax of functions and otherwise this skill can be learned
from section 2.4. Given these assumptions, we treat any expression as a ‘functional
expression’. The resulting syntax is shown in Table 8.

Table 8. The syntax of ACCEL

expression::=function

function::=<fname>(<arguments>)

arguments::=<argument>;<arguments>

argument::=function | reference | concept | value | operator

fname::= IFE | ALT | ASKUSER | IS, …. /* for a complete set of functions see
Appendix B*/

concept::= an element from the set of concepts C

attribute::= an element from the set of attributes A.

reference::=concept[.attribute]∗ 24

operator::=argument <oname> arguments.

oname::= + | - | / | ^ , … /* for a complete set of operators see Appendix B*/

value::= one of the basic types of values.

24 Here, [P] ∗ means one or more instances of P. a[b] ∗ →ab, abb, abbb,…

3.3. ACCEL document: Object oriented data model

67

3.3.2 Everything is a function

We use the inheritance principle to derive a software representation for the defined
syntax. Every syntactically distinguished term is a class, which is inherited from the
class function. Therefore, any user input is treated as a function, i.e. every chunk of
knowledge is represented as a function in ACCEL. The purpose of the class function
is to define a common interface for all inherited classes, such that the variety of
functions can be managed in a uniform way. The class function is an abstract class,
which determines the following common interface:

• an array of arguments

• a set of public methods to access and modify the arguments

• polymorphic methods to enable error checking,

• a method Evaluate(), which is specific for every function and is therefore
polymorphic

• a number of polymorphic methods to get the result of an evaluation

Note that inheritance and polymorphism will allow us to deal with the evaluation of
functions in a distributed way, as shown in section 3.4.3 Five classes representing ‘basic
functions’ are inherited from the class function, namely concept, attribute,
nfunction, bfunction and cfunction. These classes share the interface of function,
but unlike function they are not abstract; they are allowed to instantiate new objects.
We refer to these classes as basic because they represent basic ingredients of the model,
namely concepts, attributes, values and functional dependencies. ‘Nominal values’ are
represented by the class cfunction; ‘numeric values’ are represented by the class
nfunction; ‘boolean values’ are represented by the class bfunction; concepts by the
class concept and attributes by the class attribute. Since objects of these classes
represent constants, basic functions have no arguments. In order to represent functional
dependencies we introduce more specific functional classes that are inherited from the
basic classes, e.g. plus is inherited from nfunction and enables the operation of
summation, equal is inherited from bfunction and enables the operation of
comparison etc. The resulting hierarchy of classes is shown in Appendix B. This
appendix also provides the list of functions and operators that are included in the syntax
of ACCEL.

3.3.3 Data structure

Using the developed hierarchy of classes, all data is organized in the object-oriented
data model, which is aggregated in the ACCEL document. ACCEL document is
embodied in a class CAccelDoc which is inherited from a standard class CDocument.
The ACCEL document stores and controls the program’s data. Each kind of data, for
instance, objects of the class attribute, is aggregated in a collection object of the class
“attributes”. The purpose of the class attributes is to collect all attribute objects
in one array and to enable useful operations with attributes, such as adding a new
attribute, removing an attribute, renaming an attribute. A similar aggregation structure is
used to aggregate other objects.

Chapter 3.ACCEL

68

CAttributeArray
(f rom C AccelDoc)

CConceptArray
(f rom CAc celDoc)

CObjectivesArray
(f rom CAccelDoc)

CCel lsArray
(f rom CAccelDoc)

a ttributes
(f rom CAccelDoc)

1

1

1

1

objectives
(f rom CAccelDoc)

1
1

1
1

concepts
(f rom CAccelDoc)

1

1

1

1

cells
(f rom CAc celDoc)

1

1

1

1

genes
(f rom CAccelDoc)

CGenesArray
(f rom CAccelDoc)

1 11 1

askusers
(f rom CAccelDoc)

CAskUsersArray
(f rom CAccelDoc)

1

1

1

1

CAccelDoc

1

1

1

1

1

1

1

1

1

1

1

1

1 11 1

1

1

1

11 11 1

CGenotypesArray
(f rom CAccelDoc)

population
(f rom CAccelDoc)

1

1

1

1

1

1

1

1

CAttributeArray
(f rom C AccelDoc)

CConceptArray
(f rom CAc celDoc)

CObjectivesArray
(f rom CAccelDoc)

CCel lsArray
(f rom CAccelDoc)

attributes
(f rom CAccelDoc)

1

1

1

1

objectives
(f rom CAccelDoc)

1
1

1
1

concepts
(f rom CAccelDoc)

1

1

1

1

cells
(f rom CAc celDoc)

1

1

1

1

genes
(f rom CAccelDoc)

CGenesArray
(f rom CAccelDoc)

1 11 1

askusers
(f rom CAccelDoc)

CAskUsersArray
(f rom CAccelDoc)

1

1

1

1

CAccelDoc

1

1

1

1

1

1

1

1

1

1

1

1

1 11 1

1

1

1

11 11 1

CGenotypesArray
(f rom CAccelDoc)

population
(f rom CAccelDoc)

1

1

1

1

1

1

1

1

Figure 22. Data structure of ACCEL document

The following classes are contained in the ACCEL document:

• class cells aggregates all values vij and functional dependencies

• class population aggregates solutions si

• class concepts aggregates concepts ci

• class attributes aggregates attributes aj

• class askuser aggregates references to all functions ASKUSER() (see section
3.5.2)

• class objectives aggregates references to the objectives and the constraints

• class genes aggregates references to all decision variables si
d.

3.3.4 XML format of data storage

Any knowledge entered by the user into the tool must be stored in a suitable external
format. The choice of the external format for data storage was therefore dictated by the
following objectives:

• flexibility, i.e. easy to update and extend the format

• easy to implement

• compatibility with other applications and external programs.

We considered the following alternative methods of external data storage: databases, a
mechanism of serialization built in VC++ and the XML language. We chose the XML

3.3. ACCEL document: Object oriented data model

69

language because we think it is the optimum solution with respect to the chosen
objectives. A mechanism of serialization built in VC++ is not compatible with other
external programs. Data storages based on databases are less easy to implement and
they require additional support.

XML, otherwise known as eXtensible Markup Language, resembles other markup
languages like HTML. XML’s purpose is to describe both the structure and the content
of a document. XML allows us to semantically markup the contents of any document,
describing the contents in terms of its relevance as data. According to its specifications
[Bray et al 2000] the design goals of XML are:

• XML shall be straightforwardly usable over the Internet.

• XML shall support a wide variety of applications.

• It shall be easy to write programs which process XML documents.

• The number of optional features in XML is to be kept to the absolute minimum,
ideally zero.

• XML documents should be human legible and reasonably clear.

• The design of XML shall be formal and concise.

• XML documents shall be easy to create.

 XML Constructs

An XML document is created using the following basic constructs: elements, attributes
and entities.

D. 68 (XML Elements) Elements are labels used to describe the content. They are described
by element declarations and are invoked in the document element as tags. By
default, element declarations define tag pairs. Tag pairs contain text as well as other
elements and their content. An element declaration may also define an empty
element, i.e. one that is not designed to contain any text or other elements.

D. 69 (XML Attributes) Attributes provide extra information about the element. XML
elements can have attributes in name/value pairs just like in HTML.

 XML example

Table 9 shows an example of a fragment of an ACCEL document represented in XML
format. This fragment corresponds to a box example, which we present in Ex. 20. The
first symbol in each line of an XML document represents an operation of folding and
unfolding25. The root element includes all other elements in the document. Each element
is distinguished by its name, which is given first in the pointy brackets. In our case the
names of the elements correspond to the names of the classes in our data model. The
name of the element is followed by a number of attributes. For instance, the element
ATTRIBUTE is followed by the name of a concept, a description and coordinates of a
concept in a GUI, etc.

25 The fold – unfold option allows the sub-elements for every element to be hidden or shown.

Chapter 3.ACCEL

70

Table 9. Example of an XML document

XML document Model
-<RootElm>
- <CONCEPTS>

+ <CONCEPT Type=”3” Name=”wire”

Description=”” Row=”4” Column=”0”>

- <ATTRIBUTES>

+ <ATTRIBUTE Type=”0” Name=”l” Description=””

Row=”0” Column=”2” Kind=”0”>
 - <CELLS>

- <CELL Type=”0” Concept=”wire” Attribute=”l”
Description=””>
- <Arguments>

- <NFUNCTION Type=”0” Value=”400”>

c1=wire represents the concept
‘wire’

a1=.l represents the attribute
‘length’

value c1.a1 = 400

3.4 ACCEL manager: evaluation semantics

In section 3.3.1 we described the syntax that allows the user to formally express
knowledge in ACCEL according to the formalism of our model. The next step is to
discuss how the support tool enables operations with the expressed knowledge with
respect to the eight functional requirements. We therefore introduced semantics into
ACCEL. The purpose of the semantics is to enable the evaluation of expressions by the
computer; our semantics are therefore of the operational kind. According to Winskel
[1993], operational semantics describe the meaning of a programming language (which
we refer to as a formalism). It describes how a language executes on an abstract
machine.

3.4.1 Parser

The parser is part of the ACCEL application manager which implements the ACCEL
syntax. Thus, the parser transforms the syntactical form of expressions into the semantic
form.

D. 70 (Semantic form of an expression) The semantic form is a form of an expression that
has been interpreted and evaluated by the tool. We will denote such expressions as
<expression>.

The function of the parser therefore corresponds to the transition <expression> →
<expression>. Two types of rules underlie the transition, namely syntactical rules and
priority rules, which are defined for all the functions. The class of an expression is fully
determined by the syntax of the expression. These rules are such that a function with the
lowest priority, i.e. the one that has to be evaluated last one of all, will determine the
class of the expression. Every expression is parsed into a functional tree from top to
bottom (see Figure 23). Parsing is done recursively, such that the class of a function is

3.4. ACCEL manager: evaluation semantics

71

determined first, then the arguments are distinguished, and finally the arguments are
parsed by a recursive call of the same parsing procedure.

functionfunction

value
functionfunction

argumentsarguments

value value

argumentsarguments

<<plusplus>>

nfunction1

multmult
argumentsarguments

nfunction2 nfunction3

argumentsarguments

e.g.e.g.
functionfunction

value
functionfunction

argumentsarguments

value value

argumentsarguments

<<plusplus>>

nfunction1

multmult
argumentsarguments

nfunction2 nfunction3

argumentsarguments

e.g.e.g.

Figure 23. Functional tree

Ex. 16 An example of an expression that would correspond to the structure in Figure 23
would be 4+7*6. Here, function object plus is at the top level. plus has two
arguments, namely nfunction1 with the value 4 and the function of multiplication
mult; mult has two arguments called nfunction2 with the value 7 and
nfunction3 with the value 6. The list of functions with some of the attributes that
correspond to this tree is shown in Table 10. These attributes are: name (name of a
function), value (value of a function), arg1 (first argument) and arg2 (second
argument). In the next subsection we will consider the dynamics of how functional
trees are built.

Table 10. The list of functions

 name value arg1 arg2

1 plus 46 nfunction1 mult

2 nfunction1 4

3 mult 42 nfunction2 nfunction3

4 nfunction2 7

5 nfunction3 6

3.4.2 Factory of functions

After the parser has detected a function, the question is how to create an object of the
right class? This task could be delegated to the parser itself, but this would result in
delegating two complex tasks to the class Parser. A more elegant approach is to
employ the software design principle (also known as the ‘Design Template’) called
Abstract factory [Gamma 1995]. According to this principle, the class Factory provides
an interface for a variety of different factories. Each factory is dedicated to a special
class of functions or a specific software platform. Every time a new element in an
expression is identified, the parser passes the name to one of the factory objects, which
tries to create an object. The task of creating the semantic form of an expression is
therefore divided between the classes Parser and Factory. Parser detects the names
of the functions and builds functional trees, and Factory(s) creates proper objects. Now
if the syntax has to be extended with a new function or a group of functions, this

Chapter 3.ACCEL

72

problem can be simply solved by deriving a new class from the class Factory, instead
of rewriting the code of Parser.

D. 71 Consider the previous example. First, the function <plus> is detected by Parser. At
this point parsing stops and this name is passed to Factory, which according to the
syntax creates an object plus of class plus. This corresponds to row number 1 in
Table 10. The pointer to the object plus is passed back to Parser, and the process
of parsing continues. The function <4> is detected. The parsing procedure is
recursively called. Since <4> cannot be parsed any further, the recursive procedure
passes the name Factory, which according to the syntax creates an object
nfunction1 and returns a pointer to this object to the recursive procedure. The
recursive procedure returns to the original parsing procedure. Since objects of class
nfunction have higher priority than objects of class plus according to the priority
rules, object nfunction1 is aggregated in plus as the first argument and not the
other way around. The parsing procedure continues in a similar way.

3.4.3 Evaluation of expressions

In this section we describe how semantic form of expressions is evaluated.
D. 72 (Evaluated expression) An evaluated expression is a semantic expression that has

been evaluated to a basic value. We will denote it as <expression> → <value>.

The chosen data structure enables the distributed evaluation of expressions, i.e. every
function object evaluates itself according to a polymorphic method Evaluate(). Unlike
the process of parsing, there is no single object that is responsible for the whole
evaluation process.

Every function class derived from function inherits the public method Evaluate(),
which is class specific. There are characteristic steps that underlie the evaluation of all
functions. We present these steps as an evaluation algorithm. The input to the algorithm
is the array of arguments of a function. The output of the evaluation algorithm is a
pointer to the resulting function object and a Boolean value that indicates the
successfulness of the evaluation process. If the evaluation was successful, the resulting
pointer will always point to an object of a basic function class. Note that when
evaluating basic functions that represent constants, such as nfunction or concept, the
resulting pointer will point to the basic function itself. The evaluation algorithm is
presented below.

D. 73 (Evaluation algorithm)

Input: CFunctionArray arg; (array of function arguments)

Output: function* result; (a pointer to the result)

bool e; (the result of an evaluation)

Steps Code Comments Function plus from
Ex. 16

Step 1

e=true; Initialize evaluation

Step 2

e=e&EvaluateArguments(); Evaluate all arguments
and return a Boolean
result.

Evaluate nfunction1
and mult. e= true.

3.4. ACCEL manager: evaluation semantics

73

Step 3 e=e&CheckType() Checks the type of the
arguments and return a
Boolean result

e=true.

Step 3 Perform specific operations
with the arguments and
assign the result to the
value

Examples for the
defined functions are
shown in APPENDIX

Value=46

Step 4 Return e; Returns the result of
evaluation

e=true

3.4.4 Error handling

The final topic related to the evaluation of knowledge is error handling. As we
discussed in the introduction, design knowledge is incomplete and can be inconsistent.
The detection and feedback of such knowledge pit-falls would help to correct them. We
will first describe what kinds of errors are handled by ACCEL and then indicate how
the feedback about errors can be given in a convenient way.

Our model enables the automated detection of the following pit-falls that prevent the
evaluation of expressions:

• syntax errors, such as non-parsing parenthesis, unknown names of functions,
repeating names of concepts or attributes

• semantic errors, such as wrong types of arguments for the functions,
inconsistency between the value type and the range of the corresponding
attribute

• hanging references, such as the use of unknown names of concepts or attributes
in reference functions

• cyclic dependencies among values

The detection of errors in ACCEL is done in an object oriented way, i.e. every function
has a polymorphic method that enables specific error checking.

The method of providing feedback about the detected errors is an important design
decision; too obtrusive or unobtrusive forms of giving feedback should be avoided. The
feedback about an error should ideally be given in a way that will help the error to be
fixed. Decisions have to be taken about accuracy, and about the place and the time of
giving feedback to the user.

We based the decision about the place of giving feedback on logical considerations. The
errors come from the expressions and therefore unevaluated expressions should indicate
detected errors. However, detailed feedback inserted in an unevaluated expression
would disturb the perception of the expression. This problem is solved in ACCEL using
the partial evaluation of expressions.

Expressions that are not fully evaluated may still contain some evaluated arguments.
The essence of partial evaluation is to compose unevaluated semantic expressions from
the partially evaluated arguments. In the composed expression the user can see
arguments which were not evaluated. Additional information about the reasons for the

Chapter 3.ACCEL

74

error is shown in a separate field on the GUI. See section 3.6.5 for more details on this
and for an example of giving feedback.

The decision about when to give the feedback follows from the necessity of the
feedback and the frequency of the errors. Since we assume that knowledge in the early
phase is often incomplete, the feedback should ideally be given as soon as possible.
ACCEL therefore provides continuous error checking and user notification.

3.5 Special functions

We were able to satisfy most, but not all, of the functional requirements using standard
functions, or functions which are identical to Microsoft Excel functions. Some
functional requirements, e.g. giving multi-valued answers, searching, asking,
parameterized answers and postponing answers, could not be mapped onto existing
mathematical functions. These requirements therefore required dedicated approaches
and dedicated user interfaces.

3.5.1 Function ALT()

The function <ALT()> is abbreviated from the word “alternative”. This function allows
the designer to express a multi-valued answer, i.e. a decision. Decision options are
represented by the arguments of <ALT()> according to the syntax: <ALT(function1,
function2,…)>. Note that the function <ALT()> does not allow us to work with
continuous ranges. The user therefore needs to select a number of values from the range
if the range of the variable is continuous. We plan to remove this limitation in the
future.

Ex. 17 (Energy supply decision) Consider the designer of an electric lamp. One might ask the
question: what could the energy supply for the lamp be? A new concept Electric lamp
and a new attribute .Energy supply with range Renergy supply ={battery,220V} would
formally represent the question. The answer aims to produce the value for the
variable <electric lamp.energy supply>. The answer could be a battery or a 220V
circuit. Such a multi-valued answer can be formally expressed in ACCEL as
<ALT(battery,220V)>.

The function <ALT()> can be evaluated in two mutually exclusive ways: 1) explicitly
represented decision values are allowed to be varied during the optimization procedure
2) a decision value is manually selected by the user. In the second case, the
corresponding variable is treated as a fixed value and is not varied during optimization.
The function <ALT()> will contain all the alternatives even if the decision is manually
selected. The decisions taken can be easily backtracked. For usability purposes, the
evaluation of undecided <ALT()> functions result in the first argument except when
generating solutions with the generic algorithm. However, this does not mean that the
decision is made.

3.5.2 Function ASKUSER()

The function <ASKUSER()> allows the designer to express interpretational functional
dependencies, i.e. dependencies which cannot be expressed in mathematical functions
due to the implicitness of knowledge about them. The missing functional dependencies

3.5. Special functions

75

can often be replaced by a subjective opinion from the user, which in this case performs
the role of a function: the user interprets the input arguments and produces an answer.
However, the technical problem is to ask questions in an appropriate way, so that the
questions are accurate and that the same question is not asked twice. Indeed, it is
important to minimize the number of questions, i.e. the number of necessary
interactions with the user, as these might be disturbing.

<ASKUSER()> allows us to acquire a value from the user whenever necessary. Not all
values contained in a solution are necessary for the user to form an opinion about a
certain objective value. A few decision values of a solution will often be sufficient to
form an opinion. This means that, even if millions of different solutions have to be
evaluated, far fewer different combinations of the values need to be considered.
ASKUSER> has the following syntax: <ASKUSER(arg1,arg2,arg3…)>. The answer
obtained from the user is expressed according to the syntax of the expression. If the
number of arguments is sufficiently limited there will be,.

<ASKUSER()> can be used most effectively during optimization procedures.
Automatically varied decision values might create new combinations of the arguments.
A new answer is required for every new combinations. For this reason all answers are
kept in the history object, which is aggregated in the ASKUSER() function. As a result,
the user input is only needed for newly-encountered combinations of the arguments
(new questions). Each time the same set of values for the arguments re-occurs, the
information can be taken from the history, so that the same question never has to be
asked twice. This history allows the number of interactions with the user to be reduced
significantly.

Consider an example from the previous chapter, where we evaluated the attribute
.Safety for various means of transportation. Each transportation means Tm might
contain a large number of values, which we can neglect during the evaluation of the
safety. Let us assume that we are able to form a rough opinion about tm.safety if we are
given information about the energy source and the media of an instance of Tm. In this
case values for <tm.safety> will be obtained by interpretation, which is expressed in
ACCEL as <Askuser(tm.energy_source; tm.media)>. Even if millions of solutions are
generated, the evaluation of their safety will require only 3*3=9 interactions with the
user, since decision values are taken from Renergy_source and R media, which have three
values each.

3.5.3 Reference function

The reference function is designed to enable 1) referencing to other values from
expressions 2) postponing the answers and 3) flexibility in decision making. It has the
following syntax: <concept1.attribute1.attribute2….>. This section addresses the
mechanism of the reference function. At the end of this section we will consider how
the function <THIS> enhances the flexibility of this mechanism.

In the simplest case, namely when the syntax <concept1.attribute1> is used, the meaning
of the expression is clear; it means the value v11. Now suppose that v11 is a concept in its
own right, say <concept2>. In this case syntax <concept1.attribute1.attribute2> would
mean <concept2.attribute2>. Note that c1.a1. a2. a3… an-1. an assumes that an∈φ(c1.a1. a2.
a3… an-1), otherwise such an expression cannot be evaluated, i.e. attribute2 ∈
φ(concept2).

Chapter 3.ACCEL

76

In this way, the designer can refer to information about the concept <concept2>, even if
concept2 has not yet been made specific. This enables us to postpone answers without
loosing the possibility of referring to such postponed answers. It is obvious that the
expression <concept1.attribute1.attribute2> cannot be evaluated until the concept
<concept2> is known. Also note that if <concept2> changes in the future, the expression
<concept1.attribute1.attribute2> does not have to be changed, while the expression
<concept2.attribute2> would need to be updated manually. In such a way the reference
function provides extra flexibility to the developed product model. We will explain the
evaluation of the reference function in a simple example. More interesting examples are
provided with the installation of ACCEL26.

Ex. 18 Consider a conceptual solution <car>. A question such as “what engine should the car
have?” results in a new variable <car.engine>. Suppose there can be a diesel engine
or an electric engine, but we are not yet certain. We can postpone giving an answer
to this question. For the spatial arrangement of the car it might still be necessary to
talk about the volume of the engine. In this case we can refer to the volume of the
engine even without knowing which specific engine is going to be used. In all
expressions that require a reference to the volume we can write:
<car.engine.volume>. This expression is transformed into the semantic form
<car.engine.volume> as explained in Table 11. Now, suppose the variable
<car.engine>=<ALT(diesel engine, petrol engine> represents a decision, where
<diesel engine> is a concept in its own right, such that <diesel engine.volume> =1.8.
and <petrol engine> is a concept in its own right, such that <petrol engine.volume>
=2. Consider the evaluation of <car.engine.volume> according to evaluation
algorithm D. 73. All the arguments of the reference function are basic functions,
therefore their evaluation does not yield new functions and results in a true value for
the result. The evaluation of the reference function begins with the first two
arguments. If the selected pair of arguments is evaluated into a concept, the
resulting concepts and the next unconsidered argument will be considered as the
next pair of arguments. And so it continues until all the arguments have been
considered. <car.engine> is evaluated by default into the first argument, which
results in the concept <diesel engine>. The next argument is then considered. This
results in the expression <diesel engine.volume>, which is evaluated to 1.8 according
to the definition. Now, suppose we decide to use a petrol engine, i.e. <car.engine>=
<petrol engine>. In this case the evaluation of <car.engine.volume> will yield value
2. We can also let the optimization algorithm vary values of the decision variable as
will be explained in section 3.7.

Table 11. Semantic form of the expression <car.engine.volume>

 name value arg1 arg2 arg3

1 reference concept1 attribute2 attribute3

2 concept1 car

3 attribute2 engine

4 attribute3 volume

26 The installation is available at the web site http://sts.bwk.tue.nl/Ivashkov

3.6. ACCEL GUI: Graphical user interface

77

In the considered example the arguments of the reference function always refer to a
specific concept and specific attributes. The syntax of the function is therefore context
independent, i.e. if the reference function is assigned to another variable, the meaning of
it stays the same. In many cases it is convenient for the user to make the reference
function context dependent, so that if the function is assigned to a new variable, its
arguments will automatically refer to a concept or an attribute of this new variable. For
this reason we introduce the function <THIS>. The <THIS> function has no arguments
but its outcome depends on the context. It can be used in a reference function of a
functional dependency, which aims to obtain a value of a dependent variable ci.aj. In
this case, THIS will return the concept ci or the attribute aj of the variable. THIS
simplifies modelling, because the same expression can be reused easier.

Ex. 19 (Function THIS) Suppose the price of a car can be computed using the following
expression: <car.price> =<car.production.price+car.marketing.price>. Suppose we
have a <diesel car> and a <petrol car>, and their prices can be computed according
to the expression for <car>, but the reference functions in this expression would
yield different results for the two cars. For instance, <diesel car.marketing.price> is
computed differently than <petrol car.marketing.price>. In order to make the
expression context dependent we use the <THIS> function, i.e. <car.price>=
<THIS.production.price+ THIS.marketing.price>. Now this expression can be copied
to both cars. In this case the reference functions <THIS.production.price> and
<THIS.marketing.price> will automatically refer to the values of the right cars. In a
similar way we gain context independence for the attribute of a variable, i.e.
<car.price> =<THIS.production.THIS+ THIS.marketing.THIS>. If the same expression is
to be used to compute <car.investment>, the user can copy the expression for
<car.price>, i.e. <diesel car.inventsment>= <THIS.production.THIS+
THIS.marketing.THIS> and <petrol car.inventsment> =<THIS.production.THIS+
THIS.marketing.THIS>.

3.6 ACCEL GUI: Graphical user interface

Microsoft Visual Studio provides a programming model that separates a program’s data
from the display of that data and from most user interaction with the data. In this model,
a document object reads and writes data to persistent storage. The document may also
provide an interface to the data wherever it resides (as we described in section 3.3.4, all
data is stored externally in an XML document). A separate view object manages the
data display, from the rendering of the data in a window to user selection and the editing
of data. The view’s responsibilities are to display the document’s data graphically to the
user and to accept and interpret user input as operations acting on the document.

The document/view separation introduces compelling reasons to follow the Visual
Studio programming model. One of the main advantages is that multiple views of the
same document can be provided; for instance, ACCEL supports multiple spreadsheet
views of the same document, an optimization view and a graph view, which are
synchronized with the document data, while the code for operations with the data
resides outside of the objects responsible for visual components. The document takes on
the task of updating all views whenever the data changes as described in sections 3.3-
3.4.

Chapter 3.ACCEL

78

At the heart of view are three key classes:

• CView instantiates CAccelView, an object used to display a document’s data and
manage user interaction with the data. ACCEL’s view aggregates a spreadsheet
object, and implements message-handler member functions for user operations
with the spreadsheet.

• CframeWnd instantiates an object that provides the frame around one or more
views of a document. ACCEL’s main frame stores several graphical controls as
member variables, and implements message-handler member functions and a
message map to specify what happens when messages are directed to the
window.

• CMultiDocTemplate, an object that coordinates one or more existing documents
created in ACCEL, and manages the creation of the correct document, view and
frame window objects for that type (the so called multiple document interface
(MDI)). An MDI application uses the main frame window as a workspace in
which the user can open zero or more document frame windows, each of which
displays a document.

The structure of the GUI is shown in Figure 24. Each class in this structure has a
corresponding visual component that enables interaction with the user.

GU I

CMy GridCtrl

CAccelView

1

1

1

1

CEditToolbarCAsk Us erD lg

CPare toDlg

CGraphDia log

CP roper tie s View

CTracer

CProperties Bar

CMainFrame

1

1

1

1

1

1

1

1 1

1

1

1

GU I

CMy GridCtrl

CAccelView

1

1

1

1

CEditToolbarCAsk Us erD lg

CPare toDlg

CGraphDia log

CP roper tie s View

CTracer

CProperties Bar

CMainFrame

1

1

1

1

1

1

1

1 1

1

1

1

Figure 24. The structure of GUI

We will describe ACCEL’s GUI classes in the following order:

• CMyGridCtrl is a class inherited from a publicly available class CGridCtrl 27.
This class implements a spreadsheet-like user interface, which is discussed in
section 3.6.1. It allows the user to add and remove concepts, attributes, values
and functional dependencies.

27 See www.codeguru.com for more details.

3.6. ACCEL GUI: Graphical user interface

79

• CPropertiesView is inherited from the CGridCtrl class and provides control
of properties of the functional objects. In particular, this class allows the user to
differentiate between four categories of knowledge. This class is described in
section 3.6.2.

• CAskUserDlg provides the visual interface for access to all <ASKUSER()>
functions, as described in section 3.6.3.

• CGraphDialog enables the sensitivity analysis, as described in section 3.6.4.

• CTracer provides feedback to the user and is related to the error handling
mechanism, as described in section 3.6.5.

• CEditToolbar provides enhanced functionality for the user input of values and
functional dependencies, for instance enabling names of variables to be added
into an expression by a mouse click on the variables. A further description of
this class can be found in ACCEL’s help file.

• CPropertiesBar is an auxiliary class of CPropertiesView that enables the
floating functionality of visual controls.

• CparetoDlg provides control over the optimization problem. In our opinion this
class implements the most interesting functionality of ACCEL, as is described in
section 3.7.

3.6.1 Spreadsheet

Our initial intuition about the representation of product knowledge was that it should be
in a form that the designers feel comfortable with. Another requirement was that the
representation should resemble and be compatible with our formalism. We also took
into account the time spent by the user to add a new concept, a new attribute, a new
value or a new functional dependency; this time had to be minimized. Finally the
interface has to be standard and therefore simpler to implement. The logical choice was
therefore to use a spreadsheet representation.

Spreadsheet representation is a familiar device for incremental ‘what-if’ analysis and
data analysis in many disciplines [Ronen, 1989] [Hicks, 1991]. Spreadsheets have an
easy user interface, are sufficiently flexible, and allow us to represent even large
models. The user interface of conventional spreadsheet systems (such as Microsoft
Excel) provides convenient functionality for the user with regards to the editing of
expressions, operations of copying and pasting, etc. However, standard spreadsheet
systems are chiefly data-analysis tools concentrating on computation. Some
fundamental functional requirements could therefore not easily be satisfied using the
conventional spreadsheet systems, i.e. the support of knowledge spaces, concepts and
attributes, multi-valued answers, postponing answers, using references, multi-objective
optimization, partial evaluation of functional expressions. We have therefore
implemented a spreadsheet user interface with an extended functionality28. Our interface
enhances the traditional weak aspects of the spreadsheets, i.e. insight into calculations
and the structure of the model.

28 The implemented spreadsheet is based on the publicly available spreadsheet “GridCtrl”, available at
www.codeguru.com.

Chapter 3.ACCEL

80

The spreadsheet interface provides a straightforward and efficient link to the formalism
of the model from chapter 2. It means that the optimization algorithm can be triggered
without any extra steps from the user29. In the spreadsheet environment, the state-
transitions model of the design process becomes a sequence of updates of a table. The
table contains zero or more rows; every row can represent one or more concepts; every
column in the table represents one or more attributes. A cell is characterized by a row
(concept ci) and by a column (attribute aj). Each cell corresponds to a variable ci.aj ,
which can be assigned a value vij or a functional dependency to obtain vij

30. Thus, the
cell is used as the container for a value or a functional expression, which explicitly
represents a functional dependency31. If a functional expression can be evaluated, it also
represents the value of this expression, in a similar way as occurs in a spreadsheet.
ACCEL supports immediate evaluation, i.e. a change of any cell immediately results in
an update of the whole product model.

Spreadsheet representation prescribes the following format for the state transitions:
adding a concept (i.e. adding a row); adding an attribute (i.e. adding a column); adding
or modifying the value or the functional dependency (i.e. modifying the content of a
cell). Note that a variable ci.aj is defined automatically if ci and aj are defined. This
saves the user a tremendous amount of time, since the same attribute can be applied to
several concepts. If we consider the case when five concepts are defined, the definition
of an attribute would result in five new variables. This efficiency is paid for by the less
efficient use of space; not all five variables will be required, in fact, the introduced
attribute may not become part of signature for some of the concepts. Many cells will
therefore stay empty. We partially solve this problem by allowing the user to introduce
concepts and attributes outside the first column or the first row. Each concept and
attribute is characterized by its coordinates in the spreadsheet. Additional functionality
of the spreadsheet allows the user to drag concepts and attributes within the spreadsheet.
Note that the operation of dragging causes the automatic replacement of the variables,
i.e. cells. Dragging of a cell is not permitted, since this operation would cause the
automatic deletion of the value. Instead, the user can cut and paste a value to the desired
position.

In a similar way, the efficiency of the user can be improved if a knowledge space is
expressed for the attributes rather than for every variable. The ‘Category of an attribute’
allows the user to express a knowledge space for all variables related to this attribute.
The disadvantage here is that the same attribute might be related to variables from all
four knowledge spaces. Four attributes with an identical name are needed in this case.
Since the names of the attributes are required to be unique, the user would need to
invent several modifications of the name. We use the following notation for an attribute
that occurs in several knowledge spaces: e.g. <a_area> means that the attribute is related
to auxiliary knowledge space. <d_area> means that the attribute is related to decision
knowledge space, etc. In the next section we will explain how the user can choose a
category for the attributes.

We will demonstrate an application of the spreadsheet in an example, which gives us an
idea of how knowledge expressed in terms of our model can be represented in a
spreadsheet.

29 Strictly speaking, one button still has to be pushed.
30 This is the main distinction; in traditional spreadsheets a cell is an address in memory that can contain
anything and has no meaning unless extra steps are taken.
31 In the traditional spreadsheets the calculation can be hidden in macros; this complicates the analyses.

3.6. ACCEL GUI: Graphical user interface

81

Ex. 20 Consider the design of a box (new concept <box>) from a given piece of wire (new
concept <wire>) of length 400m (new contextual attribute <length>), i.e. the value
<wire.length=400>. Let us suppose that we would like to use this box as a container
and cover it with some expensive material. The box should therefore have the
maximum possible volume (new attribute <volume>) and the minimum possible area
(new attribute <area>), which are the two objective attributes. The design decisions
we can make are the following: we can choose a different width for the container
(new design attribute <w>) and we can choose a different shape for the cross section
(new design attribute <shape>). Let us suppose that <w> has the range
<Rw={10;20;30;40;50}> and the attribute <shape> has the range <Rshape
={square;hexagon}>. The Cartesian product RwxRshape is therefore the decision space
VD. We can depict this example as shown in Figure 25.

WireWire

Length Length ll
W D W D

WireWire

Length Length ll
W D W D

Figure 25. Two alternative shapes of the wire frame

In order to select optimal solutions from VD we need to connect the values in VD with
the values in the objective space VO, which is structured by the two objective attributes
<area> and <volume>. We will demonstrate how ACCEL enables modelling in small
incremental steps.

The two alternative shapes of the box cross-section initially are basic values of the
nominal type. These values are promoted to concepts; we have a new concept <square>
and a new concept <hexagon>. It is important that the names of these new concepts are
identical to the names of the values derived from them. In this case <box.shape.area>
can be evaluated to <square.area>. For these concepts we introduce an auxiliary
attribute <a_area>, which differs from the objective attribute <area> in its meaning,
and therefore needs to be identified by a different name. For the attribute <a_area> we
do not wish to maximize or minimize the value. We will use it to express values from
the auxiliary space VA. Another new auxiliary attribute is the depth of the box <d>. We
also introduce a new contextual attribute <sides_nr>, which accesses the number of
sides for any concept. Using these simplifying steps, the value for the objective variable
<box.area> can be obtained from the functional expression <2*box.shape.a_area+
side.a_area*box.shape.sides_nr>, and the value for the objective variable
<box.volume> can be obtained from the functional expression
<box.shape.a_area*box.d>. The resulting representation is shown in Figure 26. The
box example is provided as one of a list of examples that are built into ACCEL.

Chapter 3.ACCEL

82

Figure 26. The representation of the box example in ACCEL

3.6.2 Properties view

Each basic function has different properties. For instance, a concept has a row and a
column; an attribute has a name and a category; a cell has a corresponding attribute and
a concept etc. The control and visualization of these properties is important for the user
and great care should therefore be taken with it. The design of the properties view
should take three objectives into account, namely the transparency of the properties of
the basic functions, uniform representation and extendibility.

A logical solution would be to use a spreadsheet to control the basic functions, since the
user has already got used to the spreadsheet way of representing knowledge. From an
implementation point of view, a spreadsheet is a flexible control because it can
represent an arbitrary number of properties in a structured way. Every function can
therefore be made responsible for the representation of its own properties. However, an
interface between the basic functions and the properties spreadsheet does need to be
established.

We therefore gave the class function a polymorphic method OnView(). When a basic
function object (a cell, a concept, or an attribute) is accessed (for instance by a mouse
click), the object executes its OnView() method. This method results in different
behavior for each basic class, which allows the right set of properties to be displayed
and controlled. Although this approach has a limitation, i.e. the user can only see one set
of properties at a time, it is a flexible and simple approach. Figure 27 gives an example
of a screenshot of some properties.

ConceptConcept AttributeAttribute CellCell

Category

ConceptConcept AttributeAttribute CellCell

Category

Figure 27. Properties view for the concept, an attribute, and a cell

3.6. ACCEL GUI: Graphical user interface

83

Most of the presented properties are fixed, i.e. they cannot be changed by the user. The
user does have access to, and can express knowledge about, some of the properties, as
defined in the model of chapter 2.

D. 74 (Attributes’ types)The type of the attribute allows the user to express the type of the
attribute as it was defined in the model of chapter 2: type ‘real’ corresponds to
numerical values of Ordinal, Interval and Ration types; type ‘bool’ corresponds to the
Boolean type; type ‘string’ corresponds to the Nominal type; type ‘concept’
corresponds to the Nominal type of values, which are represented as concepts; type
‘attribute’ corresponds to the Nominal type of values, which are represented as
attributes.

D. 75 The range of the attribute allows the user to limit the range of acceptable values.
The ranges for attributes of ‘real’ type are expressed according to the following
syntax: <[min value; step; max value]>, where ‘step’ corresponds to a numerical
value that defines the step between the min and the max values for purposes of
sensitivity analyses. The range for attributes of other types is expressed according to
the following syntax: <{value1;value2;…}>.

Note that if a value of a variable violates the type of the corresponding attribute, a type
error occurs; this is reported to the user as will be explained in section 3.6.5.

3.6.3 AskUser dialog

The AskUser dialog provides a visual interface for access to all <ASKUSER()>
functions. At all necessary moments, i.e. moments when the <ASKUSER()> function
encounters a combination of values which is not in its history, a new question is
composed and the AskUser dialog is invoked to present a new question and to obtain an
answer from the user (as described in section 3.5.2).

The main idea behind the design of the dialog is to help the user to express his or her
early intuitions about a dependency, and eventually to arrive at a functional dependency,
which is supposed to replace <ASKUSER()> functions by mathematically-specific
dependencies. The use of the AskUser dialog might produce the following positive
results:

• by answering many similar (but not identical) questions, the user recognizes the
dependencies which underlie the answers given

• questions can be facilitated by group discussions

• newly-created questions can inspire new, creative ideas, because questions have
been interpreted

• eventually, advanced data analysis procedures could be applied to derive a
functional dependency from the already gathered answers and to suggest it to the
user

The dialog design is based on the history of answers. The history of previous answers
can be helpful when forming an opinion. We will demonstrate an example of the
application of the AskUser dialog as a continuation of an example from section 3.5.2.

Ex. 21 In the example a functional dependency for the objective value tm.safety is
unknown. The value is therefore obtained using the <Askuser()> function
<Askuser(tm.energy_source;tm.media)>. The AskUser dialog contains the
combinations of values, which represent different questions for the user. The

Chapter 3.ACCEL

84

arguments in this example are design decisions. New combinations of values will be
generated during an optimization procedure; the necessary user input is therefore
obtained either before or during the optimization.

Figure 28. Application of the AskUser dialog for evaluation of the safety of transportation

means

3.6.4 Sensitivity dialog

The development of the product model is a time consuming process. Time should
therefore be invested in critical dependencies and values for the product. Visualization
provides one of the quickest ways to analyze the complex chains of functional
dependencies and to detect any of the following situations that are interesting for the
designers:

 (strong sensitivity) a small change of an independent value causes a big change
of an objective value

 (trade-offs) a change of a decision value causes one objective value to improve
and another one to worsen

 (extreme detection) an objective or objectives has extreme value(s)

 (independency) variables are independent

A sensitivity analysis is complicated in traditional spreadsheets. They can visualize data
but cannot visualize the dependencies directly32. ACCEL’s sensitivity dialog enables the

32 They can visualize them indirectly; tuples of values need to be produced first.

3.6. ACCEL GUI: Graphical user interface

85

visual analysis of functional dependencies between multiple cells. The open structure of
the spreadsheet gives the user easy access to the product model and enables quick
analysis. The main idea behind the design of the sensitivity dialog is to minimize the
time needed to visualize dependencies. This enables the systematic analysis of the
product model. The required steps are as follows:

• The user selects cells that need to be analyzed and opens the sensitivity dialog
box.

• In the sensitivity dialog the user needs to select a cell, which should be treated as
being independent. The other cells are automatically considered to be dependent.

• The user presses the ‘DRAW’ button.

The whole procedure, including the time for calculations, takes a few seconds. There are
some restrictions on the type of ranges. An independent cell (variable) can be of any
type (including Nominal). Dependent cells (variables) are required to have a numerical
type. The range of the cells is determined by the ranges of attributes corresponding to
them. The ranges of the attributes can be adjusted as described in section 3.6.2. Note
that the values of the decision variables are likely to influence the analysis. The decision
values can be operated using the optimization dialog.

Ex. 22 (Sensitivity analysis) Let us consider an example of a sensitivity analysis for the box
example from Ex. 20. We will consider the variable <box.w> as being independent
and two variables <box.area> and <box.volume> as being dependent. We will
consider two graphs, where one graph corresponds to <box.shape>=<square> (left
hand graph of Figure 29) and the other graph corresponds to <box.shape>=<hexagon>
(right hand graph of Figure 29).

The functionality of the sensitivity dialog is provided by “Flipper Graph Control”,
which was purchased from “ProWorks Corp”33. This control provides additional
functionality, e.g. scaling of graphs, adding properties and graphical editing such as
font, color etc.

3.6.5 Trace View

The Trace View is a graphical component of ACCEL that provides feedback to the user.
This feedback can be a consequence of syntactic errors, which were described in section
3.4.4. We will consider an example of user feedback in combination with a partial
evaluation mechanism.

Ex. 23 Consider the box example as it was described in Ex. 20, in the case where the value
of <wire.length> is not defined. This value is used in several other functional
dependencies. The missing value therefore makes the product model incomplete and
causes an error. The feedback about this error is shown in Figure 30. Feedback
should be interpreted from the top to the bottom. This is because feedback is given
in the order in which errors are detected. As a consequence of an error, expressions
in the spreadsheet may only partially be evaluated. The situation in the spreadsheet
that corresponds to the error is shown in Figure 31. If the user positions the mouse
pointer above the cell of the expression in question in the spreadsheet, he or she will
see a partially evaluated version of an expression. In this case, the functional
dependency in the cell <box.d> reduces to <wire.length-80/4>. The original

33 The web site of “ProWorks Corp” can be found at: http://www.proworks.com/

Chapter 3.ACCEL

86

expression is shown at the top of Figure 31. Unevaluated cells are additionally
marked in red and are tagged with the error symbol.

<box.shape=square> <box.shape=hexagon><box.shape=square> <box.shape=hexagon>

Figure 29. Sensitivity analysis for the box example

Figure 30. Example of feedback to the user

Figure 31. Example of partial evaluation

3.7. Optimization with ACCEL

87

3.7 Optimization with ACCEL

In this section we describe an optimization dialog, we introduce our method for decision
making, and we give an example of optimization.

3.7.1 Optimization dialog

The optimization dialog enables the operation of the SPEA machinery, which we
introduced in section 2.7. The design of a dialog for optimization has the following
challenges:

 In the early design phase the formulation of the optimization problem is
frequently changed; it should be easy to update and control the formulation.

 During the optimization procedure previously unnoticed errors may occur due to
variation of the decision values; we need to decide how to give the feedback
about errors.

 Optimization is time consuming; we need to decide how to inform the user about
progress.

 The design should be easy to implement and extend in the future.

The above requirements resulted in a number of decisions:

 Base the optimization dialog on several spreadsheets. Arrange the spreadsheets in a
way resembling the representation of the knowledge spaces, i.e. design decision in
the top-left corner, objective on the top-right. The optimized solutions were
positioned in the center and the control at the bottom (see a detailed description after
this list).

 Use the optimization dialog for both manual decision-making and optimization.

 Display objectives and constraints in a uniform way, so they could be easily
interchanged.

 In case of an error, freeze the product state so that the user can see which
combination of decision values caused an error.

 Top part

In the top part of the dialog box (see Figure 32) the user can see the inputs and the
outputs of the optimization problem; on the left, the user can see design decisions.
These are all occurrences of the function <ALT()> expressed by the user in ACCEL.
Conversely, every occurrence of the function <ALT()> gives rise to the definition of
attribute corresponding to a design category. For every design decision, the choice can
be made manually from the provided alternatives plus the option “all”. This option
means that the optimization procedure will vary the values of the design decision. On
the right, the user can see the objective functions, i.e. the functional expressions that
compute objective variables. For each objective function the user can choose the
following options:

• The objective kind can be ‘minimize’, ‘maximize’ or ‘free’. The last option
means that the user does not desire a minimum or a maximum value. The user
can turn an objective into a constraint with a single mouse click using the kind.

Chapter 3.ACCEL

88

• The left constraint and the right constraint need to be numerical values or
functional expressions that evaluate to numerical values. These values define the
range of acceptable outcomes. The optimization procedure will remove solutions
with objective values from consideration.

 Central part

The dialog will position all Pareto optimal solutions in the central part of the dialog box.
Each solution is represented by the decision vector and the objective vector. A special
procedure hides all irrelevant values from the user, so that the user only sees values of
an optimal solution from the solution signature. Note that in Chapter 2 we explained
how the notion of the extended signature is used during the optimization.

 Bottom part

In the bottom part of the dialog box, the user can control one of the two optimization
algorithms. One algorithm is referred to as ‘exhaustive’, because it allows the user to
generate all possible solutions in the space VD. Optionally, the user can choose to
generate fewer solutions. In this case, an intelligent random generation takes place such
that any two generated solution vectors are different. Indeed, simple random generation
is likely to produce many identical solutions. Another algorithm is SPEA. We have
described this algorithm in section 2.7. The optimization dialog is shown in section
3.7.3.

3.7.2 Tightening constraints method

In this section we present one of our results, which is the ‘tightening constraints
method’. Our method eliminates problems of two classical decision-making methods,
which we considered in section 2.7.2. The main advantages of our method are listed
below:

 It avoids the process of prioritization of objectives. All personal preferences of
the participants with respect to objectives can be expressed as left and right
constraints on the objectives, i.e. lf and rf.

 No a priori domain knowledge is necessary to assign the constraints. The use of
the method follows after a round of optimization. The constraints can therefore
be approximated from the analysis of the available Pareto optimal solutions.

We will demonstrate our method in the following example. Some criticisms on the
weighting method (see section 2.7.2) are: a) it is still broadly practiced in the
technological settings, although people find it confusing to compare objectives that are
incompatible with each other, or to assign weights to complex technical objectives b)
assigning weights does not simplify the evaluation procedures, but makes the results
less certain.

We support the above claims with a small literature survey:

• The coefficients need to be assessed very carefully to ensure that the results of
the evaluation match with the preferences of the decision maker. A great deal of
behavioral research had focused on the correct procedure to assess the
coefficients [Webber, 1993]. Unfortunately, experimental studies have revealed

3.7. Optimization with ACCEL

89

numerous sources of inconsistencies rather than a single, superior assessment
technique [Schoemaker, 1982].

• Conducting a sensitivity analysis of the weights is often gives insights, but
current techniques typically vary a single weight and observe the effect on the
result of the model. Special techniques need to be developed in order to vary all,
or at least a large subset, of the weights [Butler, 1996].

3.7.3 Optimization example

We now demonstrate the functionality of the optimization dialog in a follow up of the
box example.

Figure 32. A representation of the box example in the optimization dialog

In this example, the decision space VD contains 10 solutions. From these 10 solutions,
four solutions were selected in accordance with the Pareto optimality principle, as is
shown in Figure 33. For any Pareto optimal solution we can see that there is no other
solution that has both a bigger volume and a smaller area. We will demonstrate the
follow up decision-making process by applying our tightening constraints method.
Consider the following constraints on the objective functions:

box.area<6000[m2], box.volume>25000[m3].

Given these constraints, the optimization algorithm produces a single solution, which
corresponds to (hexagon,20), presented in line one in Figure 32.

Chapter 3.ACCEL

90

0

1000

2000

3000

4000

5000

6000

7000

0 10000 20000 30000 40000

Volume

A
re

a
Pareto Optimal
solutions

Dominated Solutions

0

1000

2000

3000

4000

5000

6000

7000

0 10000 20000 30000 40000

Volume

A
re

a
Pareto Optimal
solutions

Dominated Solutions

Figure 33. Pareto optimal solutions for the box example

CHAPTER 4. CASE STUDIES

4.1 Introduction

In the previous chapter we gave a limited demonstration of the abilities built into
ACCEL. This chapter provides case studies, which allow us to describe the
methodology of designing with ACCEL and to present the results of our evaluation of
the tool. Section 4.2 describes the design of an air-conditioning unit for a swimming
pool. This example aims to demonstrate how ACCEL can support a re-engineering
project. In this section we will focus on the following aspects of ACCEL:

• how to extend the sequential decision making process with a number of
simultaneously-considered design decisions and objectives

• how less-technical objectives can be modeled in ACCEL

• how to translate a design problem into a product model and produce optimized
solutions

• how to provide a quick analysis of the results and gain more certainty

Section 4.3 describes how three groups of students approach the problem of a vertical
transportation system for a new World Trade Center (WTC). By comparing the
approaches we demonstrate how the groups differed in their approach to the
formalization of the design problem and the generation of optimized solutions. The
gathered feedback allowed us to make some preliminary conclusions. In section 4.4 we
describe a series of early experiments. Throughout this chapter we present several
Assessment Methods (AM) which we practiced in our experimental studies. In a similar
way to Atman [2000], we use several well-known assessment methods to achieve more
credibility for our results. These methods are presented in Table 12.

Table 12. Assessment Methods (AM) suitable for early validation experiments

Method Advantages Disadvantages Outcome

1. Closed-
ended surveys

Easy to administrate and
analyze. Allows statistical
analysis within the known

space of options.

Narrows down the
number of possible

responses.
Not efficient with a small
number of participants.

Structured and concrete
opinions about the
proposed issues.

2. Open-ended
questionnaire

Stimulates the appearance of
new ideas. Can work with

any number of participants.
Gives more evidence of the

experience

Difficult to draw
conclusions, useful

information can be hidden

Some new ideas but in
an unstructured fashion.

3. Observations
and interviews

Direct access to attitudes and
interactions

Requires an extra model
in order to interpret the

observations. Time
consuming.

Implicit information on
how students

experienced the method.

Chapter 4.Case studies

92

4.2 Air-conditioning system for a swimming pool

4.2.1 Introduction

This example demonstrates the application of ACCEL to the re-engineering of an air-
conditioning system for a swimming pool, which is shown in Figure 34. This project
was performed in collaboration with an expert from the Technical University of Prague
[Lain, 2003]. The product we considered belongs to the HVAC domain (Heating
Ventilation Air-Conditioning). We started with an existing design and the intention to
evaluate ACCEL and compare the re-engineered solution with the original one. The
topic of this section is therefore the confrontation between the conventional engineering
approach and our approach. The ‘re-engineering’ means that we can go back to
previously-made decisions and reconsider or extend them while taking into account new
objectives that were not previously considered. It means that we reformulate the initial
design problem and therefore we shift the original solutions back to the early design
phase. Knowledge about the original solution and of the original design process allows
us to explain some advanced methodological aspects related to designing with ACCEL.
Consider the design of an air-conditioning system for small and medium-sized
swimming pools. From a technical point of view this design is of moderate complexity.
In practice, a designer does not necessarily use advanced tools, even if they are
available; a limited number of objectives are therefore considered, possibly only one.
The system has to maintain a certain relative humidity inside the swimming pool at low
costs. There are two standard approaches to reduce the relative humidity in swimming
pools: by supplying more air with humidity lower the than swimming pool air, or by
increasing the dehumidification capacity of the dehumidification unit. The first
approach is initially cheaper but increases the energy costs, because the outside air has
to be preheated in the winter season. The second approach relies on an expensive
dehumidification unit, whose costs are proportional to its dehumidification capacity.

Figure 34. The swimming pool

This technical problem becomes a very complex problem if the designer is trying to
consider multiple design decisions, multiple objectives and their relationships. The
following points are need to be taken into account:

• there are alternative or complementary ways to deal with the humidity, such as
using a plastic sheet to cover the pool when it is not in use

• there is specific context in which a product will be installed and used

4.2. Air-conditioning system for a swimming pool

93

• the end product will be used for many years, so there are multiple aspects related
to the usage of the product, such as costs due to energy consumption and costs of
the maintenance

• there are less-technical objectives that are related to the end user, e.g. noise
level, quality of the air, usability of the control.

Our aim was to use ACCEL to manage the increase in complexity and generate
optimized solutions, which we would then compare with the original solution. We
describe this case study in a number of steps according to the ACCEL design
methodology, as presented in Appendix C

4.2.2 Design solutions

In this section, we present the decision variables of a re-engineered solution concept
<New S>. We introduce several standard decision variables, which express decisions
that we had to make, as shown in Table 13. The novel approach here is that we were
aiming to optimize these decisions simultaneously. In a conventional approach, these
decisions would be handled sequentially, for instance: <AHU.FR>, <FAN.AIR
FLOW> and then <DU.DC>.

Using these decision variables, we were able to introduce the original solution <S>. The
original solution was based on the first approach to remove the humidity, i.e. there was
no dehumidification unit. The decision values of this solution are as follows: the air
supply flow <FAN.AIR FLOW>=<315> [m3/h], the total flow rate <AHU.FR>=<600>
[m3/h], the dehumidification capacity <DU.DC>=<0> and the air distribution system
<ADS.TYPE>= <normal ADS>. Note that the decision variables do not belong to a
single concept; we describe them briefly in the following paragraphs.

Table 13. Decision variables of the new solution concept

Concept Description (see also
below the table)

Attribute Decision
variable

Range

<AHU> The air handling unit Flow rate < AHU.FR> 600-5000 m3/h

<DU> The
dehumidification

unit

Dehumidification
capacity

< DU.DC> 0-3.5 Kg/h

<ADS> The air distribution
system

Type of the air
distribution

system

<ADS.TYPE
>

{poor ADS, normal
ADS, good ADS}

<FAN> The fan The fresh air flow
rate from outside

<FAN.AIR
FLOW>

50-350 m3/h

The air-handling unit <AHU> supplies the air to the swimming pool via the air
distribution system. The total amount of air supplied can vary between 600 and 5000
m3/h. The amount of the supplied airflow, due to fan <FAN>, may vary between 50 and
350 m3/h. The supplied air is preheated, but the maximum temperature of the supply
should not exceed 50 °C.

Chapter 4.Case studies

94

The dehumidification unit <DU> can have a dehumidification capacity of between 0
and 3.5 Kg/h. Such a unit dehumidifies the air using a refrigerant-vapor-compression
cycle. The air inside the swimming pool circulates via the dehumidification unit, which
decreases the humidity ratio of the air and increases its temperature.

The air distribution system <ADS> consists of ducts, a noise damper and distribution
elements (diffusers). When choosing the air distribution system we needed to consider
numerous variations of pipes, ducts, etc. It was therefore not feasible to consider all
possible configurations. We avoided this problem by introducing three classes of air
distribution system. From experience, we were able to define general characteristics of
each class. Since we did not know the sensitivity of the objectives with respect to the air
distribution system, this was a valuable first approximation. We therefore considered
the following three alternatives: poor ADS (short duct with few big grill diffusers);
normal ADS (with a more extensive duct network and more advanced air distribution);
and good ADS (with a very extensive duct system and special diffusers, e.g. linear slot
diffusers, which are placed under the windows).

Initially we considered the variable for the power of the radiator
<RADIATOR.POWER> to be a decision variable. We later moved this variable into the
auxiliary category. The radiator only needed to provide additional heating if the joint
heating output of <AHU> and <DU> did not compensate for the winter losses. We were
therefore able to derive the necessary power for the radiator.

Ex. 24 (Methodology example) The transformation of a decision variable into an auxiliary
variable is a typical design mistake. There may be multiple objectives that depend
on the power of the radiator, i.e. maintenance costs, air quality, etc. By assigning
the value to a decision variable using a functional dependency, the decision value
cannot be optimized with respect to other objectives. ACCEL allows multiple decision
variables to be optimized, so we did not need to reduce their numbers as engineers
intuitively do. In this example, the optimization algorithm and the functional
dependency produced the same optimal value, as only one objective depended on
the power of the radiator.

4.2.3 Objectives

We extended the initial set of objectives to consider the prices of the system over five
years and the quality of the air distribution:

 Objective functions

o <Price Over 5 Years> [euro] to be minimized

o <AD quality>, air distribution quality [dimensionless] to be minimized34

 Constraint functions

o <air per person> [m3/(h*people)] has to exceed 50

o <relative humidity> [%] should be between 40% and 65%

To evaluate these functions we needed to know the functional dependencies between the
decision variables and the objective variables. These dependencies were only available

34 We measured the air distribution quality on a scale of 1 to 3. Our expert intuitively assigned 1 to the
best air distribution quality.

4.2. Air-conditioning system for a swimming pool

95

for physical causalities such as humidity, as described in section 4.2.5. We needed to
develop functional dependencies for the prices, and the quality.

 Prices

The prices and the technical parameters of the components can be supplied via a
database or using equations. Databases have to be available electronically for the
optimization; we had no such databases and therefore used approximated equations
derived from our research of commercial catalogs. We assumed that the price of each
unit depends linearly on the single most important technical parameter. In our case we
considered decision values to be parameters. We assumed that the total price of the
solution included the following ingredients: the price of the air-handling unit, the price
of the dehumidification unit, the price of the radiators, and the price of the air
distribution system.

The price of the air-handling unit is represented in Figure 35. This price includes the
unit with a filter, a mixing box, a heater, a fan and the basic control system. Figure 35
clearly shows that the price of the air-handling unit is proportional to the total flow rate,
but that the constants differ for the manufacturers ‘A’ and ‘B’. This is a nice
methodological example.

Ex. 25 Apparently systems produced by ‘A’ and ‘B’ have different values, i.e. service and
quality. This inspired us to consider 1) a new decision variable, which would reflect
the difference between ‘A’ and ‘B’, 2) a new objective variable, which would explain
and quantify the reason for 1), and 3) new functional dependencies to relate 1) and
2). For the sake of simplicity, we chose the cheaper air-handling unit, i.e.
manufacturer ‘A’.

y = 0,3761x + 2000,9
R2 = 0,9076

0
2000
4000
6000
8000

10000
12000
14000

0 2000 4000 6000 8000 10000 12000 14000

Flow rate [m3/h]

Price [EURO]

A

B

Figure 35. Linear interpolation of the air-handling unit’s price

The price of the dehumidification unit is roughly proportional to the dehumidification
capacity, as is shown Figure 36.

Chapter 4.Case studies

96

y = 407x + 1680

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Dehumidification capacity [kg/h]

Pr
ic

e
[E

U
R

O
]

Figure 36. Linear interpolation of the price of the dehumidification unit

The heating capacity, electricity and airflow rate, and the input of the dehumidification
unit were approximated as linear functions of the dehumidification capacity. The linear
coefficient for the heat output is 1.136 kW per kg/h. The linear coefficient for electric
power input is 0.41 kW per kg/h. The linear coefficient of the dehumidification airflow
rate is 222 m3/h per kg/h. This coefficient is strongly dependent on the manufacturers of
the unit, since there is no direct physical relationship between the dehumidification
capacity and the unit flow rate. The actual airflow can therefore vary significantly.

Ex. 26 (Decisions versus auxiliary variables) As a follow up to the previous example, we
detected a new technical variable that explains the variation in price of the
dehumidification units with the same capacity: the airflow rate of the
dehumidification unit. This variable should be positioned in the decision space. For
simplicity’s sake we positioned it in the auxiliary space and obtained its value using a
functional dependency.

 Price over 5 years

To approach the next objective we needed to calculate the energy consumption costs
over a five-year period. The five-year time span was arbitrarily chosen as a reference
point, so that we could evaluate the costs of the solution over time. Later we performed
a sensitivity analysis to see how the chosen period affected the set of optimal solutions.

A basic method to calculate the energy consumption in regions with cold winters is the
so called Day-Degree method [Ashrae Fundamentals, 1989], [Martinaitis, 1998]. This
method allows the ‘day-degrees’ to be calculated given the starting temperature of the
heating season. The day-degree method is based on the dimensionless temperature
distribution curve; Figure 37 shows such a curve for Prague. The day-degree is found by
integrating the curve from tmin to the system starting temperature. In the graph Tmin
corresponds to 1 on the dimensionless temperature axis. Strictly speaking, the graph
curve should therefore be inverted. We assumed that the same amount of vapor was
produced all year long. The dehumidification unit was therefore operated during the
entire year, resulting in the continuous production of an amount of heat due to the
dehumidification effect. The additional heat production shortens the heating season
since the air-handling unit and the radiator need to start supplying heat at a lower
outside temperature. This meant that we needed to modify the day-degree method to
incorporate the heat that was produced by the dehumidification unit.

4.2. Air-conditioning system for a swimming pool

97

y = -0.92x4 + 2.81x3 - 1.74x2 - 1.14x + 1.00
R2 = 1.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Dimensionless number of hours

D
im

en
si

on
le

ss
 te

m
pe

ra
tu

re

Heat supplied by
dehumidification unit

Heat supplied
by the system

system start
temperature

Figure 37. The dimensionless temperature distribution curve for Prague

We provided an additional flexibility in our model by introducing two coefficients,
namely the time reduction coefficient, which is equal to 0.7, and the power reduction
coefficient, which is equal to 0.9. These coefficients allowed us to take into account the
fact that the solution may not be operated at full power for the whole year. We
computed the additional energy consumption due to the electricity consumption of the
dehumidification unit. The resulting energy consumption was converted to the usage
costs for the five-year period based on prices of natural gas, the efficiency of the heating
system and the electricity costs. The total price over the five-year period was then
calculated as the sum of the price of all units of the system and the energy consumption
over five years.

 Air distribution quality

The air distribution quality represents our less-technical objective. To be able to argue
about the quality of the air distribution system, we split this objective into four criteria
that, in our opinion, constitute this objective. We defined that each criterion could vary
between one and three, where one represents excellent quality, two represents standard
quality and three represents poor quality. The resulting air distribution quality was
calculated as the average value of these four criteria. We assumed that an expert could
judge the quality criteria based on the information about the quality of the air
distribution system and the air exchange rate in the pool. This is an example of
interpretational dependency. The resulting limits that were used to translate the qualities
into numbers represent personal preferences.

Ex. 27 (Methodological example) Note that we combined four objective functions (criteria)
into one objective function. In general this is an incorrect approach; we should have
considered all four of them separately. In this case objective values did not have to
be normalized and could be expressed in physical units (instead of 1,2,3).

The first criterion addressed the quality due to the condensation of vapor on the
windows inside the swimming pool, as depicted in Figure 38. The second quality
criterion described the quality due to the air currents in the pool, as shown in Figure 38.
It seems that a poor system achieves low condensation on the windows only with a very
high window flow rate, whereas a good system achieves excellent quality with a lower
window flow rate.

Chapter 4.Case studies

98

Quality due to window condensation

0 10 20 30 40 50 60 70 80 90 100

poor

normal

fine

A
ir

di
st

rib
ut

io
n

sy
st

em

Window flow rate [m3/ m2*h]

2

2

2

1

1

1

3

3

3

Quality due to air currents

0 10 20 30 40 50 60 70 80

poor

normal

fine

A
ir

di
st

rib
ut

io
n

sy
st

em

Air exchange rate [1/h]

2

2

2

1

1

1

3

3

3

Quality due to window condensation

0 10 20 30 40 50 60 70 80 90 100

poor

normal

fine

A
ir

di
st

rib
ut

io
n

sy
st

em

Window flow rate [m3/ m2*h]

2

2

2

1

1

1

3

3

3

Quality due to air currents

0 10 20 30 40 50 60 70 80

poor

normal

fine

A
ir

di
st

rib
ut

io
n

sy
st

em

Air exchange rate [1/h]

2

2

2

1

1

1

3

3

3

Figure 38. Quality of the air distribution

The third quality criterion described the quality of the exchange rate. The fourth
criterion describes the amount of air supply per person. The resulting air distribution
quality was therefore computed as follows: <air.quality=air.condensation on the
windows+air .draft risk+air.Q Ex rate+air.Q Air pers)/4>.

4.2.4 Contextual information

We represented observations about the context of the swimming pool by introducing
several concepts and attributes of the contextual type such as a new concept <pool>, a
new attribute water area <S>, a new attribute <winter losses>, a new attribute <summer
gains>, a new attribute <win area> (i.e. the area of the windows) and a new attribute
<people> (i.e. the number of people). Winter losses and summer gains were typically
calculated as having a maximum value and were assumed to be contextual. The climatic
data was provided according to the extreme weather conditions in the Czech Republic.
We described important information about the climate by introducing a new concept
<climate> and a number of contextual attributes such as the temperature inside <t in>,
the maximum relative humidity <fi>, the water temperature <water t> and so on.

4.2.5 Auxiliary (intermediate) information

According to the ACCEL design methodology, after a number of design and objective
variables have been introduced we need to relate these values using functional
dependencies. We therefore introduced several variables in the auxiliary knowledge
space, whose values were obtained using functional dependencies. We expressed the
humidity production (evaporation) inside the swimming pool as a new attribute <Mw>.
The functional dependency to compute <POOL.Mw> was taken from the German
standard VDI:

AppMw ddW ⋅−′′⋅=)(β
Mw - humidity production [g/s]

β − mass transfer coefficient [g/Pa s m2], which depends on the type of activities
in the pool. For swimming pools that are used just to swim in, this coefficient is lower
than for “all day use” swimming pools

4.2. Air-conditioning system for a swimming pool

99

pdw - saturation partial pressure of water vapor at the water temperature

pd - partial pressure of water vapor for the internal air

A - water area [m2]

A minimum flow rate <flow rate winter> of outside air, needed to keep the inside
relative humidity under than the maximum acceptable value, was calculated for the
winter and for the summer according to the humidity production of the pool and the
difference between the outside and the inside humidity. Note that the actual flow rate of
the outside air will be less due to the dehumidification effect, which reduces the amount
of air supply needed.

4.2.6 Representation in ACCEL and optimization

We used ACCEL continuously from the first day of the project until the last. The
resulting representation in ACCEL is shown in Figure 39. The product model was
completed by connecting variables from the objective space with the variables in
decision space and contextual space so that there were no non-evaluated cells. We then
used a Pareto optimization dialog to generate the optimized solutions. We managed to
add some additional constraints in this dialog. All the design decisions were left for
variation by the optimization algorithms.

Figure 39. Air-conditioning problem represented in ACCEL

An example of an additional constraint is the relative inside humidity, which has to be
between 40% and 65%. For this constraint we were not interested in maximizing or
minimizing the values; it therefore had the type “free”. In a similar way we expressed
the fact that the amount of air supply per person had to exceed 50 [m3/h].

The total number of possible solutions in the decision space was 1176. This number of
solutions was easily manageable by an exhaustive optimization algorithm. It took 45sec

Chapter 4.Case studies

100

on a pc with a 600MHz processor to generate and evaluate the decision space. The
algorithm selected four optimized solutions, as shown in Table 14.

Table 14. Pareto front optimal solutions

 Decisions Objectives

Solu-
tion

Supply
air

flow
rate

Air
handling
unit flow

rate

Dehumid
ification
capacity

Air distr.
system

Inside
humid.

Air
supply

per
person

Air distr.
quality

Price over
5 years

1 150 600 2.5 ADpoor 50 75 1.75 14 455

2 150 600 2.5 ADfine 50 75 1.5 15 763

3 150 900 2.5 ADfine 50 75 1.25 17 203

4 150 1500 2.5 ADfine 50 75 1 20 150

Remember that the decision vector of the original solution was <SD>=
(315,600,0,ADnorm). The corresponding objective vector was <SO>= (50,157,2,18355).
By comparison, we can see that the original solution is dominated by three of the four
produced solutions (since <Air supply per person> is a constraint and not an objective).

We needed to select a single solution for the product from the optimized solutions. We
will demonstrate our method of tightening of the constraints, which was introduced in
section 3.7.2. By analyzing the solutions, we defined that the price after 5 years should
not exceed 16,000 Euro and that the air distribution quality should be less than 1.5. This
meant that only the second solution was left. This resulted in a cost saving of more than
2500 Euro over a five-year period.

4.2.7 Analysis of the model

The model can be further validated using some quick analysis methods that are
supported by ACCEL.

 Range analysis

The quickest way to analyze product models is to consider the chosen decision values.
Remember that each decision value is varied within the range which is specified by the
function <ALT()>. For decision values of a nominal and higher order (those that can be
compared with each other), the following consideration is applicable: the chosen
decision values should not be the minimum or the maximum values from the range. If
this is the case, the range should be extended unless there are reasons for the range to be
as it is. In our case all the decision values for all optimized solutions were within the
ranges.

 Analytical sensitivity analysis

We define analytical sensitivity analysis to be the sensitivity of the resulting set of
optimized solutions on contextual or decision values, i.e. how much the resulting set of

4.2. Air-conditioning system for a swimming pool

101

optimized solutions changes when a contextual value changes. We will give two
examples.

Ex. 28 (Number of reference years) For instance, how would the set of optimized solutions
change if we considered costs after one or ten years instead of five years? Given the
fact that it is easy to generate optimized solutions we will check this for both one
and ten years. The result for a ten-year time span is not surprising. The set number
of optimized solutions is the same but the optimal dehumidification capacity of the
solutions changes from 2.5 to 3 Kg/h with respect to the five-year time span. This is
easy to explain, since the higher dehumidification capacity saves more energy and
has paid for itself after ten years. The set of optimized solutions for the one-year
time span is more surprising. The solutions are divided into two categories: solutions
that rely on the dehumidification effect and solutions that rely on the air supply (see
Table 15). We can explain this result if we consider that after one year the approach
of dehumidifying with the air supply is still reasonable because of the low investment
costs. We can see that this is no longer the case in the set of optimal solutions for
five years.

Ex. 29 (Starting temperature of the heating season) Consider the dependency of the result
on the starting temperature of the heating season. This temperature is known for
residential and office building but not for swimming pools, since it is very sensitive to
the type of building. We assume that the temperature can vary from 15 °C for
swimming pools with many windows and large summer gains, up to 30 °C for
underground swimming pools. The sensitivity analyses for the starting temperature
show that the decision values of optimal solutions stays nearly the same. For
instance, the optimal dehumidification capacity increases up to 3 kg/h if the starting
temperature is 15 °C. The total price after five years grows, mainly due to the
increased energy consumption costs.

Table 15. Pareto front optimal solutions for one-year time span

 Decisions Objectives

Solution Supply
air

flow rate

Air
handling
unit flow

rate

Dehydr
ation

capacity

Air
distr.

system

Inside
humid.

Air
supply

per
person

Air distr.
quality

Price in 5
years

1 150 900 2.5 ADfine 50.4 75 1.25 11586.3

2 150 1500 2.5 ADfine 50.4 75 1 14060.3

3 300 900 0 ADpoor 52.7 150 1.75 8111.23

4 300 900 0 ADfine 52.7 150 1.5 10073.2

 Graphical sensitivity analysis

ACCEL allows the designer to quickly visualize dependencies between cells, as was
explained in section 3.6.4.

Ex. 30 (Number of years) For instance, consider the dependency of the solution price on the
dehumidification capacity after five years. Two examples of these dependencies for
different numbers of years are shown in Figure 40. From these graphs we can see
that the dehumidification capacity has an optimal value after five years. After one
year there is no such optimal value.

Chapter 4.Case studies

102

Flow rate=600, Fresh air flow rate=150, Time
span=5 years

Flow rate=600, Fresh air flow rate=150, Time
span=1 years

Flow rate=600, Fresh air flow rate=150, Time
span=5 years

Flow rate=600, Fresh air flow rate=150, Time
span=1 years

Figure 40. Sensitivity graphs created in ACCEL

4.2.8 Conclusions

We now present some conclusions based on our own opinions, the observation of the
results and the opinion of our expert.

 Our conclusions

• We achieved the goal of this case study, i.e. we developed a new solution that
we were able to compare with the original solution.

• It turned out that the new solution was more economical than the original one.
The cost difference over five years compared to the original solution would be
about 2,500 Euro; for a ten-year time span, the difference would be about 8,000
Euro.

• By considering multiple objectives, such as the costs after five years, we were
able to design a solution that would be much cheaper. However, the initial costs
of the new solution would be higher than the costs of the original one.

• This exercise has estimated the potential costs saving and has hopefully
provided the motivation for others to develop models using multiple decisions
and objectives.

• The problem of re-engineering of well-known engineering systems appear to be
similar to design problems. Broaden considerations require unconventional
approaches to development of functional dependencies. It appears to be a time
consuming process that might require research efforts, communication and
unconventional decision-making. Therefore ACCEL appears to be useful in re-
engineering types of design projects.

4.3. Transportation system for WTC

103

• Our re-engineering case study was carried out in a domain that is well supported
by computer tools. ACCEL cannot compete with these tools in many respects.
The question is whether the standard tools can be easily broaden to consider new
objectives and decisions simultaneously.

• Our expert appreciated the main features of ACCEL i.e. multi-objective
optimization, knowledge representation and sensitivity analysis. He was able to
learn ACCEL easily and work independently with the tool. From the feedback
that our expert gave, we can conclude that ACCEL was taken seriously and was
considered to be an acceptable tool.

 Conclusions of our expert

After the project, we asked our expert to give some feedback about his experience with
the tool. The results are summarized below, with minor editing of the original text.

Our expert was initially skeptical about the tool, but he found that the tool can be very
useful in the design process. The definition of the problem and the data inputs are pretty
easy but more copy-paste or automatic generation possibilities would be useful. The
inbuilt optimization and analysis tools are implemented well. You only need a limited
amount of information to be able work with ACCEL. During our work we had no
problems with unexpected program errors. The main problem in using this tool more
extensively in the HVAC system design process is the absence of predefined databases
of solutions. All the solutions have to be defined in the tool. In a standard HVAC
system design it takes less time to define a problem. Some functional dependencies
were not available and could not easily be derived, especially the dependencies used to
evaluate air quality and energy consumption. During this case study more then half of
the time was spent preparing functional dependencies for the price of equipment versus
the technical parameters. The tool would be easier to apply in research and education.

4.3 Transportation system for WTC

4.3.1 Introduction

This section describes an application of ACCEL in education of the post-graduate
designers. The presented here case study is mainly intended for didactic purposes, as we
demonstrate how several groups of student designers made use of ACCEL. We will
consider more innovative designs than in the previous example; therefore the
meaningfulness of the developed models is a secondary issue. The correctness and
detailed analysis of the developed models will be left out of the discussion.

Several of the post-graduate design programs at the Stan Ackermans Institute include
the course “Methods and Techniques of Design” in the curriculum. In this course, dr
Kees van Overveld presents design methods and techniques in a systematic manner.
This course and the methodology used were specially developed for a technological
environment. Part of the course is a design project. During the project, the students are
divided into teams, which allow them to apply their newly learned methods in a
collaborative setting. The students use ACCEL during the conceptual design phase,
when the selected conceptual solutions needed to be optimized. Before using the tool

Chapter 4.Case studies

104

the students were given a short (one or two hours) introduction to the basic principles
and functionality of the tool.

In the described here case study the students were asked to design a vertical
transportation system for the World Trade Centre in New York. This problem was
chosen for this course for the following reasons:

• It is multidisciplinary and requires a team approach.

• The students are partially familiar with the problem, and can grasp it after a
short introduction.

• Even without sophisticated domain-dependent knowledge, good solutions can be
distinguished from bad ones.

• The problem’s decision space is huge. This gives the students the freedom to
apply various design methods. Design problems that are dedicated to a specific
discipline would usually require a great deal of additional effort from the
students in order to avoid standard, textbook-like solutions.

• Although a thorough mathematical analysis of the capacity of elevators is quite
complicated, simple models can give reasonable outcomes.

• The problem contains all the characteristics from the early design phase:
identification of the stakeholders, formulation of assumptions, idea generation,
generation of solution concepts, stating objectives, optimization of the solution
concept(s) and selection of the best solution(s).

The teams were allowed to make their own assumptions and re-define the design
problem. We will present the results of the three groups as follows:

• Some of the manually-generated solutions are described in section 4.3.2.

• The choice of objectives is addressed in section 4.3.3.

• The optimization of the chosen solutions using ACCEL is presented in section
4.3.4.

• Our conclusions are presented in section 4.3.5.

Our aim is to present the results as close to the original form as possible; some
additional editing of the results has been applied, however.

4.3.2 Manual generation of solutions

At the start of the project, each group generated a number of ideas using design methods
for the generation and structuring of ideas, such as brainstorming and some additional
techniques [Overveld, 2003]. The ideas were further evaluated and the selected ideas
were combined into solution concepts. Each group produced a number of concepts,
which are shown in Table 16. The concepts were evaluated further and a single
conceptual solution was selected for the conceptual design phase. The first two groups
made the selection using weighting techniques. The third group made use of ACCEL.
The selected concept for any group is underlined and is listed in the first position of
each column in the table.

4.3. Transportation system for WTC

105

Table 16. Concept solutions of the groups

Group 1 Group 2 Group 3

Concept 1. Elevator with
ranges and intervals

Concept 2. Auto Garage
around the building

Concept 3. Escalators

Concept 1. Elevators, stairs and supplementary -
helicopters, catapults and parachutes

Concept 2. External moving wheels, stairs,
supplementary-balloons, rockets

Concept 3. Carriages, moving surfaces,
supplementary stairs

Concept 1. Elevator

Concept 2. Escalator

Concept 3. Train: railroad track
around building in a spiral

From these results we can see that all the groups chose an elevator-like solution
concept, although they did consider conceptually different solutions as well. The chosen
concepts are not identical, which will become clearer in the following pages where we
present the selected concepts.

 Group 1

This group decided to proceed with a concept which they called “range-interval
elevators”. The idea behind this concept was to use two kinds of elevators. The range
elevator moves within its limited range as follows: start at a middle floor, ascend to an
upper floor, descend to a lower floor, and ascend to the middle floor again. During this
path the elevator can stop at designated by the users floors, as shown in Figure 41.
Several range elevators would operate in a long shaft.

Range
length

Range
Elevator

Interval
Elevator

Lower floor

Middle floor

Upper floor

Interval
length

Range
length

Range
Elevator

Interval
Elevator

Lower floor

Middle floor

Upper floor

Interval
length

Figure 41. Concept for the product of Group 1

The interval elevators move within the intervals, which are defined by the middle floors
of the range type of the elevators. The interval elevator stops only at the ends of the
interval. This allows to transport the users quickly to a certain floor. At each interval
there can be a different number of the interval elevators, which move in synchronization

Chapter 4.Case studies

106

with their vertical and horizontal neighbors. This means that all parallel interval
elevators would make the same movement, i.e. they would depart and arrive together.
When the set of interval elevators depart from the top of their interval, the interval
elevator in the interval above would arrive at the lowest floor of its interval. Since
intervals have an overlap of one floor, the change to the next interval would therefore
not cause any delay.

There are three different types of elevator propulsion: traction, magneto-propulsion and
hydraulics. These types determine the volume occupied by the elevators, the
maintenance costs, the energy consumption, the construction costs and the speed of the
elevators. The group assumed that the range elevators would use the same propulsion
method, which could differ from the propulsion system of the interval elevators. In
addition to the choice of the propulsion system, several other solution elements that
required decisions were also identified. The results for this group are shown in Table 17.

Table 17. Decisions values considered by the first group

Decision variable Description Expression

Building.#ranges Number of ranges per building ALT(2;3;4;5;6;7;8;9;10;15;20;25;30;45;40;50)

Elevator.capacity Capacity of an elevator ALT(10;15;20)

Range.propulsion Type of propulsion system for
range elevators

ALT(Traction;Water;Magneto)

Interval.propulsion Type of propulsion system for
interval elevators

ALT(Traction;Water;Magneto)

 Group 2

Group 2 took a broad approach to the problem by including the following elements in
the solution concept: stairs, standard elevators and auxiliary transportation means such
as helicopters. The resulting design decisions are shown in Table 18.

Table 18. Decision values considered by the second group
 Decision variable Description Expression

VT.stairs Position of the stairs ALT(internal stairs; external stairs)

VT.elevators Type of elevators ALT(traction elevator; hydraulic elevator)

Traction
elevator.capacity

Capacity in number of people ALT(30;20;10)

hydraulic
elevator.capacity

Capacity in number of people ALT(30;20;10)

Number of units Number of units (stairs, elevators) Different sets

VT. Coeff4 Percentage of people evacuated by the
stairs

ALT(0.1;0.3;0.5;0.7;0.9)

 Group 3

This group approached the choice of the solution concept in two steps. In the first step
the group considered three conceptually-different alternative solutions, namely an
elevator, escalator and train. The group built a model in ACCEL in order to select an

4.3. Transportation system for WTC

107

optimized solution. The concept of an elevator was selected. In the second step the
group therefore considered six alternative elevators as shown in Table 19.

Table 19. Six different concepts of the elevator system

The standard elevator (ST
elevator)

All elevators are bottom-top type.

Double-Decker elevator (DD
elevator).

Two elevators are used in one
shaft.

Sky-lobbies.

Extra sky lobby elevators, which
stop on the ground floor, the 40th
floor and the 70th floor).

Even/Odd floors elevator
systems (EOF_elevator).

Half of standard elevators are
used for even floors, and half are
used for odd floors.

Traffic controlled elevators
(TD_Elevator).

This concept is based on control
of the traffic. More elevators are
allocated for “busy” floors.

Stair-shaped elevator system
(SS_Elevator).

Elevators are structured in the
form of a staircase.

The resulting design decisions that represent the solution concept are shown in Table
20.

Table 20. Decision values of the elevator concept solution

Decision value Description Expression

of elevators of each
type

Each elevator type has a different
capacity for people, therefore
various alternative numbers of
elevators are considered

Different numerical ranges, e.g.
ALT(20;25)

Solution.elevator type Type of the elevator ALT(ST_Elevator;DD_Elevator;Skyl
obbies;EOF_Elevator;TD_Elevator;S
S_Elevator)

4.3.3 Objective values

Each group had to extend the initial formulation of the problem and define the
stakeholders and the objectives. The results of this analysis are shown in Table 21 and
Table 22.

Chapter 4.Case studies

108

Table 21. Stakeholders identified by each group

Group 1 Group 2 assumptions Group 3 assumptions

Companies that rent space

Employees who work in the building

Investors who finance the building

Employees

Residents

Tourists

Owners

Municipal authorities

Specialists (builders)

Owners: The owners of the tower

Future clients: Future tenants, users

Staff: Employees

Visitors: Tourists, citizens, businessmen,
constructors

Municipalities: The authorities, and fire
departments etc.

Table 22. Objective attributes considered by the groups

Group 1 Group 2 Group 3

Travel time [s],

Rentable space [m3],

Energy costs [$/year],

Maintenance costs [$/year],

Realization costs [$].

Latency (max waiting time for elevators, sec)

Energy (average energy consumption, MJ)

Aoc (area occupied by construction, m2)

EvacTime (evacuation time, sec)

Total Cost [$]

Waiting time [s]

Evacuation Time [s]

Comparative Construction Time
[dimensionless]

 Contextual values

The designers were stimulated to explore the context of the product and hence to add to
the minimal information that was initially given about the context. The designers had to
identify important contextual information and make their own assumptions or ask
questions. The resulting assumptions made by each group are shown in Table 23.

Table 23. Different contextual values and attributes considered by the groups

Group 1 Group 2 Group 3

The people are equally distributed over the height of the
building

People are considered to travel from floor 0 (ground level) to
floor x, where x can be any floor. The elevator sequence then
becomes the following: a person first takes the interval
elevator to the desired section of the building, then that
person takes the range elevator to get to the precise floor.

Floor.height =5

Building. arrival rate=1 person/sec

Number of floors: 100

Height of the building:
450 m

Area that one person
needs (5 sq meters)

Area of a floor 14000 m2

Building.Height= 400m

Building. Number of Floors=100

Building.number of people per
floor=1000

4.3.4 Analysis of the results

We briefly analyzed the models in order to see whether the designers were able to use
ACCEL and the built-in optimization facilities correctly. The resulting models and the
solutions of the groups are presented in Appendix D. From the analysis of these results
we came to the following conclusions:

• The groups made proper use of the auxiliary attributes to decompose complex
expressions.

4.4. Early experiments

109

• The groups managed to translate the design problems into an optimization
problem and run the optimization facilities provided by ACCEL.

• The resulting decision space had significant differences compared to each other
in the number of solutions and types of solutions.

• Our analysis of the developed models showed that the ranges of the decision
variables in some models were not adjusted properly (i.e. the optimal solution
took the min or max values from the ranges).

For the first two groups the number of solutions was relatively small and the
exhaustive algorithm could be used to generate all possible solutions. For the third
group the large set of decision values and alternatives led to a huge decision space,
which could not be managed by the exhaustive algorithm. We checked the results
using the genetic algorithm with the following settings: Generations=50; Population
size=50; Mutation rate=10%. The tests were done on a computer with the following
properties: Memory - 130MB, System - Windows 2000 and Processor - Intel
662MHz. The test results of this optimization are shown in Table 24.

Table 24. Results of optimization

 Decision
space

Optimization
Type

Time
(min:sec)

Pareto
solutions

Group 1 1536 Exhaustive 0:10 3

Group 2 4320 Exhaustive 1:03 10

Group 3 1181000 Genetic 0:08 1

4.3.5 Conclusions

All groups delivered a report, a presentation and personal feedback. In particular, they
were asked to give feedback on ACCEL. This information was used to carry out further
analysis, and led us to draw the following conclusions:

• The negative comments were constructive and suggested 1) improving the user
interface 2) improving the introduction to ACCEL and support of the
complementary examples and 3) extending the functionality of ACCEL in order
to deal with continuous ranges and vectors.

• A number of bugs (program errors) were discovered in ACCEL.

• None of the negative comments suggested that ACCEL was useless or that the
designers were incapable of achieving the results using the tool. The feedback
suggested that ACCEL was adequate for generating concepts.

4.4 Early experiments

The formalism of the model was developed early on in this PhD project, but we initially
had no software support for it. Our experiments revealed that a) the formalism helps
designers to work systematically and think more clearly b) a simplified version of the

Chapter 4.Case studies

110

formalism can be practiced without software and c) software support is essential for the
efficient use of the formalism. In the early experiments we took a re-engineering
approach because many design processes are forms of re-engineering, where the first
stage consists of making an inventory of properties of an existing artifact. In such cases
the postponing of conditional decisions and multiple-valued decisions are not yet
required, and a simplified form of the formalism can already be implemented using a
standard database and/or spreadsheet tools. We presented results of some of the early
experiments in Ivashkov [2002].

The early assessment of the design model allowed the validation of underlying ideas
even without the formal underpinning of the model and without the dedicated software
support being fully available. The use of design assignments based on re-engineering
provides practical help in the choice of assignments and the validation of results. It also
allows us to assess the consistency and usefulness of the model independently of each
other.

4.4.1 The second year

 First experiment

In the first experiment two groups of two students from the IPPS program (Intelligent
Product and Production Systems, one of the SAI programs mentioned earlier) had to re-
engineer a coffee maker and a desk-lamp. The goal of the course was to concentrate on
one of the issues: environmental aspects, lifecycle, energy, or material consumption.
The students used the Quality Function Deployment (QFD) techniques to work with the
requirements, and the Life Cycle Assessment (LCA) method to deal with the complex
interaction between a product and the environment.

 Second experiment

In the second experiment, five groups of between two and three students from the USI
program (User System Interaction) had to design various communication systems,
including a communication system for grandparents and grandchildren and an
Electronic Interactive System for Supporting Brainstorm Sessions.

In both experiments the students were asked to describe an existing artifact (in the
second experiment it was a system that they designed themselves) using the terms of the
model, thereby representing the knowledge in the formalism of our operational model
(the model). Both the descriptions, provided in a spreadsheet format, and the students’
opinions about the model were attached to their final reports.

 Third experiment

In the third experiment ten students from different programs (USI, IPPS, Mathematics
for Industry, Process and Product design, Software Technology) volunteered to
participate in an interdisciplinary workshop organized at SAI. The system to be re-
engineered was supposed to be well-known, interesting and challenging enough for the
students. We chose a lighting system for a bicycle based on a mechanical dynamo. The
purpose of our experiment was not to design a realistic and competitive substitute for

4.4. Early experiments

111

the existing solution, but rather to monitor the process of idea generation and reasoning
in terms of concepts, attributes and values.

The review of the descriptions given by the students showed that the students were
capable of conveying an architectural description of their designs in terms of the
formalism. We gathered more evidence that the functional view of attributes invited
students to think about alternative values, which produced meaningful results they
might otherwise have overlooked. The descriptions were also useful for reviewers,
helping them to understand the made decisions behind the designed systems. The use of
the model to represent the design decisions invited the students to include alternative
designs that might have been skipped in conventional, less-structured reports.

Several times during the workshop, the mechanism of attributes gave rise to quite
unorthodox solutions that nevertheless needed to be taken seriously. For instance, the
students did not know that the value “discrete” for the attribute “dynamics” had already
led to the US patent 5,804,927, “Light emitting apparatus for a bicycle” in September
1998. The authors proposed to emit light using impulses instead of a conventional
continuous emission, which enables energy saving. A value “piezoelectric” for attribute
“Energy Generator” (EG) is the main idea in US patent 5,624,175, “Bicycle safety
light” from April 1997. The power source includes piezo-electric elements that generate
electricity when struck by a moving weight.

The usability and the usefulness of the model were assessed using the assessment
methods (AM) 1 to 3. From the collected data we could see that the students did not
have problems in understanding and application of the model to the design process. In
the first experiment we used more closed questions, which allowed us to assess the
students’ opinions about the model from specific viewpoints. In addition to questions
directly related to the model, we also assessed the students’ opinions about the model as
a tool for decision-making, knowledge management, idea generation and
communication. The broadness of the initial survey helped us to spot the most useful
points of the model which appeared to be (1) the stimulation of creativity and (2) the
facilitation of communication within the group. In the second and the third experiments,
we used the AM2 more extensively to assess the extent of (1) and (2). Again it turned
out that (1) and (2) were recognized by the majority of the students, while some students
commented on the difficulties of managing the knowledge due to the somewhat formal
appearance of the information format.

To summarize, our experience indicated that:

• The students’ creativity was stimulated by formulating knowledge in terms of
concepts, attributes and values, according to the gathered feedbacks.

• Most of the students appreciated the administration of the concept, attribute, and
value according to the model after if they had get used to the more formal way
of formulating and expressing their thoughts. The time of adaptation varies in
dependence on the students background and skills. For post-graduate students
we estimate the necessary time is about two to three days.

• Above all, the model seemed to be appreciated as a tool to improve the clarity of
communication among the members of a design team.

Chapter 4.Case studies

112

4.4.2 The third year

The first software prototype with a Graphical User Interface appeared during the third
year of this PhD project, but it was still too early to give it to the designers. The use of
the model therefore still relied on standard spreadsheet software and standard methods
of decision making.

In one of the experiments that we conducted in this year, students from one of the
design programs at SAI had to design a system for the supply and distribution of coffee
during a large pop concert. Students were asked to deliver the following results:

• Develop three different concepts for a coffee distribution problem.

• Describe the main assumptions, decisions and their rationale in terms of
concepts, attributes and values. Students were also asked to explicitly
distinguish the dependent variables from independent variables.

• Provide quantitative and qualitative modeling using the techniques that have
been studied.

• Compare the advantages and disadvantages of the concepts and choose the best
one.

Some results of the groups are shown in Appendix E. On the basis of the students’
reports we came to the following conclusions:

• Students experienced difficulties in managing the complexity of models using
the standard spreadsheet software.

• Students appreciated and used sensitivity analysis to support decisions about
improving the precision of their product models.

• Students experienced problems when using the weighting method. Once the
objectives were assigned weights and were normalized, their application to
complex solution concepts became difficult.

• Students found it interesting and unusual to describe product knowledge in terms
of concepts, attributes and values. They expressed the need to acquire additional
design techniques in order to become fluent with the formalism.

• In the developed models we observed that students had difficulties in deciding
which variables were dependent and which were independent. While practicing
the model, some variables move from one category to another. In this way, our
model made the students aware of knowledge categories and helped them to
define the product model.

CHAPTER 5. CONCLUSIONS AND
RECOMMENDATIONS

5.1 Results

In this thesis we presented a tool to support generating concepts. Our tool aims to help
designers in this early design phase, which has traditionally been poorly supported by
computational tools. In the presentation of the tool we considered the following chain of
transformations:
Design problem→

The product model→

Mathematical programming →
problem

Genetic algorithms→

 Optimal solutions

In the following list we highlight the major results that made our support tool
possible.

1. The four knowledge spaces, i.e. the decision space VD, the objective space VO,

the contextual space VC, and the auxiliary space VA. We showed that these
spaces represent orthogonal dimensions of the four ways of operating product
knowledge.

2. A formalism that facilitates the structured and systematic translation of the
designer’s implicit knowledge into the product model.

3. A formalized mechanism of questions and answers for reflections; this
mechanism aims to support the designers during the reflections on the design
activities. We derived eight categories of questions and eight corresponding
formats in which to give the answers.

4. Interpretational dependencies which allow less-technical objectives to be taken
into account.

5. The application of an existing genetic algorithm, which was implemented and
applied to the early design phase.

Chapter 5.CONCLUSIONS and RECOMMENDATIONS

114

6. A complete set of functional requirements for a tool aiming to support
generating of concepts in the early design phase.

7. A graphical spreadsheet interface that supports multi-value answers, the partial
evaluation of knowledge, and the use of a multi-objective optimization
procedure without extra steps.

8. A method to tighten constraints, which enables convergence to few optimal
solutions without the prioritization of the objectives.

9. The evaluation of our support tool on several occasions.

5.2 Compliance with initial objectives

Our conclusions about the compliance to the initial set of objectives are derived from
the feedback gathered from student designers, publications and reviews.

• Systematic. We introduced a state-transition model and formalized it. We
explained how transitions can result from a) reflections and a question and
answer mechanism and b) operations performed by the computer.

• Multidisciplinary. The basic ingredients of our formalism are not attributed to a
single engineering discipline. We made no further assumptions about the domain
of the product or type of the design process. The developed support was
evaluated in multidisciplinary teams and applied to the design of different
products.

• Acceptable. From the conducted experiments we conclude that the developed
support tool is acceptable. This opinion is based on students’ opinions and the
results obtained using our tool. During this PhD project several publications
were positively reviewed by experts in the field.

• Relevant. The developed support tool allowed the students to experience the
complexity of realistic design problems and be better prepared for working in
industry.

• Teachable. The developed support tool has been used in design courses for the
last few years. From the feedback gathered, we conclude that prospective
designers appreciate the systematic approaches, and are willing to learn them.
We have developed a design methodology that enables the effective teaching of
our approach.

5.3 Recommendations for design courses

From the gathered feedback, we conclude that the operationality of the tool does not
limit creativity; in fact, it facilitates thinking about multiple design decisions, multiple
objectives, exploration of the context, and making more considered decisions using
product models, analysis and optimization. The students are able to practice the
formalism after a short introduction. Group discussions benefit from a more formal way
of individual thinking. Using this formalism, creativity techniques can be introduced
into the technological context more easily. The conducted experiments and courses
allow us to conclude that the developed approach can be used to effectively teach and

5.4. Recommendations for software development

115

support systematic approaches to the early design phase. We can therefore recommend
our tool for design courses. More tests and some improvements are necessary for
application of the tool in industry. Below we present some recommendations for that.

5.4 Recommendations for software development

• Allow the matrix form of expression. The matrix form is an alternative way of
representing structural product models. From the gathered feedback we conclude
that the support of the matrix form of expressions is required in order to deal
with more complex product models.

• Support of continuous ranges. In the current version of the support tool the user
is restricted to discrete ranges of the variables. We recommend that continuous
ranges also be supported.

• The support of the ‘is-a’ and ‘has-a’ relations needs to be build in.

• The “Undo” function needs to be build in.

• Assist the analysis of the developed product models. We have described several
forms of analysis, which we recommend to build in.

• Improve the user interface. The graphical user interface had relatively low
priority. Our experiments revealed a high demand for improved user-friendliness
of the interface.

• Facilitate project management. The designers expressed the need to have basic
functionality of project management tools.

• Help the user in the detection of conflicts. We recommend building in an
advanced analysis feature such as the detection of conflicts between objective
functions. Such an analysis can be done by analyzing the generated set of
optimal solutions. The techniques for resolution of conflicts can then be linked.

• Pay more attention to resolution of conflicts. We believe that there are
possibilities of benefiting from existing design knowledge, which is
multidisciplinary and formal. We therefore recommend the enabling of a link
with TRIZ theory [Altshuller, 1990] for the systematic resolution of the detected
conflicts.

• Support interface to other data formats. A flexible interface with the existing
detailed design tools can improve productivity and enable the reuse of the
available product models.

5.5 Epilog

Although a software prototype was developed and applied in teaching and practice, we
still have little recorded evidence of usability of our approach. Our experiments make
the future research and development only less undirected. More rudimentary testing
needs to be done. This can be done only through practice. A demonstrate of this point
requires some action on the part of the reader.

Chapter 5.CONCLUSIONS and RECOMMENDATIONS

116

Ex. 31 We ask you to turn your head and focus on an object on your left hand side, and as
quickly as possible try to turn your head and focus on an object on the right hand
side. These actions might require a few iterations before you notice that focusing is
not easy and takes time. The same procedure can be done with the aid of a pointer,
e.g. a finger. Point to the same object on the left hand side so that you see the
object in the direction of the finger. Turn your finger and the head synchronously to
the same object on the right hand side. Does it help you to focus?

The presented approach can be seen as just such a pointer. It can be applied to any
design problem. After some time our pointer helps us to model the view and manage the
complexity of this view. A little later it suggests the best solutions from the model of the
view. However, in the end, it is completely dependent on the eyes and the ideas.

117

Appendix A. SPEA algorithm

(Strength Pareto Evolutionary Algorithm)
Input: Pt (population at the moment t)

Pt (archive population at the moment t)
N (population size)
N (maximum size of archive set)
T (maximum number of generations)
pc (crossover probability)
pm (mutation rate)

Output: A (non-dominated set)

Step 1: Initialization: Generate an initial population P0 and create the empty archive set P=∅;

Set t= 0.
Step 2: Update of external set: Set the temporary archive set P ’ =Pt .

a) Copy non-dominated individuals regarding Pt to P’
b) Remove dominated individuals from P’
c) Reduce the number of individuals in P’ if the size> N by applying an elitism

strategy , and assign the resulting reduced set to Pt+1.
Step 3: Fitness assignment: Calculate fitness values of individuals in Pt and Pt
Step 4: Selection: Set P’=∅; For i=1…N do

a) Select two individuals i; j ∈ Pt ∪ Pt at random.
b) If F(i)< F(j) then P’= P’+{i} else P’= P’+{j} Note that fitness is to be minimized

here.
Step 5: Recombination:. . . P’’ , see 2.7.3
Step 6: Mutation: . . . P’’’, see 2.7.3
Step 7: Termination: Set Pt+1= P’’’ and t=t+1. If t≥ T or another stopping criterion is

satisfied then set A to non-dominated individual in Pt else go to Step 2.

The main loop of the algorithm is outlined in Figure 42.

population population PP

archive archive PP

mating pool mating pool P’P’

Update of archiveUpdate of archive2

Fitness assignmentFitness assignment3

SelectionSelection4
RecombinationRecombination5

MutationMutation6

population population PP

archive archive PP

mating pool mating pool P’P’

Update of archiveUpdate of archive2

Fitness assignmentFitness assignment3

SelectionSelection4
RecombinationRecombination5

MutationMutation6

Figure 42. Basic steps in the strength Pareto evolutionary algorithm

118

Appendix B. Syntax of ACCEL
Operators

Operators specify the type of calculation that can be performed on the elements of an
expression. ACCEL includes four different types of calculation operators: arithmetic,
comparison, Boolean, and reference.
Arithmetic operators

To perform basic mathematical operations such as addition, subtraction or
multiplication, to combine numbers and to produce numeric results, ACCEL supports
the following arithmetic operators.

Arithmetic
operator

Meaning Example Result

+ (plus sign) Addition 3+3 6

– (minus sign) Subtraction
Negation

3–1
–1

2
-1

* (asterisk) Multiplication 3*3 9

/ (forward slash) Division 3/3 1

^ (caret) Power 3^2 9

Comparison operators

To compare the two values with the following operators. When two values are
compared using these operators, the result is a logical value, i.e. either TRUE or
FALSE.

Comparison
operator

Meaning Example Result

= (equal sign) Equal to Product.Price=40 TRUE or FALSE

> (greater than sign) Greater than ProductA.Price > ProductB.Price TRUE
or FALSE

TRUE or FALSE

< (less than sign) Less than ProductA.Price < ProductB.Price TRUE or FALSE

Boolean operators

Boolean operators enable logical operations with Boolean expressions.

Text
operator

Meaning Example Result

& (ampersand) Logical AND TRUE&FALSE FALSE

| Logical OR FALSE|TRUE TRUE

! Logical NOT !TRUE FALSE

Syntax of ACCEL

119

Reference operators

Reference operators enable us to refer to values vij in expressions.

Reference
operator

Meaning Example

. (dot) Reference to a cell Product.Price

this Reference to the corresponding concept or the corresponding attribute
of a cell

This.price
Car.this

Table 25. Functions supported by ACCEL
Name Description Example

ACOS(numerical
expression)

Returns the arccosine of a numerical expression.
The arccosine is the angle whose cosine is
number. The returned angle is given in radians in
the range 0 (zero) to pi.

ACOS(-0.5) equals 2.094395 (2*pi/3
radians)

ALT(f1,f2,…) Contains a set of decision alternatives from which
a single alternative has to be chosen. The choice
can be made in the optimization dialog.

ALT(1;2;3;4;5)
ALT(red;green,blue)
ALT(car1.price;car2.price;car3.price)

ASIN(numerical
expression)

Returns the arcsine of a number. The arcsine is
the angle whose sine is number. The returned
angle is given in radians in the range -pi/2 to pi/2.

ASIN(-0.5) equals -0.5236 (-pi/6
radians)

ASKUSER(f1, f2,…) Asks the user a question about the combination of
f1,f2,… and saves the input in the history.

See example in section 3.6.3.

ATAN(numerical
expression)

Returns the arctangent of an expression. The
arctangent is the angle whose tangent is number.
The returned angle is given in radians in the
range -pi/2 to pi/2.

ATAN(1) equals 0.785398 (pi/4
radians)

COS(numerical
expression)

Returns the cosine of the given angle. COS(1.047) equals 0.500171

EXP(numerical
expression)

Returns e raised to the power of number. The
constant e equals 2.71828182845904, the base of
the natural logarithm.

EXP(2) equals e2, or 7.389056

IFE(logical_test,value_
if_true,value_if_false)

Returns one value if a condition you specify
evaluates to TRUE and another value if it
evaluates to FALSE.

IFE(cap.price<5000;in the
budget;IFE(cap.price<6000;a bit over
the budget; much over the budget))

LN(numerical
expression)

Returns the natural logarithm of a number.
Natural logarithms are based on the constant e
(2.71828182845904).

LN(2.7182818) equals 1

LN(EXP(3)) equals 3

LOG(numerical
expression)

Returns the base-10 logarithm of an expression LOG (86) equals 1.934498451

SIN(numerical
expression)

Returns the sine of the given angle. SIN(3.14/2) equals 1

SQRT(numerical
expression)

Returns a positive square root of an expression. SQRT(16) equals 4
SQRT(cap.price)=2 (in case cap.price
evaluates to 4)

TAN(numerical
expression)

Returns the tangent of the given angle. TAN(0.785) equals 0.99920

TAN(45*3.14/180) equals 1

 Appendix B

120

concept

nfunc tion

bfunc tion

cfunc tion

CPlus

CMinus mult div ide CPower

CSqrt CExp

CLog

CLn C Tan

CAtan CSin

CAs in CCos CAcos

is CEqual CLarger CSmaler if e

a ttribute

func tion

concept

nfunc tion

bfunc tion

cfunc tion

CPlus

CMinus mult div ide CPower

CSqrt CExp

CLog

CLn C Tan

CAtan CSin

CAs in CCos CAcos

is CEqual CLarger CSmaler if e

a ttribute

func tion

Figure 43. The hierarchy of function classes in ACCEL

 121

Appendix C. Designing with ACCEL
Our suggested methodology of designing with ACCEL consists of seven phases; these
phases make up the phases of a single cycle of the design process. Our methodology
prescribes that the phases should follow in the given order, but that some phases can be
skipped at each cycle of the process. The phases are presented in Table 26.

Table 26. The phases of ACCEL’s design methodology

Phases Description Input Output Supporting
techniques

1. Briefing Initial analysis of the problem.
Definition of the design team

(chair, secretary, type of designers
and advisors). Definition of the
design process (time planning,

choice of a procedure, etc)

Designers,
Stakeholders

Process
domain,

Organization
domain,
VO , VC

PPO model

2.
Brainstorming

Generation of the initial set of
alternative solutions and

structuring it in the form of a
hierarchy

Designers VD Intuition,
Imagination,

Brainstorming,
TRIZ

3. Problem
definition

Definition of the stakeholders,
objective variables, constraints

Designers,
stakeholders

VO , VC ACCEL

4. Observation Structuring VD by identifying
decision values for available
solutions in S. Definition of

decision variables

S VD Attribute-
seeking

technique,
ACCEL

5. Generation Generate new alternatives using
structures in VD

VD S Hierarchical
structures,

Manual
generation,

ACCEL
6. Modeling Relating objective variables with

decision variables and contextual
variables by introducing auxiliary

variables

Existing
models,
Intuition

VA Expertise,
design

knowledge,
ACCEL

7. Optimization Use the defined objectives and
constraints to evaluate solutions
and remove dominated solutions

from S

VD VO ACCEL,
Decision-
making
methods

8. Analysis Analysis of optimal solutions and
the product model

VD ,VA ,VO ,
VC

VD ,VA ,VO ,
VC

Sensitivity
analysis in
ACCEL

We represent the dynamics of the product knowledge domain that correspond to the
defined phases as follows:

• During phases 1-5 concepts, attributes, variables and their values appear in the
decision space, the contextual space and in the objective space. The result of this
process is shown in Figure 44.

• During phase 6 the available variables are related by means of functional
dependencies possibly via new variables in the auxiliary space. The result of this
process is shown in Figure 45.

• During phase 7 the values of decision variables are varied; the solutions
resulting from the variation are evaluated and selected.

 Appendix C

122

• During phase 8 dependencies and values are analyzed. See examples of range
analysis, analytical sensitivity analysis and graphical sensitivity analysis in
section 4.2.7.

VO

VD

VC

VA

aj:ci.aj∈Vo

aj:ci.aj∈VD

The decision space

The contextual space

The auxiliary space
The objective space

VO

VD

VC

VA

aj:ci.aj∈Vo

aj:ci.aj∈VD

The decision space

The contextual space

The auxiliary space
The objective space

Figure 44. Phases 1-5 of ACCEL’ s design methodology

VO

VS

VC

VA

aj:ci.aj∈Vo

aj:ci.aj∈Vs

The decision space

The contextual space

The auxiliary space
The objective space

VO

VS

VC

VA

aj:ci.aj∈Vo

aj:ci.aj∈Vs

The decision space

The contextual space

The auxiliary space
The objective space

Figure 45. Phase 6 of ACCEL’ s design methodology

 123

Appendix D. Results of WTC Project
This appendix contains a representation of the vertical transportation product in ACCEL
and the generated optimized solutions that were delivered by the groups in the WTC
assignment.

Group 1.

Figure 46. The transportation product represented by Group 1

Figure 47. Resulting optimal solutions produced by Group 1

Group 2.
Stairs Elevators Capacity Number of Stairs Latency Energy Aoc EvacTime energy
position Type of people Elevators Evac. Coeff

External Traction 30 100 0.1 11433.3 437341 5.35714 28648.2 153720
Figure 48. Resulting optimal solutions produced by Group 2

Propulsion Propulsion Length # Range Lift Rentable Maintenance Energy Realisation TravelTime
Range Lift Interval Lift Range Lift Lifts capacity Space [m 3̂] Cost [$] Cost [$] Cost [$] [s]

[x 1000] [x 1000] [x 1000] [x 1000]

Water Traction 5 25 10 29.387 73 33 7.341 40
Traction Magneto 19 7 15 29.228 53 33 8.155 42
Water Traction 13 10 15 29.644 81 17 8.144 47

Magneto Traction 13 10 15 29.994 56 31 11.729 46
Traction Magneto 5 25 15 29.941 60 31 14.138 31
Water Magneto 5 25 15 29.799 74 29 15.503 31

Magneto Magneto 5 25 15 29.888 66 33 16.539 30
Traction Traction 3 40 20 29.243 33 23 3.331 48
Water Traction 3 40 20 29.198 38 23 3.775 48

Magneto Traction 3 40 20 29.226 35 24 4.087 48

Contraints: Rent. Space Between 29M and 30M
Maintenance <= 90,000
Energy <= 35,000
Realisation <= 20,000,000
TravelTime <= 50

 Appendix D

124

Figure 49. The transportation product represented by Group 2

Group 3.

Figure 50. The transportation product represented by Group 3

Elevator Total Evacuation Max wait Construction
Cost Time Time Time

Skylobbies 6140 1692.31 19.4872 2890
DD_Elevator 8200 3168 3.3 5600
ST_Elevator 11520 2475 11.25 8480

Figure 51. Resulting optimal solutions produced by Group3

 125

Appendix E. Coffee problem.

Examples of hierarchical structures for the coffee problem.

Bags

Cup+Powder

Self

Already Prepared
Pouring hot water on powder

At a Counter

Already Prepared
Pouring hot water on powder
Selling Bags

Walking Around

Both

Waiter

Human Prep.

Direct Pay

Afterwards

Self

Waiter

Machine Prep.

Instant

Already Prepared
Coffee Maker

At a Counter

Already Prepared
Selling Bags

Walking Around

Both

Waiter

Human Prep.

Direct Pay

Afterwards

Self

Waiter

Machine Prep.

Molded
*Applicable to beans

As Instant

Concentrated

Walking Around

Machine

Waiter

Counter

Self Heating tins

Type of coffee

Figure 52. Type of coffee

Rail Truck Ship Plane Helicopter Pipeline

Transport to site

Figure 53. Transport to Site

Carriers
Cars
Vans
Railtrack
Conveyor belt

Dispersion Point

Carriers
Cars
Vans
Railtrack
Conveyor belt
Direct to Points

No Dispersion Point

Continuous

Carriers
Cars
Vans
Railtrack
Conveyor belt

One Big

Carriers
Cars
Vans
Railtrack
Conveyor belt

Several Small

Storage of all

Carriers
Cars
Vans
Railtrack
Conveyor belt
Direct to Points

Same as Previous

Combination

Supply
Internal Logistics

Figure 54. Internal logistics of supply

 Appendix E

126

Glass
Paper
Env. Polymer
Plastic

Own Cup

Sell
Burn

Paper

Sell
Burn

Plastic

Env. Polymer

1 use

Human Washed
Machine Washed

Glass

Human Washed
Machine Washed

Plastic

Reusable No Cup

Kind of Cup

Figure 55. Kind of cup

At Counter
Walking Around
Both

Waiters

Machine With Coins
Machine With Seller

Machine

Like in a bar
Sell bags and Provide Water

Bags

Type of service

Figure 56. Type of service

Table 27. Example of a product model
COFFEE CUP
Average number of coffee cups
consumed per person per day

= Normal, average coffee consumption per person per day *
(Living standard * Special event amplification factor) / Selling price per cup

Total number of coffee cups sold
during concert

= Number of people in the audience * Number of concert days *
Average number of coffee cups consumed per person per day

Number of paper cups of coffee
sold during concert

= Total number of coffee cups sold during the concert*
Paper cups / Total cups consumption ratio

Number of reusable cups of
coffee sold during concert

= Total number of coffee cups sold during the concert -
Number of paper cups sold during the concert

Cost of the paper cups = Total number of paper cups of coffee sold during the concert *Buying price of a paper cup
Cost of the reusable cups = Total number of people in the audience*

(1 – Paper cups / Total cups consumption ratio) * Buying price of a reusable cup
Cost of the stirring sticks = Total number of coffee cups sold during the concert * Buying price of a stirring stick
Total expenses with the cups = Cost of paper cups + Cost of reusable cups + Cost of stirring sticks
CONCERT
Duration in hours = Number of days * (24 – recess time)
ELECTRICITY
Electricity consumption request = Number of coffee facilities * Maximum electricity consumption of a coffee facility (kw / h)
Total electricity consumption = Total water consumption (liters) * Energy required to heat one liter (kw/h)
Total expenses with electricity = Total electricity consumption * Cost of one kw/h
WATER
Water consumption request
(liters / min)

= Number of coffee facilities * Maximum water consumption of a coffee facility (liters / min)

Total water consumption (liters) = Total number of coffee cups sold during the concert / Capacity of one cup
Total expenses with the water
(NLG)

= Total water consumption * Cost of one liter

TRUCKS
Time needed to transport coffee
machines (hours)

= (Number of coffee machines / Truck capacity for coffee machines) *
(Time to load the truck with machines * 2 + Distance * 2 / Average truck speed) * 2 /
Number of trucks

Total fuel consumption for
coffee machine transportation

= (Number of coffee machines / Truck capacity for coffee machines) *
(Distance to coffee machines suppliers / 100 * Average fuel consumption) * 4

Coffee problem.

127

(liters)
Total expenses with
transportation of coffee
machines (NLG)

= Total fuel consumption for coffee machines transportation * Price of fuel +
((Time needed to transport the coffee machines / 24 +1) * Rent+
Time needed to transport the coffee machines * Driver price) * Number of trucks

Time needed to transport the
fork loaders (hours)

= (Number of fork loaders / Truck capacity for fork loaders) *
(Time to load the truck with loaders * 2 + Distance * 2 / Average truck speed) * 2 /
Number of trucks

Total fuel consumption for fork
loaders transportation (liters)

= (Number of fork loaders / Truck capacity for fork loaders) *
(Distance to fork loaders suppliers / 100 * Average fuel consumption) * 4

Total expenses with
transportation of fork loaders
(NLG)

= Total fuel consumption for fork loaders transportation * Price of fuel +
((Time needed to transport the fork loaders / 24 +1) * Rent+
Time needed to transport the fork loaders * Driver price) * Number of trucks

Time needed to transport the
ingredients (hours)

= (Total weight of ingredients / Truck capacity for ingredients) / Number of trucks *
(Time to load the truck with ingredients * 2 + Distance * 2 / Average truck speed) /
Number of trucks

Total fuel consumption for
ingredients transportation (liters)

= (Number of fork loaders / Truck capacity for fork loaders) *
(Distance to fork loaders suppliers / 100 * Average fuel consumption) * 4

Total expenses with ingredients
transportation (NLG)

= Total fuel consumption for ingredients transportation * Price of fuel +
((Time needed to transport the ingredients / 24 +1) * Rent+
Time needed to transport the ingredients * Driver price) * Number of trucks

FORK LOADERS
Number of units required for
coffee machine handling

= (Number of coffee machines / Truck capacity for coffee machines) *
Time to unload the coffee machines * 2 / Time needed to transport the coffee machines *
Number of trucks / 3

Number of units required for
ingredients handling

= (Total weight of ingredients/ Truck capacity in tons) *
Time to unload the ingredients* 2/ Time needed to transport the ingredients*
Number of trucks / 3

Total expenses with renting the
fork loaders

= Number of units required to handle coffee *
(Time needed to transport the coffee machines / 12) * Rent +
Time needed to transport the coffee machines * Driver salary+
Time needed to transport the coffee machines * Fuel consumption * Fuel cost +
Number of units required for ingredients *
(Time needed to transport the ingredients / 12) * Rent + Time needed to transport the
ingredients * Driver salary+ Time needed to transport the ingredients * Fuel consumption *
Fuel cost

Total expenses with logistics = Total expenses with transportation of coffee machines +
Total expenses with transportation of fork loaders +
Total expenses with ingredients transportation +
Total expenses with renting the fork loaders

MATERIALS
Length of electrical cables (m)

= SQRT(Area surface / Number of stages) * 2 * Number of stages

Total expenses with electrical
infrastructure (NLG)

= Length of electrical cables * (Cost of one meter of cable+ Cost of installation of one meter)

Length of water pipes (m) = (SQRT(Area surface / Number of water facilities) +
SQRT(Area surface / Number of stages)) *
Number of stages

Total expenses with water
infrastructure (NLG)

= Length of water pipes * (Cost of one meter of pipe + Cost of installation of one meter)

Total expenses with
infrastructure (NLG)

= Total expenses with water infrastructure +
Total expenses with electrical infrastructure +
Total expenses with coffee facilities

COFFEE MACHINES
Number of machines = Total water consumption * Redundancy factor /

(Concert duration [hours] * 60 * Delivery capacity of one machine [liters/min])
Expenses with renting (NLG)

= Number of machines *
(Duration of the concert [days] + Time of transportation [days]) * Rent for one machine

Expenses with facility (NLG) = Number of machines * Cost of one facility
Expenses with exploitation
(NLG)

= Number of machines * Duration of the concert [hours] * Salary of the operator

Expenses with installing /
uninstalling (NLG)

= Number of machines * Duration of installation [hours] * Salary of the technician

Expenses with maintenance
(NLG)

= Number of machines * Duration of the concert [hours] * Salary of the technician *
Number of technicians

Total expenses with the coffee
machines (NLG)

= Expenses with renting +
Expenses with exploitation +
Expenses with installing / uninstalling +
Expenses with maintenance

DELIVERY
Number of delivery persons = (Store capacity of one machine / Redundancy factor) /

((60 / Time to serve one person) * (60 – Time to refill) * Cup capacity) *
Number of machines

Total expenses with delivery
(NLG)

= Number of delivery persons *
Salary of a delivery person * Duration of the concert [hours]

 Appendix E

128

MONEY COLLECTION
Number of money collectors = (Number of coffee machines / Number of machines checked per hour) /

Number of recess hours per day
Total expenses with the money
collection (NLG)

= Number of money collectors *
 Salary of one collector * Duration of the concert [days] * Number of recess hours per day

DELIVERY MANAGEMENT SYSTEM
Number of pagers = Number of delivery persons +

Number of technicians+
Number of money collectors+
Number of coffee machine operators

Total expenses with the
management system (NLG)

= Number of pagers * (Rent + Subscription) * Duration of concert [days]+
Transportation costs +
Development costs +
Number of operators * Salary of one operator * Duration of the concert [hours]+
Cost per message * Pagers per stage *
Number of redirection activities per hour * Duration of the concert [hour]

INGREDIENTS
Quantity of coffee [kg]

= Number of coffee cups sold during the concert * Coffee concentration of one cup

Total expenses for coffee [NLG]

= Quantity of coffee * Coffee price per kilo

Quantity of sugar [kg] = Number of coffee cups sold during the concert * Sugar concentration of one cup
Total expenses for sugar (NLG) = Quantity of sugar * Sugar price per kilo
Quantity of milk (kg) = Number of coffee cups sold during the concert * Milk concentration of one cup
Total expenses for milk (NLG)

= Quantity of milk * Milk price per kilo

Total expenses with ingredients
(NLG)

= Total expenses with coffee +
Total expenses with sugar +
Total expenses with milk

GARBAGE
Total garbage weight (kg)

= Number of paper cups sold during the concert * Weight of one cup +
Number of coffee cups sold during the concert * Weight of one stirring stick

Number of small garbage store
units

= (Total garbage weight / Capacity of one small garbage unit) /
(Concert duration [days] * Number of disposal actions per day) *
Garbage redundancy

Number of large garbage store
units

= Total garbage weight / Capacity of one large garbage unit

Total expenses for garbage
storages (NLG)

= Concert duration [days] *
(Number of small garbage units *Rent of small units +
 Number of large garbage units * Rent of large units)

Number of garbage collectors
during recess

= Concert area /
(Coverage area * Number of recess hours per day)

Number of garbage collectors
during performance

= (Number of small garbage units / Number of stages) /
((24 – Number of recess hours) / Time to dispose one garbage unit)

Total expenses for garbage
collectors (NLG)

= (Number of garbage collectors during recess * Number of recess hours +
Number of garbage collectors during performance * (24 – Number of recess hours per day))*
Concert duration [days] * Salary of one garbage collector

Total expenses for garbage
disposal (NLG)

= Total garbage weight * Price of disposal of one ton

Total expenses with garbage
(NLG)

= Total expenses with garbage collectors+
Total expenses with garbage disposal+
Total expenses for garbage storages

PERSONNEL
Traveling expenses (NLG) = Number of employees * Traveling expenses for one person
Total expenses with recruiting
personnel (NLG)

= Number of low qualification personnel * Low qualification personnel fee +
Number of high qualification personnel * High qualification personnel fee

Coffee problem.

129

standard value
Independent variables context
Number of Visitors 6,00E+06
Staff members 5,00E+04
Price per kg waste (all in) €/kg 0,5

Independent variables decision
consumption per visitor 4,32
price/cup of coffee (€) 1,5
Taste coffee (excellent, good,reasonable,yuk!,disgusting)reasonable
Temperature coffee 85
opening hours from 7am till…(h) 15
number of peak hours per hour opened 0,25
preparation time (days) 30
staff works in a team of .. People 12
guests per staff member 120
coffee whole sale price €/k g 36
sponsor money cents per cup 0,01

Independent variables temperarory
costs of 1 SP (€) 500
serving time (sec.) 15
number of sales points 6000

Dependent variables
Number of cups of coffee per concert 25920000
kg coffee per concert 46656
man-hours(money) 10550000
waiting time 0,2
garbage cost 55728
sponsor income € 259200
Total costs 13589353,28

Profit 22549846,72
Quality 5

Solution: Instant Coffee Solution: Percolator
Independent variables context
Number of visitors 6,00E+06
Number of Staff members 5,00E+04
Price per kg waste (all in) €/kg 0,5

Independent variables decision
avarage consumption per visitor 4,32
price/cup of coffee (€) 1,5
Taste coffee (excellent, good,reasonable,yuk!,disgusting good
Coffee Temperature 80
openinghours from 7am till…(h) 15
number of peakhours per hour opened 0,25
Preparation time (days) 40
staff work s in a team of .. People 12
guests per staff member 120
filter coffee waste weight per cup served 0,005
Coffee price €/kg 4,36
sponsor money cents per cup 0,01

Independent variables temporary
Cost of 1 SP (€) 275
serving time (sec.) 15
number of sellingpoints 6000

Dependent variables
Number of cups of coffee per concert 25920000
Cup cost € per concert 1048205
kg coffee per concert 155520
available stafftime 5% 25000
minimal number of guests per team per hour 1440
man-hours(money) 10550000
Waiting time (h) 0,2
garbage cost € 101088
sponsor income € 259200
Total costs 14450089,8

Profit 24689110,2
Quality 6,6

Figure 57. Example of solutions to the coffee problem

The weights of objectives are calculated in the top part of the matrix in Figure 58; in the
lower part of the matrix the solutions are evaluated. In this example, the preferred
solution is the first solution using percolator coffee.
Priority Matrix

Equal=1 Slightly different=3 Very different=10

Q1 Q2 Q3 Q4 Q5 Σ W i

Quality Q1 3.00 1.00 0.33 10.00 14.33
Profit Q2 0.33 0.33 0.33 1.00 2.00
Garbage Cost Q3 1.00 3.00 0.33 3.00 7.33
Waiting Time Q4 3.00 3.00 3.00 3.00 12.00
Man Hours Q5 0.10 1.00 0.33 0.33 1.77

Steps: 0; 2,5; 5; 7,5; 10

Q1 Q2 Q3 Q4 Q5
Percolator C1 7.5 7.5 2.5 5 5
Instant C2 5 5 5 5 5
Iced C3 2.5 2.5 7.5 2.5 10

Q1*W1 Q2*W2 Q3*W3 Q4*W4 Q5*W5 Total
Percolator C1 107.50 15.00 18.33 60.00 8.83 209.67
Instant C2 71.67 10.00 36.67 60.00 8.83 187.17
Iced C3 35.83 5.00 55.00 30.00 17.67 143.50

Figure 58. Example of priority matrix for the prioritization of objectives

130

Bibliography

Akman V, P J W ten Haagen and Tomiyama (1990), “A fundamental and theoretical
framework for an intelligent CAD system”, Computer-Aided Design 22-6, butterworth-
Heinemann Ltd, pp 352-368.

Alexander C., (1971), “The State of the Art in Design Methods”, in:Cross N. (Ed).

Altshuller G (1990) “And Suddenly the Inventor Appeared”, ISBN # 0964074028.

Altshuller G “The Innovation Algorithm”, ISBN # 0964074044.

Asimow M. (1962), “Introduction to Design”, New York: prentice-hall, pp. 3,24,64.

Atman C.J. et.al. (2000) “Using Multiple Methods to Evaluate a Freshmen Design
Course”, 30th ASEE/IEEE Frontiers in Education Conference S1A-6, Kansas City, MO.

Andrews P. Snowden D., (2002) “Next generation Knowledge Management: The
complexity of humans”, Executive Tek Report, IBM Global Services.

Austina S, Newtonb A, Steeleb J, Waskett P, (2002) ,“Modelling and managing project
complexity” International Journal of Project Management 20, pp. 191–198.

Baarda D.B., (1995) “Methoden en technieken”, de Goede MPM, Stenfert Kroese,
Houten.

Back T., Hammel U. and Schwefel H.-P. (1997),”Evolutionary computation: Comments
on the history and current state”. IEEE Transactions on Evolutionary Computation 1(1),
pp. 3–17.

Boer de Thomas (1999) "Kritisch Denken", Nieuwezijds Publishing Company, ISBN
9057120577.

Berg van den N. W., et.al. (1995) “Beginnng LCA: a guide into environmental life cycle
assesment”, Leiden:Centre of Environmental Science.

Bono de E., (1970).”Lateral Thinking”. Penguin Books, London, UK.

Booch, Grady, (1990), “Object-Oriented Design with applications.”
Benjamin/Cummings, ISBN:0-8053-0091-0.

Booch G. (1993), “Object-Oriented Analysis and Design with Applications” Addison-
Wesley Pub Co; 2nd edition ISBN: 0805353402.

Booch G., Rumbaugh J., Jacobson I. (1998), “The Unified Modeling Language User
Guide” Addison-Wesley Pub Co; 1st edition (September 30, 1998) ISBN: 0201571684.

Bray T., (2000)“Extensible Markup Language (XML) 1.0” XML standard, 2nd edition.

Brown K.N., et al, (1994), “Constraint unified grammars: specifying languages of
parametric design.”, In: Gero J.S., Sudweeks F, et al., editors. Artificial intelligence in
design. Dordrecht: Kluwer Academic Publishers, pp. 239-256.

Bruijn A. (2003) “Inbreng TNO is Voor Ons Onmisbaar Geweest”, TNO magazine,
Februari, pp.12-13.

Butler. J Jia J. Dyer J. (1996) “Simulation techniques for the sensitivity analysis of
multi-criteria decision models”. Report MSIS, CBA 5.202 The Graduate School of
Business, University of Texas at Austin.

131

Cross, N, (1994), Engineering Design Methods: Strategies for Product Design, John
Wiley & Sons, Chichester, UK. (2nd ed.).

Davenport T.H., DeLong D.W., Beers M.C. (1998), “Successful knowledge
management projects”, Sloan Management Review 40: 43-57.

Denn M.M. (1969) “Optimization by Variational Methods”, McGraw-Hill.

Dorst K. (1997), “Describing Design. A comparison of paradigms”, ISBN 90-9010822-
X.

Evbuomwan N., Sivaloganathan, S., Jebb, A, (1996), “A Survey of Design
Philosophies, Models, Methods and Systems”, in Proceedings of the Institution of
Mechanical Engineers, London, Part B: Journal of Engineering Manufacture, Vol. 210,
pp. 301-319.

French, M., (1971), “Conceptual Design For Engineers”, 1st edition, The Design
Council, London.

Fricke, G.(1996) “Successful individual approaches in engineering design”, Research in
Engineering Design, 8, pp. 151-165.

Friedl G., Rutten P., Trum H., “Innovative process modeling of Building Design;
Design as a crystallization process”, W096 - Architectural Management, Value Through
Design, CIB Publication 280 - ISBN 90-6363-032-8

Gamma E., Helm R., Johnson R., Vlissides J. (1995), “Design Patterns”, Addison-
Wesley Pub Co; 1st edition ISBN: 0201633612.

Geoffrion A.M., (1988), “The Formal Aspects of Structured Modeling”, Operations
Research, 41, pp.33-45.

Gilb T., (1988) “Principles of Software Engineering Management”, Addison-Wesley,
ISBN 0-201-19246-2.

Glover J., Ronning R. and Reynolds C. (eds.), (1989). “Handbook of Creativity”.
Plenum, London, UK.

Glynn Winskel.(1993) “the formal semantics of programming languages”, an
introduction, MIT press.

Hicks, J. O., Hicks, S. A. & Sen, T. K. (1991) “ Learning Spreadsheets: Human
Instruction vs. Computer-Based Instruction Behaviour & Information Technology, Vol.
10, No. 6, 491-500.

Hubka, V., (1992), “Design For Quality and Design Methodology”, J. Engng Des., 3(1),
pp.5-15.

Hurlimann T. (1999) “Mathematical Modeling and Optimization. An Essay for the
Design of Computer-Based Modelling Tools ”, Kluwer Academic Publishers, ISBN 0-
7923-5927-5.

Jones A. (1979), “The Object Model: A Conceptual Tool for Structuring Software”,
Operating Systems, New York, N.Y.: Springer-Verlag, p.8.

Ivashkov M. and van Overveld K., (2001) “An Operational Model for Design
Processes”, Proceedings of ICED ’01, Vol.2, Glasgow, pp.139-146.

132

Ivashkov M., van Overveld K., (2002) “Early Validation of a Design Method Based On
Structured Reflection”, Proceedings of International Design Conference Design 2002,
Dubrovnik, May 14-17, Vol 1, pp. 343-348.

Ivashkov M, Souchkov V, (2004) “Establishing Priority of TRIZ Inventive Principles in
Early Design”, Design 2004, Dubrovnik, Accepted.

Jones J.C. (1992), “Design methods: seeds of human futures”, ISBN: 0471284963.

Hatchuel A, Weil B. (1992), “L'expert et le système”, Paris: Economica.

Killander A.& Sushkov V. (1995), “Conflict-Oriented Model of Creative Design”, in
Proceedings of the 3rd Int. Roundtable Conference on Computational Models of
Creative Design, J.S. Gero, M.L. Maher & F. Sudweeks, 3-7 December 1995, Heron
Island, Queensland, Australia, 1995, 369-397.

Klimoski, R and Mohammed S. (1994), “Team Mental Model: Construct or
Metaphor”Journal of Management Vol 20 pp. 403–437.

Knowles J. D. and Corne D. W.. (1999),”The pareto archived evolution strategy: A new
baseline algorithm for pareto multiobjective optimisation”. In Congress on Evolutionary
Computation (CEC99), volume 1, Piscataway, NJ. IEEE Press, pp. 98-105.

Kramer, J. (1991) “CASE Support for the Software Process: A Research Viewpoint”,
Proceedings of Third European Software Engineering Conference, Milan, Italy, October
1991, LNCS 550, Springer-Verlag. pp. 499-503.

Lain, M., (2003) Personal Communications.

Lawson B, (1980), “How Designers Think”, The Architectural Press, London, UK.

Lee Jongsoo, Hajela Prabhat, (2001), “Application of classifier systems in improving
response surface based approximations for design optimization”, Computers and
Structures 79 pp. 333-344.

Levesque H J, (1984), “The logic of incomplete knowledge bases” in Brodie M L ,
Mylopoulos J and Schmidt J W (eds) On conceptual modelling Springer-Verlag, pp
165-186.

Martinaitis V., (1998), “Analytic calculation of degree-days for the regulated heating
season”, Energy and Buildings, Volume 28, Issue 2, October, pp. 185-189.

Meyer D.E. and Schvaneveld R.W., (1976), “The Structure of Human Memory”, Cofer
(Ed.), San Francisco:Freeman.

Mili F. et al. (2001), “Knowledge modelling for design decisions”, Artificial
Intellignece in Engineering 15, pp. 153-164.

Mohammed S. and Dumville B C , (2001), ”Team mental models in a team knowledge
framework: expanding theory and measurement across disciplinary boundaries” Journal
of Organizational Behavior Vol 22 pp. 89–106.

Neville, G.E. (1989), “Computational models of deisgn processes”, in proceedings of
the 1988 NSF Grantee Workshop on deisng theory and methodology, Desing theory ’88
(eds S.L. Newsome, W.R. Spillers and S. Finger), (springer-Verlag, New Yourk), pp
82-96.

Nooteboom B. (1996), “Towards a cognitive theory of the firm. Issues and a logic of
change”, Proceedings of the AFEE conference, San Francisco.

133

Overveld K, Ahn R., Reymen I, Ivashkov M, (2003) “Teaching Creativity in a
Technological Design Context”, IJEE, Vol 19-2, pp. 260-271.

Overveld van K, Ivashkov M , (2003) ”From creative ideas to optimised concepts and
back:A method for collaborative creation of solution alternatives in decision support
systems.” Proceedings of ICED03, Stockholm.

Pahl, G. and Beitz W., (1984) "Engineering Design", The Design Council, ed. K. M.
Wallace

Parmee, I C & Denham, M J, (1994), .”The Integration of Adaptive Search Techniques
with Current Engineering Design Practice”. In Adaptive Computing in Engineering
Design and Control -'94, Plymouth, pp.1-13.

Polanyi M. (1966), “The Tacit Dimension”, Garden City, NY: Doubleday.

Prasad B. (1998) “Review of QFD and Related Deployment Techniques” Journal of
Manufacturing Systems 1998, Vol. 17;3 p.221-235.

Radcliffe D. and Lee T.Y., (1989), “Design methods used by undergraduate engineering
students”, Design Studies, 10-4.

Reymen, I.M.M.J. (2001) “Improving Design Processes through Structured Reflection:
A Domain-independent Approach”, Ph.D. thesis, ISBN 90-386-0831-4, Technische
Universiteit Eindhoven, Eindhoven, The Netherlands.

Ronen, B., Palley, M. A. and Lucas, H. C. (Jan 1989) “Spreadsheet analysis and
Design” CACM, Vol. 32, No. 1, 84-93.

Rosenberg, M.J. (2001) “E-learning. Strategies for delivering knowledge in the digital
age”, ISBN 0-07-136268-1, McGraw-Hill.

Rosenman M.A., Gero J.S. (1999), ” Purpose and function in a collaborative CAD
environment ”, Reliability Engineering and System Safety 64, pp. 167–179.

Rosenman M.A., Gero J.S. (1998) “Purpose and function in design: from the socio-
cultural to the techno-physical”, Design Studies, Volume 19, Issue 2, April, Pages 161-
186.

Rudolph G. and Agapie A.(2000), “Convergence properties of some multi-objective
evolutionary algorithms”. In Congress on Evolutionary Computation (CEC 2000),
volume 2, Piscataway, NJ. IEEE Press pp.1010-1016.

Rutten, P.G.S. and Trum, H.M.G.J. (1998), “Meer Ontwerpen dan Rekenen; een Meta-
Ontwerpomgeving vorr Gebouw en Installatie”, TVVL magazine 4, pp. 14-22.

Schön D.A. (1983), “The reflective Practitioner”, Basic Books, New York.

Schön, D. A. (1991) “The Reflective Practitioner—How Professionals Think in
Action”, Avebury, Aldershot, UK.

Schoemaker, P.J., Waid, C.C. (1982) “An exprimental comparison of different
approaches to determining weights in additive utility models,” Management Science,
28, 182-196.

Silverman B. W. (1986), ”Density estimation for statistics and data analysis”. Chapman
and Hall,London.

Simon, H. A. (1984) “The structure of ill-structured problems” in N. Cross (ed)
Developments in Design Methodology, Wiley, Chichester, UK.

134

Simon H. A. (1992), “Science of the Artificial”, The MIT Press, Cambridge MA.

Smith, E.E. and Medin, D.L., (1981), “Categories and Concepts”, Cambridge, MA:
Harvard University press.

Soslo, R.L., (1998), “Cognitive Psychology”, 5th edition, Allyn&Bacon, ISBN 0-205-
27418-8

Stempfle J, (2002), ”Thinking in design teams - an analysis of team communication”,
Design Studies, Volume 23, Issue 5, September 2002, Petra Badke-Schaub, pp. 473-
496.

Teminko. J., Zusman A. and Zlotin B., (1998), “Systematic Innovation”, Ideation
International Inc. Southfield, Mich.

Valkenburg R. and Dorst K., (1998), “The reflective practice of design teams”,Design
Studies, Volume 19, Issue 3, July 1998, pp. 249-271.

Veth, B, (1987), “An intergrated data description language for coding design
knowledge”, in ten Hagen, P J W and Tomiyama, T (eds) Intelligent CAD systems 1:
theoretical and Methodloogical Aspects Springer-Verlag, pp 295-313.

Vinck D. (1997), “La connaissance : ses objets et ses institutions. In Intégration des
savoir-faire, capitalisation des connaissances”, ed. Fouet JM. Paris: Editions Hermès.

Weber. M. and Borcherding K. (1993), “Behavioral influences on weight judgments in
multiattribute decision making”, European Journal of Operational Research, 26, 35-41.

Watts, R,D,, (1966), “The elements of Design”, In the Design Methods (Edited by S.
Gregory) London: Butterworths.

Wickens D.D., Engle R.W. (1970) “Imaginary and abstractness in short-term memory”,
Journal of Experimental Psychology, 84, pp. 268-272.

Wolfram Stephen, (1996), “The Mathematica Book”, third edition, Cambridge
University Press.

Zitzler E., Deb K., and Thiele L.. (2000),”Comparison of multiobjective evolutionary
algorithms:Empirical results”. Evolutionary Computation, 8(2), pp.173-195.

Zitzler E., Laumanns M., and Thiele L.(2001) “SPEA2: Improving the Strength Pareto
Evolutionary Algorithm”. Technical Report 103, Computer Engineering and Networks
Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse
35, CH-8092 Zurich, Switzerland.

Zitzler E.(2002), “Evolutionary methods for design, optimisation and control” K.
Giannakoglou, D. Tsahalis, J. Periaux, K. Papailiou and T. Fogarty (Eds.) c CIMNE,
Barcelona, Spain.

Zwicky, F., (1969) Discovery, invention, research through the morphological approach.
New York: MacMillan,

135

Summary

In recent years, industry has stressed the need for graduates who are capable of solving
design problems. Design problems are typically ill-defined, they have no single best
way to proceed, no single best formulation of the problem, and have several possible but
unknown solutions. The designers therefore have to make many decisions. In the early
design phase the decisions cover conceptual design issues, which are often directive
while, at the same time, being restrictive and irreversible. Early design decisions
therefore need to simultaneously take into account a wide-range of considerations.

Skilled designers rely on their past experience to manage the complexity. New
designers do not yet have this type of experience. Several research studies have shown
that a systematic approach can be helpful to students, and that systematic procedures
correlate positively with both the quantity and the quality of the students’ design results.
The lack of computational tools capable of efficiently dealing with the complexity
caused by these systematic approaches makes it difficult to demonstrate their
effectiveness.

In this thesis we investigate a computer-supported systematic approach to the early
design phase. The design problem addressed in this thesis is defined as follows:
Develop a systematic procedure and a tool to support the early design phase in a
domain-independent way:

• To evaluate the application of systematic procedures in the early design phase;

• To increase the complexity of the design problems that can be considered by the
students during the design courses, and to approach the complexity of realistic
design problems in industry;

• To improve the clarity of the decision-making process and the process of
communication.

Development of a support requires formalization and modeling of the design process.
We developed an operational model of the design process that turns concept generation
process into a computer supported procedure. We model the design process in a step-by-
step manner, such that after each step the participants reflect on their design activities
by means of our formalism. Regular and formalized reflections aim to stabilize progress
in the design process and enable computational usage of the available knowledge. Our
model is based on existing theories but introduces several novelties, which we consider
as contributions of our work:

• A formalism that allows to describe the design process formally. The formalism
resembles natural language, but at the same time it relates the expressed
knowledge to mathematical objects, such as functions, variables and values;

• Four knowledge spaces. The formalism relates the knowledge expressed in these
spaces to mathematical objects, such as functions, variables and values. The four
knowledge spaces distinguish between four orthogonal categories of operations
with knowledge. This distinction makes application of the formalism closely
related to different ways in which people ask and answer questions;

• A formalized mechanism of questions and answers. This mechanism aims to
enhance the clarity of reflections and make application of the formalism more

136

natural. Using the knowledge spaces we were able to formalize eight categories
of questions and eight corresponding formats in which to give the answers;

• The computational usage of expressed knowledge. Knowledge is linked to
computational procedures, which are capable of automatically evaluating
knowledge and generating optimal concepts without requiring extra steps from
the designer;

• An adapted genetic algorithm that supports the process of generating concepts
and enables consideration of complex design problems with multiple objectives
and multiple design decisions;

• A decision-making method that allows the convergence to a single optimal
solution without prioritizing objectives;

• The last but not the least, our approach is embodied in a support tool that
provides a graphical user interface and implements the derived from the model
functional requirements. The tool turns modelling of the design process from a
theoretical into a practically useful activity.

In the past few years we have validated the approach in design education. From
classroom experiments we can conclude that this approach provides computational and
modeling support for various design activities, ranging from the systematic application
of creativity techniques to modeling, sensitivity analysis and optimization. This enables
students to learn various design approaches quickly, to consider more alternative
solutions, and eventually to be better prepared for realistic design problems. In an
experiment in a more industrial setting we were able to show that our method gives a
significant improvement over traditional design methods.

137

Samenvatting

Sinds de laatste jaren wordt vanuit de industrie een behoefte gesignaleerd aan
afgestudeerden die in staat zijn om ontwerpproblemen op te lossen. Ontwerpproblemen
zijn typisch slecht gedefinieerd, er is geen standaardmethode om ontwerpproblemen te
formuleren of aan te pakken, en ontwerpproblemen hebben doorgaans meerdere,
onbekende oplossingen. Daarom moeten ontwerpers een veelheid aan beslissingen
nemen. In de beginfase van het ontwerpproces betreffen deze beslissingen conceptuele
ontwerpaangelegenheden die vaak een grote stempel drukken op het vervolg van het
proces. Ze zijn doorgaans in hoge mate beperkend en onomkeerbaar. Bij
ontwerpbeslissingen in de beginfase van het ontwerpproces moet daarom een grote
hoeveelheid aan aspecten in ogenschouw genomen worden.

Geoefende ontwerpers vertrouwen op hun ervaring om met deze moeilijkheden om te
gaan. Aankomende ontwerpers missen deze ervaring. Verscheidene studies hebben
aangetoond dat een systematische aanpak behulpzaam kan zijn voor studenten, en dat
het gebruik van systematische methoden positief correleert zowel met de kwaliteit als de
kwantiteit van de ontwerpresultaten van ontwerpers in opleiding. Omdat echter voor
beginfasen van ontwerpprocessen nog geen software gereedschappen beschikbaar waren
om met de complexiteit om te gaan die door zo’n systematische aanpak veroorzaakt
wordt, was het tot dusverre moeilijk om de effectiviteit van een systematische aanpak in
die beginfasen aan te tonen.

In dit proefontwerp bestuderen we een door software ondersteunde systematische
aanpak van de beginfase van ontwerpprocessen. Het ontwerpprobleem dat aan dit
proefontwerp ten grondslag ligt wordt gedefinieerd als volgt: ‘Ontwikkel een
systematische procedure en een software gereedschap om beginfasen van
ontwerpprocessen te ondersteunen waarbij geen aannamen gemaakt worden over het
domein waarbinnen het ontwerpproces plaatsvindt.’ Met name was onze doelstelling:

• na te gaan hoe systematische aanpakmethode voor beginfasen in
ontwerpprocessen toegepast kunnen worden;

• het verhogen van de complexiteit van ontwerpproblemen, zoals die door
studenten tijdens het ontwerponderwijs aangepakt kunnen worden, opdat die
ontwerpproblemen de complexiteit van de industriële praktijk benaderen;

• het verbeteren van de helderheid van beslissings- en communicatieprocessen
tijdens het ontwerpen.

De ontwikkeling van ondersteunend ontwerpgereedschap vergt formalisering en
modellering van het ontwerpproces. We ontwikkelden daartoe een operationeel model
van ontwerpprocessen waardoor het genereren van ontwerpconcepten door een
computer ondersteund kan worden. We modelleren het ontwerpproces als een discrete
reeks stappen waarbij na iedere stap door de ontwerpers op hun ontwerpactiviteit
gereflecteerd wordt middels het hier voorgestelde formalisme. Regelmatige en formele
reflectie is bedoeld om een zekere voortgang in het ontwerpproces te garanderen en
computationeel gebruik te kunnen maken van kennis die tijdens dat ontwerpproces
beschikbaar komt. Ons model is gebaseerd op bestaande inzichten en theorieën, maar
het introduceert verscheidene nieuwe aspecten. Als voornaamste bijdragen van dit werk
beschouwen we:

138

• een formalisme dat toestaat een ontwerpproces formeel te beschrijven. Het
formalisme vertoont gelijkenis met natuurlijk taal, maar tegelijkertijd relateert
het de gerepresenteerde kennis aan wiskundige objecten zoals functies,
variabelen en waarden;

• vier specifieke soorten ontwerpkennis. Deze onderscheiden vier onderling
onafhankelijke categorieën van bewerkingen op (ontwerp-)kennis. Het
onderscheid tussen de vier soorten kennis is nauw verbonden met verschillende
wijzen waarop in natuurlijke taal vragen gesteld en beantwoord worden;

• een geformaliseerd mechanisme voor het stellen en beantwoorden van vragen.
Dit mechanisme beoogt de helderheid van reflecties te stimuleren, en de
toepassing van het formalisme meer natuurlijk te maken. Door gebruik te maken
van het onderscheid van de vier soorten (ontwerp-)kennis werden acht
categorieën vragen geïdentificeerd, met corresponderende formaten waarin de
antwoorden gegeven kunnen worden;

• het computationeel gebruik van gerepresenteerde kennis. De kennis in het
voorgestelde systeem is geassocieerd met computationele procedures, die de
ontwerper in staat stellen om automatisch bepaalde kennisinhouden te verifiëren
en in zekere zin ‘optimale’ concepten te genereren zonder dat daarvoor
afzonderlijke inspanning van de gebruiker benodigd is;

• een aangepast genetisch algoritme dat het proces van het genereren van
ontwerpconcepten ondersteunt, en waardoor complexe ontwerpproblemen met
meerdere doelfuncties en meerdere ontwerpbeslissingen beschouwd kunnen
worden;

• een beslissingsmethode die toestaat om naar een enkele ‘optimale’ oplossing te
convergeren zonder dat in de doelfuncties een voorkeursvolgorde aangegeven
hoeft te worden;

• tenslotte, een implementatie van de voorgestelde aanpak in een software systeem
dat een grafische user interface aanbiedt en een realisatie vormt van de
functionele vereisten zoals die uit het formele model afgeleid werden.

In de afgelopen jaren hebben we de voorgestelde aanpak in het ontwerponderwijs
gevalideerd. Uit experimenten in onderwijssituaties concluderen we dat deze aanpak
computationele ondersteuning biedt voor diverse ontwerpactiviteiten, die uiteenlopen
van de systematische toepassing van creativiteitsmethoden, via modellering, en
gevoeligheidsanalyse, tot optimalisatie. Dit stelt studenten in staat om snel met
verschillende aanpakken voor ontwerpproblemen kennis te maken, om meer alternatieve
oplossingen te beschouwen, en uiteindelijk beter voorbereid te worden op realistische
ontwerpproblemen. Ten slotte, in een experiment in meer industriële omstandigheden
waren we in staat om aan te tonen dat onze methode een significante verbetering
oplevert in vergelijking met traditionele ontwerpmethoden.

139

Acknowledgement

I would also like to thank all the members of the committee who examined my thesis.
This thesis involves several disciplines, with each of its five chapters. Because so many
people helped me in any way, by using ‘we’ in this thesis I refer to myself and those
people.

The first chapter introduces the early phase of the design process and belongs in the
design science domain. I would like to thank prof.Paul Rutten and dr.Henk Trum for the
useful discussions concerning this chapter.

The second chapter focuses on development of an operational model of the design
process and belongs to the domain of mathematics and artificial intelligence. I would
like to thank dr.Kees van Overveld and dr.Rene Ahn for the valuable dialogues we
shared about this PhD project and about the presented in this chapter formalism in
particular.

The third chapter focuses on the development of a support tool and belongs to the
computer science domain. I would like to thank dr. Kees van Overveld for his
involvement in the development process and his positive attitude during the first
experiments.

The fourth chapter focuses on case studies and demonstrates application of our approach
to various engineering domains. I would like to thank post-graduate students who dared
to use the developed tool and provided valued feedback. I am grateful to ir.Milosh Lain
for a case study and an excellent opportunity to apply the developed tool to design of an
air-conditioning system.

The fifth chapter focuses on the results and recommendations. This chapter summarizes
my personal involvement in the results of the presented work. It would be too odd to
thank myself, but I am glad that I started this project and especially that I finished it in a
way.

My particular thanks go to dr.Marloes van Lierop for recognizing the problems in
teaching of design and for initiating this project. My thanks also go to dr.Kees Dorst and
dr.Isabelle Reymen for the valuable discussions we shared on the methodology of
research in the field of design which made my start up easier.

I would like to show appreciation to prof.Ton van Kemenade for his numerous
initiatives that have strengthened the links between the Netherlands and Belarus.

Last but not least, I express thanks to my friends and my family, especially my mother -
Ivashkova Lucia and my wife - Molchanova Galina.

140

Biographical note

Maxim Ivashkov was born on February 19, 1975 in Minsk, Belarus. He gained his first
research experience as a research fellow in the Scientific Research Institute of Applied
Physical Problems in Minsk. He was involved in the development of a spectral method
for quickly identifying complex phenol compounds, which was the topic of his Master’s
thesis. After his graduation in 1997, Maxim worked as a scientific officer at Invention
Machine Corp, where he participated in the process of knowledge development for the
scientific database ‘IM-Phenomenon’. Between 1998 and 2000 he participated in
modeling projects for Océ, the faculty of Precision Engineering at the Technical
University of Eindhoven (TU/e) and “Fontijne Holland”. In 2000 Maxim started his
PhD design project with the goal of developing a tool for supporting concept generation
in the early design phase.

Maxim’s academic background ranges from an M.Sc in physics obtained from Belo-
Russian State University in 1997 to a ‘Mathematician-Economist’ degree, obtained
from the same university. Between 1998 and 2000 he followed a Master’s program in
‘Mathematics for industry’ at TU/e, where he improved his personal skills, learned
mathematical modeling and participated in few projects. During the program he learned
and practiced software development processes and followed a course entitled ‘Methods
and Techniques for Design’. These two ingredients prompted him to start a PhD in
design project. His current academic interests include research into the application of
systematic procedures in the early design phase, such as TRIZ (Theory of Inventive
Problem Solving), and computational support of decision-making in the early design
phase. During his PhD project Maxim enjoyed teaching TRIZ and giving training
sessions about the developed support tool.

Stellingen (propositions)

-ACCEL: a Tool for Supporting Concept Generation in the Early Design Phase1 –

Maxim Ivashkov

1. People use knowledge in four different ways. The same question can
therefore be answered in eight different ways (this thesis, page 113).

2. Similar to conceptual solutions, the stakeholder may be regarded as a
concept occurring in a formal model of a design process (this thesis, page
29).

3. Formalisms (languages) become natural if they appear to be useful (this
thesis, page 115).

4. Tools for the early design phase are still in the early phase of design (this
thesis, page 6).

5. We should disconnect the requirements from the new solutions, but … this
cannot be done within a single brain. A computer can play the role of
solution generator, provided we can represent the space of all solutions
(Kees van Overveld, a presentation for the day of design, TU/e, November
2001).

6. Design problems do not easily fit predefined categories (Kleban, 2001).

7. By combining two successful solutions one can produce a solution with a
better chance of market success than would be achieved using random
mutations.

8. Users tend to make critical remarks about the usability of a product only if
the product has potential functionality.

9. Just as words are necessary to understand a picture, likewise a product
model is necessary to understand a design problem.

10. Anyone who has ever written a text knows what a design problem is.

11. Guess if you can, choose if you dare (Pierre Corneille, Heraclius, IV, 4).

12. Stating problems is just as important as solving problems. (Translated
from L. Apostel).

13. It is not the sea that makes ships sink; it is the wind (Russian proverb).

1 The thesis and the tool are available at www.acceling.com

	Contents
	List of Acronyms
	List of Symbols
	1. INTRODUCTION
	2. AN OPERATIONAL MODEL OF THE DESIGN PROCESS
	3. ACCEL
	4. CASE STUDIES
	5. CONCLUSIONS AND RECOMMENDATIONS
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	Appendix E.
	Bibliography
	Summary
	Samenvatting
	Acknowledgement
	Biographical note
	Stellingen

