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Chapter 1

Introduction

1.1 Motivation of this thesis

The diffuse-interface approach has been used to study a widerange of phenomena involving
topological changes: nucleation and growth, spinodal decomposition, droplet breakup and
coalescence (Andersonet al., 1998). These models have successfully been applied to situa-
tions in which the physical phenomena of interest have a length scale commensurable with
the thickness of the interfacial region and fluid flows involving large interface deformations
and/or topological changes, such as droplet breakup and coalescence.

Most of the studies on topological changes focus on small-scale systems, in which it is
assumed that the numerical interface thickness is close to the real interface thickness. In
general, for large systems, for which the droplet size is much larger than the physical value
of the interface thickness, the real interfacial thicknesscan not be captured numerically. The
scaling in such systems needs special attention, because ifthe real interfacial thickness is to
be replaced by a numerically acceptable thickness, we have to make sure that we are still
describing the same system with the same interfacial tension and diffusion (Verschueren,
1999).

Commonly, diffuse-interface models introduce a small length scale (the interface width),
which places stringent conditions on numerical solution methods. Based on the Cahn-Hilliard
expression of the free energy (Cahn and Hilliard, 1958) the critical sizeLc is calculated to
be:

Lc =
ξ

O(C)
, (1.1)

with C the Cahn number andξ the interface thickness. Small interfacial thicknesses would
require the use of a smaller Cahn number in the simulations and consequently, extremely
small mesh sizes and, hence, require excessive computational times. For Cahn numbers,
typically used in the simulations (C = 0.02), and the typical interface thickness (order of
magnitude 10 nm), the computational domain used has a lengthof the order of 500 nm. If we
want to extend to larger systems, the real interface thickness can not be captured numerically
in general.

To circumvent the above mentioned problems for large systems, two possibilities can be
used:

1. scaling of the system (Verschueren, 1999; Lowengrubet al., 1998)

2. adaptive mesh refinement (AMR).
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In this thesis an adaptive mesh refinement (AMR) technique based on the mortar spectral
element method will be implemented to capture the interfacethickness adaptively. The re-
finement algorithm will track the movement of the diffuse-interface, refining the mesh only
around the moving interface, and coarsening the mesh in the rest of the computational do-
main.

Spectral element methods (SEM) are high-order (p-type) weighted residual techniques
for the numerical solution of the partial differential equation

L(u) = f in Ω (1.2)

hereL is a continuous positive-definite differential operator and f ∈ C0(Ω), that combine
the generality ofh-type finite element techniques (Ciarlet, 1978; Schwab, 1998) with the
rapid convergence rate of spectral methods (Gottlieb and Orszag, 1977; Canutoet al., 1988).
Handling complex geometriesΩ by the spectral element method mainly relies on a domain
decomposition, first introduced by Patera (1984), most often without overlapping domains.
The computational domain is broken up intoK elementsΩk ∈ Ω of the spectral type, on
each of which the variables are approximated byN th order tensor product polynomial expan-
sions. Variational projection operators and Gauss numerical quadrature are used to generate
a discrete set of equationsA u = f . Coupled to fast order-independent iterative solvers
(Canutoet al., 1988; Barrett, 1994) these discretizations yield numerical algorithms which
have proven to be computationally efficient on both serial and parallel processors (Hender-
son and Karniadakis, 1991). It is proven (Madayet al., 87) that convergence of the spectral
element approximation to the exact solution is exponential, where convergence is achieved
by increasing the degreeN of the polynomial approximation, while keeping the number of
elementsK as well as their identity fixed.

The limitation of the spectral element method is its lack of flexibility and generality with
respect to complex geometry mesh generation and locally refined resolution capabilities.
These limitations severely hinder any development in the areas of mesh generation, adap-
tive mesh refinement and the treatment ofmoving boundaries. The basic spectral element
method, relies on a domain decomposition that consist of identical conforming elements, so
that the decomposition of the domain must also satisfy some properties of conformity that
are standard in spectral elements. To avoid these limitations, in this thesis we will develop an
adaptive mesh refinement method based on the mortar element method, first introduced by
Bernardiet al. (1994).

The rigidity of the conforming formulation, is eliminated by allowing non-conforming
matching between sub-domains, functionally (the polynomial degree per element can vary)
as well as geometrically ( multiple elements can share a single edge of an adjacent element).
Figure 1.1 illustrates the difference between the two typesof refinement, left functionally
called p-refinement, and right geometrically, calledh-refinement. In the spectral element
methods literature, instead ofp-refinement the termN-refinement is used. In this thesis, we
freely use both terms in a interchangeable manner.

The non-conforming formulation of a spectral element discretization is the most crucial
development needed for the extension to adaptive methods. Without the flexibility afforded
by non-conformity, adaptive methods would be very cumbersome and inefficient. The spec-
tral element method can combine the advantages of finite element methods and spectral meth-
ods, provided that a non-conforming formulation is developed in a way consistent with the
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Fig. 1.1: Functionally (left) and geometrically (right) non-conforming mesh.Ni is the degree of the
polynomial approximation.

convergence properties of the existing conforming formulation. The mortar element method,
considered here, represents a domain decomposition approach (Chan and Mathew, 1994) in
which there is a clean decoupling of a local residual evaluation per element, where the spec-
tral element structure is preserved, by transmission of continuity and boundary conditions per
element.

To estimate what order of approximation and what size of elements are required, for a
specific mesh, is a difficult task. In most other studies it is based on trial and error. To
avoid this, we need an adaptive mesh refinement method combined with an automatic mesh
generation method. To achieve this goal, it is necessary to develop some error estimators to
serve as criteria for refinement decisions (Mavriplis, 1990). The role of the error estimators
is, of course, to provide an estimate of the actual error on a per element basis as well as
globally. This estimate is used to detect where to refine the mesh locally.

Adaptive SEMs have gained importance because they provide robustness, reliability, and
time and space efficiency. In such a method, the computational domain is first discretized to
create a mesh. During the solution process, portions of the discrete domain are spatially re-
fined or coarsened (h-refinement), the method order is varied (p/N - refinement). Each method
concentrates the computational effort in areas where the solution resolution would otherwise
be inadequate (Clarket al., 1994). Computationally demanding problems make parallelcom-
putation essential. However, parallelism introduces complications such as the need to balance
processor loading, to coordinate inter-processor communications, and to manage the distribu-
tion of the data. In general, the standard methodology for optimizing parallel SEM programs
relies on a static partitioning of the mesh across the cooperating processors. In the adaptive
case, a good initial partition is not sufficient to assure high performances. Due to the adaptiv-
ity, the load balance necessitates a dynamic partitioning and redistribution of data. The cho-
sen data structure must support this dynamic mesh migration(Williams, 1992). Parallelism is
generally explicit, achieved through the use of a message passing library such as the Message
Passing Interface - MPI (MPI, 1994), and requires a partitioning algorithm to distribute data
among processing nodes. The adaptive SEM computations can be distributed in a natural way
by a domain decomposition of the underlying mesh, but being adaptive, these meshes will
change and the system must account for this. Adaptive algorithms that utilize unstructured
meshes (Adjeridet al., 1992; Armstrong, 1991; Shephard, 1988a,b; Williams, 1992) make
the task of balancing processor computational load more difficult than with uniform struc-
tures. The dynamically adapted mesh has an equivalent graphrepresentationG = (V,E),
where mesh elements serve as the graph verticesV and connections between mesh elements
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are the graph edges (E). Graph partitioning algorithms produce some partitionsVk with the
goals of placing equals numbers of vertices in each subset ofVk, while minimizing the num-
ber of edges ”cut” by partitions. The graphs partitioning isrelated to the mesh partitioning
problem by assigning each partitionVk to a processor unit. Vertices represent units of work
to be balanced among the processors, while the edges represent the communication needed.
For more information about the mesh partitioning, the interested reader is referred to (Berger
and Saltzman, 1993; Farhat and Lesoinne, 1993; Shephardet al., 1995; Barnard and Simon,
1994; Hendrickson and Leland, 1993; Sohnet al., 1996) and (Gervasion, 1998; Patra and
Oden, 1995).

1.2 Objective of this thesis

The main research objective of this thesis is to apply adaptive mesh refinement techniques to
reduce the length-scale problems in the diffuse-interfacetechniques and to track the move-
ment of the boundary interface for different values of the Cahn numberC. The emphasis in
this thesis is on the software implementation of the non-conforming discretization and error
estimators as a development towards adaptive mesh refinement techniques. The flexibility
and effectiveness of the implementation will be illustrated by several test problems and ap-
plying the diffuse-interface model for multi phase flow problems. The initial development of
the software will not incorporate the mesh partitioning process needed for parallel processing.

We implement two key features in the development of adaptivemeshes: the non-conforming
mortar element method and a single mesha posteriorierror estimates. The distributed mesh
structure in our system is based on the Voxel Data Base (VDB) introduced by Williams
(1992), which provides the operators to create and manipulate distributed mesh data. The
VDB structure will be extended to support also the manipulation of the computational data
associated with the mesh (see subsection 4.4). Using the developed techniques, an applica-
tion based on the diffuse interface model, will be investigated :

• diffuse interface modelling of the morphology and rheologyof immiscible polymer
blends using mortar elements.

1.3 Thesis outline

The outline of the thesis is as follows. In Chapter 2, we present the basics of the spectral
element method, concentrating on the formulation and solution techniques for the Poisson
equation. The chapter ends with a few one-dimensional applications that use adaptive mesh
refinement techniques. The mortar element method based on the non-conforming discretiza-
tion is introduced in Chapter 3 for the solution of a two-dimensional Poisson equation. Also,
in Chapter 3, the single meshposteriori errorestimators for spectral element techniques are
introduced. The chapter ends with several applications that use the mortar element method
and unstructured approaches on high-order mesh elements. Chapter 4 provides details of the
software architecture of the adaptive mesh refinement implementation. The basic operations
for the spectral element method, the mesh and data structureare presented. Two wrapping
techniques for LAPACK and BLAS are compared. Chapter 5 provides illustrations of the
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non-conforming formulation for the diffuse interface modelling of the morphology and rhe-
ology of immiscible polymer blends. Concluding remarks andpossible directions for future
research are presented in Chapter 6. Appendix A presents a detailed description of error esti-
mators, for both, one-dimensional and two-dimensional cases. Finally, Appendix B provides
details of the wrapping techniques used in the software implementation of the adaptive mesh
refinement process.
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Chapter 2

Basics of the Spectral Element Methods with
Adaptive Mesh Refinement

In this chapter the basics of the spectral method are introduced and discussed. First, the one-
dimensional technique is described, which will allow the introduction of the two-dimensional
spectral technique, next the adaptive mesh refinement technique for a one-dimensional model
equation is outlined, and several results are presented.

2.1 Introduction

An adaptive formulation of the spectral element method is aimed at increasing the flexibility
and range of capabilities of high-order spectral methods ingeneral. While spectral methods
provide highly accurate solutions to partial differentialequations governing complex physi-
cal phenomena, their use has been limited to idealized research problems due to their lack of
geometric flexibility (Canutoet al., 1988). In this chapter, we investigate an adaptive spec-
tral element method for one-dimensional problems which automatically allocates resolution
where it is most needed in an optimal fashion.

Previous work in non-conforming discretization (Madayet al., 1989) and error estimators
(Mavriplis, 1990) for the spectral element method constituted a first step towards an adaptive
formulation, and will be presented in the next chapter. Spectral element methods are weighted
residual techniques for the approximation of partial differential equations that combine the
rapid convergence rate of spectral methods with the generality of finite element techniques.
By subdividing a complex domain into elements, an accurate solution of many problems
can be derived with substantially fewer degrees of freedom than would be required with a
lower-order discretization.

Spectral andh-p finite element methods are most commonly based on Chebyshev and
Legendre polynomials. These polynomials are the eigenfunctions of an appropriately de-
fined singular Sturm-Liouville problem and form an expansion basis for representing square-
integrable functionsu(x) ∈ L2. Maday and Patera (Maday and Patera, 1988) have shown that
this approach provides a weakC1 continuity (continuity in function and its first derivative)
across an element interface. In the variational approach, continuity across element interfaces
is naturally imposed. Exponential convergence of numerical solutions in practical situations
depends on a number of factors. One of them is the non-uniformity of the mesh, that can
degrade convergence of the solution. Such a feature must be isolated or resolved before fast
convergence(exponential convergence)is realized.

The accuracy of the approximation can be improved by either increasing the number of
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sub-domain elements, calledh-refinement, or by increasing the polynomial order of a fixed
number of elements, calledN-refinement(p-refinement), or by moving element boundaries.
As the main goal of the thesis is to investigate adaptive methods for moving interface prob-
lems, we consider only theh-refinementmethod combined with moving elements boundaries,
keeping the polynomial order fixed.

2.1.1 One-dimensional spectral element methods

In order to describe the main basic aspects of spectral element methods, we provide a step
by step formulation of the one-dimensional spectral element solver for a Poisson problem. In
higher dimensions, most of the basic operations are the sameexcept the geometry, that has to
be represented with more complicated elements using tensorproducts of the one-dimensional
approximation. The details of more general elliptic equations can be found in Maday and
Patera (1988).

Consider the solution of the Poisson equation on a domainΩ of R:

Problem 1:Find u(x)∈ C2(Ω) ∩ C1(Ω) such that:

−∂
2u

∂x2
= f onΩ = {x|xl < x < xr}, and u = 0 on ∂Ω, (2.1)

where∂Ω = {xl, xr} is the boundary ofΩ andf ∈ C0(Ω) is a prescribed function. Without
loss of generality, homogeneous Dirichlet boundary conditions are imposed.

We now define the space of acceptable solutions to equation (2.1). First, we recall that
the Lebesque spaceL2(Ω) is defined as:

L2(Ω) = {v measurable overΩ and
∫

Ω

v2 dx <∞}, (2.2)

and that this space is equipped with a scalar product

(u, v) =

∫

Ω

u(x)v(x) dx, ∀u, v ∈ L2(Ω), (2.3)

and associated norm‖v‖ = (v, v). Also, we define the Sobolev spaceH1(Ω) consisting of
all functions that are inL2(Ω) and whose first derivatives are also inL2(Ω). The reader is
refered to e.g. Adams (1985) for the definition of standard spaces, norms and inner products.

The solutionu of equation (2.1) belongs toH1
0(Ω), the space ofH1(Ω) containing all

functionsH1(Ω) that vanish at the boundary∂Ω. Now, problem 1 is also well-posed in
X = H1

0(Ω), in the sense that the following formulation of the problem admits a unique
solution:

Problem 2:Find au(x)∈ X such that:

∫

Ω

∂u

∂x

∂v

∂x
dx =

∫

Ω

fv dx, ∀v ∈ X, (2.4)
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or in a more concisely abstract form:

Find au(x)∈ X such that:

a(u, v) = (f, v), ∀v ∈ X, (2.5)

where the continuous bilinear forma is defined as:

a(u, v) =

∫

Ω

∂u

∂x
(x)

∂v

∂x
(x) dx, ∀u, v ∈ X, (2.6)

and the scalar product as:

(f, v) =

∫

Ω

f(x)v(x) dx, ∀f ∈ L2(Ω), ∀v ∈ H1
0(Ω). (2.7)

The discretization involves decomposing the domainΩ into sub-domainsΩk such that

Ω =

K⋃

k=1

Ω
k
, ∀k, l, k 6= l : Ωk ∩ Ωl = 0, (2.8)

where each sub-domainΩk is of lengthLk. HereΩ signifies the closure of the domainΩ.
Equation (2.4) is still an infinite-dimensional problem, because the spaceX contains an

infinite number of functions. For a Galerkin numerical approximation of problem 2.1, the
variational form (2.4) is tested with respect to a family of discrete finite dimensional spaces
Xh, whereh = (N,K) denotes a discretization parameter, as follows:

Finduh ∈ Xh such that:

K∑

k=1

a(uh, vh)Ωk =

K∑

k=1

(f, vh)Ωk , ∀vh ∈ Xh. (2.9)

In the conforming spectral element method,Xh is taken to be a subspace ofH1
0(Ω),

consisting of all piecewise high-order polynomials of degree less than or equal toN defined
onΩk:

Xh = X ∩ PN,K(Ω). (2.10)

The spacePN,K(Ω) is a space defined for each discretization parameterh over the domainΩ
such that:

PN,K(Ω) = {Φ ∈ L2(Ω),Φ|Ωk ∈ PN (Ωk)}, (2.11)

wherePN (Ωk) is the space of all polynomials of degree less that or equal toN on each sub-
domainΩk. The spacePN,K(Ω) ensures that the solution is integrable overΩ, whereasH1

0

ensures continuity overΩ.
Equation (2.9) must be numerically integrated with sufficient accuracy such that the

quadrature errors are of the same order as the approximationerror. The convergence and
convergence order ofuh towardsu is determined essentially by stability and approximation
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theory. The ellipticity and continuity of the bilinear formensures the existence and unique-
ness of the solution (Maday and Patera, 1988). Approximation theory consists of considering
the infimum of‖u − vh‖1,Ω over all vh ∈ Xh, where‖ · ‖1,Ω refers to theH1 norm over
Ω. The quadrature applied to integrate equation (2.9) is the Gauss-Lobatto Legendre (GLL)
quadrature since it includes boundary points of the interval Λ = [−1, 1] as collocation points.

The GLL quadrature is defined as follows:

∫ 1

−1

Φ(ξ)dξ =

N∑

i=0

ρiΦ(ξi) + εN , ∀Φ ∈ P2N−1(−1, 1), (2.12)

ξ0 = −1, ξN = 1 L′
N (ξi) = 0 ∀i ∈ {1, 2, . . . , N − 1}, (2.13)

with ρi the weights,ξi the collocation points,LN is theN th order Legendre polynomial and
the errorεN ∼ O(Φ2N (ζ)) for some pointζ, −1 < ζ < 1; as long as the integrand is
a polynomial of degree less that2N-1 this quadrature rule is exact (Davis and Rabinowitz,
1984).

In order to be able to apply the quadrature, an affine transformation is used to map each
spectral elementΩk to the intervalΛ = [−1, 1] (x ∈ Ωk, ξ ∈ Λ, x =⇒ ξ). Due to this
transformation the terms in equation (2.9) can be written as:

a(uh, vh)Ωk =

∫

Λ

∂u

∂ξ

∂v

∂ξ
J−1 dξ, (2.14)

(f, vh)Ωk =

∫

Λ

fvh(ξ) J dξ, (2.15)

whereJ is the Jacobian of the transformation given by:

J =
dx

dξ
, (x ∈ Ωk, x =⇒ ξ). (2.16)

Applying the GLL quadrature to the system (2.9) yields the following fully discrete problem:

Finduh ∈ Xh such that:

K∑

k=1

a(uh, vh)GL =

K∑

k=1

(f, vh)GL, ∀vh ∈ Xh. (2.17)

The corresponding discrete inner product(·, ·)GL with induced norm‖ · ‖GL is given by:

(u, v)GL =

N∑

i=0

Ji u(ξi)v(ξi)ρi, ∀u, v ∈ C0(Λ), (2.18)

whereJi = J(ξi). Furthermore, the discrete bilinear forma(·, ·)GL is given by

a(u, v)GL =

N∑

i=0

1

Ji

∂u

∂ξ
(ξi)

∂v

∂ξ
(ξi)ρi, ∀u, v ∈ C1(Λ), (2.19)

whereξi are the Gauss-Lobatto points.
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The Galerkin approximation gives the best approximation inthe restricted spaceXh, but
the success of the method lies in the selection of the basis functions. To standardize the basis,
we introduce a coordinate transformation to the elemental nodes as:

xki = ak +
bk − ak

2
(1 + ξi), i ∈ {0, · · · , N}, (2.20)

where Ωk = [ak, bk] represents the current element,ξi are roots of(1 − ξ2)L′
N (ξ) = 0 and

L′
N denotes the derivative ofLN with respect toξ. The elemental Lagrangian interpolants

hi(ξ) are chosen as a basis so that

∀wh ∈ Xh wkh(x) = wki hi(ξ), i ∈ {0, N}, x ∈ Ωk, ξ ∈ Λ, x =⇒ ξ (2.21)

wherewki = wkh(ξi) and the notation=⇒ signifies a mapping.
The interpolantshi have the following properties:

hi(ξj) = δij , ∀i, j ∈ {0, N}2, hi ∈ PN (Λ). (2.22)

whereδij is the Kronecker delta. They are expressed as:

hi(ξ) = − (1 − ξ2)L′
N (ξ)

N(N + 1)LN (ξi)(ξ − ξi)
, ξ ∈ Λ, ∀i ∈ {0, N}. (2.23)

From (2.12) and (2.13) it follows that the weightsρi are the integrated values of the
Lagrangian interpolantshi(ξ) overΛ.

It is convenient to write other functions that are not inXh, such as the termf , in terms
of Lagrangian interpolants but it is not necessary to imposethe additional constraints for the
continuity and homogeneous boundary conditions. To construct the right-hand side of the
system (2.17),f(x) is approximated by a collocation at the nodal points to producefh(x).
Rewriting equation (2.17) with the nodal basis expressionsfor uh, vh andfh, and using that
each test functionvh to be non zero at only one global collocation point, we arriveat the fully
discrete matrix equation:

K∑

k=1

′
N∑

j=0

Ckiju
k
j =

K∑

k=1

′
N∑

j=0

Bkijf
k
j , (2.24)

or Cu = Bf , (2.25)

or Au = f , (2.26)

where

Ckij =
N∑

l=0

1

Jl
ρl,kDliDlj ,∀i, j ∈ {0, · · · , N}2 (2.27)

Bkij = Jjρi,kδij ,∀i, j ∈ {0, · · · , N}2 (2.28)

Dij =
dhj
dξ

(ξi),∀i, j ∈ {0, · · · , N}2 (2.29)



18 Chapter 2. Basics of the Spectral Element Methods with Adaptive Mesh Refinement

A = B−1C. (2.30)

Here
∑

′ denotes elemental direct stiffness summation, in which thecontinuity and
boundary conditions imposed onuh, vh ∈ Xh, are taken into account: the rows and columns
corresponding to the same global degree-of-freedom are summed, and rows corresponding to
Dirichlet boundary conditions are eliminated.

Since each basis function is not zero over a single element, the bilinear forma(hi, hj)
is non-zero only ifhi andhj belong to the same element. To compute the global matrix
equation, only the local elemental matrices are created:

Ak uk = fk. (2.31)

At the element level, the matricesAk can be split into components containing boundary
and interior contributions, that is:

Ak =




Ak
11 Ak

12

Ak
21 Ak

22



,

whereAk
11 represents the components ofAk resulting from boundary-boundary mode inter-

actions,Ak
12 represents the components ofAk resulting from coupling between the boundary-

interior modes,Ak
21 represents the components ofAk resulting from coupling between the

interior-boundary modes andAk

22
represents the components ofAk resulting from interior-

interior mode interaction (see figure 2.1).
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Fig. 2.1: Schematic of the direct stiffness summation of local matricesA
k to form

the global matrixA [(Henderson and Karniadakis, 1991)].
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The global matrix is computed by assembling contributions from the elemental matrices

A =

K∑

k=1

′Ak. (2.32)

(
∑

′ represents ”direct stiffness summation”, see fig 2.1.)
Sincea(·, ·) is symmetric and positive definite, the matrixA is symmetric: Ak

21 =

[Ak
12]

T
. Also, A is banded as a result of the use of local basis functions, withall of its

non-zero entries located in theN diagonals above the main diagonal. The GLL quadrature
and interpolation offer some advantages. One of them is thatelements only couple at element
boundary nodes, resulting in a simple implementation and sparsity of the matrices. This min-
imal coupling also serves parallel implementations well, as it translates into a minimum of
communication between sub-domains. Another advantage is that the mass matrixB is diag-
onal, resulting in rapid evaluation of the right hand side aswell as time saving in the context
of iterative and time dependent procedures.

2.1.2 Accuracy of the spectral method

The GLL quadrature is exact for any polynomial of degree lessthan or equal to2N − 1,
a(uh, vh)GL will be exact but(f, vh)GL will not for arbitrary functionsf . A theoretical
bound for the error‖u − uh‖1 asN −→ ∞ for fixedK is given (Maday and Patera, 1988)
to be

‖u− uh‖1 ≤ C{N1−σ‖u‖σ +N1−ρ‖f‖ρ}, (2.33)

where‖ · ‖σ refers to theHσ norm andC is a constant independent ofh = (N,K). This
estimate foru ∈ Hσ

0 (Ω), f ∈ Hρ(Ω) consists of approximation, interpolation and quadrature
errors. This result indicates that ifu, f are analytic, the spectral solutionuh converges to the
exact solutionu asN −→ ∞, K fixed, exponentially fast; that is faster than any order alge-
braic convergence. Herein lies the advantage of spectral methods over finite element methods
which exhibits only algebraic convergence. The variational statement (2.17) is general and
may be interpreted differently depending on how the discretization parameter is varied to
achieve convergence. RequiringN fixed andK varying to infinity, correspond to the clas-
sicalh-type finite element method, where low order methods would correspond to lowN ,
typically N ≤ 4 . ForK = 1, N varying to infinity, the method corresponds to a global
spectral method. WhenK is fixed (K > 1), N varying to infinity, the case corresponds to
a spectral element method (SEM) or ap-type finite element method. Varying the number of
the elementsK, and the polynomial orderN , is still possible in the spectral element method
using adaptive meshes. To improve the approximation of not infinitely smooth solutions or
uniformly varying over the whole domain, a few options for refinement can be used:

1. K −→ ∞,N fixed, refinement by increasing the number of elementsK

2. N −→ ∞,K fixed , refinement by increasing the polynomialN order

3. differentN in different elements, refinement by changing the polynomial N order
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4. changing element boundaries, refinement by moving elements and adjusting their rela-
tive size

or a combination of options. The adaptive method consideredin this thesis will implement the
first refinement strategy. For one-dimensional problems, the first strategy will be combined
with a movement of the element boundaries. The flexibility toadapt the mesh to the solution,
makes spectral elements methods quite robust. A good adaptive method should be able to
simply determine the optimal combination of the four refinement strategies mentioned above
to efficiently solve a physical problem.

2.2 Numerical examples of the one-dimensional spectral element method

In this section, we illustrate the performance of SEM and themesh refinement technique for
a few one-dimensional problems.We investigate the refinement by increasing the number of
elements, combined with the movement of the elements boundaries by adjusting their relative
size. For one-dimensional numerical examples, a common refinement criteria, based on the
solution gradients, is used: refine everywhere where solution gradients are large. We require
that:

‖∇u(k)‖L2(Ωk) ≤ ε‖uh‖H1(Ω) (2.34)

everywhere in the mesh, where‖ · ‖ is theL2 norm, ‖ · ‖1 is theH1 norm, andε is the
discretization tolerance. The criterion for moving elements relies on comparing neighbouring
elemental solution gradients. Once the elements have been marked for refinement, if the
gradients per element level are larger than an imposed tolerance, the refinement process starts.
For refinement by increasing the number of elementsK, the element to be refined is simply
split in two. For refinement by moving elements, the elementswith large relative errors with
their neighbours are shrunk in size according to these errors.

In order to keep a uniform approach to one and two dimensionalproblems, presented
in this thesis, we consider that a mesh is conforming, in one-dimensional case, if the mesh
is uniform (the elements are equal-sized) and non-conforming if the mesh is not-uniform
(the elements are not equal-sized). Since an adaption is based on repositioning refinement,
or on creating new elements, a one-dimensional conforming mesh becomes, in general, a
non-conforming mesh after adaption.

2.2.1 One-dimensional linear steady advection-diffusionwith source term problem

The first test case we consider is the one-dimensional linearsteady advection-diffusion prob-
lem with source term (one-dimensional steady cosine hill).Advection-diffusion in steady
state is interesting in case of a spatially distributed source. The model problem we consider
here (Vreugdenhil and Koren, 1993) can be described in a dimensionless form as:

u
∂c

∂x
−D

∂2c

∂x2
= S(x) ,

S(x) =
uπ

b− a
sin 2π

x− a

b− a
− 2π2D

(b− a)2
cos 2π

x− a

b− a
( a ≤ x ≤ b) ,
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S(x) = 0 elsewhere (x < a and x > b) .

The exact solution for the source function we consider is

c(x) =
1

2
(1 − cos 2π

x− a

b− a
) ( a ≤ x ≤ b),

c(x) = 0 elsewhere (x < a and x > b ) .

In our example, we solve the equation for

a = 0.2, b = 0.6, u = 1,D = 0.01.

The boundary conditions are forx = 0 andx = 1: c(x) = 0 . Note that the source function,
illustrated in figure 2.2 (a), is discontinuous at bothx = a andx = b if D 6= 0. The exact
solution to this problem in not smooth since the second derivative is discontinuous inx = a
andx = b. For this problem no exponential accuracy is achieved due tothe discontinuities in
the second derivatives. To improve the accuracy, we use adaption based on the solution gra-
dients combined with the movement of the elements boundaries. Figure (2.3) illustrates the
effect of adaption keeping the polynomial order and the number of elements order constant:
N = 14,K = 16. We start the refinement using an initial grid that consists of four equally
spaced elements, and we impose that the maximum number of elements that are created dur-
ing the refinement equalsK = 16, and the refinement tolerance is setε = 1.0 × 10−03.
Figure 2.3 (a) shows the effect of the uniform refinement, where each element is split up in
two children elements. Imposing the tolerance on the solution gradients, we now combine
h-refinement with relocation of the element boundaries.
In figure 2.3 (b), we can see that moving the element boundaries influences the accuracy of
the solution. The discrete minimum error is obtained forN = 14,K = 16, ‖c− ch‖∞,GL =
1.72 × 10−5, where the subscript‖∞,GL means that the maximum error is evaluated in the
GLL points. Despite of clustering of small elements near thesharp gradients, the error re-
mains large.

2.2.2 One-dimensional steady Gaussian hill problem

We consider again the steady advection-diffusion problem as described by the first test case.
However, in this case the source term, figure 2.2(b), is chosen such the exact solution to this
problem is the Gaussian hill

c(x) = e
−

(x− x0)
2

2σ2
, with σ = 0.04 andx0 = 0.4.

Since this problem has a well-defined (infinitely smooth) solution, we begin by computing
the true error‖c − ch‖∞,GL on a uniformly refined grid (table 2.1). This table shows that
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Fig. 2.2: Source functions for the one-dimensional linear steady advection-diffuse problem (a) and one-
dimensional steady Gaussian hill problem (b).
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Fig. 2.3: Effect of refinement by moving the elements boundaries for the one-dimensional steady cosine
hill. The toleranceε = 1.0 × 10−03.
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the spectral convergence is obtained. In figure 2.4(a), the discrete maximum errorε = ‖c −
ch‖∞,GL is plotted versus the degrees of freedom (dofs) obtained by increasing the degree of
approximationN and the number of the elementsK. For example: imposing a certain error
for the approximation, we can determine how manydofswe need to obtain that error. Let us
consider that we want the discrete maximum error to beε = 1.0×10−10. From figure 2.4(a),
we can see that this error is achieved in three cases:

1. N=16with about 130dofs

2. N=14with about 150dofs

3. N=12with about 170dofs.

Table 2.2 shows the errors for solving the one-dimensional steady Gaussian Hill problem
using the adaption based on solution gradients. We see, by keeping the same number of
elementsK and adapting the polynomial orderN , a better approximation for the solution is
obtained. In figure 2.4(b), we illustrate the dependence of the error on the number ofdofs. As
in the uniform case, we impose the same errorε = 1.0 × 10−10 to approximate the solution
of the problem. In this case the number ofdofswe need to achieve the imposed error is less
than in the uniform case:

1. N=16with about 100dofs

2. N=14with about 120dofs

3. N=12with about 150dofs.

From tables 2.1 and 2.2 we choose the best approximation of the solution and plot the
errors versus the number ofdofs in both cases:uniformandadaptive. This is illustrated in
figure 2.4(c). For allN,K combinations, we see that the best approximation of the solution
is achieved in the adaptive case using lessdofsthan in the uniform case.

Table 2.1. Errors (‖c− ch‖∞,GL) for solving the steady Gaussian hill, in the uniform case
for polynomial ordersN={8,12,14,16} elements:

K N=8 N=12 N=14 N=16
Elements Error dofs Error dofs Error dofs Error dofs

4 2.38E-02 33 6.14E-04 49 7.93E-05 56 8.82E-06 65
8 7.68E-05 65 7.36E-08 97 2.57E-09 113 1.12E-10 129
16 1.23E-07 129 1.15E-11 193 9.07E-14 225 2.48E-14 257
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Table 2.2. Errors (‖c− ch‖∞,GL) for solving the steady Gaussian hill, in the refined case
for polynomial ordersN={8,12,14,16} elements:

K N=8 N=12 N=14 N=16
Elements Error dofs Error dofs Error dofs Error dofs

4 9.57E-04 33 2.17E-04 49 1.36E-06 56 3.93E-08 65
8 8.37E-06 65 8.38E-09 97 1.93E-10 113 3.67E-12 129
16 2.22E-08 129 9.44E-13 193 2.48E-14 225 1.40E-14 257
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Fig. 2.4: The number of dofs for solving the one-dimensional steady Gaussian hill as a function of the
required error:(a) uniform, (b) adaptive, (c) comparison betweenuniform and adaptive.

In figure 2.5 we illustrate the effect of the refinement by adaptively increasing the num-
ber of elements combined with a movement/relocation of the elements boundaries. The re-
finement starts with an initial grid of four equally spaced elements. Based on the solution



2.2. Numerical examples of the one-dimensional spectral element method 25

gradients, we refine the grid and move the elements boundaries, trying to minimize the dis-
crete error of the solution. When the imposed number of elements is reached, the refinement
process stops. In this way, we can compare the errors computed in the uniform case, with
the errors obtained in the adaptive case. On the left side of figure 2.5(a, c) we represent
the uniform caseN=16,K={4, 8}. After refinement, the maximum errors are two order of
magnitude smaller than in the uniform case (figure 2.5 b, d).
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Fig. 2.5: Effect of refinement by adaptively increasing the number of elementsand by moving the
elements boundaries for the one-dimensional steady Gaussian hill.
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2.2.3 One-dimensional linear unsteady advection problem

The last test case we consider in this chapter is the one-dimensional unsteady advection equa-
tion problem:

∂c

∂t
+ u

∂c

∂x
= 0, -2≤ x ≤ 2, andt ∈ [0, 1],

where the velocityu is constant and equalsu = 1. The initial condition is a Gaussian
distribution:

c(x, 0) = 0.014r2 , r =

√
(x+

1

2
)2.

The exact solution is:

c(x, t) = 0.014r2 , r =

√
(x− t+

1

2
)2.

We use a Crank-Nicolson scheme to solve the one-dimensionalunsteady advection, which
is unconditionally stable and second-order accurate in time. Table 2.3 shows the errors for
solving the unsteady equation on a uniform grid (K=4, 8, 16, 32). ForK=4, the errors due to
the spatial resolution are dominant and we do not achieve thegood solution accuracy in time.
The same effect appears when the time step is kept constant and the polynomial order of the
elements changed. In this case the errors due to the time discretization are dominant. We can
improve the accuracy by refining the elements, based on the solution gradients.

Table 2.3. Errors (‖c− ch‖∞,GL) for solving the one-dimensional unsteady Gaussian hill,
in the uniform case for polynomial orderN = 8 elements:

Time Steps N=8, K=4 N=8, K=8 N=8, K=16 N=8, K=32
64 1.31E-01 6.12E-03 6.28E-03 6.28E-03
128 6.04E-02 1.56E-03 1.56E-03 1.56E-03
256 6.04E-02 9.32E-04 3.91E-04 3.91E-04

Table 2.4 shows the improvements in accuracy due to mesh refinement. Each time cycle
starts with an initial number of elements represented byKi. After refinement, the number
of elements per time cycle is averaged to obtain the average number of elements usedKa.
Even in this case the time discretization errors are very large. To eliminate them and prove
that we get more accuracy in space, we considera modified exact solution. From table 2.3,
it is observed that the accuracy is not improving anymore, even when the time step = 256
andN = 8,K = 32. The same error‖c − ch‖∞,GL = 3.91 × 10−04 is obtained when we
solve the problem forN = 16 andK = 32. This is an indication that the error due to the
time discretization is dominant. We compute themodified exact solutioncmex solving the
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one-dimensional unsteady advection equation problem forN = 20, K = 64 and 2048 time
steps. Computing the norm‖cmex− ch‖∞,GL we are able to eliminate the error due the time
discretization. The improvement in accuracy for a 64 time steps cycle is illustrated in the
table 2.5.

Table 2.4. Errors (‖c− ch‖∞,GL) for solving the one-dimensional unsteady Gaussian
hill, in the non-uniform case for polynomial orderN = 8 elements and an error
toleranceε = 0.01 for the solution gradients:

Time Step N=8,Ki=4 N=8,Ki=8 N=8,Ki=16
64 5.73E-03,Ka=20 1.3E-04,Ka=20 6.28E-05,Ka=20
128 2.58E-03,Ka=19 3.98E-05,Ka=19 1.56E-05,Ka=19
256 1.21E-03,Ka=18 1.76E-05,Ka=18 2.46E-06,Ka=18

consciously

Table 2.5. Errors (‖cmex − ch‖∞,GL) for solving the one-dimensional unsteady
Gaussian hill, in the non-uniform case for polynomial orderN=8 elements and an
error toleranceε = 0.01 for the solution gradients:

Time Step N=8,Ki=4 N=8,Ki=8 N=8,Ki=16
64 1.02E-04,Ka=20 7.65E-07,Ka=20 3.56E-08,Ka=20

A comparison between the relative errors in solving the one-dimensional linear unsteady
advection problem, is illustrated in figure 2.6. For different time steps, there is an improve-
ment of the solution accuracy due to refinement. After refinement, the errors are two orders
of magnitude smaller than in the uniform case.
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Fig. 2.6: The number of dofs for solving the one-dimensional linear unsteady advection problem, as a
function of the required error for one-dimensional linear unsteady advection problem: com-
parison between uniform and adaptive , forN = 8 and different time steps: 64, 128, 256.
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In figures 2.7, 2.8 and 2.9 is illustrated the accuracy of the solution in both, the uniform
(left) and the non-uniform (right) cases for different timesteps. The element size, the exact
solution and the adapted solution are shown. Imposing different tolerances on the solution
gradients, and choosing different time steps, the number ofelements vary per simulation. In
our example, we generate roughly the same number of elements(K ≈ 20) using a uniform
basis of orderN = 8 andN = 16. The elements are generated around the Gaussian hill,
and they ”move” together with it. The elements that are not inthe vicinity of the hill are
coarsened. We can conclude that in all time cycles an improvement in solution accuracy is
achieved, due to the refinement.
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Fig. 2.7: Effect of refinement by adaptively increasing the number of elementsfor the one-dimensional
unsteady Gaussian hill, based on the solution gradients with a tolerance ofε = 0.04.
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Fig. 2.8: Effect of refinement by adapting increasing the number of elements for the one-dimensional
unsteady Gaussian hill based on the solution gradients with a tolerance ofε = 0.01.
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Fig. 2.9: Effect of refinement by adapting increasing the number of elements for the one-dimensional
unsteady Gaussian hill based on the solution gradients with a tolerance ofε = 0.04.
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2.3 Conclusions

The test cases presented clearly show that the adaptive formulation of the spectral element
method increases the flexibility and capability of the method. Sharp gradients and regions of
poor resolution can be solved optimally. Any refinement in the pure spectral element con-
vergence context, namelyK fixed, N −→ ∞, improves the solution’s accuracy but at a
slow rate. If the boundary layers were internal, as opposed to on the boundary, convergence
would deteriorate rapidly, unless we know where the boundary layer was and could place el-
ements on either side of it. A simple repositioning of the element boundaries (or equivalently
a change in their size), however, results in an error two orders of magnitude lower for the
same discretization parameterK. First, in practical calculations the spectral element method
is not restricted to keep the number of elementsK fixed and increasingN towards infinity.
There is much more flexibility in the method due to the discretization parameterh = (N,K)
depending on two parameters. Second, we need to develop criteria and schemes to efficiently
exploit this flexibility. The refinement criteria will be improved by introducing, in the next
chapters, newerror estimatorswhich will indicate the quality of the resolution on each ele-
ment. The test cases have shown that we can use many elements in regions of discontinuities
or sharp structure. The refinement capabilities are very successful, but we have seen that the
coarsening algorithm remains somewhat inefficient. We willaddress this problem again for
the two dimensional problems.
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Chapter 3

Mortar Element Method

In this chapter the fundamentals of the mortar element method are introduced, including
theory and implementation. Single-mesha posteriorierror estimators for a spectral element
solutionuh of a general partial differential equationL(u) = f will be presented. Several
numerical examples are presented and analyzed, mainly based on work of Greengard and
Lee (1996); Mavriplis (1989); Henderson and Karniadakis (1991).

3.1 Introduction

Mortar element methods were first introduced by Bernardi, Maday and Patera in Bernardi
et al. (1994) for low-order and spectral/finite elements. Mortar spectral elements are non-
conforming spectral elements that allow a non-conforming decomposition of the computa-
tional domain into sub-regions. With respect to accuracy, the optimal coupling of different
variational approximations in different sub-regions is achieved. Since the method is non-
conforming, the discrete space is not embedded in a continuous functional space suited to
the numerical analysis of a given partial differential equation. However, the’variational
crime’ (Anagnostouet al., 1989) committed in this strategy, does not pollute the accuracy
of the original spectral method; it leads to more flexible discretizations and a better use of
the discretization parameterh. The mortar element method preserves the element-based lo-
cality, distinguishing it from other, more global techniques such as functional minimization
with Lagrange multiplier constrains (Dors, 1989). Anotherattractive property of the mor-
tar element method is its good scalability characteristicson parallel computers due to dense
computational kernels and sparse communication requirements. One of the main features
of the mortar element method is that the order of the interpolation polynomialN and the
number of elementsK, can be adjusted to suit the problem at hand. In the next sections the
fundamentals of the mortar element method are introduced.

3.2 Spectral element methods for two-dimensional problems

In Chapter 2, we introduced the basic operations of the one-dimensional spectral element
method. In this section we present the procedure used to derive the spectral element method
for two-dimensional problems. A key to the efficiency of high-order methods in higher di-
mensional problems is the formulation of a basis from the tensor product of one-dimensional
basis functions. We consider the two-dimensional Poisson equation on a domainΩ ∈ R

2,
with homogeneous Dirichlet boundary conditions:
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Problem 1: Findu ∈ C2(Ω) ∩ C1(Ω) such that

−∇2u = f in Ω, and u = 0 on ∂Ω. (3.1)

After integrating by parts and applying the boundary conditions, the variational statement
for the problem 1 is:

Problem 2: Findu ∈ X = H1
0(Ω) such that

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx, ∀v ∈ X (3.2)

or

a(u, v) = (f, v) ∀v ∈ X, (3.3)

where a point inΩ is denotedx = (x, y) and the bilinear forma(·, ·) is given by:

a(u, v) =

∫

Ω

∇u · ∇v dx, u, v ∈ X. (3.4)

The spectral element discretization proceeds by breaking up the domainΩ into K rect-
angular elementsΩk. In conforming spectral element methods, the domain decomposition
satisfies the constraint that the intersection of two adjacent elements is either an entire edge
or a vertex and the order of approximation is equal for adjacent elements. Relaxing this
constraint is the subject of the next section.

First, we require that the variational statement, equation(3.2), is satisfied for a piecewise
polynomial subspace ofH1

0(Ω). As in the one-dimensional case, we first define the space

PN,K(Ω) = {Φ ∈ L2(Ω); Φ|Ωk ∈ PN (Ωk) × PN (Ωk)}, (3.5)

wherePN (Ωk) denotes the space of all polynomials of a degree less than or equal toN with
respect to each variablex, y on each subdomainΩk, andPN,K(Ω) is the tensor product
space corresponding to (2.11). The spectral element spaceXh consist of

Xh = H1
0(Ω) ∩ PN,K(Ω). (3.6)

In two-dimensional problems, we can map a general curvilinear element to the standard
element as shown in figure 3.1. The curved element must still verify the constrains imposed
for the conforming case: the intersection of two adjacent elements is either an entire edge or a
vertex and the interpolation points coincide. We may use arbitrary local elemental mappings:

(x, y)kh = (x, y)kijhi(ξ)hj(η) (3.7)

to map physical curved elements(x, y) onto the square computational domain(ξ, η) where
(x, y) ∈ Ω and(ξ, η) ∈ Λ2.
The discrete problem is then given by:

Problem 3: Finduh ∈ Xh such that
∫

Ω

∇uh · ∇vh dx =

∫

Ω

fvh dx, ∀vh ∈ Xh. (3.8)
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Fig. 3.1: Isoparametric mapping from physical curved geometry (x,y) to the computational rectangular
grid (ξ, η) for a polynomial orderN = 6.

We use an affine mapping from(xk, yk) to (ξ, η) ∈ Λ2 = [−1, 1] × [−1, 1] on each
elementk, and denote the Jacobian by:

Jk =
∂xk

∂ξ

∂yk

∂η
− ∂xk

∂η

∂yk

∂ξ
. (3.9)

Performing GLL quadrature in(ξ, η) yields:

K∑

k=1

′ 1

|Jk|ρiρj∇u
k
h(ξi, ηj)·∇vkh(ξi, ηj) =

K∑

k=1

′|Jk|ρiρjfk(ξi, ηj)vkh(ξi, ηj), ∀ vh ∈ Xh(3.10)

or

K∑

k=1

a(uh, vh)GL =

K∑

k=1

(f, vh)GL ∀vh ∈ Xh, (3.11)

whereξi, ηj are the Gauss-Lobatto collocation points in thex, y directions respectively, and
ρi, ρj the Gauss-Lobatto weights. The notation

∑
′ denotes the direct stiffness summa-

tion between elements, in which continuity (physically coincident node contributions are
summed) and boundary conditions (boundary node contributions are set to zero) onuh and
vh ∈ Xh are taken into account. To complete the discretization, a basis must be chosen.
The basis foruh ∈ Xh then follows naturally from the one-dimensional case as:

ukh(x, y) = ukijhi(ξ)hj(η), x, y =⇒ ξ, η, (3.12)

where thehi andhj are the one-dimensional Lagrangian interpolants defined in(2.23) and
ukij = ukh(ξi, ηj).

Inserting (3.12) in (3.10) the tensor product form is retained and the resulting discrete
equations can therefore efficiently be solved. We induce extra quadrature errors in the evalu-
ation of botha(uh, vh)GL and(f, vh)GL; however, for smooth solutions and boundaries they
are roughly of the same order as the approximation and interpolation errors (Rønquist, 1988).

As in the one-dimensional case we also require the polynomials to beC0 continuous
across elemental boundaries and enforce homogeneous Dirichlet boundary conditions for
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uh ∈ Xh. Then, we express the discrete solutionuh ∈ Xh, the test functionsvh ∈ Xh

and the prescribed forcefh ∈ Yh in terms of the basis (3.12) and by choosingvh to be
nonzero at only one global collocation point, the discrete formulation (3.10) becomes

K∑

k=1

′
N∑

m,n=0

(CkimB
k
jn+B

k
imC

k
jn)u

k
mn =

K∑

k=1

′
N∑

m,n=0

BkimB
k
jnf

k
mn ∀i, j ∈ {0, N}2(3.13)

or

Cu = Bf , (3.14)

or

Au = f , (3.15)

whereCkim, B
k
jn are the matrices of the one-dimensional case (2.27, 2.28, 2.29) andA = B−1C.

There are two differences from the one-dimensional case that are worthwhile to be men-
tioned. First, by using the properties of GLL quadrature, the equivalence of (3.11) to a col-
location procedure for points internal to an element can be obtained. The interface between
the elements is more complex than in the one-dimensional case. The weakC1 condition, at
element boundary points, is naturally generated by the variational approach.

The second observation is that the spectral method formulation for elliptic problems is
directly compatible withh-type finite element methods, in that the projection operators and
continuity are the same for both methods. This makes it possible to mix low-order with
high-order elements in the same problem. For instance, low-order elements can be used in
regions of the domain where the solution varies very slowly or near singularities. Since in
that case the collocation points do not coincide on the internal elemental boundaries, at the
interface of the two elements a projection is needed in orderto make the connection between
one elemental space and the other. This is addressed by the non-conforming formulation in
the next section.

3.3 Mortar element basic concepts

The mortar formulation presented here is based on the approach presented in Madayet al.
(1989); Bernardiet al. (1990); Levinet al. (2000); Anagnostouet al. (1989).

In our final implementation, the spectral expansions are thesame in all elements and a
non-conforming grid is obtained byh-refinement. This is a particular case of the general
formulation presented in Levinet al. (2000) in which a two-dimensional mortar element
formulation is introduced for geometrically non-conforming grids, where elements are al-
lowed to have different spectral expansions. In the formulation presented in (Madayet al.,
1989; Bernardiet al., 1990), the spectral expansions are the same in all elementsand a non-
conforming grid is obtained byh-refinement. Our formulation is designed for the general
case: geometrically non-conforming grids where elements are allowed to have different spec-
tral expansions. Due to this generality, a different formulation of a projection operator be-
tween interface and non-conforming element edges is obtained. In this section, we will first
introduce a general two-dimensional mortar element formulation based on Levinet al.(2000)
and then the particular case forh-refinement will be derived.



3.3. Mortar element basic concepts 37

1Ω 1Ω

1Ω1Ω
3Ω3Ω3Ω

v

v

v

1

3

4

γ3

v2
k

Ω

3Γ

2Γ

1Γ

4Γ

k

k

k

k

4 3

21

789

2Ω5
2Ω6

γ2

γ1

Fig. 3.2: An illustration of the non-conforming grid. The element edges are shownwith thicker lines
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The non-conforming formulation consists of a set of conforming spaces for the regions
that permit a conforming formulation, a space of functions on a mortar interface and a space
used in the projection between the mortar spaces and the conforming spaces.

Before we introduce the formulation of the two-dimensionalmortar method, the basic
concept of the method can be sketched as follows. We considerthe domainΩ on R

2 such
thatΩ consist of several subregionsΩp, p = {1, ..., P} and in each ofΩp , the spectral grid
is conforming. In figure 3.2 we illustrate this concept. The domainΩ is covered completely

by the unionΩp : Ω =
P⋃
p=1

Ωp. TheΩp intersects with each other only along a collection

of one-dimensional element edges. The union of these edges defines the skeletonS of the
domain which is decomposed into mortars. These mortars are one-dimensional geometrical
entities for two-dimensional problems. We require the mortars to coincide with a complete
edge or with a union of edges. The choice of mortars is not unique. In the example, shown in
figure 3.2, the domainΩ has three subregions:

Ω = Ω1 ∪ Ω2 ∪ Ω3, (3.16)

where each subregionΩp is covered by a collection of conforming spectral elements.Subre-
gionΩ1 has four elements,Ω2 has two elements andΩ3 has three elements:

Ω1 = Ω1
1 ∪ Ω2

1 ∪ Ω3
1 ∪ Ω4

1, Ω2 = Ω5
2 ∪ Ω6

2, Ω3 = Ω7
3 ∪ Ω8

3 ∪ Ω9
3. (3.17)

Each subregion can have a different polynomial order of the spectral expansion. In this case
the coupling between subregions is done by mortars. One important issue is the choice of
the discrete space for the mortar functions. The globalC0 continuity of the basis, for a
geometrically and functionally non-conforming mesh, cannot be guaranteed. To make the
basis as continuous as possible, we have to minimize the difference in function values across
each mortar (non-conforming interface). We impose that theL2 projection of the jump across
the mortar vanished:

∫

γ

(u1 − u2)Ψ ds = 0, ∀Ψ ∈ PN−2(Γ), (3.18)
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Fig. 3.3: Mortar decomposition in a functionally non-conforming case, one mortar. Γi,j denotes the
interface between elementsΩi andΩ

j .

and the continuity whenever the spectral element vertices coincided (at the end points of
the mortars). Here, the two functionsu1 andu2 are the functions that we would like to be
continuous, andΨ is the weight used to perform the minimization of the jump. Evaluating
equation (3.18) using numerical quadrature, yields the algebraic form:

u1 = Qu2, (3.19)

whereu1 andu2 are the coefficients of the basis we choose to representu1 andu2. We
see thatQ represent a set of relationships between the values ofu2, which are free, and the
values ofu1, which are constrained to match them such that (3.18) is satisfied. In practice,
we chooseu2 to be the solution along the mortar edges, andu1 to be the solution along the
edge of an adjacent non-conforming element. In this way, theu1 degrees of freedom are
eliminated in the mesh, and they are replaced withu2.

To illustrate how theL2 projection is imposed, we consider a few examples (Deville
et al., 2002), where each subregion has only one element (we drop the subscriptp in these
examples).

In figure 3.3, the domainΩ is split into two rectangular subdomains,Ω1 andΩ2, dis-
cretized by polynomials of degreeN1 andN2, respectively. In this case the decomposition
is functionally non-conforming. There are two mortars:γ1 = Γ1

2 andγ2 = Γ2
4, that can be

considered. Without loss of generality,γ1 is chosen to form the skeletonS of the domain. If
we consider̃u1 the restriction ofu1 to the interfaceΓ1,2, andũ2 the restriction ofu2 to Γ1,2,
thenũ1 ≡ Φ1 andũ2 becomes the dependent variable:

∫

Γ1,2

[ũ(s) − Φ(s)]Ψ(s) ds = 0, ∀Ψ ∈ PN2−2(Γ1,2), (3.20)

whereΓ1,2 is the interface between elementsΩ1 andΩ2. If N1 ≤ N2, ũ2(s) equation (3.20)
can be evaluated by :

ũ2(s) = ũ1(s) + αLN2
(s) + βLN2−1(s), (3.21)

whereα andβ can be expressed in terms ofũ2,0 andũ2,N2
by evaluating (3.21) at the vertices.
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Fig. 3.4: Mortar decomposition in a geometrically non-conforming case, three mortars.

As a second example, we consider a geometrically non-conforming domain, see figures
3.4 and 3.5. In this case, possible choices for mortars areγi ∈ {Γ1,2,Γ1,3,Γ2,3} andγi ∈
{Γ1,2 ∪ Γ1,3,Γ2,3}. To take into account the relative position and size of the interfaces, the
integral constrain must be applied in physical coordinates. The long interface betweenΩ1

and{Ω2, Ω3}, can be decomposed into either one or two mortars. First, we consider the

skeletonS =

3⋃

i=1

γi (see figure 3.4). The restriction ofu(x) to the interface arẽu1, ũ2, ũ3,

whereũ2, ũ3 are the degrees of freedom. Applying integral matching condition yields:
∫

Γ1

2

ũ1Ψ ds =

∫

Γ1,2

ũ2Ψ ds+

∫

Γ1,3

ũ3Ψ ds, (3.22)

∫

Γ1

2

ũ1Ψ ds = Bũ1, (3.23)

∫

Γ1,2

ũ2Ψ ds = P1,2ũ2, (3.24)

∫

Γ1,3

ũ3Ψ ds = P1,3ũ3, (3.25)

where the entries of matricesB andP are computed using equations (3.45) and (3.50).
The dependent side is computed as:

ũ1 = B−1P1,2ũ2 + B−1P1,3ũ3. (3.26)

Since we impose the vertex matching conditions, the first andthe last row ofB and
P1,2,P1,3 have to be modified accordingly (see equation (3.61)). Also,ũ2,N2

andũ3,0 have
to match, because they represent the function values in the same point.

The case in figure 3.5 is similar. The degrees of freedom are associated with̃u1 and the
integral matching conditions yield:

∫

Γ1,2

(ũ2 − ũ1)Ψ ds = 0,∀Ψ ∈ PN2−2, (3.27)
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Fig. 3.5: Mortar decomposition in a geometrically non-conforming case, two mortars.

∫

Γ1,3

(ũ3 − ũ1)Ψ ds = 0,∀Ψ ∈ PN3−2. (3.28)

In this case, separate relationships are obtained for each of ũ2 andũ3 by equations (3.27)
and (3.28). To evaluate

∫
Γ1,2

ũ1Ψ ds and
∫
Γ1,3

ũ1Ψ ds , we use a higher-order quadrature rule

N , settingN = max(N1, N2) andN = max(N1, N3) respectively.

3.4 Mortar element formulation

We are now ready to introduce the mortar formulation, which is the main component of the
adaptive mesh refinement process.The standard conforming discrete spaceXp in each sub-
domainΩp is defined by:

Xp(Ωp) = {v ∈ C0(Ωp) : ∀k = 1, . . . ,Kp, v|
Ωk

p

∈ PNp
×PNp

(Ωk
p), v|∂Ω

= 0}(3.29)

whereNp is the polynomial order of the spectral expansion used in each elementΩk
p of a sub-

regionΩp. HerePNp
(Ωk

p) denotes the space of all polynomials onΩk
p of order not greater

thanNp in each spatial direction. Since each sub-domainΩp contains only conforming ele-
ments, the conforming formulation (3.29) is valid everywhere, except on those element edges
that belong to the mortar skeletonS. The skeletonS joins sub-domainsΩp with a different
spectral expansion order (onS the nodal points that belong to the neighbouring elements do
not coincide). Even in the particular case when the polynomial order of the neighbouring
elements onS will be the same, there is a geometrically non-conforming coupling between
the elements. In figure 3.2, the skeleton of the domainΩ has three mortars:

S = γ1 ∪ γ2 ∪ γ3, (3.30)

whereγi can be defined as a collection of edges:γ1 = Γ2
2 (edge two of element two),

γ2 = Γ5
3 ∪ Γ6

3 (edge three of element five and six) andγ3 = Γ3
2 (edge two of element three).

In order to define the non-conforming spaceXh, we first introduce an auxiliary mortar
spaceWh that controls the error between the two representations of the solution onS and
works as a link between the two representations (conformingand non-conforming).
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In general, we define the skeletonS as a collection of line segmentsγi:

S =
M⋃

i=1

γi =
P⋃

p=1

∂Ωp, (3.31)

whereM represents the number of the mortar segments (see (3.30)). From this point on,
unless noted otherwise, the parameters with an overbar willbe related to the mortars.

Each end point of a mortar segmentγi coincides with a vertex in all the sub-domainsΩp,
which share this portion ofS. The spaceWh is defined on the mortarsγi and depends on the
way the skeletonS is split into mortars. As illustrated in figure 3.2 the segmentsγi can be an
edge of an element, or a union of edges.

The mortar auxiliary spaceWh is now defined as:

Wh = {Φ ∈ C0(S),∀i = 1, . . . ,M, Φ|γi
∈ PNi

(γi),Φ|∂Ω
= 0 }. (3.32)

The orderN i of polynomialPNi
(γi) depends on the neighbouring spectral elements that

are coupled to the mortarγi. We consider two sets of elements edges, the first setΓSj , j =

1, . . . ,KS and the second setΓMj , j = 1, . . . ,KM for each mortarγi, such that:

1. ∃ΩS ⊂ Ωp, ∃ ΩM ⊂ Ωp,Γ
S
j ∈ ΩS

∧
ΓMj ∈ ΩM , ∀ j,

2. γi =
KS⋃
j=1

ΓSj and γi =
KM⋃
j=1

ΓMj , both sets cover the mortar completely,

3. γi(v1
i ) ∈ ΩS , γi(v

2
i ) ∈ ΩS , and γi(v1

i ) ∈ ΩM , γi(v
2
i ) ∈ ΩM ,

wherev1
i andv2

i are the end points of the mortarγi.

TheΓS andΓM are called the slave and the master sides of the mortarγi. The elements
that contain theΓM edges set, form the master elements set. In the same way, the elements
that contain theΓM edges set, form the slave elements set. These two sets are important for
the definition of the data structure we use in the implementation. The polynomial order on
the mortars sides can be different. In this case letNS andNM be the polynomial order of
the expansions inΩS andΩM sub-domains. The orderNi of the polynomialsPNi

(γi) in
equation (3.32) is such that the number of degrees of freedomon the mortars is equal to the
maximum number of degrees of freedom in the two setsΓS andΓM :

N i = max(NSKS , NMKM ). (3.33)

On each interfaceγi, there are three different functions that belong to one of the following
spaces:

W|γi
= {v ∈ PNi

(γi)}, (3.34)

Xp(Ω
S)|γi

= {v ∈ C0(γi),∀j = 1, . . . ,KS : v|ΓS
j

∈ PNS (ΓSj ) }, (3.35)

Xp(Ω
M )|γi

= {v ∈ C0(γi),∀j = 1, . . . ,KM : v|ΓM
j

∈ PNM (ΓMj ) }. (3.36)
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In order to minimize the difference between them, we introduce two additional constrains
to the spaceXp(Ω

S)|γi
andXp(Ω

M )|γi
. Sinceγi(v1

i ) andγi(v2
i ), the end points of the

mortarγi, coincide with a vertex in bothΩS andΩM , the function values in this points
should be the same in all the representations. We call this condition, that ensures exact
continuity at cross vertices, the vertex condition. The second condition we impose is the so-
called integral matching condition: the jump in functions at internal boundaries onγi should
be minimized. This is equivalent with the following: the error between the representations,
on slave and master edges, is orthogonal to an appropriatelychosen space.

With the two conditions imposed we can define the new spacesXS(γi) andXM (γi) as
follows:

XS(γi) = {v ∈ C0(γi), ∀j = {1, . . . ,KS} : v|
ΓS

j

∈ PNS (ΓSj ) such that (3.37)

∃Φ ∈ Wh : Φ(v1,2
i ) = v(v1,2

i ), and
∫

γi

(v−Φ|γi
)Ψ dS = 0, ∀ Ψ ∈ PS(γi)}(3.38)

and

XM (γi) = {v ∈ C0(γi), ∀j = {1, . . . ,KM} : v|
ΓM

j

∈ PNM (ΓMj ) such that (3.39)

∃Φ ∈ Wh : Φ(v1,2
i ) = v(v1,2

i ), and
∫

γi

(v−Φ|γi
)Ψ dS = 0, ∀Ψ ∈ PM (γi)}(3.40)

whereWh is defined in (3.32).
The integral matching conditions are represented by the integrals in equations (3.38 and

3.40) and can be viewed as projections from a mortar space onto its sides. Also, they represent
aL2 minimization of the jump in functions at internal boundaries on the mortars segments.
We have to construct now the projection spacesPS(γi) andPM (γi). The first constraint,
for each mortar end point, imposes that the projection spaceshould have at least two degrees
of freedom less than the number of degrees of freedom on the sides. We can define now the
projection spaces for the slaves and master sides:

PS(γi) = {v ∈ C0(γi) : ∀j = {1, . . . ,KS}, v|
ΓS

j

∈ PNS
i,j

(ΓSj ) } (3.41)

PM (γi) = {v ∈ C0(γi) : ∀j = {1, . . . ,KM}, v|
ΓM

j

∈ PNM
i,j

(ΓMj ) } (3.42)

whereNS
i,j andNM

i,j are the orders that depend on the number of the end points shared by
the mortarγi and the element edgeΓSj , ΓMj , respectively. The choice of the order is shown
schematically in figure 3.6.

The non-conforming spectral element discretization spacecan now be defined as:

Xh(Ω) = {v : ∀p = 1, . . . , P, v|Ωp
∈ Xp(Ωp),∀γi ∈ S, i = 1, . . . ,M,

∃ΓSj ,Γ
M
j , γi =

KS⋃

j=1

ΓSj =

KM⋃

j=1

ΓMj and

v|ΓS ∈ XS(γi), v|ΓM ∈ XM (γi)}. (3.43)

(3.44)
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To control the error between the two different spectral representations onγi, we make the
solution continuous at the mortar end points and the error between the representations orthog-
onal to an appropriately chosen space. The definition of discrete spacesXS(γi) andXM (γi)
that are given on the two sides of the mortar, differ from eachother only in the number of
elementsKS andKM and the order of the polynomialsNS andNM .

γ
i

N − 2 

N − 1 N N − 1

master master master

slave

M M M

S

Fig. 3.6: OrderNS|M
i,j in the definition of the projection space on the two sides of a mortar (slave and

master). Here a single mortar contacts with three master elements on one side with one slave
element on other side. The orderNM

i,j on the master side is set to eitherNM − 1, NM or
NM − 1, depending whether the mortar and an element share a vertex of not. Onthe slave
side the orderNS

i,j is set toN − 2.

3.4.1 Definition of basis functions

Since in each elementΩk
p of a subregionΩp we have a conforming spectral expansion, a

functionu ∈ Xp(Ωp) can be interpolated with a set of a Lagrangian interpolants of order
Np. According to the definition of the mortar space in equation (3.32), any functionΦ ∈ Wh

can be interpolated on a mortarγi by a set of Lagrangian interpolants of orderNi.
Since we specify the basis functions only for a single mortarγi and a basis for neighbour-

ing elements on one of the mortar sides only, in the followingwe drop the subscripts in both
Np andN i. Therefore we introduce only a basis for the both mortar sides.

In each elementΩk that belongs to eitherΩS or ΩM , a variableu is interpolated as:

u(x(ξ, η), y(ξ, η)) =

N∑

i,j=0

uijh
N
i (ξ)hNj (η) (3.45)

wherehNi are the Lagrangian interpolants of orderN :

hNi (ξ) =
−L′

N (ξ)(1 − ξ2)

N(N + 1)LN (ξNi )(ξ − ξNi )
, i = {0, 1, ..., N}, (3.46)

hNi ∈ PN ([−1, 1]), hNi (ξj) = δij ,∀i, j ∈ {0, 1, ..., N}2, LN is the Legendre polynomial
of orderN . Theξi points are the GLL points of orderN :

ξNi =





−1 i = 0

rootsof L
′

N (ξ) = 0 i = 1, . . . , N − 1
1 i = N.
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The functionsx(ξ, η), y(ξ, η) are the coordinate transformation functions from an isopara-
metric element into a square:ξ, η ∈ [−1, 1], see figure 3.1. For each element edgeΓj a
functionu can be written as:

u(x(ξ), y(ξ)) =

N∑

n=0

unh
N
n (ξ) (3.47)

wherex(ξ), y(ξ) is a transformation between an element edgeΓj and its representation in a
computational space. According to the definition of mortar spaceWh, any functionΦ ∈ Wh

can be interpolated on a mortarγi as:

Φ(x(ξ), y(ξ)) =

N∑

m=0

Φmh
N
m(ξ) (3.48)

where the orderN of polynomials basis is computed accordingly to equation (3.33).
The transformationsx(ξ), y(ξ) will transform a line segmentγi into its computational

space,ξ ∈ [−1, 1].
A basis for projection spacePS|M (γi) is a set ofKSM = KN − 1 functions. To define

a basis for the projection spacePS|M (γi) we detect whether the end points of the mortarγi
coincide with the end points ofΓj , wherePS|M represents thePS of PM space. Since we
impose the condition that the values of the functions, and the mortar, coincide at the mortar
end-points, we have to use two projection polynomials of order one or two, less than the
Legendre function of orderN (equation (3.46)). To avoid loosing the diagonality in the left
hand side of the projection, equation (3.54), we have to choose the polynomials of the form
(3.49), (3.51), (3.52). After using quadrature of orderN in (3.54), the only non-diagonal
term introduced are thoseRq0 andRqN , that correspond to the element end points. Since we
know that those element end points coincide with the mortar end points, we can move them
to the right hand side (see equation (3.69). Now, we can definethe basis on the mortars and
its neighbouring elements.

If γi = Γj , the basis forPS|M (γi) is a set ofN − 1 polynomials of orderN − 2, which
has the form

ΨN−2
i (ξ) =

−L′

N (ξ)(1 − ξNi )(1 + ξNi )

N(N + 1)LN (ξNi )(ξ − ξNi )
, i = {1, ..., N − 1}, (3.49)

whereξNi , i = {1, ..., N − 1} are the GLL points.

In the general case whenγi =
K⋃
j=1

Γj , K > 1, the basis forPS|M (γi) consist of the

union of basis functions for all edgesΓj . For an edge that does not share any end points with
the mortar, the basis is a set ofN + 1 Lagrangian interpolants of orderN :

ΨN
i = hNi , i = {0, 1, ..., N}. (3.50)

In the last case when an edgeΓj shares only one end point with a mortarγi , the basis
functions are polynomials of orderN − 1. If the end point corresponds toξ0 = −1, the
polynomials are:

ΨN−1
i (ξ) =

−L′

N (ξ)(1 − ξ)(1 + ξNi )

N(N + 1)LN (ξNi )(ξ − ξNi )
, i = {1, ..., N}. (3.51)
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−

Fig. 3.7: Illustration of two different representations of the same point in physicalspace. The point
B(x) is represented in the coordinate system of an element. The pointA(x) is represented in
the coordinate system of a mortar. The parameters0 is the offset between the mortarγi and
the edgeΓj .

Otherwise, if the end point corresponds toξN = 1 the polynomials are:

ΨN−1
i (ξ) =

−L′

N (ξ)(1 + ξ)(1 − ξNi )

N(N + 1)LN (ξNi )(ξ − ξNi )
, i = {0, 1, ..., N − 1}. (3.52)

Since, we use the Lagrangian interpolants through GLL points, the functionsΨi defined
above, satisfy the relationΨi(ξj) = δij for all nodal pointsξj , except those that coincide
with the end points of the mortar.

3.4.2 Projection operator

In order to express the integral matching conditions, expressed by equations (3.38), (3.40),
we insert interpolation formulas (3.47), (3.48) in (3.38) and (3.40) and compute the integrals:

∫

γi

(u− Φ|γi
)Ψq ds = 0, (3.53)

for each basis function of the projection spaceΨq ∈ PS|M (γi), q = {1, ...,KSM}
defined in (3.49), (3.50), (3.51) and (3.52). To compute the integrals over the mortarγi we
have to sum up the contributions from all the element edgesΓj ⊂ γi, j = {1, ...,K}, while
on eachΓj , the integration is performed with Gauss-Lobatto quadrature. To integrate along
the edges of the elements, the order of the quadrature for theuΨq term will beN . Since
the terms that containΦ as their polynomial expansion can be of much higher order than the
quadrature orderN , we useN as quadrature order for the integration ofΦ|γi

Ψq.
In case whenΨq is nonzero over an element edgeΓj the integration of theuΨq term over

Γj yields
∫

Γj

uΨq ds =
N∑

n=0

un

∫ 1

−1

hNn (ξ)Ψq(ξ)|S(ξ)| dξ = Bquq +Rq0Φ0 +RqNΦN (3.54)

where

Bq = ρNq |SΓj
q |, (3.55)

Rq0 = Ψq(−1)ρN0 |SΓj

0 |, (3.56)

RqN = Ψq(1)ρNN |SΓj

N |, (3.57)
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Fig. 3.8: Representation of a mortar offsets0, edgeΓk
l , mortarγi, and the integration strip̂γ. The

offsets0 can be positive of negative. In this cases0 is positive,ξ̃0 andξ̃1 are the intersection
points between the edgeΓk

l and the mortarγi.

andρNi are the weights of the quadrature of orderN .
The |SΓj

i | are metric terms, that are generated by the transformation of the coordinates
between the edgeΓj and their representation in the computational space. Sincethe edgeΓj
is a straight line on a two-dimensional plane, the metric terms are simply the length of an
edge in the physical space, divided by the length of the edge in the computational space:

|SΓj
q | = |SΓj

0 | = |SΓj

N | =

√
(xj,2 − xj,1)2 + (yj,2 − yj,1)2

1 − (−1)
=

|Γj |
2
. (3.58)

If the test functionΨq is not zero at the end pointsξ = ±1, the termsRq0 andRqN will
be not zero. In the case that an edge does not share any end point with a mortar, equation
(3.50),Rq0 andRqN are zero. Ifγi = Γj , both terms are not zero and this is the case that we
consider in our implementation. Next, we integrateΦΨq over an element edgeΓj in a similar
way as the integration ofuΨq:

∫

Γj

ΦΨq ds =

N∑

m=0

Φm

∫ 1

−1

hNm(ξ(ξ))Ψq(ξ)|S(ξ)| dξ =

N∑

m=0

PqmΦm (3.59)

where

Pqm =

N∑

n=0

hNm(ξ(ξNn ))Ψq(ξ
N
n )ρNn |SΓj

n |. (3.60)

The functionξ(ξ) is a coordinate transformation between two different representations of
the same point(x, y) in the computational space for a mortar and for an element. Tocompute
the transformationξ(ξ) the mortar offsets0, is introduced as illustrated in figures 3.8 and 3.7.
A point x is represented in two computational spaces, for a mortar, and for an element by:

A(x(ξ)) = B(x(ξ)) + s0 (3.61)
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1

2
[(x2 − x1)ξ + (x2 + x1)] =

1

2
[(x2 − x1)ξ + (x2 + x1)] + s0 (3.62)

(|γi|ξ + |γi|) = (|Γj |ξ + |Γj |) + 2s0 (3.63)

ξ(ξ) =
2s0
|γi|

− 1 +
|Γj |
|γi|

(ξ + 1). (3.64)

Now, we combine equations (3.54 and 3.59) and assemble the contributions from different
element edgesΓj together. We obtain:

Bquq +Rq0Φ0 +RqNΦN =

N∑

m=0

PqmΦm, q = {1, ...,KSM} (3.65)

Bquq = Pq0Φ0 −Rq0Φ0 +

N−1∑

m=1

PqmΦm + PqNΦN −RqNΦN (3.66)

Bquq = (Pq0 −Rq0)Φ0 +

N−1∑

m=1

PqmΦm + (PqN −RqN )ΦN (3.67)

uq =
(Pq0 −Rq0)

Bq
Φ0 +

N−1∑
m=1

PqmΦm

Bq
+

(PqN −RqN )

Bq
ΦN (3.68)

Now, the projection operator is defined as:

uq = Qq0Φ0 +

N−1∑

m=1

QqmΦm +QqNΦN , q = {1, ...,KSM} (3.69)

where

Qqm =
Pqm
Bq

, Qqk =
(Pqk −Rqk)

Bq
, k = 0, N. (3.70)

TermRqk arises from the fact that we need to make the values of our functions, (on
both side of the mortar, and on the mortar itself) the same at the end points of the mortar.
In the general case, the order of the spectral expansions, onthe two sides of the mortar are
not the same. Therefore there are two projections of the form(3.69) for each mortar. To
form the global linear projection operator, the projectionoperators are constructed for all
mortarsγi, i = 1, ...,M , together with the conditions for the verticesΦ(v1

i ) = u(v1
i ) and

Φ(v2
i ) = u(v2

i ) . The global linear projection operator becomes:

ũ = Q Φ, (3.71)

whereũ are nodal values on those element edges that require non-conforming matching andΦ
are the nodal values on all the mortarsγi, i = 1, ...,M . The operatorQ has a block structure,
because the mortars always have two sides to connect. In general the matrixQ consist of
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two sub-matrices of similar structure, stacked on top of each other. For the particular case we
consider (geometrically non-conforming), the matrixQ has the structure:

Q =

(
QSlave

IMaster

)

whereQSlave is the projector on the slave element side andIMaster is the identity matrix on
the master side. Elements that share a common boundary segment, also share data inuh. In
a non-conforming method the following generalization is considered: the local solutioñuk is
a projection ofuh onto the local basis:

ũk = Qk uh. (3.72)

The simplest interpretation of equation (3.72) is to think of Qk as a sort of interpolation.
In general the data values along the non-conforming boundary segments of each small ele-
ment are not independent degrees of freedom but are obtainedby projection of the solution
along the adjacent (large) element onto the local polynomial basis. Figure 3.8 illustrates an
arbitrary mortar/edge configuration, and introduces the notions of mortar offsets0, mortar
γi of length|γi|, elemental edgeΓkl of length|Γkl |, and the integration strip̂γ = Γkl ∩ γi of
length |γ̂|. The intersection between the mortarγi with the top and bottom corners of the
integration strip̂γ, given in mortar-local coordinates, is represented by the points ξ̃0 andξ̃1.

Ω

Ω

Ω

s0 > 0

γ1
s0 < 0

 the integration strip

 the mortar

3

2

1

Γ 2

4

Γ1
4

Fig. 3.9: Non-conforming mesh for a simple splitting, derived from the refinement of a conform mesh.
The offsets0 for the edgeΓ1

4 is positive. For the edgeΓ2

4 s0 is negative. The mortarγ1 is a
union of the edgesΓ2

4 andΓ1

4.

We consider only the cases where for eachγi (the mortar) there exists an elementΩk that
acceptsγi as an entire edge. In this case, the refinement process startswith a mesh which
is initially conforming. Figure (3.9) illustrates such a case in which the integration strip is
γ̂ = Γkl /2. Equation (3.72) gives as the procedure for construction ofthe local solution. In
the non-conforming case, a corresponding change to equation (2.31) is made. In the standard
conforming methodA andf are formed by summing local contributions fromK elements.

3.5 Solution techniques - static condensation

In this section we describe some implementation techniques, used to solve the large algebraic
system that results from non-conforming spectral element discretizations. The static con-
densation algorithm is a method to reduce the complexity of the elemental matrices arising
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in spectral element methods. Because the elemental matrices Ak can be split into compo-
nents containing only boundary and interior contributions, static condensation is particularly
attractive for unstructured spectral element methods. In the mortar element method, there
is a natural division of equations into those for boundaries(mortars) and element interiors
(Madayet al., 1989).

Static condensation techniques may be applied to general non-symmetric or symmetric
matrix systems. We consider a non-symmetric matrix system to introduce the static con-
densation method. To apply this method to a discrete equation we begin by partitioning the
elemental matrix into boundary and interior points, first for conforming elements, and second,
for unstructured elements:




Ak
11 Ak

12

Ak
21 Ak

22







ukb

uki




=




fkb

fki



, (3.73)

whereAk
11 is the boundary matrix: the components ofAk resulting from coupling between

boundary-boundary nodes interactions,Ak
12 is the coupling matrix: the components ofAk

resulting from coupling between boundary-interior nodes interactions,Ak
21 is the coupling

interior-boundary matrix : the components ofAk resulting from coupling between interior-
boundary nodes interactions andAk

22 is the interior matrix: the components ofAk resulting
from coupling between interior-interior nodes interactions.

To solve this system (3.73), it is factored into one for the boundary nodes, and one for the
interior nodes, for each element (sub-domain)Ωk:

Ak
11u

k
b + Ak

12u
k
i = fkb (3.74)

Ak
21u

k
b + Ak

22u
k
i = fki . (3.75)

After elimination ofui from the second equation, and replacement in the first equation we
obtain:

[Ak
11 − Ak

12 [Ak
22]

−1 Ak
21] u

k
b = fkb − Ak

12 [Ak
22]

−1 fki (3.76)

uki = [Ak
22]

−1 [fki − Ak
21 ukb ]. (3.77)

The global boundary matrix is assembled by summing the elemental matrices:

A11 =
K∑

k=1

′ [Ak
11 − Ak

12 [Ak
22]

−1 Ak
21]. (3.78)

To evaluateA11, first, we evaluate and invert[Ak
11 − Ak

12 [Ak
22]

−1 Ak
21] which is also

known as the Schur complement ofAk
22 in A11. Subsequently, as part of this phase, we
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compute and store for each element the inverse of the interior matrix [Ak
22]

−1 and its product

with the coupling matrixAk
12 [Ak

22]
−1

. The productsAk
12 [Ak

22]
−1

fki and[Ak
22]

−1
Ak

21 ukb
can be also treated as local operations, because they only involve the matrix-vector prod-
ucts of a known vectorfki andukb . The global assembly is only necessary for the boundary
system when using static condensation. Once the boundary solution is known, the solution
for the interior elemental nodes, given by equation (3.77),can be performed at elemental
level. Because the coupling between elements is onlyC0, the element interiors are indepen-
dent and on a multiprocessor system this final stage can be solved concurrently. The effect
of constructing each local Schur complement matrices[Ak

11 − Ak
12 [Ak

22]
−1

Ak
21] is to

separate the boundary nodes from the interior nodes. However, the inverse matrix[Ak
22]

−1

is typically full, which means that the boundary nodes are tightly coupled. It is this coupling
which dictates the bandwidth of the globally assembled Schur complement system. To re-
duce computational time and memory, we wish to find an optimalform of the discrete system
corresponding to a minimum bandwidth for the matrixA11. To compute the bandwidth we
simply need to find the maximum difference between the globalnumbering of the bound-
ary nodes within each element, which is a Greedy algorithm (Saad, 1995). Even though the
boundary nodes are coupled to all other boundary nodes of neighbouring elements, they are
not coupled with boundary nodes within non-neighbouring elements. The reduction in band-
width translates to direct savings in memory and computational cost. Some standard methods
of bandwidth reduction used for finite elements, e.q. the reverse Cuthill-McKee algorithm can
be also used, but they will be used only for the boundary system (Saad, 1995) .

Let us consider now the non-conforming case (mortar method). In the mortar method,
the interface conditions, the integral matchings, are imposed variationally through anL2

minimization condition. After discretization, we can select some edges to become mortars.
In the non-conforming case, we make the following generalization: the local solutioñuk is a
projection ofuh onto the local basis.
We can write this as follows:

ũk = Q uh. (3.79)

For a master element,Q is the identity matrix, hereuh can be replaced in (3.79) by
the solution along the corresponding master edge. For a ”slave” element, let̃ub represents
the values of the true degrees of freedom along the boundary (conforming edges plus mor-
tars) andui the values on the interior of the element. The vector of nodalcoefficients for a
non-conforming element can be related to the standard (conforming) coefficients through the
matrix equation:

ũk =




ukb

uki




=




Qk 0

0 I







ũkb

uki




(3.80)

where0 is the zero matrix,I is the identity matrix andQk is the transformation (projection)
matrix that relates the master nodal points to the original boundary points of the slave ele-
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ment. Some elements may have more than one mortar edge. In this case we have to sum
the contributions of all intersections of the mortarγi with the particularΓkl . Equation (3.80)
provides the principal relation, required to form the elemental matrix system. If the local
system for a standard conforming element is given by:

Ak uk = fk (3.81)

then the corresponding system for a non-conforming elementis (Madayet al., 1989):

[Qk]T Ak Qk ũk = [Qk]T fk (3.82)

whereũk = [ũkb uki ]
T .

Using the static condensation method, the elemental systemis obtained:




[Qk]T 0

0 I
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22







Qk 0

0 I







ũkb

uki




=




[Qk]T 0

0 I







fkb

fki




(3.83)

After evaluation of the left side of the system (3.83), we obtain:




[Qk]
T
Ak

11Q
k [Qk]

T
A12

Ak
21Q

k Ak
22







ũkb

uki




=




[Qk]
T

0

0 I







fkb

fki




(3.84)

As in the conforming case (3.73), we have the same elemental system:




Ãk
11 Ãk

12

Ãk
21 Ãk

22







ukb

uki




=




f̃kb

f̃ki




(3.85)

where

Ãk
11 = [Qk]

T
Ak

11 Qk, (3.86)
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Ãk
12 = [Qk]

T
Ak

12, (3.87)

Ãk
21 = Ak

21 Qk, (3.88)

Ãk
22 = Ak

22, (3.89)

f̃kb = [Qk]
T

fkb , (3.90)

f̃ki = fki . (3.91)

(3.85) can be factorized into one for the boundary (mortars)nodes and one for the interior
nodes, so that onΩk we have:

[Ãk
11 − Ãk

12 [Ãk
22]

−1
[Ãk

21] ũ
k
b = f̃b − [Ã12Ã

−1
22 ] f̃i (3.92)

Ã22 ui = f̃i − Ã21 ub. (3.93)

During a pre-processing phase, the global boundary matrix is assembled by summing the
elemental matrices of the conforming and non-conforming elements:

A11 =

K∑

k=1

′[Ã11 − Ã12 [Ãk
22]

−1
Ã21]. (3.94)

In the case when a direct solver is used to solve the system (3.93), the assembled boundary
matrix is prepared for the solution phase by computing its LUfactorization. Then the system
is solved by setting up the right-hand side of the global boundary equations, solving the
boundary equations, using a back-substitution, and accordingly computing the solution on
the interior of each element, using matrix multiplication.To illustrate this process, first, we
construct the global operatorA. The block diagonal matrix is regrouped to yield a system of
linear equations (Madayet al., 1989):




ASS ASI

AIS AII







uS

uI




=




fS

fI




(3.95)

where the points that lie on the skeletonS (the skeleton contains the boundaries points of the
elements) are ordered first in the global vectoru = (uS ,uI) and the right-hand side vector
f = (fS , fI) that correspond to the nodal points in a conforming subregion Ωp.
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Since the solution of the linear system (3.95) has a discontinuity at the non-conforming
interfaceS, in order to minimize the error (Madayet al., 1989), the following problem has to
be solved:




QT 0

0 I







ASS ASI

AIS AII







Q 0

0 I







uS

uI




=




QT 0

0 I







fS

fI




(3.96)

It is easy to see that a solution of (3.96) satisfies the sets ofrequirements we impose (3.38),
(3.40), (3.37) and (3.39) on the non-conforming edges and oneach conforming subregionΩp.
Because we try to reduce the bandwidth of the boundary system, it is natural to take advantage
of the zeros of the boundary matrix and to use a sparse matrix technique, coupled with an
iterative solver. One of the key issues is to define data structures for these matrices that are
well suited for efficient implementation of standard iterative methods. In our implementation,
we used the sparse matrix format introduced in Saad (1995).

A direct solver is advantageous only when the cost of factoring the boundary matrix can
be spread over a large number of solutions. In this case, onlythe cost of a back-substitution
using the factored boundary matrix becomes dominant.

3.6 Refinement criteria

There are two key features in the development of adaptive meshes:

1. the non-conforming discretization

2. the error estimators that serve as criteria for refinement.

The first role of the error estimators is, of course, to provide an estimate of the actual error
on a per element basis, as well as globally. Comparison of theelemental error estimates pro-
vides criteria as to which elements must be further refined. The estimate must be efficiently
calculated, such that it may be used as a post-processing step as well as in the course of the
calculation, such that time-dependent mesh refinement can proceed. Adaptive calculations
involved decisions which must be taken ”on the fly”, based on some succinct information.
This information can usually only be based on data from the last available step, but must be
able, in some way, to predict how the solution converges, in order to direct refinement in the
right direction.

We consider in a few types of refinement criteria based on thea posteriori error estima-
tors introduced by Babusks and Dorr (1981), Berger and Oliger (1984) and Mavriplis (1990).

The first refinement criterion(gradient) we use is the simplest:

1. refine everywhere where the solution gradients exceed a certain tolerance.

It is required that

‖∇u(k)‖L2(Ωk) ≤ ε‖uh‖H1(Ω), (3.97)
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whereε is the discretization tolerance. In high order methods, we have a locally global quality
which provides sufficient information to estimate errors without excessive additional calcu-
lation. The gradient calculation in this case, is not limited to a few points but rather tied to
the size of the element, which can be quite large for spectralelements.

The second refinement criterion(extrapolation) was proposed by Mavriplis (1990)
and is based on the calculation and extrapolation of the spectrum of the Legendre discretiza-
tion, to estimate the error as well as to predict convergencerates. The error estimators pro-
posed are single mesha posteriori error estimatorsin contrast to those of Babuška and Szabo.
The concepts used by Mavriplis in the following error estimators are simple. Typically, if the
numerical approximation to the spectral elementΩk is written as:

uh(x) =

N∑

n=0

anLn(r), (3.98)

whereLn is the Legendre polynomial of degreeN andan’s are the spectral coefficients we
have:

εest =

(
a2
N

1
2 (2N + 1)

+

∫ ∞

N+1

[a(n)]2

1
2 (2N + 1)

dn)

)1/2

(Ωk)

≤ ε‖uh‖L2(Ω), (3.99)

wherea(n) is the Legendre polynomial spectrum andΩ is the domain. The two contribu-
tions to equation (3.99) are generated by the approximationerror due to truncation, and the
approximation error due to the quadrature and the best polynomial approximation (equation
(A.28). The functiona(n) is a least squares best fit of the last six points of the spectrum to
an exponential decay:a(n) ∼ cee

−σen. The decay rateσe indicates insufficient resolution
if σe < 1 and good resolution ifσe > 1. The refinement process uses the decay rate to de-
cide whether it increases the number of elements and decreases accordingly the polynomial
degree, or whether it has to move elements and reconstruct the grid.

The reader may be referred to Appendix A for an introduction of the error estimators and
the derivation of the actual error incurred by the spectral element approximation‖u− uh‖.

The third refinement criterion(spectrum) (Henderson, 1994) is based also on a lo-
cal polynomial spectrum. In equation (3.99) the main contribution comes from coefficients
of orderN . By summing the tail of the spectrum, we can require that the spectrum satisfies
the discretization tolerance. The tail of the spectrum can form an estimate of the approxima-
tion over‖u − uh‖. First, we average over polynomials inx andy to produce an equivalent
one-dimensional spectrum:

trace spectrum=
N−1∑

i=0

|ai,N−1| +
N−1∑

j=0

|aN−1,j | − |aN−1,N−1|, (3.100)

and subsequently the refinement criteria becomes:


N−1∑

i=0

|ai,N−1| +
N−1∑

j=0

|aN−1,j | − |aN−1,N−1|




(Ωk)

≤ ε‖uh‖L2(Ω). (3.101)
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From the numerical results (see numerical results table 3.1), we can conclude that the
spectrum-based (extrapolation) estimate is nearly equivalent to the trace spectrum, but the
trace spectrum is easier and faster to compute.

The refinement decision is based on the above presented refinement criteria. First, we
compare elemental error estimators to a globally acceptable level of error, set once for the
whole run. Second, the elements with error over the acceptable level are marked for refine-
ment. Another indicator for the refinement decision is the elemental error estimator. In order
to determine which element has the greatest need for refinement, we compare the elemental
error estimators of the neighbouring elements. Based on this comparison, we decide which
element should next be refined. At this moment our implementation does not limit the num-
ber of elementsK, or the total number of degrees of freedom created during therefinement
process. In a future extension of the implementation, the maximum value ofN , the order of
polynomial,K, the number of elements, andTOTAL DOF the total number of degrees of
freedom, could be imposed. When the maximum values of parameters mentioned above pa-
rameters will be reached, refinement will be prohibited. Also, the decision to refine by adding
elements, or increasing the order of the polynomial, could be based on the value of theσe
decay rate of the spectrum in each element. Ifσe > 1 we should increase the polynomial
order, and ifσe < 1 we should increase the number of elementsK. These are referred asp
andh refinements to the finite element community. The decision to coarsen elements is not
easy. The spectrum decay can predict convergence, but does not have the ability to predict
convergence, if one remove elements. For now, coarsening islimited to remove the children
elements and to activate the parent elements (see Voxel DataBase in Chapter 4).

3.7 Numerical results

The mortar method has been implemented, using a combinationof C++ and Fortran77 lan-
guages. C++ for the adaptive bookkeeping, and Fortran77/C++ for the basic numerical
modules. We illustrate the performance of the method for several steady and unsteady tow-
dimension problems.

3.7.1 Gaussian distribution on a uniform grid

The first example is a Gaussian distribution on a uniform grid(Greengard and Lee, 1996).
We consider the equation

− ∆u = (4002r2 − 800)e−r
2/σ2

, (3.102)

wherer2 = x2 + y2 andσ =
√

2/20, for which the exact solution is given by:

u(x, y) = e−r
2/σ2

. (3.103)

The computational domain isΩ = [−0.5, 0.5]× [−0.5, 0.5] and the homogeneous bound-
ary conditionsu(x, y) = 0 on∂Ω. First, we compute the solution on a uniform refined grid,
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and then, by using the different error estimators defined in the previous section, we refine the
mesh and compute the solution on the new grid using the mortarimplementation.

In table 3.1 the relative errors and the estimators are shown. This table shows that the
error estimates, spectrum and extrapolation, are nearly equivalent. Because the spectrum
estimator is easier and faster to compute, this method will be used as the basis method for
the mesh refinement. In figure 3.10 we illustrate the adaptivemesh refinement based on
two different refinement criteria: polynomial spectrum andextrapolation. In this case both
methods produce roughly equivalent discretizations, about 400 elements. The performance
of the adaptive mesh generation method is illustrated through figures 3.10, 3.11, 3.12 and
3.13. For different polynomial orders we measure the relative errors in both conforming
and non-conforming cases. We see that the number of the points used to achieve the same
relative error, is less in the non-conforming case than in the conforming case. The evolution
of the number of the mesh points based on the imposed relativeerror, for non-conforming
and conforming mesh, for different polynomial orders, is illustrated in figure 3.14.

Table 3.1. Error estimates (spectrum, extrapolation) and relative errors ((∞, GL), (L2
),

H1 norms) for solving the Poisson equation on a uniform grid with polynomial order
N=9 elements:

Dofs Spectrum Extrapolation ‖u− uh‖∞,GL ‖u− uh‖L2 ‖u− uh‖H1

324 0.0896632 0.109066 0.0532076 0.0153128 0.132968
1296 0.00347407 0.00343821 0.000580771 9.04734e-05 0.00538864
5184 1.59027e-05 1.59011e-05 2.91117e-06 2.67009e-07 3.59727e-05
20736 5.94265e-09 5.94261e-09 2.51794e-09 2.54511e-10 6.94391e-08

Table 3.2. Relative errors ((∞, GL), L2, H1 norms) for solving the Poisson equation
on a non-conforming mesh. The adaptive mesh generation is based on the local
Legendre polynomial spectrum:

Dofs ‖u− uh‖∞,GL ‖u− uh‖L2 ‖u− uh‖H1

324 0.0532076 0.0153128 0.132968
1296 0.000580771 9.04734e-05 0.00538864
2268 2.91124e-06 2.67035e-07 3.59741e-05
8100 2.47615e-09 2.64522e-10 7.02348e-08

In table 3.2, we show forN = 9 the relative errors for the Gaussian distribution after the
refinement of the grid based on the spectrum error estimator.A seven level quad-tree is used
to describe the mesh (see chapter 4).

3.7.2 Singularity problem

The second example we consider is a singularity Poisson problem:

−∇2u = 1,
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Fig. 3.10: Adaptive mesh generation:N = 7, (left) adaption based on the local Legendre polynomial
spectrum with a tolerance ofε = 0.23× 10−10; (right) adaption based on solution gradients
with a tolerance ofε = 0.09.
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Fig. 3.11: Performance of refinement forN = 5 andN = 7; adaption based on local Legendre poly-
nomial spectrum.
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Fig. 3.12: Performance of refinement forN = 9 and N = 11; adaption based on local Legendre
polynomial spectrum.
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Fig. 3.14: Adaptive mesh generation: (left) conforming case , (right) non-conforming case. The adap-
tion is based on local Legendre polynomial spectrum, using different polynomial orders.

Fig. 3.15: Adaptive solution of the Poisson equation with corner singularities: (left), adaption based
on the solution gradients with a tolerance ofε = 0.04; (right), adaption based on the local
Legendre polynomial spectrum with a toleranceε = 0.8 × 10−11.
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with homogeneous Dirichlet boundary conditions onΩ = [−1, 1] × [−1, 1]. The solution
exhibits weak singularities of the formr2log(r) asr −→ 0, wherer is the radial distance
from the corner. However, the solution gradients are largest along the edges of the domain,
where the structure ofu is rather simple. To reduce the error for this case, we have torely
only on the local polynomial spectrum refinement. The mesh refinement based on solution
gradients completely misses the location where the errors are largest. The structure of the
solution is shown in figure 3.15.

3.7.3 Smooth problem

The next example we consider, is the following Helmholtz smooth problem:

−∇2u+ λ2u = f(x, y) onΩ = [0, 1] × [0, 1],

with Dirichlet boundary conditions:

u(x, y) = uexact(x, y) = e

λ√
2
((x− 1) + (y − 1))

on∂Ω.

Since, the solution exhibits a sharp, but smooth, boundary layer near the corner (1, 1) (see
figure 3.17), for largeλ, we expect a smooth solution, and hence a smooth and exponentially
decaying spectrum. In figure 3.16 we illustrate the mesh generated based on two refinement
criteria forλ = 50. The grid is refined in approximately the same location, nearthe corner
(1, 1), and to the same depth for a given discretization tolerance. The left one is based on
the solution gradients and the right one is based on the localLegendre polynomial spectrum.
Figure 3.17 illustrates the solution, before and after the refinement. The left images show that
a further resolution is needed near the corner (1,1). Usingh-refinement, the overall error has
been reduced by at least two orders of magnitude. The right image shows the solution after
refinement.

3.7.4 Two-dimensional linear unsteady convection problem

The last example presented here is a two-dimensional linearunsteady convection problem
(Vreugdenhil and Koren, 1993). We consider the unsteady rotation of a Gaussian hill de-
scribed by the convection equation in two dimensions in the domainΩ = [−1, 1] × [−1, 1]:

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
= 0, t ∈ [0, 1], (3.104)

where the velocity field describes a pure rigid-body rotation:

u = −ωy, v = ωx, ω = 2π.
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Fig. 3.16: Adaptive solution of the Helmholtz problem: (left) adaption based on the solution gradi-
ents with a toleranceε = 0.015; (right), adaption based on the local Legendre polynomial
spectrum with a toleranceε = 0.8E × 10−12.

Fig. 3.17: Adaptive solution of the Helmholtz problem: (left) the solution before refinement; (right),
the solution afterh-refinement, adaption based on the local Legendre polynomial spectrum
with a toleranceε = 0.8 × 10−12.
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The initial condition is a Gaussian distribution, given by:

c(x, y, 0) = 0.014r2 , r =

√
(x+

1

2
)2 + y2.

The exact solution is given by:

c(x, y, t) = 0.014r2 , r =

√
(x+

1

2
cosωt)2 + (y +

1

2
sinωt)2.

This problem is solved adaptively, starting with a coarseK = 4 equal-sized element grid
shown in figure 3.19 (left). For the time discretization the Crank-Nicolson scheme is used.

Table 3.3. Discrete maximum error‖c− ch‖∞,GL for the rotation of a Gaussian hill, time
t ∈ [0, 1]; N is the degree of approximation. The maximum number of elements is 22
for a toleranceε = 4.0E × 10−2:

Time-steps N = 8 N = 12 N = 14 N = 16
128 7.60E-02 4.52E-03 1.50E-03 0.87E-03
256 4.36E-02 3.25E-03 2.50E-03 1.85E-03
512 2.35E-02 2.10E-03 1.50E-03 1.10E-03

1024 1.30E-02 1.1E-03 0.9E-04 0.7E-04

In table 3.3 the discrete maximum errorε = ‖c−ch‖∞,GL is given for different time steps.
The results show that the solution becomes more accurate as the time step decreases. Even in
the non-conforming case, the errors due to time discretization are still large (for conforming
case see Vreugdenhil and Koren (1993)). To eliminate them and prove that we get more
spatial accuracy, we will considera modified exact solution. To compute themodified exact
solution, the equation is solve for a polynomial orderN = 22, a number of elementK = 64
and time step=4096. Computing the norm‖cmex − ch‖∞,GL we are able to eliminate the
error due to time discretization. Table 3.4 illustrates theimprovement in accuracy for the 128
time step cycle.

Table 3.4. Discrete maximum error‖cmex − ch‖∞,GL for the rotation of a Gaussian hill;
N is the degree of approximation. The maximum number of elements is 22 for a tole-
ranceε = 4.0E × 10−2:

Time-steps N = 8 N = 12 N = 14 N = 16
128 2.60E-08 2.12-08 1.6E-08 1.35E-08

Figures 3.19, 3.20 and 3.21 show several intermediate adaption steps. In figure 3.19(left)
the initial mesh is shown, together with the collocation points grid after the first refinement
(right). In this case, the tolerance isε = 1.0E× 10−3, which increases the number of refined
elements. The Gaussian hill is rotated quite accurately, and there are no oscillations due to
the low number of elements of the initial mesh.
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(a) (b)

Fig. 3.18: Spectral element mesh forN = 9; (a) the parent element, (b) the children elements.

Fig. 3.19: Unsteady rotation of a Gaussian hill: (left) the initial conforming mesh; (right) t = 0.00, the
spectral non-conforming mesh after the first refinement.

After the first time step, the mesh is dynamically adapted. The refinement algorithm
tracks the movement of the Gaussian hill quite accurately. New elements are mainly added
or removed from the mesh based on the refinement Legendre polynomial spectrum criteria.
The new elements are added around the boundary of the hill, orwhere, if that is the case, the
oscillations appear. To coarsen the mesh, we impose that elements that belong to the same
parent element have to pass the coarsening test: the local spectrum of each child element
has to be smaller than a specified threshold =ε = 1.125E × 10−3. The regions with small
solution gradients are candidates for coarsening. When we generate new elements , due to
refinement, the mesh and the data of a parent element is interpolated to a new mesh and data
that belong to its children elements. Also, when the children elements are pruned, due to
coarsening, the mesh and data are interpolated back to theirparent element. In both case, the
interpolation is spectral in(x, y). Figure 3.18 shows the spectral mesh of a parent element
(a), and of its children (b) forN = 9.
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Fig. 3.20: Unsteady rotation of a Gaussian hill: (left) t = 0.20; (right) t = 0.50.

Fig. 3.21: Unsteady rotation of a Gaussian hill: (left) t = 0.75; (right) t = 1.0.
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3.8 Conclusions

In this chapter, we outlined the basic features of the mortardiscretization. The new non-
conforming method relieves the spectral element method of its geometric and functional
restrictions, namely that the interface between two adjacent elements must be conforming.
Also, the mortar discretization enables functional disparity at element interfaces, by using
a L2 projection from the mortar to the element edges, and by enforcing exact continuity at
element vertices to maintain the jump in functions between elements small. Since theH1

0(Ω)
continuity is still ensured, the mortar formulation guarantees optimality. In our test cases we
achieved an exponential convergence, thus the optimality has been demonstrated.

An interesting part of the method is found in the refinement criteria that are based on
posteriori error estimators for the spectral element method. This provides a heuristic error es-
timate that is independent of the system being solved. The estimators are based on an analysis
and extrapolation of the Legendre spectrum of the numericalsolution, as a post-processing
step which takes very little computational effort. They arequite sharp, differing from theL2

error by only a small multiplicative factor. This can be a good indication of the error we want
to achieve through adaptive mesh generation. For example, imposing a threshold of order
10−9 for the spectrum-based estimates, we can estimate an order of the solution’s accuracy
proportional to10−9. In the case of corner singularities, the adaptive solutionbased on the
gradient does not produce the right result. The local polynomial spectrum indicates the cor-
rect location for refinement, while the magnitude of solution gradients can be misleading. In
this case, mesh refinement based on solution gradients completely misses the location where
the errors are largest. For unsteady problems, the errors due to the time discretization can be
large, and to prove that the accuracy of the solution is improved, we have to eliminate them.
A modified exact solutionhas to be computed.

In summary, the mortar discretizations represent a significant advance for spectral el-
ement methods, which offer new possibilities for time-dependent moving boundary calcu-
lations. The error estimators are powerful concepts, that can be used automatically in an
adaptive refinement scheme. Using this non-conforming spectral element method, the mesh
generation task in computational modelling is minimized. Generating new elements only in
regions where the resolution is inadequate, it will have a huge impact on the memory usage
and computational times. Less memory storage will be neededto store the elements and
the computational time will decrease. The four test case problems illustrate the advantage
of the present error estimators: the capability to predict convergence behavior is crucial to
an efficient refinement process. The use of single mesha posteriorierror estimates, is an
improvement to the multiple mesh error estimates. The estimates can be used as a post-
processing step as well as in the course of the calculation, such that time-dependent mesh
refinement can proceed.
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Chapter 4

Software Implementation

In this chapter, the architecture of the software system andthe main data structures, C++
classes, used for the implementation of the mortar method are introduced. The dynamic
data structure, needed to keep the dynamically refined mesh,is also described. Since the
number of the C++ classes is large, only a few classes will be presented here. Also, the basic
operations required to implement the common procedures in spectral element methods, will
be described.

4.1 Introduction

We present a software infrastructure for the implementation of the mortar method used to
solve a system of partial differential equations and the integration of this infrastructure with
an adaptive spectralh mesh-refinement method. The development of large codes for scien-
tific computing is known to be a comprehensive and time consuming process. Moreover, large
stand-alone Fortran codes dominate the field of scientific computing. Long-term evolvement
of such codes is usually an error-prone and expensive process, unless the original software
is carefully designed for future extensions. There is a continuing debate regarding the pro-
gramming language of choice among competing languages suchas C++, Fortran90 and their
extensions. Not only must the software be portable across a wide variety of computing plat-
forms , but other issues such a easy incorporation of new datastructures, easy of programming
interfacing via user interfaces and code maintenance must be considered, before choosing a
particular programming language and style. Turning to the field of computer science, years
of experience indicate that software reliability can be significantly improved by a modular
design that encourages reuse of a code. Modularity and code reuse can be achieved by using
traditional implementation in Fortran. However, this requires careful and complicated con-
siderations. Object-Oriented design and Programming (OOP) techniques offer a much easier
and more efficient methodology for obtaining the above mentioned goals. The improvement
of C++ compilers makes the C++ language a reasonable alternative to Fortran, that offers the
most important Object-Oriented constructs along with satisfactory computational efficiency.
C++’s major features as :

1. support for data abstraction and object-oriented programming

2. classes and abstracted classes that encapsulate data andfunctions

3. hierarchies of classes, based on inheritance and multiple inheritance

4. support for real-time polymorphism via virtual functions
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5. dynamic memory allocation and deallocation

6. overloading mechanism for operators and functions

7. support for the creation of templates and generic functions

8. the Standard Template Library (STL) which provides a collection of generic data struc-
ture and algorithms,

offer a powerful implementation mechanism for most of the numerical code. However, we
advocate a hybrid approach of using an Object-Oriented programming language such as C++
for handling the data structure for adaptive spectral element methods, and a combination
between Fortran (BLAS (Lawsonet al., 1979), LAPACK (Andersenet al., 1999), SEPRAN
(Segal, 1995)) and C++, for the linear solver and mesh adaptivity. Using this approach, we
take optimal advantages of both programming languages. Interfacing C++ and Fortran for a
heterogeneous cluster of machines, is not an easy task, but developing a few wrappers for the
Fortran subroutines and functions make the task easier. This approach enables us to provide a
flexible C++ interface by which one can incorporate new spectral element algorithms and new
problem definitions, as requirements grow with time, without compromising the performance
of Fortran77 needed in numerical calculations.

MPI

    C++ 
wrappers

C++

F77

SEM/FEM Package

SEPRAN

MTL, Blitz++

SPARSKIT,
BLAS,
LAPACK F77

VDB

#3

#4

#2#1

C++

C++

#5

Application

  SEPRAN 
 DATA OUT

Refine Mesh 

Mortar Patch
   A u = F

 SEPRAN 
 DATA IN

Fig. 4.1: Interaction of the components in our hybrid implementation.

Developing an adaptive spectral element package is a challenging and time consuming
task. Using the hybrid approach proposed, will allow us to reuse an existing SEM/FEM



4.2. Basic operations for the spectral element method 69

package, called SEPRAN, which is implemented in Fortran77.Figure 4.1 shows the main
components of our hybrid implementation. The component]1 implements:

1. the interface to the SEPRAN (]2) package,

2. the mortar spectral element method,

3. the refinement criteria and the mechanism of deciding if the mesh will be refine/pruned.

Also, the]1 component provides to SEPRAN, for each time step, the input mesh and the
old solution, receiving back from SEPRAN only the elementalmatrices. SEPRAN has al-
ready available a large number of discrete operators that can be used by the mortar extension,
which make the hybrid implementation of the mortar method available to many applications.
In chapter 5 we illustrate this, by applying the mortar method to two applications which have
been implemented in SEPRAN. A few direct and iterative solvers are used: MTL (iterative),
LAPACK (direct), SPARSEKIT (iterative), which are implemented by component]3. Be-
cause some solvers are implemented in Fortran77, and SEPRANprovides only a Fortran77
interface to its functions, a C++ wrapper is available, component]5, for Fortran77 functions
calls. The dynamic mesh and the communication between the processors, in the parallel ver-
sion of the mortar method, are implemented by component]4. Each time the mesh is updated,
the voxel data base VDB (section Mesh Data Structure) will beupdated and the information
on the connectivity of the mesh will be spread between the processors. In the next sections,
only the essential C++ classes that implement the above components are introduced.

4.2 Basic operations for the spectral element method

The operations described in section 3.5 were all local, as they involved a single spectral el-
ement and no information was coupled with any other element.In general, however, we
are interested in solving second-order partial differential equations, which requires that some
form of continuity is maintained between elemental regions. A sufficient, although not neces-
sary, condition to satisfy the continuity requirements is to make the global approximationC0

continuous. In doing so, we couple information from one element to another and, therefore,
operations involving the inverse of a matrix system such as the forward transformation be-
come global. To set up matrix inverse, we need to perform whatis known as adirect stiffness
summationor aglobal assemblyoperation which constructs aC0 continuous global expan-
sion basis from the elemental basis functions. In practice,we still perform most operations in
a local fashion within each element and then sum the contributions to form the global system.
However, to do this we need a mapping which assembles the global system from the local
system. In spectral element methods, global data is stored as a flat, unstructured array. The
basic data structure used to relate the mesh to entries in this array is a table that identifies
the global node number of a local node within each element. Wedefine thelocal degree of
freedomas the elemental expansion coefficients over all elements. The table of indices can
be stored as a two-dimensional array of integers:

gmap[k][i] = global index of local datumi in elementk.
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For the conforming case, the number of degrees of freedom in the meshndof and the
number of degrees of freedom associated with each elementedof are constant. To perform
global operations, we need a layer of indirection between the global data and the local data.
For example, if the matrixA is the assembly matrix (keeps the relation between the localand
global degrees of freedom) the operations represented byul = Aug are called the ”scatter”
(Deville et al., 2002) operation, whereul are the local degrees of freedom andug are the
global degrees of freedom. The operationug = ATul is called a ”gather” operation. The
following is a template for any such a computation:

// Loop over elements
for(k=0; k < K ; k++) {

// Copy global data to local
for(i=0; i < edof; i++) {

// Scatter operation from global to local
ul = ug [gmap[k][i]];

}
} // end loop over elements

// Loop over elements

for (k=0; k < K ; k++) {

// Accumulate the data to global
for(i=0; i < edof; i++) {

// Gather operation from local to global
ug [gmap[k][i]] += ul[i];

}
} // end loop over elements

The global assembly procedure primarily involves boundarynode connectivity, since the
interior nodes may be independently numbered as global degrees of freedom. Due to the
static condensation, the assembly procedure only involvesthe boundary nodes since the in-
terior nodes may be removed from the full matrix problem. In this case, the global assembly
procedure is numerically evaluated as:

for (k=0; k < K ; k++) {

// Accumulate the data to global
for(i=0; i < bedof; i++) {

// The gather operation AˆT (transpose of A)
// of the boundary nodes

ug [bmap[k][i]] += ul[i];
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}
} // end loop over elements

wherebmap[k][i] is the mapping of the boundary nodes index to the global index, and
bedof is the number of boundary degrees of freedom. In our example,we assumed that
the local degrees of freedom are ordered, such that the boundary nodes are listed first. If we
know how to constructbgmap[k][i] , it is a trivial extension to generategmap[k][i] ,
simply by adding a unique block of global degrees of freedom equal in length to the number of
interior nodes within the element. Figure 4.2 illustrates the global numbering of the boundary
nodes. For example, the elementΩ1 has abmap[] array that contains the values:

// The boundary array
bmap[8]={1,2,4,5,10,14,13,3} ;

which represent the global numbering of the boundaries nodes.
To make this data structure suitable for the non-conformingelements, we introduce two

generalizations. In the non-conforming case, the number ofdegrees of freedom can be dif-
ferent per element. To allow this we have to introduce the array edof[k] , which contains
the local degrees of freedom of the elements. Since we want toallow each local degree of
freedom to depend on an arbitrary combination of the global degree of freedom, we need to
introduce two new arraysldof , assembly and a new dimension to thegmap array:

ldof[k][i] = number of global dependencies for
local datum i in element k,

assembly[k][i] = array of coefficients for global to
local data mapping,

gmap[k][i][j] = global index of the jth dependency of
local datum i.

In the non-conforming case, we need also a transformation matrix Qk between global and
local degrees of freedom. The procedures to construct the scatter and the gather operations
become:

// Loop over elements
for(k=0; k < K ; k++) {

// Copy global data to local
for(i=0; i < edof[k]; i++) {

// Get the coefficients for the local data
double *Qk = assembly[k][i];

for(j=0; j < ldof[k][i]; j++) {

// Scatter operation
ul[i] += Qk[j] * ug [gmap[k][i][j]];
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− boundary nodes − internal nodes

− mortar nodes
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− mortar slave  segments

 1  2  4  6 12  7 8

 9

21

22

2324293031

 3

13

19

26

32

27
25 20

28

11
1510

5

18
14

34

16
33

17

Ω Ω

ΩΩ

Ω

ΩΩ7
6

5

21

4 3

Fig. 4.2: The illustration of the master and slave segments together with the global numbering of the
boundary nodes.

} // end loop over ldof

} // end loop over elements degrees of freedom

} // end loop over elementen

// Loop over elements
for(k=0; k < K ; k++) {

// Copy global data to local
for(i=0; i < edof[k]; i++) {

// Get the coefficients for the local data
double *Qk = assembly[k][i];

for(j=0; j < ldof[k][i]; j++) {

// Gather operation
ug [gmap[k][i][j]] += Qk[j] * ul[i];

} // end loop over ldof

} // end loop over elements degrees of freedom

} // end loop over elementen
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We can conclude that the procedures to assemble the global system in both cases: con-
forming and non-conforming differ only in the way we transform between the local and
global systems. The matrixQk offers a flexible scheme for storing the global solution and
reconstructing the local one. The computational overhead and additional storage is the price
we pay for new capabilities: arbitrary connectivity in the mesh and variable order of the local
basis functions, which are the key ingredients for adaptiveh− p refinement techniques.

4.3 Data structure

In addition to the Object-Oriented Programming aspects, there are equally important issues
to the underlying data structure that are essential to adaptive mesh strategies. The com-
plexity of the data structure increases significantly when adaptive meshing is included. The
first data structure, we present here, is the basic data structure required for the manipulation
of the elements. For any element, we denote the polynomial degree of basis functions as
Nr, Ns, Nz , an identification numberElemid unique to each element, the mesh coor-
dinates in physical spacexmesh, ymesh, a binary node keyRefKey used to identify the
expanded elements after refinement, a double-ended queueEdgesList that contains the
link to the element’s edges, a double-ended queueVertexList that contains the vertices,
and a local mapElemMap that relates the local nodes of the element to the interior-boundary
nodes structure, used for static condensation. Here,deque is used as a generic container. It
can be replaced by a container defined by theBlitz++ of MTL libraries (see section 4.5).

An abstraction for any higher order spectral element can be created considering common
behavior and attributes of different types of spectral elements. The attributes of an element
are identified in C++ by theElement class as follows (see figure 4.3):

class Element {

protected:
int Elemid; // element id
int RefKey; // element key after refinement
int Type; // element type identification
int Nr, Ns, Nz; // points in each direction
int NrSol; // the number of DOF
int NrPoints; // points in element, (icount)
int *Global; // global numbering, index2
int NrPresc; // prescribed points (icountp)
int *PrescOff; // prescribed points (index4)
int NrTrueSol; // nr of true unknown (icnt)
int *TrueOff; // offset true unknown, index
int *ElemMap; // map (nr,ns) to (nb,ni)
double **ElemMat; // element stiffness matrix
double *ElemVc; // element vector
double *ElemBc; // boundary values, bc[nrpresc]
double **Xmesh; // x mesh in physical space
double **Xmesh; // y mesh in physical space
deque<Edge> *EdgesList; // Array of edges
deque<Vertex> *VertexList; // Array of vertices
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public:
Element (void):Elemid(-1), Nr(0), Ns(0), Nz(0), NrSol(0),

NrPoints(0), Global(NULL), NrPresc(0),
PrescOff(NULL), NrTrueSol(0), TrueOff(NULL),
ElemMap(NULL), ElemMat(NULL), ElemVc(NULL),
ElemBc(NULL), Xmesh(NULL), Ymesh(NULL),
EdgesList(NULL), VertexList(NULL) {}

Element Element (const Element& elmt);
Element operator = (const Element& elmt);
˜Element();

int GetId (void) { return ElemId; } // Get ElemId
int GetType (void) { return Type; } // Get Type
int GetNr (void) { return Nr; } // Get Nr
void SetId (void) { int ElemId; } // Set ElemId
void SetType( void) { int Type; } // Set Type
void SetNr (void) { int Nr; } //Set Nr
...

...
double** GetXmCoord (void) { return Xmesh; }

double GetXmCoord (const int i, const int j) {
return Xmesh[i][j];}

double** GetYmCoord (void) { return Ymesh; }

double GetYmCoord (const int i, const int j) {
return Ymesh[i][j]; }

...
}

The class above defines all variables and the member functions that access them. To avoid
direct access to the data members of the class, we choose to alter them via the functions calls.
Note that theprotected access specifies in the baseElement class provides both data
protection and inheritance. The variables defined withprotected specifier are available
only to classElement and any other derived from it. Most of the variables and functions
defined above are self-explanatory and annotated with comments. However, we point out that
the data typedeque <Edge> construct adeque of classEdge. Once a basicElement

class has been defined, it is relatively easy to derive specific element types from it.
For example we can derive a rectangular element (see figure 4.3):

class ElementQuad: public Element {

protected:
static double* Weights; // weights array
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Element

Defined/virtual functions

int ElemId, Type,Nr, Ns, Nz,NrSol, NrP oints, *Global;
int NrPresc, *PrescOff, NrTrueSol, *Tr ueOff, ElemMap;
double **ElemMat, *ElemVc, *ElemBc, ** Xmesh, **Ymesh;
double<Edge>  *Edge sList;
deque<Vertes> *Vert exList;

ElementQuad

Define all functions

static double  *Weights, *CollocationP ts;
double  Error;
double  **Jacobian;
double  **Mass;
double  **Solution;

Fig. 4.3: An illustration of the derive procedure for the Element class hierarchy .

static double* ColloccationPts; // collocation points arr ay
double Error; // error on the element
double **Jacobian; // Jacobian matrix
double **Mass; // mass matrix
double **Solution; // solutions matrix

public:
ElementQuad (int Id, int Nr, int Ns, int Type);
ElementQuad (void);
˜ElementQuad ();

void Weights (void);
void CollocPoints (void);
friend ostream& operator << (ostream& out, ElementQuad& e) ;
...

...
}

The overloadedoperator << is defined as a public member function to print out in-
formation about this particular element. Also, we define thearraysweights andpoints
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asstatic . In this case, all the elementsElementQuad have the same pointers that point
to the same arrays with collocation points and weights.

StripSegment

Define all functions

int     StripId; 
double  Offset_S0; 
double  **Q;
double  LengthStrip ;
int     QN,QM;
Mortar  *MortarPtr;

MortarSegment
Define all functions

int  *SolveMask, Fl ag, Priority;

BaseSegment
Define all functions

int    SegId, Type;  N;
double LengthSeg, * Mesh;
double *Solution;

1

1..NrStripSegs

Edge

Element

PatchSegment
Define all functions

int NrStripSegs;
MortarPatch *Patch;
int VirtualLeft;
int VirtualRight;
deque <StripSegment> *Strips;

MortarPatch
Define all functions

int PatchId,NrMorta rSegs;
double  XP0, YP0;
deque <PatchSegment>  *SlaveSegs;
deque <PatchSegment>  *MasterSegs;
deque <MortarSegment> *MortarSegs;

1

1..*

1..*

1

1

Fig. 4.4: The mortar class hierarchy in aUML diagram (Rumbauchet al., 1998).

Another basic data structure, required for the implementation of the mortar method, is the
classBaseSegment that describes the common attributes of the classesMortarPatch,
andMortarSegment. TheBaseSegment contains the basic structure of all the segments
used in the mortar method as: the segment typeType , segment lengthLengthSeg , the
parent edgeParentEdge , the solution on the segmentSolution , the polynomial order
on the segmentN, see figure 4.4).Here is the definition of theBaseSegment class:

class BaseSegment: {

protected:
int SegId; // segment id number
int Type; // segment type
int N; // polynomial order - for the segment
double LengthSeg; // segment length
double *Mesh; // nodal cooordinates of the segment
double *Solution; // solution on the segment
Element *ParentElem; // parent element
Edge *ParentEdge; // parent edge

public:
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BaseSegment (void): SegId(-1), Type(BI\_SECTION), N(0),
LengthSeg(0), Mesh(NULL), Sol(NULL),
ParentElem(NULL), ParentEdge(NULL) { }

BaseSegment operator = ( const BaseSegment& baseseg);
BaseSegment (const BaseSegment& baseseg);
˜BaseSegment ();

void CreateMesh (void); // make mesh of segment
void GatherSegment ( Edge* edge); // copy buffer to segment
void ScatterSegment (Edge* edge); // copy buffer to edge

bool operator < (const BaseSegment &s) const
{ return SegId < s.ElemId; }

bool operator == (const BaseSegment& s) const {
{ return ElemId == s.ElemId; }

bool operator != (const BaseSegment& s) const
{ return ElemId !operator==(s); }

bool operator > (const BaseSegment& s)const
{ return ElemId > s.ElemId; }

...

...
}

Another important class is theMortarSegment class. The structure required to de-
scribe a mortar edge can be represented with this class:

class MortarSegment: public BaseSegment {

private:
int Flag; // indicate the mortar status
int Priority; // mortar priority
int *SolveMask; // solve mask of the mortar segment

public:
MortarSegment (void);
MortarSegment& operator = (const MortarSegment& mp);
MortarSegment& (const MortarSegment& mp);
˜MortarSegment();
...

...
}

For any mortar segment (edge), we need the polynomial degreeof basis functions, the
solve maskSolveMask , the length of the mortar̂γ in (x, y) coordinates, the solution on the
mortar, the parent element the mortar belongs to, and the parent edge. Using the inheritance
mechanism, a few attributes, of the above specified class, are defined by theBaseSegment
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class. The only new attributes that are declared inMortarSegment are: Flag , which
indicates whether the mortar has been used, the mortar priority Priority , which indicates
the order in which the mortar are used, and the solve maskSolveMask , which indicates the
points on the mortar that are true degrees of freedom. For thesorting of the mortar edges, we
use the booleanoperators ”<”, ”==”, ”!=” defined in the BaseSegment class.

Since the refinement process create non-conforming edges, we need a class that imple-
ments this type of edges. The class is calledPatchSegment and is derived from the
BaseSegment class. The main attributes of the class are: the segment typeType , that
indicates whether the current segment is a master of slave segment, the number of the in-
tegration strips associated with the current patch segmentNrStripSegs , and thedeque
with the strip segmentsStrips . The classPatchSegment is defined as:

class PatchSegment: public BaseSegment {

private:
int NrStripSegs; // nr. strip segments
MortarPatch *Patch; // patch segment
int VirtualLeft; // nr. vertices, left
int VirtualRight; // nr. vertices, right
deque<StripSegment> *Strips; // associated strips

public:
PatchSegment (int Id, int Type, int N, double Len,

Element *elmt, Edge *edge , int VirtualLeft,
int VirtualRight, eque<StripSegment> StripsIn,
MortarPatch *PatchIn);

PatchSegment (void);

PatchSegment& operator = (const PatchSegment& mp);
PatchSegment& (const PatchSegment& mp);
˜PatchSegment ();

void ProjectQT (Element *elmt, double *u); // Qˆ{T} * A
void ProjectQ (Element *elmt, double *u); // Q * A
void MakeStrips (void); // make strips
...

...
}

Each mortar-slave segment combination is implemented withthePatchSegment class.
The next class that introduced is theMortarPatch class. In figure 3.8, we see that a

patch can be described by three componentsΓkl - the edgel of elementk, γp - the mortar and
γ̂p - the integration strip. These components are represented by theBaseSegment class.
TheMortarPatch class is created from a file that contains the description of the mesh. Be-
cause we are using the Standard Template Library (STL) templates (Musser and Stepanov,
1994), in our case thedeque container, a lot of information about the classMortarPatch
can be obtained using the functions of theSTL templates. For example: we want to know
how many mortars we have in the current patch. The template has a functionsize() that



4.3. Data structure 79

returns the number of the elements it currently holds. For a more detailed description of
deque operations see Timothy (1998); Stroustrup (1997). The classMortarPatch can be
defined as:

class MortarPatch: {

private:
int PatchId; // patch identification number
double XP0; // x coord. of the patch origin
double YP0; // y coord. of the patch origin

deque <PatchSegment> **SlaveSegs; // slave segments
deque <PatchSegment> **MasterSegs; // master segments lis t
deque <MortarSegment> **MortarSegs; // mortar segments li st

public:
MortarPath (int Id, double Xp0, double Yp0,

deque <PatchSegment> *Mseg,
deque <PatchSegment> *Sseg,
deque <PatchSegment> *MrtSeg);

MortarSegment (FILE *file) ;
MortarSegment () ;
MortarSegment& operator = (const MortarSegment& mp);
MortarSegment& (const MortarSegment& mp);
˜MortarSegment();

void BuildMortars (Mesh *mesh);
void BuildSlaves (Mesh *mesh);
void BuildMasters (Mesh *mesh);

bool operator < (const MortarPatch &s) const
{ return PatchId < s.PatchId; }

bool operator == (const MortarPatch &s) const
{ return PatchId == s.PatchId;}

bool operator != (const MortarPatch &s) const
{ return PatchId !operator==(s); }

bool operator > (const MortarPatch &s) const
{ return PatchId > s.PatchId; }

...

...
}

The classStripSegment specifies the integration strips introduced by the mortar ele-
ment method. To implement the integration strip concept, the class contains several attributes
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as (see 3.8): the identification number of the stripStripId , the mortar offsetOffsetS0 ,
the projection operatorQ, the integration strip lengthLengthStrip , the polynomial or-
ders on the two sides of the mortarsQNand QMand a link to the mortar attached to the
StripSegment PtrMortar .

TheStripSegment has this definition:

class StripSegment: {

private:
int StripId; // strip id number
double OffsetS0; // mortar offset
double **Q; // the Q projection operator
double LengthStrip; // integration strip length
int QN; // N on the slave edge
int QM; // N on the master edge
MortarSegment *MortarPtr; // pointer to a mortar

public:
StripSegment() : StripId(-1), OffsetS0(0), LengthStrip( 0),

Q(NULL), QN(0), QM(0), MortarPtr(NULL) { }

StripSegment (FILE * file) ;
StripSegment (int Id, double S0, double len,

MortarSegment *Ms);
StripSegment () ;
StripSegment& operator = (const StripSegment& strip);
StripSegment& (const StripSegment& strip);
˜StripSegment();

void BuildMatrixQ(); // build the projection matrix Q

bool operator < (const StripSegment& s) const}
{ return StripId < s.StripId; }

bool operator == (const StripSegment& s) const
{ return StripId == s.StripId; }

bool operator != (const StripSegment& s) const
{ return StripId !operator==(s); }

bool operator > (const StripSegment& s) const
{ return StripId > s.StripId; }

...

...
}

The classes defined above, are the main structures we need to implement the mortar el-
ement method. For the Adaptive Mesh Refinement Mechanism, wedefine a dynamical data
structure that is updated each time an element isadded/refined/pruned . In the next
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subsection, the mesh data structure is introduced, which isthe basic component of the adap-
tive mesh refinement process.

4.4 Mesh data structure

The representation of a spectral element mesh is a fundamental design decision. A traditional
structure consisting of arrays of elements and nodes, and their connectivity is not sufficient
for an adaptive computation. A fully entity hierarchy is needed to support efficient mesh
enrichment, both throughrefinementandcoarsening(h-refinement), and through order en-
richment (p/N -refinement). Another aspect of the implementation is the development of an
infrastructures that supports the development of a complexdynamic data structure in a dis-
tributed memory environment. More information on the subject is presented in Bose and
Carey (1999); Williams (1992); Edwards and Browne (1998); Parashar and Browne (1995);
Badenet al. (1998). The solution we use here is based on Voxel Data Base introduced by
Williams (1992), who presented a detailed description of the design used here and compared
it with others.

In the numerical solution of scientific and engineering problems, there is a trade-off be-
tween the quality of a solution and the computational cost ofobtaining that solution. This
trade-off can be attacked in two ways:

• development of sophisticated adaptive methods that increase accuracy for reduced
computational cost

• use of a larger faster computational environment, parallel/distributed computing.

3
 Distributed Adaptive
    Computed Data
          Structure

 Distributed Adaptive
 Mesh Data Structure

2
 Voxel Database for
   Parallelism with 
  Spatial Structure

   Distributed 
 Dynamic Array

1Message-Passing Layer (MPI)

Fig. 4.5: Extended three-layer model for distributed dynamic data structures.

Each of these approaches leads to increased mathematical, algorithmic, and/or data man-
agement complexity. Because we try to combine both ways, adaptive methods and paral-
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lel/distributed computing, the implementation of a such approach has to take care of the
computed data structure, and the adapted mesh data structure. A conventional parallel appli-
cation’s distributed dynamic data structures are layered directly upon a low level interprocess
communication capability, such as a message-passing library MPI (MPI, 1994). This two-
layer model does not adequately separate concerns and leadsto complex data structures and
parallel access mechanisms. To improve this model we introduce a generalized distributed
data management layer: Voxel Database for Parallelism withSpatial StructureVDBand Dis-
tributed Dynamic Array (DDA), directly positioned above the message passing layer see fig-
ure 4.5. TheDDA is a simple array structure, which couples the computed data, associated
with the elements, to theVDB.

The VDB has been introduced by Williams (Williams, 1992) to providea way to pro-
gram a large variety of mesh computations in Fortran, C or C++, such that the execution of
the program is independent of the distribution of data to processors, and the mesh may be
topologically adapted and load balanced.

A voxel data baseVDB is a distributed shared memory, where entities which share mem-
ory are those at the same geometric position. AVDB may be thought of as a dictionary of
position-subscript pairs, so that data may be associated with points in space by using the
subscription of that point as an index into data arrays. A voxel can be represented like a
three-dimensional volume element in space, and can be addressed using by integer coordi-
nates. Each voxel gets a unique integer key assigned to, and acount of hits that indicates how
many times the position has been referenced.

The Spectral Element code may be split into two parts, one which deals with the properties
and nature of the data stored with the elements and nodes and the calculation done with those
data, and another part which maintains the shared memories at the nodes and supplies the
mapping from local to global. The latter part may be done witha Voxel Database, producing
a code to run on a distributed machine. The first part is done using a Distributed Dynamic
Array, a structure that ia used to send/receive the data between the processors, based on the
information stored in theVDB.

TheVDB introduces the notion ofSet of Points. The data structure for aVDB is a collec-
tion of subsets of points. For example, a quadrilateral meshis a set of all the nodes together
with a set of pointsets (elements) of size four. A graph may berepresented as a set of nodes
plus a collection of pointsets (edges), each of which is of size two. We can represent the
pointsets as a table of subscripts, such as that for the graphshown in Fig 4.6. In this case each
node of the graph is associated with a geometric point.

We can represent the pointsets as a table of subscripts, suchas that for the quadrilateral
mesh shown in figure 4.6. In this case, each node of the graph isassociated with a geometric
point. Since the structure is a graph, each pointset is of size two: the local numbering is at the
left of the table. We can represent the eleven edges 1,...,11as a eleven pointsets. The global
numbering for the points is sequential, and it is easy to set up a loop over the points rather
than always looping over pointsets and using the table of subscripts.

Using subscripts to implement aVDB can cause some cache misses on the processors
caches and a loss of performance. Renumbering the points, wecan improve this situation
substantially, so that when the pointsets are used in order,most of the points required will
already be in cache from the previous pointset. An application written withVDBsleaves con-
trol of communication with the application by explicit synchronization calls, keeping local
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Fig. 4.6: A graph represented as a collection of points and a collection of pointsets ofsize 2 (edges).

copies of data in all the processors that need them. The copies may have all the same status
(thecombiningmethod), or may be copies of a master datum which are updated at synchro-
nization. The assumption is that the data objects (pointsets) need only be communicated if
they share a geometric point in space.
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Fig. 4.7: A graph represented as a collection of points and a collection of pointsets
of size 2 (edges).

For the distributed shared memory,VDB introduces thealias points. The concept of a
point is replaced by an equivalence class of points which share memory, where two points are
equivalent if they have the same position. Thus a point is actually a set ofalias points, each
of which has the same position. In fact analias is a connection between a local point and a
remote one. To access the points owned by the same processor,we have to read a copy of the
points data stored locally in the memory of the processor. The same point may have different
aliasesthat are distributed on different processors. To illustrate this see figure 4.7.

The left of figure 4.7 is shows a graph of eight nodes, which describes a non-conforming
mesh. At the right we find the same graph distributed among three processors, with points
assigned to different processors. Some points have been replaced by equivalence classes of
alias points, and each processor has obtained, from the synchronization function, the num-
ber of nodes as shown. The sum of all these is 13, which is of course greater than the 8
equivalence class ofaliases.

To represent a mesh, we have to create the graph seen as a collection of pointsets (edges),
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The non-conforming edges are represented by the mortar segments.The mesh can be repre-
sented by a graph. There is a unique ”link” between the parents and the children such that the
children can be identify by the parent’s id .

each owned uniquely by a processor. To create the connectivity of a mesh like the one il-
lustrated in figure 4.8 we need to build four separateVDBs: one for the vertices, one for the
edges, one for the midpoints of the edges, and one for the elements. The number of times a
position is registered is called itsmultiplicity. If a vertex with multiplicity one, that does not
lie along an external boundary, is not part of the true mesh true degree of freedom. In this
case, the vertex is said to bevirtual (Mavriplis, 1989). To detect if an edge is non-conforming,
we have to query theVDB to find its multiplicity. If the edge’s multiplicity is one, and it does
not lie along an external boundary, we query once again the verticesVDB, using its endpoints.
If it is not a match, then the edge is non-conforming. The active elements (E) make up the
current discretization of the mesh. Each leaf node (F ) has a unique integer key that is a
function of the parent’s key, which allows to identify the parent of the current active element.

TheVDB implements weakly coherence for the shared memory. That implies that shared
data may only be read outside a weak block code (the data values are not reliably read inside
this block) in which the data is written, and may only be written inside such a block. Writing
to a memory location implies replacing the data from that location by something else.

There is another way to ”write” to a shared memory location. The new data we want
to write in the shared location, can be combined with the location. In this case, different
processors can add data to a shared memory location in an independent order. At the end, we
only need to synchronize the operations and get the right result. Thus pointsets may read from
their points, but may only combine with, rather than write toa point. Thecombiningblock is
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ended with a synchronization, wherealiasesare combined with each other byVDBsoftware,
after which that dat is available for reading. Also, theVDBallows another traditional method
of writing to shared memory, based on the idea of write permission that is calledupdating.
Only one processor has write permission to the memory at any given time. Of all thealiases
at a given point, exactly one may write; this specialaliasof all those at a given point is called
the secretary alias. All the aliasesmay write, but after synchronization, the value in the
memory is the value written by thesecretarypoint. For a globalcombiningoperation we use
only thesecretarypoints, rather than all points.

For example, elements on separate processors with a common boundary segment share
data along an edge. Because each processor may update its edge data independently, we need
to call a synchronization routine that combines local and remote values to produce a globally
consistent data set.

VDB

Define all functions

int    Dim, KeyCoun ter, KeyMax;
int    TableSize;
double Tolerance;
int    BufferSize;
char   *Buffer;

VOXEL_ALIAS VOXEL

Define all functions Define all functions

char     *Connectio nName;
int      ProcId;
deque <VOXEL> *RemoteVoxel;
deque <VOXEL> *LocalVoxel;
deque <VOXEL_ALIAS> *Aliases;
deque <VOXEL_ALIAS> *LocalAliases;

1..* 1..*

int      VoxelId;
int      VoxelHits;
int      Position[3 ];
int      STATES;
deque <VOXEL_ALIAS> *Alias;
deque <VOXEL>       *NextVoxel;

1

2

Fig. 4.9: TheUML diagram of theVDB classes.

In figure 4.9 theVDB class hierarchy is shown. The main attributes ofVDB class are: an
array with the voxels positions, where each voxel is an instantiation of aVOXEL class and an
array of remote voxel connections, where each connection isdefined by aVOXEL ALIAS
class. The resolution of the voxels and the size of the hash table with the entries into the vox-
els’ array are also defined. The communication handled by theVDB, combininglocal/remote
data, is done via the bufferBuffer . Each voxel is addressed using integer coordinates stored
in thePosition attribute of classVOXEL. A reference to a remote voxel, that is stored on
another processor is defined byVOXEL ALIAS class.
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4.5 A base environment for Object-Oriented scientific computing

Scientific codes are often large and complex, requiring vastamount of domain knowledge
for their construction. They also process large data sets, so there is an additional require-
ment for efficiency and high performance. The last decades have seen significant advances in
the area of software engineering. New techniques have been created for managing software
complexity and building abstractions. Object-Oriented, generic (Stepanov, 1996), genera-
tive (Czarneckyet al., 1998), meta-programming (Veldhuizen, 1995), are the new trends in
scientific programming that points the way for constructingbetter software that is portable,
maintainable and achieves high performances at a lower development cost. Every sub-domain
in scientific computing has its own requirements: interval arithmetic, tensors, polynomials,
automatic differentiation, sparse arrays, meshes, and so on. To provide these abstractions
we need an Object-Oriented language, which allows library developers to construct them. In
C++ and Fortran 77/90, we are seeing libraries for many applications which were previously
solved by domain-specific languages. Unfortunately, such libraries are hard to optimize.
Compilers have difficulty because they lack semantic knowledge of the abstractions: instead
of seeing array operations, they see loops and pointers. Libraries also tend to have layers of
abstractions and side effects which confound optimizations. It is doubtful that the optimiza-
tion problems admit a general-purpose solution, since problem domain has its own tricks and
peculiarities. What we really need are language features which allow library developers to
define their own abstraction, and also to specify how these abstractions are optimized. In the
literature, this solution is calledActive Libraries. Active libraries combine the benefits of
build-in language abstractions which those of library-level abstractions, adaptability, quick
feature turnaround, easy to implement. In our implementation, we have considered two Ac-
tive Libraries:Blitz + + andMTL.
The Blitz + + library (Veldhuizen, 1998) provides generic array objectsfor C++ similar
to those in Fortran 90, but with many additional features. Inthe past, C++ array libraries
have been up to 10 times slower than Fortran, due to the temporary arrays which result from
overloaded operators.Blitz + + solves this problem usingexpression templatestechniques
(Veldhuizen, 1995) to generate custom evaluation kernels for array expressions. For example
this code might represent the summation of three vectors:

w = x + y + z ;

Operator overloading in C++ is pairwise: to evaluate this expression, C++ forces first
the evaluation oftmp1=x+y , thentmp2=tmp1+z , and final assignw=tmp2. The objects
tmp1 and tmp2 are temporariesused to store intermediate results. Pairwise expression
evaluation for the vectors is slow: instead of a single loop to evaluate an expression, multiple
loops and temporary vectors are generated. These temporaryvectors are usually allocated
dynamically, which causes a severe performance loss for small vectors. Consequently, C++
vector/matrix libraries tended to be very slow for operations on small objects. To optimisme
these operations for small objects,Blitz + + uses thetemplate meta-programtechniques.
It turns out that C++ compilers can be persuaded to do arbitrary computations at compile
time bymeta-programswhich exploit template instantiation mechanisms. One gooduse of
template meta-programs is creatingspecialized algorithms. For example, the following code
calculates a 3x3 matrix-vector product:

Matrix < double > A(3,3);
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Vector < double > b(3), c(3);
c = product(A,b);

Since, theMatrix andVector objects must allocate their memory dynamically, which
will take a lot of time, the nested loops, inproduct()function, are optimized by the compiler
that assumes that the loop will be executed many times. The result is code which is fast for
large matrices, but mediocre for small matrices.Blitz + + solves this problem, by providing
two versions of objects likeMatrix andVector . One version is optimized for large objects
and the other is optimized for small objects (e.g.TinyVector). Here is the matrix-vector
product implementation withTiny* objects:

TinyMatrix < double, 3, 3 > A;
TinyVector < double, 3 > b, c;
c = product(A,b);

where theTinyVector can be declared as:

template <class T, int N >
class TinyVector {

private:
double data[N];

}

Putting the vector data inside the object allows it to resideon the stack, so the overhead of
allocation memory is avoided.

As an example of a template meta-program, we consider a program that calculates facto-
rials at compile time. When theFactorial<N> template is instantiated, the valueenum is
set toN*Factorial<N-1>::value. This triggers the instantiation ofFactorial<N-1>, which
triggers the instantiation ofFactorial<N-2>, and so on. The templates are instantiated re-
cursively until the root caseFactorial<1> hit. TheFactorial is defined as:

template<int N >
class Factorial {

public:
enum { value = N * Factorial <N-1>::value } ;

}

class Factorial<0> {
public:

enum { value = 1 } ;
} ;

const int x = Factorial<12>::value ;

In figure 4.10, the comparison between three implementations (C++ with expression tem-
plates, C++ and Fortran) of the functionFactorial is illustrated. The function is evaluated
iteratively with a loop . Increasing the number of iterations of the loop, will have a negative
impact on the computation speed in the standard C++ and Fortran case. In the C++ with
expression templates implementation the performances arevery high even when the number
of function calls is about109.
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Fig. 4.10: Speed increase forFactorial <12> template example. Timings were taken on a 250
MHZ, Onyx -SGI.

Another feature provided byBlitz + + is array stencilling. Array stencils are common
used for solving of partial differential equations. The performance of stencil operations is
heavily constrained by memory accesses, so efficient cache use is critical. InBlitz + +,
the stencilling operation is implemented by dividing the array into smaller sub-arrays, and
applying the stencil to each sub-array in turn. Multidimensional arrays inBlitz + + are pro-
vided by the class templateArray < T,N >. The template parameterT is the numeric type
stored in the array, andN is its dimensionality. This class supports a variety of array models:
arrays of scalar type, such asArray < int,2 > andArray < double,3 > or arrays of
user-defended types. Let us consider the classElement. The arrayArray < Element,2 >
is a two dimensional array ofElement objects. Nested heterogeneous arrays, can be also
defined, such asArray < Array < double,1 >,1 >, in which each element is an array
of variable length.

In figure 4.11 the results of an DAXPY (double precisiony = a ∗ x + y) operation are
shown (Czarneckyet al., 1998). This routine is used in many linear algebra operations. The
classTinyVector is optimized for very small vectors, so its performances is much better
than the other implementations for vectors of length 1 to 10.TheVector class and Fortran77
implementation have some loop overhead which makes their performance poorer for small
vectors. For longer vectors their performance is very similar. The drop in performance around
N=1000 occurs because the vectors are no longer small enoughto fit in the cache. Due to the
pairwise evaluation and dynamically allocated temporaries, thevalarray is typical of older
C++ class libraries (the performance ofvalarray is improved in the new C++ libraries, see
4.12).

We conclude that theBlitz + + library provides a solid base environment of arrays,
matrices and vectors for scientific computing in C++. The numeric arrays inBlitz + + rival
the efficiency of Fortran (Veldhuizen, 1995), but without any extension to the C++ language.
The performances of the compilers on the chosen platform arecrucial.
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Fig. 4.11: The measure of the performance for this vector operation:y = y + a*x , wherex andy
are vectors, anda is a scalar. Timings were taken on a 100 MHz Octane (SGI) using a KAI++
(Intel) compiler with -K3 -O2 options and Fortran 77 code was compiled with MIPSpro 7.2
Fortran compiler with -O3 option.

The second library we consider in our implementation is theMatrix Template Library

(MTL) (Siek and Lumsdaine, 1998).MTL is a C++ library which extends the ideas of
STL to linear algebra. It handles both sparse and dense matrices. For dense matrices,MTL

uses template meta-programs to generate tiled algorithms.Tiling is a crucial techniques for
obtaining top performances from cache-based memory systems; MTL uses template meta-
programs to tile on both the register and cache level. For register tiling, it uses templates
meta-programs to completely unroll loops.MTL provides generic, high-performance al-
gorithms which are competitive with vendor-supplied kernels. Also, it has an interface to
the Iterative Template Library (ITL), a collection of sophisticated iterative methods
written in C++. It contains methods for solving both symmetric and non-symmetric linear
systems of equations. TheITL methods are constructed in a generic style, allowing for
maximum flexibility and separation of concerns about matrixdata structures, performance
optimization, and algorithms. Presently,ITL contains routines for conjugate gradient (CG),
conjugate gradient squared (CGS), biconjugate gradient (BiCG), biconjugate gradient stabi-
lized (BiCGStab), generalized minimal residual (GMRES), quasi-minimal residual (QMR)
without look-ahead, transpose-free QMR, and Chebyshev andRichardson iterations. In addi-
tion, ITL provides the following pre-conditioners: SSOR, incomplete Cholesky, incomplete
LU and incomplete LU with thresholding.

As mentioned,MTL provides generic algorithms. Generic programming has recently
entered the spotlight with the introduction of the StandardTemplate Library (STL) into
the C++ standard (Forum, 1995). The principal idea behind generic programming is that
many algorithms can be abstracted away from the particular data structure on which they
operate. Algorithms typically need the functionality of traversing through a data structure
and accessing its elements. In this case the data structure provides a standard interface for
this operations. The main difference in the separation of algorithms and containers is the
iterator (a generalized pointer). Iterators provide a mechanism fortraversing containers and
accessing their elements. Generic algorithms are written solely in terms of iterators and never
rely upon specifics of a particular container.
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The next example shows the wayMTL implements the generic matrix-vector product:

// Generic matrix-vector multiply
template < class Matrix, class IterX, class IterY >

void matvec_prod (Matrix A, IterX x, IterY y) {

typename Matrix::const_iterator i;

typename Matrix::OneD::const_iterator j ;

for(i = A.begin(); i != A.end(); i++)

for(j = i->begin(); j != i.end(); j++)

y[j.row()] += *j * x[j.column()];
}

// BLAS-style dense matrix-vector multiply

for( int i=0; i < m ; i++)

for( int j=0; j < n ; j++)

y[i] += a[i*n+j] * x[j] ;

The generic matrix-vector algorithm is flexible, and can be used with a wide variety of
dense, sparse, and banded matrix types. The indexing in theMTL routines has been ab-
stracted away. The traversal across a row goes frombegin()to end(), instead of using explicit
indices. Therow() andcolumn()methods provide a uniform way to access index information
regardless of whether the matrix is dense, sparse or banded.TheMTL provides a rich set
of basic linear algebra operations, roughly equivalent to Level-1, Level-2 and Level-3 BLAS,
though theMTL operates over a much wider set of data types. InMTL each algorithm is
implemented with just one template function. Another aspect of theMTL implementation is
that data encapsulation has been applied to the matrix and vector information, which makes
theMTL interface simpler because input and output is in terms of matrix and vector objects,
instead of integers, floating point numbers, and pointers. Figure 4.12 shows the compari-
son between a Fortran77, Fortran90,MTL, BLAS, C++ in the DAXPY benchmark test on
an SGI-Onyx machine using the MIPsPRO C++ compiler. In thesecase, the compiler does
perform enough optimization forMTL to be fast. Specifically,MTL makes heavy use of
iterators . In order foriterators to be fast, an optimization calledlightweight object
optimisationmust be performed by the compiler. The MIPsPRO C++ compiler does imple-
ment this. Since,Blitz++ doesn’t make as heavy use of iterators asMTL, it performs better
thanMTL for vectors with length≤ 1 × 103.

It is obvious, from the test performed withBlitz++ and MTL, that the performances
we can obtain with this two libraries, depend heavily of the optimizations performed by
the compilers we use.Blitz++ (Veldhuizen, 1999) did not achieve great performance right
from the start: it requires careful tuning for each compilerand platform. Another difficulty
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in tuning Blitz++ is the inability of many compilers to optimisme small temporary objects,
only the KAI C++ compiler was an exception.MTL provides a good basis for creating
higher level numerical linear algebra libraries. With performance benefits fromMTL (Siek
and Lumsdaine, 1999) , it would be good to gradually replaceLAPACK functionality with
versions that useMTL. In our implementation, we combine the features provided byboth
libraries, the support for high performance generic programming and meta-programming of
Blitx++ with the high-performance iterators ofMTL.
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Fig. 4.12: Blitz(Vector<T> and Array<T,1>) , MTL(dense1D<T>) , Fortran77, For-
tran90, C++(valarray ), Fortran BLAS performances fory = y + a*x . Timings
were taken on a 250 Mhz Onyx-SGI(32 kb L1 data cache, 4 Mb L2 unifiedcache, and 1024
Mb main memory) using the CC (MIPsPRO C++ 7.3) compiler with -Ofast -64 options.

4.5.1 Wrapping techniques forSEPRAN, LAPACK andBLAS

Scientists and engineers already recognized the benefits ofObject-Oriented Programming
(OOP) in their code development. Due to computational efficiency reasons, object-oriented
constructs are usually restricted to a higher-level administration code, while the most CPU-
time intensive computations take place in low-level code involving standard algorithms, loops
and simple array data structures, which are easily recognized for optimization by the com-
piler. Many well-tested and documented non-C++ subroutines libraries exist for such algo-
rithms. These libraries are mostly written in Fortran, withsome newer libraries written in
C or C++ (LAPACK+, SparseLib , SL++, MET,uBLAS). Although the C++ syntax is in
many respects quite different from Fortran, the two languages apply practically the same
basic data types, memory addressing and calling conventions. That makes the use of exist-
ing Fortran codes, when developing modern object-orientednumerical applications in C++,
very easy. In this subsection we briefly detail the mechanismof how to call Fortran from
C++, and subsequently present an interface class for a C++ ”wrapper” for existing Fortran
codes. Calling Fortran functions from C++ and vice-versa isstraightforward under the UNIX
operating system and the technicalities are usually well-documented in language reference
manuals and textbooks (Barton and Nackman, 1994). In order to accommodate the essen-
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tial object-oriented features of polymorphism, C++ allowsthe creation of several functions
with the same name, but different argument lists (signature). When calling Fortran functions
from C++, it is essential that names for the Fortran functions, which will be prototyped in
C++ header files, are not mangled. To prevent the usual name mangling carried out by the
C++ compiler, declarations of Fortran subroutines in a C++ header file must be identified as
requiring either Fortran or C linkage. This is done by using an extern ”C” wrapper:

// Use C linkage

extern "C" double ddot_ (int& n, double *x,
int& incx, double *y, int& incy);

// C++ function definition, calling the Fortran subroutine

inline void ddot(int& n, double* x,int& incx,
double* y,int& incy) {

ddot_(n,x,incx,y,incy);
}

When passing arrays of more than one dimension to Fortran, thedata storage differences
between Fortran and C++ have to be taken into account. In Fortran, two dimensional arrays
are stored in ”column-major” format, whereas in C++ data is stored in ”row-major” format.
As a consequence, the user must pass transposed data arrays to the Fortran compiler. To take
advantage of polymorphism, sometimes we need to create baseclasses with virtual functions
which are later defined in derived classes. The functions in the derived classed are then passed
to the Fortran subroutines/function in the same manner as passing global functions defined in
C++ to a Fortran subroutine/function. Here is an example of such a call:

// Use C linkage
typedef void (*CFunc_Ptr) (const double& x, double& value) ;

extern "C" integral_(CFunc_Ptr func, const double& x1,
const double& x2, double& result);

void CppFunction ( const double& x1, double& value) {
value = exp(x) + 2 ;

}

// C++ function definition, calling the Fortran subroutine

inline void integral (CFunc_Ptr func, const double& x1,
const double& x2, double& result) {

integral_((CFunc_Ptr) func, x1, x2, result);
}

// Main
int main(int argc, char* argv[]) {
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double x1 = -1.0, x2 = 1.0, result = 0.0 ;

integral ( (CFunc_Ptr) CppFunction, x1, x2, result);

cout << "The value of integral: " << result << endl;

} // end main

C
C The Fortran function definition
C

subroutine INTEGRAL(f, x1,x2,result)
REAL*8 result, x1, x2, val1, val2
EXTERNAL f

call f(x1, val1)
call f(x2, val2)
result = 0.5 * (val1 + val2) * ( x2 - x1)
return
end

Using a Fortran library from C++ requires more work than using a C library because of the
difference in build-in types and array layout. In our implementation, three Fortran subroutine
libraries have been used:SEPRAN, LAPACK andBLAS. To use the Fortran subroutines of
the libraries, we have to use C++ function calls via C++ wrappers to Fortran. One technique,
to make such calls, is to wrap each C++ call to aSEPRAN, LAPACK, BLAS subroutine
inside a C++inlined function. In Appendix B this approach is presented.

Here is a short example withSEPRAN calls:

...

...
// Common bloks
/////////////////////////////////////////////////// /////
// integer nbuffr, kbuffr, intlen, ibfree
// common /cbuffr/ nbuffr, kbuffr, intlen, ibfree
// save /cbuffr/

int& nbuffr = cbuffr_.nbuffr;
int& kbuffr = cbuffr_.kbuffr;
int& intlen = cbuffr_.intlen;
int& ibfree = cbuffr_.ibfree;

// Start SEPRAN

start ( istart, irotat, ioutp, itime);

// Generate mesh
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kmesh[0] = KMESH_LEN ;
kemesh[0] = KMESH_LEN ;
keqmesh[0] = KMESH_LEN ;
int ichois = 0;

mesh (ichois, idum, rdum, kmesh);

ichois = 0;
mesh (ichois, idum, rdum, keqmesh);

// Define problems

kprob[0] = KPROB_LEN;
ichois = 0;

probdf (ichois, kprob, kmesh, idum);
ichois = 6;
commat (ichois, kmesh, kprob, intmt1);

// Incorporate essential boundary conditions

int ichcrv ;
int ivec =0;
iu1[0] = 10;

ichois = 0; ichcrv = 1;
creavc (ichois, ichcrv, ivec, iQ, kmesh, kprob,
iu1,rdum,idum,rdum) ;

ichois = 0;
prestm (ichois,kmesh, kprob, iuni) ;

// Fill coefficients

int iprob ;

iuser1[0] = USER_LEN; user1[0] = USER_LEN; iprob = 1;
filcof (iuser1, user1, kprob, kmesh, iprob);

iuser2[0] = USER_LEN; user2[0] = USER_LEN; iprob = 2;
filcof (iuser2, user2, kprob, kmesh, iprob);

...

...

Another approach, used only forLAPACK, BLAS subroutine calls is to reorganize the
libraries and to group the related functions into corresponding class templates. Among the
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many excellent Fortran libraries for numerical processing, LAPACK, stands out as a well-
designed package in wide use and applicable to a variety of scientific and engineering prob-
lems. Therefore, we useLAPACK to illustrate classes as mean of expressing the grouping of
related subroutines with subsets of identical arguments. We use the same approach as in Bar-
ton and Nackman (1994). Consider the paired factoring and solving LAPACK subroutines
for general matrices. The form of the factored matrix depends on the kind of matrix. For
example, SGETRF (compute an LU factorization of a general M-by-N matrix) uses single
precision to factor a general matrix into the product of a permutation, a unit lower triangular
matrix, and an upper triangular matrix. To solve the system of liner equations factorized with
SGETRF, the SGETRS subroutine must be called. By bringing the arguments together and
combining them with the functions in an appropriate way, we can create a system of classes
for factoring matrices. Unpacked matrices are passed to thefactoring subroutines as a triple
or quadruple:

1. the matrix in a Fortran arrayA, the leading dimension LDA ofA

2. the number of columns N, and the number of rows M (for general matrices)

3. upon return,A contains the factored result and IPIV contains the pivots (where used).

4. the right-hand sides matrixB, the leading dimension LDB ofB

5. the solution of the linear system is returned inB.

Similar patterns, different in detail, appear in the calling sequence forLAPACK subrou-
tines. Appendix B presents (B.3) details of class implementation forLAPACK andBLAS.

Here is an example on how to use theLapackRect<T>, which implements the class for
rectangular matrices:

LapackRect <double> A(20,20) ;
// Fill the array A
...

...
LapackRect <double> b(20,1);
// Fill the array b
...

...
// Factor matrix A
FactoredLapackRect < double> factored_A= A.factor();

// Solve the system A x = b, b contains the solution
factored_A.solve(b);

The widely usedBLAS subroutine libraries form the basis of many modern numerical
libraries.BLAS comes in three levels:BLAS-1 (Lawsonet al., 1979) for vector-vector oper-
ations,BLAS-2 (Dongarraet al., 1988) for matrix-vector operations, andBLAS-3 (Dongarra
et al., 1990), (K̊agstr̈omet al., 1998a), (K̊agstr̈omet al., 1998b) for matrix-matrix operations.
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The first example, implement a vector-scalar operation (BLAS-1 ) x=a*x , the multipli-
cation of a vector by a scalar, usingxscal subroutine:

template <class T>
ConcreteBlas <class T>&

ConcreteBlas <T>::operator*=(const T& rhs) {

// Obs. xscal is defined in BLAS level 1, here is inherited
Blas3Calls::xscal (numElts(), rhs, firstDatum(), 1);

return *this;

};

The second example is fromBLAS-2, a matrix vector producty=α Ax + β y using
thexgemv subroutine:

template <class T>
ConcreteBlas1d <class T>

operator* (const ConcreteBlas <T> m,
const ConcreteBlas1d <T>& v) {

ConcreteBlas1d <T> result (m.shape(0));

// Obs. xgemv is define in BLAS level2, here is inherited
Blas3Calls::xgemv (Blas2Calls::no_trans,

m.shape(0), m.shape(1), T(1), m.firstDatum(),
m.shape(0), v.firstDatum(), 1,T(0),
result.firstDatum(), 1);

return result;
};

For more details about theLAPACK andBLAS wrapping classes see Barton and Nack-
man (1994).

4.6 The architecture of the adaptive mesh refinement implementation

The classes presented so far, form the skeleton frame work ofthe implementation’s class
hierarchy. Based on the high-level data types and the computational modules, we are now able
to define the overall architecture of the adaptive mesh refinement implementation. In figure
4.13 the class hierarchy diagram is illustrated. Each adaptive spectral element computation
has an associatedDomain data structure represented by theDomain class, which has the
following components:

1. the adapted meshDomainMesh , defined by theMesh class

2. the error associated with the mesh and solutionsDomainErr , defined byError class

3. the solution fieldsSols[] , defined by theField class
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4. the boundary conditions,DomainBC, defined by theBCond class

5. the matrix systemDomainMatrix , defined byMatrix class.

The most important component of the implementation is theMesh data structure, which
is defined on the top of theVDB andElement classes and is stored as a collection of quad-
trees. The leaves nodes of the quad-tree (see figure 4.8), thechild-active elements, are kept
in a list of current active elementsElems . The list is up-dated any time the mesh is adapted
by refinement or coarsening. The connectivity of the mesh is maintained by using aVDB
structure for the position of the vertices or edges and the non-conforming information nec-
essary to up-date the mesh dynamically provided by theMortarPatch data structure. Every
position in the data base is assigned a unique index that can be used to translate the position
to an array index.

The common operations on a mesh are:

1. traversal of mesh entities implemented withiterators

2. install/activate an element

3. refine an element

4. coarsen an element of the entire mesh

5. connect the mesh.

6. print/plot the mesh.

7. read/write the mesh.

The public interface to the mesh includes a collection of different iterators types, in-
troduced by the underlying representation. The level of details should not be exposed in the
public interface, and has been hidden with the implementation of a more genericiterator
class. Iterators over mesh entities have a simple, common interface: theiterator
member function int operator () (T *&) return an integer indicating whether an-
other entity is available to be return, and if so, return the next item in its argument. The
internal data is organized such to provide an efficient access to inverse geometric classifica-
tion information. Inverse classification information is useful, for example, when applying a
boundary condition on a model edge. To dynamically adapt themesh, the refinement crite-
ria, which are implemented by theError class are attached to eachDomain data structure.
An local error structure that contains theNormInf, NormH1, NormL2 norms (infinity,
H1, L2) is attached to each element of theDomainMesh . Based on the local errors, the mesh
is dynamicallyrefine/coarsened . To define a new refinement criteria, the public in-
terface of the classError provides the callback functionint (*user criteria)() ,
which is called during the computation to determine which element will be refined. The
global matrix structureDomainMatrix is implemented by theMatrix class. Anytime the
mesh is up-dated, the elemental matrices and various size parameters will be computed.
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Field
Define all functions

double Type;
double **data;
Mesh  *mesh;

Domain

Define all functions

char   *DomainName;  
int     Ns, Nr, Nz,  N;
int     EqType;
Matrix *DomainMatrix;
BCond  *DomainBc;
Field  *Sols[MAXFLDS];
Error  *DomainErr;
Mesh   *DomainMesh;

1..MAXFLDS

1

ElemErr
Def. all func.

double NormInf;
double NormH1;
double NormL2;
double error;

Mapping
Def. all func.

int *NrPoints;
int **IndexGlob;
double **P;

Mesh
Define all functions

int NrElems;
int ActiveElems;
int Nr, Ns, Nz;
VDB *vdbvertex, *vdbel ems;
VDB *vdbedge, *vdbmide dge;
deque <Element> *Elems;
deque <Element> *ElemsGlob;

Error
Define all functions

double  MinLocalErr ;
double  MaxLocalErr ;
int     TypeRef;
ElemErr *LocalError;

1

1

1..*

VDB

MPI

MortarPatch

Element 1..*
1..*

1..*

LIBS

Edge

StaticCond
Def.all func.

int Type, ElemId;
double *A11, *A12;
double *A21, *A22;

Matrix
Define all functions

int TypeSolver,NrEl ems;
int NrGlobalNodes;
int NrGlobalEdges;
double      *MassGl ob;
StaticCond  *MatrixSC;
Mapping     *MapLoc2Glob;

BCond

1

4

Fig. 4.13: The class hierarchy diagram of the adaptive mesh refinement technique based on the mortar
elements method. TheMPI(Message-Passing Interface)andLIBS (LAPACK, BLAS,
SEPRAN ,Blitz + +,SPARSKIT, MTL) are the class/wrapper libraries used in the
implementation.
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Applying the static condensation algorithm on an element level, implemented byStatic-
Cond class, and assembly the global boundary system, by summing the elemental matrices,
the boundary system is prepared for the solution phase by computing itsLU factorisation.
The system is solved by setting up the modified right-hand side of the global boundary equa-
tions, then solving the boundary and computing the solutionon the interior of each element
using direct matrix multiplication. The static condensation matrices are kept inA11, A12,
A21, A22 attributes ofStaticCond class on element level. The solution of the system is
stored in theSols[] arrays of theDomain structure.

The computational part of the implementation is based onBLAS, LAPACK, SPARSKIT,
Blitz++ andMTL libraries. Using the wrapper classes defined in 4.5.1 the matrix and vector
manipulations are implemented byBlitz++ or MTL coupled with the computationalBLAS
andLAPACK classes.

The boundary conditions attached to theDomain are implemented by theBCond class.
The essential (Dirichlet) and natural (Neumann) boundary condition can be attached to the
element edges of theDomainMesh structure using the public interface of theBCond class.
The periodic boundary conditions need a special treatment.The refinement of a periodic
element trigger the refinement of the coupled element. In this way, the non-conforming edges
are not allowed across periodic boundaries.

4.7 Example of a driver for adaptive mesh refinement

Based on the classes defined in the last section, we are now able to implement the driver for
the adaptive mesh refinement process. In orde to implement the driver, the main components
have to be defined:

1. The ”main time loop” component, that updates the mesh, computes the local errors,
refine the mesh, interpolates the solution on the new mesh andassembles the global
matrices for the solver.

2. The update-matrix component, which updates the local matrices each time step. This
component is coupled to the spectral-element operators andfacilitates the re-use of the
old Fortran code.

3. The mortar solver, which uses the updated matrices and mesh to solve the linear system
of equations for the current time step.

Instancing the appropriate classes for the above describedcomponents, the driver can
have this form:

// Define the domain’s problem
Domain *problem;

// Define the mesh associated with the problem
Mesh *mesh;

// Define the error on the mesh
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Error *error;

// Define the matrix for the problem
Matrix *matrix;

// Define the solution and the applied force
Field *U;
Field *F;

const double TIME_START = 0.0;
const double TIME_END = 1.0;
const int MAX_STEPS = 1024;

int main(int argc, char* argv[]) {

int i = 0;
double time = 0;
double dt = 0;
char file = "problem.dat" ;

dt = (TIME_END - TIME_INIT) / MAX_STEPS;

problem = Domain (file) ;

mesh = Mesh (problem) ;

error = Error (mesh, SPECTRUM) ;

U = Field (problem, SOLUTION) ;

F = Field (problem, FORCE); // initialize applied force

for (time =0; time < END_TIME ; time += dt) {

matrix->Update (mesh);

problem->Solve (matrix, mesh, U, ITERATIVE);

error->Compute (U);

mesh->Refine (error);

} // end loop over time

} //end main

First, we define the domain of the problem we want to solve and the mesh associated with
it. Since the adaption is used, an error class is instantiated for the defined mesh, which com-
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putes the local errors for the elements. To initialize the classes, the initial data is read in from
an input file. The information related to the problem as: initial conforming mesh, boundary
conditions, the coefficients of the partial differential equation, and the applied force, is con-
tained in this input file. Each time step, the elemental matrices are generated by SEPRAN and
assembled by the driver into the global matrix system, whichis solved directly of iteratively.
The local errors are computed and based on the refinement criteria the elements are flagged
for refinement. The mesh is refined, if necessary, and the maintime loop is ready for the next
time step.

4.8 Conclusions

In this chapter, a tool for the solution of partial differential equations using the parallel adap-
tive spectral element method has been presented. The designand implementation of the
adaptive mesh structure based on OO techniques is a complex task, but reusable software
libraries are essential for the development of specific applications, to solve diverse problems
without concern for details of the underlying mesh structure. After nearly a decade of be-
ing dismissed as too slow for scientific computing, C++ has caught up with Fortran and it is
giving it hard competition (Veldhuizen, 1998; Siek and Lumsdaine, 1998). It provides pow-
erful support for OO programming through language featuressuch as virtual base classes,
multiple inheritance, polymorphic functions, and operator overloading. However, since C++
uses dynamic memory allocation and deallocation, run-timebinding and procedure calls to
implement these features, it is difficult for the compiler tooptimize the C++ code. To take
advantage of the C++ features and to help the compiler with optimization of the C++ code,
some issues have to be addressed when we design C++ numeric code. Inheritance presents
an optimization challenge for the compiler. There are situations when C++ programs may
have to dereference of system-defined pointers in order to access the numerical data. These
indirections can only be done at run-time, and is difficult for the compiler to optimize such
C++ code. Therefore, the use of the virtual classes must be done with care. Dynamic memory
allocation is another C++ feature, which allows us, at run-time, to specify te exact amount of
memory needed for the computations, but the associated overhead can be significant, espe-
cially when working with a large number of small data structure. To avoid this, we need to
redefine the basic memory handling routines in C++. The attractive syntax provided by over-
loaded arithmetic operators for C++ vector classes, may drastically reduce the computational
efficiency. To achieve maximum efficiency easily optimizable members functions should be
used. Using expression templates to perform compile-time transformations will reduce the
number of temporaries created by the overloading operator (Veldhuizen, 1998). C++ does
provide many features necessary to supportgeneric programmingandmeta-programming,
but the implementation of such features is still cumbersomeand restrictive.

Since our objective was to re-use Fortran code, theSEPRAN package, a hybrid approach
of using an OO was proposed: C++ for handling data structuresof the mortar element method,
and a combination of legacy libraries (BLAS, LAPACK) and C++ for the linear solver with
mesh-adaptivity. Implementing classes for use in scientific and engineering applications, in-
volves numerical algorithms or other information processing using established algorithms.
An object-oriented approach can use functions from the legacy libraries to improve the be-
havior of C++ objects. Wrapping these two libraries illustrates many of the goals of object-
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oriented programming. The resulting wrappers do not require more computations than the
original code but they reorganize the computations and repackage it. Also, the wrappers will
make the future use of the libraries easier and more robust. Class libraries can express more
complex coupling inside of simpler boxes than can subroutine libraries.

With sufficiently powerful language features, such as templates in C++, it is possible
to build libraries which both define abstractions and control how they are optimized (this
is the idea of anactive library). In the active librariescase, the responsibility for high-
level optimization is shifted from the compiler to the library (Veldhuizen, 1999; Siek and
Lumsdaine, 1999).

The conclude that: C++ written programs at a high abstraction level, and implemented
carefully, so that the CPU intensive numerics take place in functions that are easily optimized
by the C++ compilers can achieve a computation efficiency which comes close to Fortran.
Replacing the CPU intensive numerics functions with Fortran code, approach used in our
implementation, offers an opportunity to take advantage ofthe features offered by both pro-
gramming languages.



Chapter 5

Application of Mortar Elements to Diffuse-Interface
Methods

5.1 Introduction

In the previous chapters we described the construction of a mortar element method which
will be used to tackle some length scale problems in diffuse-interface models. These diffuse
interface models were applied successfully to situations in which the physical phenomena of
interest had a length scale commensurable with the thickness of the inter-facial region. The
challenge now is the area of mesoscopic fluid flows that involve large interface deformations
and/or topological changes, such as droplet breakup and coalescence. Any diffuse-interface
has a finite thickness, which is determined by the molecular force balance at the interface
and its value is closely related to the finite range of molecular interactions (Rowlinson and
Widom, 1989). The molecular force balance at the interface controls the topological tran-
sitions, therefore it allows to pass the topological transition in a physically justified way.
The diffuse-interface approach has been used to study a widerange of phenomena involving
topological changes: nucleation and growth, spinodal decomposition, droplet breakup. For
a review on the subject see e.g. Andersonet al. (1998). Most of the studies on topological
changes focus on small-scale systems, in which it is assumedthat the numerical interface
thickness is of the same order of magnitude as the real interface thickness. In general, for
large systems, for which the droplet size is much larger thanthe physical value of the inter-
face thickness, the real interfacial thickness can not be captured numerically. Scaling in such
systems needs special attention, because if the real interfacial thickness is to be replaced by a
numerically acceptable thickness, we have to make sure thatwe are still describing the same
system with the same interfacial tension and diffusion. Different possibilities have been pro-
posed in the literature, Andersonet al. (1998), Verschueren (1999), Lowengrubet al. (1998),
but none of the proposed scaling strategies appears to be appropriate to cover all phenomena.

Our objective is to circumvent the scaling problem by using the adaptive mesh refinement
method. Commonly, diffuse-interface models introduce a small length scale (the interface
width), which places stringent conditions on the numericalsolution methods. Based on the
Cahn-Hilliard expression of the free energy (see Cahn-Hilliard model section), the critical
sizeLc is calculated to be:

Lc =
ξ

O(C)
, (5.1)

with C the Cahn number andξ the interface thickness. Small interfacial thicknesses would
require the use of a smaller Cahn number in the simulations and, consequently, extremely
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small mesh sizes and, hence, require excessive computational time and computer memory.
For Cahn numbers typically used in the simulations (C = 0.02), and a typical interface
thickness, which is in the order of magnitude 10 nm, the computational domain used has
a length of the order of 500 nm. If we want to extend to larger systems, the real interface
thickness can not be captured numerically in general.

Using the adaptive mesh refinement (AMR) techniques based onthe mortar element
method, we try to relax this undesirable conditions. Since we are dealing with drastic topo-
logical changes, our scope is to track the movement of drop boundaries, by adding and re-
moving elements around the boundaries of the drop for different, decreasing, values of the
Cahn numberC.

The diffuse-interface model is already implemented in SEPRAN, but it can be simulated
only with conforming elements. Due to this limitation, the computational domain has to be
decomposed between 1200 to 5000 elements, depending of the problem we want to solve.
The method has been applied on a variety of problems ranging from a single drop to a large
set of drops. In the next sections, we illustrate the benefitsof the mortar method applied to
diffuse-interface problem: with less elements than in the conforming case, we can achieve
the same accuracy of the solution.

5.2 Cahn-Hilliard model

Diffuse interface models have a long history in fluid mechanics (see e.g. the review by Ander-
sonet al.(1998), Verschueren (1999), Lowengrubet al.(1998) and Naumann and He (2001)),
especially in the field of phase separation and structure development in solidifying metal (al-
loys) and polymer blends. The Cahn-Hilliard theory, also called gradient free energy theory,
is the basic approach to express the specific Helmholtz free energy used in diffuse-interface
modelling (Cahn and Hilliard, 1958):

f(c,∇c) = f0(c) +
1

2
ε |∇c|2 = −1

2
αc2 +

1

4
βc4 +

1

2
ε |∇c|2 , (5.2)

whereα andβ are positive constants andε is the gradient energy parameter, that is propor-
tional to the interaction parameterχ, andc is the mass fraction of one of the two components.

The chemical potential is defined as the change inf upon addition of an amount of com-
ponentc. Mathematically, this is represented by a functional differentiation off :

µ =
δf

δc
= −αc+ βc3 − ε∇2c . (5.3)

This equation allows the computation of equilibrium concentration profiles. In order to
comply with mass conservation for both components, the balance equation requires:

dc

dt
=
∂c

∂t
+ ∇ · (cv) = M∇2µ , (5.4)

whereM is the mobility coefficient, here taken constant.
Equations (5.3) and (5.4) are known as the Cahn-Hilliard equations. Cahn has used these

relations to model spinodal decomposition. Due to the truncation of the gradient expansion
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of the second order, the Cahn-Hilliard theory was originally thought to be only valid for
the initial stages of spinodal decomposition or for near-critical systems, where concentration
gradients are small. However, equation (5.2) is generally assumed to be also valid when
concentration gradients are large (Kikuchi and Cahn, 1962).

Momentum conservation, a generalized Navier-Stokes equation, can be derived yielding
the velocity field (Lowengrubet al., 1998):

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −ρ∇g + ∇ · η

(
∇v + ∇vT

)
+ ρµ∇c . (5.5)

whereg is the Gibbs free energyg = f + p/ρ, with p the local pressure andρ the density.
Generally, the viscosityη depends onc but, without any serious restrictions, the iso-viscous
case will be considered here.

In equation (5.5) the interfacial tensionΓ is reflected via the capillary termρµ∇c. From
this point forward, we consider only viscous fluids at moderate velocities, and hence the
left-hand side of equation (5.5) can be neglected (the inertia-forces).

To obtain a more convenient form of the Stokes equations, forviscosity matched fluids,
and in the absence of the inertia forces, we can use the streamfunction (v = (∂ψ∂y ,−

∂ψ
∂x )).

Conservation of mass is then automatically satisfied and theequations can be rewritten as:

η∇4ψ = ρ∇×µ∇c . (5.6)

5.2.1 Scaling of the Cahn-Hilliard equations

To write the governing equations (5.3), (5.4) and (5.6) in non-dimensional form, the following
dimensionless variables are introduced:c∗ = c/cB , v∗ = v/V , µ∗ = µξ2/(εcB), t∗ =
tV/L, with cB =

√
α/β the bulk concentration,V is a characteristic velocity, andL is a

characteristic domain size. Omitting the asterisk notation, the dimensionless equations are:

dc

dt
=

1

Pe
∇2µ , (5.7)

µ = c3 − c− C2∇2c , (5.8)

∇4ψ =
1

Ca

1

C
∇×µ∇c , (5.9)

with the Ṕeclet numberPe, the capillary numberCa and the Cahn numberC defined as:

Pe =
ξ2LV

Mε
; Ca =

ξηV

ρεc2B
; C =

ξ

L
.

The capillary number can be related to the more classical definition (ηV/Γ) (Davis and
Scriven, 1982):

Ca =
2
√

2

3

ηV

Γ
.

This system of three partial differential equations, completed with proper initial and
boundary conditions is capable of describing the dynamics of viscous two phase systems
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(like polymer blends) in the case of phases separating of separated systems in the presence of
flow. The optimal way to scale the set of equations is still an important research challenge,
which is beyond the scope of this thesis. Interested readersare referred to Verschueren (1999)
and Keestraet al. (2003).

5.3 Numerical approach

To complete the set of Cahn-Hilliard equations, a relation between the chemical potentialµ
and the concentrationc is required. We use the so-called ‘c4’ approximation for the homoge-
neous part of the free energy (Guntonet al., 1983):

f0(c) =
1

4
βc4 − 1

2
αc2 , (5.10)

also called the Ginzburg-Landau approximation, which is a Taylor expansion around the
critical point of the Flory Huggins equation:

f0(c) ∝ c ln c+ (1 − c) ln(1 − c) + χc(1 − c) , (5.11)

with χ the Flory-Huggins interaction parameter.
To discretize the governing equations, the mortar-spectral element method introduced in

chapter 3 is used, since this method is suitable for capturing interfaces with a small interfa-
cial thickness. This method relaxesH1 continuity requirements of the conforming spectral-
method. We consider each element individually and achieve amatching conditions through
a variational process. As in the conforming case, the entiredomainΩ is subdivided intoK
non-overlapping sub-domainsΩk, k = 1, . . . ,K. The skeletonS of the domain decom-
position comprises all interfaces between sub-domains andis also decomposed into mortars.
We require the mortars to coincide with a complete edge of oneof the sub-domains and the
intersection of the mortars is empty space. Each mortarγm coincides with an element edge
Γkl , l = {1, 2, 3, 4} of Ωk.

Next, we define the mortars auxiliary spaceWh(Ω) (3.32) and the non-conforming spec-
tral spaceXh(Ω) (3.44), that imposes the mortar conditions: the vertex conditions (3.37,
3.39) and the integral conditions (3.38, 3.40).

The momentum equation (5.9), is a fourth-order differential equation inψ. Since the basis
functionsφ are elements ofH1, that isH1(Ω) = {φ |φ ∈ L2(Ω),∇φ ∈ L2(Ω) × L2(Ω)},
we split equation (5.9) into two second-order differentialequations:

−∇2ω = h , (5.12)

−∇2ψ = ω , (5.13)

whereh = −Ca−1C−1∇ × µ∇c. Using the inner product(u, v)Ω =
∫
Ω
uv dΩ, andu the

standard Galerkin test function, the partial integration of the Galerkin residual representation
of equations (5.12) - (5.13) yields the weak or variational forms:

(∇ω,∇v)Ω = (h, v)Ω , (5.14)

(∇ψ,∇v)Ω = (ω, v)Ω , (5.15)
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where the boundary integrals vanish because of the homogeneous boundary conditions. Next,
the domainΩ is decomposed intoK non-overlapping sub-domainsΩk and a spectral approx-
imation is applied on each element, whereS is the Laplacian stiffness matrix,M is the mass
matrix andψ̃, ω̃ andh̃ are the discrete vector representations ofψ, ω andh, respectively.

Sω̃ = Mh̃ , (5.16)

Sψ̃ = Mω̃ . (5.17)

The local balance equation forc and the chemical potentialµ form a set of two second-
order differential equations, which are solved in a coupledway. Using Euler implicit time
discretisation we obtain:
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, (5.18)

whereN is the convection matrix andQ is the mortar projection matrix. Superscriptn
denotes timet andn + 1 denotest + ∆t. A Picard iteration is used to deal with the non-
linearity in thec term (i = 1 . . . I): the iteration starts usingcn+1

1 = cn
0 and as a stopping

criterion we usemax |cn+1
i+1 − cn+1

i | < δ, in which δ is typically of the order10−4. After
convergence,µn+1

i+1 andcn+1
i+1 are used to updateh and we can move to the next time step.

Details can be found in Verschueren (1999).
In this model, there are two degrees of freedom (dof) per nodec andµ. The mortar

method introduced in chapter 3, treats only onedof per node. To keep the same structure of
Q andQT, as for onedof, the twodofs have to be sorted in a sequential order per node. Only
in this case, the previous used equation (3.84) is still valid.

5.4 Results

In this section the mortar element method is applied to the diffuse interface modelling of the
morphology and rheology of immiscible polymer blends. Blending of immiscible polymers
offers an attractive route to produce new materials with tailor made properties. The mechan-
ical properties of such two-phase or more phases polymer blends are intimately connected
with the morphology imparted during processing. Hence, understanding the connection be-
tween flow fields applied and morphology development is vitalto optimize the processing
and, therefore, the resulting properties of blends. Duringthe years, a number of compre-
hensive experimental and theoretical studies of morphology development in simple (shear)
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Fig. 5.1: The initial coarse grid: (left) adaption case,8 × 8 elements ; (right) conform case,32 × 32
elements.

flow fields has been reported. Some of this work is summarized in a recent review by Tucker
and Moldenaers (2002), and although considerable fundamental understanding of morphol-
ogy changes during (shear) flow has been obtained already, the prediction of the (transient)
rheology coupled with the micro-structure development still remains a challenge.

We use a direct approach based on the framework of diffuse-interface models to predict
the dynamics of the morphology. Interfaces are not modelledexplicitly, but result implicitly
from the composition field. Hence dramatic changes in topology of complex interfaces, oc-
curring during coalescence and breakup, are present in the model without the need of making
any additional assumptions about the underlying structure.

5.4.1 Single-drop problem

First, we consider a two-dimensional simulation with one drop and two refinement criteria,
the gradient and the Legendre polynomial spectrum, are applied to the simulations. The
simulations are performed on a two-dimensional rectangular mesh, with the dimensions (-2,
-0.5) in the left bottom corner and (2, 0.5) in the top right corner, generated by successive
refinement based on the concentration solution, with periodic boundary conditions on the left
and right side of the domain. On the top and bottom side, boundary conditions are prescribed
to introduce shear. Since equation (5.9) is split into two second-order differential equations,
a set of two boundary conditions is applied and, bearing in mind the stream functionv =
(∂ψ∂y ,−

∂ψ
∂x ), on the top and bottom wallψ = 1

2ay
2 andω = a are prescribed.

We will look at one type of parameter variation for this problem: the evolution of the
grid with decreasing the Cahn numberC from 0.04 to 0.01. Note that temporal refinement
is necessary as well; a suitable time step is chosen for each new Cahn number. The time
steps in these calculations vary from∆t = 0.001 to ∆t = 0.0005. The initial coarse grid
has simply8 × 8 elements (figure 5.1, left) with the polynomial order equal to N = 4.
After each time step, local error estimators are calculated. These error estimators govern
the refinement and coarsening process of the mesh. For the solution gradients criteria the
imposed refinement tolerance isε = 1.0× 10−1. In the Legendre polynomial spectrum case,
the toleranceε = 1.0 × 10−6 is used. The Ṕeclet number will vary depending of the Cahn
numberPe = 0.10/C, and the capillary number will be fixedCa = 10.

Figures 5.2, 5.5 and 5.8 show the adaptively generated gridsand the evolution of the drop
deformation for the concentration gradients. The adaptiveprocedure tracks the changes in
topology of the interface and refines the grid to an appropriate level at each value of the Cahn
numberC = {0.04, 0.02, 0.01}. The same procedure is applied in the Legendre polynomial
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spectrum refinement criteria. In this case, the results are shown in figures 5.3, 5.6 and 5.9. Al-
though there is obviously no exact solution for this problem, we compare the concentrations
obtained in the non-conforming case, with the concentrations obtained in the conforming
high-resolution numerical simulations of the same flow, to demonstrate that the adaptive pro-
cedure produces an accurate approximation. Figures 5.4, 5.7 and 5.10 compare the profile of
the concentrationc in the conforming and non-conforming case. The comparison shows that
the two calculations are in extremely close agreement, and demonstrates that the adaptive
procedure results in a highly accurate solution for small Cahn numbersC with an intelligent
distribution of the elements. In table 5.1 the average number of elements used for each cal-
culation is shown. For both refinement criteria the mesh hasK ×N2 ≈ 420 × 25 = 10500
points, far less that in the conforming case where the mesh has 25600 points (figure 5.1,
right). Due to the refinement, less than 50% of the elements ofthe conforming case, are used
to track the boundary interface. Since the periodic boundary conditions are imposed on the
left, and right side of the domain, a few extra elements are refined on the left/right side of the
domain, when the opposite side element is refined.

Table 5.1. The average number of active elements generated for different Cahn
numbersC = 0.04, 0.2, 0.01 and polynomial orderN = 4.

Tolerance C = 0.04 C = 0.02 C = 0.01 Refinement Criteria
ε = 1.75 × 10−1 370 425 516 Gradient
ε = 1.00 × 10−6 360 401 475 Spectrum

To see the influence of a higher approximation order thanN = 4, we consider the sim-
ulation forC = 0.02, Ca = 10.0, Pe = 5.0 andN = {8, 16}. Table 5.2 shows the number
of active elements generated by the refinement based on the Legendre polynomial spectrum
criteria with a toleranceε = 1.0 × 10−6. Also, in figure 5.11, the effect of the refinement for
N = 8 is illustrated. The adaption generates a mesh with aboutK = 280 elements, which
uses 22680 points. Using the same polynomial orderN = 8 for the conforming case, it will
generate1024 × 81 = 82944 points. However, comparing the results illustrated in figure 5.6
and 5.11, we can conclude that, increasing the polynomial order of the approximation does
not improve significantly the solution accuracy to justify the use of a large number of grid
points.

Table 5.2. The average number of active elements generated for different polynomial
orderN = 4, 8, 16 andC = 0.02, Ca = 10.0, Pe = 5.0 for the Legendre polynomial
spectrum refinement criteria.

Tolerance N = 4 N = 8 N = 16 Refinement Criteria
ε = 1.00 × 10−6 360 280 150 Spectrum
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Fig. 5.2: Deformation of a drop forC = 0.04, Ca = 10.0, Pe = 2.5, N = 4, ∆t = 1.0 × 10−3,
adaption based on the solution gradients with a tolerance ofε = 1.0 × 10−01: (left) adapted
mesh; (right) contours ofc = 0.0.
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Fig. 5.3: Deformation of a drop forC = 0.04, Ca = 10.0, Pe = 2.5, N = 4, ∆t = 1.0 × 10−3,
adaption based on the local Legendre polynomial spectrum with a tolerance of ε = 1.0E ×
10−06: (left) adapted mesh; (right) contours ofc = 0.0.
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Fig. 5.4: Comparison of a drop deformation forC = 0.04, Ca = 10.0, Pe = 2.5, N = 4, ∆t =
1.0 × 10−3: (left) adaptive, adaption based on the Legendre polynomial spectrum with a
tolerance ofε = 1.0 × 10−06; (right) conform.
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Fig. 5.5: Deformation of a drop forC = 0.02, Ca = 10.0, Pe = 5.0, N = 4, ∆t = 1.0 × 10−3,
adaption based on the solution gradients with a tolerance ofε = 1.0 × 10−01: (left) adapted
mesh; (right) contours ofc = 0.0.
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Fig. 5.6: Deformation of a drop forC = 0.02, Ca = 10.0, Pe = 5.0, N = 4, ∆t = 1.0 × 10−3,
adaption based on the local Legendre polynomial spectrum with a tolerance of ε = 1.0 ×
10−06: (left) adapted mesh; (right) contours ofc = 0.0.
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Fig. 5.7: Comparison of a drop deformation forC = 0.02, Ca = 10.0, Pe = 5.0, N = 4, ∆t =
1.0 × 10−3: (left) adaptive, adaption based on the Legendre polynomial spectrum with a
tolerance ofε = 1.0 × 10−06; (right) conform.
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Fig. 5.8: Deformation of a drop forC = 0.01, Ca = 10.0, Pe = 10.0, N = 4, ∆t = 5.0 × 10−4,
adaption based on the solution gradients with a tolerance ofε = 1.0 × 10−01: (left) adapted
mesh; (right) contours ofc = 0.0.
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Fig. 5.9: Deformation of a drop forC = 0.01, Ca = 10.0, Pe = 10.0, N = 4, ∆t = 5.0 × 10−4,
adaption based on the Legendre polynomial spectrum with a tolerance ofε = 1.0 × 10−06:
(left) adapted mesh; (right) contours ofc = 0.0.
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Fig. 5.10: Comparison of a drop deformation forC = 0.01, Ca = 10.0, Pe = 10.0, N = 4, ∆t =
5.0 × 10−4: (left) adaptive, adaption based on the Legendre polynomial spectrum with a
tolerance ofε = 1.0 × 10−06; (right) conform.
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Fig. 5.11: Deformation of a drop forC = 0.02, Ca = 10.0, Pe = 5.0, N = 9, ∆t = 1.0 × 10−3,
adaption based on the local Legendre polynomial spectrum with a tolerance of ε = 1.0E ×
10−06: (left) adapted mesh; (right) contours ofc = 0.0.
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5.4.2 Coalescence of two drops

The second example we present is the coalescence of two drops. To study the capability of our
mortar code for the simulation of interactions of these drops in close approach, we consider
two drops in the shear flow for different Cahn numbersC = {0.04, 0.02, 0.01, 0.005}, Pe =
1.0/C andCa = 0.10. The domain has the dimensions (-1, -1) in the left bottom corner and
(1, 1) in the top right corner. We consider only refinement based on solution gradients with a
toleranceε = 1.0 × 10−2.

The evolution of the two drops for the Cahn numberC = 0.04 are shown in figures
5.12 and 5.13. Figures 5.14 and 5.15 illustrate the topological changes of the drops in the
C = 0.02 case. In figures 5.12(b), 5.14(b), 5.17(b) and 5.19(b), the boundary of the drop
is enlarged to show the location of smallest elements created by the refinement. The depth
of the refined mesh vary fromd = 6 to d = 9, which indicates that the interfacial thickness
is becoming smaller, depending of the value ofC. The coalescence of the two drops based
on the solution gradients forC = 0.01 is shown in figures 5.17 and 5.18. The last case we
consider is forC = 0.005, which is illustrated in figures 5.19 and 5.20. The profile of the
concentration forc = 0.0 is shown in figures 5.16 and 5.21.

In all the two-drop cases presented so far, it is seen that therefinement process detects the
boundary of the drops, and refines the regions around it during coalescence and breakup.
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(a)

(b)

Fig. 5.12: Coalescence of two drops based on the solution gradients with a tolerance of ε = 1.0×10−02

andC = 0.04, Ca = 0.1, Pe = 25.0, N = 7, ∆t = 1.0× 10−03: (a) adaptive fort = 0.10
; (b) zoomed adapted mesh fort = 0.10.
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(a)

(b)

Fig. 5.13: Coalescence of two drops based on the solution gradients with a tolerance of ε = 1.0×10−02

andC = 0.04, Ca = 0.1, Pe = 25.0, N = 7, ∆t = 1.0×10−03: (a) adaptive fort = 0.15;
(b) adaptive fort = 0.175.
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(a)

(b)

Fig. 5.14: Coalescence of two drops based on the solution gradients with a tolerance of ε = 1.0×10−02

andC = 0.02, Ca = 0.1, Pe = 50.0, N = 7, ∆t = 1.0× 10−03: (a) adaptive fort = 0.15
; (b) zoomed adapted mesh fort = 0.15.
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(a)

(b)

Fig. 5.15: Coalescence of two drops based on the solution gradients with a tolerance of ε = 1.0×10−02

and C = 0.02, Ca = 0.1, Pe = 50.0, N = 7, ∆t = 1.0 × 10−03: (a) adaptive for
t = 0.175; (b) adaptive fort = 0.25.
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Fig. 5.16: The contour of the concentrationc = 0.0: (left) Ca = 0.04, t = 0.10, t = 0.15, t = 0.175;
(right) C = 0.02, t = 0.15, t = 0.175, t = 0.25.
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(a)

(b)

Fig. 5.17: Coalescence of two drops based on the solution gradients with a tolerance of ε = 1.0×10−02

and C = 0.01, Ca = 0.1, Pe = 100.0, N = 7, ∆t = 5.0 × 10−04: (a) adaptive for
t = 0.10; (b) zoomed adapted mesh fort = 0.10.
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(a)

(b)

Fig. 5.18: Coalescence of two drops based on the solution gradients with a tolerance of ε = 1.0×10−02

and C = 0.01, Ca = 0.1, Pe = 100.0, N = 7, ∆t = 5.0 × 10−04: (a) adaptive for
t = 0.125; (b) adaptive fort = 0.20.
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(a)

(b)

Fig. 5.19: Coalescence of two drops based on the solution gradients with a tolerance of ε = 1.0×10−02

andC = 0.005, Ca = 0.1, Pe = 200.0, N = 7, ∆t = 5.0 × 10−04: (a) adaptive for
t = 0.125; (b) zoomed adapted mesh fort = 0.125.
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(a)

(b)

Fig. 5.20: Coalescence of two drops based on the solution gradients with a tolerance of ε = 1.0×10−02

andC = 0.005, Ca = 0.1, Pe = 200.0, N = 7, ∆t = 5.0 × 10−04: (a) adaptive for
t = 0.13; (b) adaptive fort = 0.14.
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Fig. 5.21: The contour of the concentrationc = 0.0: (left) Ca = 0.01, t = 0.10, t = 0.125, t = 0.20;
(right) C = 0.005, t = 0.125, t = 0.13, t = 0.14.
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5.4.3 Multi-drop problem

Finally, a more complex example is handled, where a large number of drops is present. For
this problem, the initial coarse grid had the same number of elements8×8 as in the one drop
simulation, but the polynomial order was higher (N = 7). The simulations are performed on
a rectangular mesh with periodic boundary conditions on theleft and right side of the domain,
with the dimensions (-4, -1) in the left bottom corner and (4,1) in the top right corner. In the
conforming case the grid had100 × 50 elements. Figure 5.22 show a few snapshots of the
morphology development of a blend consisting of a drop-matrix morphology during shear
flow for 18 drops withC = 0.02, Ca = 10, andPe = 5.

Topological changes such as breakup and coalescence are present, and they are captured
by the refinement process. With a toleranceε = 3.1E × 10−01, the adaption based on solu-
tion gradients generated about 2500 elements, see figure 5.22(a). Legendre spectrum, figure
5.22(b), produced about 2000 elements with a toleranceε = 4.1E × 10−07. The gradi-
ent criterion detects the boundary of the drops very well, even when they are close to each
other. Legendre spectrum groups the drops together in sub-regions, and then refines these
sub-regions. For the imposed tolerances, the profile of the concentration is the same in both
cases.
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Fig. 5.22: Morphology development of a blending for 18 drops forC = 0.02, Ca = 10.0, Pe =
5.0, N = 7, ∆t = 1.0×10−3: (left) adaption based on the local Legendre polynomial spec-
trum with a tolerance ofε = 4.1 × 10−07; (right) adaption based on the solution gradients
with a tolerance ofε = 3.1 × 10−01.
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(a)

(b)

(c)

Fig. 5.23: Multi-drop example,t = 0.1, C = 0.02, Ca = 10.0, Pe = 5.0, N = 7: (a) adaption
based on the local Legendre polynomial spectrum with a tolerance ofε = 4.1 × 10−07;
(b) adaption based on the solution gradients with a tolerance ofε = 3.1 × 10−01;
(c) profile of the concentration forc = 0.0.
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(a)

(b)

(c)

Fig. 5.24: Multi-drop example,t = 0.4, C = 0.02, Ca = 10.0, Pe = 5.0, N = 7: (a) adaption
based on the local Legendre polynomial spectrum with a tolerance ofε = 4.1 × 10−07;
(b) adaption based on the solution gradients with a tolerance ofε = 3.1 × 10−01;
(c) profile of the concentration forc = 0.0.
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(a)

(b)

(c)

Fig. 5.25: Multi-drop example,t = 0.6, C = 0.02, Ca = 10.0, Pe = 5.0, N = 7: (a) adaption
based on the local Legendre polynomial spectrum with a tolerance ofε = 4.1 × 10−07;
(b) adaption based on the solution gradients with a tolerance ofε = 3.1 × 10−01;
(c) profile of the concentration forc = 0.0.
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5.5 Conclusions

In this chapter the diffuse-interface method was applied tomodel the morphology evolution
of immiscible polymer blends. The method has been applied ona variety of problems ranging
from the deformation and breakup of a single drop in a shear flow to simulations with tens of
drops. It shown that topological changes such as breakup of drops is implicitly present in the
model. The simulations can contribute to the understandingof the structure formation and
rheological properties of immiscible blends (Keestraet al., 2003).

For the one drop problem, both refinement criteria, the solution gradients and the Legen-
dre polynomial spectrum, generate a six-level quad-tree mesh with roughly the same number
of active elements (K ≈ 420) using a uniform basis of orderN = 4. The number of the
elements generated by the refinement process depends of the toleranceε that is used. In the
two drop simulations, for a toleranceε = 1.0 × 10−02, approximatively22000 elements are
generated, far more than necessary to solve the problem witha good solution accuracy. In the
multi-drop case, the gradient criterion detects the boundary of the drops much better than the
Legendre spectrum, which groups the drops together in sub-regions, and then refines these
sub-regions.

We can conclude that the adaptive mesh refinement technique,based on the mortar spec-
tral elements, has proven to be an efficient method, which overcomes the problem of proper
scaling for large systems. Using less elements than in the conforming case, we were able
to track the boundary of the drops and analyse processes suchas breakup and coalescence.
Since we can identify the transition zone of the interface, based on the gradient of the solu-
tion, larger systems can be analyzed. For the particular case of coalescence of two drops a
Cahn number could be used which was almost a factor ten smaller as in the conforming case.
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Concluding Remarks and Recommendations

6.1 Conclusions

In this thesis we presented the implementation of a fully adaptive mesh refinement method
based on the mortar element method. The conforming spectralelement method is limited
by its geometric and functional restrictions: the interface between two adjacent elements
must be conforming and the order of discretization must be the same. A first attempt to
circumvent these restrictions was presented in Chapter 2. The cases presented show that a
simple repositioning of the element boundaries (or equivalently a change in their size) results
in an error two order sof magnitude lower for the same discretization parametersK. Also,
increasing the order of discretizationN improves the solution’s accuracy but at a slow rate.

The new mortar discretization, presented in Chapter 3, relives the spectral method of
the above limitations, relaxing the interface matching conditions to allow local refinement.
The refinement can be achieved by varying the polynomial degree for one element to the
next and/or by allowing multiple elements to share a single edge of an adjacent element.
Such strategies improve the geometrical flexibility of the spectral discretization, allow for
mesh adaptivity, and help circumvent the loss of accuracy near singularities. The single
mesha posteriori error estimators for the spectral element methods are important for the
implementation of a fully adaptive mesh refinement process.
Three criteria have been implemented based on: the solutiongradients, the exponential fit of
the Legendre polynomial spectrum, and the trace of the Legendre polynomial spectrum. The
error estimators prove to be accurate, as demonstrated in Chapter 3. However, in some cases,
the gradient refinement criteria and the trace of the polynomial spectrum criteria lead to nearly
complementary grids. Clearly, the local trace spectrum indicates the correct location for the
refinement. Since the mortar element method allows localized refinement, the adaptive mesh
process is efficient. The same solution accuracy can be achieved in the non-conforming case
with roughly less than50% points than in the conforming case.

Chapter 4 illustrates the Object Oriented (OO) approach of the implementation. The
development of a large codes for scientific computing is generally an error-prone and time-
consuming process. Modularity and code reuse can be achieved by using OO design and
programming techniques. Since Fortran codes dominated thefield of scientific computing,
and since there are many well-tested and documented non-C++subroutine and function li-
braries, we used a hybrid approach for the implementation: Fortran and C++. Interfacing
C++ and Fortran for a heterogeneous cluster of machines was not an easy task, but the wrap-
per developed for the Fortran subroutines made the task easier. An important observation
is that, the code implemented has little connection with thephysics or engineering problem



138 Chapter 6. Concluding Remarks and Recommendations

being solved. It is commonly the case that about70% of an adaptive code, written in a con-
ventional programming system, is concerned with procedurally realizing dynamic distributed
data structures on top of static data structures, such as Fortran arrays.

To support parallelism, the Voxel Data Base (VDB) structurehas been implemented. It
allows the dynamic adapted mesh to migrate between different processors.

Finally, Chapter 5 shows the benefits of the non-conforming formulation and error estima-
tors with numerical solutions to the diffuse-interface modelling of the morphology and rheol-
ogy of immiscible polymer blends. Based of the adaptive meshrefinement technique, small
interface thickness was tracked, avoiding excessive computational times as in the conforming
case. Because the systems we solved were coupled, the mortarelement implementation was
extended to support more that onedof per node.

In summary, we implemented three key elements needed to makethe spectral element
method fully automatically adaptive: the mortar element method, the error estimators (re-
finement criteria) and the dynamic mesh structure (VDB). Themost interesting parts of the
implementation are:

1. the build-in refinement criteria, which provide a heuristic error estimate that is inde-
pendent of the system being solved,

2. the dynamic mesh structure, that updates the entire refined mesh during the computa-
tion,

3. the integration of theSEPRAN package into the adaptive refinement process, which
facilitates the re-use of the existing Fortran code.

6.2 Recommendations

Since onlyh-refinement has been implemented, and we want to take full advantage of the
non-conforming formulation, the next step will be the implementation of the functional non-
conforming case: the orderN of the discretization within adjacent elements is different. The
combination ofh-refinement andN -refinement improves on the geometrical flexibility of the
non-conform spectral discretization. The least squares best fit to the decay of the Legendre
spectrum of each element discretization provides a decay rate, which can in turn be used
to extrapolate the spectrum to infinity. The decay rateσe indicates insufficient resolution if
σe < 1 and good resolution ifσe > 1. The refinement process can use the decay rate to
decide whether it increases the number of elements and decreases accordingly the polynomial
degree, or whether is has to move elements and reconstruct the grid.

Another issue that should be addressed is parallelism. The basis for parallelism was im-
plemented in the Voxel Data base -VDB component. In a parallel adaptive computation,
the mesh changes during the computations, necessitating a dynamic redistribution of data.
Mesh data must not only support the adaptivity, but also its dynamic redistribution. In or-
der to support the parallelism, algorithms for mesh partitioning and dynamic load balancing
have to be implemented. Our goal is to extend the software implementation to manage and
distribute data across the processors of a parallel computer as part of an adaptive scientific
computation, using a partitioning model containing the actual dissection of the domain into
sub-domains. The partitioning model has to be independent of the mesh structure and can
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be used to manage other types of distributed data by derivingappropriate C++ classes. Load
balancing will be another issue to be addressed. Dynamic load balancing in general has pro-
gressed significantly in recent years, but many challenges remain. Like the computational
costs of elements, the communications costs associated with boundary entities may not be
uniform. There could be a performance penalty for having entities on the inter-processor
boundaries, and this information needs to be available to a load balancer.
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Appendix A

Refinement Criteria

A.1 The error estimators

In this Appendix we derive the error estimators, first for theone-dimensional case and then for
the two-dimensional case. Let us consider the one-dimensional case in which the numerical
solution for the one-dimensional boundary layer problem :

−uxx + λux = 0 on Ω = [0, 1], u(0) = 0, u(1) = 1 , (A.1)

corresponds to the truncated sumuh|Ωk =
N∑
n=0

aknLn(r) whereLn is thenth order Legendre

polynomial.
For a geometrically converging series, the error is the order of the first (leading order)

missing term, in this caseakN+1. We know that the quadrature is only exact for polynomials
of order≤ 2N − 1 and forakN the order is> 2N − 1, sinceakN =

∫
LNLN . Due to the error

introduced by the quadrature, we considerakN as the leading error term since it is inexactly
calculated. The coefficientakN can be computed using the following formula:

akN =
2N + 1

4

N∑

n=0

ρnu
k
nLN (ξn), (A.2)

whereρn andξn are the Gauss-Lobatto weights and collocation points respectively, ukn are
the collocation points values ofu. The coefficientsakN are calculated in the computational
space, rather that the physical, and it is independent of theelement size. This is an important
observation, because we want to determine how well the solution is approximated, and not
to produce an absolute error relative to the domain size. As an error estimate is generated
in each element, theakN may be used to determine relative resolutions in different elements.
In order to be efficient in finding the necessary refinements, we must provide more detailed
information than a simple estimate of the error.

A.2 Approximation errors

Consider any arbitrary problem:
Finduh ∈ Xh solution toLu = f by a spectral element method.

We know that the error between the exact solutionu and the spectral element approxima-
tion uh in bounded by :

‖u− uh‖ < C inf
vh∈Xh(Ωk)

‖u− vh‖. (A.3)
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The best polynomial approximation to the functionu is the projectionΠhu of u ontoXh, the
function which minimizes the error. We know thatuh is an element ofXh but it is not equal
to the projectionΠhu as illustrated in figure A.1.

u

|| u − u   ||h

uh

Π  u
h 

Xh

Xh

|| u − Π  u ||h

Fig. A.1: Illustration of the numerical and exact solution in the approximation
space and its orthogonal complement [Mavriplis (1990)].

The error introduced by the spectral element approximation‖u− uh‖ is the contribution
of two error terms

‖u− uh‖ ≤ ‖u− Πhu‖ + ‖uh − Πhu‖. (A.4)

In the inequality (A.3) the constantC is close to 1 for theH1 norm. This implies that the
term‖u−Πhu‖ in A.4 dominates the actual error. Since, we don’t want to estimate the error
based of the smoothness of the solution, we have to devise an error estimate which can be
derived from the calculated solution alone. The spectral element discretization can be seen
as a series representation of orthogonal increasing order polynomials. The exact solution is
an infinite sum and the spectral element solution is a truncated version of the sum, therefore
the error can be estimated by the missing term of the sum.

Since an exact solution is not available, we have to estimatethis extra terms. The estima-
tion is based on the extrapolation of the available terms of the sum, which can be computed
directly from the numerical solution. Due to extrapolationan extra error is added as follows :

‖u− uh‖ ≤ ‖u− ũ‖ + ‖ũ− uh‖ (A.5)

whereũ is the extrapolated approximation tou. The error between the exact and numerical
solution is bounded by

‖u− uh‖ ≤ ‖u− ũ‖ + ‖ũ− Πhũ‖ + ‖uh − Πhũ‖ (A.6)

where

‖u− ũ‖ − is the extrapolation error (A.7)
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AB − the extrapolation error  
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DC − the extrapolation error due to quadrature and
         the best  polynomial approximation 
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~

h
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Fig. A.2: Illustration of the approximation error contributions [Mavriplis (1990)].

‖ũ− Πhũ‖ − is the approximation error due to truncation (A.8)

‖uh − Πhũ‖ − is the approximation error due to quadrature and

the best polynomial approximation. (A.9)

The latter two contributions can be grouped together in

εest = ‖ũ− Πhũ‖ + ‖uh − Πhũ‖. (A.10)

The terms are shown geometrically in figure A.2. We try to approximateεest and to minimize
the extrapolation error‖u − ũ‖. In theH1 norm the term‖ũ − Πhũ‖ dominates so that the
second term may be neglected forH1 error estimates. To calculate the above defined errors,
we determine first the error due to truncation only, assumingfor the moment that̃u = u. In
the one-dimensional case we write the solution as:

uh(x)|Ωk =

N∑

n=0

aknLn(r), (A.11)

while the exact solution is written as:

u(x)|Ωk =

∞∑

n=0

aknLn(r). (A.12)

On an element basis the error can be written as following:

(u− uh)
k(x) =

∞∑

n=N+1

aknLn(r),∈ X⊥
h , (A.13)

whereX⊥
h is the orthogonal complement space, defined as the space of functions for which

the inner product with any function of the original spaceXh is zero. Henceforth, the super-
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scriptk is dropped, assuming that the calculation is on an element basis. Since the norm of
Legendre polynomials is defined by:

‖Ln‖ = (

1∫

−1

L2
n(r)dr)

1/2 =
2

2n+ 1
(A.14)

the expression for thean coefficients can be obtained with:

an =
2n+ 1

2

∫ 1

−1

uh(x(r))Ln(r)dr. (A.15)

These coefficientsan form the Legendre spectrum of the solutionuh. Since, we need the
akn, n = N + 1, . . . ,∞ coefficients and they are not available to estimate the errortruncation
, we mustpredict them. They are given by extrapolation of the exact coefficients, an as
ãn, n ≥ N + 1. We assume that the extrapolation scheme is adequate and we can estimate
the error:

‖ũ− Πhũ‖ =




1∫

−1

∞∑

n=N+1

(ãnLn(r))
2dr




1/2

. (A.16)

Based on the norm of Legendre polynomials we estimate the approximation error due to
truncation as:

‖ũ− Πhũ‖ =

(
∞∑

n=N+1

ã2
n

2n+1
2

)1/2

, (A.17)

which is independent of the element size since the coefficients ãn are calculated in the com-
putational space(r). For the two-dimensional case,u can be expanded in terms of Legendre
polynomials:

u(x, y) =

∞∑

n=0

∞∑

m=0

an,mLn(x)Lm(y) (A.18)

and the expansion coefficients are given by:

anm =
(2n+ 1)(2m+ 1)

22

1∫

−1

1∫

−1

uhLn(r)Lm(s)drds ,m, n ∈ {0, N}2. (A.19)

In case of theH1 norm, we need also the derivative coefficients:

ãinm =
(2n+ 1)(2m+ 1)

22

1∫

−1

1∫

−1

uihLn(r)Lm(s)drds (A.20)

whereuih terms are the derivatives ofu:

uih =
∂uh
∂xi

, x1, x2 = x, y.
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The estimate of the approximation error due to truncation, for two-dimensional case, is there-
fore:

‖ũ− Πhũ‖ =

(
∞∑

n=N+1

∞∑

m=M+1

(ãinm)2

(2n+1)(2m+1)
22

)1/2

. (A.21)

Derivative coefficients are used for theH1 norm error estimate whereas thean coefficients
are used for theL2 norm error estimate.

Next, we compute the approximation error due to quadrature and the fact that the solution
is a constant away from the best polynomial fit. If we denote the exact solution as:

u =

N∑

n=0

anLn(r), (A.22)

and the discretized numerical solution as:

uh =

N∑

n=0

cnLn(r), (A.23)

then the error is computed by:

‖uh − Πhũ‖ =

(
N∑

n=0

(cn − an)
2

2n+1
2

)1/2

. (A.24)

Since the quadrature is exact for all polynomials of degree≤ 2N − 1, and thean co-
efficients are exactly forn ≤ N − 1, and approximately for alln ≥ N , the error reduces
to:

‖uh − Πhũ‖ =

(
(cN − aN )2

2N+1
2

)1/2

'
(

2c2N
2N + 1

)1/2

. (A.25)

In two dimensions there areN +M + 2 terms and the error is computed by:

‖uh − Πhũ‖ '




M∑

j=0

2(cNj)
2

2M + 1
+

N∑

i=0

2(ciM )2

2N + 1




1/2

. (A.26)

The two error estimates (A.10) contributions have equal importance in theL2 norm, whereas
in H1 norm‖ũ− Πhũ‖ >> ‖uh − Πhũ‖. Therefore, Mavriplis proposes as a rigorous error
estimate, an approximation to the two conditions, namely :

εest =

(
∞∑

n=N

c2n
2n+1

2

)1/2

, (A.27)
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which we approximate as:

εest '
(

c2N
2N+1

2

+

∞∑

n=N+1

c̃2n
2n+1

2

)1/2

(A.28)

in the one-dimensional case.
The two-dimensional case is similarly and the error is computed by:

εest '
(

∞∑

n=N

∞∑

n=M

c2nm
(2n+1)(2m+1)

22

)1/2

, (A.29)

which we approximate as:

εest '




M∑

j=0

(c2Nj)
2M+1

2

+

N∑

j=0

(c2iM )
2N+1

2

+

∞∑

n=N+1

∞∑

m=M+1

c̃2nm
(2n+1)(2m+1)

22




1/2

, (A.30)

wherec refers to the coefficients of the solution for theL2 error norm and those of the
derivative forH1 norm.

Since we need to calculate the missing coefficientsãn, n ≥ N + 1, the sum of which
forms the approximation error due to truncation, the next step is to find a good extrapolation
method for the coefficients̃an, n ≤ N . Babǔska proposed a scheme to approximate the
missing coefficients by actually calculating them on a finer mesh. Mavriplis proposed another
approach, based on the least squares best fit to their decay toobtainan, n ≥ N + 1. The fit
is qualified by a regression factor:

r2 =
St − Sr
St

, (A.31)

whereSt =
N∑
i=0

(yi − fi)
2, Sr =

N∑
i=0

(yi − y)2, yi being the raw data,fi the fitted data andy

the average of theyi.
Using a six point least square best fit to thea(n) spectrum we solve force andσe the

exponential decay approximation:

a(n) ∼ cee
−σen, (A.32)

which in a log-linear plot corresponds to a straight line since :

d

dt
(log (a(n))) ∼ −σe log n. (A.33)

To fit thelog a(n) to a straight line a linear regression is used:

f(n) = σen+ log ce. (A.34)

As expected the fit to an exponential decay is better with a larger number of terms. To obtain
reliable results, a number of 6 and higher terms is a better fitto an exponential decay than 3
to 5 terms (Kreyszig, 1993).
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For the one-dimensional case, the extrapolation errors cansafely be assumed to be neg-
ligible for smooth functions, provided the fit is adequate. For non-smooth functions, the
spectrum of the Legendre polynomials decomposition is not necessarily exponentially de-
caying. At worst, we can expect an algebraically decaying function, for which we need to
perform a fit. We solve force andσe in the approximation toa(n) :

a(n) ∼ cen
−σe . (A.35)

a
0,0

n

m
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a
N,1

a
N,2
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N,N−2
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N,N−1
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N−2,N

a
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0,N

Fig. A.3: Two-dimensional spectrum of the Legendre discretization and ”line-by-
line” extrapolation procedure [Mavriplis (1990)].

In two dimensions, extrapolation becomes more complex. In this case we have a matrix
with coefficientsanm. We illustrate this in figure A.3. Using the same approach as in the
one-dimensional case it does not produce a good extrapolation. Mavriplis concluded that we
can minimize the extrapolation error‖u−ũ‖ by using line by line extrapolation (in the matrix
anm), that is extrapolatingainm, m = 0, N for eachn fixed and vice-versa. We include, as
usual, the lastainM andaiNm in the error estimate and integrate

∫∞

N+1
(ainm)2dn, for eachm

fixed and vice-versa.

To summarize, the error estimates we use here are single mesha posteriori local per
element error estimates consisting of:

1. ‖ũ− Πhũ‖ - the norm error due to truncation

2. ‖uh − Πhũ‖ - the error due to approximating the exact coefficients numerically by
quadrature and the best polynomial approximation.
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In the two-dimensional case the extrapolation error is minimized by performing line by
line extrapolation ofanm for n andm successively fixed.
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C++ Wrappers

B.1 SEPRAN wrappers

The wrapping technique for SEPRAN calls is very simple. EachSEPRAN function has a
corresponding C++inline function definitions. The following we present some example
of these definitions:

// Raw SEPRAN prototypes
extern "C" void start_ (int&, int&, int&, int&);
extern "C" void presdf_(int*, const int *, int * );
extern "C" void prestm_(int&, int*, int *, int *);
extern "C" void commat_(int&, int*, int * , int *);
extern "C" void mesh_ (int&, int*, double*, int * );
extern "C" void filcof_(int*, double*, int* , int *, int&);
extern "C" void build_ (int*, int*, int*, int*, int* ,int*,

int*, int*, int*, int*, double*);
extern "C" void solve_ (int&, int *, int *, int *, int *, int *);
...

// Define the SEPRAN wrapper class

class SepranCalls {

public:

static void start (int&, int&, int&, int&);
static void presdf(int*, int *, int * );
static void prestm(int&, int*, int *, int *);
static void commat(int&, int*, int * , int *);
static void mesh (int&, int*, double*, int * );
static void filcof(int*, double*, int* , int *, int&);
static void build (int*, int*, int*, int*, int* ,int*,

int*, int*, int*, int*, double*);
static void solve (int&, int *, int *, int *, int *, int *);

...

};

// define the inline functions
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inline void
SepranCalls::start (int& jstart, int& i1, int& i2, int& i3) {

start_(jstart, i1, i2, i3);
}
inline void

SepranCalls::presdf (int* kmesh, int* kprob, int* isol ) {
presdf_( kmesh, kprob, isol );

}
...

B.2 BLAS and LAPACK wrappers

The wrapping technique used for SEPRAN calls, can also be implemented for LAPACK and
BLAS. Here is an example of BLAS and LAPACK calls in C++ :

extern "C" double ddot_ (int& n, double *x, int& incx,
double *y, int& incy);

extern "C" double dasum_ (int& n, double *x, int& incx);
extern "C" void dgemv_ (const char *t, const int& m,

const int& n, const double& alpha,
double *a, const int& lda,
double *x, const int& incx,
const double& beta, double *y,
const int& incy);

...

// BLAS level 1
class Blas1Calls {

public:
static void ddot (int& n, double* x, int& incx,

double* y, int& incy);
static void dasum (int& n, double* x, int& incx);
...

};

inline float
Blas1Calls::xdot(int n, double* x, int incx, double* y,

int incy){
return ddot_(n, x, incx,y, incy);

}
...

// BLAS level 2
class Blas2Subroutines :public Blas1Calls {

public:
enum Trans {no_T, T, Conj};
static char T_char[];
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static void xgemv(
Trans t,
int m, int n, double alpha, const double* a, int lda,
const double* x, int incx, double beta,
double* y, int incy);

static void xgemv(
Trans t, int m, int n, float alpha, const float* a,
int lda, const float* x, int incx, float beta,
float* y, int incy);

...
}

// BLAS level 2 calls
inline void

Blas2Calls::xgemv(Blas2Calls::Trans t, int m, int n,
double alpha, const double* a, int lda,
const double* x, int incx, double beta,
double* y, int incy) {

dgemv_(&trans_char[t], m, n, alpha, a, lda, x, incx,
beta, y, incy);

}

// BLAS level 3 calls
class Blas3Calls : public Blas2Calls {

public:
static char trans_char[];
static void xgemm(

Trans ta, Trans tb, int m, int n, int k,
double alpha, const double* a, int lda,
const double* b, int ldb, double beta,
double* c, int ldc

);
static void xgemm(

Trans ta, Trans tb, int m, int n, int k,
float alpha, const float* a, int lda,
const float* b, int ldb, float beta,
float* c, int ldc

);
...

};

// BLAS level 3 calls
inline void

Blas3Calls::
xgemm(Blas3Calls::Trans ta, Blas3Calls::Trans tb,

int m, int n, int k, double alpha,
const double* a, int lda, const double* b,
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int ldb, double beta, double* c, int ldc) {

xgemm_(&trans_char[ta], &trans_char[tb], m, n, k,
alpha, a, lda, b, ldb, beta, c, ldc);

}
inline void

Blas3Calls::
xgemm(Blas3Calls::Trans ta, Blas3Calls::Trans tb,

int m, int n, int k, float alpha,
const float* a, int lda, const float* b,
int ldb, float beta, float* c, int ldc) {

xgemm_(&trans_char[ta], &trans_char[tb], m, n, k,
alpha, a, lda, b, ldb, beta, c, ldc);

}
...

// LAPACK subroutines
void sgetrf_(const int& M, const int& N, float A[],

const int& LDA, int IPIV[], int& INFO);
void dgetrf_ (const int& M, const int& N, double A[],

const int& LDA, int IPIV[], int& INFO);

void sgetrs_ (const char TRANS[], const int& N,
const int& NRHS, float A[], const int& LDA,
const int IPIV[], float B[], const int& LDB,
int& INFO);

...

// LAPACK class
class LapackCalls {

public:
// Factoring general matrices
static void xgetrf (const int& M, const int& N, float* A,

const int& LDA, int* IPIV, int& INFO);

static void xgetrf (const int& M, const int& N, double* A,
const int& LDA, int* IPIV, int& INFO);

//Solving general factored matrices

static void xgetrs (const char TRANS[], const int& N,
const int& NRHS, float* A,
const int& LDA, const int IPIV[],
float* B, const int& LDB,
int& INFO);

static void xgetrs (const char TRANS[], const int& N,
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const int& NRHS, double* A,
const int& LDA, const int* IPIV,
double* B, const int& LDB,
int& INFO);

static void dgetrs (const char TRANS[], const int& N,
const int& NRHS, double A[],
const int& LDA, const int IPIV[],
double B[], const int& LDB, int& INFO);

// Factoring general matrices
inline

void LapackCalls::
xgetrf(const int& M, const int& N, float* A,

const int& LDA, int* IPIV, int& INFO) {
sgetrf_(M, N, A, LDA, IPIV, INFO);

}

inline
void LapackCalls::

xgetrf(const int& M, const int& N, double* A,
const int& LDA, int* IPIV, int& INFO) {

dgetrf_(M, N, A, LDA, IPIV, INFO);
}

//Solving general factored matrices

inline
void LapackSCalls::xgetrs(const char TRANS[], const int& N,

const int& NRHS, float* A, const int& LDA,
const int IPIV[], float* B, const int& LDB,
int& INFO) {

sgetrs_(TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO);
}

inline
void LapackCalls::xgetrs(const char TRANS[], const int& N ,

const int& NRHS, double* A, const int& LDA,
const int* IPIV, double* B, const int& LDB,
int& INFO) {

dgetrs_(TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO);
}
...

...



154 Appendix B. C++ Wrappers

B.3 LAPACK, BLAS classes

Here we present an example, how we can group the LAPACK subroutines into a class, based
on their functionality. The class templateFactoredLapackRect<T> is defined for the fac-
tored matrices. For example, the factored form of a conventionally stored rectangular matrix
might be represented by the following class:

template<class T >
class FactoredLapackRect {

public:
LapackRect <T>& solve (LapackRect<T>&);

private:
friend FactoredLapackRect <T> LapackRect<T>::factor();

FactoredLapackRect (FortranArray2d<T> *amatr);

CopiedObjPtr <FortranArray2d<T>> fmatr; // Lapack A

FortranArray1d <int> pivots; // Lapack ipiv - pivot
}

This implementation allows in-place factorization of a matrix while retaining full type
checking. ClassFortranArray2d<T> represents a Fortran array. SinceFactoredLapack-
Rect<T> does not behave like an ordinary matrix, it is not derived from Array2<T> (that
implements an array template class). This is the reason thatthe constructor of the class is
madeprivate . The user will get access to it via thefriend declaration and thus the
LapackRect<T> controls when objectsFactoredLapackRect<T> are created. With this
scheme, thefactor() member function would be called with an instance of an unfactored
object and thesolve() member function would be called with the factored object in order
to solve the linear equations.

To store rectangular matrices, we can define the classLapackRect as:

template<class T >
class LapackRect:

public virtual Array2d <T> {

public:
LapackRect (Subscript nrows, Subscript ncols);
FactoredLapackRect <T> factor(); // factor matrix
...

...
// Array interface declarations

private:
CopiedObjPtr <FortranArray2d<T>> amatr; // Lapack A
Boolean valid ;
// Check validity -- throw exception if not valid
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void CheckValidity() const ;
};

To wrapBLAS for use in C++, we use the same techniques as forLAPACK. First, we
have to figure out what kind of algebraic structure to give it.The matrices with floating
point elements form a division algebra under matrix addition, subtraction, multiplication, and
inverse, with scalar multiplication by floating point numbers. Based on theAbelian (contains
the user-must-define functions) andAlgebra classes defined in (Barton and Nackman, 1994),
theBLAS class can be defined as:

template <class T>
class ConcreteBlas:

public Algebra <ConcreteBlas <T>, T>,
public Abelian <ConcreteBlass <T>, T>,
public FortranArray2d <T> {

public:
ConcreteBlas (const FortranArray2d <T> & a);
ConcreteBlas (Subscript nrows, Subscript ncols);

typedef ConstBlasProjection1d <T> ConstProjectionT;
typedef BlasProjection1d <T> ProjectionT;

// Algebra operations not implemented
// by Abelian class

ConcreteBlas <T>& operator*= (const T& rhs);
ConcreteBlas <T>& operator*=

(const ConcreteBlas <T>& rhs);

ConcreteBlas <T>& operator/= (const T& rhs);
ConcreteBlas <T>& setToOne();

ConcreteBlas <T>& operator=
(const ConcreteBlas<T>& rhs);

ConcreteBlas <T>& operator= (const T& rhs);

ConstProjectionT
project ( Subscript i, Dimension d = 0) const ;

ProjectionT
project ( Subscript i, Dimension d = 0) const ;

ConstProjectionT operator[] ( Subscript i) const
{ return project(i,0); }

Projection operator[] ( Subscript i)
{ return project(i,0); }

ConstProjectionT row (Subscript i) const
{ return project(i,0); }

ProjectionT row (Subscript i)
{ return project(i,0); }
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ConstProjectionT column (Subscript i) const
{ return project(i,1); }

ProjectionT column (Subscript i)
{ return project(i,1); }

// Matrix-Vector (Blas level 2) operation
friend ConcreteBlas1d <T>

operator*( const ConcreteBlas <T>& m,
const ConcreteBlas1d <T>& v);

};

The constructors and assignment operators call the corresponding functions in
theFortranArray2d<T> base; they are necessary because constructors and assignment op-
erators are not inherited. TheConcreteBlas1d<T> class template represents vectors in a lin-
ear space compatible withConcreteBlas<T>. The matrix-matrix operatoroperator*=()
function can not be implemented as an in-place operation because the shape of the product
matrix can be different from the shape of the original left-hand matrix. Thus we have to copy
the left-hand side and adjust the size of the matrix before computing the product with a call
to BLAS. The arithmetic computations are implemented by callingBLAS subroutines.
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Summary

In this thesis, we investigate the implementation of an adaptive mesh technique based on the
mortar element method. A common bottleneck in the implementation of a numerical tool-box
is the complexity of the code that has to be developed. The procedural programming approach
demands a lot of programming effort and is a time consuming task. To avoid such problems,
an object-oriented approach model is proposed and tested ona series of problems in one and
two dimensions. Based on a set of C++ classes and Fortran libraries, the implementation
offers an efficient software interface to an application code. Because the strength of C++ lies
in new kind of features that assist in formulating more complex programs, we can build a
framework for more sophisticated and reliable programs.

The mortar discretization is applied here to the spectral element method. It allows local
mesh refinement, which simplifies grid generations for a problem in a complicated domain.
Also, the mortar discretization represents a significant advance for spectral element methods ,
which offers new possibilities to time-dependent moving boundary problems. One of the ma-
jor advantages of unstructured meshes is the ability to adapt the mesh to improve resolution at
a place in the simulation which needs it. The error estimators provide powerful information
to be used directly in an adaptive refinement scheme. Together with the mortar discretization,
they form the basic components for a fully adaptive mesh refinement environment.

To provide a clear and efficient way to program a large varietyof mesh computations
in Fortran or C++, the Voxel Data Base (VDB) has been implemented, which makes the
execution of a program independent of the distribution of data to processors. This allows an
application to read in a mesh of just a few elements, and adaptit to the necessary resolution in
parallel and, furthermore, adapt it locally once the simulation demands more or less resolution
based on the values of the error estimators.

Several examples were presented that show that the convergence rates are similar in the
uniform and non-conforming cases. However, in the non-conforming case, we use less el-
ements (points) than in the uniform case, because the mortars allow local mesh refinement
in the regions where a good accuracy is needed. Overall, the non-conforming discretization
proves to be a flexible and a reliable method that eliminates the limitations of the standard
conforming spectral discretizations.
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Samenvatting

Dit proefschrift beschrijft de implementatie van een numeriek gereedschap vooradaptive
meshtechnieken, gebaseerd op de mortar element methode. Een veel voorkomende bottleneck
in de implementatie van numerieke gereedschap is de complexiteit van de code die on-
twikkeld moet worden. Een procedurele benadering van programmeren eist veel inspan-
ning en kost veel tijd. Om deze problemen te vermijden, is eenobject-georïenteerde be-
nadering gevolgd. Gebaseerd op een aantal C++ klassen en Fortranbibliotheken, biedt de
implementatie een efficiënte software interface aan de applicatiecode. C++ kent veel object-
georïenteerde mogelijkheden, die we kunnen gebruiken om complexe en ingewikkelde pro-
gramma’s te ontwikkelen. Mortar-discretisatie is hier toegepast voor de spectrale elementen
methode. Het maakt locale roosterverfijning mogelijk waardoor de roostervorming voor een
probleem in een ingewikkeld domein sterkt vereenvoudigt.

Mortar-discretisatie betekent een waardevolle aanwinst voor de spectrale elementen methode.
Gegeven de nieuwe mogelijkheden voor tijdsafhankelijke problemen met bewegende gren-
zen, biedt de mortar-discretisatie een waardevolle bijdrage aan de spectrale element meth-
oden. Een van de voornaamste voordelen van non-conforming roosters is de mogelijkheid
het rooster aan te passen, op een plek in de simulatie, waar een hogere resolutie nodig is.
De foutschatters leveren krachtige informatie die direct gebruikt kan worden bij deze adap-
tieve verfijning. Samen met de mortar-discretisatie, vormen ze de basiscomponenten voor
een volledige omgeving voor adaptieve roosterverfijning.

Om een grote verscheidenheid aan roosterberekeningen in Fortran of C++ op een duidelijke
en doeltreffende wijze te kunnen leveren, is de Voxel Data Base (VDB) gëimplementeerd.
Dit maakt de werking van het programma onafhankelijk van de dataverdeling tussen de pro-
cessoren. Hierdoor kan een applicatie, na slechts een aantal elementen te hebben gelezen,
deze parallel aanpassen aan de juiste resolutie en ze daarnazo nodig lokaal aanpassen,
gebaseerd op de foutschatters.

Er zijn enkele voorbeelden gepresenteerd die laten zien datde convergentiesnelheden
gelijk zijn in conforming en non-conforming gevallen. Echter, we gebruiken in het non-
conforming geval minder elementen dan in het conforming geval, omdat de mortars lokale
roosterverfijning toestaan in gebieden waar betere nauwkeurigheid vereist is. In het alge-
meen blijkt de non-conforming discretisatie een soepele enbetrouwbare methode te zijn, die
beperkingen van de standaard conforming discretisaties elimineert.
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