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The M/G/1 queue with quasi-restricted accessibility

Onno Boxma∗, David Perry†, Wolfgang Stadje‡ and Shelley Zacks§

Abstract

We consider single-server queues of the M/G/1 kind with a special kind of partial
customer rejection called quasi-restricted accessibility (QRA). Under QRA, the actual
service time assigned to an arriving customer depends on his service requirement, say x,
the current workload, say w, and a prespecified threshold b. If x + w ≤ b the customer
is fully served. If w ≤ b < w + x, the customer receives service time b − w + (w +
x − b)f for some random number f ∈ [0, 1], while if w > b the actual service time is
the fraction fx of the requirement. The random fractions are assumed to be i.i.d. We
derive the steady-state distribution of the workload process, which is also the steady-state
distribution of the waiting time, and provide explicit results for the cases of Erlang or
hyperexponential service requirements and uniformly distributed or constant fractions.
We also deal with the case of exponential barriers b (instead of one constant threshold).
Furthermore, the distribution functions of the length of a busy period and of the cycle
maximum of the workload are determined. In the case of phase-type service requirements
there is an alternative (martingale) technique to derive the busy period distribution; we
illustrate this approach in the case of Erlang(2,µ). Finally, we show in the example of the
Erlang(2,µ)/M/1-type QRA queue with deterministic fractions (which is non-Markovian)
how to compute the busy period distribution via a duality with a Markovian system.

1 Introduction

In this paper we consider single-server queues with a special kind of partial customer rejection
called quasi-restricted accessibility (QRA). Any queueing system with a restricted workload
capacity has to deal with the problem what to do with customers whose acceptance would
increase the current workload beyond the given limitations. One possibility is to reject these
customers completely; another is to grant them only partial admission in order to keep the
capacity bounded or to diminish the growth of the cumulated workload.

QRA means that only a certain fraction of any freshly arriving workload above a certain
threshold b > 0 is processed. Formally, consider a single-server queue of the M/G/1 type
with An denoting the time between the arrivals of the nth and (n + 1)st customer and Xn

denoting the service requirement of the nth customer, n = 0, 1, 2, . . . Let Fn, n = 0, 1, 2, . . .
be random variables taking values in [0, 1]. We assume that (An)n≥0, (Xn)n≥0 and (Fn)n≥0
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are i.i.d. sequences and independent of each other. Furthermore, An is exp(λ)-distributed
for every n ≥ 1. In the QRA model the actual service time Sn assigned to the nth customer
depends on his service requirement Xn and his waiting time Wn in the following recursively
defined way: Let W0 = 0. If W0, ...,Wn have already been defined for some n ≥ 0, let

Sn =







Xn, if Wn +Xn ≤ b
b−Wn + Fn(Wn +Xn − b), if Wn ≤ b, Wn +Xn > b
FnXn, if Wn > b

(1)

and Wn+1 = max[0,Wn + Sn −An].
Thus if Wn+Xn exceeds b, then only the fraction Fn of the service requirement beyond b is

added to the workload. We will deal in particular with the case of deterministic Fn ≡ f ∈ [0, 1)
and the case when Fn is uniform on (0, 1). Note that Fn ≡ 0 means that the system does not
tolerate more than b work units; arriving jobs whose admission would increase the current
workload above b are only partially admitted such that the workload jumps up to its capacity
bound b. If Fn ≡ f ∈ (0, 1), only the fraction f of any workload exceeding b or arriving while
the current workload is larger than b is processed. In general, workload above b is either
rejected (with probability P(Fn = 0)) or only the fraction Fn is processed if Fn > 0.

We denote by A,X,F generic independent random variables whose distributions are those
of An,Xn, Fn, respectively. Let V = {V (t) | t ≥ 0} be the associated virtual waiting time
process. The system is stable under the condition

λE[F ]E[X] < 1. (2)

We assume throughout that (2) holds. Then the waiting times Wn possess a limiting distribu-
tion which, by PASTA, is also the limiting (and steady-state) distribution of the continuous-
time workload process V (t).

Indeed, (2) states that the expected upward jump size E[FX] of V, as long as the process
stays above b, is smaller than the expected interjump time λ−1 so that V will almost surely
return to b after every upcrossing of b within finite time. Thus taking the times between visits
of b as cycles, V is a regenerative process. If the cycle length has finite mean, the ergodic
theorem for those processes yields the existence of a limiting steady-state distribution [4].
Due to the negative drift above b, the expected cycle length is finite if the excess of V over
b when entering (b,∞) has finite mean. This is trivially true if X is almost surely bounded.
But if X is not bounded with probability 1, then conditioning on the position of V just before
a jump above level b it is seen that the expected excess over b is bounded by

sup
0≤s≤b

E[X − s | X > s] ≤ sup
0≤s≤b

E[XI(X > s)]

P(X > s)
≤

E[X]

P(X > b)
<∞.

By I(A) we denote the indicator function of the event A.
QRA is a new variation of queueing models with workload-dependent admission policies.

In the literature several models of this kind have been studied:
(a) In finite dam models all workload is accepted up to the capacity restriction b whereas

additional workload just overflows and is lost. A comprehensive account of this system for
interarrival and service time distributions with rational Laplace-Stieltjes transforms (LSTs) is
given in [10], Ch. III.5. The method is based on Pollaczek’s contour integral equation which,
in the case of rational LSTs, leads to explicit, albeit very complicated formulas. For example,
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the main results of [10] concerning busy periods in the cases of M/G/1 and G/M/1 are eqs.
(5.82), p. 536, and (5.105), p. 544, respectively, which give joint transforms of the duration of
a busy period and two related quantities in terms of contour integrals. In [17] the steady-state
workload distribution of the M/G/1 model with finite capacity is shown to be proportional
to its infinite-capacity counterpart; in [7] this result is extended to workload-dependent rates.
Another approach in which the LST of the busy period in the M/G/1 case is expressed
directly in terms of certain transforms of the underlying distributions is expounded in [27].
Exploiting a certain duality, this technique also yields analogous results for the G/M/1 case.

(b) In customer impatience models an arriving customer leaves without receiving any
service if his waiting time is too large. Many authors deal with the steady-state distribution
of the workload in this model [11, 9, 23, 15, 18, 17]. More recently, various closed-form results
were derived [25, 27, 28, 7, 22].

(c) In limited sojourn time models no customer joins the queue whose sojourn time would
be too large. Partial results are known for M/M/1, M/D/1 [9, 15] and PH/PH/1 [23].

Due to its importance, e.g. for call centers, the modeling of restricted accessibility and
customer impatience has recently attracted a lot of attention [21, 14, 38]. For the general
framework of queues with workload-dependent arrival and service rates we refer to [16, 8, 7]
and for restricted queues to [34, 37, 20, 25].

In [36] explicit results on the waiting time of a related multi-server system were obtained.
In [6] i.i.d. random thresholds, so-called patience times, limiting the time in line for every
customer were considered; structural properties of the actual and virtual waiting times in the
GI/G/1 case and explicit results for Poisson input and patience times with rational Laplace
transforms were derived.

In this paper the following results for M/G/1 queues with QRA are proved. In Section
2 we derive the steady-state distribution of the workload process, which is also the steady-
state distribution of the waiting time, and provide explicit formulas for the cases of Erlang
or hyperexponential service requirements and uniformly distributed or constant fractions. In
Section 3 we deal with the case of exponential barriers b (instead of one constant threshold).
In Sections 4-6 we determine the distribution function of the length of a busy period in closed
form. In Sections 7-9 the cycle maximum of the workload process is considered. First we
give a new proof for a well-known expression for its distribution function in the unrestricted
case, thereby establishing an interesting connection to the density of the associated compound
Poisson process, and then derive an alternative formula. We set out to find the cycle maximum
distribution in the case when all customers arriving while the workload is below b get full
service, whereas no customers are admitted as long as the workload is above b (this is the case
Fn ≡ 1). Finally we compute the distribution under general QRA. An alternative (martingale)
approach to the busy period distribution is presented in Section 10; we illustrate this method
for Erlang(2,µ)-distributed service requirements and uniform random fractions. In Section
11 we show how the busy period results can be carried over to the non-Markovian case of
phase-type arrivals by exploiting a duality between M/G/1 and G/M/1 type systems. For
simplicity we present this approach only for Erlang(2,µ)-distributed interarrival times.

2 Waiting times

In this section we shall study the waiting time distribution in the M/G/1 queue with QRA
as defined above. Let W be a random variable whose distribution is the limiting distribution
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of Wn for n → ∞. We assume that the stability condition λE[FX] < 1 holds, so that
this limiting distribution exists, which because of PASTA is also equal to the steady-state
workload distribution in our model.

Starting from the fundamental recursion Wn+1 = max(0,Wn + Sn − An), n = 1, 2, . . . ,
we can write:

E[e−θWn+1] = E[e−θ(Wn+Sn−An)I(Wn + Sn > An)] + E[I(Wn + Sn ≤ An)]

= E[e−θ(Wn+Sn−An)] − E[e−θ(Wn+Sn−An)I(Wn + Sn ≤ An)]

+E[I(Wn + Sn ≤ An)]

=
λ

λ− θ
E[e−θ(Wn+Sn)] −

λ

λ− θ
P(Wn + Sn ≤ An) + P(Wn + Sn ≤ An)

=
λ

λ− θ
E[e−θ(Wn+Sn)] −

θ

λ− θ
P(Wn+1 = 0), Re θ ≥ 0. (3)

For the limiting distribution of the sojourn time Wn + Sn we obtain from (1) the relation

lim
n→∞

E[e−θ(Wn+Sn)] =

∫ b

x=0
e−θxdP(W < x)

∫ b−x

y=0
e−θydP(X < y)

+

∫ b

x=0
e−θxdP(W < x)

∫ ∞

y=b−x
e−θ(b−x)

E[e−θ(y+x−b)F ]dP(X < y)

+

∫ ∞

x=b
e−θxdP(W < x)E[e−θFX ]

=: I + II + III. (4)

Introducing the restricted transform

a(θ) :=

∫ b

x=0
e−θxdP(W < x), (5)

we can express the last integral in (4) in the form

III = (E[e−θW ] − a(θ))E[e−θFX ]. (6)

Combining (3), (4), and (6) yields

E[e−θW ] = [1 −
λ

λ− θ
E[e−θFX ]]−1

×
(

−
θ

λ− θ
P(W = 0) +

λ

λ− θ

[

I + II − a(θ)E[e−θFX ]
])

. (7)

The following remark plays an important role in our analysis; in particular, it leads to the
determination of a(θ).

Remark 1. For 0 < x < b the waiting time distribution in the QRA model is proportional
to the waiting time distribution in the M/G/1 queue with service requirements Xn and full
accessibility:

P(W < x) =
P(W = 0)

1 − λEX
P(W < x)M/G/1, 0 < x < b. (8)
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Indeed, as long as Wn stays below b, both models behave exactly the same; and when the
waiting time in our model returns below level b, the memoryless property of the exponentially
distributed interarrival times implies that the {Wn} process, restricted to [0, b], behaves the
same as the corresponding process for the ordinary unrestricted M/G/1 queue when it returns
below b. So in both models a busy period probabilistically has as many customers with waiting
time less than x, for 0 < x < b. Using the theory of regenerative processes, one can write

P(W < x) =
1

EN
E

[

N
∑

j=1

I(Wj < x)
]

,

with N the number of customers served in a busy period. Hence, for 0 < x < b, the
proportionality factor between P(W < x) and P(W < x)M/G/1 is the ratio of the mean
numbers of customers in a busy period of both systems, which equals the ratio of P(W =
0) =: Π0 in the QRA model and P(W = 0) = 1 − λEX in the ordinary M/G/1 queue.

It follows from Remark 1 that P(W < x), for 0 < x < b, and thus also a(θ) are known
up to the unknown constant Π0. Note that the integrals I and II are expressed by means of
the distributions of X and F and of P(W < x), 0 < x < b; therefore, E[e−θW ] is determined
by (7) once we know Π0. This constant can be computed from the familiar normalization
argument: E[e−θW ] = 1 for θ = 0. However, the following should be realized. While the LST
of W is well-known for the standard M/G/1 queue, the distribution function of W in this
case can in general only be given in terms of an inconvenient convolution series:

P(W < x)M/G/1 = (1 − λEX)

∞
∑

k=0

H(k)(x),

where H(k) is the kfold convolution of the function H(x) = λ
∫ x
0 P(X > u) du with itself.

It is known explicitly for the class of service requirement distributions with a rational LST
(cf. Section II.5.10 of [10]). To make our results more explicit, we restrict ourselves to that
class in the remainder of this section. This is not a major restriction as the class of such
distributions is dense in the class of all distributions of non-negative random variables. It
is well-known (see Formula (II.5.190) of [10]) that the LST of the steady-state waiting time
of the ordinary M/G/1 queue with a service time LST β(θ) = β1(θ)/β2(θ), where β2(θ) is a
polynomial in θ of degree k and β1(θ) is a polynomial of degree at most k − 1, is given by

E[e−θW ]M/G/1 =
β2(θ)

β2(0)

k
∏

i=1

ξi
ξi − θ

, Re θ ≥ 0. (9)

Here ξ1, . . . , ξk are the k zeros of β2(θ)−β1(θ)
λ

λ−θ in the complex left half-plane, each occurring
with its multiplicity. It follows that the distribution of W is a mixture of convolutions of
exponential distributions in which some of the weights may be negative. For simplicity let us
assume for the moment that all the ξi are distinct. Then by (9),

P(W > y)M/G/1 =

k
∑

i=1

Cie
ξiy, y ≥ 0. (10)

Hence in the QRA model we have, for 0 < x < b,

P(W < x) =
Π0

1 − λEX

(

1 −

k
∑

i=1

Cie
ξix
)

= Π0
1 −

∑k
i=1 Cie

ξix

1 −
∑k

i=1Ci

(11)
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and

a(θ) =

∫ b

x=0
e−θxdP(W < x) =

Π0

1 −
∑k

i=1Ci

∑k
i=1 Ci(−ξi)(1 − e−(θ−ξi)b)

θ − ξi
. (12)

To demonstrate the approach towards evaluating the terms I and II on the righthand side of
(4), we shall restrict ourselves in the calculations to two classes of distributions with rational
LSTs:

(i) Erlang distributions;
(ii) hyperexponential distributions.
By taking appropriate weighted combinations, one can also handle the more general case

of rational LST.
In addition, we shall consider two choices for the distribution of F :
(a) F is uniformly distributed on (0, 1);
(b) F is constant.
This yields a collection of four cases, which will be discussed consecutively.

Case 1: F = U , with U uniformly distributed on (0, 1), and Erlang(k, µ)-distributed service

requirements.

Observe that

E[e−θUX ] =

∫ ∞

0
E[e−θUy]dP(X < y) =

∫ ∞

0

1 − e−θy

θy
dP(X < y). (13)

In this case, cf. (4),

I + II =

∫ b

x=0
e−θxdP(W < x)

∫ b−x

y=0
e−θyµ

(µy)k−1

(k − 1)!
e−µydy

+

∫ b

x=0
e−θxdP(W < x)

∫ ∞

y=b−x
e−θ(b−x) 1 − e−θ(y+x−b)

θ(y + x− b)
µ

(µy)k−1

(k − 1)!
e−µydy. (14)

First consider term I:

I =

∫ b

x=0
e−θxdP(W < x)(

µ

µ+ θ
)k
[

1 −

k−1
∑

j=0

e−(µ+θ)(b−x) ((µ+ θ)(b− x))j

j!

]

= (
µ

µ+ θ
)ka(θ) − (

µ

µ+ θ
)k

k−1
∑

j=0

(µ+ θ)j

j!
e−(µ+θ)b

∫ b

x=0
eµx(b− x)jdP(W < x). (15)

Notice that the last integral can be easily evaluated, since the distribution of W is given by the
simple expression (11). Since a(θ) is easily computed by specializing (12) to the Erlang(k, µ)-
case, we see that (15) yields I in closed form as a linear combination of simple rational and
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exponential functions of θ. We refrain from giving the details, and turn to term II:

II =

∫ b

x=0
e−θxdP(W < x)

∫ ∞

z=0
e−θ(b−x) 1 − e−θz

θz
µ

µk−1

(k − 1)!
e−µ(z+b−x)(z + b− x)k−1dz

= µ
µk−1

(k − 1)!
e−(µ+θ)b

∫ b

x=0
eµxdP(W < x)

×

∫ ∞

z=0

1 − e−θz

θz
e−µz((b− x)k−1 +

k−1
∑

m=1

(

k − 1

m

)

zm(b− x)k−1−m)dz

= µ
µk−1

(k − 1)!
e−(µ+θ)b

∫ b

x=0
eµxdP(W < x) (16)

×
(

(b− x)k−1

∫ ∞

z=0

1 − e−θz

θz
e−µzdz (17)

+
k−1
∑

m=1

(

k − 1

m

)

(b− x)k−1−m

∫ ∞

z=0

1 − e−θz

θ
e−µzzm−1dz

)

.

Hence we can write

II = µ
µk−1

(k − 1)!
e−(µ+θ)b

k−1
∑

m=0

fm(θ)

∫ b

x=0
(b− x)k−1−meµxdP(W < x), (18)

where f0(θ), . . . , fk−1(θ) are known functions. The most complicated one is f0(θ), known as
the Frullani integral:

f0(θ) =

∫ ∞

z=0

1 − e−θz

θz
e−µzdz =

1

θ

∫ ∞

z=0
(1 − e−θz)dz

∫ ∞

y=µ
e−yzdy

=
1

θ

∫ ∞

y=µ
(
1

y
−

1

θ + y
)dy =

1

θ
ln(1 +

θ

µ
). (19)

For m = 1, . . . , k − 1, fm(θ) is given by

fm(θ) =

(

k − 1

m

)

1

θ

∫ ∞

z=0
(1 − e−θz)e−µzzm−1dz =

(

k − 1

m

)

1

θ

((m− 1)!

µm
−

(m− 1)!

(µ+ θ)m

)

. (20)

Combining (7), (15) and (18), we arrive at

E[e−θW ] =
[

1 −
λ

λ− θ
E[e−θUX ]

]−1

×

{

−
θ

λ− θ
P(W = 0) +

λ

λ− θ

[

− a(θ)E[e−θUX ] + a(θ)(
µ

µ+ θ
)k

−(
µ

µ+ θ
)k

k−1
∑

j=0

(µ+ θ)j

j!
e−(µ+θ)b

∫ b

x=0
eµx(b− x)jdP(W < x)

+µ
µk−1

(k − 1)!
e−(µ+θ)b

k−1
∑

m=0

fm(θ)

∫ b

x=0
(b− x)k−1−meµxdP(W < x)

]

}

. (21)

Notice that E[e−θUX ] is in the Erlang(k, µ) case given by
∑k−1

j=1(µ/(µ + θ))j/(k − 1). The
only remaining unknown on the righthand side of (26) is P(W = 0); it also appears in
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P(W < x), 0 < x < b (recall Remark 1). This probability follows via a normalization argu-
ment: E[e−θW ] = 1 for θ = 0. If we denote by W + S a steady-state random variable for
the sojourn time, then P(W = 0) = E[e−λ(W+S)], as the righthand term is the steady-state
probability that no arrival takes place during the sojourn time of a customer.

Case 2: F = U ; hyperexponentially distributed service requirements.

Let P(X > y) =
∑k

j=1 bje
−µjy with positive constants b1, . . . , bk adding up to 1. In this case,

term I becomes:

I =

∫ b

x=0
e−θxdP(W < x)

k
∑

j=1

bjµj

µj + θ
(1 − e−(µj+θ)(b−x))

=

k
∑

j=1

bjµj

µj + θ
[a(θ) − e−(µj+θ)ba(−µj)]. (22)

A straightforward calculation yields the following expression for term II (one could also take
k = 1 in (18), multiply by bj and take the sum over j):

II =

k
∑

j=1

a(−µj)bjµje
−(µj+θ)b 1

θ
ln(1 +

θ

µj
). (23)

Combining (7), (22) and (23) yields

E[e−θW ] =
[

1 −
λ

λ− θ
E[e−θUX ]

]−1

×

{

−
θ

λ− θ
P(W = 0) +

λ

λ− θ

[

− a(θ)E[e−θUX ] + a(θ)
k
∑

j=1

bjµj

µj + θ

+
k
∑

j=1

bjµja(−µj)e
−(µj+θ)b[

1

θ
ln(1 +

θ

µj
) −

1

µj + θ
]
]

}

. (24)

Notice that E[e−θUX ] is in the hyperexponential case given by
∑k

j=1 bjµjθ
−1ln(1 + (θ/µj)),

and that P(W = 0) is again obtained via normalization.

Case 3: F ≡ d, where d is a constant, 0 < d < 1; Erlang(k, µ)-distributed service require-

ments.

Term I is the same as in (15). Term II becomes

II =

∫ b

x=0
e−θxdP(W < x)

∫ ∞

y=b−x
e−θ(b−x)e−θd(y+x−b)dP(X < y)

= e−θ(1−d)b

∫ b

x=0
e−θdxdP(W < x)

∫ ∞

y=b−x
e−θdyµ

(µy)k−1

(k − 1)!
e−µydy

= e−θ(1−d)b

∫ b

x=0
e−θdxdP(W < x)

[

(
µ

µ+ θd
)k

k−1
∑

j=0

e−(µ+θd)(b−x) ((µ+ θd)(b− x))j

j!

]

= (
µ

µ+ θd
)k

k−1
∑

j=0

(µ+ θd)j

j!
e−(µ+θ)b

∫ b

x=0
eµx(b− x)jdP(W < x). (25)
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Notice that for d = 1 this last expression coincides with the last part of (15), as could be
expected.

Combining (7), (15) and (25) yields

E[e−θW ] =
[

1 −
λ

λ− θ
(

µ

µ+ θd
)k
]−1

×

{

−
θ

λ− θ
P(W = 0) +

λ

λ− θ

[

− a(θ)(
µ

µ+ θd
)k + a(θ)(

µ

µ+ θ
)k

− (
µ

µ+ θ
)k

k−1
∑

j=0

(µ+ θ)j

j!
e−(µ+θ)b

∫ b

x=0
eµx(b− x)jdP(W < x)

+ (
µ

µ+ θd
)k

k−1
∑

j=0

(µ+ θd)j

j!
e−(µ+θ)b

∫ b

x=0
eµx(b− x)jdP(W < x)

]

}

. (26)

Case 4: F ≡ d; hyperexponentially distributed service requirements.

Again let P(X > y) =
∑k

j=1 bje
−µjy. In this case, term I is already given by (22). For term

II we obtain

II =

∫ b

x=0
e−θxdP(W < x)

∫ ∞

y=b−x
e−θ(b−x)e−θd(y+x−b)dP(X < y)

= e−θ(1−d)b

∫ b

x=0
e−θdxdP(W < x)

∫ ∞

y=b−x
e−θdy

k
∑

j=1

bjµje
−µjydy

= e−(µj+θ)b
k
∑

j=1

bjµj

µj + θd
a(−µj). (27)

Combining (7), (22) and (27) yields:

E[e−θW ] =
[

1 −
λ

λ− θ

k
∑

j=1

bjµj

µj + θd

]−1
(28)

×

{

−
θ

λ− θ
P(W = 0) +

λ

λ− θ

k
∑

j=1

(
bjµj

µj + θ
−

bjµj

µj + θd
)(a(θ) − e−(µj+θ)ba(−µj))

}

.

We end this section with the following remarks.

Remark 2. Now that the distribution of W has been determined, we can also find the
steady-state distribution of the sojourn time R := W + S. It should be observed that W
and S are dependent, cf. (1), and that E[e−θR] = I + II + III, cf. (4). Terms I and II
are evaluated in detail in the four cases discussed above, and III is given in (6). Finally, the
steady-state distribution of the number of customers right after a departure, Z, is given by
the relation

E[e−λ(1−r)R] = E[rZ ].

9



As in an ordinary M/G/1 queue, Z has the same distribution as the number of customers
seen by an arrival, and also (by PASTA) as the number of customers in steady state.
Remark 3. In principle, the method developed in this section also allows us to handle the
case in which, above level b, there are additional levels b2, b3 etc. above which different
fractions of the surplus service requirements are admitted. Such models would behave in
the same way (up to a proportionality constant) below level b2, so one can restrict oneself to
analyzing W above b2, and so on.

3 A model variant: the case of exponential patience

In the previous section, a fixed barrier b determined whether a service requirement was fully
or only partially fulfilled. In the present section we consider the case of exponential patience,
viz., the barrier Bn for the nth customer is exponentially distributed with mean, say, 1/ζ.
The actual service time Sn of the nth customer depends on the service requirement Xn and
the waiting time Wn in the same way as in (1), but b in that formula now becomes an exp(ζ)-
distributed random variable (Bn for the nth customer). To study the steady-state waiting
time distribution in this case, we shall integrate the expressions for I, II and III in the
previous section with respect to the density of Bn. From (6) we obtain III for the new
model:

III = E[e−θFX ]
(

E[e−θW ] −

∫ ∞

b=0
ζe−ζbdb

∫ b

x=0
e−θxdP(W < x)

)

= E[e−θFX ]
{

E[e−θW ] − E[e−(θ+ζ)W ]}. (29)

The above formula is easily interpreted: the term between curly brackets equals E[e−θW I(W >
B)], as could have been expected from the last part of (1). (Here B is a new generic exp(ζ)-
distributed random variable which is independent of W and X.)

The term I becomes, after a lengthy calculation or after the simple observation that
E[e−θ(W+X)I(W +X ≤ B)] = E[e−(θ+ζ)(W+X)] (cf. the first part of (1)):

I = E[e−(θ+ζ)(W+X)]. (30)

Finally we determine II, performing some interchanges of integrations:

II =

∫ ∞

b=0
ζe−ζbdb

∫ b

x=0
e−θxdP(W < x)

∫ ∞

y=b−x
e−θ(b−x)

E[e−θ(y+x−b)F ]dP(X < y)

= E[e−(θ+ζ)W ]

∫ ∞

v=0
ζe−(θ+ζ)v

∫ ∞

y=v
E[e−θ(y−v)F ]dP(X < y)dv. (31)

Combining (3), (4), (29), (30) and (31) yields:

E[e−θW ] =
[

1 −
λ

λ− θ
E[e−θFX ]

]−1

×
{

−
θ

λ− θ
P(W = 0) +

λ

λ− θ

[

− E[e−θFX ]E[e−(θ+ζ)W ]

+E[e−(θ+ζ)X ]E[e−(θ+ζ)W ]

+E[e−(θ+ζ)W ]

∫ ∞

v=0
ζe−(θ+ζ)v

∫ ∞

y=v
E[e−θ(y−v)F ]dP(X < y)dv

]}

. (32)
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For the four cases discussed above, it is easy to evaluate the double integral on the righthand
side of (32). We will not spell out the details. More importantly, it should be observed that
(32) has the following structure:

E[e−θW ] = f1(θ)P(W = 0) + f2(θ)E[e−(θ+ζ)W ], (33)

f1(θ) and f2(θ) being functions which are expressed in known quantities:

f1(θ) :=
θ

θ − λ+ λE[e−θFX ]
, (34)

f2(θ) :=
θ − λ

θ − λ+ λE[e−θFX ]

[

−
λ

λ− θ
E[e−θFX ] + E[e−(θ+ζ)X ]

+

∫ ∞

v=0
ζe−(θ+ζ)v

∫ ∞

y=v
E[e−θ(y−v)F ]dP(X < y)dv

]

. (35)

Formally, iteration leads to

E[e−θW ] = P(W = 0)

∞
∑

j=0

f1(θ + jζ)

j−1
∏

k=0

f2(θ + kζ). (36)

Normalization finally determines P(W = 0), leading to the following expression for the LST
of the steady-state waiting time (and workload) in the model with exponential “patience”:

E[e−θW ] =

∞
∑

j=0

f1(θ + jζ)

j−1
∏

k=0

f2(θ + kζ)

∞
∑

j=0

f1(jζ)

j−1
∏

k=0

f2(kζ)

. (37)

To prove (36) and thus (37), consider the Nth iteration of (33):

E[e−θW ] = P(W = 0)

N
∑

j=0

f1(θ + jζ)

j−1
∏

k=0

f2(θ + kζ)

+
(

N
∏

k=0

f2(θ + kζ)
)

E[e−(θ+(N+1)ζ)W ]. (38)

Next note that f1(θ) > 0 and f2(θ) > 0 for all θ > λ and that

lim
j→∞

f1(θ + jζ) = 1. (39)

It thus follows from (38) that

E[e−θW ] ≥ P(W = 0)
N
∑

j=0

f1(θ + jζ)

j−1
∏

k=0

f2(θ + kζ) (40)
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for all N ∈ N and all θ > λ. Letting N → ∞ in (40) it is seen that for all θ > λ

0 <
∞
∑

j=0

f1(θ + jζ)

j−1
∏

k=0

f2(θ + kζ) <∞ (41)

The Nth summand in this series is positive and converges to zero as N → ∞ so that, by (39),

lim
j→∞

j−1
∏

k=0

f2(θ + kζ) = 0. (42)

Eq. (42) has been proved for θ > λ but it is obvious that it then also holds for θ < λ
as long as (λ − θ)/ζ is not an integer. It follows that the remainder term

(
∏N

k=0 f2(θ +

kζ)
)

E[e−(θ+(N+1)ζ)W ] in (38) tends to zero as N → ∞. This completes the proof of (36).

4 The busy period of the QRA queue

In the following section we derive the distribution of the duration of a busy period of the QRA
M/G/1 queue. We need the compound Posson process {Y (t) | t ≥ 0} whose jump times are
the customer arrival times and whose jump sizes are the service requirements X1,X2, . . .
Formally, let

Y (t) =

N(t)
∑

n=1

Xn, t ≥ 0 (43)

where {N(t) | t ≥ 0} is the ordinary Poisson counting process generated by the arrival times,
and

∑0
n=1 = 0. We call this process CPP (λ,B) where B(x) is the common distribution

function of the Xn. We assume that B(x) has a density f(x).
Let 0 < β1, β2 <∞ and define the two stopping times

TL(β1) = inf{t > 0 : Y (t) = −β1 + t} (44)

and
TU (β2) = inf{t > 0 : Y (t) ≥ β2 + t}. (45)

If there is no restriction on service capacity, then the length of a busy period, starting with
V (0) = X0, is TL(X0). In the case of QRA we need to introduce additional stopping times
for the various phases during a busy period. In the sequel we will express the LST of the
busy period under QRA in terms of transforms for these phases. In Section 5 we derive the
various components of the LST formula for the case of an M/M/1 queue, and in Section 6
we do the same in the much more complicated general M/G/1 case.

Assume that at the beginning of the busy period (which we set at t = 0) a customer
arrives with a demand for service X0. We distinguish between two cases:

Case I: X0 ≤ b;
Case II: X0 > b.
In Case I, the V (t) process starts at X0 and moves below the boundary b until for the

first time it either hits zero (ending the busy period) or jumps above b. This stopping time is

T (X0, b−X0) = min{TL(X0), TU (b−X0)}. (46)
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The time interval [0, T (X0, b−X0)) is called the initial phase. If T (X0, b−X0) = TU (b−X0)
the initial phase ends with V (t) jumping above b. We denote the overshoot by R1:

R1 = Y (TU (b−X0)) − (b−X0 + TU (b−X0)). (47)

In the subsequent over-b-phase, the V (t) process continues from β∗1 = R1F1. In this phase
V (t) behaves like a CPP(λ,B∗) where B∗(x) = P(FX ≤ x). The density of B∗ is

f∗(x) =

1
∫

0

1

u
f
(x

u

)

dP(F < u). (48)

Let {Y ∗(t), t ≥ 0} denote the CPP

Y ∗(t) =

N∗(t)
∑

n=1

X∗
n, (49)

where the density of the i.i.d. X∗
n, n ≥ 1, is f∗, the ordinary Poisson process N∗(t) is

independent of the X∗
n, and the new CPP is independent of CPP (λ,B). The length of the

over-b-phase is
T ∗

L(β∗1) = inf{t > 0 : Y ∗(t) = −β∗1 + t}. (50)

Clearly, TU (b − X1) + T ∗
L(β∗1) can be viewed as the first time instant at which V (t) drops

below b. This instant is the end of the initial cycle.
In Case II the V (t) process is already above b at time zero. We then define R∗

1 = X1 − b,
β∗1 = R∗

1F1; the initial cycle ends at T ∗
L(β∗1).

The end of the initial cycle is a regeneration point for the workload process, which restarts
from level b. At this time the V (t) process behaves as in Case I with X0 ≡ b. If after
regeneration it hits 0 before jumping above b, the busy period is ended (the corresponding
time interval is called a terminating phase). If it jumps above b before reaching 0, a new
over-b-phase will follow during which the workload returns to b. The time until then is called
a continuing cycle. The busy period continues until the first terminating phase occurs.

Obviously, the random number N of continuing cycles before a terminating phase has a
shifted geometric distribution, i.e.,

P(N = m) = pqm, m = 0, 1, . . . (51)

where
p = P(TL(b) < TU (0)). (52)

The above arguments show how the LST W ∗(· | b) of the length of a busy period is composed
of the LSTs of the various phases and cycles:

W ∗(θ | b) = M
(I)
L (θ | b) +

M
(I)
U (θ | b)ψ∗

L(θ | b)

1 − ψ∗
C(θ | b)

, Re θ ≥ 0. (53)

The functions on the righthand side of (53) are the following. For the initial phase,

M
(I)
L (θ | b) =

∫ b

0
f(x)E[e−θTL(x)I(TL(x) < TU (b− x))] dx, (54)
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M
(I)
U (θ | b) =

∫ b

0
f(x)E[e−θ(TU (b−x)+T ∗

L
(R1F1))I(TU (b− x) < TL(x))] dx

+

∫ ∞

b
f(x)E[e−θT ∗

L((x−b)F1)] dx.

(55)

For a terminating phase starting at b the LST is

ψ∗
L(θ | b) = E[e−θTL(b)I(TL(b) < TU (0))]. (56)

Finally, for a continuing cycle the LST is

ψ∗
c (θ | b) = E[e−θ(TU (0)+T ∗

L(R1F1))I(TU (0) < TL(b))]. (57)

The LSTs (54)-(57) are determined explicitly in the following sections, first for the M/M/1
case and then for M/G/1.
Remark. The stopping time T ∗

L(β∗1) was defined in (50). For fixed β∗1 its LST can be
expressed in terms of the probability density h∗(·; t) of Y ∗(t). Clearly, h∗(y; t) is given by

h∗(y, t) =
∞
∑

n=1

e−λt (λt)
n

n!
f∗(n)(y), y > 0 (58)

where f∗(n), n ≥ 1, is the nfold convolution of f∗ (which in turn is given in (48)). It is well
known (see [5]) that the density of T ∗

L(β∗1), say ψ∗
L(t;β∗1 ), is related to h∗(y; t) by the identity

ψ∗
L(t;β∗1) =

β∗1
t
h∗(t− β∗1 ; t), t > β∗1 . (59)

Accordingly,

E[e−θT ∗
L
(β∗

1
)] = e−(λ+θ)β∗

1 + β∗1e−θβ∗
1

∫ ∞

0
e−θt 1

t+ β∗1
h∗(t;β∗1 + t) dt. (60)

5 The M/M/1 case

In the M/M/1 case with exp(µ)-distributed service requirements there is a significant sim-
plification, since the overshoot R1 is independent of TU (β2) and exp(µ)-distributed. Thus,
setting W = R1F1,

E[e−θTU (β2)−θT ∗
L(W )I(TU (β2) < TL(β1))]

= E[e−θTU (β2)I(TU (β2) < TL(β1))]E[e−θT ∗
L

(W )],
(61)

and the density of W is

k(w) = µ

∫ 1

0

1

u
e−µw/udP(F1 < u). (62)

Hence, from (60)

E[e−θT ∗
L
(W )] = k̂(θ + λ) +

∫ ∞

0
e−θt 1

t

∫ t

0
k(w)wh∗(t− w; t) dw dt, (63)
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where k̂(θ + λ) is the LT of k(w). Furthermore, by using the Wald martingale one can
immediately show that in the M/M/1 case

E[e−θTL(β1)I(TL(β1) < TU (β2))]

=
1

λD(θ | β1, β2)
[(µ+ ζ2(θ))e

−β2ζ1(θ) − (µ+ ζ1(θ))e
−β2ζ2(θ)],

(64)

and

E[e−θTU (β2)I(TU (β2) < TL(β1))] =
eβ2ζ2(θ) − eβ1ζ1(θ)

D(θ | β1, β2)
, (65)

where

ζ1(θ) =
1

2
(λ− µ+ θ) +

1

2
((λ− µ+ θ)2 + 4θµ)1/2

ζ2(θ) =
1

2
(λ− µ+ θ) −

1

2
((λ− µ+ θ)2 + 4θµ)1/2

(66)

and

D(θ | β1, β2) =
1

λ
[(µ+ ζ2(θ))e

−β2ζ1(θ)+β1ζ2(θ) − (µ+ ζ1(θ))e
−β2ζ2(θ)+β1ζ1(θ)]. (67)

We denote the restricted LST (64) by ML(θ | β1, β2) and the one in (65) by MU (θ | β1, β2).
We then obtain that

M
(I)
L (θ | b) = µ

∫ b

0
e−µxML(θ | x, b− x) dx. (68)

Similarly,

M
(I)
U (θ | b) =



µ

b
∫

0

e−µxMU (θ | x, b− x) dx+ e−µb



 E[e−θT ∗
L(W )]. (69)

Also,
ψ∗

L(θ | b) = ML(θ | b, 0) (70)

and
ψ∗

C(θ | b) = MU (θ | b, 0)E[e−θT ∗
L(W )]. (71)

Substituting (68)-(71) in (53) we obtain the LST of the busy period for the M/M/1 queue
under QRA.

6 The M/G/1 Case

In the general M/G/1 case, the distribution of the overshoot (47) depends on the stopping
time TU (β2). We develop here the joint density of (TU (β2), R1) on the set {TL(β1) > TU (β2)}.
For this we have to introduce the following defective densities on (0,∞):

gβ2
(y; t) =

d

dy
P(Y (t) ≤ y, TU (β2) > t) (72)

and

g(y; t, β1, β2) =
d

dy
P(Y (t) ≤ y,min(TL(β1), TU (β2)) > t). (73)
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It is proved in [33] that

g0(y; t) =
(t− y)+

t
h(y; t), (74)

where h(y; t) is the density of Y (t) for y ∈ (0,∞), i.e.,

h(y, t) =

∞
∑

n=1

e−λt (λt)
n

n!
f (n)(y), y > 0.

Using (74) and the renewal-type equation

gβ2
(y; t) = h(y; t) − 1(β2,β2+t)(y)

[

e−λ(t+β2−y)h(y; y − β2)

+

∫ y

β2

h(u;u− β2)g0(y − u; t+ β2 − u) du

]

, 0 ≤ y ≤ t+ β2,

(75)

we obtain gβ2
(y; t) explicitly for 0 < y < t+ β2:

gβ2
(y; t) = h(y; t) − 1(β2,β2+t)(y)

[

e−λ(t+β2−y)h(y; y − β2)

+ (t+ β2 − y)

∫ y−β2

0
h(u+ β2;u)

1

t− u
h(y − u− β2; t− u) du

]

.

(76)

The function g(y; t, β1, β2) can now be written in terms of gβ(y; t). Let δ = β1 + β2. For
(t− β1)

+ < y < t+ β2 we have

g(y; t, β1, β2) = gβ2
(y; t) − 1(β1,∞)(t)

[

e−λβ1gδ(y; t− β1)

+ β1

∫ y

β1

1

s
gβ2

(s− β1; s)gδ(y − s+ β1; t− s) ds

]

.

(77)

Finally, the joint density of (TU (β2), R1) on the set {TL(β1) > TU (β2)} is given by

p(t, r;β1, β2) = 1(0,β1](t)

[

λe−λtf(t+ β2 + r)

+ λ

∫ t+β2

0
gβ2

(y; t)f(t+ β2 + r − y) dy

]

+ 1(β1,∞)(t)λ

∫ t+β2

t−β1

g(y; t, β1, β2)f(t+ β2 + r − y) dy.

(78)

Now we obtain all the transforms that are the building stones of the desired LST in (53).

(i) The LST of the terminating phase.
Here β1 = b and β2 = 0. According to (74),

ψ∗
L(θ | b) = E[e−θTL(b)I(TL(b) < TU (0))]

= e−(λ+θ)b + b

∫ ∞

b
e−θt 1

t
g0(t− b; t)dt

= e−(λ+θ)b + b2e−θb

∫ ∞

0

e−θt

(t+ b)2
h(t; t+ b) dt.

(79)
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(ii) The LST of the initial phase down. This LST is given by

M
(I)
L (θ | b) =

∫ b

0
f(x)E[e−θTL(x)I(TL(x) < TU (b− x))]

=

∫ b

0
f(x)e−(θ+λ)x dx+

∫ b

0
f(x)xe−θx

∫ ∞

0

e−θt

t+ x
gb−x(t; t+ x) dt dx.

(80)

(iii) The LST of the initial phase up.
Here we distinguish between two cases.
Case I: X0 > b. In this case R1 = X0 − b and the length of the first cycle is T ∗

L(W0), where
W0 = (X0 − b)F0. Accordingly,

E[e−θT ∗
L
(W0) | X0, F0] = e−(θ+λ)(X0−b)F0

+ (X0 − b)F0e
−θ(X0−b)F0

∫ ∞

0

e−θt

t+ (X0 − b)F0
h∗(t; t+ (X0 − b)F0) dt.

(81)

Integrating with respect to F0 we get

E[e−θT ∗
L
(W0) | X0} =

1

(θ + λ)(X0 − b)
(1 − e−(θ+λ)(X0−b))

+

∫ ∞

0
e−θt

(∫ 1

0

(X0 − b)u

t+ (X0 − b)u
e−θ(X0−b)uh∗(t; t+ (X0 − b)u) du

)

dt.

(82)

Case II: X0 ≤ b. Here the length of the initial cycle up is

TU (b−X0) + T ∗
L(R1F1).

Furthermore,

E[e−θT ∗
L
(R1F1) | R1] =

1

(θ + λ)R1
(1 − e−(θ+λ)R1)

+

∫ ∞

0
e−θt

(
∫ 1

0

R1u

t+R1u
e−θR1uh∗(t; t+R1u) du

)

dt.

(83)

Hence,
E[e−θ(TU (b−X1)+T ∗

L(R1F1)) | X1]

=

∫ ∞

0
e−θt

∫ ∞

0
p(t, r;X1, b−X1)

1

(θ + λ)r
(1 − e−(θ+λ)r) dr dt

+

∫ ∞

0
e−θt

∫ ∞

0
(p(t; r;X1, b−X1)

∫ ∞

0
e−θy

(∫ 1

0

ru

y + ru
e−θru

h∗(y; y + ru) du

)

dy dr dt.

(84)

Finally, using (82) and (84) we can compute

M
(I)
U (θ | b) =

∫ b

0
f(x)E[−θ(TU (b−x)+T ∗

L
(R1F1))| X1 = x] dx

+

∫ ∞

b
f(x)E[e−θT ∗

L
((x−b)F1) | X1 = x] dx.

(85)
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(iv) The LST of the upper continuing cycle. This LST is obtained as

ψ∗
C(θ | b) = E[e−θ(TU (0)+T ∗

L
(R1F1))]

=

∫ ∞

0
e−θt

∫ ∞

0
p(t, r; b, 0)

1

(θ + λ)r
(1 − e−(θ+λ)r)) dr dt

+

∫ ∞

0
e−θt

∫ ∞

0
p(t, r; b, 0)

∫ ∞

0
e−θy

(
∫ 1

0

ru

y + ru
e−θru

h∗(y; y + ru) du

)

dy dr dt.

(86)

We have now determined the LST of the busy period of the M/G/1 queue under QRA.

7 The cycle maximum for the unrestricted M/G/1 queue

Let M be the maximum workload during the first cycle. In the following sections we derive
explicit formulas for the distribution function of M for the M/G/1 queue (i) without re-
striction (this section), (ii) with fully restricted accessibility (Section 8) and (iii) under QRA
(Section 9).

Let us start with the unrestricted case. Recall the upper first-exit time TU (β) = inf{t >
0 : Y (t) > β + t}, where Y (t) is the CPP (λ,B) defined in Section 5. We assume in this
section that ρ = λE[X] < 1. Then q(β) = P(TU (β) < ∞) < 1 for all β > 0. It is known that
the distribution function FM (x) of M is related to q(β) via the identity

FM (x) =
B(x) − (f ∗ q)(x)

1 − q(x)
, (87)

where f is the density of B and f ∗ q is the convolution of f and q. (87) appears in disguised
form in [10], formula (7.67) on p. 618. It turns out that this remarkable identity can also
be derived by the sample path renewal method on which Sections 4-6 are based. Using this
technique, the following result on TL(β1) and TU (β2) was proved in [39]:

P(TL(β1) < TU (β2)) =
e−λβ1 + g∗∗(β1, β2)

1 + g∗(β1 + β2)
, (88)

where, for δ = β1 + β2,

g∗(δ) = h∗ − h∗1(δ)

(

e−λδ +
h∗2(δ) − e−λδh∗

1 + h∗

)

(89)

g∗∗(β1, β2) = h∗2(β1) − h∗1(β2)

(

e−λδ +
h∗2(δ) − e−λδh∗

1 + h∗

)

(90)

and h∗, h∗1(β) and h∗2(β) are defined by

h∗ =

∫ ∞

0
h(t; t) dt (91)

h∗1(β) =

∫ ∞

0
h(t+ β; t) dt (92)

h∗2(β) =

∫ ∞

0
h(t; t+ β) dt. (93)
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Later it was proved in [33] that if ρ < 1 the following relations hold:

h∗ = ρ/(1 − ρ) (94)

h∗1(β) = q(β)/(1 − ρ) (95)

h∗2(β) =
1

1 − ρ
− e−λβ . (96)

Thus in spite of being defined as seemingly complicated integrals of (y, t) 7→ h(y; t), actually
h∗ and h∗2(β) are a simple constant and a simple function, respectively, while h∗1(β) is the
same as q(β) except for a constant factor. Using (94) – (96), the formulas for g∗(δ) and
g∗∗(β1, β2) simplify:

g∗(δ) = h∗ − h∗1(δ) =
1

1 − ρ
(ρ− q(δ)), (97)

and

g∗∗(β1, β2) = h∗2(β1) − h∗1(β2) =
1

1 − ρ
(1 − q(β2)) − e−λβ1 . (98)

Inserting (99) and (100) in (89) we obtain

P(TL(β1) < TU (β2)) =
1 − q(β2)

1 − q(δ)
. (99)

Finally, taking β2 = ξ − x and δ = ξ in (99) yields

P(M < ξ | X0 = x} =
1 − q(ξ − x)

1 − q(ξ)
. (100)

From (100) we immediately find (87) after deconditioning.
Explicit formulas for q(β) are usually not available except in special cases, although of

course there are various approximations (see [3]). Therefore, (87) is of limited value for the
numerical computation of FM . We will now present an alternative formula for FM (x) which
again represents FM in terms of h(y; t) but without recourse to the results (89) – (96).

Recall from (72) and (76) the definition of the defective density gβ2
(y; t) and a formula for

this function. By Kendall’s identity [5], the density of TL(β1) on the set {TL(β1) < TU (β2)},
say ψL(t;β1, β2), is given by

ψL(t;β1, β2) =
β1

t
gβ2

(t− β1; t), t > β1. (101)

Thus, for x < ξ,

P(M < ξ | X0 = x) = e−λx +

∫ ∞

x
ψL(t;x, t− x) dt

= e−λx + x

∫ ∞

x

1

t
gξ−x(t− x; t) dt. (102)

From (76) we obtain

gξ−x(t− x; t)

= h(t− x; t) − 1(ξ,∞)(t)
[

h(t− x; t− ξ)e−λξ + ξ

∫ t

ξ

1

u
h(u− ξ;u)h(t+ ξ − x+ u; t− u) du

]

.

(103)
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Accordingly, for x < ξ,
P(M < ξ | X0 = x) = I + II + III, (104)

where

I = e−λx + x

∫ ∞

0

1

t+ x
h(t; t+ x) dt

II = −xe−λξ

∫ ∞

ξ−x

1

t+ x
h(t; t− (ξ − x)) dt

III = −xξ

∫ ∞

ξ−x

1

t+ x

(

∫ t+x

ξ

1

u
h(u− ξ;u)h(t+ ξ − u; t+ x− u) du

)

dt.

(105)

We now simplify the three components I – III of the distribution function of M . First, we

notice that t 7→
x

t
h(t− x; t) is the density of TL(x). Thus,

I = e−λx + x

∫ ∞

x

1

t
h(t− x; t) dt = 1. (106)

Second,

II = −xe−λξ

∫ ∞

0

1

t+ ξ
h(t+ ξ − x; t) dt,

and making the change of variable z =
ξ

t+ ξ
we get

II = −xe−λξ

∫ 1

0

1

z
h

(

ξ

z
− x;

ξ

z
− ξ

)

dz. (107)

Third, regarding III, define

E(u, v) =

∫ 1

0

1

z
h
(u

z
− u+ v;

u

z
− u
)

dz (108)

and note that

E(u, ξ − x) =

∫ 1

0

1

z
h
(u

z
− u+ ξ − x;

u

z
− u
)

dz

=

∫ ∞

0

1

ω + u
h(ω + ξ − x;ω) dω

=

∫ ∞

u−x

1

t+ x
h(t+ ξ − u; t+ x− u) dt.

(109)

Hence, we can write

III = −ξx

∫ ∞

ξ

1

u
h(u− ξ;u)

∫ ∞

u−x

1

t+ x
h(t+ ξ − u; t+ x− u) du dt

= −ξx

∫ ∞

ξ

1

u
h(u− ξ;u)E(u; ξ − x) du.

20



Summarizing, we obtain the following new formula for the distribution function of M :

FM (ξ) =

∫ ξ

0
f(x)P(M < ξ | X0 = x) dx

= F (ξ) − e−λξ

∫ 1

0

1

z

∫ ξ

0
f(x)h

(

ξ

z
− x;

ξ

z
− ξ

)

dx dz

− ξ

∫ ∞

ξ

1

u
h(u− ξ;u)

∫ ξ

0
f(x)E(u; ξ − x) dx du.

(110)

Remark. As noted in [28], there is a close relationship between FM and the steady-state
distribution function of V (t), say Geq. We have

Geq(x) = exp

{

−λ

∫ ∞

x
P(Mc > u) du

}

. (111)

Accordingly, the steady-state probability that the queue is idle is

Geq(0) = exp{−λE[Mc]} (112)

On the other hand, considering the alternating renewal process of idle and busy periods yields
an alternative expression for this probability:

Geq(0) =
1/λ

(1/λ) + E[T ]
, (113)

where T is the duration of the first busy period. From (112) and (113) we get the following
interesting relationship between the expected length of the busy period E[T ] and the expected
cycle maximum E[M ], (see also [3, pp. 618, eq. (7.70)]):

E[T ] =
1

λ
log(1 + λE[M ]). (114)

8 The cycle maximum under restricted accessibility

We now derive the distribution of the cycle maximum for the M/G/1 system under the
following admission policy: all customers that arrive while the workload process is below
level b receive full service, but as long as the workload is above b no new customers are
admitted.

Let us determine P(M < ξ) for this system. First note that P(M < ξ) is given by (110)
if ξ ≤ b. But of course M will be larger than b if V (t) jumps above b during the busy period.
As in Section 4 we distinguish three types of phases that could take place during a busy
period: an initial phase, the continuing phase and a terminal phase. The initial phase starts
at the beginning of a busy period till the first time when b is exceeded. At each crossing time
of V (t) from above b to below b, a new phase starts; it ends when V (t) either jumps again
above b (then it is called a continuing phase) or hits zero (in this case it is a terminating

phase). For the first phase we define β
(1)
1 = min(X0, b) and β

(1)
2 = b− β1. The first phase is

initial if TL(β
(1)
1 ) > TU (β

(1)
2 ), otherwise the first phase is terminating. If it is initial, we have

21



to consider an independent two-sided first-exit problem with β
(2)
1 = b and β

(2)
2 = 0 for the

second phase. If the upper boundary is reached before the lower boundary, the second phase
is a continuing one, otherwise it is terminating, etc.

Notice that if X0 > b the first phase is already either continuing or terminating, while
if X0 ≤ b and the first phase is initial (not terminating), its length is TU (b − X0) and it
ends with a jump above b having a certain overshoot. The continuing phases are independent
replications of the first one; their number N has the geometric distribution

P(N = n) = P(TL(b) < TU (0))[P(TU (0) < TL(b))]n−1, n ≥ 1. (115)

In Section 6 we have introduced the auxiliary (defective) densities gβ2
(y; t), g(y; t, β1, β2) and

expressed them in terms of h(y; t); cf. (76) and (77). Then we have derived the defective
density p(t, r;β1, β2) in terms of gβ2

(y; t) and g(y; t, β1, β2) in eq. (78). This latter density is
now needed: Clearly, for ξ > b, the probability that the jump above b in the initial phase is
smaller than ξ is

P1(ξ) =

∫ b

0
f(x)

(

∫ ∞

0

∫ ξ−b

0
p(t, r;x, b− x) dr dt

)

dx. (116)

Similarly, the probability that the jump above b in a continuing phase is less than ξ is

Pc(ξ) =

∫ ∞

0

∫ ξ−b

0
p(t, r; b, 0) dr dt. (117)

Furthermore, by (101) and (74),

P(TL(b) < TU (0)) = e−λb +

∫ ∞

b
ψL(t; b, 0) dt

= e−λb +

∫ ∞

b

b

t
g0(t− b; t) dt

= e−λb + b2
∫ ∞

b

1

t2
h(t− b; t) dt.

(118)

Finally, since the jumps above b in continuing phases are i.i.d. we obtain, for b < ξ,

P(M < ξ) = P(M < b) + [P1(ξ) + (F (ξ) − F (b))Pc(ξ)]P(TL(b) < TU (0))
∞
∑

n=0

Pc(ξ)
n

= FM (b) + P (TL(b) < TU (0))
P1(ξ) + (F (ξ) − F (b))Pc(ξ)

1 − Pc(ξ)
,

(119)

where P (TL(b) < TU (0)), P1(ξ) and Pc(ξ) are given by (118), (116) and (117), respectively.
Remark 1. The marginal density of TU (β2) on the set {TL(β1) > TU (β2)} is

ψ(t;β1, β2) = λe−λt F̄ (β2 + t)

+ 1[0,β1](t)λ

∫ β2+t

0
gβ2

(x; t)F̄ (β2 + t− x) dx

+ 1(β1,∞)(t)λ

∫ t+β2

t−β1

g(x; t, β1, β2)F̄ (β2 + t− x) dx.

(120)
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Remark 2. In the M/M/1 case with f(x) = µe−µx, x > 0, we have

p(t, r;β1, β2) = µe−µrψ(t;β1, β2). (121)

Hence, for ξ > b,

Pc(ξ) = (1 − e−µ(ξ−b))

∫ ∞

0
ψ(t; b, 0) dt

= (1 − e−µ(ξ−b))P(TU (0) < TL(b))

= (1 − e−µ(ξ−b))(1 − P(TL(b) < TU (0))).

(122)

Moreover,

P1(ξ) =

∫ b

0
f(x)(1 − P(TL(x) < TU (b− x))) dx(1 − e−µ(ξ−b)) (123)

and

P(TL(β1) < TU (β2)) =
µeβ2(µ−λ) − λ

µeβ2(µ−λ) − λe−β1(µ−λ)
. (124)

So in the M/M/1 case we obtain the distribution function FM in closed form.
Remark 3. In the alternative finite dam model a customer whose service requirement would
increase the current workload, say v, above level b receives only the amount b − v so as to
reach the capacity limit. The cycle maximum in this model variant is easily seen to have the
same distribution as the cycle maximum of the unrestricted M/G/1 queue truncated at b.
Thus P(M < x) is given by (87) for x ≤ b and

P(M = b) = 1 − P(M < b) = 1 −
B(b) − (q ∗ f)(b)

1 − q(b)
. (125)

9 Distribution of M under QRA

Under QRA, as long as V (t) stays above b, each demand for service is shrunk and has the
density

f∗(x) =

∫ 1

0

1

u
g(u)f

(x

u

)

du, (126)

where g is the density of the random fraction F . Let q∗(β) be the ruin probability corre-
sponding to f∗, i.e.,

q∗(β) = (1 − ρ)

∫ ∞

0
h∗(t+ β; t) dt (127)

where h∗(y; t) =
∑∞

n=1(e
−λt(λt)n/n!)f∗(n)(y). Thus, given that the first jump above b in a

continuing phase is of size R = r (before shrinking) and is immediately multiplied by the
random factor F = u, then for ξ > b, the conditional distribution of the maximum of V (t)− b
during this phase, say M̃ , is given by

P(M̃ < ξ − b | R = r, F = u) =
1 − q∗(ξ − b− ru)

1 − q∗(ξ − b)
; (128)
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recall (100). Accordingly, the distribution function of M̃ in the first continuing phase is

P1(ξ) =

∫ b

0
f(x)

∫ ∞

0

∫ 1

0

1

u
g(u)

∫ ξ−b

0
p
(

t,
r

u
;x, b− x

) 1 − q∗(ξ∗ − b− ru)

1 − q∗(ξ − b)
dr dudt dx

+ (F (ξ) − F (b))

∫ ∞

0

∫ 1

0

1

u
g(u)

∫ ξ−b

0
p
(

t;
r

u
; b, 0

) 1 − q∗(ξ − b− ru)

1 − q∗(ξ − b)
dr dudt.

(129)
For the following continuing phases, the distribution of the corresponding phase maximum
minus b is

P̃ (ξ) =

∫ ∞

0

∫ 1

0

1

u
g(u)

∫ ξ−b

0
p
(

t,
r

u
; b, 0

) 1 − q∗(ξ − b− ru)

1 − q∗(ξ − b)
dr dudt. (130)

Finally, the distribution function of the total cycle maximum M under QRA is, for ξ > b,

FM (ξ) = P(M ≤ b) + P(0 < M − b < ξ − b)

= FM (b) + P(TU (b) < TU (0))
P̃1(ξ)

1 − P̃ (ξ)
.

(131)

10 The busy period of the M/Erlang(2,µ)/1 queue under QRA

For phase-type service distributions there is an alternative way to obtain the LST of the busy
period under QRA which leads to closed-form solutions. We illustrate this approach in the
case of Erlang(2,µ)-distributed service requirements and uniform random fractions Fn. The
approach can be extended to general phase-type distributions and general Fn.

Consider a busy period initiated by a service requirement X0 = x at time zero. We use
the notation Ex[·]=E[· | X0 = x]. Let T = inf{t > 0 | V (t) = 0} be the duration of this busy
period and define the auxiliary stopping time

τ = inf{t > 0 | V (t) = 0 or V (t) ≥ b}.

Every service requirement consists of two successive independent exp(µ)-distributed phases.
Now consider the first upcrossing of level b due to a jump caused by an arriving service
requirement and define the events

A3−j = {level b is upcrossed by the jth phase of the jump}, j = 1, 2

and the three functionals

φ∗(β;x) = Ex[e
−βτ1{V (τ)=0}],

φ∗(β;x) = Ex[e
−βτ1A2

],

φ∗∗(β;x) = Ex[e
−βτ1A1

],

which are so far unknown. We need to derive these improper LSTs for arbitrary x ∈ (0, b].
We now show that these three functionals can be computed from the following three linear
equations:

φ∗(β;x) + e−αi
µ

µ+ αi
φ∗(β;x) + e−αi

(

µ

µ+ αi

)2

φ∗∗(β;x) = e−αx, x ∈ (0, b], i = 1, 2, 3

(132)
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where the αi = αi(β), i = 1, 2, 3, are the three real roots of the polynomial equation

ϕ(α) − β = α− λ

(

1 −

(

µ

µ+ α

)2
)

− β. (133)

(It is easily seen that there are exactly three distinct real roots of (133).) The proof of (132)
follows from an application of the Kella-Whitt martingale [19] to the compound Poisson
process Y (t) (defined in Section 5) with Erlang(2, µ) jumps. According to the results of [19],
the process

M(t) = Mα,β(t) =

(

α− λ

(

1 −

(

µ

µ+ α

)2
)

− β

)

∫ t

0
e−αY (u)−βudu+e−αx−e−αY (t)−βt, t ≥ 0

is a martingale for all β ≥ 0 and all α > −µ. Consider the virtual waiting time process up to
time τ for which the final jump at time τ is not multiplied by some F , say {Ṽ (t) : 0 ≤ t ≤ τ}.
This process clearly has the same distribution as {x+Y (t) : 0 ≤ t ≤ τ}. Hence an application
of the optional sampling theorem to the stopping time τ yields

(

α− λ

(

1 −

(

µ

µ+ α

)2
)

− β

)

E

[∫ τ

0
e−αṼ (u)−βudu

]

= −e−αx + E

[

e−αṼ (τ)−βτ
]

= −e−αx + φ∗(β;x) + e−αb µ

µ+ α
φ∗(β;x) + e−αb

(

µ

µ+ α

)2

φ∗∗(β;x). (134)

For the second equality in (134) we have used the fact that Ṽ (τ) − b and τ are conditionally
independent given A3−j (for j = 1, 2). Moreover, it follows from the lack-of-memory property
of the phase lengths of the jump sizes that the excess of the jump above level b is conditionally
exp(µ)-distributed, given the event A2, while it is Erlang(2, µ)-distributed, given A1. Now if
we take α = αi, i = 1, 2, 3, in (134), the lefthand side becomes zero and we obtain (132).
Remark 1. One of the roots αi is smaller than −µ so that it may seem unjustified to insert
this root in (134), considering that M(t) is only defined for α > −µ. However, the righthand
side of (134) is an analytic function of α in the region C\{−µ}, and the function ℓ(α) =

E[
∫ τ
0 e−αṼ (u)−βudu] can be extended analytically to this domain. Replacing the expected

value in (134) by ℓ(α), we obtain an equation between analytic functions which is valid for
α ∈ (0,∞) and thus, by analytic continuation, holds in the entire domain C\{−µ}. Therefore
we can take α = αi in this equation also if αi < −µ, proving (132).
Remark 2. The LST of τ is given by

Ex[e
−βτ ] = φ∗(β;x) + φ∗(β;x) + φ∗∗(β;x). (135)

We are now in a position to derive the LST of T , the length of the first period. This LST
satisfies the renewal-like equation

Ex[e
−βT ] = φ∗(β;x) + φ∗(β;x)Υ(β)Eb[e

−βT ] + φ∗∗(β;x)Γ(β)Eb[e
−βT ], x ∈ (0, b] (136)

where

Γ(β) =
(λ+ µ+ β) −

√

(λ+ µ+ β)2 − 4λµ

2λ
, (137)
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and

Υ(β) =
µ

β + λ− λΓ(β)
log

(

1 +
β + λ− λΓ(β)

µ

)

. (138)

To prove (136), we note that the decomposition in (136) corresponds to the three possible
ways in which V (t) can leave (0, b] at time τ :

Case 1: V (τ) = 0. This case contributes the term φ∗(β;x) to Ex[e
−βT ].

Case 2: V (τ) = b and A1 occurs. This means that level b is upcrossed by the second phase
of some jump before 0 is reached. The overshoot above b is then of the form FU , where F is
uniform on (0, 1), U is exp(µ)-distributed and F and U are independent. As long as V (t) stays
above b after time τ , all service times are of the form FS, where S is Erlang(2, µ)-distributed.
A simple calculation shows that in this case the product FS is exp(µ)-distributed. It follows
that the LST of the time it takes from the upcrossing of b until reaching level b again is the
same as that of the busy period of a special M/M/1 queue in which the first customer has a
service time distribution with probability density

−
d

dx
P(FU > x) = −

d

dx

1
∫

0

e−µx/ydy =

1
∫

0

µ

y
e−µx/ydy,

while all other service times are exp(µ). Given FU = v, the conditional LST of this particular
busy period at β is exp{−βv−λv(1−Γ(β))}; note that Γ is the LST of the busy period of the
ordinary M/M/1 queue. Unconditioning and using the above density of FU shows that the
LST of the sojourn time above b is given by (138). Following its stay above b, the workload
process restarts from b independently of the past.

Case 3: V (τ) = b and A2 occurs. The continuation of V (t) after time τ can be described
similarly to Case 2. The overshoot above b is now again of the form FU , where F is uniform
on (0, 1) and independent of U as before, but U is now Erlang(2, µ)-distributed. Therefore,
FU ∼ exp(µ) in this case, and the length of the time spent above B after time τ has the same
distribution as the busy period of a regular M/M/1 queue, i.e., its LST is given by (137). As
in Case 2, after falling back to b, the process V (t) continues from this level independently of
the past.

These arguments yield (136).
Setting x = b in (136) we find that

Eb[e
−βT ] =

φ∗(β; b)

1 − φ∗(β; b)Υ(β) − φ∗∗(β; b)Γ(β)
. (139)

Therefore, for x ∈ (0, b],

Ex[e−βT ] = φ∗(β;x) +
[φ∗(β;x)Υ(β) + φ∗∗(β;x)Γ(β)]φ∗(β; b)

1 − φ∗(β; b)Υ(β) − φ∗∗(β; b)Γ(β)
. (140)

Finally, if the service requirement X0 initiating the busy period has the Erlang(2, µ)-
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distribution, we have to distinguish between the cases X0 ∈ (0, b] and X0 > b and obtain

E[e−βT ] =

b
∫

0

Ex[e
−βT ]µ2xe−µxdx

+
(

∞
∫

b

1
∫

0

µ2xe−µx(x− b)y exp{−β(x− b)y − λ(x− b)y(1 − Γ(β))} dy dx
)

Eb([e
−βT )].

(141)

Inserting (140) in (141) we arrive at a closed-form expression for the LST of the busy period
T .
Remark 3. The first integral on the lefthand side in (141) is given by

b
∫

0

Ex[e
−βT ]µ2xe−µxdx =

b
∫

0

[φ∗(β;x) + φ∗(β;x) + φ∗∗(β;x)]µ2xe−µxdx

and can therefore be written as a definite integral of a rational function of polynomials and
exponential functions of x, since φ∗(β;x), φ∗(β;x) and φ∗∗(β;x), being the solutions of the
three linear equations (132), are of this type. However, the resulting explicit formula is very
lengthy and not very illuminating.

11 Busy period of Erlang(2, µ)/M/1 under QRA with fixed pro-
portions

So far we have only considered exponential interarrival times so that all systems were Marko-
vian. In this final section we consider the non-Markovian Erlang(2, µ)/M/1 system, with
service requirements Xn ∼ exp(λ), under QRA. We restrict ourselves to the case of ‘constant
proportion cutting’, i.e., F ≡ d for some fixed constant d ∈ (0, 1). Our aim is to derive the
LST of the length of the busy period T = inf{t > 0 | V (t) = 0}. This is achieved by using a
duality with a certain Markovian system, which can be analyzed using the results of Section
10. The approach was introduced and applied in related contexts in [1, 26, 29]. In a similar
way we can also treat more complicated phase-type distributions, but already Erlang(2, µ)
interarrival times, the most simple step beyond the assumption of Poisson arrivals, will be
seen to lead to a rather intricate analysis.

A typical sample path of V = {V (t) | t ≥ 0} is depicted in the upper part of Figure 1.
The interarrival times An can be split in two independent exp(λ)-distributed phases. The
dots in the sample path of V in Figure 1 mark the initial time instants of the second phases
of the An.

The auxiliary dual process is constructed pathwise in several steps. First, replace every
positive jump of V (t) by a linearly increasing piece of trajectory with slope 1 on an interval
whose length is equal to the jump size. Second, replace the decreasing pieces of V (t), whose
slopes are −1, by negative jumps whose sizes are equal to the lengths of the decrements of
the pieces. For the path in Figure 1 this transformation has been carried out in the middle
part of the figure. The resulting process is called A = {A(t) | t ≥ 0}. The last step of the
construction is introduced just for convenience; we define the process R = {R(t) | t ≥ 0}
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by R(t) = b − A(t); see the lower part of Figure 1. Obviously, R(0) = b and T is the first
upcrossing time of level b by R, i.e.,

T = inf{t > 0 : R(t) > b}.
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Figure 1. A typical sample path of V and the corresponding sample paths of A and R.
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The Markov process R is Markovian with state space (−∞, b], and it always decreases at
rate −1 between Erlang(2, µ)-distributed jumps. As long as R ≤ 0 the jumps arrive according
to a Poisson process with rate λ; when 0 < R < b the jumps arrive according to a Poisson
process with rate λ/d.

We now express T as a random sum of the following stopping times: First,

L0 = inf{t ≥ 0 | R(t) = 0 or R(t) > b}.

On the event R(L0) = 0 we define

L1,1 = inf{t ≥ L0 | R(t) > 0} − L0

and
L1,2 = inf{t ≥ L0 + L1,1 | R(t) = 0 or R(t) > b} − L0 − L1,1.

On the event R(L0 + L1,1 + L1,2) = 0 we continue by defining

L2,1 = inf{t > L0 + L1,1 + L1,2 | R(t) > 0} − L0 − L1,1 − L1,2

and so on, until R upcrosses level b.
The busy period T can be expressed as the random sum

T = L0 + (L1,1 + L1,2) + .....+ (LN,1 + LN,2), (142)

where N is the smallest index for which the righthand side of (142) is greater than b. Con-
ditional on N > n, the random variables L0, L1,1 + L1,2, L2,1 + L2,2, ..., Ln+1,1 + Ln+1,2 are
independent and L1,1 + L1,2, L2,1 + L2,2, ..., Ln,1 + Ln,2 are also identically distributed. The
regenerative structure of T makes it possible to express its LST in terms of a renewal equation.

By construction, we have R(L0) = 0 or R(L0) > b. Assume that R(L0) = 0. Then clearly,
L1 = L1,1 and L2 = L1,2 are conditionally independent given the number of the exponential
phase (first or second) by which level 0 is upcrossed at time L0+L1. R is negative on the time
interval (L0, L0 +L1) and positive on (L0 +L1, L0 +L1 +L2). Next note that P(L2 = 0) > 0.
The event {L2 = 0} occurs if and only if the corresponding overshoot of level 0 is also an
overshoot of level b. Thus, L2 = 0 implies that we have reached time T . Otherwise, if L2 > 0,
one of the following two events occurs: (i) If R(L0 +L1 +L2) > b, the busy period T is equal
to L0 +L1 +L2; (ii) If R(L0 +L1 +L2) = 0, the process R regenerates itself, restarting from
0.

We write Ey(·) ≡ E(· |R(0) = y ). Let B3−j = {level 0 is up-crossed by the jth exponential
phase of the jump at time L0 + L1}, j = 1, 2. We need the following functionals:

η∗(β) = E0(e
−βL11B2

), η∗∗(β) = E0(e
−βL11B1

) (143)

and

K1(β) =

b
∫

0

µe−µy
Ey(e

−βT ) dy, K2(β) =

b
∫

0

µ2ye−µy
Ey(e

−βT ) dy. (144)
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It turns out that we can express the LST of T in terms of the functionals in (143) and (144)
via a renewal equation as follows:

Ex(e
−βT ) = φ∗(β;x) + φ∗∗(β;x)

+ φ∗(β;x)[η∗(β)(e−µb + e−µbµb+K2(β)) + η∗∗(β)(e−µb +K1(β))]. (145)

To prove the central formula (145), we note that for 0 < x ≤ b we can decompose Ex(e
−βT )

into three components:

Ex(e
−βT ) = φ∗(β;x) + φ∗∗(β;x) + φ∗(β;x)E0(e

−βT ). (146)

In (146), φ∗(β;x) and φ∗∗(β;x) represent the improper LSTs of the times until level b is first
upcrossed by the first or the second exponential phase of some jump, respectively, before level
0 is reached. Similarly, φ∗(β;x) is the improper LST of the time until level 0 is reached before
level b is upcrossed. In the latter case R restarts from level 0 independently of its past, which
explains the product structure of the term φ∗(β;x)E0(e

−βT ). Now let us prove that

E0(e
−βT ) = η∗(β)[e−µb + e−µbµb+K2(β)] + η∗∗(β)[e−µb +K1(β)]. (147)

To see (147), we use the conditional independence of L1 and L2 and distinguish between two
cases.

(i) If level 0 is upcrossed by the first phase of the jump at time L0 +L1, it follows from the
lack-of-memory property of that phase that the law of the overshoot is Erlang(2, µ). Then
e−µb + e−µbµb is the probability that the overshoot of level 0 is also an overshoot of level b.
Otherwise, by a renewal argument, if the overshoot of level 0 is not also an overshoot of level
b, the LST of the residual time until T is K2(β).

(ii) If level 0 is upcrossed by the second phase of the jump at time L0 +L1, it follows that
the law of the overshoot is exp(µ). Then e−µb is the probability that the latter overshoot of
level 0 is also an overshoot of level b. If the overshoot of level 0 is not an overshoot of level
b, the LST of the residual time until T is K1(β).

This proves (147) and thus (145).
It remains to determine η∗(β), η∗∗(β), K1(β) and K2(β).

(a) Derivation of K1(β) and K2(β)
Let

Φ∗(β) =

b
∫

0

µe−µyφ∗(β; y) dy, Ψ∗(β) =

b
∫

0

µ2ye−µyφ∗(β; y) dy,

Φ∗(β) =

b
∫

0

µe−µyφ∗(β; y) dy, Ψ∗(β) =

b
∫

0

µ2ye−µyφ∗(β; y) dy,

Φ∗∗(β) =

b
∫

0

µe−µyφ∗∗(β; y) dy, Ψ∗∗(β) =

b
∫

0

µ2ye−µyφ∗∗(β; y) dy. (148)

These six functionals can be considered to be known, because they are defined in terms of
φ∗(β; y), φ∗∗(β; y) and φ∗(β; y), which in turn have been computed in Section 10.
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Now multiply both sides of (145) by µe−µx and take the integral over [0, b]. We obtain

K1(β) = Φ∗(β) + Φ∗∗(β) + Φ∗(β)η∗∗(β)e−µb +K1(β)Φ∗(β)η∗∗(β)

+ Φ∗(β)η∗(β)[e−µb + e−µbµb+K2(β)]

so that

K1(β) =
Φ∗(β) + Φ∗∗(β) + Φ∗(β)η∗∗(β)e−µb + Φ∗(β)η∗(β)[e−µb + e−µbµb+K2(β)]

1 − Φ∗(β)η∗∗(β)
. (149)

Similarly, multiply both sides of (145) by µ2xe−µx, take the integral over [0, b] and solve the
resulting equation for K2(β) to get

K2(β) =
Ψ∗(β) + Ψ∗∗(β) + Ψ∗(β)η∗∗(β)[e−µb +K1(β)] + Ψ∗(β)η∗(β)[e−µb + e−µbµb]

1 − Ψ∗(β)η∗(β)
. (150)

(149)-(150) yield the following explicit formulas:

K1(β) =
(

1 − Φ∗(β)η∗∗(β) − Ψ∗(β)η∗(β)
)−1

×
(

[1 − Ψ∗(β)η∗(β)][Φ∗(β) + Φ∗∗(β) + Φ∗(β)η∗∗(β)e−µb + Φ∗(β)η∗(β)(e−µb + e−µbµb)]

+ Φ∗(β)η∗(β)[Ψ∗(β) + Ψ∗∗(β) + Ψ∗(β)η∗∗(β)e−µb + Ψ∗(β)η∗(β)(e−µb + e−µbµb)]
)

(151)

and

K2(β) =
(

1 − Φ∗(β)η∗∗(β) − Ψ∗(β)η∗(β)
)−1

×
(

[1 − Φ∗(β)η∗∗(β)]
(

Ψ∗(β) + Ψ∗∗(β) + Ψ∗(β)η∗∗(β)e−µb + Ψ∗(β)η∗(β)[e−µb + e−µbµb]
)

+ Ψ∗(β)η∗∗(β)
(

Φ∗(β) + Φ∗∗(β) + Φ∗(β)η∗∗(β)e−µb + Φ∗(β)η∗(β)[e−µb + e−µbµb]
)

)

.

(152)

Finally we have to find η∗(β) and η∗∗(β).

(b) Derivation of η∗(β) and η∗∗(β)
We start by shifting the origin to the time L0 and define the process R0 = {R0(t) | t ≥ 0}

by
R0(t) = R(L0 + t), t ≥ 0.

Let us assume that R0(0) = R(L0) = 0. Clearly, R0(t) + t is a compound Poisson process
with arrival rate λ/d and Erlang(2, µ)-distributed jumps. For our analysis we introduce a
lower boundary −K and define σK = inf{t > 0 | R0(t) > 0 or R0(t) = −K}; later we will
let K tend to ∞. The fundamental martingale identity analogous to (134) yields the relation

(

ϕ0(α) − β
)

E

(

σK
∫

0

e−αR0(s)−βsds
)

= −1 + E(e−αR0(σK )−βσK ), (153)
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where

ϕ0(α) = α−
λ

d

[

1 −
( µ

µ+ α

)2
]

.

For all β ≥ 0 the equation ϕ0(α) = β, and thus also the lefthand side of (153), has exactly
three real roots αi(β), i = 0, 1, 2. For β > 0 the roots can be ordered as follows: α2(β) <
−µ < α1(β) < 0 < α0(β). For β = 0 we have α2(0) < −µ < α1(0) = 0 < α0(0). (The largest
root α0(0) is positive due to the stability condition d/λ < 2/µ.) Now define the events

C1 = {level 0 is upcrossed by the first phase of a jump of R0 at time σK}

C2 = {level 0 is upcrossed by the second phase of a jump of R0 at time σK}

C3 = {level −K is hit by R0 at time σK}

and the improper LSTs
κi,K(β) = E(e−βσK 1Ci

), i = 1, 2, 3.

By taking the roots α = αi(β) in (153) we get

1 = E(e−αi(β)R0(σK)−βσK 1C1
) + E0(e

−αi(β)R0(σK)−βσK 1C2
) + E0(e

−αi(β)R(σK )−βσK 1C3
)

=

(

µ

µ+ αi(β)

)2

κ1,K(β) +
µ

µ+ αi(β)
κ2,K(β) + eαi(β)Kκ3,K(β), i = 0, 1, 2.

(154)
(154) is a system of three linear equations for the three unknowns κi,K(β), which can easily
be solved in closed form. (The resulting formulas are however very cumbersome.) Since we
have assumed the stability condition d/λ < 2/µ, it follows that

lim
K→∞

κ1,K(β) = η∗∗(β), lim
K→∞

κ2,K(β) = η∗(β), lim
K→∞

κ3,K(β) = 0.

If we consider the two negative roots α1(β) and α2(β) in (154), we see that the third term on
the lefthand side converges to zero, and we arrive at the two equations

1 =

(

µ

µ+ αi(β)

)2

η∗∗(β) +
µ

µ+ αi(β)
η∗(β), i = 1, 2. (155)

(155) yields

η∗(β) = 2 −
|α1(β)| + |α2(β)|

µ

η∗∗(β) =
(µ− |α1(β)|)(|α2(β)| − µ)

µ2
.

Our derivation of the LST of T is now complete.
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