EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Adaptive spectral elements for diffuse interface multi-fluid flow

Citation for published version (APA):

Barosan, |. (2003). Adaptive spectral elements for diffuse interface multi-fluid flow. [Phd Thesis 1 (Research
TU/e / Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR566180

DOI:
10.6100/IR566180

Document status and date:
Published: 01/01/2003

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR566180
https://doi.org/10.6100/IR566180
https://research.tue.nl/en/publications/d1daaf7c-71a2-431a-949d-7d33bb6f4a12

Adaptive Spectral Elements

for
Diffuse I nterface M ulti-Fluid Flow

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Barosan, lon

Adaptive Spectral Elements for Diffuse Interface Multisiel Flow /

by Barosan I. — Eindhoven : Technische Universiteit Ein@tmp2003.

Proefschrift. — ISBN 90-386-2585-5

NUR 919

Subject headings: mortar spectral elements; adaptive nediskement / spectral elements;
distributed numerical simulation

Copyright(©2003 by |. Barosan
All rights reserved. No part of this book may be reproduceates! in a database or retrieval
system, or published, in any form or in any way, electromycahechanically, by print, pho-

toprint, microfilm or any other means without prior writtearmission of the author.

This thesis was prepared with tH8gX 2. Documentation System.
Printed by Universiteitsdrukkerij TU Eindhoven, Eindhay&he Netherlands.

This research was financially supported by the Dutch Polynwtute (DPI), Proj. No. 161.

Adaptive Spectral Elements

for
Diffuse I nterface M ulti-Fluid Flow

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,
op gezag van de Rector Magnificus, prof.dr. R.A. van Santen,
voor een commissie aangewezen door het College voor Presnoti
in het openbaar te verdedigen op
woensdag 24 september 2003 om 16.00 uur

door
lon Barosan

geboren te Galateni, Roeméni

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. H.E.H. Meijer
en
prof.dr. P.A.J. Hilbers

Copromotor:
dr.ir. P.D. Anderson

To: llinca, Simona, Marin and loan,
Diana, Alina, lulia and Stefan.

vi

Contents

1.

Introduction L 7
1.1 Motivationofthisthesis 7
1.2 Objective ofthisthesis, 10
1.3 Thesisoutline 01
Basics of the Spectral Element Methods with Adaptive Mesfinement. 13
2.1 Introduction 31
2.1.1 One-dimensional spectral element methods 14
2.1.2 Accuracy of the spectralmethod 19
2.2 Numerical examples of the one-dimensional spectratehi method 20
2.2.1 One-dimensional linear steady advection-diffusidth source term
problem 20
2.2.2 One-dimensional steady Gaussian hill problem 21
2.2.3 One-dimensional linear unsteady advection problem. 26
2.3 Conclusions 31
Mortar Element Method. 33
3.1 Introduction 33
3.2 Spectral element methods for two-dimensional problems. 33
3.3 Mortarelementbasicconcepts oL e 36
3.4 Mortar element formulation. oo oL 40
3.4.1 Definition of basis functions 0 oL 43
3.4.2 Projectionoperator 54
3.5 Solution techniques - static condensation. 48
3.6 Refinementcriteria 53
3.7 Numericalresults e 55
3.7.1 Gaussian distribution on a uniformgrid 55
3.7.2 Singularity problem oo 56
3.7.3 Smoothproblem 60
3.7.4 Two-dimensional linear unsteady convection problem 60
3.8 Conclusions e 65
Software Implementation. 67
4.1 Introduction e 76
4.2 Basic operations for the spectral element method 69
4.3 Datastructure 37

4.4 Meshdatastructure e 81

viii Contents
4.5 A base environment for Object-Oriented scientific cotimgu. 86
4.5.1 Wrapping techniques f@PRAN, LAPACK andBLAS 91
4.6 The architecture of the adaptive mesh refinement impiéatien 96
4.7 Example of a driver for adaptive mesh refinement 99
48 Conclusions 110
5. Application of Mortar Elements to Diffuse-Interface Metls 103
5.1 Introduction 03l
5.2 Cahn-Hillardmodel 104
5.2.1 Scaling of the Cahn-Hilliard equations 105
5.3 Numericalapproach 106
54 Results. e 107
5.4.1 Single-dropproblem L o 810
5.4.2 Coalescence oftwodrops 012
5.4.3 Multi-dropproblem. L u3
55 Conclusions 613
6. Concluding Remarks and Recommendations. 137
6.1 Conclusions e 713
6.2 Recommendations. 381
A. Refinement Criteria 141
A.l Theerrorestimators. 141
A2 Approximation errors 141
B. C++Wrappers. e 149
B.1 SEPRANWIApPers e e 149
B.2 BLAS and LAPACKWrappers v i 015
B.3 LAPACK,BLASClasses i 415
Bibliography 156
Summary e e 163
Samenvatting 165
Acknowledgements. 167

CurriculumVitae. e 169

List of Symbols

a
an,ak ok

a

A
AT
Al
Al
At
At
B}
Cn
o
cl
D
foSnstn
F(x)
h

Hp(2)

scalar

Legendre coeficients, for eleméntalso called spectrum
vector

tensor

transpose oA

boundary matrix (elemerit)

coupling boundary-interior matrix (elemehy
coupling interior-boundary matrix (elemeky

interior matrix (elemenk)

discrete elemental mass matrix

solution coefficients

space of continuous functions

space of continuous functions in first derivative
discrete elemental derivative operator matrix
inhomogeneous term

function in x

discretization parameter

space of functions which are square integrable and

whose derivatives are square integrable @ver

Contents

S0

St7 ST

interval, subdomain dR

elemental jacobian

number of elements

number of master elements

number of slave elements

number of functions to represent the projection space
length of subdomai#

order of polynomials

N*" order Legendre polynomial
number of mortars

order of polynomials on the mortars
of order of

space of polynomials of degree N
mortar to edge projection operator
projection space for slave edge
projection space for master edge
transformation operator associated with mortar to edgggtion
regression factor for best fit

mortar offset

skeleton of mortar system

sums defined for least squares best fit

time

Contents

Uy, Up, Up

Greek Symbols

s Vi

&

I,

e, O

solution function

extrapolated approximation to
test function

mortar space

local mortar coordinates
solution space fou
discretization space

orthogonal complement t&},

mortar

elemental edge

elemental edgeéof elementk

interface (boundary) between elemenésd;
Kronecker edge

time step size

error norm, tolerance

interval]-1;1[

zero of N*" order polynomial, collocation poirgt,n € A
projection ontaX

Gauss Lobatto weights

decay rate, exponential

Contents

2l

Other Symbols

\%

VZ

direct stiffness summation

vertex

mortar function

arbitrary functions

polynomial of degreev — 2

polynomials of degre&V — 1, N — 2

mortar test function

domain of solution (excluding boundary), subdomairRof

closure of2 (including boundaries)

gradient operator

Laplace operator

inner product

£? norm

H! norm

00, GL norm

Gauss Lobatto quadrature
maps to

boundary of2

Contents

Superscripts
k refers to element
T transpose of matrix

Other Notations

bold discrete vector
PatchSegment C++class

SEPRAN Fortran library

ProjectQT C++ class member function
edge C++ class data member

- extrapolated values

- restriction to

Contents

Chapter 1

Introduction

1.1 Motivation of this thesis

The diffuse-interface approach has been used to study areuide of phenomena involving
topological changes: nucleation and growth, spinodal agasition, droplet breakup and
coalescence (Andersat al, 1998). These models have successfully been applied &- situ
tions in which the physical phenomena of interest have atthesgale commensurable with
the thickness of the interfacial region and fluid flows invotylarge interface deformations
and/or topological changes, such as droplet breakup andsoamce.

Most of the studies on topological changes focus on smalkesgystems, in which it is
assumed that the numerical interface thickness is closketodal interface thickness. In
general, for large systems, for which the droplet size ishrlagyer than the physical value
of the interface thickness, the real interfacial thickness not be captured numerically. The
scaling in such systems needs special attention, becatiseriéal interfacial thickness is to
be replaced by a numerically acceptable thickness, we lemeake sure that we are still
describing the same system with the same interfacial teresial diffusion (Verschueren,
1999).

Commonly, diffuse-interface models introduce a small tarsgale (the interface width),
which places stringent conditions on numerical solutiothrods. Based on the Cahn-Hilliard
expression of the free energy (Cahn and Hilliard, 1958) titecal size L. is calculated to
be:

L.=—= ’ (11)

with C' the Cahn number anglthe interface thickness. Small interfacial thicknessesldio
require the use of a smaller Cahn number in the simulatiodscansequently, extremely
small mesh sizes and, hence, require excessive computiatiores. For Cahn numbers,
typically used in the simulations’{ = 0.02), and the typical interface thickness (order of
magnitude 10 nm), the computational domain used has a lefighle order of 500 nm. If we
want to extend to larger systems, the real interface thigkean not be captured numerically
in general.

To circumvent the above mentioned problems for large systéwo possibilities can be
used:

1. scaling of the system (Verschueren, 1999; Lowengftudd., 1998)

2. adaptive mesh refinement (AMR).

8 Chapter 1. Introduction

In this thesis an adaptive mesh refinement (AMR) techniqsedban the mortar spectral
element method will be implemented to capture the interfhizkness adaptively. The re-
finement algorithm will track the movement of the diffuseeiriace, refining the mesh only
around the moving interface, and coarsening the mesh ineteof the computational do-
main.

Spectral element methods (SEM) are high-orgetype) weighted residual techniques
for the numerical solution of the partial differential etjoa

L(u)=finQ (1.2)

hereL is a continuous positive-definite differential operatod gne C°(€2), that combine
the generality oh-type finite element techniques (Ciarlet, 1978; Schwab 81 %@th the
rapid convergence rate of spectral methods (Gottlieb asddg; 1977; Canutet al., 1988).
Handling complex geometrie€ by the spectral element method mainly relies on a domain
decomposition, first introduced by Patera (1984), mostnoftghout overlapping domains.
The computational domain is broken up imbelements* < Q of the spectral type, on
each of which the variables are approximated\d¥ order tensor product polynomial expan-
sions. Variational projection operators and Gauss nuralkegigadrature are used to generate
a discrete set of equations u = f. Coupled to fast order-independent iterative solvers
(Canutoet al,, 1988; Barrett, 1994) these discretizations yield nuna¢rbgorithms which
have proven to be computationally efficient on both serial parallel processors (Hender-
son and Karniadakis, 1991). It is proven (Mad#yal., 87) that convergence of the spectral
element approximation to the exact solution is exponeniikre convergence is achieved
by increasing the degre¥ of the polynomial approximation, while keeping the numbkr o
elementsk as well as their identity fixed.

The limitation of the spectral element method is its lack exifility and generality with
respect to complex geometry mesh generation and locallgefresolution capabilities.
These limitations severely hinder any development in tleasof mesh generation, adap-
tive mesh refinement and the treatmenthwdving boundaries The basic spectral element
method, relies on a domain decomposition that consist aitickl conforming elements, so
that the decomposition of the domain must also satisfy sompepties of conformity that
are standard in spectral elements. To avoid these limitsitio this thesis we will develop an
adaptive mesh refinement method based on the mortar elenathod first introduced by
Bernardiet al. (1994).

The rigidity of the conforming formulation, is eliminateq allowing non-conforming
matching between sub-domains, functionally (the polyradrégree per element can vary)
as well as geometrically (multiple elements can share desigrige of an adjacent element).
Figure 1.1 illustrates the difference between the two tygfeefinement, left functionally
called p-refinement, and right geometrically, callberefinement. In the spectral element
methods literature, instead pfrefinement the terril-refinement is used. In this thesis, we
freely use both terms in a interchangeable manner.

The non-conforming formulation of a spectral element @isezation is the most crucial
development needed for the extension to adaptive methoiholtthe flexibility afforded
by non-conformity, adaptive methods would be very cumbaesand inefficient. The spec-
tral element method can combine the advantages of finitesgiemethods and spectral meth-
ods, provided that a non-conforming formulation is devebbjn a way consistent with the

1.1. Motivation of this thesis 9

N3 [Nef
N3 [N3
N4 N3 N4
N3 | N3
N1 N2 N1 N2

Fig. 1.1: Functionally (eft) and geometricallyr{ght) non-conforming meshN; is the degree of the
polynomial approximation.

convergence properties of the existing conforming forriioita The mortar element method,
considered here, represents a domain decomposition apppfGaan and Mathew, 1994) in
which there is a clean decoupling of a local residual evadngier element, where the spec-
tral element structure is preserved, by transmission diicoity and boundary conditions per
element.

To estimate what order of approximation and what size of el@mare required, for a
specific mesh, is a difficult task. In most other studies itasdud on trial and error. To
avoid this, we need an adaptive mesh refinement method cenhkiith an automatic mesh
generation method. To achieve this goal, it is necessargwteldp some error estimators to
serve as criteria for refinement decisions (Mavriplis, J99e role of the error estimators
is, of course, to provide an estimate of the actual error oeraeement basis as well as
globally. This estimate is used to detect where to refine thgmiocally.

Adaptive SEMs have gained importance because they provhiemess, reliability, and
time and space efficiency. In such a method, the computatitmmaain is first discretized to
create a mesh. During the solution process, portions of ifweale domain are spatially re-
fined or coarsenedh{refinement the method order is varie@/N - refinement Each method
concentrates the computational effort in areas where tli@o resolution would otherwise
be inadequate (Clark al., 1994). Computationally demanding problems make parediei-
putation essential. However, parallelism introduces darapons such as the need to balance
processor loading, to coordinate inter-processor comaations, and to manage the distribu-
tion of the data. In general, the standard methodology ftinoping parallel SEM programs
relies on a static partitioning of the mesh across the catiogy processors. In the adaptive
case, a good initial partition is not sufficient to assurentpgrformances. Due to the adaptiv-
ity, the load balance necessitates a dynamic partitionimbgradistribution of data. The cho-
sen data structure must support this dynamic mesh migr@tidhams, 1992). Parallelism is
generally explicit, achieved through the use of a messaggmlibrary such as the Message
Passing Interface - MPI (MPI, 1994), and requires a paniitio algorithm to distribute data
among processing nodes. The adaptive SEM computationseddistiibuted in a natural way
by a domain decomposition of the underlying mesh, but bedaptive, these meshes will
change and the system must account for this. Adaptive #hgosithat utilize unstructured
meshes (Adjerickt al, 1992; Armstrong, 1991; Shephard, 1988a,b; Williams, }982ke
the task of balancing processor computational load mofeudlif than with uniform struc-
tures. The dynamically adapted mesh has an equivalent gegpbsentatiods = (V, E),
where mesh elements serve as the graph verticasd connections between mesh elements

10 Chapter 1. Introduction

are the graph edge&J. Graph partitioning algorithms produce some partitidpswvith the
goals of placing equals numbers of vertices in each subdét,afhile minimizing the num-
ber of edges "cut” by partitions. The graphs partitioningakated to the mesh partitioning
problem by assigning each partitidfy to a processor unit. Vertices represent units of work
to be balanced among the processors, while the edges reptieseeommunication needed.
For more information about the mesh partitioning, the eézd reader is referred to (Berger
and Saltzman, 1993; Farhat and Lesoinne, 1993; Shephaild 1995; Barnard and Simon,
1994; Hendrickson and Leland, 1993; Sadtnal, 1996) and (Gervasion, 1998; Patra and
Oden, 1995).

1.2 Objective of this thesis

The main research objective of this thesis is to apply adaptiesh refinement techniques to
reduce the length-scale problems in the diffuse-interfachniques and to track the move-
ment of the boundary interface for different values of th&é€aumberC. The emphasis in
this thesis is on the software implementation of the norferoning discretization and error
estimators as a development towards adaptive mesh refiheeotmiques. The flexibility
and effectiveness of the implementation will be illustchby several test problems and ap-
plying the diffuse-interface model for multi phase flow plevbs. The initial development of
the software will not incorporate the mesh partitioninggess needed for parallel processing.

We implement two key features in the development of adaptigshes: the non-conforming
mortar element method and a single magbosteriorierror estimates. The distributed mesh
structure in our system is based on the Voxel Data Base (VDBdduced by Williams
(1992), which provides the operators to create and martgulistributed mesh data. The
VDB structure will be extended to support also the manipoiabf the computational data
associated with the mesh (see subsection 4.4). Using thleoged techniques, an applica-
tion based on the diffuse interface model, will be invegtgda

o diffuse interface modelling of the morphology and rheolofiimmiscible polymer
blends using mortar elements.

1.3 Thesis outline

The outline of the thesis is as follows. In Chapter 2, we presige basics of the spectral
element method, concentrating on the formulation and iemiuechniques for the Poisson
equation. The chapter ends with a few one-dimensional egtjpins that use adaptive mesh
refinement techniques. The mortar element method baseaomthiconforming discretiza-
tion is introduced in Chapter 3 for the solution of a two-dime@nal Poisson equation. Also,
in Chapter 3, the single meglosteriori error estimators for spectral element techniques are
introduced. The chapter ends with several applicationsuba the mortar element method
and unstructured approaches on high-order mesh elemdmpte® 4 provides details of the
software architecture of the adaptive mesh refinement im@heation. The basic operations
for the spectral element method, the mesh and data strumterpresented. Two wrapping
techniques for LAPACK and BLAS are compared. Chapter 5 pewiillustrations of the

1.3. Thesis outline 11

non-conforming formulation for the diffuse interface mbithg of the morphology and rhe-
ology of immiscible polymer blends. Concluding remarks @odsible directions for future
research are presented in Chapter 6. Appendix A presentaitedadescription of error esti-
mators, for both, one-dimensional and two-dimensionagé€akinally, Appendix B provides
details of the wrapping techniques used in the softwareemphtation of the adaptive mesh
refinement process.

12

Chapter 1. Introduction

Chapter 2

Basics of the Spectral Element Methods with
Adaptive Mesh Refinement

In this chapter the basics of the spectral method are intedland discussed. First, the one-
dimensional technique is described, which will allow thigaduction of the two-dimensional
spectral technique, next the adaptive mesh refinementitpehfor a one-dimensional model
equation is outlined, and several results are presented.

2.1 Introduction

An adaptive formulation of the spectral element methodriseai at increasing the flexibility
and range of capabilities of high-order spectral methodgeimeral. While spectral methods
provide highly accurate solutions to partial differenggluations governing complex physi-
cal phenomena, their use has been limited to idealizedn&@speoblems due to their lack of
geometric flexibility (Canuteet al, 1988). In this chapter, we investigate an adaptive spec-
tral element method for one-dimensional problems whicloraatically allocates resolution
where it is most needed in an optimal fashion.

Previous work in non-conforming discretization (Madsyal., 1989) and error estimators
(Mavriplis, 1990) for the spectral element method constiila first step towards an adaptive
formulation, and will be presented in the next chapter. 8peelement methods are weighted
residual techniques for the approximation of partial défgial equations that combine the
rapid convergence rate of spectral methods with the geatyeddlfinite element techniques.
By subdividing a complex domain into elements, an accurabetisn of many problems
can be derived with substantially fewer degrees of freedwen tvould be required with a
lower-order discretization.

Spectral andh-p finite element methods are most commonly based on Chebysttev a
Legendre polynomials. These polynomials are the eigetifumg of an appropriately de-
fined singular Sturm-Liouville problem and form an expandiasis for representing square-
integrable functiona (z) € £2. Maday and Patera (Maday and Patera, 1988) have shown that
this approach provides a weak continuity (continuity in function and its first derivatiye
across an element interface. In the variational approamttiraity across element interfaces
is naturally imposed. Exponential convergence of numesiclutions in practical situations
depends on a number of factors. One of them is the non-unifpwhthe mesh, that can
degrade convergence of the solution. Such a feature musblatdd or resolved before fast
convergencéexponential convergences) realized.

The accuracy of the approximation can be improved by eitleneasing the number of

14 Chapter 2. Basics of the Spectral Element Methods with Adaptive MefhdReent

sub-domain elements, callédrefinementor by increasing the polynomial order of a fixed
number of elements, call@d-refinemer(p-refinement or by moving element boundaries.
As the main goal of the thesis is to investigate adaptive ousttior moving interface prob-
lems, we consider only thHerefinementnethod combined with moving elements boundaries,
keeping the polynomial order fixed.

2.1.1 One-dimensional spectral element methods

In order to describe the main basic aspects of spectral eemethods, we provide a step
by step formulation of the one-dimensional spectral eldrselver for a Poisson problem. In
higher dimensions, most of the basic operations are the saoept the geometry, that has to
be represented with more complicated elements using tpnsducts of the one-dimensional
approximation. The details of more general elliptic equadi can be found in Maday and
Patera (1988).

Consider the solution of the Poisson equation on a dofiahR:

Problem 1:Find u(x) € C2(©2) N C*(Q) such that:

2
f% = fonQ = {zjy; <z <z}, andu =0 on 09, (2.1)
€T

whered) = {x;,z,} is the boundary of2 andf € C°(Q) is a prescribed function. Without
loss of generality, homogeneous Dirichlet boundary camatitare imposed.

We now define the space of acceptable solutions to equatidh (Birst, we recall that
the Lebesque spaa® (1) is defined as:

L£3(Q) = {v measurable ove® and/ v? dr < oo}, (2.2)
Q

and that this space is equipped with a scalar product
(u,v) = / u(z)v(x) dz, Yu,v € L2(R), (2.3)
Q

and associated norijv|| = (v,v). Also, we define the Sobolev spak€ (2) consisting of
all functions that are inC2(£2) and whose first derivatives are also4A((2). The reader is
refered to e.g. Adams (1985) for the definition of standaatep, norms and inner products.

The solutionu of equation (2.1) belongs t&(}(€2), the space of{*(£2) containing all
functions H! () that vanish at the bounda@f2. Now, problem 1 is also well-posed in
X = H{(Q), in the sense that the following formulation of the probledmits a unique
solution:

Problem 2:Find au(x) € X such that:

%@dx = /fvdx, Yo e X, (2.4)
98$8$ Q

2.1. Introduction 15

or in a more concisely abstract form:

Find au(x) € X such that:
a(u,v) = (f,v), Yo € X, (2.5)

where the continuous bilinear formis defined as:

8u ov
Q oz Bz

a(u,v) = —(x)dz, Vu, v € X, (2.6)

and the scalar product as:
/f z)dx, Vf € L2(Q), Yo € H{(Q). (2.7)

The discretization involves decomposing the donfainto sub-domain§* such that
K k
= U@ Vhi k#L: Q00 =0, (2.8)
k=1

where each sub-domaf?” is of lengthL*. Here(} signifies the closure of the domain

Equation (2.4) is still an infinite-dimensional problemghase the spac¥ contains an
infinite number of functions. For a Galerkin numerical apqimmation of problem 2.1, the
variational form (2.4) is tested with respect to a family &falete finite dimensional spaces
X, whereh = (N, K) denotes a discretization parameter, as follows:

Findu, € X, such that:

K
> a(un,vn)ge = > (fron)ge, Yon € X, (2.9)
k=1 k=1

In the conforming spectral element methad, is taken to be a subspace Bf}(Q2),
consisting of all piecewise high-order polynomials of degless than or equal f§ defined
onQk:

Xp = Xﬂ]P)NJ((Q). (2.10)

The spac® v, i () is a space defined for each discretization paranteteer the domairs?
such that:

Py x(Q) = {® € L2(Q), ®|or € Py (QF)}, (2.11)

whereP y (Q%) is the space of all polynomials of degree less that or equal tm each sub-
domainQ*. The spac@®y x (£2) ensures that the solution is integrable oewhereasH;
ensures continuity ovee.

Equation (2.9) must be numerically integrated with suffitiaccuracy such that the
qguadrature errors are of the same order as the approximaion The convergence and
convergence order af;, towardsu is determined essentially by stability and approximation

16 Chapter 2. Basics of the Spectral Element Methods with Adaptive MefhdReent

theory. The ellipticity and continuity of the bilinear foransures the existence and unique-

ness of the solution (Maday and Patera, 1988). Approximakieory consists of considering

the infimum of||u — vy |1, over allv, € X3, where|| - |1, refers to theH! norm over

Q). The quadrature applied to integrate equation (2.9) is thes&Lobatto Legendre (GLL)

quadrature since it includes boundary points of the intekva [—1, 1] as collocation points.
The GLL quadrature is defined as follows:

1 N
/ BE)dE = (&) + en, Y € Poy_1(~1,1), (2.12)
-1 i=0

with p; the weights¢; the collocation pointsL y is the N** order Legendre polynomial and
the errorey, ~ O(®2V(¢)) for some point{, —1 < ¢ < 1; as long as the integrand is
a polynomial of degree less thalN-1 this quadrature rule is exact (Davis and Rabinowitz,
1984).

In order to be able to apply the quadrature, an affine tramsftion is used to map each

spectral elemen2* to the intervalA = [-1,1] (z € QF ¢ € A,z = ¢). Due to this
transformation the terms in equation (2.9) can be written as
a(un, vp)ge = / ZZ gz J1de, (2.14)
(o = [fonte) 7 e (2.15)
whereJ is the Jacobian of the transformation given by:
J = j—”g, (xeQF, o= ¢). (2.16)

Applying the GLL quadrature to the system (2.9) yields tHfwing fully discrete problem:

Findu;,, € X, such that:

K

K
Za uh,vh arL = Z(f,?)h)GL, V’Uh c Xh. (217)
k=1 k=1

The corresponding discrete inner prod(ict) ¢, with induced nornf| - ||, is given by:

N
(wv)ar = Y Jiul&)v(&)ps, Yu,v € CO(A), (2.18)

=0
whereJ; = J(&;). Furthermore, the discrete bilinear foirt, -) ¢, is given by

Nl@u

7, 0¢ oz (&) g(Ez)pu Vu,v € C(A), (2.19)

a(u,v)gr, =

=

where¢; are the Gauss-Lobatto points.

2.1. Introduction 17

The Galerkin approximation gives the best approximatiotihérestricted spac&;,, but
the success of the method lies in the selection of the basisifuns. To standardize the basis,
we introduce a coordinate transformation to the elememidés as:

bk —a”
xf:ak+

(1+¢&),i€{0,---,N}, (2.20)

where QOF = [a*, b*] represents the current elemefitare roots of 1 — ¢2) L’ (¢) = 0 and
L’ denotes the derivative dfy with respect tcf. The elemental Lagrangian interpolants
h;(€) are chosen as a basis so that

Vwn € Xp wf(z) = whhi(€), i€ {O,N}, z€ Q¥ €A a=¢ (2.21)

wherew? = wf(¢;) and the notatios=> signifies a mapping.
The interpolants:; have the following properties:

hi(€5) = 6ij, Vi, j € {0,N}?, h; € Py(A). (2.22)

whered;; is the Kronecker delta. They are expressed as:

(1-&*)Ly(¢)
N(N + 1)Ly (&)(& — &)

From (2.12) and (2.13) it follows that the weighis are the integrated values of the
Lagrangian interpolants; (£) overA.

It is convenient to write other functions that are notiip, such as the ternf, in terms
of Lagrangian interpolants but it is not necessary to impgbeeadditional constraints for the
continuity and homogeneous boundary conditions. To coatthe right-hand side of the
system (2.17)f(x) is approximated by a collocation at the nodal points to peedfy (z).
Rewriting equation (2.17) with the nodal basis expressfons,, v, and f,, and using that
each test function;, to be non zero at only one global collocation point, we arait/the fully
discrete matrix equation:

hi(€) = — , E€A, Vie{0,N}. (2.23)

K N K N
DGy =2) B (2.24)
k=1 j=0 k=1 j=0
or Cu=Bf, (2.25)
or Au=Tf, (2.26)
where
N
5 = 25 PkDuDy, Vi g € {0, N} 2.27
C ; 7, preDiDy;, Vi, 5 € {0,---,N} ()
Blk] = jpi,kéij’vi’j € {Oa Tty N}2 (228)
dh; . ,

dg

18 Chapter 2. Basics of the Spectral Element Methods with Adaptive MefhdReent

A = B7lC (2.30)

Here Y’ denotes elemental direct stiffness summation, in whichcibatinuity and
boundary conditions imposed af, v, € X}, are taken into account: the rows and columns
corresponding to the same global degree-of-freedom arengagiand rows corresponding to
Dirichlet boundary conditions are eliminated.

Since each basis function is not zero over a single elemeatbitinear forma(h;, h;)
is non-zero only ifk; and h; belong to the same element. To compute the global matrix
equation, only the local elemental matrices are created:

AFuF = £k, (2.31)

At the element level, the matrices* can be split into components containing boundary
and interior contributions, that is:

A, Al
AK =
Agl A§2

whereA*, represents the componentsAf resulting from boundary-boundary mode inter-
actions A%, represents the components®f resulting from coupling between the boundary-
interior modes A%, represents the components Af resulting from coupling between the
interior-boundary modes antlX, represents the componentsAF resulting from interior-
interior mode interaction (see figure 2.1).

Coupling at boundary nodes

—

interior nodes

2 v
A .| interior nodes
) boundary nodes

<+ |
.| interior nodes l
n § m §

1

=
4]

Fig. 2.1: Schematic of the direct stiffness summation of local matrit&go form
the global matrixA [(Henderson and Karniadakis, 1991)].

2.1. Introduction 19

The global matrix is computed by assembling contributionsifthe elemental matrices

K
A=>"A" (2.32)
k=1

(> represents "direct stiffness summation”, see fig 2.1.)

Sincea(-,-) is symmetric and positive definite, the matek is symmetric: A5, =
[A’fg]T. Also, A is banded as a result of the use of local basis functions, aitbf its
non-zero entries located in thé diagonals above the main diagonal. The GLL quadrature
and interpolation offer some advantages. One of them iethatents only couple at element
boundary nodes, resulting in a simple implementation aads#y of the matrices. This min-
imal coupling also serves parallel implementations wedljtaranslates into a minimum of
communication between sub-domains. Another advantaggaishie mass matriB is diag-
onal, resulting in rapid evaluation of the right hand sideva$f as time saving in the context
of iterative and time dependent procedures.

2.1.2 Accuracy of the spectral method

The GLL quadrature is exact for any polynomial of degree thas or equal t&N — 1,
a(up, vp)er Will be exact but(f,vs)er will not for arbitrary functionsf. A theoretical
bound for the errofju — u||; asN — oo for fixed K is given (Maday and Patera, 1988)
to be

lu—unll < C{N'Jullo + N 7|]|,}, (2.33)

where|| - ||, refers to the{” norm andC is a constant independent bf= (N, K). This
estimate fon, € HZ(2), f € HP(Q2) consists of approximation, interpolation and quadrature
errors. This result indicates thatif f are analytic, the spectral solutia converges to the
exact solutiony asN — oo, K fixed, exponentially fast; that is faster than any order-alge
braic convergence. Herein lies the advantage of specthlatde over finite element methods
which exhibits only algebraic convergence. The variatiegtaement (2.17) is general and
may be interpreted differently depending on how the diszagbn parameter is varied to
achieve convergence. Requirifg fixed andK varying to infinity, correspond to the clas-
sical h-type finite element method, where low order methods wouldespond to lowN,
typically N < 4. For K = 1, N varying to infinity, the method corresponds to a global
spectral method. WheH is fixed (K > 1), N varying to infinity, the case corresponds to
a spectral element method (SEM) op-éype finite element method. Varying the number of
the elementd<, and the polynomial ordeW, is still possible in the spectral element method
using adaptive meshes. To improve the approximation ofnfatiiely smooth solutions or
uniformly varying over the whole domain, a few options fdiimement can be used:

1. K — oo, N fixed, refinement by increasing the number of elemétts
2. N — oo, K fixed , refinement by increasing the polynomiéalorder

3. differentV in different elements, refinement by changing the polynbmiarder

20 Chapter 2. Basics of the Spectral Element Methods with Adaptive MefhdReent

4. changing element boundaries, refinement by moving elenaenl adjusting their rela-
tive size

or a combination of options. The adaptive method considiertds thesis will implement the
first refinement strategy. For one-dimensional problensfitkt strategy will be combined
with a movement of the element boundaries. The flexibilitgdapt the mesh to the solution,
makes spectral elements methods quite robust. A good adaptthod should be able to
simply determine the optimal combination of the four refieerstrategies mentioned above
to efficiently solve a physical problem.

2.2 Numerical examples of the one-dimensional spectraieft method

In this section, we illustrate the performance of SEM andntiesh refinement technique for
a few one-dimensional problems.We investigate the refim¢tmgincreasing the number of
elements, combined with the movement of the elements boigsday adjusting their relative
size. For one-dimensional numerical examples, a commamerent criteria, based on the
solution gradients, is used: refine everywhere where solgradients are large. We require
that:

Va2 (ax) < ellu [0 (2.34)

everywhere in the mesh, whefie | is the £2 norm, || - ||; is the H! norm, ande is the
discretization tolerance. The criterion for moving elemtsarlies on comparing neighbouring
elemental solution gradients. Once the elements have begkethfor refinement, if the
gradients per element level are larger than an imposeatuaier the refinement process starts.
For refinement by increasing the number of eleméntshe element to be refined is simply
split in two. For refinement by moving elements, the elemuiitts large relative errors with
their neighbours are shrunk in size according to thesesrror

In order to keep a uniform approach to one and two dimensipradlems, presented
in this thesis, we consider that a mesh is conforming, indinesnsional case, if the mesh
is uniform (the elements are equal-sized) and non-confagrifithe mesh is not-uniform
(the elements are not equal-sized). Since an adaption éllmasrepositioning refinement,
or on creating new elements, a one-dimensional conformiaghnbecomes, in general, a
non-conforming mesh after adaption.

2.2.1 One-dimensional linear steady advection-diffusiith source term problem

The first test case we consider is the one-dimensional Isteady advection-diffusion prob-
lem with source term (one-dimensional steady cosine hljivection-diffusion in steady
state is interesting in case of a spatially distributed s@uirhe model problem we consider
here (Vreugdenhil and Koren, 1993) can be described in ardiforless form as:

Oc 0?%c
“ar ~ Doz =510
T —a 272 T—a
S(z) = sin 27 cos 27 (a<z<h),

2.2. Numerical examples of the one-dimensional spectral elemehbohe 21

S(x) =0 elsewhere {<a and z>b).

The exact solution for the source function we consider is

c(z) = %(1 - COSQWz

9 (a<z<b),

c(x)=0 elsewhere g<a and z>0).
In our example, we solve the equation for
a=02,b=0.6,u=1,D=0.01.

The boundary conditions are for= 0 andx = 1: ¢(z) = 0 . Note that the source function,
illustrated in figure 2.2 (a), is discontinuous at batk= ¢ andx = b if D # 0. The exact
solution to this problem in not smooth since the second déviv is discontinuous im = a
andx = b. For this problem no exponential accuracy is achieved dtleetdiscontinuities in
the second derivatives. To improve the accuracy, we usdiaddmsed on the solution gra-
dients combined with the movement of the elements bourglaFigure (2.3) illustrates the
effect of adaption keeping the polynomial order and the nemol elements order constant:
N = 14, K = 16. We start the refinement using an initial grid that consi$t®or equally
spaced elements, and we impose that the maximum numbemoéets that are created dur-
ing the refinement equals” = 16, and the refinement tolerance is set= 1.0 x 1079,
Figure 2.3 (a) shows the effect of the uniform refinement, r@leach element is split up in
two children elements. Imposing the tolerance on the smiugiradients, we now combine
h-refinement with relocation of the element boundaries.

In figure 2.3 (b), we can see that moving the element bourslarfiences the accuracy of
the solution. The discrete minimum error is obtainedor= 14, K = 16, ||c — ¢i||oo,c =
1.72 x 10~°, where the subscrif., ¢z means that the maximum error is evaluated in the
GLL points. Despite of clustering of small elements neargharp gradients, the error re-
mains large.

2.2.2 One-dimensional steady Gaussian hill problem

We consider again the steady advection-diffusion problemescribed by the first test case.
However, in this case the source term, figure 2.2(b), is aheaeh the exact solution to this
problem is the Gaussian hill

(x — x0)*

c(z)=¢e 20 , Wwith ¢ = 0.04 andzy = 0.4.

Since this problem has a well-definenfinitely smoothsolution, we begin by computing
the true errol|c — ¢p||0o,cz ON @ uniformly refined grid (table 2.1). This table shows that

22 Chapter 2. Basics of the Spectral Element Methods with Adaptive MefhdReent

10 w i i ‘ 20

S(x)
S(X)

1% 02 04 y 06 08 1 0 02 04

(@) (b)

Fig. 2.2: Source functions for the one-dimensional linear steady advectiamsdiffroblem (a) and one-
dimensional steady Gaussian hill problem (b).

x 06 08 1

12 . 1.2 :
—— mesh —=— mesh
L exact || L _ exact
1 h 1)
° _solution o _adaptive

c(x)
c(x)

05 02 0.4 « 0.6 08 1 05 02 0.4 « 0.6 08 1
(a) Uniform: (b) Adaptive:
N = 14,K = 16, N =14,K = 16,

Cc— Ch”oo,GL =7.77 x 10793

¢ —cplloo,cr = 1.72 x 1079

Fig. 2.3: Effect of refinement by moving the elements boundaries for the anertsional steady cosine
hill. The tolerance = 1.0 x 1079,

2.2. Numerical examples of the one-dimensional spectral elemghbrhe 23

the spectral convergence is obtained. In figure 2.4(a), $wate maximum errar = ||c —
¢nlloo,c1 is plotted versus the degrees of freedatof§ obtained by increasing the degree of
approximationN and the number of the elemermts For example: imposing a certain error
for the approximation, we can determine how maoyswe need to obtain that error. Let us
consider that we want the discrete maximum error te bel.0 x 10~1°. From figure 2.4(a),
we can see that this error is achieved in three cases:

1. N=16with about 130dofs
2. N=14with about 150dofs
3. N=12with about 17ofs.

Table 2.2 shows the errors for solving the one-dimensiaealdy Gaussian Hill problem
using the adaption based on solution gradients. We see, dpirige the same number of
elementskK and adapting the polynomial ordéf, a better approximation for the solution is
obtained. In figure 2.4(b), we illustrate the dependench@gtror on the number adbfs As
in the uniform case, we impose the same etrer 1.0 x 10~ to approximate the solution
of the problem. In this case the numberdaffswe need to achieve the imposed error is less
than in the uniform case:

1. N=16with about 10Qdofs
2. N=14with about 120dofs

3. N=12with about 150dofs.

From tables 2.1 and 2.2 we choose the best approximatiorecddtution and plot the
errors versus the number dbfsin both casesuniformandadaptive This is illustrated in
figure 2.4(c). For allV, K combinations, we see that the best approximation of theisaolu
is achieved in the adaptive case using sfsthan in the uniform case.

Table 2.1. Errors|{c — ¢i||,c) for solving the steady Gaussian hill, in the uniform case
for polynomial ordersV={8,12,14,16 elements:

K N=8 N=12 N=14 N=16
Elements| Error dofs Error dofs Error dofs Error dofs
4 2.38E-02| 33| 6.14E-04| 49| 7.93E-05| 56 | 8.82E-06| 65
8 7.68E-05| 65| 7.36E-08| 97| 2.57E-09| 113 | 1.12E-10| 129
16 1.23E-07| 129 | 1.15E-11| 193 | 9.07E-14| 225 | 2.48E-14| 257

24 Chapter 2. Basics of the Spectral Element Methods with Adaptive MefhdReent

Table 2.2. Errors|(c — ci|loo,c1) fOr solving the steady Gaussian hill, in the refined case
for polynomial ordersV={8,12,14,16 elements:

K N=8 N=12 N=14 N=16
Elements| Error dofs Error dofs Error dofs Error dofs
4 9.57E-04| 33| 2.17E-04| 49| 1.36E-06| 56 | 3.93E-08| 65

8 8.37E-06| 65| 8.38E-09| 97 | 1.93E-10| 113 | 3.67E-12| 129
16 2.22E-08| 129 | 9.44E-13| 193 | 2.48E-14| 225 | 1.40E-14| 257

300 T e 300 T T
—— N=4 —— N=4
—=— N=12 —=— N=12
2501 2501 —— N=14
—— N=16
© 200f © 200f
3 3
5 -
s 150¢ g 150f
z z
100t 100t
50 50
05 10 5 0 05 “10 5 0
10 10 lle=c,l,. 0 10 10 10 lle=c,l,,. 0 10
(@ (b)
250! —— Adaptive|
© 200f
3
©
5 150F
z
100
50f
0735 10 5 0
10 10 lle=c, |, G;l:O 10

(©

Fig. 2.4: The number of dofs for solving the one-dimensional steady Gausgias la function of the
required error:(a) uniform, (b) adaptive, (c) comparison betwegform and adaptive.

In figure 2.5 we illustrate the effect of the refinement by dnlaty increasing the num-
ber of elements combined with a movement/relocation of taments boundaries. The re-
finement starts with an initial grid of four equally spacedmeénts. Based on the solution

2.2. Numerical examples of the one-dimensional spectral elemghbrhe 25

gradients, we refine the grid and move the elements boursdangng to minimize the dis-
crete error of the solution. When the imposed number of elésrismeached, the refinement
process stops. In this way, we can compare the errors cothputbe uniform case, with
the errors obtained in the adaptive case. On the left sidegofdi2.5(a, c) we represent
the uniform caséV=16, K={4, 8}. After refinement, the maximum errors are two order of
magnitude smaller than in the uniform case (figure 2.5 b, d).

1.2 T T — 1.2
— exact —— mesh
1 o solution — exact
1] .
9 _mesh o _adaptive
0.8 0.8
= 06 08
151 %
0.4 5}
0.4
0.2
0.2
o
o <o o 0(66666
-0.2 . . .
0.2 04 . 06 0.8 1 o -1 x 0 1 2
(a) Uniform: (b) Adaptive:
N =16,K =4, N =16,K = 4,
HC — Ch”oc,GL =8.82 x 10796 ||C — Ch”oo,GL =3.93 x 10798
1.2 T T ———————— 1.2
— exact exact
1 o adaptive 1t o adaptive
9 _mesh $b ° _mesh
0.8 I
~ 0.6
=
o
0.4
0.2
(o
© o o <o o
02 0.2 04 06 0.8 1 0% 0.2 04 . 06 0.8 1
(c¢) Uniform: (d) Adaptive:
N =16,K =8, N =16,K =38,
HC — Ch”oc,GL =1.12x 10710 ||C — Ch”oo,GL =3.67 x 10712

Fig. 2.5: Effect of refinement by adaptively increasing the number of elemantsby moving the
elements boundaries for the one-dimensional steady Gaussian hill.

26 Chapter 2. Basics of the Spectral Element Methods with Adaptive MefhdReent

2.2.3 One-dimensional linear unsteady advection problem

The last test case we consider in this chapter is the onerdimm@al unsteady advection equa-
tion problem:

Jc dc
—4u—=0,-2<x<
8t+u8m 0, -2<x<2,andt € [0,1],

where the velocityu is constant and equats = 1. The initial condition is a Gaussian
distribution:

2 1
(z,0) = 0.014", r=/(z+ R
The exact solution is:
2 1
clz,t) = 0.0147 , r=q/(x—t+ 5)2

We use a Crank-Nicolson scheme to solve the one-dimensiostdady advection, which
is unconditionally stable and second-order accurate ie.tiffable 2.3 shows the errors for
solving the unsteady equation on a uniform gid«4, 8, 16, 32). FoK=4, the errors due to
the spatial resolution are dominant and we do not achievgdbd solution accuracy in time.
The same effect appears when the time step is kept constatih@mpolynomial order of the
elements changed. In this case the errors due to the timetiistion are dominant. We can
improve the accuracy by refining the elements, based on thémogradients.

Table 2.3. Errors|(c — ¢4 ||o0,c1) fOr solving the one-dimensional unsteady Gaussian hill,
in the uniform case for polynomial ordéf = 8 elements:

Time Steps| N=8, K=4 | N=8, K=8 | N=8, K=16 | N=8, K=32
64 1.31E-01 | 6.12E-03| 6.28E-03 6.28E-03
128 6.04E-02 | 1.56E-03| 1.56E-03 1.56E-03
256 6.04E-02 | 9.32E-04| 3.91E-04 3.91E-04

Table 2.4 shows the improvements in accuracy due to meskenedint. Each time cycle
starts with an initial number of elements representedshy After refinement, the number
of elements per time cycle is averaged to obtain the averagger of elements useld,.
Even in this case the time discretization errors are vegelaifo eliminate them and prove
that we get more accuracy in space, we consadarodified exact solutionFrom table 2.3,
it is observed that the accuracy is not improving anymorenevhen the time step = 256
andN = 8, K = 32. The same erroffc — ¢;||o,cz. = 3.91 x 107% is obtained when we
solve the problem foV = 16 and K = 32. This is an indication that the error due to the
time discretization is dominant. We compute thedified exact solution,,., solving the

2.2. Numerical examples of the one-dimensional spectral elemehbohe 27

one-dimensional unsteady advection equation problemVfer 20, K = 64 and 2048 time
steps. Computing the norfig,,e. — cnl|o0,c. We are able to eliminate the error due the time
discretization. The improvement in accuracy for a 64 tinepstcycle is illustrated in the
table 2.5.

Table 2.4. Errors|fc — ci||,c 1) for solving the one-dimensional unsteady Gaussian
hill, in the non-uniform case for polynomial ordéf = 8 elements and an error
tolerances = 0.01 for the solution gradients:

Time Step N=8, K;=4 N=8, K;=8 N=8, K;=16
64 5.73E-03,K,=20 | 1.3E-04,K,=20 | 6.28E-05,K,=20
128 2.58E-03,K,=19 | 3.98E-05,K,=19 | 1.56E-05,K,=19
256 1.21E-03,K,=18 | 1.76E-05,K,=18 | 2.46E-06,K,=18
consciously

Table 2.5. Errors|(cmes — ¢nllw,cr) for solving the one-dimensional unsteady
Gaussian hill, in the non-uniform case for polynomial ordes8 elements and an
error tolerance = 0.01 for the solution gradients:

N=8, K;=16
3.56E-08,K,=20

N=8, K,=4
1.02E-04,K,=20

N=8, K,;=8
7.65E-07 K,=20

Time Step
64

A comparison between the relative errors in solving the dingensional linear unsteady
advection problem, is illustrated in figure 2.6. For difieréme steps, there is an improve-
ment of the solution accuracy due to refinement. After refiergimnthe errors are two orders
of magnitude smaller than in the uniform case.

30 —— Uniform=64
—e— Uniform-128
—=— Uniform-256
250 —+— Adaptive-64 |1
—— Adaptive-128|
200 —— Adaptive—25
2
3
=150
g
100
50
6 e 2
% 10 i, 1, L0 10°

Fig. 2.6: The number of dofs for solving the one-dimensional linear unsteadycidn problem, as a
function of the required error for one-dimensional linear unsteadg@ibn problem: com-
parison between uniform and adaptive , fér= 8 and different time steps: 64, 128, 256.

28 Chapter 2. Basics of the Spectral Element Methods with Adaptive MefhdReent

In figures 2.7, 2.8 and 2.9 is illustrated the accuracy of tiet®n in both, the uniform
(left) and the non-uniform (right) cases for different tisteps. The element size, the exact
solution and the adapted solution are shown. Imposingrdiftetolerances on the solution
gradients, and choosing different time steps, the numbelesfients vary per simulation. In
our example, we generate roughly the same number of elert&nts 20) using a uniform
basis of ordertN = 8 and N = 16. The elements are generated around the Gaussian hill,
and they "move” together with it. The elements that are nahin vicinity of the hill are
coarsened. We can conclude that in all time cycles an impmewné in solution accuracy is
achieved, due to the refinement.

12 i T " 1.2

—— mesh 4
exact 0.8
o solution |

—— mesh
exact
o adaptive

= _0.6f
o X
0.4 5
0.4
0.2
0.2}
Ot
0(=S
) -1 0 1 2 - 1, 0 1 2

X

(a) Uniform: time=0.25, steps=256,
N = 8a K= 4:
llc = cnlloo,ar = 4.21 x 1073

12

—=— mesh
exact
o __solution |

2] 0 Ny 1)

(c) Uniform: time=0.75, steps=256,
N =8, K =4,

lle = enlloo.cr = 5.91 x 10792

(b) Adaptive: time=0.25, steps=256,
N =8,K =12,
e — enlloo,cr = 1.19 x 1079°

—=— mesh
exact
° adaptive

1.2

0.8}

0.6f

c(x)

0.4f

0.2}

o i 2
(d) Adaptive: time=0.75, steps=256,
N =8, K =13,
lc = cnlloo.cr = 3.15 x 1079°

Fig. 2.7: Effect of refinement by adaptively increasing the number of elenfenthe one-dimensional
unsteady Gaussian hill, based on the solution gradients with a toleranee 0f04.

2.2. Numerical examples of the one-dimensional spectral elemghbrhe 29

c(x)

c(x)

c(x)

1.2

—— mesh
exact
o _solution

N ; 2
(a) Uniform: time=0.35, steps=64,
N=8K =4,
||C — Ch”oo,GL =1.14 x 1079
1.2
1

—— mesh
exact
o solution

0.8¢

0.6/
0.4t
0.2}
0
-2 1 X 0 1 2
(c) Uniform: time=0.35, steps=128,
N=8K=4,
llc = enlloo.cr = 1.22 x 10792
12
1
—s— mesh
0.8 exact

°__solution

0.6f
0.41
0.2r
0Of
T i 2
(e) Uniform: time=0.35, steps=256,
N =8 K =4,

¢ = cnlloo.cr = 1.21 x 10702

12

—— mesh
exact
o _adaptive

c(x)

N ; 2

(b) Adaptive: time=0.35, steps=64,
N =8, K =19,

||C — Ch”oo,GL =1.05x 1079

—— mesh
exact
o _adaptive

o6
x
00.4,
0.2
Otee
03 = X 0 1 2
(d) Adaptive: time=0.35, steps=128,
N =8,K =18,
llc = cnlloo,cr, = 2.48 x 10795
1.2 T T .
—— mesh
1 exact
g °__adaptive

0 1 2
(f) Adaptive: time=0.35, steps=256,
N =8,K =18,
¢ = enlloo.cr = 1.01 x 1070°

Fig. 2.8: Effect of refinement by adapting increasing the number of elementidoone-dimensional
unsteady Gaussian hill based on the solution gradients with a tolerance 6f01.

30

Chapter 2. Basics of the Spectral Element Methods with Adaptive MefhdReent

—— mesh
exact
o __solution

-2 -1

x 0 1 2

(a) Uniform: time=0.35, steps=64,

1.2

N =16, K =8,
||C — Ch”oo,GL =1.05 x 1079
—— mesﬁ ‘
exact
o solution

-2 -1

x 0 1 2

(¢) Uniform: time=0.50, steps=64,

N =16,K =8,
lc — Ch”oo,GL =1.11 %1079
1.2 i ;
—— mesh
1+ exact
°__solution
0.8
0.6
=
(.)0‘4,
0.2
0
03 -1 0 1 2

X

(e) Uniform: time=1.0, steps=64,

N =16,K =8,
e — cnlloo,cr = 2.20 x 1073

1.2

—— mesh
b exact
o _adaptive

-2 -1 x 0 1 2

(b) Adaptive: time=0.35, steps=64,
N =16,K = 14,
llc = enlloo,cr, = 1.01 x 10795

—— mesh
b exact
o adaptive

1.2

-2 -1 x 0 1 2

(d) Adaptive: time=0.50, steps=64,
N =16,K = 18,
llc = chlloo.or = 1.48 x 10707

1.2 T
—=— mesh
o _adaptive

1

0.8

0.6

c(x)

0.4

0.2

02 1 « 0 1 2
(f) Adaptive: time=1.0, steps=64,
N =16,K =17,

lle = enlloo.cr = 2.18 x 1079°

Fig. 2.9: Effect of refinement by adapting increasing the number of elementhidoone-dimensional
unsteady Gaussian hill based on the solution gradients with a tolerance 0f04.

2.3. Conclusions 31

2.3 Conclusions

The test cases presented clearly show that the adaptivellion of the spectral element
method increases the flexibility and capability of the methBharp gradients and regions of
poor resolution can be solved optimally. Any refinement i@ plure spectral element con-
vergence context, namell fixed, N — oo, improves the solution’s accuracy but at a
slow rate. If the boundary layers were internal, as opposexhtthe boundary, convergence
would deteriorate rapidly, unless we know where the bountdgrer was and could place el-
ements on either side of it. A simple repositioning of theredat boundaries (or equivalently
a change in their size), however, results in an error tworgrdé magnitude lower for the
same discretization paramet&r. First, in practical calculations the spectral elementhodt
is not restricted to keep the number of elemeiitéixed and increasingv towards infinity.
There is much more flexibility in the method due to the diseegion parametel = (N, K)
depending on two parameters. Second, we need to develepadnd schemes to efficiently
exploit this flexibility. The refinement criteria will be impved by introducing, in the next
chapters, neverror estimatorswhich will indicate the quality of the resolution on each-ele
ment. The test cases have shown that we can use many elemssg#ons of discontinuities
or sharp structure. The refinement capabilities are vergessful, but we have seen that the
coarsening algorithm remains somewhat inefficient. We adliress this problem again for
the two dimensional problems.

32

Chapter 2. Basics of the Spectral Element Methods with Adaptive MefhdReent

Chapter 3

Mortar Element Method

In this chapter the fundamentals of the mortar element ntetire introduced, including
theory and implementation. Single-messiposteriorierror estimators for a spectral element
solutionu;, of a general partial differential equatiai(«) = f will be presented. Several
numerical examples are presented and analyzed, mainlyl lmaseork of Greengard and
Lee (1996); Mavriplis (1989); Henderson and KarniadakBo().

3.1 Introduction

Mortar element methods were first introduced by Bernardid&d§aand Patera in Bernardi
et al. (1994) for low-order and spectral/finite elements. Mortaecral elements are non-
conforming spectral elements that allow a non-conformiagatnposition of the computa-
tional domain into sub-regions. With respect to accurdoy,dptimal coupling of different
variational approximations in different sub-regions ifieged. Since the method is non-
conforming, the discrete space is not embedded in a continfimctional space suited to
the numerical analysis of a given partial differential dipra However, thévariational
crime’ (Anagnostotet al., 1989) committed in this strategy, does not pollute the amu
of the original spectral method; it leads to more flexiblectiizations and a better use of
the discretization parametér The mortar element method preserves the element-based lo-
cality, distinguishing it from other, more global technégusuch as functional minimization
with Lagrange multiplier constrains (Dors, 1989). Anotladiractive property of the mor-
tar element method is its good scalability characterisiicparallel computers due to dense
computational kernels and sparse communication requitemeOne of the main features
of the mortar element method is that the order of the intepmt polynomialN and the
number of element&’, can be adjusted to suit the problem at hand. In the nextosecthe
fundamentals of the mortar element method are introduced.

3.2 Spectral element methods for two-dimensional problems

In Chapter 2, we introduced the basic operations of the ameftsional spectral element
method. In this section we present the procedure used teedibié spectral element method
for two-dimensional problems. A key to the efficiency of higider methods in higher di-
mensional problems is the formulation of a basis from thedeproduct of one-dimensional
basis functions. We consider the two-dimensional Poissprtion on a domaif2 € R?,
with homogeneous Dirichlet boundary conditions:

34 Chapter 3. Mortar Element Method

Problem 1 Findu € C?(Q2) N C*(2) such that
~V?u=fin ©, andu =0 on 9. (3.1)
After integrating by parts and applying the boundary caodg, the variational statement

for the problem 1 is:

Problem 2 Findu € X = H}(€2) such that

/Vu-VvdX:/ fodx, Yo € X (3.2)
Q Q
or

a(u,v) = (f,v) Yo € X, (3.3)

where a point if2 is denotedk = (z, y) and the bilinear forma(-, -) is given by:
a(u,v) = / Vu-Vvdx, u,v € X. (3.4)
Q

The spectral element discretization proceeds by breakindpei domair€2 into K rect-
angular element§*. In conforming spectral element methods, the domain deositipn
satisfies the constraint that the intersection of two adjgekements is either an entire edge
or a vertex and the order of approximation is equal for adjaedements. Relaxing this
constraint is the subject of the next section.

First, we require that the variational statement, equaBap), is satisfied for a piecewise
polynomial subspace df}(€2). As in the one-dimensional case, we first define the space

Py k() = {® € L2(Q); Do € Py (QF) x Py (2M)}, (3.5)

wherePy (2%) denotes the space of all polynomials of a degree less thajuat & N with
respect to each variable y on each subdomaife”, andP y x () is the tensor product
space corresponding to (2.11). The spectral element paa®nsist of

X, = HY(Q) NPy ke (9). (3.6)

In two-dimensional problems, we can map a general cunaliméement to the standard
element as shown in figure 3.1. The curved element must stifiwthe constrains imposed
for the conforming case: the intersection of two adjacesinents is either an entire edge or a
vertex and the interpolation points coincide. We may usérarly local elemental mappings:

(@, 9)5 = (@, 9)5hi(€)D;(n) (3.7)
to map physical curved elemerts, y) onto the square computational doméfnn) where
(z,y) € Qand(&,n) € A2
The discrete problem is then given by:

Problem 3 Findu;, € X, such that

/Vuh-Vvth:/fvhdx, Yo, € Xp. (3.8)
Q Q

3.2. Spectral element methods for two-dimensional problems 35

na w1

vy A

~y

(-1.-1)

X

Fig. 3.1: Isoparametric mapping from physical curved geometry (x,y) to tihepedational rectangular
grid (¢, n) for a polynomial ordefV = 6.

We use an affine mapping frofx*, y*) to (¢,17) € A2 = [-1,1] x [-1,1] on each
elementk, and denote the Jacobian by:

p 0" oyF Ok O0yF

=9 o oy o€ (3.9)

Performing GLL quadrature if€, n) yields:

K 1 K

Z/Wl’iﬂjVUﬁ(fz‘,) VR (&,m;) = > 1T pips £¥ (i vk (&6 my), Y on € X, (3.10)

k=1 k=1
or

K K

Za un, vn)gr = Y (Fron)ar Yon € X, (3.11)

k=1 k=1

where¢;, n; are the Gauss-Lobatto collocation points in #heg directions respectively, and

pi, p; the Gauss-Lobatto weights. The notatidn’ denotes the direct stiffness summa-
tion between elements, in which continuity (physicallyrmdent node contributions are

summed) and boundary conditions (boundary node contoibsithre set to zero) owy, and

v, € X, are taken into account. To complete the discretization,sésbaust be chosen.

The basis for;, € X, then follows naturally from the one-dimensional case as:

uy (z,y) = ul;hi(§)h;(n), z,y = &, (3.12)

where theh; andh; are the one-dimensional Lagrangian interpolants defingd.&8) and
ufy = up (&, m;)-

Inserting (3.12) in (3.10) the tensor product form is retdirand the resulting discrete
equations can therefore efficiently be solved. We induceaeydadrature errors in the evalu-
ation of botha(uy,, vy)¢z and(f, vy)cr; however, for smooth solutions and boundaries they
are roughly of the same order as the approximation and iolegipn errors (Rnquist, 1988).

As in the one-dimensional case we also require the polyrenabeC® continuous

across elemental boundaries and enforce homogeneou$lBirlmoundary conditions for

36 Chapter 3. Mortar Element Method

up, € Xp. Then, we express the discrete solution € X, the test functions;,, € X,
and the prescribed forcg, € Y, in terms of the basis (3.12) and by choosingto be
nonzero at only one global collocation point, the discretenulation (3.10) becomes

K N K N

US> (ChLBYABECR Uk, =Y " Y BEBEfE, Vij € {0,N}?(3.13)

k=1 m,n=0 k=1 m,n=0
or

Cu = Bf, (3.14)
or

Au=f, (3.15)
whereCE | Bj’-“n are the matrices of the one-dimensional case (2.27, 2.28) @ndA = B~!C.

There are two differences from the one-dimensional cageatlkavorthwhile to be men-
tioned. First, by using the properties of GLL quadrature, ¢lquivalence of (3.11) to a col-
location procedure for points internal to an element canliiaioed. The interface between
the elements is more complex than in the one-dimensional cEse weakC! condition, at
element boundary points, is naturally generated by theatianal approach.

The second observation is that the spectral method forianl&br elliptic problems is
directly compatible withh-type finite element methods, in that the projection opesadmd
continuity are the same for both methods. This makes it ples$d mix low-order with
high-order elements in the same problem. For instance olaler elements can be used in
regions of the domain where the solution varies very slowlypear singularities. Since in
that case the collocation points do not coincide on the niaeelemental boundaries, at the
interface of the two elements a projection is needed in dalarake the connection between
one elemental space and the other. This is addressed by theonéorming formulation in
the next section.

3.3 Mortar element basic concepts

The mortar formulation presented here is based on the agprm@sented in Madagt al.
(1989); Bernardet al. (1990); Levinet al. (2000); Anagnostoet al. (1989).

In our final implementation, the spectral expansions areséime in all elements and a
non-conforming grid is obtained by-refinement. This is a particular case of the general
formulation presented in Leviet al. (2000) in which a two-dimensional mortar element
formulation is introduced for geometrically non-confongigrids, where elements are al-
lowed to have different spectral expansions. In the fortimapresented in (Madagt al,
1989; Bernardet al., 1990), the spectral expansions are the same in all elerapdta non-
conforming grid is obtained bit-refinement. Our formulation is designed for the general
case: geometrically non-conforming grids where elememgtsliowed to have different spec-
tral expansions. Due to this generality, a different foratioh of a projection operator be-
tween interface and non-conforming element edges is adfailm this section, we will first
introduce a general two-dimensional mortar element foatioh based on Leviat al. (2000)
and then the particular case forefinement will be derived.

3.3. Mortar element basic concepts 37

Y5,
: 3
oz e L) -
Qr Q2 HQ o
K r
\) “V]

Fig. 3.2: An illustration of the non-conforming grid. The element edges are shuitimthicker lines
and the grid lines with thinner lines. The represents the mortar endpoints apdare the
mortars. Each elementhas four edgesE¥, ! = {1,2,3,4}. Mortars~; are represented by
double thick lines.

The non-conforming formulation consists of a set of confogrspaces for the regions
that permit a conforming formulation, a space of functionsaanortar interface and a space
used in the projection between the mortar spaces and therocainfy spaces.

Before we introduce the formulation of the two-dimensiomadrtar method, the basic
concept of the method can be sketched as follows. We considetomainQ onRR? such
that2 consist of several subregiofi,, p = {1, ..., P} and in each of2,, , the spectral grid
is conforming. In figure 3.2 we illustrate this concept. Tloenin2 is covered completely

P
by the unionf2, : @ = |J Q,. The(, intersects with each other only along a collection
=1
of one-dimensional elefnent edges. The union of these edfawesd the skeleto§ of the
domain which is decomposed into mortars. These mortarsraralionensional geometrical
entities for two-dimensional problems. We require the @ma@rto coincide with a complete
edge or with a union of edges. The choice of mortars is notugitn the example, shown in
figure 3.2, the domaif has three subregions:

Q=000 UQs, (3.16)

where each subregidn,, is covered by a collection of conforming spectral elemegtsore-
gion Q2 has four element€, has two elements arfd; has three elements:

Q= UuQIUQiUQ], 2W=0U0 Q3=0UQ5uql. (3.17)

Each subregion can have a different polynomial order of feetal expansion. In this case
the coupling between subregions is done by mortars. Onertamitassue is the choice of

the discrete space for the mortar functions. The gla¥atontinuity of the basis, for a

geometrically and functionally non-conforming mesh, aatnipe guaranteed. To make the
basis as continuous as possible, we have to minimize therelif€e in function values across
each mortar (non-conforming interface). We impose thatthprojection of the jump across

the mortar vanished:

/(U1 — UQ)\I/ ds = O, WAURS PN_Q(F)7 (318)
p

38 Chapter 3. Mortar Element Method

Y1

1,2
1 2

Q
Py

N1 N> N1 N2

Fig. 3.3: Mortar decomposition in a functionally non-conforming case, one mokas denotes the
interface between elemerfiy and€2’.

and the continuity whenever the spectral element vertiogscited (at the end points of
the mortars). Here, the two functioms andu, are the functions that we would like to be
continuous, andl is the weight used to perform the minimization of the jump algating
equation (3.18) using numerical quadrature, yields thetakjc form:

u; = Qug, (3.19)

whereu; andu, are the coefficients of the basis we choose to represegaind u,. We
see thafQ represent a set of relationships between the values,ofrhich are free, and the
values ofuy, which are constrained to match them such that (3.18) isfeati In practice,
we chooseus; to be the solution along the mortar edges, ando be the solution along the
edge of an adjacent non-conforming element. In this wayuthdegrees of freedom are
eliminated in the mesh, and they are replaced with

To illustrate how theC? projection is imposed, we consider a few examples (Deville
et al, 2002), where each subregion has only one element (we deoputbscript in these
examples).

In figure 3.3, the domaif2 is split into two rectangular subdomair®' and Q2, dis-
cretized by polynomials of degre¥;, and N,, respectively. In this case the decomposition
is functionally non-conforming. There are two mortass: = I'y and~, = I'2, that can be
considered. Without loss of generality, is chosen to form the skeletaghof the domain. If
we considefi; the restriction ofu; to the interfacd’; 5, andi, the restriction ofus to I'; 2,
thena; = ®; andu, becomes the dependent variable:

/F [i(s) — ®(s)]U(s) ds = 0, VI € P, _5(T'1.), (3.20)

wherel; » is the interface between elemefits andQ2. If N; < N,, 1i»(s) equation (3.20)
can be evaluated by :
t2(s) =u1(s) + aLn,(s) + BLNn,—1(s), (3.21)

wherea andf can be expressed in termsigf, andas, v, by evaluating (3.21) at the vertices.

3.3. Mortar element basic concepts 39

Y1
- r3,1 Q3 r1,3 o’
1 L3 r3,2 N3 1 Ns
Q I— Q : C 5 r 1 y3
2,3

- |‘2’1 Qz rl,z Q 2,3

N1 1,2 N> N1 N>
Y2

Fig. 3.4: Mortar decomposition in a geometrically non-conforming case, thre¢ansor

As a second example, we consider a geometrically non-caiigrdomain, see figures
3.4 and 3.5. In this case, possible choices for mortarsiare {I'; 5,1 5,2 3} and~y; €
{12 UT1 3,2 3}. To take into account the relative position and size of tterfaces, the
integral constrain must be applied in physical coordinafése long interface betweef!

and {Q?, Q3}, can be decomposed into either one or two mortars. First,omsider the
3

skeletonS = U i (see figure 3.4). The restriction ofz) to the interface aré, o, us,

i=1
wherei,, ui3 are the degrees of freedom. Applying integral matching ttmmdyields:

/ wmV¥ds = / W ds + / a3V ds, (322)

F% 1—‘1‘2 1—‘1,3

/ iV ds = Biiy, (3.23)
rs

/ ﬂQ\IJ ds = P172ﬁ2, (324)
T2

/ ’113\1/ ds = P173ﬁ3, (325)
T3

where the entries of matricd® andP are computed using equations (3.45) and (3.50).
The dependent side is computed as:

iy = B™'Py 20y + B7'Py 3il3. (3.26)

Since we impose the vertex matching conditions, the first thediast row ofB and
P, », P, 3 have to be modified accordingly (see equation (3.61)). Alsoy, andag o have
to match, because they represent the function values irathe point.

The case in figure 3.5 is similar. The degrees of freedom aecaged withi, and the
integral matching conditions yield:

/ (’L~L2 — ﬁl)\If ds =0,YV¥ € PN2,2, (327)
T2

40 Chapter 3. Mortar Element Method

Y1
- l31 Q3 [, o’
1 L3 r3,2 N3 1 Ns
Q I Q : . T Y2
2,3
r I_21 Q2 r1,2 Q 23
N1 1,2 N> N1 N>

Fig. 3.5: Mortar decomposition in a geometrically non-conforming case, two n®rtar

/ (@3 — @)W ds = 0,Y¥ € Py, _». (3.28)
T3

In this case, separate relationships are obtained for dachandus by equations (3.27)
and (3.28). To evaluatf;‘*rl ,uVds andfFl , ¥ ds , we use a higher-order quadrature rule

N, settingN = max (N7, N3) andN = max(N7, N3) respectively.

3.4 Mortar element formulation

We are now ready to introduce the mortar formulation, whgthe main component of the
adaptive mesh refinement process.The standard conforrisogete spac&,, in each sub-
domaing,, is defined by:

X,(Qp) ={veC’(Q,):Vk=1,...,K",v_, € Py, xPy,(2)),v],, = 0}(3.29)

whereN,, is the polynomial order of the spectral expansion used ih elmnenﬂ’; of a sub-
region,. Here]P’Np(ﬂ’;) denotes the space of all polynomials@g of order not greater
than N, in each spatial direction. Since each sub-donfajncontains only conforming ele-
ments, the conforming formulation (3.29) is valid everywhexcept on those element edges
that belong to the mortar skeletsh The skeletorf joins sub-domain$2,, with a different
spectral expansion order (@the nodal points that belong to the neighbouring elements do
not coincide). Even in the particular case when the polyabmider of the neighbouring
elements ors will be the same, there is a geometrically non-conformingptiong between

the elements. In figure 3.2, the skeleton of the don§aimas three mortars:

S=mUvUns, (3.30)

where~; can be defined as a collection of edges: = '3 (edge two of element two),
2 = I UTS (edge three of element five and six) apd= ' (edge two of element three).

In order to define the non-conforming spaXe, we first introduce an auxiliary mortar
spaceW,, that controls the error between the two representationseosoblution onS and
works as a link between the two representations (conformimtgnon-conforming).

3.4. Mortar element formulation 41

In general, we define the skeletSras a collection of line segmenis.

S =

=

P
7 = |J 09, (3.31)
p=1

=1

where M represents the number of the mortar segments (see (3.3@in this point on,
unless noted otherwise, the parameters with an overbabeviiélated to the mortars.

Each end point of a mortar segmeptcoincides with a vertex in all the sub-domaifis,
which share this portion of. The spacdV,, is defined on the mortarg and depends on the
way the skeletory' is split into mortars. As illustrated in figure 3.2 the segmsen can be an
edge of an element, or a union of edges.

The mortar auxiliary spac®, is now defined as:

W, ={® € C%S),Vi=1,....,M, @ € Py (7:),P,, =0 }. (3.32)

i

The orderN; of polynomialP (v;) depends on the neighbouring spectral elements that

are coupled to the mortar,. We consider two sets of elements edges, the firsf%etj =
1,..., K" and the second s&¥’, j = 1,..., K* for each mortar;, such that:

1.305C @, 39 c Q,T¥ € QSATM € QM v,

KS K]M
2.v=U F]S andv; = U Fé”, both sets cover the mortar completely,
j=1 j=1

3. 7i(vi) € 9%, %i(v}) € QF andyi(v}) € QY, %i(v}) € QY

7 7

wherev} andv? are the end points of the mortay.

TheTS andI'™ are called the slave and the master sides of the moytafhe elements
that contain thé@? edges set, form the master elements set. In the same wayethergs
that contain thd"" edges set, form the slave elements set. These two sets avetamigfor
the definition of the data structure we use in the implemantatThe polynomial order on
the mortars sides can be different. In this caseNétand N™ be the polynomial order of
the expansions i®2° and 2" sub-domains. The ordeY; of the polynomialsPs (v;) in
equation (3.32) is such that the number of degrees of freamothe mortars is equal to the
maximum number of degrees of freedom in the two s€tandI:

N; = max(N° K NMKM), (3.33)

On each interfacs;, there are three different functions that belong to one®ftlowing
spaces:

W, ={v € Py, (7)}, (3.34)
XP(QS)\% = {U € CO(’YL)an =1,... aKS : U\Ff € PNS(F_}S) }7 (335)

X, (M), = {v € COv),Vj = 1,...,KM:’U|FJM € Pyu(I)) }. (3.36)

42 Chapter 3. Mortar Element Method

In order to minimize the difference between them, we intaediwo additional constrains
to the spaceX, (2%),,, and X, (2),,. Since~;(v}) and~;(v?), the end points of the
mortar~;, coincide with a vertex in botlf2° and Q" the function values in this points
should be the same in all the representations. We call thigliton, that ensures exact
continuity at cross vertices, the vertex condition. Theosélccondition we impose is the so-
called integral matching condition: the jump in functionsrdernal boundaries of; should
be minimized. This is equivalent with the following: the @rbetween the representations,
on slave and master edges, is orthogonal to an appropridtelen space.

With the two conditions imposed we can define the new spXcgsy;) and X, (v;) as
follows:

Xg(n) ={v € C°i), Vi ={1,..., K%} 10, € Pys(I'j)suchthat (3.37)

30 € Wy, : 0(v)*) =v(v)?), and [(v—®)TdS =0,V¥ € P5(v,)}(3.38)

i
Yi
and

Xnr(y) ={v € CO(), Vj={1,..., KM} v, € Pyu(T}") suchthat (3.39)

30 € Wy, : @(0;%) =v(v;?), and [(v-®|)¥dS =0,YT € P"(y;)}(3.40)
Vi
whereW,, is defined in (3.32).

The integral matching conditions are represented by tlegiats in equations (3.38 and
3.40) and can be viewed as projections from a mortar spacetsisides. Also, they represent
a £? minimization of the jump in functions at internal boundari@ the mortars segments.
We have to construct now the projection spabe¥~;) and P (v;). The first constraint,
for each mortar end point, imposes that the projection sphcald have at least two degrees
of freedom less than the number of degrees of freedom ondles.siWe can define now the
projection spaces for the slaves and master sides:

Po(y;) ={v € CO%(w):Vji={1,..., K%}, v, € IPij(Ff)} (3.41)
PY(y) ={v € C®(m):Vi={1,.... KM}, v, € Pyu(D}")} (3.42)

where N, and N are the orders that depend on the number of the end pointedshgr
the mortary; and the element edgéf, Fj”, respectively. The choice of the order is shown
schematically in figure 3.6.

The non-conforming spectral element discretization spgacenow be defined as:

Xn(2) = {v:¥p=1,...,P, Vg, € Xp(Qp), Yy € S,i=1,...,M,
KS KIW
ary, ri v =i = [J 1) and
j=1 j=1
vrs € Xg(yi), vprm € Xar()}- (3.43)

(3.44)

3.4. Mortar element formulation 43

To control the error between the two different spectralespntations on;, we make the
solution continuous at the mortar end points and the errovden the representations orthog-
onal to an appropriately chosen space. The definition ofeliespaceXs(v;) andX s (v;)
that are given on the two sides of the mortar, differ from eaitter only in the number of
elementsk® and KM and the order of the polynomial§® and N M.

master master master

Fig. 3.6: OrderNS‘M in the definition of the projection space on the two sides of a mortar (slave and
master). Here a single mortar contacts with three master elements on enétsidne slave
element on other side. The ordai"] on the master side is set to eith&r" — 1, N* or
NM _ 1, depending whether the mortar and an element share a vertex of nd)he@tave
side the ordelV,’; is set toN — 2.

3.4.1 Definition of basis functions

Since in each elemelﬂ’; of a subregiorf?, we have a conforming spectral expansion, a
functionu € X,(€,) can be interpolated with a set of a Lagrangian interpolahtsaer
N,. According to the definition of the mortar space in equat®BZ?), any functio® € W,

can be interpolated on a mortarby a set of Lagrangian interpolants of ordéy.

Since we specify the basis functions only for a single moytand a basis for neighbour-
ing elements on one of the mortar sides only, in the followirggdrop the subscripts in both
N, andN;. Therefore we introduce only a basis for the both mortarsside

In each elemer®” that belongs to eithe®® or QM , a variableu is interpolated as:

u(z(&,m), Z wighi ()3 (1) (3.45)

4,7=0

whereh are the Lagrangian interpolants of ordér

—Ly(§)(1-¢?) .
O = ST DI g L b (3.49)

N € Py([-1,1]),hN (&) = 6:5,Vi,j € {0,1,..., N}?, Ly is the Legendre polynomial
of orderN. The¢; points are the GLL points of ordéY:

-1 i =
¢V =< rootsof Lyy(§) =0 i=1,...,N—1
1 i=N.

44 Chapter 3. Mortar Element Method

The functions:(&,n), y(&, n) are the coordinate transformation functions from an isapar
metric element into a squaref,n < [—1,1], see figure 3.1. For each element edyea
functionu can be written as:

N
n=0

wherez(§), y(€) is a transformation between an element efigand its representation in a
computational space. According to the definition of morpaceW ;,, any functiond € W,
can be interpolated on a mortgras:

N j—
®(@(©),5(8)) = Y Pl (€) (3.48)
m=0

where the ordelV of polynomials basis is computed accordingly to equatioB3B

The transformationg(¢), () will transform a line segment; into its computational
spacef € [-1,1].

A basis for projection spad@®! (v;) is a set ofK sy = KN — 1 functions. To define
a basis for the projection spa#’! (v;) we detect whether the end points of the mostar
coincide with the end points df;, whereP*I represents th®* of PM space. Since we
impose the condition that the values of the functions, aedtbrtar, coincide at the mortar
end-points, we have to use two projection polynomials okomhe or two, less than the
Legendre function of orde (equation (3.46)). To avoid loosing the diagonality in thé |
hand side of the projection, equation (3.54), we have to shdloe polynomials of the form
(3.49), (3.51), (3.52). After using quadrature of ordérin (3.54), the only non-diagonal
term introduced are thos,, andR 5, that correspond to the element end points. Since we
know that those element end points coincide with the mondrpoints, we can move them
to the right hand side (see equation (3.69). Now, we can d&fmbasis on the mortars and
its neighbouring elements.

If v, = T;, the basis folP*| (v;) is a set ofN — 1 polynomials of ordetV — 2, which
has the form

N-2 —Ly((-eMa+¢&Y)
e = s DIn(E)(E—€N)
i={1,..,N—1}are the GLL points.

={1,..,N -1}, (3.49)

where¢N

In the general case whep = U I;, K > 1, the basis foP%1*(v;) consist of the

union of basis functions for all edgés For an edge that does not share any end points with
the mortar, the basis is a set&f+ 1 Lagrangian interpolants of ordéy:

N =pN i={0,1,..,N}. (3.50)
In the last case when an edfe shares only one end point with a mortar, the basis
functions are polynomials of orde¥ — 1. If the end point corresponds g = —1, the

polynomials are:

N-1 ~L, N -1 +&N)
O F o i) &)

—{1,..,N}. (3.51)

3.4. Mortar element formulation 45

) T &

A(X)

i

Fig. 3.7: lllustration of two different representations of the same point in physipate. The point
B(x) is represented in the coordinate system of an element. The p@intis represented in
the coordinate system of a mortar. The parameiéds the offset between the mortay and
the edgd’;.

Otherwise, if the end point correspondsctg = 1 the polynomials are:

L)1+ =&Y
N(N +1LnEN)(E - &)
Since, we use the Lagrangian interpolants through GLL ppthe functionsl; defined
above, satisfy the relatiof;(£{;) = 0,; for all nodal points{;, except those that coincide
with the end points of the mortar.

TNe) = i ={0,1,...,N —1}. (3.52)

3.4.2 Projection operator

In order to express the integral matching conditions, esged by equations (3.38), (3.40),
we insert interpolation formulas (3.47), (3.48) in (3.38043.40) and compute the integrals:

/ (u—)¥,ds=0, (3.53)
Yi

for each basis function of the projection spakg € P5IM(v,), ¢ = {1,..., Ksa}
defined in (3.49), (3.50), (3.51) and (3.52). To compute thegrals over the mortay; we
have to sum up the contributions from all the element edges ~;,j = {1,..., K}, while
on eachl’;, the integration is performed with Gauss-Lobatto quadeatilio integrate along
the edges of the elements, the order of the quadrature farheterm will be N. Since
the terms that contaif® as their polynomial expansion can be of much higher order the
quadrature ordeN, we useN as quadrature order for the |ntegrat|or’rqu v,.

In case when¥, is nonzero over an element edggthe integration of theL\I! term over
I'; yields

/ n dS—Zun/ hY (¢ 1S(§)|d§ = Byuq + Rgo®o + Ry Py (3.54)
n=0
where
By = py1547), (3.55)
Ro = Wu(=1)p'1Sy"], (3.56)

Lj
Ry = W()pNISN I, (3.57)

46 Chapter 3. Mortar Element Method

<>

Fig. 3.8: Representation of a mortar offsef, edgel'¥, mortar-y;, and the integration striy. The
offsetso can be positive of negative. In this casgis positive,£, and¢; are the intersection
points between the eddd and the mortary;.

andpl are the weights of the quadrature of ordér

The |SiF 7| are metric terms, that are generated by the transformafittmeocoordinates
between the edgE; and their representation in the computational space. $ircedgd’;
is a straight line on a two-dimensional plane, the metrimteare simply the length of an
edge in the physical space, divided by the length of the edgeei computational space:

r el el o V@2 — 207 + (2 —yi0)® [Tyl

If the test function¥, is not zero at the end poin{s= +1, the termsRyo and R will
be not zero. In the case that an edge does not share any endvibim mortar, equation
(3.50),R40 andRqN are zero. Ity; = T';, both terms are not zero and this is the case that we
consider in our implementation. Next, we integrété, over an element edde; in a similar
way as the integration afV,

~ I N
/ 2, ds= 3 @, / N EE) T OISEdE = 3 Py (3.59)
Ly m=0 -1 m=0
where
N —_— JR— J— JR—
Pym =Y b (€)W (€)0N 1577 1. (3.60)
n=0

The functioné (¢) is a coordinate transformation between two different regnéations of
the same pointz, y) in the computational space for a mortar and for an elementofgpute
the transformatiog(¢) the mortar offses,, is introduced as illustrated in figures 3.8 and 3.7.
A point z is represented in two computational spaces, for a mortdrf@ran element by:

AT(€)) = B(x(&)) + so (3.61)

3.4. Mortar element formulation 47

S@ —TE+ @+ T = gl — e+ (w2 1) + 50 (362)
(fE+1ul) = (Tylé +ITs0) + 250 (363)

£ = 20 Ll
) = - 1+‘%|(§+1). (3.64)

Now, we combine equations (3.54 and 3.59) and assemble titedions from different
element edgeB; together. We obtain:

N
Byug + Ryo®o + Rx®x = Y Pym®m, q=1{1,....Ksun} (3.65)
m=0
Byug = w@er@0+§:Rm¢m+Rm¢ — R 5% (3.66)
N 1
Bquq = (Pq() - RqO)(I)O + qu(I)m —+ (Pqﬁ - Rqﬁ)q)ﬁ (367)
m=1
Nil
P,,®
_ (PqO - RqO) m=1 amem (Pqﬁ - Rqﬁ) .
Ug = B, by + B, + B, O (3.68)
Now, the projection operator is defined as:
N-—
¢@0+§:Qwﬁm+Qﬂ@ﬁ,q=uwmed (3.69)
where
_ Dym _ P = Rer)
Qom = B, Qg = B, , k=0,N. (3.70)

Term Ry, arises from the fact that we need to make the values of ourtitums; (on
both side of the mortar, and on the mortar itself) the sambéeend points of the mortar.
In the general case, the order of the spectral expansiortheawo sides of the mortar are
not the same. Therefore there are two projections of the {&@9) for each mortar. To
form the global linear projection operator, the projectigerators are constructed for all
mortarsy;, i = 1,..., M, together with the conditions for the verticé$v}) = u(v}) and
O (v?) = u(v?) . The global linear projection operator becomes:

i=Qa, (3.71)

whereu are nodal values on those element edges that require ndorsong matching ané
are the nodal values on all the mortatsi = 1, ..., M. The operatof) has a block structure,
because the mortars always have two sides to connect. Imaje¢he matrixQ consist of

48 Chapter 3. Mortar Element Method

two sub-matrices of similar structure, stacked on top ohesher. For the particular case we
consider (geometrically non-conforming), the mafhas the structure:

Q — (ICZSlave)
Master
whereQsiq.¢ is the projector on the slave element side &i5d ..., is the identity matrix on
the master side. Elements that share a common boundary se@ise share data im,. In

a non-conforming method the following generalization iasidered: the local solutio@* is
a projection ofu;, onto the local basis:

i = Q* uy,. (3.72)

The simplest interpretation of equation (3.72) is to thiflkQ¥ as a sort of interpolation.
In general the data values along the non-conforming boyrgigments of each small ele-
ment are not independent degrees of freedom but are obtajnpobjection of the solution
along the adjacent (large) element onto the local polynbbaais. Figure 3.8 illustrates an
arbitrary mortar/edge configuration, and introduces thtgone of mortar offsets,, mortar
7; of length|y;|, elemental edg&” of length|I'}|, and the integration strifp = T'¥ N, of
length|4]. The intersection between the mortarwith the top and bottom corners of the
integration stripy, given in mortar-local coordinates, is represented by thietpé, and¢; .

rl
4 T -
“/ Q the integration strip
So>0
1
Q
4 2 the mortar
yl “/ Q
So<0

Fig. 3.9: Non-conforming mesh for a simple splitting, derived from the refineroéa conform mesh.
The offsets, for the edgd’} is positive. For the edgE? s, is negative. The mortay, is a
union of the edge§? andT';.

We consider only the cases where for eactthe mortar) there exists an elemé&lft that
acceptsy; as an entire edge. In this case, the refinement process\stdrta mesh which
is initially conforming. Figure (3.9) illustrates such aseain which the integration strip is
4 = T'¥/2. Equation (3.72) gives as the procedure for constructicth@local solution. In
the non-conforming case, a corresponding change to equ&ti®l) is made. In the standard
conforming methodA andf are formed by summing local contributions frashelements.

3.5 Solution techniques - static condensation

In this section we describe some implementation technjquesl to solve the large algebraic
system that results from non-conforming spectral eleméesuretizations. The static con-
densation algorithm is a method to reduce the complexithefdlemental matrices arising

3.5. Solution techniques - static condensation 49

in spectral element methods. Because the elemental ns#itean be split into compo-
nents containing only boundary and interior contributiastatic condensation is particularly
attractive for unstructured spectral element methods hénmortar element method, there
is a natural division of equations into those for boundagmertars) and element interiors
(Madayet al., 1989).

Static condensation techniques may be applied to genemasyrametric or symmetric
matrix systems. We consider a non-symmetric matrix systeinttoduce the static con-
densation method. To apply this method to a discrete equat@®begin by partitioning the
elemental matrix into boundary and interior points, firstdonforming elements, and second,
for unstructured elements:

A11€1 AlfQ uf féc
= , (3.73)

k k k k
Ay A u; fi

whereA¥, is the boundary matrix: the componentsAf resulting from coupling between
boundary-boundary nodes interactioms;, is the coupling matrix: the components Af°
resulting from coupling between boundary-interior nodgsriactions A%, is the coupling
interior-boundary matrix : the components Af resulting from coupling between interior-
boundary nodes interactions aAd, is the interior matrix: the components Af* resulting
from coupling between interior-interior nodes interanto

To solve this system (3.73), it is factored into one for tharmary nodes, and one for the
interior nodes, for each element (sub-domaa)

Afuf + Abuf £r (3.74)

Abul + Abub = £ (3.75)

(2

After elimination ofu,; from the second equation, and replacement in the first exuate
obtain:

[A]fl - AlfQ [AIQCQ}il Agl] ullf - ff - AIICQ [AIQCQ}il fik (376)

uf = [AL]TUEF - AL uwl (3.77)

7

The global boundary matrix is assembled by summing the eleahmatrices:

K
A=) [AL — AL [AR]TT AL (3.78)
k=1
To evaluateA 1, first, we evaluate and invelAY, — A%, [AL,]~1 A%,] which is also

known as the Schur complement Af, in A;;. Subsequently, as part of this phase, we

50 Chapter 3. Mortar Element Method

compute and store for each element the inverse of the int@atrix [A%,]~! and its product
with the coupling matrixA%, [A%,] . The productsAk, [AL,] ™" £F and[AL,] ! A%, uk
can be also treated as local operations, because they atllvénthe matrix-vector prod-
ucts of a known vectof® andu’. The global assembly is only necessary for the boundary
system when using static condensation. Once the boundhryosois known, the solution
for the interior elemental nodes, given by equation (3.2@)) be performed at elemental
level. Because the coupling between elements is 6hJythe element interiors are indepen-
dent and on a multiprocessor system this final stage can fsedsobncurrently. The effect
of constructing each local Schur complement matrige, — A%, [AL,]"" AL]is to
separate the boundary nodes from the interior nodes. Howneeinverse matri>{A§2]71

is typically full, which means that the boundary nodes aghtty coupled. It is this coupling
which dictates the bandwidth of the globally assembled Bcbmplement system. To re-
duce computational time and memory, we wish to find an optforah of the discrete system
corresponding to a minimum bandwidth for the matAix;. To compute the bandwidth we
simply need to find the maximum difference between the globahbering of the bound-
ary nodes within each element, which is a Greedy algorithaad$1995). Even though the
boundary nodes are coupled to all other boundary nodes ghbeuring elements, they are
not coupled with boundary nodes within non-neighbourirggrednts. The reduction in band-
width translates to direct savings in memory and computatioost. Some standard methods
of bandwidth reduction used for finite elements, e.q. thensy Cuthill-McKee algorithm can
be also used, but they will be used only for the boundary sy$&aad, 1995) .

Let us consider now the non-conforming case (mortar methtsdjhe mortar method,
the interface conditions, the integral matchings, are isepovariationally through ag?
minimization condition. After discretization, we can s#lsome edges to become mortars.
In the non-conforming case, we make the following geneatitin: the local solutiomi” is a
projection ofuy, onto the local basis.

We can write this as follows:

" = Quy. (3.79)

For a master elemen() is the identity matrix, herai;, can be replaced in (3.79) by
the solution along the corresponding master edge. For s€’sklement, leti, represents
the values of the true degrees of freedom along the boundanfqrming edges plus mor-
tars) andu; the values on the interior of the element. The vector of nadefficients for a
non-conforming element can be related to the standarddgomifig) coefficients through the
matrix equation:

k= = (3.80)

where0 is the zero matrix] is the identity matrix andQ” is the transformation (projection)
matrix that relates the master nodal points to the origimaindary points of the slave ele-

3.5. Solution techniques - static condensation

51

ment. Some elements may have more than one mortar edge.sloabé we have to sum
the contributions of all intersections of the mortawith the particulad’. Equation (3.80)
provides the principal relation, required to form the elataématrix system. If the local

system for a standard conforming element is given by:

Ak uk _ fk

(3.81)

then the corresponding system for a non-conforming elemdMadayet al., 1989):

[Qk]T Ak Qk ﬁk _ [Qk]T fk:

wherea* = [a} uf]”.

Using the static condensation method, the elemental syistebtained:

Q" 0 || A AL | | QF 0 || @

0 I AL AL, 0 I u}

After evaluation of the left side of the system (3.83), weaidut

Q4" A% Q" Q1" Ay | | &) Q"]

AL QF Af, uf 0

Q" o
0 1
£
f,k

As in the conforming case (3.73), we have the same elemeysism:

k Ak k r3
AT, AT u; £,

P>
INES
vt

B>
NES
NS

c
J

=

where

~ T X
A’fl = [Qk] A]fl Qka

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

52 Chapter 3. Mortar Element Method

A}f2 = [Qk]T Alfza (3.87)
A% = A} QF (3.88)
AL, = AL, (3.89)
B = Q4 f, (3.90)
T (3.91)

(3.85) can be factorized into one for the boundary (mortaosles and one for the interior
nodes, so that ofR* we have:

~ - <1« . _
[Alﬁ - Alf2 [Alzcz] [Agl] uzlf = 6 - [A12A221] £ (3.92)

AQQ u; = E — Agl Up. (393)

During a pre-processing phase, the global boundary matassembled by summing the
elemental matrices of the conforming and non-conformiegneints:

K
A= Z/[Au — A [AL) ' Ay (3.94)
k=1
In the case when a direct solver is used to solve the syst@3)(3he assembled boundary
matrix is prepared for the solution phase by computing itsfatiorization. Then the system
is solved by setting up the right-hand side of the global lbauy equations, solving the
boundary equations, using a back-substitution, and amggydcomputing the solution on
the interior of each element, using matrix multiplicatidra illustrate this process, first, we
construct the global operatér. The block diagonal matrix is regrouped to yield a system of
linear equations (Madast al., 1989):

Ass Asy ug fs
- (3.95)
Ars Agr uy fr

where the points that lie on the skeletSrfthe skeleton contains the boundaries points of the
elements) are ordered first in the global veaior (ug,u;) and the right-hand side vector
f = (fs, f7) that correspond to the nodal points in a conforming subregip.

3.6. Refinement criteria 53

Since the solution of the linear system (3.95) has a diskoityi at the non-conforming
interfaceS, in order to minimize the error (Madat al,, 1989), the following problem has to
be solved:

Q" 0 || Ass Ags Q 0 || ug Q" o || fs
= (3.96)
0 I A]S A[[0 I ur 0 I f]

Itis easy to see that a solution of (3.96) satisfies the seexjoirements we impose (3.38),
(3.40), (3.37) and (3.39) on the non-conforming edges arehch conforming subregidn,,.
Because we try to reduce the bandwidth of the boundary syétsmatural to take advantage
of the zeros of the boundary matrix and to use a sparse mathnique, coupled with an
iterative solver. One of the key issues is to define data tstreis for these matrices that are
well suited for efficient implementation of standard itar@aimethods. In our implementation,
we used the sparse matrix format introduced in Saad (1995).

A direct solver is advantageous only when the cost of faetptine boundary matrix can
be spread over a large number of solutions. In this case,tbalgost of a back-substitution
using the factored boundary matrix becomes dominant.

3.6 Refinement criteria

There are two key features in the development of adaptivéeses
1. the non-conforming discretization
2. the error estimators that serve as criteria for refinement

The first role of the error estimators is, of course, to pre\ad estimate of the actual error
on a per element basis, as well as globally. Comparison dfléraental error estimates pro-
vides criteria as to which elements must be further refindg 8stimate must be efficiently
calculated, such that it may be used as a post-processipgsteell as in the course of the
calculation, such that time-dependent mesh refinement are@d. Adaptive calculations
involved decisions which must be taken "on the fly”, based @mes succinct information.
This information can usually only be based on data from teedsailable step, but must be
able, in some way, to predict how the solution convergesrderoto direct refinement in the
right direction.

We consider in a few types of refinement criteria based oratbesteriori error estima-
torsintroduced by Babusks and Dorr (1981), Berger and OligeB418nd Mavriplis (1990).

The first refinement criterion(gradient) we use is the simplest:
1. refine everywhere where the solution gradients exceedairc¢olerance.
Itis required that

IVu® |l 22qr) < ellunllr), (3.97)

54 Chapter 3. Mortar Element Method

wheree is the discretization tolerance. In high order methods, axefa locally global quality
which provides sufficient information to estimate errorshoiit excessive additional calcu-
lation. The gradient calculation in this case, is not lidite a few points but rather tied to
the size of the element, which can be quite large for speekeahents.

The second refinement criterion(extrapolation) was proposed by Mavriplis (1990)
and is based on the calculation and extrapolation of thetepeof the Legendre discretiza-
tion, to estimate the error as well as to predict convergeatss. The error estimators pro-
posed are single mestposteriori error estimators contrast to those of BaBka and Szabo.
The concepts used by Mauvriplis in the following error estions are simple. Typically, if the
numerical approximation to the spectral elem@ftis written as:

N
un(x) = anLn(r), (3.98)
n=0

whereL,, is the Legendre polynomial of degr@é anda,,’s are the spectral coefficients we
have:
1/2

2 [e%s} 2

ay / [a(n)])

S (R SR - e R T (3.99)
! (%(QN—H) Ne1 SCN D) g @

wherea(n) is the Legendre polynomial spectrum afidis the domain. The two contribu-
tions to equation (3.99) are generated by the approximatioor due to truncation, and the
approximation error due to the quadrature and the best polial approximation (equation
(A.28). The functioru(n) is a least squares best fit of the last six points of the spactou
an exponential decayi(n) ~ c.e~?<". The decay rate, indicates insufficient resolution
if 0. < 1 and good resolution i#, > 1. The refinement process uses the decay rate to de-
cide whether it increases the number of elements and desreasordingly the polynomial
degree, or whether it has to move elements and reconsteugrith

The reader may be referred to Appendix A for an introductibtihe error estimators and
the derivation of the actual error incurred by the spectiexhent approximatiofju — w, |

The third refinement criterion(spectrum) (Henderson, 1994) is based also on a lo-
cal polynomial spectrum. In equation (3.99) the main cbotion comes from coefficients
of order N. By summing the tail of the spectrum, we can require that feetsum satisfies
the discretization tolerance. The tail of the spectrum camfan estimate of the approxima-
tion over|ju — uy||. First, we average over polynomialsirandy to produce an equivalent
one-dimensional spectrum:

N-—1 N-—1
trace spectrum: Z lasn_1] + Z lan—1;] = lan—1.5-1], (3.100)
i=0 j=0

and subsequently the refinement criteria becomes:

N-1 N-1
Z lai,N—1] + Z lan—1,;] —lan—1,n-1] < ellunllc2()- (3.101)
i=0 J=0 (")

3.7. Numerical results 55

From the numerical results (see numerical results tablg &é can conclude that the
spectrum-based (extrapolation) estimate is nearly ebprivao the trace spectrum, but the
trace spectrum is easier and faster to compute.

The refinement decision is based on the above presentedmefmeriteria. First, we
compare elemental error estimators to a globally acceptakl of error, set once for the
whole run. Second, the elements with error over the acckpkewel are marked for refine-
ment. Another indicator for the refinement decision is tleeredntal error estimator. In order
to determine which element has the greatest need for refimeme compare the elemental
error estimators of the neighbouring elements. Based arctitnparison, we decide which
element should next be refined. At this moment our implentemtaloes not limit the num-
ber of elementdy, or the total number of degrees of freedom created duringetfireement
process. In a future extension of the implementation, theiitmam value of N, the order of
polynomial, K, the number of elements, adtOT AL_DOF the total number of degrees of
freedom, could be imposed. When the maximum values of paemsmetentioned above pa-
rameters will be reached, refinement will be prohibited.ojthe decision to refine by adding
elements, or increasing the order of the polynomial, cog@dased on the value of the
decay rate of the spectrum in each elementz If> 1 we should increase the polynomial
order, and ifo, < 1 we should increase the number of elemeiitsThese are referred as
andh refinements to the finite element community. The decisiorotrsen elements is not
easy. The spectrum decay can predict convergence, but doésve the ability to predict
convergence, if one remove elements. For now, coarseniirgited to remove the children
elements and to activate the parent elements (see VoxeHaagin Chapter 4).

3.7 Numerical results
The mortar method has been implemented, using a combinaftiGr+ and Fortran77 lan-
guages. C++ for the adaptive bookkeeping, and Fortran77/©tthe basic numerical

modules. We illustrate the performance of the method foeisdsteady and unsteady tow-
dimension problems.

3.7.1 Gaussian distribution on a uniform grid

The first example is a Gaussian distribution on a uniform @deengard and Lee, 1996).
We consider the equation

2 2
~ Au = (40022 — 800)e " /7", (3.102)
wherer? = 22 4 y? ando = 1/2/20, for which the exact solution is given by:
2 2
u(z,y) =e " /o, (3.103)

The computational domain {3 = [—0.5,0.5] x [-0.5, 0.5] and the homogeneous bound-
ary conditionsu(z,y) = 0 on 9€2. First, we compute the solution on a uniform refined grid,

56 Chapter 3. Mortar Element Method

and then, by using the different error estimators definetlérprevious section, we refine the
mesh and compute the solution on the new grid using the miandementation.

In table 3.1 the relative errors and the estimators are shavais table shows that the
error estimates, spectrum and extrapolation, are neartlivagnt. Because the spectrum
estimator is easier and faster to compute, this method willded as the basis method for
the mesh refinement. In figure 3.10 we illustrate the adaptiesh refinement based on
two different refinement criteria: polynomial spectrum axtrapolation. In this case both
methods produce roughly equivalent discretizations, 8400 elements. The performance
of the adaptive mesh generation method is illustrated tirdigures 3.10, 3.11, 3.12 and
3.13. For different polynomial orders we measure the rgdadirrors in both conforming
and non-conforming cases. We see that the number of thespaoded to achieve the same
relative error, is less in the non-conforming case than éncitnforming case. The evolution
of the number of the mesh points based on the imposed rekatiog, for non-conforming
and conforming mesh, for different polynomial orders, ligstrated in figure 3.14.

Table 3.1. Error estimates (spectrum, extrapolation) etative errors (fo, GL), (£2),
H! norms) for solving the Poisson equation on a uniform gridwgiblynomial order
N=9 elements:

Dofs Spectrum| Extrapolation| ||u — up|lco,ar | v — upllcz | [Ju—uplln:
324 0.0896632| 0.109066 0.0532076 0.0153128 | 0.132968
1296 | 0.00347407| 0.00343821 | 0.000580771 | 9.04734e-05 0.00538864
5184 | 1.59027e-05 1.59011e-05 | 2.91117e-06 | 2.67009e-07| 3.59727e-05
20736 | 5.94265e-09 5.94261e-09 | 2.51794e-09 | 2.54511e-10 6.94391e-08

Table 3.2. Relative errorgdqo, GL), £2, H! norms) for solving the Poisson equation
on a non-conforming mesh. The adaptive mesh generatiorsedban the local
Legendre polynomial spectrum:

In table 3.2, we show foN = 9 the relative errors for the Gaussian distribution after the
refinement of the grid based on the spectrum error estimateeven level quad-tree is used

Dofs | [lu — unllco,or | lu—unllcz | llu—unls,
324 0.0532076 0.0153128 | 0.132968

1296 | 0.000580771 | 9.04734e-05 0.00538864
2268 | 2.91124e-06 | 2.67035e-07 3.59741e-05
8100 | 2.47615e-09 | 2.64522e-10 7.02348e-08

to describe the mesh (see chapter 4).

3.7.2 Singularity problem

The second example we consider is a singularity Poissorigarob

—Vu=1,

3.7. Numerical results 57

st

saieises

HEHH
H

Fig. 3.10: Adaptive mesh generatiorly = 7, (left) adaption based on the local Legendre polynomial
spectrum with a tolerance ef= 0.23 x 10~19; (right) adaption based on solution gradients
with a tolerance o = 0.09.

10000 : ox 10
—— Conform
8000¢ 4 —— Non-confor|
1.5¢ _]
Polynomial order N=5 Polynomial order N=7
2] (%]
£ 6000¢ £
© kel
§— o l
o s}
S 4000¢ S
z pd
0.5r
2000¢
0 — — 0- -
10° 10 107 10° 10" 10° 10°
llu— unl|c2 |l — upl| c2

Fig. 3.11: Performance of refinement fé¥ = 5 and N = 7; adaption based on local Legendre poly-
nomial spectrum.

58 Chapter 3. Mortar Element Method

4 4
2.5X 10 2_5x 10
—— Conform —— Conform
—=— Non-confor —— Non-confor
2r _] 2t]
Polynomial order N=9 Polynomial order N=11
(2] 0 L
5 1.5¢ 5 1.5
© ©
ks ©
c 1r s 1r
z pzd
0.5 0.5r
0 : 0= = —
10 107° 10° 107 10 10° 10°
[— w2 [[u — un 2

Fig. 3.12: Performance of refinement fav = 9 and N = 11; adaption based on local Legendre
polynomial spectrum.

gx10° | x10°
—— Conform —— Conform
—— Non-conform 5l —=— Non-conform|
4f 1 .
Polynomial order N=13 Polynomial order N=15
4, 4
L3
=) 2
[eX-18
5 53
g7 :
22
1r 1+
0 -15 LlO ‘75 0 0 -20 L15 LlO ‘ -5 0
10 10 10 100 10 10 10 10 10
l[u— unl 2 [l — up| 2

Fig. 3.13: Performance of refinement fa¥ = 13 and N = 15; adaption based on local Legendre
polynomial spectrum.

3.7. Numerical results 59

4 4
6X 10 ‘ 2.5X 10 ;
—— N=5 —— N=5
—— N=7 —— N=7
5+ —e— N=9 2 —— N=9
—— N=11 —— N=11
4+ —— N=13 —— N=13
7 —— N=15 D15l —— N=15
5 S™
Tl °
o Conforming ° Non-Conforming
o S 1t
Z2r pd
Al , 0.5+
O720 L15 ‘710 ‘i5 0 0—20 ‘—15 ‘—10 ‘—5 : O
10 10 10 10 10 10 10 10 10 10

[l = unl|c> [— unl|c2

Fig. 3.14: Adaptive mesh generationleft) conforming case right) non-conforming case. The adap-
tion is based on local Legendre polynomial spectrum, using differ@ghpmial orders.

Fig. 3.15: Adaptive solution of the Poisson equation with corner singularitiet) (adaption based
on the solution gradients with a toleranceecf 0.04; (right), adaption based on the local
Legendre polynomial spectrum with a tolerarce 0.8 x 107,

60 Chapter 3. Mortar Element Method

with homogeneous Dirichlet boundary conditions@n= [—1, 1] x [—1,1]. The solution
exhibits weak singularities of the forntlog(r) asr — 0, wherer is the radial distance
from the corner. However, the solution gradients are ldrgkemg the edges of the domain,
where the structure af is rather simple. To reduce the error for this case, we havelyo
only on the local polynomial spectrum refinement. The mefhement based on solution
gradients completely misses the location where the ermer$asgest. The structure of the
solution is shown in figure 3.15.

3.7.3 Smooth problem

The next example we consider, is the following Helmholtz sthgroblem:
— V2u + Nu = f(x,y)onQ = [0,1] x [0,1],

with Dirichlet boundary conditions:

A -1+ -1)

U(I, y) = uexact(xv 1/) =e€ onof.

Since, the solution exhibits a sharp, but smooth, boundsmrinear the corner (1, 1) (see
figure 3.17), for large\, we expect a smooth solution, and hence a smooth and exjahent
decaying spectrum. In figure 3.16 we illustrate the meshmge¢ee based on two refinement
criteria for A = 50. The grid is refined in approximately the same location, rlearcorner
(1, 1), and to the same depth for a given discretization dolee. The left one is based on
the solution gradients and the right one is based on the Laaggdndre polynomial spectrum.
Figure 3.17 illustrates the solution, before and after diimement. The left images show that
a further resolution is needed near the corner (1,1). Usirgfinementthe overall error has
been reduced by at least two orders of magnitude. The rigligénshows the solution after
refinement.

3.7.4 Two-dimensional linear unsteady convection problem

The last example presented here is a two-dimensional limesteady convection problem
(Vreugdenhil and Koren, 1993). We consider the unsteadtiost of a Gaussian hill de-
scribed by the convection equation in two dimensions in traanQ = [-1,1] x [-1, 1]:

Jdc Oc Jdc
_ - — = 1 .
6t+u8z+v8y 0, t e [0,1], (3.104)

where the velocity field describes a pure rigid-body rotatio

U= —wy,v =Wr,w = 2.

3.7. Numerical results 61

Fig. 3.16: Adaptive solution of the Helmholtz problem: (left) adaption based on theisnlgradi-
ents with a tolerance = 0.015; (right), adaption based on the local Legendre polynomial
spectrum with a tolerance= 0.8F x 10712,

Fig. 3.17: Adaptive solution of the Helmholtz problem: (left) the solution before refiaet; (right),
the solution afteh-refinement, adaption based on the local Legendre polynomial spectru
with a tolerance = 0.8 x 1072,

62 Chapter 3. Mortar Element Method

The initial condition is a Gaussian distribution, given by:

2 1
e(,y,0) = 0.01Y" 1 =y [(@ + 5)2 +

The exact solution is given by:

_ 47"2 _ l 2 l . 2
c(z,y,t) =0.01%" ,r=4/(z+ 5 coswt)? + (y + 5 sin wt)2.

This problem is solved adaptively, starting with a coakse- 4 equal-sized element grid
shown in figure 3.19 (left). For the time discretization theudk-Nicolson scheme is used.

Table 3.3. Discrete maximum err — ¢, ||,z for the rotation of a Gaussian hill, time
t € [0,1]; N is the degree of approximation. The maximum number of elésnisr22
for a tolerance = 4.0F x 10~2:

Time-steps| N =8 N=12 | N=14 | N=16
128 | 7.60E-02| 4.52E-03| 1.50E-03| 0.87E-03
256 | 4.36E-02| 3.25E-03| 2.50E-03| 1.85E-03
512 | 2.35E-02| 2.10E-03| 1.50E-03| 1.10E-03
1024 | 1.30E-02| 1.1E-03 | 0.9E-04 | 0.7E-04

In table 3.3 the discrete maximum ereoe ||c—cp || oo, ¢ IS given for different time steps.
The results show that the solution becomes more accurabe éiste step decreases. Even in
the non-conforming case, the errors due to time discréatizatre still large (for conforming
case see Vreugdenhil and Koren (1993)). To eliminate thethprove that we get more
spatial accuracy, we will considarmodified exact solutionfo compute thenodified exact
solution the equation is solve for a polynomial ord¥r= 22, a number of elemerk’ = 64
and time step=4096. Computing the nofi@,.. — ¢1ll,cr We are able to eliminate the
error due to time discretization. Table 3.4 illustratesithprovement in accuracy for the 128
time step cycle.

Table 3.4. Discrete maximum errid,,e.. — cn |00, ¢ fOr the rotation of a Gaussian hill;
N is the degree of approximation. The maximum number of elésrisr2?2 for a tole-
rancee = 4.0F x 1072

Time-steps| N =8 N=12 | N=14 | N=16
128 | 2.60E-08| 2.12-08 | 1.6E-08 | 1.35E-08

Figures 3.19, 3.20 and 3.21 show several intermediate iadagieps. In figure 3.1@eft)
the initial mesh is shown, together with the collocationng®igrid after the first refinement
(right). In this case, the toleranceds= 1.0F x 103, which increases the number of refined
elements. The Gaussian hill is rotated quite accurately taere are no oscillations due to
the low number of elements of the initial mesh.

3.7. Numerical results 63

@ (b)

Fig. 3.18: Spectral element mesh fof = 9; (a) the parent element, (b) the children elements.

Fig. 3.19: Unsteady rotation of a Gaussian hilleff) the initial conforming meshyight) ¢ = 0.00, the
spectral non-conforming mesh after the first refinement.

After the first time step, the mesh is dynamically adaptede Wfinement algorithm
tracks the movement of the Gaussian hill quite accurateguw Blements are mainly added
or removed from the mesh based on the refinement Legendragmigl spectrum criteria.
The new elements are added around the boundary of the hilhere, if that is the case, the
oscillations appear. To coarsen the mesh, we impose thaeals that belong to the same
parent element have to pass the coarsening test: the loeetrgsm of each child element
has to be smaller than a specified threshold= 1.125E x 10~3. The regions with small
solution gradients are candidates for coarsening. When wergte new elements , due to
refinement, the mesh and the data of a parent element isatdéed to a new mesh and data
that belong to its children elements. Also, when the childeéements are pruned, due to
coarsening, the mesh and data are interpolated back tqtireint element. In both case, the
interpolation is spectral ifiz, y). Figure 3.18 shows the spectral mesh of a parent element
(a), and of its children (b) foN = 9.

64

Chapter 3. Mortar Element Method

[
iEm iz
HEHT
i
TR T
. FHHEH
R
THFEEE | P T
s HH T
g HHT
R A
e

Fig. 3.20: Unsteady rotation of a Gaussian hilleft) ¢ = 0.20; (right) ¢ = 0.50.

FE e
|
|

THH
FrHAT

Sisinig

iminia
HEEF

+
FH

imaaims
T

FEFHT | HHH

HE

Fig. 3.21: Unsteady rotation of a Gaussian hilleft) ¢ = 0.75; (right) t = 1.0.

3.8. Conclusions 65

3.8 Conclusions

In this chapter, we outlined the basic features of the maliseretization. The new non-
conforming method relieves the spectral element methodsofiegometric and functional
restrictions, namely that the interface between two adjpeements must be conforming.
Also, the mortar discretization enables functional digpaat element interfaces, by using
a L£? projection from the mortar to the element edges, and by eimigrexact continuity at
element vertices to maintain the jump in functions betwdements small. Since tH} (€2)
continuity is still ensured, the mortar formulation gudess optimality. In our test cases we
achieved an exponential convergence, thus the optimadgybleen demonstrated.

An interesting part of the method is found in the refinemeneca that are based on
posteriori error estimators for the spectral element nektidis provides a heuristic error es-
timate that is independent of the system being solved. Tima&®rs are based on an analysis
and extrapolation of the Legendre spectrum of the numesiglaition, as a post-processing
step which takes very little computational effort. They auéte sharp, differing from the?
error by only a small multiplicative factor. This can be a daadication of the error we want
to achieve through adaptive mesh generation. For examplegding a threshold of order
10~? for the spectrum-based estimates, we can estimate an drther solution’s accuracy
proportional to10~?. In the case of corner singularities, the adaptive solutased on the
gradient does not produce the right result. The local patyiabspectrum indicates the cor-
rect location for refinement, while the magnitude of solatiwadients can be misleading. In
this case, mesh refinement based on solution gradients etetypiisses the location where
the errors are largest. For unsteady problems, the errersodihe time discretization can be
large, and to prove that the accuracy of the solution is iwvgupwe have to eliminate them.
A modified exact solutiohas to be computed.

In summary, the mortar discretizations represent a sigmfi@advance for spectral el-
ement methods, which offer new possibilities for time-defent moving boundary calcu-
lations. The error estimators are powerful concepts, thathe used automatically in an
adaptive refinement scheme. Using this non-conformingtsgdeslement method, the mesh
generation task in computational modelling is minimizeegn€rating new elements only in
regions where the resolution is inadequate, it will have gehmpact on the memory usage
and computational times. Less memory storage will be ne¢aletiore the elements and
the computational time will decrease. The four test casélpnos illustrate the advantage
of the present error estimators: the capability to predictvergence behavior is crucial to
an efficient refinement process. The use of single neepbsteriorierror estimates, is an
improvement to the multiple mesh error estimates. The es@ismcan be used as a post-
processing step as well as in the course of the calculatigoh that time-dependent mesh
refinement can proceed.

66

Chapter 3. Mortar Element Method

Chapter 4

Software Implementation

In this chapter, the architecture of the software systemthadnain data structures, C++
classes, used for the implementation of the mortar methedrd@roduced. The dynamic

data structure, needed to keep the dynamically refined niestiso described. Since the
number of the C++ classes is large, only a few classes wilkbsgmted here. Also, the basic
operations required to implement the common proceduregdotsal element methods, will

be described.

4.1 Introduction

We present a software infrastructure for the implementatibthe mortar method used to
solve a system of partial differential equations and thegrdtion of this infrastructure with
an adaptive spectrél mesh-refinement method. The development of large code<itam-s
tific computing is known to be a comprehensive and time comsgprocess. Moreover, large
stand-alone Fortran codes dominate the field of scientifigprding. Long-term evolvement
of such codes is usually an error-prone and expensive @oaatess the original software
is carefully designed for future extensions. There is aioairig debate regarding the pro-
gramming language of choice among competing languagesasuCh+, Fortran90 and their
extensions. Not only must the software be portable across@wvariety of computing plat-
forms, but other issues such a easy incorporation of newstiaigtures, easy of programming
interfacing via user interfaces and code maintenance nausbhsidered, before choosing a
particular programming language and style. Turning to thlel fof computer science, years
of experience indicate that software reliability can bengigantly improved by a modular
design that encourages reuse of a code. Modularity and ende ican be achieved by using
traditional implementation in Fortran. However, this rizqs careful and complicated con-
siderations. Object-Oriented design and Programming (Q&Mniques offer a much easier
and more efficient methodology for obtaining the above noetil goals. The improvement
of C++ compilers makes the C++ language a reasonable alterna Fortran, that offers the
most important Object-Oriented constructs along withs§atitory computational efficiency.
C++’s major features as :

1. support for data abstraction and object-oriented prograng

2. classes and abstracted classes that encapsulate détactichs

3. hierarchies of classes, based on inheritance and neuiltiperitance
4

. support for real-time polymorphism via virtual functgon

68 Chapter 4. Software Implementation

. dynamic memory allocation and deallocation
. overloading mechanism for operators and functions

. support for the creation of templates and generic funstio

o N o O

. the Standard Template Library (STL) which provides aemlbn of generic data struc-
ture and algorithms,

offer a powerful implementation mechanism for most of thenatical code. However, we
advocate a hybrid approach of using an Object-Orientedrprogning language such as C++
for handling the data structure for adaptive spectral efgmeethods, and a combination
between Fortran (BLAS (Lawscet al., 1979), LAPACK (Andersemt al, 1999), SEPRAN
(Segal, 1995)) and C++, for the linear solver and mesh adgptiJsing this approach, we
take optimal advantages of both programming languagestfaging C++ and Fortran for a
heterogeneous cluster of machines, is not an easy taskeeibping a few wrappers for the
Fortran subroutines and functions make the task easies.apiproach enables us to provide a
flexible C++ interface by which one can incorporate new gpéetement algorithms and new
problem definitions, as requirements grow with time, withmampromising the performance
of Fortran77 needed in numerical calculations.

S

DATA OUT

SEPRAN | | [

I |
i Application | “#21 SEM/FEM Package |
| T | i
' | SEPRAN| | - |SEPRAN|)
. IpataiN | |l Ll
i | : C++ e
' [Mortar Patch | I~ | \wrappers i~
| Au=F || T Fmmm e |
| | . [SPARSKIT, | !
| ; BLAS, |
i Refine Mesh | '« ,i LAPACK 57| |

|

i [MTL, Blitz++7¢5]
|
|
|
|
|

re
<
U

T

Fig. 4.1: Interaction of the components in our hybrid implementation.

Developing an adaptive spectral element package is a ogalig and time consuming
task. Using the hybrid approach proposed, will allow us taseean existing SEM/FEM

4.2. Basic operations for the spectral element method 69

package, called SEPRAN, which is implemented in Fortrariigure 4.1 shows the main
components of our hybrid implementation. The compotigmmnplements:

1. the interface to the SEPRAN2) package,
2. the mortar spectral element method,
3. the refinement criteria and the mechanism of decidingeiftiesh will be refine/pruned.

Also, the#l component provides to SEPRAN, for each time step, the inmghnand the
old solution, receiving back from SEPRAN only the elememtaltrices. SEPRAN has al-
ready available a large number of discrete operators timdbeaised by the mortar extension,
which make the hybrid implementation of the mortar methaallable to many applications.
In chapter 5 we illustrate this, by applying the mortar mettmtwo applications which have
been implemented in SEPRAN. A few direct and iterative sehege used: MTL (iterative),
LAPACK (direct), SPARSEKIT (iterative), which are implemted by component3. Be-
cause some solvers are implemented in Fortran77, and SERR#®Mdes only a Fortran77
interface to its functions, a C++ wrapper is available, comgntt5, for Fortran77 functions
calls. The dynamic mesh and the communication between treegsors, in the parallel ver-
sion of the mortar method, are implemented by compogeriEach time the mesh is updated,
the voxel data base VDB (section Mesh Data Structure) willipeated and the information
on the connectivity of the mesh will be spread between thegssors. In the next sections,
only the essential C++ classes that implement the above @oemps are introduced.

4.2 Basic operations for the spectral element method

The operations described in section 3.5 were all local, @g ithvolved a single spectral el-
ement and no information was coupled with any other elemémtgeneral, however, we
are interested in solving second-order partial diffeadmguations, which requires that some
form of continuity is maintained between elemental regighsufficient, although not neces-
sary, condition to satisfy the continuity requirementsistake the global approximatia
continuous. In doing so, we couple information from one eptto another and, therefore,
operations involving the inverse of a matrix system sucthasarward transformation be-
come global. To set up matrix inverse, we need to perform vehatown as alirect stiffness
summationor aglobal assemblyperation which constructs@ continuous global expan-
sion basis from the elemental basis functions. In practiesstill perform most operations in
a local fashion within each element and then sum the coititsito form the global system.
However, to do this we need a mapping which assembles thalgigbtem from the local
system. In spectral element methods, global data is staredflat, unstructured array. The
basic data structure used to relate the mesh to entriessrathay is a table that identifies
the global node number of a local node within each elementd®¥me thdocal degree of
freedomas the elemental expansion coefficients over all elemerits.tdble of indices can
be stored as a two-dimensional array of integers:

gmap[K][i] = global index of local datuniin elementk.

70 Chapter 4. Software Implementation

For the conforming case, the number of degrees of freedoimeimtesindof and the
number of degrees of freedom associated with each eleadefit are constant. To perform
global operations, we need a layer of indirection betweergthbal data and the local data.
For example, if the matriX is the assembly matrix (keeps the relation between the &owhl
global degrees of freedom) the operations representad by Au, are called the "scatter”
(Deville et al, 2002) operation, whera; are the local degrees of freedom amgl are the
global degrees of freedom. The operation= A’ is called a "gather” operation. The
following is a template for any such a computation:

/I Loop over elements
for(k=0; k < K ; k++) {

/I Copy global data to local
for(i=0; i < edof; i++) {

/I Scatter operation from global to local
ul = ug [gmap[K][i];

}

} /I end loop over elements
/I Loop over elements
for (k=0; k < K ; k++) {

/I Accumulate the data to global
for(i=0; i < edof; i++) {

/I Gather operation from local to global
ug [gmap[K][i]] += ulfi];

} /I end loop over elements

The global assembly procedure primarily involves boundegye connectivity, since the
interior nodes may be independently numbered as globakdegsf freedom. Due to the
static condensation, the assembly procedure only invah@®oundary nodes since the in-
terior nodes may be removed from the full matrix problem.hiis tase, the global assembly
procedure is numerically evaluated as:

for (k=0; k < K ; k++) {

/I Accumulate the data to global
for(i=0; i < bedof; i++) {

/I The gather operation A'T (transpose of A)
/l of the boundary nodes
ug [bmap[K][i]] += ulfi];

4.2. Basic operations for the spectral element method 71

} /I end loop over elements

wherebmapl[K][i] is the mapping of the boundary nodes index to the global indes
bedof is the number of boundary degrees of freedom. In our examy#eassumed that
the local degrees of freedom are ordered, such that the bognddes are listed first. If we
know how to construcbgmapl[k][i] , itis a trivial extension to generatgnap[k][i]
simply by adding a unique block of global degrees of freedgoagéin length to the number of
interior nodes within the element. Figure 4.2 illustratesglobal numbering of the boundary
nodes. For example, the eleméhthas abmap[] array that contains the values:

/I The boundary array
bmap[8]={1,2,4,5,10,14,13,3} ;

which represent the global numbering of the boundariessiode

To make this data structure suitable for the non-conforneilegnents, we introduce two
generalizations. In the non-conforming case, the numbeegfees of freedom can be dif-
ferent per element. To allow this we have to introduce thayeedof[k] , which contains
the local degrees of freedom of the elements. Since we waaltde each local degree of
freedom to depend on an arbitrary combination of the globgtek of freedom, we need to
introduce two new arrayldof , assembly and a new dimension to thggmap array:

Idof[K][i] = number of global dependencies for
local datum i in element Kk,

assembly[k][i] = array of coefficients for global to
local data mapping,

gmaplK][i]l[l = global index of the jth dependency of
local datum 1.

In the non-conforming case, we need also a transformatiaenxr@” between global and
local degrees of freedom. The procedures to construct #itées@nd the gather operations
become:

/I Loop over elements
for(k=0; k < K ; k++) {

/I Copy global data to local
for(i=0; i < edoflk]; i++) {

/I Get the coefficients for the local data
double *Qk = assembly[K][i];

for(j=0; j < Idof[K][i; j++) {

/I Scatter operation
ulif += Qk[i] * ug [gmap[K][i{l];

72 Chapter 4. Software Implementation

QO - mortar nodes
® - boundary nodes O —internal nodes
31 30 29 24 23

b 22

21

————— — mortar master Segments

mmmmmmm — mortar slave segments

Fig. 4.2: The illustration of the master and slave segments together with the globakniuglof the
boundary nodes.

} /I end loop over ldof
} // end loop over elements degrees of freedom
} /I end loop over elementen
/I Loop over elements
for(k=0; k < K ; k++) {

/I Copy global data to local
for(i=0; i < edof[k]; i++) {

/I Get the coefficients for the local data
double *Qk = assembly[K][i];

for(j=0; j < Idof[K][i; j++) {

/Il Gather operation
ug [gmap[K]il[]] += QKO] * ulil;

} /I end loop over ldof
} // end loop over elements degrees of freedom

} /I end loop over elementen

4.3. Data structure 73

We can conclude that the procedures to assemble the glaftahsyn both cases: con-
forming and non-conforming differ only in the way we transfobetween the local and
global systems. The matri®” offers a flexible scheme for storing the global solution and
reconstructing the local one. The computational overheadbaditional storage is the price
we pay for new capabilities: arbitrary connectivity in thesh and variable order of the local
basis functions, which are the key ingredients for adagtivep refinement techniques.

4.3 Data structure

In addition to the Object-Oriented Programming aspecesetlare equally important issues
to the underlying data structure that are essential to agaptesh strategies. The com-
plexity of the data structure increases significantly wheapdive meshing is included. The

first data structure, we present here, is the basic datasteuequired for the manipulation
of the elements. For any element, we denote the polynomgredeof basis functions as

Nr, Ns, Nz

, an identification numbeElemid unique to each element, the mesh coor-

dinates in physical spaceanesh, ymesh, a binary node keRrefKey used to identify the

expanded elements after refinement, a double-ended dtsigesList
link to the element’s edges, a double-ended quéertexList

that contains the
that contains the vertices,

and a local majklemMap that relates the local nodes of the element to the inteomnbary
nodes structure, used for static condensation. Hirgue is used as a generic container. It
can be replaced by a container defined byBhéz++ of MTL libraries (see section 4.5).

An abstraction for any higher order spectral element carréated considering common
behavior and attributes of different types of spectral &ets. The attributes of an element
are identified in C++ by th&lement class as follows (see figure 4.3):

class Element {
protected:

int Elemid; /I element id
int RefKey; /I element key after refinement
int Type; Il element type identification
int Nr, Ns, Nz; /I points in each direction
int NrSol; /I the number of DOF
int NrPaints; /I points in element, (icount)
int *Global; /I global numbering, index2
int NrPresc; /I prescribed points (icountp)
int *PrescOff; /I prescribed points (index4)
int NrTrueSol; /I nr of true unknown (icnt)
int *TrueOff; /I offset true unknown, index
int *ElemMap; /Il map (nr,ns) to (nb,ni)
double **ElemMat; /I element stiffness matrix
double *ElemVc; /I element vector
double *ElemBc; /I boundary values, bc[nrpresc]
double **Xmesh; /I x mesh in physical space
double **Xmesh; /l'y mesh in physical space
deque<Edge> *EdgesList; /I Array of edges

deque<Vertex> *VertexList;

/I Array of vertices

74 Chapter 4. Software Implementation

public:

Element (void):Elemid(-1), Nr(0), Ns(0), Nz(0), NrSol(0),
NrPoints(0), Global(NULL), NrPresc(0),
PrescOff(NULL), NrTrueSol(0), TrueOff(NULL),
ElemMap(NULL), ElemMat(NULL), ElemVc(NULL),
ElemBc(NULL), Xmesh(NULL), Ymesh(NULL),
EdgesList(NULL), VertexList(NULL) {}

Element Element (const Element& elmt);

Element operator = (const Element& elmt);

"Element();

int Getld (void) { return Elemid; } // Get Elemld
int GetType (void) { return Type; } /I Get Type
int GetNr (void) { return Nr; } /I Get Nr
void Setld (void) { int Elemid; } /I Set Elemld
void SetType(void) { int Type; } /I Set Type

void SetNr (void) { int Nr; } //Set Nr

double** GetXmCoord (void) { return Xmesh; }

double GetXmCoord (const int i, const int j) {
return Xmesh([i][i];}

double** GetYmCoord (void) { return Ymesh; }

double GetYmCoord (const int i, const int j) {
return Ymesh[i[[jl; }

The class above defines all variables and the member fusdtiabaccess them. To avoid
direct access to the data members of the class, we choogertthaim via the functions calls.
Note that theprotected access specifies in the baBéement class provides both data
protection and inheritance. The variables defined ithtected specifier are available
only to classElement and any other derived from it. Most of the variables and fiomst
defined above are self-explanatory and annotated with cartsmidowever, we point out that
the data typeleque <Edge> construct aleque of classEdge. Once a basi®lement
class has been defined, it is relatively easy to derive spetdment types from it.

For example we can derive a rectangular element (see figBye 4.

class ElementQuad: public Element {

protected:
static double* Weights; /I weights array

4.3. Data structure 75

El enent

Defined/virtual functions

int Elemld, Type,Nr, Ns, Nz,NrSol, NrP oints, *Global;
int NrPresc, *PrescOff, NrTrueSol, *Tr ueOff, ElemMap;
double *ElemMat, *ElemVc, *ElemBc, ** Xmesh, **Ymesh;

double<Edge> *Edge sList;
deque<Vertes> *Vert exList;

El enent Quad

Define all functions

static double *Weights, *CollocationP ts;
double Error;

double **Jacobian;

double **Mass;

double **Solution;

Fig. 4.3: Anillustration of the derive procedure for the Element class hierarchy .

static double* ColloccationPts; // collocation points arr ay
double Error; /I error on the element
double **Jacobian; /I Jacobian matrix
double **Mass; /I mass matrix
double **Solution; /I solutions matrix
public:

ElementQuad (int Id, int Nr, int Ns, int Type);
ElementQuad (void);
"ElementQuad ();

void Weights (void);
void CollocPoints (void);
friend ostream& operator << (ostream& out, ElementQuad& e) ;

The overloadedperator << is defined as a public member function to print out in-
formation about this particular element. Also, we definedhaysweights andpoints

76

Chapter 4. Software Implementation

asstatic

. In this case, all the elemerBlementQuad have the same pointers that point

to the same arrays with collocation points and weights.

Stri pSegnent
Define all functions 1 Mor t ar Segnent
it Stipld: O Define all functions
ggﬂg:g SES.H—SO; L7 int *SolveMask, Fl ag, Priority; f
double Len’gthStrip ;
int QN,QM;
Mort ar *MortarPtr;
1 BaseSegnent
El ement Define all functions
int Segld, Type; N;
1 double LengthSeg, * Mesh;
Edge double *Solution;
1..NrStripSegs ﬂl
Mbr t ar Pat ch Pat chSegment
Define all functions Define all functions
1 - -
;) ‘ int NrStripSegs;
hnéu%?éd;!g'gl r{\(/llg)(r)t_a rsegs; H> Mor t ar Pat ch *Patch;
deque <Pat£:hSeémant> *SlaveSegs; <>L :EE ¥:$Z:I§?ght
deque <Pat chSegnment > *MasterSegs; deque <St ri pSegnent > *Strips:
deque <Mor t ar Segnent > *MortarSegs; q p=eg ps;

Fig. 4.4: The mortar class hierarchy infaM L diagram (Rumbaucét al., 1998).

Another basic data structure, required for the impleméniaif the mortar method, is the
classBaseSegment that describes the common attributes of the claddestarPatch,
andMortarSegment. TheBaseSegment contains the basic structure of all the segments
used in the mortar method as: the segment fJpee , segment lengtihengthSeg , the

parent edgéarentEdge , the solution on the segme8olution

, the polynomial order

on the segmen, see figure 4.4).Here is the definition of iBaseSegment class:

class BaseSegment: {
protected:
int Seqld; /Il segment id number
int Type; /I segment type
int N; /I polynomial order - for the segment
double LengthSeg; /I segment length
double *Mesh; /I nodal cooordinates of the segment
double *Solution; // solution on the segment

Element *ParentElem; // parent element
Edge *ParentEdge; // parent edge

public:

4.3. Data structure 77

BaseSegment (void): Segld(-1), Type(BI_SECTION), N(0),
LengthSeg(0), Mesh(NULL), Sol(NULL),
ParentElem(NULL), ParentEdge(NULL) { }

BaseSegment operator = (const BaseSegment& baseseg);
BaseSegment (const BaseSegment& baseseg);
"BaseSegment ();

void CreateMesh (void); /I make mesh of segment
void GatherSegment (Edge* edge); // copy buffer to segment
void ScatterSegment (Edge* edge); // copy buffer to edge

bool operator < (const BaseSegment &s) const

{ return Segld < s.Elemid; }
bool operator == (const BaseSegment& s) const {

{ return Elemld == s.Elemld; }
bool operator != (const BaseSegment& s) const

{ return Elemid !operator==(s); }
bool operator > (const BaseSegment& s)const

{ return Elemid > s.Elemid; }

Another important class is thielortarSegment class. The structure required to de-
scribe a mortar edge can be represented with this class:

class MortarSegment: public BaseSegment {

private:
int Flag; /l indicate the mortar status
int Priority; // mortar priority
int *SolveMask; // solve mask of the mortar segment

public:
MortarSegment (void);
MortarSegment& operator = (const MortarSegment& mp);
MortarSegment& (const MortarSegment& mp);
“"MortarSegment();

For any mortar segment (edge), we need the polynomial degrbasis functions, the
solve maskSolveMask , the length of the mortay in (z,y) coordinates, the solution on the
mortar, the parent element the mortar belongs to, and tlempadge. Using the inheritance
mechanism, a few attributes, of the above specified classledined by thdBaseSegment

78 Chapter 4. Software Implementation

class. The only new attributes that are declare@dViobrtarSegment are: Flag , which
indicates whether the mortar has been used, the mortaitpriniority , which indicates
the order in which the mortar are used, and the solve rBaskeMask , which indicates the
points on the mortar that are true degrees of freedom. Fadhimg of the mortar edges, we
use the booleaaperators "<, "==", "I=" defined in the BaseSegment class.

Since the refinement process create non-conforming edgeseed a class that imple-
ments this type of edges. The class is calltatchSegment and is derived from the
BaseSegment class. The main attributes of the class are: the segmentType, that
indicates whether the current segment is a master of slayraesd, the number of the in-
tegration strips associated with the current patch segieBiripSegs , and thedeque
with the strip segmentStrips . The clas®PatchSegment is defined as:

class PatchSegment: public BaseSegment {

private:
int NrStripSegs; // nr. strip segments
MortarPatch *Patch; /I patch segment
int VirtualLeft; // nr. vertices, left
int VirtualRight; // nr. vertices, right
deque<StripSegment> *Strips; /I associated strips
public:

PatchSegment (int Id, int Type, int N, double Len,
Element *elmt, Edge *edge , int Virtualleft,
int VirtualRight, eque<StripSegment> Stripsin,
MortarPatch *Patchin);

PatchSegment (void);

PatchSegment& operator = (const PatchSegment& mp);
PatchSegment& (const PatchSegment& mp);
“PatchSegment ();

void ProjectQT (Element *elmt, double *u); // Q{T} * A
void ProjectQ (Element *elmt, double *u); // Q * A
void MakeStrips (void); /I make strips

Each mortar-slave segment combination is implementedtivéPatchSegment class.

The next class that introduced is tMortarPatch class. In figure 3.8, we see that a
patch can be described by three compongfitsthe edgd of elementt, +,, - the mortar and
v, - the integration strip. These components are representtioetBaseSegment class.
The MortarPatch class is created from a file that contains the descriptioheftesh. Be-
cause we are using the Standard Template LibrafyI() templates (Musser and Stepanov,
1994), in our case thedeque container, a lot of information about the cldgbortarPatch
can be obtained using the functions of &L templates. For example: we want to know
how many mortars we have in the current patch. The templatalianctionsize() that

4.3. Data structure 79

returns the number of the elements it currently holds. Foroaendetailed description of
deque operations see Timothy (1998); Stroustrup (1997). Thes®dsrtarPatch can be
defined as:

class MortarPatch: {

private:
int Patchld; /I patch identification number
double XPO; /I x coord. of the patch origin
double YPO; /l'y coord. of the patch origin

deque <PatchSegment> **SlaveSegs; // slave segments

deque <PatchSegment> **MasterSegs; // master segments lis t
deque <MortarSegment> **MortarSegs; // mortar segments i st
public:

MortarPath (int Id, double XpO, double YpO,
deque <PatchSegment> *Mseg,
deque <PatchSegment> *Sseg,
deque <PatchSegment> *MrtSeg);

MortarSegment (FILE *file) ;

MortarSegment () ;

MortarSegment& operator = (const MortarSegment& mp);
MortarSegment& (const MortarSegment& mp);
“"MortarSegment();

void BuildMortars (Mesh *mesh);
void BuildSlaves (Mesh *mesh);
void BuildMasters (Mesh *mesh);

bool operator < (const MortarPatch &s) const
{ return Patchld < s.Patchid; }

bool operator == (const MortarPatch &s) const
{ return Patchld == s.Patchid;}

bool operator != (const MortarPatch &s) const
{ return Patchid !operator==(s); }

bool operator > (const MortarPatch &s) const
{ return Patchld > s.Patchid; }

The classSStripSegment specifies the integration strips introduced by the morter el
ment method. To implement the integration strip concepgtcthss contains several attributes

80 Chapter 4. Software Implementation

as (see 3.8): the identification number of the s8tgpld , the mortar offseOffsetS0
the projection operato®, the integration strip lengthengthStrip , the polynomial or-
ders on the two sides of the mortagiNand QMand a link to the mortar attached to the
StripSegment PtrMortar

The StripSegment has this definition:

class StripSegment: {

private:
int Stripld; /I strip id number
double OffsetS0; /I mortar offset
double **Q); /I the Q projection operator
double LengthStrip; // integration strip length
int QN; /I N on the slave edge
int QwM; /I N on the master edge

MortarSegment ~ *MortarPtr; // pointer to a mortar

public:
StripSegment() : Stripld(-1), OffsetS0(0), LengthStrip(0),
Q(NULL), QN(0), QM(0), MortarPtr(NULL) { }

StripSegment (FILE * file) ;
StripSegment (int Id, double SO, double len,

MortarSegment *Ms);
StripSegment () ;
StripSegment& operator = (const StripSegment& strip);
StripSegment& (const StripSegment& strip);
“StripSegment();

void BuildMatrixQ(); // build the projection matrix Q

bool operator < (const StripSegment& s) const}
{ return Stripld < s.Stripld; }

bool operator == (const StripSegment& s) const
{ return Stripld == s.Stripld; }

bool operator != (const StripSegment& s) const
{ return Stripld !operator==(s); }

bool operator > (const StripSegment& s) const
{ return Stripld > s.Stripld; }

The classes defined above, are the main structures we nemglenient the mortar el-
ement method. For the Adaptive Mesh Refinement Mechanisndefiee a dynamical data
structure that is updated each time an elemeatided/refined/pruned . In the next

4.4. Mesh data structure 81

subsection, the mesh data structure is introduced, whittteibasic component of the adap-
tive mesh refinement process.

4.4 Mesh data structure

The representation of a spectral element mesh is a fundahtgsign decision. A traditional
structure consisting of arrays of elements and nodes, aiddbnnectivity is not sufficient
for an adaptive computation. A fully entity hierarchy is ded to support efficient mesh
enrichment, both througtefinementand coarsening(h-refinement), and through order en-
richment p/N-refinement). Another aspect of the implementation is theld@ment of an
infrastructures that supports the development of a conghy@amic data structure in a dis-
tributed memory environment. More information on the sabje presented in Bose and
Carey (1999); Williams (1992); Edwards and Browne (1998)yaBhar and Browne (1995);
Badenet al. (1998). The solution we use here is based on Voxel Data Basmlirced by
Williams (1992), who presented a detailed description efdhsign used here and compared
it with others.

In the numerical solution of scientific and engineering peais, there is a trade-off be-
tween the quality of a solution and the computational cogilining that solution. This
trade-off can be attacked in two ways:

e development of sophisticated adaptive methods that isereacuracy for reduced
computational cost

e use of a larger faster computational environment, pafdittibuted computing.

Distributed Adaptive

Computed Data Distributed Adaptive i3

Mesh Data Structure

Structure
Distributed Voxel Database for

Parallelism with L2

Dynamic Array Spatial Structure

Fig. 4.5: Extended three-layer model for distributed dynamic data structures.

Each of these approaches leads to increased mathemadticaithamic, and/or data man-
agement complexity. Because we try to combine both waygtegamethods and paral-

82 Chapter 4. Software Implementation

lel/distributed computing, the implementation of a suclprapch has to take care of the
computed data structure, and the adapted mesh data sérudtaonventional parallel appli-
cation’s distributed dynamic data structures are layenegttly upon a low level interprocess
communication capability, such as a message-passingyipMdl (MPI, 1994). This two-
layer model does not adequately separate concerns anddeanisiplex data structures and
parallel access mechanisms. To improve this model we int®@ generalized distributed
data management layer: Voxel Database for ParallelismSpttial Structur&/DB and Dis-
tributed Dynamic Array DDA), directly positioned above the message passing layergee fi
ure 4.5. TheDDA is a simple array structure, which couples the computed datociated
with the elements, to théDB.

The VDB has been introduced by Williams (Williams, 1992) to proval&ay to pro-
gram a large variety of mesh computations in Fortran, C or,Gtith that the execution of
the program is independent of the distribution of data tacessors, and the mesh may be
topologically adapted and load balanced.

A voxel data bas&DBis a distributed shared memory, where entities which sham-m
ory are those at the same geometric positionV[PB may be thought of as a dictionary of
position-subscript pairs, so that data may be associatédpeints in space by using the
subscription of that point as an index into data arrays. Ael@an be represented like a
three-dimensional volume element in space, and can be ssidteising by integer coordi-
nates. Each voxel gets a unique integer key assigned to, anehéof hits that indicates how
many times the position has been referenced.

The Spectral Element code may be split into two parts, onelwdiéals with the properties
and nature of the data stored with the elements and nodeb@uditulation done with those
data, and another part which maintains the shared memdribe aodes and supplies the
mapping from local to global. The latter part may be done aitfoxel Database, producing
a code to run on a distributed machine. The first part is doimegws Distributed Dynamic
Array, a structure that ia used to send/receive the datadeetthe processors, based on the
information stored in th&/DB.

TheVDB introduces the notion ddet of PointsThe data structure for@DBis a collec-
tion of subsets of points. For example, a quadrilateral niealset of all the nodes together
with a set of pointsets (elements) of size four. A graph mayelpeesented as a set of nodes
plus a collection of pointsets (edges), each of which is oé $ivo. We can represent the
pointsets as a table of subscripts, such as that for the gtagtin in Fig 4.6. In this case each
node of the graph is associated with a geometric point.

We can represent the pointsets as a table of subscriptsasutiat for the quadrilateral
mesh shown in figure 4.6. In this case, each node of the graggseiated with a geometric
point. Since the structure is a graph, each pointset is eftsia: the local numbering is at the
left of the table. We can represent the eleven edges 1,as Aleleven pointsets. The global
numbering for the points is sequential, and it is easy to pet loop over the points rather
than always looping over pointsets and using the table cfaifis.

Using subscripts to implement\4DB can cause some cache misses on the processors
caches and a loss of performance. Renumbering the pointsawémprove this situation
substantially, so that when the pointsets are used in ondlest of the points required will
already be in cache from the previous pointset. An appbcatiritten withVDBsleaves con-
trol of communication with the application by explicit symronization calls, keeping local

4.4. Mesh data structure 83

Poi nt set Nunber/d obal Nunber
|1234567891011

11684627573 8 Local
2/ 6841275638 5 Nunber

Fig. 4.6: A graph represented as a collection of points and a collection of pointssized? (edges).

copies of data in all the processors that need them. The<opy have all the same status
(the combiningmethod), or may be copies of a master datum which are updassghehro-
nization. The assumption is that the data objects (positseted only be communicated if
they share a geometric point in space.

Cpul - 5 nodes O Cpu3 - 4 nodes .

©0~—®

I o (o8 —
D
1 (©®0)—-©

Cpu2 - 4 nodes .

®

Fig. 4.7: A graph represented as a collection of points and a collection of pointsets
of size 2 (edges).

For the distributed shared memoW{DB introduces thealias points. The concept of a
point is replaced by an equivalence class of points whichestmemory, where two points are
equivalent if they have the same position. Thus a point igadigta set ofalias points, each
of which has the same position. In fact alias is a connection between a local point and a
remote one. To access the points owned by the same proogsduaiye to read a copy of the
points data stored locally in the memory of the processoe Sdme point may have different
aliasesthat are distributed on different processors. To illusttats see figure 4.7.

The left of figure 4.7 is shows a graph of eight nodes, whicleidess a non-conforming
mesh. At the right we find the same graph distributed amorggtprocessors, with points
assigned to different processors. Some points have betateegpby equivalence classes of
alias points, and each processor has obtained, from the synehatmr function, the num-
ber of nodes as shown. The sum of all these is 13, which is afseogreater than the 8
equivalence class @alfliases

To represent a mesh, we have to create the graph seen ascti@oléd pointsets (edges),

84 Chapter 4. Software Implementation

F - full, parent element, not active
E - empty, child-active element
0-3 - child element id Level-0

J (F)

- NGJC)

Level-2

“dave_

mortar segment
§ -« p 'link” parent—child

Fig. 4.8: A four-level quad-tree mesh. The parent refined elements, thel8fients, are not active.
The active children elements are the "E” elements and they make up tie@tdiscretization.
The non-conforming edges are represented by the mortar segrii@etsnesh can be repre-
sented by a graph. There is a unique "link” between the parents andittieenrsuch that the
children can be identify by the parent'sid .

each owned uniquely by a processor. To create the conrtgabiva mesh like the one il-
lustrated in figure 4.8 we need to build four sepahdiBs one for the vertices, one for the
edges, one for the midpoints of the edges, and one for theeeksmThe number of times a
position is registered is called itsultiplicity. If a vertex with multiplicity one, that does not
lie along an external boundary, is not part of the true meash @iegree of freedom. In this
case, the vertex is said to betual (Mavriplis, 1989). To detect if an edge is non-conforming,
we have to query theDBto find its multiplicity. If the edge’s multiplicity is one,ral it does
not lie along an external boundary, we query once again ttie®eVDB, using its endpoints.
If it is not a match, then the edge is non-conforming. Thevactiements) make up the
current discretization of the mesh. Each leaf nofi¢ ltas a unique integer key that is a
function of the parent’s key, which allows to identify ther@at of the current active element.

TheVDBimplements weakly coherence for the shared memory. Thdidmihat shared
data may only be read outside a weak block code (the datasvafeenot reliably read inside
this block) in which the data is written, and may only be veritinside such a block. Writing
to a memory location implies replacing the data from thaatmn by something else.

There is another way to "write” to a shared memory locatiome hew data we want
to write in the shared location, can be combined with thetlooa In this case, different
processors can add data to a shared memory location in goeindent order. At the end, we
only need to synchronize the operations and get the righltr&hus pointsets may read from
their points, but may only combine with, rather than writetpoint. Thecombiningblock is

4.4. Mesh data structure 85

ended with a synchronization, wheakasesare combined with each other MpB software,
after which that dat is available for reading. Also, tHeB allows another traditional method
of writing to shared memory, based on the idea of write pesioisthat is calledipdating
Only one processor has write permission to the memory at ey dime. Of all thealiases

at a given point, exactly one may write; this speailis of all those at a given point is called
the secretary alias All the aliasesmay write, but after synchronization, the value in the
memory is the value written by theecretarypoint. For a globatombiningoperation we use
only thesecretarypoints, rather than all points.

For example, elements on separate processors with a comounaldry segment share
data along an edge. Because each processor may updatesidetddgndependently, we need
to call a synchronization routine that combines local amdate values to produce a globally
consistent data set.

VDB

Define all functions

int Dim, KeyCoun ter, KeyMax;
int TableSize;

double Tolerance;

int BufferSize;

char *Buffer;

[

VOXEL_ALI AS VOXEL

Define all functions 1 Define all functions
char *Connectio nName; <> int Voxelld;
int Procld; C 2 int VoxelHits;
deque <VOXEL> *RemoteVoxel; int Position[3 1;
deque <VOXEL> *LocalVoxel; int STATES;
deque <VOXEL_ALI| AS> *Aliases; deque <VOXEL_ALI AS> *Alias;
deque <VOXEL_ALI| AS> *LocalAliases; deque <VOXEL> *NextVoxel,

Fig. 4.9: TheU M L diagram of the/DB classes.

In figure 4.9 the/DB class hierarchy is shown. The main attribute¥®B class are: an
array with the voxels positions, where each voxel is an it&idon of aVOXEL class and an
array of remote voxel connections, where each connectidefised by avOXEL _ALIAS
class. The resolution of the voxels and the size of the hésé vth the entries into the vox-
els’ array are also defined. The communication handled by B8, combininglocal/remote
data, is done via the buff@uffer . Each voxel is addressed using integer coordinates stored
in thePosition attribute of clas& OXEL . A reference to a remote voxel, that is stored on
another processor is defined WPXEL _ALIAS class.

86 Chapter 4. Software Implementation

4.5 A base environment for Object-Oriented scientific cotimgu

Scientific codes are often large and complex, requiring aasbunt of domain knowledge
for their construction. They also process large data setthere is an additional require-
ment for efficiency and high performance. The last decades $een significant advances in
the area of software engineering. New techniques have lreated for managing software
complexity and building abstractions. Object-Orienteeneyic (Stepanov, 1996), genera-
tive (Czarneckyet al,, 1998), meta-programming (Veldhuizen, 1995), are the mends in
scientific programming that points the way for constructimgter software that is portable,
maintainable and achieves high performances at a lowelafawent cost. Every sub-domain
in scientific computing has its own requirements: intervéhanetic, tensors, polynomials,
automatic differentiation, sparse arrays, meshes, andsoro provide these abstractions
we need an Object-Oriented language, which allows librasetbpers to construct them. In
C++ and Fortran 77/90, we are seeing libraries for many egiitins which were previously
solved by domain-specific languages. Unfortunately, silmaries are hard to optimize.
Compilers have difficulty because they lack semantic kndgdeof the abstractions: instead
of seeing array operations, they see loops and pointersaiidgls also tend to have layers of
abstractions and side effects which confound optimizatidnis doubtful that the optimiza-
tion problems admit a general-purpose solution, sincelpmldlomain has its own tricks and
peculiarities. What we really need are language featureshndilow library developers to
define their own abstraction, and also to specify how thesgatiions are optimized. In the
literature, this solution is callefctive Libraries Active libraries combine the benefits of
build-in language abstractions which those of libraryeleabstractions, adaptability, quick
feature turnaround, easy to implement. In our implememrative have considered two Ac-
tive Libraries:Blitz + + andMTL.

The Blitz + + library (Veldhuizen, 1998) provides generic array objdotsC++ similar
to those in Fortran 90, but with many additional featuresthim past, C++ array libraries
have been up to 10 times slower than Fortran, due to the temparrays which result from
overloaded operator®8litz + + solves this problem usingxpression templatéschniques
(Veldhuizen, 1995) to generate custom evaluation kerioelarfay expressions. For example
this code might represent the summation of three vectors:

w=x + vy + z;

Operator overloading in C++ is pairwise: to evaluate thipression, C++ forces first
the evaluation ofmpl=x+y , thentmp2=tmpl+z , and final assigw=tmp2. The objects
tmpl andtmp2 aretemporariesused to store intermediate results. Pairwise expression
evaluation for the vectors is slow: instead of a single lappvaluate an expression, multiple
loops and temporary vectors are generated. These temparetyrs are usually allocated
dynamically, which causes a severe performance loss folt se@ors. Consequently, C++
vector/matrix libraries tended to be very slow for openagi@on small objects. To optimisme
these operations for small objecBlitz + + uses théemplate meta-progrartechniques.
It turns out that C++ compilers can be persuaded to do arpit@amputations at compile
time by meta-programsvhich exploit template instantiation mechanisms. One gasel of
template meta-programs is creatspecialized algorithmg~=or example, the following code
calculates a 3x3 matrix-vector product:

Matrix < double > A(3,3);

4.5. A base environment for Object-Oriented scientific computing 87

Vector < double > b(3), c(3);
¢ = product(A,b);

Since, theMatrix andVector objects must allocate their memory dynamically, which
will take a lot of time, the nested loops, imoduct()function, are optimized by the compiler
that assumes that the loop will be executed many times. Thdtrie code which is fast for
large matrices, but mediocre for small matricBgitz + + solves this problem, by providing
two versions of objects likBlatrix andVector . One version is optimized for large objects
and the other is optimized for small objects (efinyVectoj. Here is the matrix-vector
product implementation witfiiny* objects:

TinyMatrix < double, 3, 3 > A;
TinyVector < double, 3 > b, c;
¢ = product(A,b);

where theT'iny Vector can be declared as:

template <class T, int N >
class TinyVector {
private:
double data[N];

}

Putting the vector data inside the object allows it to residehe stack, so the overhead of
allocation memory is avoided.

As an example of a template meta-program, we consider agmotirat calculates facto-
rials at compile time. When theactorial <N> template is instantiated, the valeeum is
set toN*Factorial <N-1>::value. This triggers the instantiation &actorial <N-1>, which
triggers the instantiation dfactorial<N-2>, and so on. The templates are instantiated re-
cursively until the root caskBactorial <1> hit. TheFactorial is defined as:

template<int N >
class Factorial {
public:
enum { value = N * Factorial <N-1>:value } ;

}
class Factorial<0> {
public:
enum {value =11} ;

b
const int x = Factorial<12>::value ;

In figure 4.10, the comparison between three implement@&{({iGr+ with expression tem-
plates, C++ and Fortran) of the functiéactorial is illustrated. The function is evaluated
iteratively with a loop . Increasing the number of iteratiaf the loop, will have a negative
impact on the computation speed in the standard C++ andafoctise. In the C++ with
expression templates implementation the performancegeayenigh even when the number
of function calls is about0?.

88 Chapter 4. Software Implementation

800
700k —— C++ Template 4
-%- C++
6001 —s— Fortran
«» 500f
e}
c
g 400
()
0 300¢
200F
100f
0 . _
10* ° 10° Y 10°
No. of loops
(@)
Fig. 4.10: Speed increase fdfactorial <12> template example. Timings were taken on a 250
MHZ, Onyx -SGl.

Another feature provided bBlitz + + is array stencilling. Array stencils are common
used for solving of partial differential equations. Thefpemance of stencil operations is
heavily constrained by memory accesses, so efficient cashésucritical. InBlitz + +,
the stencilling operation is implemented by dividing theagrinto smaller sub-arrays, and
applying the stencil to each sub-array in turn. Multidimenal arrays irBlitz + + are pro-
vided by the class templaterray < T, NN >. The template paramet@tis the numeric type
stored in the array, ariy is its dimensionality. This class supports a variety ofamendels:
arrays of scalar type, such #aray < int,2 > and Array < double, 3 > or arrays of
user-defended types. Let us consider the ddesnent. The arrayArray < Element, 2 >
is a two dimensional array dilement objects. Nested heterogeneous arrays, can be also
defined, such aArray < Array < double,1 >,1 >, in which each element is an array
of variable length.

In figure 4.11 the results of an DAXPY (double precisipa= a * = + y) operation are
shown (Czarnecket al, 1998). This routine is used in many linear algebra opematid@he
classTinyVector is optimized for very small vectors, so its performances ismbetter
than the other implementations for vectors of length 1 toTl®Vector class and Fortran77
implementation have some loop overhead which makes theiorpgance poorer for small
vectors. For longer vectors their performance is very similfhe drop in performance around
N=1000 occurs because the vectors are no longer small entotign the cache. Due to the
pairwise evaluation and dynamically allocated temposatigevalarray s typical of older
C++ class libraries (the performancevaflarray is improved in the new C++ libraries, see
4.12).

We conclude that th@litz + + library provides a solid base environment of arrays,
matrices and vectors for scientific computing in C++. The atimarrays irBlitz + -+ rival
the efficiency of Fortran (MVeldhuizen, 1995), but withouy @xtension to the C++ language.
The performances of the compilers on the chosen platforrorargal.

4.5. A base environment for Object-Oriented scientific computing 89

———-C++ valarray
——Fortran 77

T Blitz++ Vector

............. Blitz++ TinyVector|

Mflops/s
S

R T BT T TR R
Vector length
Fig. 4.11: The measure of the performance for this vector operatjor: y + a*x , wherex andy
are vectors, and is a scalar. Timings were taken on a 100 MHz Octane (SGI) using a KAl++
(Intel) compiler with -K3 -O2 options and Fortran 77 code was compiled witR$f{ro 7.2
Fortran compiler with -O3 option.

The second library we consider in our implementation iNfetrix Template Library
(MTL) (Siek and Lumsdaine, 1998MTL is a C++ library which extends the ideas of
STL to linear algebra. It handles both sparse and dense matfoegense matriceBITL
uses template meta-programs to generate tiled algoritfitisg is a crucial techniques for
obtaining top performances from cache-based memory sgstelif'L uses template meta-
programs to tile on both the register and cache level. Fdstegtiling, it uses templates
meta-programs to completely unroll loop8ATL provides generic, high-performance al-
gorithms which are competitive with vendor-supplied késneAlso, it has an interface to
the Iterative Template Library (ITL), a collection of sophisticated iterative methods
written in C++. It contains methods for solving both symritetmd non-symmetric linear
systems of equations. TH&L methods are constructed in a generic style, allowing for
maximum flexibility and separation of concerns about matiata structures, performance
optimization, and algorithms. Presentl{,L contains routines for conjugate gradient (CG),
conjugate gradient squared (CGS), biconjugate gradié@GR biconjugate gradient stabi-
lized (BiCGStab), generalized minimal residual (GMRES)asj-minimal residual (QMR)
without look-ahead, transpose-free QMR, and ChebysheRairdson iterations. In addi-
tion, ITL provides the following pre-conditioners: SSOR, incompléholesky, incomplete
LU and incomplete LU with thresholding.

As mentioned MTL provides generic algorithms. Generic programming hasntgce
entered the spotlight with the introduction of the Standðplate Library $TL) into
the C++ standard (Forum, 1995). The principal idea behintege programming is that
many algorithms can be abstracted away from the particidta structure on which they
operate. Algorithms typically need the functionality cdversing through a data structure
and accessing its elements. In this case the data structwi@s a standard interface for
this operations. The main difference in the separation gbrithms and containers is the
iterator (a generalized pointer). Iterators provide a mechanisnré@ersing containers and
accessing their elements. Generic algorithms are writikatysin terms of iterators and never
rely upon specifics of a particular container.

90 Chapter 4. Software Implementation

The next example shows the wA¥TL implements the generic matrix-vector product:

/I Generic matrix-vector multiply
template < class Matrix, class IterX, class IterY >

void matvec_prod (Matrix A, lterX x, lterY y) {
typename Matrix::const_iterator i;
typename Matrix::OneD::const_iterator j ;
for(i = A.begin(); i != A.end(); i++)
for(= i->begin(); j '= i.end(); j++)

ylj.row()] += * * x[j.column()];

}
/I BLAS-style dense matrix-vector multiply
for(int i=0; i < m ; i++)
for(int j=0; j < n ; j++)

ylil += al*n+j] * x[i] ;

The generic matrix-vector algorithm is flexible, and can beduwith a wide variety of
dense, sparse, and banded matrix types. The indexing ilvRiid routines has been ab-
stracted away. The traversal across a row goes regin()to end() instead of using explicit
indices. Theow() andcolumn()methods provide a uniform way to access index information
regardless of whether the matrix is dense, sparse or baffdedM TL provides a rich set
of basic linear algebra operations, roughly equivalenteeel-1, Level-2 and Level-3 BLAS,
though theMTL operates over a much wider set of data typesMITL each algorithm is
implemented with just one template function. Another aspéthe M'TL implementation is
that data encapsulation has been applied to the matrix artdnieformation, which makes
theMTL interface simpler because input and output is in terms ofiriand vector objects,
instead of integers, floating point numbers, and pointeigurg 4.12 shows the compari-
son between a Fortran77, Fortran®0TL, BLAS, C++ in the DAXPY benchmark test on
an SGI-Onyx machine using the MIPsPRO C++ compiler. In thoase, the compiler does
perform enough optimization fal TL to be fast. SpecificallyM TL makes heavy use of
iterators . In order foriterators to be fast, an optimization calldidhtweight object
optimisationmust be performed by the compiler. The MIPsPRO C++ compib@sdmple-
ment this. SinceBlitz++ doesn’t make as heavy use of iteratordvBEL , it performs better
thanM TL for vectors with length< 1 x 103.

It is obvious, from the test performed witBlitz++ and MTL, that the performances
we can obtain with this two libraries, depend heavily of thgimizations performed by
the compilers we useBlitz++ (Veldhuizen, 1999) did not achieve great performance right
from the start: it requires careful tuning for each compéed platform. Another difficulty

4.5. A base environment for Object-Oriented scientific computing 91

in tuning Blitz++ is the inability of many compilers to optimisme small temgugrobjects,
only the KAl C++ compiler was an exceptionMTL provides a good basis for creating
higher level numerical linear algebra libraries. With penfiance benefits frof TL (Siek
and Lumsdaine, 1999) , it would be good to gradually repla8®ACK functionality with
versions that us& TL. In our implementation, we combine the features provideddtp
libraries, the support for high performance generic progning and meta-programming of
Blitx++ with the high-performance iterators BFTL.

== vector<T

—— Array<T,1>
300 —o— Fortran 77
—=— Platform BLAS
— Fortran 90
—— valarray<T>
—o— denselD<T:

Mflops/s

0 2 4 6
0

10 10
Vector length
(b)
Fig. 4.12: Blitz(Vector<T> and Array<T,1>) , MTL(denselD<T>) , Fortran77, For-

tran90, C++(valarray), Fortran BLAS performances foy = y + a*x . Timings
were taken on a 250 Mhz Onyx-SGI(32 kb L1 data cache, 4 Mb L2 unifietie, and 1024
Mb main memory) using the CC (MIPSPRO C++ 7.3) compiler with -Ofadtoftions.

4.5.1 Wrapping techniques f&EPRAN, LAPACK andBLAS

Scientists and engineers already recognized the benefidbjeict-Oriented Programming
(OOP) in their code development. Due to computational efficy reasons, object-oriented
constructs are usually restricted to a higher-level adstriaiion code, while the most CPU-
time intensive computations take place in low-level codelving standard algorithms, loops
and simple array data structures, which are easily recedriiar optimization by the com-
piler. Many well-tested and documented non-C++ subrostlifgaries exist for such algo-
rithms. These libraries are mostly written in Fortran, wsttme newer libraries written in
C or C++ LAPACK+, SparselLib , SL++, MET,uBLAS). Although the C++ syntax is in
many respects quite different from Fortran, the two langsagpply practically the same
basic data types, memory addressing and calling conventibhat makes the use of exist-
ing Fortran codes, when developing modern object-orientederical applications in C++,
very easy. In this subsection we briefly detail the mechara$imow to call Fortran from
C++, and subsequently present an interface class for a C+apjver” for existing Fortran
codes. Calling Fortran functions from C++ and vice-verssrigightforward under the UNIX
operating system and the technicalities are usually watlichented in language reference
manuals and textbooks (Barton and Nackman, 1994). In ocdaccommodate the essen-

92 Chapter 4. Software Implementation

tial object-oriented features of polymorphism, C++ allas creation of several functions
with the same name, but different argument lisigiiaturg. When calling Fortran functions
from C++, it is essential that names for the Fortran funajomhich will be prototyped in
C++ header files, are not mangled. To prevent the usual namglimg carried out by the
C++ compiler, declarations of Fortran subroutines in a Ceader file must be identified as
requiring either Fortran or C linkage. This is done by usingatern "C” wrapper:

/I Use C linkage

extern "C" double ddot_ (int& n, double *x,
int& incx, double *y, int& incy);

/I C++ function definition, calling the Fortran subroutine

inline void ddot(int& n, double* X,int& incx,
double* y,int& incy) {

ddot_(n,x,incx,y,incy);

}

When passing arrays of more than one dimension to Fortrawlataestorage differences
between Fortran and C++ have to be taken into account. Imdforwo dimensional arrays
are stored in "column-major” format, whereas in C++ datadsesl in "row-major” format.
As a consequence, the user must pass transposed data attey$-brtran compiler. To take
advantage of polymorphism, sometimes we need to createctzsses with virtual functions
which are later defined in derived classes. The functiontsdmlerived classed are then passed
to the Fortran subroutines/function in the same mannerssinmaglobal functions defined in
C++ to a Fortran subroutine/function. Here is an exampleiohs call:

/I Use C linkage
typedef void (*CFunc_Ptr) (const double& x, double& value) ;

extern "C" integral_(CFunc_Ptr func, const double& x1,
const double& x2, double& result);

void CppFunction (const double& x1, double& value) {
value = exp(x) + 2 ;

}

/I C++ function definition, calling the Fortran subroutine

inline void integral (CFunc_Ptr func, const double& x1,
const double& x2, double& result) {
integral_((CFunc_Ptr) func, x1, x2, result);

}

/I Main
int main(int argc, char* argv[]) {

4.5. A base environment for Object-Oriented scientific computing 93

double x1 = -1.0, x2 = 1.0, result = 0.0

integral ((CFunc_Ptr) CppFunction, x1, x2, result);

cout << "The value of integral: " << result << endl;
} /I end main

C

C The Fortran function definition

C
subroutine INTEGRAL(f, x1,x2,result)
REAL*8 result, x1, x2, vall, val2
EXTERNAL f

call f(x1, vall)

call f(x2, val2)

result = 0.5 * (vall + val2) * (x2 - x1)
return

end

Using a Fortran library from C++ requires more work than g&rC library because of the
difference in build-in types and array layout. In our impkmation, three Fortran subroutine
libraries have been useBEPRAN, LAPACK andBLAS. To use the Fortran subroutines of
the libraries, we have to use C++ function calls via C++ weappo Fortran. One technique,
to make such calls, is to wrap each C++ call t8PRAN, LAPACK, BLAS subroutine
inside a C++inlined function. In Appendix B this approach is presented.

Here is a short example witBEPRAN calls:

/I Common bloks
Y 1

1 integer nbuffr, kbuffr, intlen, ibfree

1 common /cbuffr/ nbuffr, kbuffr, intlen, ibfree
Il save /cbuffr/

int& nbuffr = cbuffr_.nbuffr;

int& kbuffr = cbuffr_.kbuffr;

int& intlen = chuffr_.intlen;

int& ibfree = cbuffr_.ibfree;

/I Start SEPRAN
start (istart, irotat, ioutp, itime);

/I Generate mesh

94 Chapter 4. Software Implementation

kmesh[0] = KMESH_LEN ;

kemesh[0] KMESH_LEN ;
kegmesh[0] = KMESH_LEN ;
int ichois = O;

mesh (ichois, idum, rdum, kmesh);

ichois = 0;
mesh (ichois, idum, rdum, kegmesh);

/I Define problems

kprob[0] = KPROB_LEN;

ichois = O;

probdf (ichois, kprob, kmesh, idum);
ichois = 6;

commat (ichois, kmesh, kprob, intmtl);

/I Incorporate essential boundary conditions

int ichcrv ;
int ivec =0;
iul[0] = 10;

ichois = 0; ichcrv = 1;

creavc (ichois, ichcrv, ivec, iQ, kmesh, kprob,
iul,rdum,idum,rdum) ;

ichois = 0;

prestm (ichois,kmesh, kprob, iuni) ;

/I Fill coefficients

int iprob ;

iuserl[0] = USER_LEN; userl[0] = USER_LEN; iprob = 1;
filcof (iuserl, userl, kprob, kmesh, iprob);

iuser2[0] = USER_LEN; user2[0] = USER_LEN; iprob = 2;
filcof (iuser2, user2, kprob, kmesh, iprob);

Another approach, used only farAPACK, BLAS subroutine calls is to reorganize the
libraries and to group the related functions into corresirom class templates. Among the

4.5. A base environment for Object-Oriented scientific computing 95

many excellent Fortran libraries for numerical processingPACK, stands out as a well-
designed package in wide use and applicable to a varietyi@itific and engineering prob-
lems. Therefore, we useAPACK to illustrate classes as mean of expressing the grouping of
related subroutines with subsets of identical argumenesu¥e the same approach as in Bar-
ton and Nackman (1994). Consider the paired factoring ahdngpL APACK subroutines
for general matrices. The form of the factored matrix degeonl the kind of matrix. For
example, SGETRF (compute an LU factorization of a generdlyMN matrix) uses single
precision to factor a general matrix into the product of ampgation, a unit lower triangular
matrix, and an upper triangular matrix. To solve the systélmer equations factorized with
SGETRF, the SGETRS subroutine must be called. By bringiegatuments together and
combining them with the functions in an appropriate way, &e create a system of classes
for factoring matrices. Unpacked matrices are passed ttatitering subroutines as a triple
or quadruple:

1. the matrix in a Fortran arra¥, the leading dimension LDA oA

2. the number of columns N, and the number of rows M (for gdmeedrices)

3. upon returnA contains the factored result and IPIV contains the pivotsefe used).
4. the right-hand sides matrR, the leading dimension LDB dB
5

. the solution of the linear system is returnedin

Similar patterns, different in detail, appear in the cglsequence foc APACK subrou-
tines. Appendix B presents (B.3) details of class implergorn forL APACK andBLAS.

Here is an example on how to use thapackRect<T>, which implements the class for
rectangular matrices:

LapackRect <double> A(20,20) ;
/I Fill the array A

LapackRect <double> b(20,1);
/I Fill the array b

/I Factor matrix A
FactoredLapackRect < double> factored_A= A.factor();

/I Solve the system A x = b, b contains the solution
factored_A.solve(b);

The widely usedBLAS subroutine libraries form the basis of many modern numkrica
libraries.BLAS comes in three level8L AS-1 (Lawsonet al, 1979) for vector-vector oper-
ations,BLAS-2 (Dongarreet al., 1988) for matrix-vector operations, aBil AS-3 (Dongarra
etal, 1990), (Kagstbmet al,, 1998a), (Kagstbmet al, 1998b) for matrix-matrix operations.

96 Chapter 4. Software Implementation

The first example, implement a vector-scalar operatinAS-1) x=a*x , the multipli-
cation of a vector by a scalar, usirgcal subroutine:

template <class T>
ConcreteBlas <class T>&
ConcreteBlas <T>::operator*=(const T& rhs) {

/I Obs. xscal is defined in BLAS level 1, here is inherited
Blas3Calls::xscal (numElts(), rhs, firstDatum(), 1);

return *this;

h

The second example is froBLAS-2, a matrix vector produgg=a AX + (3 y using
thexgemv subroutine:

template <class T>
ConcreteBlasld <class T>
operator* (const ConcreteBlas <T> m,
const ConcreteBlasld <T>& v) {

ConcreteBlasld <T> result (m.shape(0));

/I Obs. xgemv is define in BLAS level2, here is inherited

Blas3Calls::xgemv (Blas2Calls::no_trans,
m.shape(0), m.shape(1), T(1), m.firstDatum(),
m.shape(0), v.firstDatum(), 1,T(0),
result.firstDatum(), 1);

return result;

For more details about tHeAPACK andBL AS wrapping classes see Barton and Nack-
man (1994).

4.6 The architecture of the adaptive mesh refinement impiéatien

The classes presented so far, form the skeleton frame wottkeoimplementation’s class
hierarchy. Based on the high-level data types and the catipoal modules, we are now able
to define the overall architecture of the adaptive mesh nei@mt implementation. In figure
4.13 the class hierarchy diagram is illustrated. Each adappectral element computation
has an associatddomain data structure represented by themain class, which has the
following components:

1. the adapted medbomainMesh, defined by théM esh class
2. the error associated with the mesh and solutidmsainErr , defined byError class

3. the solution fieldSols[] , defined by thd-ield class

4.6. The architecture of the adaptive mesh refinement implementation 97

4. the boundary conditionfomainBC, defined by theBCond class
5. the matrix systerDomainMatrix , defined byMatrix class.

The most important component of the implementation isMresh data structure, which
is defined on the top of théDB andElement classes and is stored as a collection of quad-
trees. The leaves nodes of the quad-tree (see figure 4.8hilkdeactive elements, are kept
in a list of current active elemenBEems . The list is up-dated any time the mesh is adapted
by refinement or coarsening. The connectivity of the meshastained by using & DB
structure for the position of the vertices or edges and threaomforming information nec-
essary to up-date the mesh dynamically provided byMioetar Patch data structure. Every
position in the data base is assigned a unique index thateasdd to translate the position
to an array index.

The common operations on a mesh are:

. traversal of mesh entities implemented witterators
. install/activate an element

. refine an element

. connect the mesh.

1
2
3
4. coarsen an element of the entire mesh
5
6. print/plot the mesh.

7

. read/write the mesh.

The public interface to the mesh includes a collection diedéntiterators types, in-
troduced by the underlying representation. The level aditteeshould not be exposed in the
public interface, and has been hidden with the implemenmiaif a more generiterator

class. lterators over mesh entities have a simple, common interface:itdrator
member function int operator () (T *&) return an integer indicating whether an-
other entity is available to be return, and if so, return te&tritem in its argument. The
internal data is organized such to provide an efficient actieéverse geometric classifica-
tion information. Inverse classification information isefid, for example, when applying a
boundary condition on a model edge. To dynamically adapttbsh, the refinement crite-
ria, which are implemented by thgrror class are attached to eabDlomain data structure.
An local error structure that contains th®rminf, NormH1, NormL2 norms (infinity,
Hy, L,) is attached to each element of hemainMesh . Based on the local errors, the mesh
is dynamicallyrefine/coarsened . To define a new refinement criteria, the public in-
terface of the claskrror provides the callback functionint (*user _criteria)() ,
which is called during the computation to determine whioknant will be refined. The
global matrix structur®omainMatrix is implemented by th&atrix class. Anytime the
mesh is up-dated, the elemental matrices and various siampgers will be computed.

98 Chapter 4. Software Implementation

1..MAXFLDS Domai n
: Define all functions
Field char *DomainName; -~
Define all functions]||int Ns,Nr,Nz, N;
int EqType;
. Mat r i x *DomainMatrix;
ggﬂg:g Dé%?é. BCond *DomainBc; BCond
NMesh *mesh: Fi el d *Sols[MAXFLDS];
’ Error *DomainErr;
<>1 Mesh *DomainMesh;
|

L7, T

Mesh
Define all functions Error
int NrElems; 1 - -
int ActiveElems; [~ Define all functions
int Nr, Ns, Nz;

double MinLocalErr ;
double MaxLocalErr

int TypeRef;
l<> El enErr *LocalError;
1 *

VDB *vdbvertex, *vdbel
VDB *vdbedge, *vdbmide
deque <El enent > *Elems;
deque <El enment > *ElemsGlob;

ems;
dge;

—

] | — ,
?4 El entrr Mat ri x
VDB Def_all func. Define all functions
] int TypeSolver,NrEl ems;
_(? <>Q gouB:e Norm:ﬂi’, int NrGlobalNodes;
double NormLz-’ int NrGlobalEdges;
VPI double orm double *MassGl ob;
ouble error StaticCond *MatrixSC;
I\/appl ng *MapLocZGIob
— —
El ement H ?1 |_
St ati cCond Mappi ng
Mort ar Pat ch [pef.all func. Def. all func.
‘ int Type, Elemid; : :
double *A11, *A12: int *NrPoints;
LI BS double *A21, *A22; int **IndexGlob;

double **P; ‘

:II

Fig. 4.13: The class hierarchy diagram of the adaptive mesh refinement teehnéged on the mortar
elements method. THRIPI(Message-Passing InterfacapdL IBS (LAPACK, BLAS,
SEPRAN ,Blitz + +,SPARSKIT, MTL) are the class/wrapper libraries used in the
implementation.

4.7. Example of a driver for adaptive mesh refinement 99

Applying the static condensation algorithm on an elemergl/émplemented bytatic-
Cond class, and assembly the global boundary system, by sumiménglémental matrices,
the boundary system is prepared for the solution phase byuting itsL U factorisation.
The system is solved by setting up the modified right-hane sfdhe global boundary equa-
tions, then solving the boundary and computing the solutiothe interior of each element
using direct matrix multiplication. The static condensatimatrices are keptiAll, Al2,
A21, A22 attributes ofStaticCond class on element level. The solution of the system is
stored in theSols[] arrays of thdDomain structure.

The computational part of the implementation is baseBIoAS, L APACK, SPARSKIT,
Blitz++ andMTL libraries. Using the wrapper classes defined in 4.5.1 theixraid vector
manipulations are implemented Byitz++ or MTL coupled with the computation&8ILAS
andLAPACK classes.

The boundary conditions attached to fbemain are implemented by thBCond class.
The essential (Dirichlet) and natural (Neumann) boundanydiion can be attached to the
element edges of tHeomainMesh structure using the public interface of tB€ond class.
The periodic boundary conditions need a special treatm&he refinement of a periodic
element trigger the refinement of the coupled element. swialy, the non-conforming edges
are not allowed across periodic boundaries.

4.7 Example of a driver for adaptive mesh refinement

Based on the classes defined in the last section, we are neviceibhplement the driver for
the adaptive mesh refinement process. In orde to implemeniriver, the main components
have to be defined:

1. The "main time loop” component, that updates the mesh pcoes the local errors,
refine the mesh, interpolates the solution on the new meslassembles the global
matrices for the solver.

2. The update-matrix component, which updates the localiceateach time step. This
component is coupled to the spectral-element operator&aailitiates the re-use of the
old Fortran code.

3. The mortar solver, which uses the updated matrices and toeslve the linear system
of equations for the current time step.

Instancing the appropriate classes for the above descdbegbonents, the driver can
have this form:

/I Define the domain’s problem
Domain *problem;

/I Define the mesh associated with the problem
Mesh *mesh;

/I Define the error on the mesh

100 Chapter 4. Software Implementation

Error *error;

/I Define the matrix for the problem
Matrix *matrix;

/I Define the solution and the applied force
Field *U;
Field *F:

const double TIME_START = 0.0
const double TIME_END = 1.0
const int MAX_STEPS = 10

é4;
int main(int argc, char* argv[]) {
inti = 0;
double time = O;
double dt = O;
char file = "problem.dat" ;
dt = (TIME_END - TIME_INIT) / MAX_STEPS;
problem = Domain (file) ;
mesh = Mesh (problem) ;
error = Error (mesh, SPECTRUM) ;
U = Field (problem, SOLUTION) ;
F = Field (problem, FORCE); /I initialize applied force
for (time =0; time < END_TIME ; time += dt) {
matrix->Update (mesh);
problem->Solve (matrix, mesh, U, ITERATIVE);
error->Compute (U);
mesh->Refine (error);

} /I end loop over time

} /lend main

First, we define the domain of the problem we want to solve hadrtesh associated with
it. Since the adaption is used, an error class is instadtfatethe defined mesh, which com-

4.8. Conclusions 101

putes the local errors for the elements. To initialize tlasss, the initial data is read in from
an input file. The information related to the problem as:i@hitonforming mesh, boundary
conditions, the coefficients of the partial differentiabetjon, and the applied force, is con-
tained in this input file. Each time step, the elemental mesrare generated by SEPRAN and
assembled by the driver into the global matrix system, wis@olved directly of iteratively.
The local errors are computed and based on the refinemestti@tive elements are flagged
for refinement. The mesh is refined, if necessary, and the tinaénloop is ready for the next
time step.

4.8 Conclusions

In this chapter, a tool for the solution of partial differi@hiequations using the parallel adap-
tive spectral element method has been presented. The dmsiimplementation of the
adaptive mesh structure based on OO techniques is a congskxhut reusable software
libraries are essential for the development of specificiagfibns, to solve diverse problems
without concern for details of the underlying mesh struetuifter nearly a decade of be-
ing dismissed as too slow for scientific computing, C++ hagybaup with Fortran and it is
giving it hard competition (Veldhuizen, 1998; Siek and Lulaime, 1998). It provides pow-
erful support for OO programming through language featstesh as virtual base classes,
multiple inheritance, polymorphic functions, and operateerloading. However, since C++
uses dynamic memory allocation and deallocation, run-timding and procedure calls to
implement these features, it is difficult for the compilerojatimize the C++ code. To take
advantage of the C++ features and to help the compiler wititmigation of the C++ code,
some issues have to be addressed when we design C++ nunugicloberitance presents
an optimization challenge for the compiler. There are $ibma when C++ programs may
have to dereference of system-defined pointers in orderdesadhe numerical data. These
indirections can only be done at run-time, and is difficutttfee compiler to optimize such
C++ code. Therefore, the use of the virtual classes must e wih care. Dynamic memory
allocation is another C++ feature, which allows us, at liomef to specify te exact amount of
memory needed for the computations, but the associateth@asgcan be significant, espe-
cially when working with a large number of small data struetuTo avoid this, we need to
redefine the basic memory handling routines in C++. Theaimasyntax provided by over-
loaded arithmetic operators for C++ vector classes, mastidedly reduce the computational
efficiency. To achieve maximum efficiency easily optimizabiembers functions should be
used. Using expression templates to perform compile-tnamesformations will reduce the
number of temporaries created by the overloading operatidiuizen, 1998). C++ does
provide many features necessary to supgerteric programmingnd meta-programming
but the implementation of such features is still cumbersamerestrictive.

Since our objective was to re-use Fortran code SIBERAN package, a hybrid approach
of using an OO was proposed: C++ for handling data structfridé® mortar element method,
and a combination of legacy librarieBI(AS, LAPACK) and C++ for the linear solver with
mesh-adaptivity. Implementing classes for use in scierdifid engineering applications, in-
volves numerical algorithms or other information procegsiising established algorithms.
An object-oriented approach can use functions from theckegjbraries to improve the be-
havior of C++ objects. Wrapping these two libraries illusggamany of the goals of object-

102 Chapter 4. Software Implementation

oriented programming. The resulting wrappers do not reguiore computations than the
original code but they reorganize the computations andcieggee it. Also, the wrappers will
make the future use of the libraries easier and more robuassdibraries can express more
complex coupling inside of simpler boxes than can subreutbraries.

With sufficiently powerful language features, such as textgsl in C++, it is possible
to build libraries which both define abstractions and cdritaw they are optimized (this
is the idea of aractive library). In the active librariescase, the responsibility for high-
level optimization is shifted from the compiler to the libygVeldhuizen, 1999; Siek and
Lumsdaine, 1999).

The conclude that: C++ written programs at a high abstradggel, and implemented
carefully, so that the CPU intensive numerics take placametions that are easily optimized
by the C++ compilers can achieve a computation efficiencyckvisbmes close to Fortran.
Replacing the CPU intensive numerics functions with Farttade, approach used in our
implementation, offers an opportunity to take advantagieffeatures offered by both pro-
gramming languages.

Chapter 5

Application of Mortar Elements to Diffuse-Interface
Methods

5.1 Introduction

In the previous chapters we described the construction obdamelement method which
will be used to tackle some length scale problems in difinserface models. These diffuse
interface models were applied successfully to situatiangtiich the physical phenomena of
interest had a length scale commensurable with the thiskothe inter-facial region. The
challenge now is the area of mesoscopic fluid flows that irvtdvge interface deformations
and/or topological changes, such as droplet breakup ardsoasmce. Any diffuse-interface
has a finite thickness, which is determined by the molecweref balance at the interface
and its value is closely related to the finite range of molkeculiteractions (Rowlinson and
Widom, 1989). The molecular force balance at the interfamdrols the topological tran-
sitions, therefore it allows to pass the topological traosiin a physically justified way.
The diffuse-interface approach has been used to study aratdge of phenomena involving
topological changes: nucleation and growth, spinodal agasition, droplet breakup. For
a review on the subject see e.g. Andersoml. (1998). Most of the studies on topological
changes focus on small-scale systems, in which it is assuha@dhe numerical interface
thickness is of the same order of magnitude as the real aterthickness. In general, for
large systems, for which the droplet size is much larger tharphysical value of the inter-
face thickness, the real interfacial thickness can not paucad numerically. Scaling in such
systems needs special attention, because if the realdotairthickness is to be replaced by a
numerically acceptable thickness, we have to make sursvihare still describing the same
system with the same interfacial tension and diffusionfddént possibilities have been pro-
posed in the literature, Andersenal. (1998), Verschueren (1999), Lowengretal. (1998),
but none of the proposed scaling strategies appears to bepajgpe to cover all phenomena.

Our objective is to circumvent the scaling problem by usheadaptive mesh refinement
method. Commonly, diffuse-interface models introduce alkhangth scale (the interface
width), which places stringent conditions on the numersmltion methods. Based on the
Cahn-Hilliard expression of the free energy (see Cahnafdllmodel section), the critical
sizeL.. is calculated to be:

&
o)

with C' the Cahn number anglthe interface thickness. Small interfacial thicknessesldio
require the use of a smaller Cahn number in the simulatiods @nsequently, extremely

L.= (5.1)

104 Chapter 5. Application of Mortar Elements to Diffuse-interface Methods

small mesh sizes and, hence, require excessive compuatitiore and computer memory.
For Cahn numbers typically used in the simulatio6s & 0.02), and a typical interface
thickness, which is in the order of magnitude 10 nm, the cdatipnal domain used has
a length of the order of 500 nm. If we want to extend to largesteays, the real interface
thickness can not be captured numerically in general.

Using the adaptive mesh refinement (AMR) techniques basethemortar element
method, we try to relax this undesirable conditions. Sineeawe dealing with drastic topo-
logical changes, our scope is to track the movement of drapmdaries, by adding and re-
moving elements around the boundaries of the drop for differdecreasing, values of the
Cahn numbec.

The diffuse-interface model is already implemented in SERRbut it can be simulated
only with conforming elements. Due to this limitation, thengputational domain has to be
decomposed between 1200 to 5000 elements, depending ofdhlem we want to solve.
The method has been applied on a variety of problems ranging & single drop to a large
set of drops. In the next sections, we illustrate the benefitee mortar method applied to
diffuse-interface problem: with less elements than in thefarming case, we can achieve
the same accuracy of the solution.

5.2 Cahn-Hilliard model

Diffuse interface models have a long history in fluid mechaifsee e.g. the review by Ander-
sonet al.(1998), Verschueren (1999), Lowengrettal. (1998) and Naumann and He (2001)),
especially in the field of phase separation and structureldpinent in solidifying metal (al-
loys) and polymer blends. The Cahn-Hilliard theory, alsteckbgradient free energy theory,
is the basic approach to express the specific Helmholtz fieegg used in diffuse-interface
modelling (Cahn and Hilliard, 1958):

1 1 1 1
f&gV@::ﬁﬂ@—késﬁhf::—§a3—+25&—+§sﬁkf7 (5.2)
wherea and 3 are positive constants ands the gradient energy parameter, that is propor-
tional to the interaction parametgrandc is the mass fraction of one of the two components.

The chemical potential is defined as the changg upon addition of an amount of com-
ponentc. Mathematically, this is represented by a functional défiation of f:

w= (;—f = —ac+ fc —eVic. (5.3)
c

This equation allows the computation of equilibrium cortcation profiles. In order to
comply with mass conservation for both components, thenoal@quation requires:

de Oc
— = : = MV? 5.4
whereM is the mobility coefficient, here taken constant.
Equations (5.3) and (5.4) are known as the Cahn-Hilliardaigos. Cahn has used these
relations to model spinodal decomposition. Due to the tatino of the gradient expansion

5.2. Cahn-Hilliard model 105

of the second order, the Cahn-Hilliard theory was origindtiought to be only valid for
the initial stages of spinodal decomposition or for nediead systems, where concentration
gradients are small. However, equation (5.2) is generafumed to be also valid when
concentration gradients are large (Kikuchi and Cahn, 1962)

Momentum conservation, a generalized Navier-Stokes egyatan be derived yielding
the velocity field (Lowengrulet al., 1998):

p {2—‘; +(v-V) v} = —pVg+V-77(Vv—|—VvT) + puVe. (5.5)
whereg is the Gibbs free energy = f + p/p, with p the local pressure angthe density.
Generally, the viscosity depends omr but, without any serious restrictions, the iso-viscous
case will be considered here.

In equation (5.5) the interfacial tensi@his reflected via the capillary terpuVe. From
this point forward, we consider only viscous fluids at motkeneelocities, and hence the
left-hand side of equation (5.5) can be neglected (theiaéotces).

To obtain a more convenient form of the Stokes equationsyifmosity matched fluids,
and in the absence of the inertia forces, we can use the sfrewtion (v = (@ —3—¢)).

. . . L . 9y’ ~Ox
Conservation of mass is then automatically satisfied anddhations can be rewritten as:

NV = pVxuve. (5.6)

5.2.1 Scaling of the Cahn-Hilliard equations

To write the governing equations (5.3), (5.4) and (5.6) in-damensional form, the following
dimensionless variables are introduced: = c¢/cp, v* = v/V, u* = u&?/(ecp), t* =
tV/L, with cg = y/a/0 the bulk concentrationl is a characteristic velocity, anfl is a
characteristic domain size. Omitting the asterisk notatibe dimensionless equations are:

PR 5.7)
p=c®—c—C*V, (5.8)
Vi = ilwwc, (5.9)
CaC
with the Feclet numbetPe, the capillary numbe€a and the Cahn numbér defined as:
2
Pezgj\f;gv; C’a:pggc‘;‘;; C:%.

The capillary number can be related to the more classicatitiefi (nV/T") (Davis and
Scriven, 1982):

_ 22V
3 T

This system of three partial differential equations, costgd with proper initial and
boundary conditions is capable of describing the dynamicgszous two phase systems

Ca

106 Chapter 5. Application of Mortar Elements to Diffuse-Interface Methods

(like polymer blends) in the case of phases separating @fratgrl systems in the presence of
flow. The optimal way to scale the set of equations is stillrapartant research challenge,

which is beyond the scope of this thesis. Interested readenferred to Verschueren (1999)

and Keestrat al. (2003).

5.3 Numerical approach

To complete the set of Cahn-Hilliard equations, a relatietwieen the chemical potential
and the concentrationis required. We use the so-called™ approximation for the homoge-
neous part of the free energy (Guntetral,, 1983):

1 1
fole) = ZﬁC4 — 50402 , (5.10)
also called the Ginzburg-Landau approximation, which isagldr expansion around the
critical point of the Flory Huggins equation:

fole) x clne+ (1 —¢)In(1l — ¢) + xe(1 —¢) (5.11)

with y the Flory-Huggins interaction parameter.

To discretize the governing equations, the mortar-spleelganent method introduced in
chapter 3 is used, since this method is suitable for cagunterfaces with a small interfa-
cial thickness. This method relax@8 continuity requirements of the conforming spectral-
method. We consider each element individually and achiewathing conditions through
a variational process. As in the conforming case, the edbtireain is subdivided intokX
non-overlapping sub-domairf®*, k£ = 1,..., K. The skeletonS of the domain decom-
position comprises all interfaces between sub-domainssaaldo decomposed into mortars.
We require the mortars to coincide with a complete edge ofafrike sub-domains and the
intersection of the mortars is empty space. Each megtacoincides with an element edge
TV, 1={1,2,3,4} of Q.

Next, we define the mortars auxiliary spad&, (2) (3.32) and the non-conforming spec-
tral spaceX(£2) (3.44), that imposes the mortar conditions: the vertex itmms (3.37,
3.39) and the integral conditions (3.38, 3.40).

The momentum equation (5.9), is a fourth-order differdmtimation in). Since the basis
functions¢ are elements df{!, thatisH!(2) = {¢| ¢ € L2(Q), V¢ € L2(Q) x L2(Q)},
we split equation (5.9) into two second-order differentigliations:

V2w=h, (5.12)
7v2¢ =w, (513)
whereh = —Ca™'C~'V x pVe. Using the inner produdiu, v)q = [, uv dS, andu the

standard Galerkin test function, the partial integratibthe Galerkin residual representation
of equations (5.12) - (5.13) yields the weak or variatioaairfs:

(Vw,Vv)g = (hv)a, (5.14)
(V%VU)Q = (w,v)n) (515)

5.4. Results 107

where the boundary integrals vanish because of the homogsie@undary conditions. Next,
the domairf2 is decomposed int& non-overlapping sub-domai¥® and a spectral approx-
imation is applied on each element, whérés the Laplacian stiffness matrid] is the mass
matrix andy, & andh are the discrete vector representations)of andh, respectively.

S = Mh, (5.16)
Sy = Mo. (5.17)
The local balance equation ferand the chemical potential form a set of two second-

order differential equations, which are solved in a coupleg. Using Euler implicit time
discretisation we obtain:

QT o M + AtN* 55 Q o o
0 I 1— (e M-C?S M 0 I i
QT o Mcgy
_ 7 (5.18)
0 I 0

whereN is the convection matrix an€) is the mortar projection matrix. Superscript
denotes time andn + 1 denotest + At¢. A Picard iteration is used to deal with the non-
linearity in thec term ¢ = 1...1I): the iteration starts using;*' = cj and as a stopping
criterion we usemax |c}}; — ¢™'| < 4, in which § is typically of the orderl0~%. After
convergencey!’;;! andc!},! are used to updatle and we can move to the next time step.
Details can be found in Verschueren (1999).

In this model, there are two degrees of freedafof) per nodec and u. The mortar
method introduced in chapter 3, treats only dloé per node. To keep the same structure of
Q andQT, as for onadof, the twodofs have to be sorted in a sequential order per node. Only
in this case, the previous used equation (3.84) is stiltivali

5.4 Results

In this section the mortar element method is applied to tfiasd# interface modelling of the
morphology and rheology of immiscible polymer blends. Blieg of immiscible polymers
offers an attractive route to produce new materials witlotanade properties. The mechan-
ical properties of such two-phase or more phases polymedblare intimately connected
with the morphology imparted during processing. Henceeustdnding the connection be-
tween flow fields applied and morphology development is \tiabptimize the processing
and, therefore, the resulting properties of blends. Dutirgyears, a number of compre-
hensive experimental and theoretical studies of morplyotteyelopment in simple (shear)

108 Chapter 5. Application of Mortar Elements to Diffuse-Interface Methods

Fig. 5.1: The initial coarse grid: |€ft) adaption case§ x 8 elements ; fight) conform case32 x 32
elements.

flow fields has been reported. Some of this work is summarized€cent review by Tucker
and Moldenaers (2002), and although considerable fund@aiemderstanding of morphol-
ogy changes during (shear) flow has been obtained alreaglpréuliction of the (transient)
rheology coupled with the micro-structure developmetitratinains a challenge.

We use a direct approach based on the framework of diffusef@ite models to predict
the dynamics of the morphology. Interfaces are not modeligdicitly, but result implicitly
from the composition field. Hence dramatic changes in tapolaf complex interfaces, oc-
curring during coalescence and breakup, are present inadelwithout the need of making
any additional assumptions about the underlying structure

5.4.1 Single-drop problem

First, we consider a two-dimensional simulation with onepdand two refinement criteria,
the gradient and the Legendre polynomial spectrum, ardegppd the simulations. The
simulations are performed on a two-dimensional rectamguksh, with the dimensions (-2,
-0.5) in the left bottom corner and (2, 0.5) in the top rightre, generated by successive
refinement based on the concentration solution, with pariooundary conditions on the left
and right side of the domain. On the top and bottom side, baxyncbnditions are prescribed
to introduce shear. Since equation (5.9) is split into twanse-order differential equations,
a set of two boundary conditions is applied and, bearing indnthe stream functionr =
(52,—52), on the top and bottom walt = Jay* andw = a are prescribed.

We will look at one type of parameter variation for this preml the evolution of the
grid with decreasing the Cahn numb@rfrom 0.04 to 0.01. Note that temporal refinement
is necessary as well; a suitable time step is chosen for eashQahn number. The time
steps in these calculations vary frafyt = 0.001 to A¢ = 0.0005. The initial coarse grid
has simply8 x 8 elements (figure 5.1, left) with the polynomial order equalN = 4.
After each time step, local error estimators are calculafBdese error estimators govern
the refinement and coarsening process of the mesh. For thigosogradients criteria the
imposed refinement toleranceris= 1.0 x 10! In the Legendre polynomial spectrum case,
the tolerance = 1.0 x 107 is used. The &clet number will vary depending of the Cahn
numberP, = 0.10/C, and the capillary number will be fixe@a = 10.

Figures 5.2, 5.5 and 5.8 show the adaptively generated gnidishe evolution of the drop
deformation for the concentration gradients. The adagireeedure tracks the changes in
topology of the interface and refines the grid to an appréptéevel at each value of the Cahn
numberC' = {0.04,0.02,0.01}. The same procedure is applied in the Legendre polynomial

5.4. Results 109

spectrum refinement criteria. In this case, the resultstaesin figures 5.3, 5.6 and 5.9. Al-
though there is obviously no exact solution for this prohlema compare the concentrations
obtained in the non-conforming case, with the concentnatiobtained in the conforming
high-resolution numerical simulations of the same flow,dmdnstrate that the adaptive pro-
cedure produces an accurate approximation. Figures 3.4n8.5.10 compare the profile of
the concentration in the conforming and non-conforming case. The compariboms that
the two calculations are in extremely close agreement, amtodstrates that the adaptive
procedure results in a highly accurate solution for smalirCaumbers” with an intelligent
distribution of the elements. In table 5.1 the average nurabelements used for each cal-
culation is shown. For both refinement criteria the meshiias N2 ~ 420 x 25 = 10500
points, far less that in the conforming case where the mesh2B&00 points (figure 5.1,
right). Due to the refinement, less than 50% of the elemerttssofonforming case, are used
to track the boundary interface. Since the periodic boundanditions are imposed on the
left, and right side of the domain, a few extra elements diraé on the left/right side of the
domain, when the opposite side element is refined.

Table 5.1. The average number of active elements gene@tedferent Cahn
numbersC = 0.04,0.2,0.01 and polynomial ordeiN = 4.

Tolerance C=004 | C=0.02| C=0.01 | Refinement Criteria
e=1.75x 1071 370 425 516 Gradient
e=1.00x 107° 360 401 475 Spectrum

To see the influence of a higher approximation order tNas- 4, we consider the sim-
ulation forC' = 0.02, Ca = 10.0, P. = 5.0 andN = {8,16}. Table 5.2 shows the number
of active elements generated by the refinement based on gentee polynomial spectrum
criteria with a tolerance = 1.0 x 107, Also, in figure 5.11, the effect of the refinement for
N = 8isillustrated. The adaption generates a mesh with ahost 280 elements, which
uses 22680 points. Using the same polynomial ofdet 8 for the conforming case, it will
generatd 024 x 81 = 82944 points. However, comparing the results illustrated in figbi6
and 5.11, we can conclude that, increasing the polynomdsdraof the approximation does
not improve significantly the solution accuracy to justifietuse of a large number of grid
points.

Table 5.2. The average number of active elements genem@tedferent polynomial
orderN = 4,8,16 andC = 0.02,Ca = 10.0, P, = 5.0 for the Legendre polynomial
spectrum refinement criteria.

Tolerance N=4| N=8 | N =16 | Refinement Criteria
e=1.00x10"% | 360 280 150 Spectrum

110 Chapter 5. Application of Mortar Elements to Diffuse-interface Methods

t=0.00
t=0.10
t=0.20
t=0.30

| o O
t=0.40

| O O
t=0.50

| o O
t=0.60

i o o
t=0.70

| . o
t=0.80

Fig. 5.2: Deformation of a drop foC' = 0.04,Ca = 10.0,P. = 2.5,N = 4,At = 1.0 x 1073,
adaption based on the solution gradients with a toleranee=ofl.0 x 10~ °!: (left) adapted
mesh; (ight) contours ofc = 0.0.

5.4. Results 111

t=0.00

t=0.10

t=0.20

t=0.30
o O

t=0.40
o O

t=0.50
o O

t=0.60
o o

t=0.70
i : [o] °

t=0.8C

Fig. 5.3: Deformation of a drop foC' = 0.04,Ca = 10.0,P. = 2.5,N = 4,At = 1.0 x 1073,
adaption based on the local Legendre polynomial spectrum with a tobecdac= 1.0E x
107%: (left) adapted meshright) contours ofc = 0.0.

112 Chapter 5. Application of Mortar Elements to Diffuse-interface Methods

t=0.00 Q O
t=0.10 & @

— —
t=0.20

i —
t=0.30

o @ o<
t=0.40

o © o ©
t=0.50

o © o ©
t=0.60

o © o ©
t=0.70

(o] ° (o] °
t=0.70

Fig. 5.4: Comparison of a drop deformation faf = 0.04,Ca = 10.0,P. = 2.5,N = 4, At =
1.0 x 1073 (left) adaptive, adaption based on the Legendre polynomial spectrum with a
tolerance ok = 1.0 x 10™°C; (right) conform.

5.4. Results 113

t=0.00

t=0.30

t=0.40

Fig. 5.5: Deformation of a drop foC' = 0.02,Ca = 10.0,P. = 5.0,N = 4,At = 1.0 x 1073,
adaption based on the solution gradients with a toleranee=ofl.0 x 10~ °!: (left) adapted
mesh; (ight) contours ofc = 0.0.

114 Chapter 5. Application of Mortar Elements to Diffuse-interface Methods

t=0.50

t=0.60

t=0.70

t=0.8C

Fig. 5.6: Deformation of a drop foC' = 0.02,Ca = 10.0,P. = 5.0, N = 4,At = 1.0 x 1073,
adaption based on the local Legendre polynomial spectrum with a toteafrc= 1.0 x
107%: (left) adapted meshright) contours ofc = 0.0.

5.4. Results

115

t=0.00

t=0.10

t=0.30

t=0.40

O
’
e
=
—

@
-
e
=
—

t=0.50

/

/

t=0.60

O/O

O/O

t=0.70

t=0.90

Fig. 5.7: Comparison of a drop deformation faf = 0.02,Ca = 10.0,P. = 5.0,N = 4, At =

1.0 x 1073 (left) adaptive, adaption based on the Legendre polynomial spectrum with a
tolerance ok = 1.0 x 10™°C; (right) conform.

116 Chapter 5. Application of Mortar Elements to Diffuse-interface Methods

Fig. 5.8: Deformation of a drop for’ = 0.01,Ca = 10.0, P. = 10.0,N = 4,At = 5.0 x 107*,
adaption based on the solution gradients with a toleranee=ofl.0 x 10~°!: (left) adapted
mesh; (ight) contours ofc = 0.0.

5.4. Results 117

t=1.00|

Fig. 5.9: Deformation of a drop fo = 0.01,Ca = 10.0, P. = 10.0,N = 4,At = 5.0 x 107*,
adaption based on the Legendre polynomial spectrum with a tolerarce-of.0 x 10~°C:
(left) adapted meshright) contours ofc = 0.0.

118 Chapter 5. Application of Mortar Elements to Diffuse-interface Methods

t=0.00
t=0.20
t=0.30
t=0.40
t=0.50
t=0.60
o —=2 o0 —<
/ cf’,-/{’_'/”_:g
oc=—> © c—— 0
t=0.8C
c_,/_;—:,—"_/”_—/’—‘,]o (= ;ﬁﬁﬁc ==
oo o L Ry c
t=0.90
O (@]
oo ooo0e=2"° ” oo oo 0=—=0% e
t=1.00

Fig. 5.10: Comparison of a drop deformation fat = 0.01,Ca = 10.0, P. = 10.0, N = 4, At =
5.0 x 10~*: (left) adaptive, adaption based on the Legendre polynomial spectrum with a
tolerance ok = 1.0 x 10~ %; (right) conform.

5.4. Results 119

t=0.00

t=0.10

t=0.20

t=0.30

t=0.60

t=0.70

t=0.8C

Fig. 5.11: Deformation of a drop fo€ = 0.02,Ca = 10.0, P, = 5.0,N = 9, At = 1.0 x 1073,
adaption based on the local Legendre polynomial spectrum with a tobecdiac= 1.0EF x
1079 (left) adapted meshright) contours ofc = 0.0.

120 Chapter 5. Application of Mortar Elements to Diffuse-interface Methods

5.4.2 Coalescence of two drops

The second example we present is the coalescence of twa dimpgidy the capability of our
mortar code for the simulation of interactions of these driopclose approach, we consider
two drops in the shear flow for different Cahn numbérs- {0.04,0.02,0.01,0.005}, P. =
1.0/C andCa = 0.10. The domain has the dimensions (-1, -1) in the left bottormeoand
(1, 1) in the top right corner. We consider only refinementblasn solution gradients with a
tolerancer = 1.0 x 10~2.

The evolution of the two drops for the Cahn numliér= 0.04 are shown in figures
5.12 and 5.13. Figures 5.14 and 5.15 illustrate the topoébgihanges of the drops in the
C = 0.02 case. In figures 5.12(b), 5.14(b), 5.17(b) and 5.19(b), thenbary of the drop
is enlarged to show the location of smallest elements aldatehe refinement. The depth
of the refined mesh vary from = 6 to d = 9, which indicates that the interfacial thickness
is becoming smaller, depending of the valueCof The coalescence of the two drops based
on the solution gradients fa@r' = 0.01 is shown in figures 5.17 and 5.18. The last case we
consider is forC' = 0.005, which is illustrated in figures 5.19 and 5.20. The profilelod t
concentration for. = 0.0 is shown in figures 5.16 and 5.21.

In all the two-drop cases presented so far, it is seen thaefimement process detects the
boundary of the drops, and refines the regions around it gudalescence and breakup.

5.4. Results 121

(@)

(b) |

Fig. 5.12: Coalescence of two drops based on the solution gradients with a toleffaneeio0 x 102
andC = 0.04,Ca = 0.1, P, = 25.0, N = 7, At = 1.0 x 10~°3: (a) adaptive fot = 0.10
; (b) zoomed adapted mesh fo= 0.10.

122 Chapter 5. Application of Mortar Elements to Diffuse-interface Methods

(@)

(b)

Fig. 5.13: Coalescence of two drops based on the solution gradients with a toleffaneeio0 x 102
andC = 0.04,Ca = 0.1, P. = 25.0, N = 7, At = 1.0 x 10~ °%: (a) adaptive for = 0.15;
(b) adaptive for = 0.175.

5.4. Results 123

(b)

Fig. 5.14: Coalescence of two drops based on the solution gradients with a tolefaneeio0 x 102
andC = 0.02,Ca = 0.1, P, = 50.0, N = 7, At = 1.0 x 10~°3: (a) adaptive fot = 0.15
; (b) zoomed adapted mesh foe= 0.15.

124 Chapter 5. Application of Mortar Elements to Diffuse-interface Methods

(@)

(b)

Fig. 5.15: Coalescence of two drops based on the solution gradients with a toleffaneeio0 x 102
andC = 0.02,Ca = 0.1,P. = 50.0,N = 7,At = 1.0 x 107°: (a) adaptive for
t = 0.175; (b) adaptive fort = 0.25.

5.4. Results 125

SelkSelise

Fig. 5.16: The contour of the concentratien= 0.0: (left) Ca = 0.04,¢t = 0.10,¢ = 0.15,¢ = 0.175;
(right) C = 0.02,¢t = 0.15,¢ = 0.175, ¢t = 0.25.

126 Chapter 5. Application of Mortar Elements to Diffuse-interface Methods

(b)

Fig. 5.17: Coalescence of two drops based on the solution gradients with a toleffaneeio0 x 102
andC = 0.01,Ca = 0.1, P. = 100.0,N = 7,At = 5.0 x 107 (a) adaptive for
t = 0.10; (b) zoomed adapted mesh fioe= 0.10.

5.4. Results 127

(@)

(b)

Fig. 5.18: Coalescence of two drops based on the solution gradients with a toleffaneeio0 x 102
andC = 0.01,Ca = 0.1, P. = 100.0,N = 7,At = 5.0 x 107 (a) adaptive for
t = 0.125; (b) adaptive fort = 0.20.

128 Chapter 5. Application of Mortar Elements to Diffuse-interface Methods

(@)

(b)

Fig. 5.19: Coalescence of two drops based on the solution gradients with a toleffaneeio0 x 102
andC = 0.005,Ca = 0.1, P. = 200.0,N = 7,At = 5.0 x 107%*: (a) adaptive for
t = 0.125; (b) zoomed adapted mesh o= 0.125.

5.4. Results 129

(@)

(b)

Fig. 5.20: Coalescence of two drops based on the solution gradients with a tolefaneeio0 x 102
andC = 0.005,Ca = 0.1, P. = 200.0,N = 7,At = 5.0 x 107%*: (a) adaptive for
t = 0.13; (b) adaptive fort = 0.14.

130 Chapter 5. Application of Mortar Elements to Diffuse-Interface Methods

Fig. 5.21: The contour of the concentratien= 0.0: (left) Ca = 0.01,¢ = 0.10,¢ = 0.125,¢ = 0.20;
(right) C = 0.005,¢ = 0.125,¢ = 0.13,¢ = 0.14.

5.4. Results 131

5.4.3 Multi-drop problem

Finally, a more complex example is handled, where a largebeurof drops is present. For
this problem, the initial coarse grid had the same numbelenfients3 x 8 as in the one drop
simulation, but the polynomial order was high&f & 7). The simulations are performed on
a rectangular mesh with periodic boundary conditions omgft@nd right side of the domain,
with the dimensions (-4, -1) in the left bottom corner andl(yin the top right corner. In the
conforming case the grid had)0 x 50 elements. Figure 5.22 show a few snapshots of the
morphology development of a blend consisting of a drop-xatiorphology during shear
flow for 18 drops withC' = 0.02, Ca = 10, and P, = 5.

Topological changes such as breakup and coalescence aemprand they are captured
by the refinement process. With a toleramace 3.1F x 109!, the adaption based on solu-
tion gradients generated about 2500 elements, see figuzéah.2 egendre spectrum, figure
5.22(b), produced about 2000 elements with a toleranee 4.1E x 10797, The gradi-
ent criterion detects the boundary of the drops very weknewhen they are close to each
other. Legendre spectrum groups the drops together inegibss, and then refines these
sub-regions. For the imposed tolerances, the profile of dheaentration is the same in both
cases.

132 Chapter 5. Application of Mortar Elements to Diffuse-interface Methods

Fig. 5.22: Morphology development of a blending for 18 drops f@r= 0.02,Ca = 10.0, P. =
5.0, N = 7,At = 1.0 x 10~3: (left) adaption based on the local Legendre polynomial spec-
trum with a tolerance of = 4.1 x 10~°7; (right) adaption based on the solution gradients

with a tolerance ot = 3.1 x 107°!,

5.4. Results 133

(@)
== ns. e
=] = ==
| S=====i 4:%%:: =
S=== SS===5 i %
| |
(b)

&¢%§ —
= = =

) = = = o a

(©

Fig. 5.23: Multi-drop example,t = 0.1,C = 0.02,Ca = 10.0,P. = 5.0,N = 7. (a) adaption
based on the local Legendre polynomial spectrum with a toleranee=ef4.1 x 107°7;
(b) adaption based on the solution gradients with a tolerance ef 3.1 x 107°%;
(c) profile of the concentration far= 0.0.

134 Chapter 5. Application of Mortar Elements to Diffuse-interface Methods

€Y
=— i +;%L Es===c =
i ==
E= Eo== »%i =
= = ‘
(b)
o —

\w
:
y

=
=

(©

Fig. 5.24: Multi-drop example,t = 0.4,C = 0.02,Ca = 10.0,P. = 5.0,N = 7. (a) adaption
based on the local Legendre polynomial spectrum with a toleranee=ef4.1 x 107°7;
(b) adaption based on the solution gradients with a tolerance ef 3.1 x 107°%;
(c) profile of the concentration far= 0.0.

5.4. Results 135

(@)
== - =
— —
sSSE=-c= = =
(b)
— o= o e N
96
©

Fig. 5.25: Multi-drop example,t = 0.6,C = 0.02,Ca = 10.0,P. = 5.0,N = 7. (a) adaption
based on the local Legendre polynomial spectrum with a toleranee=ef4.1 x 107°7;
(b) adaption based on the solution gradients with a tolerance ef 3.1 x 107°%;
(c) profile of the concentration far= 0.0.

136 Chapter 5. Application of Mortar Elements to Diffuse-Interface Methods

5.5 Conclusions

In this chapter the diffuse-interface method was applieshéalel the morphology evolution
of immiscible polymer blends. The method has been applieahariety of problems ranging
from the deformation and breakup of a single drop in a sheartfiGsimulations with tens of
drops. It shown that topological changes such as breakupmpgds implicitly present in the
model. The simulations can contribute to the understandfrtge structure formation and
rheological properties of immiscible blends (Keestal, 2003).

For the one drop problem, both refinement criteria, the Bmigradients and the Legen-
dre polynomial spectrum, generate a six-level quad-treghméth roughly the same number
of active elementsK ~ 420) using a uniform basis of ordé¥ = 4. The number of the
elements generated by the refinement process depends ofdtentec that is used. In the
two drop simulations, for a toleranee= 1.0 x 10~%2, approximatively22000 elements are
generated, far more than necessary to solve the problenawitiod solution accuracy. In the
multi-drop case, the gradient criterion detects the bogndgthe drops much better than the
Legendre spectrum, which groups the drops together in agiloirs, and then refines these
sub-regions.

We can conclude that the adaptive mesh refinement techrigsed on the mortar spec-
tral elements, has proven to be an efficient method, whichcowees the problem of proper
scaling for large systems. Using less elements than in théoooing case, we were able
to track the boundary of the drops and analyse processesasumteakup and coalescence.
Since we can identify the transition zone of the interfa@sdal on the gradient of the solu-
tion, larger systems can be analyzed. For the particula chsoalescence of two drops a
Cahn number could be used which was almost a factor ten sraalie the conforming case.

Chapter 6

Concluding Remarks and Recommendations

6.1 Conclusions

In this thesis we presented the implementation of a fully#ida mesh refinement method
based on the mortar element method. The conforming spextmadent method is limited
by its geometric and functional restrictions: the inteefdietween two adjacent elements
must be conforming and the order of discretization must leesime. A first attempt to
circumvent these restrictions was presented in Chapterh?. cases presented show that a
simple repositioning of the element boundaries (or eqaivdy a change in their size) results
in an error two order sof magnitude lower for the same digzatbn parameter®’. Also,
increasing the order of discretizatidv improves the solution’s accuracy but at a slow rate.

The new mortar discretization, presented in Chapter 3ye®lthe spectral method of
the above limitations, relaxing the interface matchingditions to allow local refinement.
The refinement can be achieved by varying the polynomialegefpr one element to the
next and/or by allowing multiple elements to share a singlgeeof an adjacent element.
Such strategies improve the geometrical flexibility of tipectral discretization, allow for
mesh adaptivity, and help circumvent the loss of accura@r smgularities. The single
mesha posteriorierror estimators for the spectral element methods are itapofor the
implementation of a fully adaptive mesh refinement process.

Three criteria have been implemented based on: the solgtadients, the exponential fit of

the Legendre polynomial spectrum, and the trace of the Ldrggmolynomial spectrum. The

error estimators prove to be accurate, as demonstratechipt@t3. However, in some cases,
the gradient refinement criteria and the trace of the polyabspectrum criteria lead to nearly

complementary grids. Clearly, the local trace spectrunicatds the correct location for the

refinement. Since the mortar element method allows loghligBnement, the adaptive mesh
process is efficient. The same solution accuracy can bewschie the non-conforming case

with roughly less than0% points than in the conforming case.

Chapter 4 illustrates the Object Oriented (OO) approacthefimplementation. The
development of a large codes for scientific computing is galyean error-prone and time-
consuming process. Modularity and code reuse can be achisveising OO design and
programming techniques. Since Fortran codes dominatefigldeof scientific computing,
and since there are many well-tested and documented nors@Breutine and function li-
braries, we used a hybrid approach for the implementatiamtr&h and C++. Interfacing
C++ and Fortran for a heterogeneous cluster of machines etasreasy task, but the wrap-
per developed for the Fortran subroutines made the taskreasn important observation
is that, the code implemented has little connection withghysics or engineering problem

138 Chapter 6. Concluding Remarks and Recommendations

being solved. It is commonly the case that abdift, of an adaptive code, written in a con-
ventional programming system, is concerned with procdlyuesalizing dynamic distributed
data structures on top of static data structures, such asafarrays.

To support parallelism, the Voxel Data Base (VDB) structuas been implemented. It
allows the dynamic adapted mesh to migrate between diff@recessors.

Finally, Chapter 5 shows the benefits of the non-conformamgnfilation and error estima-
tors with numerical solutions to the diffuse-interface raltidg of the morphology and rheol-
ogy of immiscible polymer blends. Based of the adaptive mefhement technique, small
interface thickness was tracked, avoiding excessive ctatipnal times as in the conforming
case. Because the systems we solved were coupled, the mlertegnt implementation was
extended to support more that afef per node.

In summary, we implemented three key elements needed to thekepectral element
method fully automatically adaptive: the mortar elementhod, the error estimators (re-
finement criteria) and the dynamic mesh structure (VDB). st interesting parts of the
implementation are:

1. the build-in refinement criteria, which provide a heucigrror estimate that is inde-
pendent of the system being solved,

2. the dynamic mesh structure, that updates the entire defiresh during the computa-
tion,

3. the integration of th8 EPR AN package into the adaptive refinement process, which
facilitates the re-use of the existing Fortran code.

6.2 Recommendations

Since onlyh-refinement has been implemented, and we want to take fulradge of the
non-conforming formulation, the next step will be the impkntation of the functional non-
conforming case: the ordeé¥ of the discretization within adjacent elements is différdrne
combination ofh-refinement andv-refinement improves on the geometrical flexibility of the
non-conform spectral discretization. The least squarssflig¢o the decay of the Legendre
spectrum of each element discretization provides a deday which can in turn be used
to extrapolate the spectrum to infinity. The decay raténdicates insufficient resolution if
0. < 1and good resolution i#, > 1. The refinement process can use the decay rate to
decide whether it increases the number of elements andadessaccordingly the polynomial
degree, or whether is has to move elements and reconsteugtith

Another issue that should be addressed is parallelism. &bis bor parallelism was im-
plemented in the Voxel Data base -VDB component. In a pdratlaptive computation,
the mesh changes during the computations, necessitatiggaanic redistribution of data.
Mesh data must not only support the adaptivity, but also ytzadhic redistribution. In or-
der to support the parallelism, algorithms for mesh panitig and dynamic load balancing
have to be implemented. Our goal is to extend the softwaréeimgntation to manage and
distribute data across the processors of a parallel compatpart of an adaptive scientific
computation, using a partitioning model containing thaiaktissection of the domain into
sub-domains. The partitioning model has to be independetiteomesh structure and can

6.2. Recommendations 139

be used to manage other types of distributed data by derappgopriate C++ classes. Load
balancing will be another issue to be addressed. Dynamitbatancing in general has pro-
gressed significantly in recent years, but many challengesin. Like the computational
costs of elements, the communications costs associatbdbaitndary entities may not be
uniform. There could be a performance penalty for havingtieaton the inter-processor
boundaries, and this information needs to be available dac balancer.

140 Chapter 6. Concluding Remarks and Recommendations

Appendix A

Refinement Criteria

A.1 The error estimators

In this Appendix we derive the error estimators, first fordine-dimensional case and then for
the two-dimensional case. Let us consider the one-dimeakaase in which the numerical
solution for the one-dimensional boundary layer problem :

—Ugy + Ay =0 on Q= [0,1], u(0) =0, u(l) =1, (A1)

N
corresponds to the truncated su|{Q* = Y ak L, (r) whereL,, is then'" order Legendre
n=0

polynomial.

For a geometrically converging series, the error is the roofiehe first (leading order)
missing term, in this caSﬁﬁ,H. We know that the quadrature is only exact for polynomials
of order< 2N —1and fora’fv the order is> 2N —1, sinceaﬁ;, = fLNLN. Due to the error
introduced by the quadrature, we considér as the leading error term since it is inexactly
calculated. The coefficient;, can be computed using the following formula:

2N +1

ok =

N
> pnub Ly (&), (A.2)

n=0

wherep,, and¢,, are the Gauss-Lobatto weights and collocation points ctispdy, u* are
the collocation points values af The coefficients:%; are calculated in the computational
space, rather that the physical, and it is independent afldraent size. This is an important
observation, because we want to determine how well theisolig approximated, and not
to produce an absolute error relative to the domain size. PAsreor estimate is generated
in each element, the%, may be used to determine relative resolutions in differéerhents.
In order to be efficient in finding the necessary refinemenéspmust provide more detailed
information than a simple estimate of the error.

A.2 Approximation errors

Consider any arbitrary problem:
Findu, € X} solutiontoLu = f by a spectral element method.

We know that the error between the exact solutiaand the spectral element approxima-
tion uy, in bounded by :

u—upl|| <C inf u — vp|. A.3
=l <€ ot fu= vl (»3)

142 Appendix A. Refinement Criteria

The best polynomial approximation to the functiors the projectioril; u of « onto X}, the
function which minimizes the error. We know that is an element o}, but it is not equal
to the projectioril;u as illustrated in figure A.1.

Xh

AN

T u=T,ull

S lu—ull

Fig. A.1: lllustration of the numerical and exact solution in the approximation
space and its orthogonal complement [Mavriplis (1990)].

The error introduced by the spectral element approximdtios uy|| is the contribution
of two error terms

[—un |l < llu = Taull + [[un — Myl (A.4)

In the inequality (A.3) the constant is close to 1 for thé¢* norm. This implies that the
term|ju — IT,u|| in A.4 dominates the actual error. Since, we don’t want toveste the error
based of the smoothness of the solution, we have to deviser@nestimate which can be
derived from the calculated solution alone. The specteheht discretization can be seen
as a series representation of orthogonal increasing oalgngmials. The exact solution is
an infinite sum and the spectral element solution is a treacatrsion of the sum, therefore
the error can be estimated by the missing term of the sum.

Since an exact solution is not available, we have to estithétextra terms. The estima-
tion is based on the extrapolation of the available term&@fsum, which can be computed
directly from the numerical solution. Due to extrapolatamextra error is added as follows :

[= unll < flu—all + [|o —] (A.5)

wherew is the extrapolated approximation o The error between the exact and numerical
solution is bounded by

= unl| < [lu—all + [|o — Tpall + [Jun — Ty (A.6)

where

|lu—a|| — isthe extrapolation error (A7)

A.2. Approximation errors 143

Xh

1
Xn Hu-i |1
I u=,ull
Iu-ull
AB - the extrapolation error |lu- ull
BC - the approximation error due to truncation |1u-T1,ull

DC - the extrapolation error due to quadrature and

the best polynomial approximation Hup=Mxull

Fig. A.2: lllustration of the approximation error contributions [Mavriplis (1990)].

[t — pul| — isthe approximation error due to truncation (A.8)
|lup, — IIpa|] — isthe approximation error due to quadrature and
the best polynomial approximation (A.9)

The latter two contributions can be grouped together in
€est = ||1~L — HhﬂH + |lun — HhﬂJH. (A.10)

The terms are shown geometrically in figure A.2. We try to agpnatee.s; and to minimize

the extrapolation errofu — @||. In the’H! norm the termj|a — 11,4/ dominates so that the
second term may be neglected f@t error estimates. To calculate the above defined errors,
we determine first the error due to truncation only, assurfonghe moment that, = . In

the one-dimensional case we write the solution as:

z)|or = Z af L ((A.11)

while the exact solution is written as:

@)|gr = Z ak L ((A.12)
On an element basis the error can be written as following:
(u —up)*(z) = Z afL,(r), € X, (A.13)
n=N+1

where Xt is the orthogonal complement space, defined as the spacaatidis for which
the inner product with any function of the original spakXg is zero. Henceforth, the super-

144 Appendix A. Refinement Criteria

scriptk is dropped, assuming that the calculation is on an elemesi$.b&ince the norm of
Legendre polynomials is defined by:

1
2
_ 2 1/2 _
Ll = ([L2 = 2 (A19)
-1
the expression for the,, coefficients can be obtained with:
1
iy = 2”; 1 / wn (@(r)) L (r)dr. (A.15)
-1

These coefficients,, form the Legendre spectrum of the solutiop. Since, we need the
ak . n=N+1,..., 00 coefficients and they are not available to estimate the &wocation

, we mustpredict them. They are given by extrapolation of the exact coeffisien, as
an,n > N + 1. We assume that the extrapolation scheme is adequate anghwestmate
the error:

1 1/2
a-tal= | [> @La)par)| . (A.16)
1 n=N+1

Based on the norm of Legendre polynomials we estimate thegjppation error due to
truncation as:

1/2
. . - d
@ — I = (> m) ; (A.17)

n=N+1 2

which is independent of the element size since the coeftiignare calculated in the com-
putational spacér). For the two-dimensional casecan be expanded in terms of Legendre
polynomials:

=22 tnmLn(@)La(y) (A.18)

n=0m=0

and the expansion coefficients are given by:

1
G, = (2n+1) 2m—|— D) //uhL (s)drds ,m,n € {0, N}2. (A.19)
—-1-1
In case of thé{' norm, we need also the derivative coefficients:
1 1
i, = 2t 1)@m+1) / / Wi Lo (1) L (8)drds (A.20)
—1-1

whereu!, terms are the derivatives of

8uh

T __ —
up = —83@’ T, T2 = X, Y.

A.2. Approximation errors 145

The estimate of the approximation error due to truncationtvfo-dimensional case, is there-
fore:

0o 0o . 1/2
_ _ S % (@m)°
22

n=N+1m=M+1

Derivative coefficients are used for the' norm error estimate whereas thg coefficients
are used for th&€? norm error estimate.

Next, we compute the approximation error due to quadratudefze fact that the solution
is a constant away from the best polynomial fit. If we denogedkact solution as:

N
u= Z an Ly (1), (A.22)
n=0
and the discretized numerical solution as:
N
up, = Z CnLn(r), (A.23)
n=0

then the error is computed by:

n=0 2

N ()2 1/2
~ Cp — Qp
|up — Myl = <Z T) . (A.24)

Since the quadrature is exact for all polynomials of degte2N — 1, and thea,, co-
efficients are exactly fon < N — 1, and approximately for alh > N, the error reduces

to:
1/2 1/2
. (en —an)? 2%
2

In two dimensions there at¥ + M + 2 terms and the error is computed by:

M N 1/2
. 2(enj)? 2(cin)?
—1II ~ g E A.2
lun = Ta] < 2M +1 + £« 2N +1 (A.26)

The two error estimates (A.10) contributions have equabirtgmce in theC? norm, whereas
in H! norm||@ — T1,,4|| >> |luj — I, 4|. Therefore, Mavriplis proposes as a rigorous error
estimate, an approximation to the two conditions, namely :

~ 2 1/2
st = Y, mg | (A.27)
n=N 2

146 Appendix A. Refinement Criteria

which we approximate as:

1/2
&2
Cest = <2N+1 + Z m) (A.28)

n=N-+1 2

in the one-dimensional case.
The two-dimensional case is similarly and the error is coregpiby:

1/2
Cest = <Z Z 2n+1) 2m+1) >) (A29)

n=N n=M
which we approximate as:
1/2

N
~ CNJ (c; M)
Cest = 2M+1 +Z 2N+1 + Z Z (2n+1)(2m+1) ’ (A.30)

j=0 j=0 2 n=N+1m=M+1

where c refers to the coefficients of the solution for tif@ error norm and those of the
derivative forH! norm.

Since we need to calculate the missing coefficiénts: > N + 1, the sum of which
forms the approximation error due to truncation, the nes & to find a good extrapolation
method for the coefficientsd,,,n < N. Babwka proposed a scheme to approximate the
missing coefficients by actually calculating them on a finesim Mauvriplis proposed another
approach, based on the least squares best fit to their dectydioa,,,n > N + 1. The fit
is qualified by a regression factor:

St — S
2 _ Mt T
r°= S,

(A.31)

N N
whereS; = > (vi —)%, S» = >_ (v; —)2, y; being the raw datgf; the fitted data ang

=0
the average of the;.
Using a six point least square best fit to) spectrum we solve fot. ando, the
exponential decay approximation:

a(n) ~ cee %™ (A.32)

which in a log-linear plot corresponds to a straight linecsin

d

7 (1og (a(m))) ~ —oclog . (A.33)
To fit thelog a(n) to a straight line a linear regression is used:

f(n) =oen + logce. (A.34)

As expected the fit to an exponential decay is better withgetanumber of terms. To obtain
reliable results, a number of 6 and higher terms is a bettey &h exponential decay than 3
to 5 terms (Kreyszig, 1993).

A.2. Approximation errors 147

For the one-dimensional case, the extrapolation errorsately be assumed to be neg-
ligible for smooth functions, provided the fit is adequateor Ron-smooth functions, the
spectrum of the Legendre polynomials decomposition is eoessarily exponentially de-
caying. At worst, we can expect an algebraically decayingtion, for which we need to
perform a fit. We solve foe. ando, in the approximation ta(n) :

a(n) ~ cen~%. (A.35)

0,0

a
N,0

*>—

-
an

aN,N—Z

aN,N—l

-
|

a NN
a 4y a N-1,N
o.N N-2,N

Fig. A.3: Two-dimensional spectrum of the Legendre discretization and "line-by-
line” extrapolation procedure [Mavriplis (1990)].

In two dimensions, extrapolation becomes more complexhilidase we have a matrix
with coefficientsa,,,,,. We illustrate this in figure A.3. Using the same approachhahé
one-dimensional case it does not produce a good extrapoldflavriplis concluded that we
can minimize the extrapolation errfpt. — @ || by using line by line extrapolation (in the matrix
anm), that is extrapolating’,,,,, m = 0, N for eachn fixed and vice-versa. We include, as
usual, the last}, ,, andal,, in the error estimate and integrafg", , (a?,,,,)*dn, for eachin
fixed and vice-versa.

To summarize, the error estimates we use here are single anpekteriorilocal per
element error estimates consisting of:

1. ||& — II,al| - the norm error due to truncation

2. |lup, — Iyal| - the error due to approximating the exact coefficients nically by
quadrature and the best polynomial approximation.

148 Appendix A. Refinement Criteria

In the two-dimensional case the extrapolation error is minéd by performing line by
line extrapolation of.,,,,, for n andm successively fixed.

Appendix

B

C++ Wrappers

B.1 SEPRAN wrappers

The wrapping technique for SEPRAN calls is very simple. ES8&PRAN function has a
corresponding C+inline function definitions. The following we present some example
of these definitions:

/I Raw SEPRAN prototypes

extern
extern
extern
extern
extern
extern
extern

extern

wer
"o
"o
"o
"o
"o
"o

ner

void
void
void
void
void
void
void

void

start_ (int&, int&, int&, int&);
presdf_(int*, const int *, int *);
prestm_(int&, int*, int *, int *);
commat_(int&, int*, int * | int *);
mesh_ (int&, int*, double*, int *),
filcof_(int*, double*, int* , int *, int&);
build_ (int*, int*, int*, int*, int* int*,

int*, int*, int*, int*, double*);
solve_ (int&, int *, int *, int *, int * int *);

/I Define the SEPRAN wrapper class

class SepranCalls {

public:

static
static
static
static
static
static
static

static

h

void
void
void
void
void
void
void

void

start (int&, int&, int&, int&);
presdf(int*, int *, int *);
prestm(int&, int*, int *, int *);
commat(int&, int*, int * , int *);
mesh (int&, int*, double*, int *);
filcof(int*, double*, int* , int *, int&);
build (int*, int*, int*, int*, int* int*

int*, int*, int*, int*, double*);
solve (int&, int *, int * int * int * int *);

/I define the inline functions

150 Appendix B. C++ Wrappers

inline void
SepranCalls::start (int& jstart, int& i1, int& i2, int& i3) {
start_(jstart, i1, i2, i3);
}
inline void

SepranCalls::presdf (int* kmesh, int* kprob, int* isol) {
presdf_(kmesh, kprob, isol);

B.2 BLAS and LAPACK wrappers

The wrapping technique used for SEPRAN calls, can also beemmmted for LAPACK and
BLAS. Here is an example of BLAS and LAPACK calls in C++:

extern "C" double ddot_ (int& n, double *x, int& incx,
double *y, int& incy);
extern "C" double dasum_ (int& n, double *x, int& incx);
extern "C" void dgemv_ (const char *t, const int& m,
const int& n, const double& alpha,
double *a, const int& Ida,
double *x, const int& incx,
const double& beta, double *y,
const int& incy);

/I BLAS level 1
class BlaslCalls {
public:
static void ddot (int& n, double* X, int& incx,
double* y, int& incy);
static void dasum (int& n, double* x, int& incx);

%
inline float
Blas1Calls::xdot(int n, double* x, int incx, double* vy,
int incy){
return ddot_(n, X, incx,y, incy);

/I BLAS level 2
class Blas2Subroutines :public Blasl1Calls {
public:
enum Trans {no_T, T, Conj};
static char T_char[];

B.2. BLAS and LAPACK wrappers 151

static void xgemv(
Trans t,
int m, int n, double alpha, const double* a, int Ida,
const double* x, int incx, double beta,
double* vy, int incy);

static void xgemv(
Trans t, int m, int n, float alpha, const float* a,
int Ida, const float* x, int incx, float beta,
float* vy, int incy);

}

/I BLAS level 2 calls

inline void

Blas2Calls::xgemv(Blas2Calls::Trans t, int m, int n,
double alpha, const double* a, int Ida,
const double* X, int incx, double beta,
double* vy, int incy) {
dgemv_(&trans_char[t], m, n, alpha, a, Ida, x, incx,
beta, y, incy);
}

/I BLAS level 3 calls
class Blas3Calls : public Blas2Calls {
public:
static char trans_charl[];
static void xgemm(
Trans ta, Trans tb, int m, int n, int k,
double alpha, const double* a, int Ida,
const double* b, int Idb, double beta,
double* c, int Idc
)i
static void xgemm(
Trans ta, Trans tb, int m, int n, int k,
float alpha, const float* a, int Ida,
const float* b, int Idb, float beta,
float* c, int Idc

k

/I BLAS level 3 calls
inline void
Blas3Calls::
xgemm(Blas3Calls::Trans ta, Blas3Calls::Trans tb,
int m, int n, int k, double alpha,
const double* a, int Ida, const double* b,

152 Appendix B. C++ Wrappers

int Idb, double beta, double* c, int Idc) {

xgemm_(&trans_char[ta], &trans_char[tb], m, n, k,
alpha, a, Ida, b, Idb, beta, c, Idc);

}
inline void
Blas3Calls::
xgemm(Blas3Calls::Trans ta, Blas3Calls::Trans tb,
int m, int n, int k, float alpha,
const float* a, int Ida, const float* b,
int Idb, float beta, float* c, int Idc) {
xgemm_(&trans_char[ta], &trans_char[tb], m, n, k,
alpha, a, Ida, b, Idb, beta, c, Idc);
}

/I LAPACK subroutines
void sgetrf_(const int& M, const int& N, float A[],
const int& LDA, int IPIV[], int& INFO);
void dgetrf_ (const int& M, const int& N, double A[],
const int& LDA, int IPIV[], int& INFO);

void sgetrs_ (const char TRANSJ], const int& N,
const int& NRHS, float A[], const int& LDA,
const int IPIV[], float B[], const int& LDB,
int& INFO);

/I LAPACK class
class LapackCalls {

public:
/I Factoring general matrices
static void xgetrf (const int& M, const int& N, float* A,
const int& LDA, int* IPIV, int& INFO);

static void xgetrf (const int& M, const int& N, double* A,
const int& LDA, int* IPIV, int& INFO);

//Solving general factored matrices

static void xgetrs (const char TRANS[], const int& N,
const int& NRHS, float* A,
const int& LDA, const int IPIV]],
float* B, const int& LDB,
int& INFO);

static void xgetrs (const char TRANS[], const int& N,

B.2. BLAS and LAPACK wrappers 153

const int& NRHS, double* A,
const int& LDA, const int* IPIV,
double* B, const int& LDB,
int& INFO);

static void dgetrs (const char TRANSJ], const int& N,
const int& NRHS, double A[],
const int& LDA, const int IPIV]],
double B[], const int& LDB, int& INFO);

/I Factoring general matrices
inline
void LapackCalls::
xgetrf(const int& M, const int& N, float* A,
const int& LDA, int* IPIV, int& INFO) {
sgetrf_(M, N, A, LDA, IPIV, INFO);

}
inline
void LapackCalls::
xgetrf(const int& M, const int& N, double* A,
const int& LDA, int* IPIV, int& INFO) {
dgetrf_(M, N, A, LDA, IPIV, INFO);
}

//Solving general factored matrices

inline
void LapackScCalls::xgetrs(const char TRANS[], const int& N,
const int& NRHS, float* A, const int& LDA,
const int IPIV[], float* B, const int& LDB,
int& INFO) {
sgetrs_(TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO);
}
inline

void LapackCalls::xgetrs(const char TRANS[], const int& N ,
const int& NRHS, double* A, const int& LDA,
const int* IPIV, double* B, const int& LDB,
int& INFO) {

dgetrs_(TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO);

154 Appendix B. C++ Wrappers

B.3 LAPACK, BLAS classes

Here we present an example, how we can group the LAPACK stihesuinto a class, based
on their functionality. The class templaactoredL apackRect<T> is defined for the fac-
tored matrices. For example, the factored form of a congeatly stored rectangular matrix
might be represented by the following class:

template<class T >
class FactoredLapackRect {

public:
LapackRect <T>& solve (LapackRect<T>&);

private:
friend FactoredLapackRect <T> LapackRect<T>::factor();

FactoredLapackRect (FortranArray2d<T> *amatr);
CopiedObjPtr <FortranArray2d<T>> fmatr; // Lapack A

FortranArrayld <int> pivots; // Lapack ipiv - pivot

}

This implementation allows in-place factorization of a matvhile retaining full type
checking. Clas&ortranArray2d<T> represents a Fortran array. Sirfeactor edL apack-
Rect<T> does not behave like an ordinary matrix, it is not derivedrfdrray2<T> (that
implements an array template class). This is the reasorthbatonstructor of the class is
madeprivate . The user will get access to it via tigend declaration and thus the
LapackRect<T> controls when objectBactoredlL apackRect<T> are created. With this
scheme, théactor() member function would be called with an instance of an uofact
object and thesolve() = member function would be called with the factored objectrithen
to solve the linear equations.

To store rectangular matrices, we can define the ¢lapsickRect as:

template<class T >
class LapackRect:
public virtual Array2d <T> {

public:
LapackRect (Subscript nrows, Subscript ncols);
FactoredLapackRect <T> factor(); // factor matrix

/I Array interface declarations
private:
CopiedObjPtr <FortranArray2d<T>> amatr; // Lapack A
Boolean valid ;
/I Check validity -- throw exception if not valid

B.3. LAPACK, BLAS classes 155

void CheckValidity() const ;
b

To wrapBLAS for use in C++, we use the same techniques a4 ®PACK. First, we
have to figure out what kind of algebraic structure to give The matrices with floating
point elements form a division algebra under matrix additgubtraction, multiplication, and
inverse, with scalar multiplication by floating point nunnbeBased on thAbelian (contains
the user-must-define functions) afitbebra classes defined in (Barton and Nackman, 1994),
theBLAS class can be defined as:

template <class T>

class ConcreteBlas:
public Algebra <ConcreteBlas <T>, T>,
public Abelian <ConcreteBlass <T>, T>,
public FortranArray2d <T> {

public:
ConcreteBlas (const FortranArray2d <T> & a);
ConcreteBlas (Subscript nrows, Subscript ncols);

typedef ConstBlasProjectionld <T> ConstProjectionT;
typedef BlasProjectionld <T> ProjectionT;

/I Algebra operations not implemented
/I by Abelian class

ConcreteBlas <T>& operator*= (const T& rhs);
ConcreteBlas <T>& operator*=
(const ConcreteBlas <T>& rhs);

ConcreteBlas <T>& operator/= (const T& rhs);
ConcreteBlas <T>& setToOne();

ConcreteBlas <T>& operator=
(const ConcreteBlas<T>& rhs);
ConcreteBlas <T>& operator= (const T& rhs);

ConstProjectionT

project (Subscript i, Dimension d = 0) const ;
ProjectionT

project (Subscript i, Dimension d = 0) const ;

ConstProjectionT operator[] (Subscript i) const
{ return project(i,0); }
Projection operator[] (Subscript i)

{ return project(i,0); }

ConstProjectionT row (Subscript i) const

{ return project(i,0); }
ProjectionT row (Subscript i)

{ return project(i,0); }

156 Appendix B. C++ Wrappers

ConstProjectionT column (Subscript i) const

{ return project(i,1); }
ProjectionT column (Subscript i)

{ return project(i,1); }

/I Matrix-Vector (Blas level 2) operation
friend ConcreteBlasld <T>
operator*(const ConcreteBlas <T>& m,
const ConcreteBlasld <T>& v);

3

The constructors and assignment operators call the camdsp functions in
theFortranArray2d<T> base; they are necessary because constructors and assigmpme
erators are not inherited. Ti@oncreteBlasld<T> class template represents vectors in a lin-
ear space compatible wioncreteBlas<T>. The matrix-matrix operatarperator*=()
function can not be implemented as an in-place operatioausscthe shape of the product
matrix can be different from the shape of the original ledtat matrix. Thus we have to copy
the left-hand side and adjust the size of the matrix beforepeding the product with a call
to BLAS. The arithmetic computations are implemented by calBhg\S subroutines.

Bibliography

Adams, R. (1985)Sobolev Space#\cademic Press, New York.

Adjerid, S., Flaherty, J., Moore, P., and Wang, Y. (1992)gtHorder adaptive methodes for
parabolic systemsPhysica-0 111, 60—94.

Anagnostou, G., Maday, Y., Mavripilis, C., and Patera, 283). On the mortar element
method: Generalizations and implementatidhird International Symposium on Domain
Decomposition Methods-SIAM, 157.

Andersen, E., Bai, Z., Bischof, C., Blackford, S., Demme},ahd Dongarra, J. (1999).
Lapack Users's GuideSIAM, Philadelphia, PA 19104-2688.

Anderson, D., McFadden, G., and Wheeler, A. (1998)nu. Rev. Fluid Mech30, 139.

Armstrong, C. e. (1991). Advance in engng. softwa@omputational Mechanics Publ.,
Southhampton

Babusks, I. and Dorr, M. (1981). Error estimates for the ciovedb h and p versions of the
finite element methodNumerische Mathematik5, 257-277.

Baden, S., Fink, S., and Kohn, S. (1998). Efficient run-timpport for irregular block-
structured applicationsl. Parallel and Distributed Computind\pril-May, 61-82.

Barnard, S. and Simon, H. (1994). Fast multilevel impleragoh of recursive spectral bisec-
tion for partitioning unstructured problemg&oncurrency:Practice and experiend&?2),
101-117.

Barrett, R. e. a. (1994) Templates for the solution of linear systems: Building kéofor
iterative methodshttp://www.netlib.org:templates.

Barton, J. and Nackman, L. (1994cientific and Engineering C++Addison Wesley.

Berger, M. and Oliger, J. (1984). Adaptive mesh refinemeriyperbolic partial differential
equationsJournal of Computational Physics2, 484-512.

Berger, M. and Saltzman, J. (1993). Structured adaptivédmefiement on the connection
machinesSIAM, March.

Bernardi, C., Maday, Y., and G., S. L. (1990). Non-conforgnimatching conditions for
coupling spectral and finite element methoAgplied Numerical Mathematic6, 65—84.

Bernardi, C., Maday, Y., and Patera, A. (1994).new nonconforming approach to domain
decomposition: the mortar element methdd.Non-linear Partial Differential Equations
and their Applications, vol. 11, Pitman/Wiley:London/N&frk.

158 BIBLIOGRAPHY

Bose, A. and Carey, G. (1999). A class of data structures bjgtboriented implementation
for finite element method on distributed memory syste@8¥IAME, 171, 109-121.

Cahn, J. and Hilliard, J. (1958). Chem. Phys28, 258.

Canuto, C., Hussaini, M., Quarteroni, A., and Zang, T. (3988pectral methods in fluid
dynamics Springer-Verlag, New York, Berlin.

Chan, T. and Mathew, T. (1994Romain Decomposition Algorithms, Acta Numerica, pages
61-143 Acta Numerica.

Ciarlet, P. (1978)The Finite Element MethodNorth Holland.

Clark, K., Flaherty, J., and Shephard, M. (1994). Speciabachdaptive methods for partial
differential equationsAppl. Numeric. Math.14.

Czarnecky, K., Eisenecker, U., Gluck, R., Vandevoordeabd Veldhuizen, T. (1998Gen-
erative programming and active librarietecture Notes in Computer Science, Dagstuhl-
Seminar on Generic Programming.

Davis, H. and Scriven, L. (1982Adv. Chem. Phys49, 358.
Davis, P. and Rabinowitz, P. (1984)lethods of Numerical Integratiocademic Press, Inc.

Deville, M., Fischer, P., and Mund, E. (2002Jigh-Order Methods for Incompressible Fluid
Flow. Cambridge University Press, Cambridge.

Dongarra, J., Du Croz, J., Hammarling, S., and Duff, I. ()988n extended set of fortran
basic linear algebra subprograrsCM Tran. Math Softwarel4(1), 1-17.

Dongarra, J., Du Croz, J., Hammarling, S., and Duff, I. (1998n extended set of level 3
basic linear algebra subprogrardsCM Tran. Math Softwarel6(1), 1-17.

Dors, M. (1989). Domain decomposition via lagrange mukig. Numerische Mathematik
65, 120-145.

Edwards, H. and Browne, J. (1998). Scalable distributechthya array (sdda) and its appli-
cation to a distributed adaptive mesh data structitf€AM Repor 98-04.

Farhat, C. and Lesoinne, M. (1993). Automatic partitionifiginstructured meshes for the
parallel solution of problems in computational mechaniot.J. Numer. Meth. Engng36,
745-764.

Forum, C. (1995)Working paper for draft proposed international standard iftformation
systems- programming language C+American National Standard Institute.

Gervasion, L. (1998). Octree load balancing techniquegHerdynamic load balancing
library. Master’s thesis, Computer Science Dept., Rensselaereeiyic Institute, Troy,
NY.

Gottlieb, D. and Orszag, S. (197 umerical Analysis of Spectral Metho®&AM, Philadel-
phia.

BIBLIOGRAPHY 159

Greengard, L. and Lee, J. (1996). A direct adaptive poisstwesof arbitrary order accuracy.
J. Comput. Phys125, 415-424.

Gunton, D., Miguel, M., and Sahni, P. (1983)he dynamics of first-order phase transitions,
vol8. of Phase transitions and critical phenomeraademic Press, London.

Henderson, R. (1994)Unstructured Spectral Element Methods: Parallel Algarith and
Simulations PhD thesis, Princeton University.

Henderson, R. and Karniadakis, G. (1991). Hybrid spectesthent-low order methods for
incompressible flowsJournal of Scientific Computin®, 2—79.

Hendrickson, B. and Leland, R. (1993). The chaco user’s,gugdsion 1.0. Tech. Report
SAND93-2339, Sandia National Laboratories, Albuquerque

Kagstdm, B., Ling, P., and Van Loan, C. (1998a). GEMM-Based Lev&8LAS: High-
Performance Model Implementations and Performance Etratu@enchmark. ACM
Trans. Math. Software24(3), 268-302.

Kagstom, B., Ling, P., and Van Loan, C. (1998b). Algorithm 784: GEB\NBased Level 3
BLAS: Portability and Optimization IssueACM Trans. Math. Softwar@4(3), 303-316.

Keestra, B., Van Puyvelde, J., Anderson, P., and Meijer2808). Diffuse interface mod-
elling of the morphology and rheology of immiscible polynidends. Physics of Fluids
15(9), 2567-2575.

Kikuchi, R. and Cahn, J. (1962). Theory of domain walls inesetl structures ii. pair ap-
proximation for nonzero temperatures.Phys. Chem. Solig23, 137-151.

Kreyszig, E. (1993)Advanced Engineering Mathematics, Seventh editiditey, New York.

Lawson, C., Hanson, R., Kincaid, D., and Krogh, F. (1979%iBanear algebra subprograms
for fortran usageACM Tran. Math Softwareb(3), 308—323.

Levin, J., Iskandarani, M., and Haidvogel, B. (2000). A nmmforming spectral element
ocean modellBM, 34, 495-525.

Lowengrub, J., Goodman, J., Lee, H., Longmire, E., Shelldy, and Truskinovsky, L.
(1998). Proceedings of the 1997 International Congress on Free BaonProblems
Addison-Wesley Longman, Reading Massachusetts.

Maday, Y. and Patera, A. (1988)Spectral Element methods for Navier-Stokes equations
State-of-the-art surveys in computational mechanics, ESNew York.

Maday, VY., Mavriplis, C., and Patera, A. (1989). Non-confarg mortar element methods:
application to spectral discretizatio8IAM, 7, 392—-418.

Maday, Y., Patera, A., anddRquist, E. (87). Optimal legendre spectral element metfards
the stokes semi-periodic problen€ASE report 48.

160 BIBLIOGRAPHY

Mavriplis, C. (1989). Nonconforming Discretizations and a Posteriori Error Esttes for
Adaptive Spectral Element TechniquésD thesis, MIT.

Mavriplis, C. (1990). A posteriori error estimators for atlee spectral element techniques.
Notes on Numerical Fluid Mechanic39, 333-342.

MPI (1994).Message Passing Interface Foruknoxville, Tennessee, Knoxville, Tennessee.

Musser, D. and Stepanov, A. (1994). Algorithm-orientedagerlibraries.Software: Practice
and Experience?4, 632—642.

Naumann, E. and He, D. (2001¢hem. Eng. Sgi56, 1999.

Parashar, M. and Browne, J. (1995). Distributed dynamia-dauctures for parallel adap-
tive mesh refinementProceeding of the International Conference for High Penfance
Computing

Patera, A. (1984). A spectral element method for fluid dymamiaminar flow in a channel
expansionJournal of Comp. Physi¢c$4, 468.

Patra, A. and Oden, J. (1995). Problem decomposition fqutadehp finite element methods.
Comp. SyS. Engng, 97.

Rgnquist, E. (1988)Optimal Spectral Element Methods for the Unsteady Threadbiional
Incompressible Navier-StokeBhD thesis, Massachusetts Institute of Technology.

Rowlinson, J. and Widom, B. (1989olecular Theory of Capillarity Clarendon, Oxford.

Rumbauch, J., Jacobson, I., and Booch, G. (1998 Unified Modelling Language Refer-
ence Manual Addison Wesley, Reading, Massachusetts.

Saad, Y. (1995)Iterative Methods for Sparse Linear SysterR8VS, Boston.
Schwab, C. (1998)— andhp-FEM. Oxford University Press.

Segal, A. (1995). Sepran user manual and programmers guidagenieursbureau Sepra,
Leidschendam.

Shephard, M. (1988a). Approaches to the automatic geoaratid control of finite element
methods Applied Mechanics Review4l(4), 169-185.

Shephard, M. (1988b). Update to:approaches to the autogetieration and control of finite
element methodsApplied Mechanics Reviey49(10), 5-14.

Shephard, M., Flaherty, J., de Cougny, H., Ozturan, C.,@sti, C., and Befall, M. (1995).
Parallel automated adaptive procedures for unstructureshes. Parallel Comput. in
CFD,, R-807, 6.1-6.49.

Siek, J. and Lumsdaine, A. (1998 rational approach to portable high performance: The
basic linear algebra instruction set (BLAIS) and the fixegiogithm site template (FAST)
library. Parallel Object Oriented Scientific Computing, ECOOP.

BIBLIOGRAPHY 161

Siek, J. and Lumsdaine, A. (1999). A modern framework for tadde high-
performance numerical linear algebra.Advances in Software Tools for Scientific
Computing;Springer Verlag pages 1-56.

Sohn, A., Biswaas, R., and Simon, H. (1996). Impact of loddrixang on unstructured adap-
tive computations for distributed-memory multiprocesstn Proc. Eighth IEEE Symp. on
Parallel and Distrib. Proc., New Orleans, LA

Stepanov, A. (1996)Generic programmingLecture Notes in Computer Science,1181.
Stroustrup, B. (1997)C++. Addison-Wesley, Inc.

Timothy, B. (1998).Data Structures In C++ Addison-Wesley, Inc.

Tucker, C. and Moldenaers, P. (2002nnu. Rev. Fluid Mech34, 177.

Veldhuizen, T. (1995). Expression templat€s:+ Report, 7, 36—43.

Veldhuizen, T. (1998). Arrays in blitz+4SCOPE’98 1505.

Veldhuizen, T. (1999). Blitz++: The library that think it iscompiler.Advances in Software
Tools for Scientific Computing;Springe¥erlag pages 57—-89.

Verschueren, M. (1999 diffuse-Interface Model for Structure Development inviEI®hD
thesis, Eindhoven University of Technology, the Nethedtan

Vreugdenhil, C. and Koren, B. (1993Numerical Methods for Advection-Diffusion Prob-
lems Vieweg Braunschweig, Wiesbaden.

Williams, R. (1992). Voxel databases: A paradigm for patain with spatial structure.
Concurrency4, 619-636.

162 BIBLIOGRAPHY

Summary

In this thesis, we investigate the implementation of an &dapnesh technique based on the
mortar element method. A common bottleneck in the impleatéstt of a numerical tool-box
is the complexity of the code that has to be developed. Thespiwral programming approach
demands a lot of programming effort and is a time consumigky. t&o avoid such problems,
an object-oriented approach model is proposed and testaderies of problems in one and
two dimensions. Based on a set of C++ classes and Fortrariébr the implementation
offers an efficient software interface to an applicationeedBlecause the strength of C++ lies
in new kind of features that assist in formulating more cawpbrograms, we can build a
framework for more sophisticated and reliable programs.

The mortar discretization is applied here to the specteheht method. It allows local
mesh refinement, which simplifies grid generations for a l@rakin a complicated domain.
Also, the mortar discretization represents a significamdade for spectral element methods,
which offers new possibilities to time-dependent movingrmary problems. One of the ma-
jor advantages of unstructured meshes is the ability totadamesh to improve resolution at
a place in the simulation which needs it. The error estinsgpoovide powerful information
to be used directly in an adaptive refinement scheme. Togeittethe mortar discretization,
they form the basic components for a fully adaptive mesheeient environment.

To provide a clear and efficient way to program a large vargdtynesh computations
in Fortran or C++, the Voxel Data Bas& DB) has been implemented, which makes the
execution of a program independent of the distribution ¢édda processors. This allows an
application to read in a mesh of just a few elements, and adathe necessary resolution in
parallel and, furthermore, adapt it locally once the siriofedemands more or less resolution
based on the values of the error estimators.

Several examples were presented that show that the coneergates are similar in the
uniform and non-conforming cases. However, in the non-@oning case, we use less el-
ements (points) than in the uniform case, because the mataw local mesh refinement
in the regions where a good accuracy is needed. Overall,aheanforming discretization
proves to be a flexible and a reliable method that elimindtedimnitations of the standard
conforming spectral discretizations.

164 Summary

Samenvatting

Dit proefschrift beschrijft de implementatie van een nuielelgereedschap vo@daptive
meshtechnieken, gebaseerd op de mortar element methode. Haogdeomende bottleneck
in de implementatie van numerieke gereedschap is de coitgitexan de code die on-
twikkeld moet worden. Een procedurele benadering van progreren eist veel inspan-
ning en kost veel tijd. Om deze problemen te vermijden, is @gact-geoiénteerde be-
nadering gevolgd. Gebaseerd op een aantal C++ klassen wrarfbabliotheken, biedt de
implementatie een effiénte software interface aan de applicatiecode. C++ kehblgect-
georenteerde mogelijkheden, die we kunnen gebruiken om commaxngewikkelde pro-
gramma’s te ontwikkelen. Mortar-discretisatie is hiergegast voor de spectrale elementen
methode. Het maakt locale roosterverfijning mogelijk waardde roostervorming voor een
probleem in een ingewikkeld domein sterkt vereenvoudigt.

Mortar-discretisatie betekent een waardevolle aanwinst e spectrale elementen methode.
Gegeven de nieuwe mogelijkheden voor tijdsafhankeliji@amen met bewegende gren-
zen, biedt de mortar-discretisatie een waardevolle higl@an de spectrale element meth-
oden. Een van de voornaamste voordelen van non-conforrobgjars is de mogelijkheid
het rooster aan te passen, op een plek in de simulatie, waaragere resolutie nodig is.
De foutschatters leveren krachtige informatie die dirextirgikt kan worden bij deze adap-
tieve verfijning. Samen met de mortar-discretisatie, vorme de basiscomponenten voor
een volledige omgeving voor adaptieve roosterverfijning.

Om een grote verscheidenheid aan roosterberekeningentiafrof C++ op een duidelijke
en doeltreffende wijze te kunnen leveren, is de Voxel DatseBW¥ DB) géimplementeerd.
Dit maakt de werking van het programma onafhankelijk vanatexkerdeling tussen de pro-
cessoren. Hierdoor kan een applicatie, na slechts eenl aetaenten te hebben gelezen,
deze parallel aanpassen aan de juiste resolutie en ze demmadig lokaal aanpassen,
gebaseerd op de foutschatters.

Er zijn enkele voorbeelden gepresenteerd die laten ziemeabnvergentiesnelheden
gelijk zijn in conforming en non-conforming gevallen. Eehtwe gebruiken in het non-
conforming geval minder elementen dan in het conformingaevmdat de mortars lokale
roosterverfijning toestaan in gebieden waar betere nauvgkaid vereist is. In het alge-
meen blijkt de non-conforming discretisatie een soepelestrouwbare methode te zijn, die
beperkingen van de standaard conforming discretisatieinelert.

166 Samenvatting

Acknowledgements

This thesis would not have been possible without the help ariynpeople. To all of them
who contributed to this work, | express my sincere gratituelest and foremost, | would like
to thank Frans van de Vosse, Han Meijer and Jan Dijkstra.s-taank you for introducing

me to the MATE group and the beautiful world of spectral elataeYour support in the first
years of my study was of great importance. Han, the freedoppat and understanding
you gave me, were crucial to the continuity of my work. | amplggrateful and thankful

to you. Jan, thank you for the opportunity you offered me taticme with my study and the
enjoyable atmosphere you have created in ICTOO group.

| would like to thank Patrick Anderson, for his support anddgmce. His expertise in
SEPRAN and spectral elements were very helpful to me.

| wish to thank Marleen Rieken for her kindness, understagn@ind positive thinking.
She had all the time, when | was in trouble, a good advise for me

Many thanks to my room mates lvan, Erwan, Juan and Christiaa,have tried to create
all the time a very inspiring and enjoyable atmosphere. ©anrwas unique, we had the
highest number of citizenships per square meter from theeusity. lvan thank you for
the fruitful discussions over the numerical implementatad the mortar methods and for
remembering me the balkan way of life, | was missing so mudit &nd Viny, many thanks
for the applications you offered me.

Several people, | am indebted to: Prof. M. O. Deville, ProMavriplis, Prof. G. Kar-
niadakis, dr. R. D. Henderson for helping me to understaadnvibrld of high-order methods
and offered me support in the implementation of the mortathod

| thank my colleagues from ICTOO and Computer Graphics gfoupll the enjoyable
moments we spent together. Thieu thank you for your advidd@msolving a lot problems
| was confronted to in these years.

To my friends Joshua, Michael, Rafael, Gabriel, Ouriel angkalos: thank you for being
with me all the time, and for the guidance you give me in life.

I would like to express here my warmest thanks to my familysigpport and understand-
ing during my work on this thesis. Dear Diana, | will not beabd thank you ever for the
way you have supported me through these heavy years. Youbleaveall the time, not only
my loving wife but also, the third promotor. Your remarks @efery valuable to me, even
when they were very direct and critical.

168 Acknowledgements

To my children Alina, Julia and Stefan: | promise you that ll\we very early at home,
each day, and every weekends will be only a family matter.

Least but not last, | would like to thank my parents llincan8ha, Marin and loan.
Oriunde va aflati acum, va transmit toata dragostea mea. Vamesc pentru sacrificiile pe
care le-ati facut in viata, pentru iubirea si dragostea ca o&ati inconjurat.

lon Barosan,
Eindhoven, September 5, 2003.

Curriculum Vitae

Jun. 27,1961 Born in Galateni, Romania .

1968-1976 Primary school education, Galateni.

1977-1980 Secondary school education, Bucharest.

1981-1986 "Politechnica” University Bucharest, Faculty of CompuSsmience .

1986-1989 Software Engineer, "6 Martie” Company Zarnesti, Romania.

1989-1990 Software Engineer - researcher associate at the Automagoh-
nological Engineering and Scientific Research Institutectrest,
Romania.

1991- * Visualization and Virtual Reality Specialist, Eindhovemitersity

of Technology.

	Contents
	List of symbols
	1. Introduction
	2. Basics of the spectral element methods with adaptive mesh refinement
	3. Mortar element method
	4. Software implementation
	5. Application of mortar elements to diffuse-interface methods
	6. Concluding remarks and recommendations
	Appendix A
	Appendix B
	Bibliography
	Summary
	Samenvatting
	Acknowledgements
	Curriculum Vitae

