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Conclusion: We have demonstrated the possibility of frequency 
hopping between the fundamental frequency and third harmonic 
of a Love wave device during the deposition and removal of a bio- 
logical mass layer. The optimum interdigital transducer inetallisa- 
tion and guiding layer thickness for simultaneous operation at 
these frequencies has been investigated. 
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Temperature retrieval algorithm for brain 
temperature monitoring using microwave 
brightness temperatures 

G.M.J. Van Leeuwen, J.W. Hand, J.B. Van de Kamer 
and S. Mizushina 

A solution to the inverse probleni of retrieving temperature from 
a set of microwave brightness temperatures together with a priori 
information regarding weighting functions and heat transfer 
within the infant head is introduced. The method offers the basis 
for non-invasive temperature monitoring appropriate for 
hypothemd neural rescue therapy. 

Introduction: Cooling of the brain after asphyxia at birth reduces 
the development of brain damage [ 11. Clinical trials investigating 
the efficacy of brain cooling require that temperatures in the deep 
brain can be monitored. We are developing a microwave radiome- 
try (MWR) system with five frequency bands for the non-invasive 
and prolonged monitoring of deep brain temperature [2]. Here we 
report an improved method for retrieving tissue temperatures from 
MWR measurements, and examine how uncertainties in measured 
brightness temperatures and in the data used in the analysis affect 
the retrieved temperatures. 
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Microwave radiometry: The measured brightness temperature in 
MWR is defined by the tissue’s thermal radiation and is, accord- 
ing to the Rayleigh-Jeans Iaw, proportional to the absolute tem- 
perature: 

where P, is the thermal power received by the radiometer’s 
antenna in a bandwidth AA centred around frequencyx, and k is 
Boltzmann’s constant. The rightmost term involves integration 
over the antenna’s field of view (afv) of the product of absolute 
temperature T and the radiometric weighting function K, The fre- 
quency dependence of W, allows extraction of the temperature- 
depth profile in the tissue from a set of measurements made at dif- 
ferent frequencies. 

The radiometer antenna is a ceramic loaded open-ended rectan- 
gular waveguide. A thin water bolus between the antenna and the 
baby’s head ensures predictable coupling. Each of five receivers, 
with central frequencies 1.2, 1.65, 2.3, 3.0, and 3.6GHz and 
0.4GHz bandwidth, contains a reference noise source that is tem- 
perature controlled so as to ‘balance’ the thermal noise radiation 
from the antenna. When this condition is met, the brightness tem- 
perature of the tissues under observation is equal to that of the 
reference noise source [3]. For our system, which uses integration 
times of 4 or 5s, we have calculated the total uncertainty in the 
measurement of the brightness temperatures to range between 
60mK for the 1.2GHz-centred band and 65mK for the 3.6GHz- 
centred band. 

Modelling: To calculate brightness temperatures, the weighting 
functions and temperature distribution must be determined. Elec- 
tromagnetic and theinial computations were carried out using a 
3D anatomically realistic model of an infant head. The radiomet- 
ric weighting function was found using the reciprocity theorem by 
calculating the normalised power absorption rate distribution 
when the antenna was operating as a source rather than as a 
receiver: 

where Ei is the electric field intensity induced by the antenna and 
oi is the tissue conductivity. The FDTD method with retarded 
time absorbing boundary conditions [4] was used to calculate the 
E-field distributions. Excitation of the antenna was modelled by 
prescribing E-field values for all voxels in the respective probe 
plane of the waveguide antenna. Temperature distributions within 
our infant head model were calculated using the heatsink 
approach [5] and were validated by comparison with those derived 
using a model that accounted for the effects of discrete vasculature 
[6]. The base set of thermal boundary conditions represented a 
cooling cap at 16°C and body core temperature maintained at 
34°C. 

Tetnperature retrieval: The inverse problem of finding the best esti- 
mate for the temperature distribution requires parameterisation of 
the 3D temperature distribution. In view of the long computation 
time necessary to calculate a temperature distribution, varying a 
parameter in the thermal model is not an option for real-time tem- 
perature retrieval. Instead, we use pre-calculated distributions T I ,  
m 

where To is the cooling cap temperature, AT = T,(r) - To, and the 
p, (T)  are polynomial functions, the coefficients of which are the 
parameters to be determined. The parameters can now be taken 
outside of the volume integral in eqn. 1 ,  which allows the volume 
integration of the product of weighting function and temperature 
to be performed before measurements start. For example, two pre- 
calculated temperature distributions can be used with dimension- 
less parameters al and a2 which scale the distributions: 

7’retr.Leved(rla1,a2) = To + alATI(r) + azAT2(r) 

The numerical brightness temperatures can then be written as 
(4) 
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Solution of the inverse problem is now reduced to solving an over- 
determined system of linear equations. 
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Fig. 1 Synthetic brightness temperatures for pe,;firsion 40rnl (IOOgj-' 
inin-': dij'yerences with perfiisiovr 30ml (100g)- nziii-' and &j"er.ence 
with best f i t  -*- synthetic brightness, bolus 5mni (scale on left axis) 
4- base, bolus 5" (scale on right axis) 
U base2, bolus 7mm (scale on right axis) * fit with uncertainty, T,,,,,,, - To,,i,odel (scalc on right axis) 

Accuracy: Reconstruction of the temperature distribution from 
synthetic brightness temperatures calculated using the same mod- 
els and parameters simulates the ideal situation in which exact 
knowledge of the spatial distributions of all the relevant physical 
properties used in the electromagnetic modelling and thermal 
modelling is available. Because no information is discarded in our 
new temperature retrieval process, it results in perfect retrieval for 
this ideal case. By using this method, we can investigate how the 
uncertainties in the brightness temperatures affect the precision of 
the reconstructed temperatures. 

We have retrieved temperatures using two different brain per- 
fusion values (30 and 40ml (lOOg).' m i d )  to calculate tempera- 
ture distributions. The central brain temperatures are equal, so 
when we use the paraineterisation 

Tretr2eved(rla1,m) =TO + nlATl(r)  + a~(T2(1- )   TI(^)) 
(6) 

the standard error in q ,  o , ~ ,  alone determines the standard error 
in the central brain temperature. With synthetic brightness teinper- 
atures from TI we find ill = I ,  oill = 0.041, resulting in oT,h,.oili = 
0.75"C for ATl(r) = 18.25"C in the central brain. 

Solving the inverse problem for a set of brightness temperatures 
calculated for the different body core temperature of 37°C instead 
of 34°C (using the same TI and T2 as before) results in ciI = 1.164 
f 0.041. This corresponds exactly to the difference in calculated 
temperatures with respect to To (AT = 21.25"C and 18.25"C, 
respectively, for high and low core temperature). This is a reflec- 
tion of the fact that the shapes of the temperature profiles are vir- 
tually independent of the temperature difference between cap and 
body core. 

Inaccurate data causes systematic errors in the retrieved temper- 
ature distribution. We have evaluated the effect of realistic devia- 
tions in several parameters by solving the inverse problem for 
synthetic brightness temperatures. In practice, the parameter 
uncertainty with the biggest influence can be countered by using 
modelling results for different values of this parameter. We found 
that the thickness of the cooled water bolus is a major possible 
source of error. Therefore, the temperature retrieval might be 
based on sets of model computations for different bolus thick- 
nesses. The effect of inaccurate values of other parameters in case 
of analysis using different bolus thicknesses was investigated. 
Assuming brain perfusion 30ml (lOOg)-l min-I, a tit to synthetic 
brightness temperatures obtained for brain perfusion 40ml (100g)-' 
min-l resulted in an overestimate of the central brain temperature 
by 0.5"C. Fig. I shows the retrieved profile fits the synthetic data 
very well in this case. Plausible inaccuracies in dielectric properties 
(-10%) had a smaller effect, but a different anatomical segnienta- 
tion with 2mm more bone resulted in a 2°C underestimate. 

Conclusion; A new algorithm for temperature retrieval from a set 
of microwave brightness temperatures is introduced. It allows the 

time consuming calculations of temperature distributions and 
weighting functions to be performed off line, reducing the solution 
of the inverse problem to thc solution of an overdetermined sys- 
tem of linear equations. Use of the algorithm, together with 
numerical modelling in an anatomically realistic model of the 
infant head, enables the temperature distribution in the brain to be 
obtained quickly from measurements obtained using a multi-fre- 
quency microwave radiometer. The algorithm is also useful in per- 
forming an error analysis of this measurement technique. 
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Optimisation chaotic synchronisation of 
length-limited noisy Chua's circuit signal 

Di He, Chen He, Ling-ge Jiang, Hong-wen Zhu and 
Guang-rui HLI 

A new approach to synchronisation of Chua's circuit is presented. 
It effectively combines the interior penalty method of optimisation 
and chaotic synchronisation. Even under unfavourable, noisy 
conditions, the approach shows attractive lower variance results, 
compared with convcntional chaotic synchronisation in realising 
the synchronisation of length-limitcd noisy chaotic signals. 

Intr.ocluction: Chaotic signals commonly have stochastic noise phe- 
nomena present in the time domain, which cannot be easily syn- 
chronised. Conventional chaotic synchronisation, which was first 
introduced by Pecora and Carroll [ I ,  21, is an efficient means of 
resolving this problem but it is only available under specific condi- 
tions, while in unfavourable environments with additive white 
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