

An interactive viewer for mathematical content based on type
theory
Citation for published version (APA):
Oostdijk, M. D. (2000). An interactive viewer for mathematical content based on type theory. (Computing science
reports; Vol. 0015). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/c7243eec-5b38-4dde-b8ba-91bd254915bc

Technische Universiteit Eindhoven
Department of Mathematics and Computing Science

An Interactive Viewer for Mathematical Content based on Type Theory

ISSN 0926-4515

All rights reserved
editors: prof. dr. J.C.M. Baeten

prof.dr. P.A.J. Hilbers

Reports are available at:
http://www.win.tue.nllwinlcs

by

M.Oostdijk

00115

Computing Science Reports 00115
Eindhoven, September 2000

An Interactive Viewer for Mathematical Content
based on Type Theory

Martijn Oostdijk

September 11, 2000

Abstract
This report describes the Coq Viewer tool, a system for presenting

mathematical content encoded in typed lambda calculus. With mathe
matical content we mean mathematical theories including assumptions,
definitions, theorems, and proofs. The presentation of the content is in
teractive and resembles informal mathematical documents, without giving
up the formal nature which allows symbolic manipulation. This is possible
because the presentation and formal content are kept separate. The tool
takes as input a context developed in the Coq theorem prover. It then dis
plays the context in interactive views resembling informal mathematics.
The views allow the user to change certain aspects of the presentation.
The resulting presentation can be exported in the OpenMath Document
format.

1 Introduction

Traditionally computers are useful for mathematicians in three ways. First, in
type-setting mathematical texts, computers are used since they allow easy edit
ing of structured formulas. Second, computers take care of many computations
needed by mathematicians, both concrete "number crunching" and symbolic
computations. Third, more recently, computers are also employed to assist
mathematicians in developing and proving theorems.

There are differences in how these uses represent the mathematical content.
If one implements a system for correctly type-setting mathematical formulas,
such as the f,j.1EX system [Lam94]' it suffices to store only superficial presen
tation information. For example, type-setting the expression (xY . XZ) requires
knowledge within the system about bounding boxes and baselines, but not about
the meaning of the symbols or even their arity or types.

More structure is needed when one wants to implement symbolic manip
ulation systems such as computer algebra systems. Consider for example a
computer algebra system transforming the expression from the above example
(xY . XZ) into x(Y+z). In order to perform this operation there is no need to know
the exact semantics of the symbols, except for the rewrite rule that is applied
here. It is, however, important to know the exact syntactic structure of the ex
pression. Internally the manipulations take place on a tree-like data-structure
which captures the syntactic structure and which can be pretty-printed in a
more appealing format. Note that there is a distinction between content and
presentation here.

1

Still more structure is needed in theorem proving systems. Not only the
exact syntactic structure of expressions, but also some semantical properties
need to be specified before one can prove anything about an object. In many
theorem provers this is achieved by allowing the user to completely define objects
in the logical language of the system. This has the advantage that these systems
are very general and able to deal with any mathematical theory. It also means
that the presentation stays very close to the mathematical content. This is a
drawback of many theorem provers, the content is not presented well to the end
user.

The Coq Viewer tool described in this paper is an attempt to interactively
present formal mathematical content as used in theorem provers. To be more
specific, formalizations developed in the the type theoretical theorem prover
Coq [BBC+99] are used as input for the tool and views are created displaying
the individual elements of the development. The views present the content in
a way that resembles informal mathematics. The reader can interact with the
views for example by changing the level of detail of the displayed proofs. The
views can access the formal mathematical content so that in principle it can be
exported to computational engines and be verified or manipulated.

Since the tool is still work in progress, what is described here is the core func
tionality needed for the presentation. Some elementary activities for changing
the presentation are possible but the tool is not an editor for mathematical con
tent yet. The implementation language is Java [GJS96], which makes it easy to
create graphical user interfaces and to reuse the code in other systems.

The next section introduces some of the main ideas behind theorem proving
systems based on type theory. We elaborate on the differences between the three
mathematical languages used in type theoretical theorem proving: The tactics
language used to communicate with such systems, the language of formal objects
used inside the theorem prover engine, and the informal natural language used
by mathematicians. Section 3 presents a high level overview of the architecture
of the tool we are building. Sections 4, 5, and 6 provide more details on the
design and implementation of the tool. Section 7 sums up the main results and
draws some conclusions from them.

2 Type Theoretic Theorem Proving

This section describes theorem proving based on type theory. It introduces some
of the basic concepts and gives examples. All examples in this section are in
Coq notation.

An important idea connected to type theoretical theorem proving is the
notion of context. A context is a list of items that are either assumptions or
definitions. An assumption introduces a name N and states a type T for the
new symbol. It is of the form:

N:T

A definition also states a defining lambda term T for the symbol. It is of the
form:

N=T:T

Here is an example of a context that assumes a set A and a binary relation R
on A, defines the notions of reflexivity, symmetry and transitivity, and assumes

2

that R is transitive. The example is in Coq notations, which denotes lambda
abstracted variables between square brackets and Pi-abstracted variables (a Pi
abstraction is a generalized Cartesian product) between parentheses.

A: Set
R: A->A->Prop
isReflexive =

[T:A->A->Prop] (x:A)(T x x):
(A->A->Prop)->Prop

isSymmetric =
[T:A->A->Prop] (x,y:A)(T x y)->(T y x):
(A->A->Prop)->Prop

isTransitive =
[T:A->A->Prop] (x,y,z:A)(T x y)->(T y z)->(T x z):
(A->A->Prop)->Prop

R_trans:
(isTransitive R)

SO, a context consists of a list of names with a type and optionally a defining
term of that type. The fact that a term is typeable means that it is meaningful
in a mathematical sense.

The items in the context represent the usual elements one finds in a mathe
matical document, i.e. assumptions, definitions, axioms, theorems, and proofs.
Theorems and their proofs are encoded as definitions, where the term repre
sents the proof and its type the statement of the theorem. The underlying
principle is called the Curry-Howard-DeBruijn correspondence of propositions
as types [How80j. Lambda terms representing proofs are called proof-objects.
As an extension to the context from the above example, consider the definition
of Leibniz' equality, and theorems with proof-objects that prove the relation
reflexive, symmetric, and transitive. Readers unfamiliar with typed lambda cal
culus should not try to decode the proof-objects. Instead, note that theorems
are treated exactly like definitions.

leibniz =
[x,y:A](P:(A->Prop))(P x)->(P y)
: A->A->Prop

leibniz_refl =
[x:A; P:(A->Prop); H:(P x)]H
: (isReflexive leibniz)

leibniz_sym =
[x,y:A; H:((P:(A->Prop))(P x)->(P y)); P:(A->Prop)]

(H [z:A] (P z)->(P x) [H2: (P x)]H2)
: (isSymmetric leibniz)

leibniz_trans =
[x,y,z:A; H:((P:(A->Prop))(P x)->(p y));

HO:((P:(A->Prop))(P y)->(P z));
P:(A->Prop); H1:(P x)]
(HO [a:A](P a) (H [a:A](P a) H1))

(isTransitive leibniz)

The fact that mathematical objects and propositions about those objects
can be dealt with in a similar way, makes theorem proving based on type theory

3

so attractive. The kernel of the theorem prover engine can remain small, since
all that needs to be done is type checking within a relatively small formal typing
system. A small kernel means that it is trustworthy. That is, if one does not
trust the results a type theoretical theorem prover produces, one can easily im
plement an independent type checker to check the proof-objects. This principle
is called the DeBruijn criterion in [BB97].

The drawback of the DeBruijn criterion is that proof-objects tend to be
very large and are hence difficult to read and construct. Proof-objects can be
translated to natural language to make them more readable [CKT95]. To assist
the human mathematician in constructing proof-objects, a language of tactics
is used. Instead of requiring that the user inputs concrete lambda terms, the
theorem prover builds the proof-objects according to high level tactics scripts
given by the user.

The tactics language constructs are inspired by informal top-down math
ematical proofs. For example, look at the following script which generates a
proof-object for the statement that Leibniz-equality is transitive:

Lemma leibniz_trans: (isTransitive leibniz).
Proof.

Unfold isTransitive leibniz.
Intros x y z H HO.
Apply HO.
Apply H.
Assumption.

Qed.

In fact, most users of type theoretical theorem provers consider tactics scripts,
instead of proof-objects, to be the real proofs.

There are some disadvantages to using tactics scripts to represent proofs.
One drawback of is that tactics scripts represents only the user's half of a dialog.
Starting with the theorem to be proved as initial goal, the user guides the system,
replacing the current goal by new goals, until it can be reduced to some known
tautology or assumption. The output of the system during such an interactive
session is not recorded in the script.

Another, related, drawback of tactics scripts is that it is hard to reconstruct
intermediate goals. A normal top-down proof provides the reader with hints
about what is the current statement that is proved. This can be compared to
the notation used to report on chess games. All moves are stated, but from
time to time also a diagram is printed to indicate the current state of the board.
The diagram is helpful for the reader but is not necessary to reconstruct the
game. Both tactics scripts and proof-objects lack intermediate goals. However,
it is fairly easy to retrieve from a proof-object the intermediate goals, all that
is needed is the type checking kernel of the theorem prover which is relatively
small by the DeBruijn criterion. Reconstructing the intermediate goals from a
tactics script is much harder, access to the complete theorem prover is needed.

This is why the tool described in this paper will represent proofs with proof
objects and not tactics scripts. However, the other option is also possible, see
[HMBC99].

4

3 Overview of the System

This section gives a high level overview of the the Coq Viewer presentation tool.
Figure 1 shows the architecture of the system. A Coq context is parsed, which

Author

Cog

Parse Generate (statements)
e-:==--I

(MetaTexts)

Annotate
types

Generate

OMDOC

Figure 1: Architecture of the system.

Reader

Browse

results in an instance of the Coq Tree data-type. This data-type is described in
detail in Section 4. Next, the tree is annotated with type information using
the algorithm in Section 5.8. Type inference requires many more operations on
Coq Tree. These operations are described in Section 5. Each node in the tree is
annotated with the type of the term beneath that node. This type information
is used by the views which present the CoqTree to the end user. Some of the
views try to verbalize statements and proofs in the context. This is done by
first translating the CoqTree versions of the proof-object to instances of the
MetaText data-type. A MetaText consists of Statements. This data-type is
described in Section 6.2. The verbalization to natural language is defined on
this intermediate level so that the methods can be reused in multiple views.
Currently there are two views available. The TreeView, see Figure 2, is the
most basic view and shows the structure of the individual lambda terms. The
NLView, see Figure 3, renders proofs as Fitch style natural language proofs. In
this view assumptions are indicated by displaying them inside flags with the flag
pole showing the scope of the assumption. Another possibility for displaying
the content is exporting it to an OMDOC document [Koh99]' which can then
be viewed in an appropriate browser. More details on the views can be found
in Section 6.

The creation and presentation of interactive mathematical documents using
the CoqViewer, as we envision it, consists of three phases. First, during the
formalization phase, a formal context is built using Coq. Next, after loading
this context into the tool, during the authoring phase, the author can add
presentation information to it. Currently this is done in the TreeView. Finally,
during the presentation phase, the context is presented to the reader tbrough
one of the views. The reader can then interact with the document, by browsing
tbrough it and for example changing the level of detail in some of the proofs.
H the reader has opened multiple views on the same object, the results from
interaction are made visible consistently across all views.

5

3.1 Authoring

During the authoring phase, the formal objects stored in the CoqTree are altered.
However, the author is not allowed to change the mathematical structure of the
formal objects, only the way they will be presented to the reader. By authoring
we mean refining the presentation and not the mathematical content.

Adaptation of presentation is implemented by extending the Coq Tree data
type with attributes containing presentation information. Currently only the
TreeView can be used to add presentation information to CoqTree objects. This
view presents to the author a tree-like representation of the document, compa
rable to the folder tree a file browser provides. Figure 2 presents the TreeView.
The panel on the left shows the context. The panel on the right shows the con
text item that is selected. This view is described in more detail in Section 6.1.
In this view, the author is allowed to change the following information in each

node:

I Coq Vkwer
:;jJt n'" ,",":

"'" R
DEF ;"Rellex""

DEF isSyrrmelric

DEF ioTransiti"=

AXM R~tli!lns

DEF lelbniz

THM ItIibn,,-reli

THM Ielbnlz..JrarlS

, .. D Ielbnlz....SJm

to II1'II LAMBDA ..

~-Dx

'~DA
, IiSlLAMBOA ..

0,
'~'DA
, III LAMBDA ..

. 0"
&1iII (pI P (-:>A Prop)(-,. (CD p x) (0 p y)))

., I:!I LAMBDA ..

Dp
&-liiIpA Prop)

• 1IiII.,
, IDI@··
~DH

"iii! (LAMBOA it A (." (0 P it) (0 P xl)

.Ii\il (lAMBDA fi2 (@P xl H2)

il-li8lI (0 iss~tric lIIibnlz)

Figure 2: Screenshot of the Tree View.

• If the node is a variable (variables are the leaf nodes), the author can
change its name. The variable name will be changed consistently through
out the document. All variables are bound, since the input is a complete
theory development.

• Each node which is not a variable can be either collapsed or expanded.
This will affect the way this node is presented in the views. It depends
on the view how this is done, but in general collapsed nodes are displayed
concisely e.g. the translation will not recursively translate the subtrees of
a collapsed node, expanded nodes are translated verbosely.

• Nodes representing certain mathematical objects can have a preferred
view. For example the author might assign the natural language view
as default view for proof-objects.

6

More attributes might be added in the future. Perhaps even an extension mech
anism so the author can add annotations to suit new view specific properties of
nodes.

One might envision an editing environment based on the natural language
view described in the next subsection. Currently the TreeView is the only view
which allows this kind of authoring.

3.2 Presentation

The reader is not allowed to change any attribute, formal or presentation, of
the CoqTree objects in the context. Figure 3 presents the NLView. This view
presents proof-objects as Fitch style natural language proofs. The panel on the
left shows the context. The panel on the right shows the context item that
is selected. This view is described in more detail in Section 6.2. Statements

Cnq Vi.lw~r ,,,
~)'" " v:

PRM A heorem (lelbnlz_liIym):
,~.

DEF isReflexi\oe (i.Symmetnc lelblllZ)

DfF ~Syrnnetrlc p,.."
OEF isTranslliw

AXM R_IIlIIlS Consider arbitrary x • y in A I
DEF lelbnll.

Assume (leibniz I<Y) (H) I THM ls,bniz;_",11

THM lIIibniz._I""n9 Lot P bll an elament 01 .-'.->PIop I
If (P ><) then (f' ><)

For all P in A->PlOp : If (F xl then (P y)

Bylaking (z:A]({? zl->(P l'O.)) lorF we gel II ([z:A]((F z)->(P x)) x) then ([:.::AX(

We deduce If (P y) then (P xl

We have proved (leibruzyx)

We haw prowd If (leibniz :r:.y) then (leibmzyx)

We haY!! proved (isS:o,.1Ult!Clric ~ibniz) since,.. y were arbitrary

Figure 3: Screenshot of the Natural Language View.

are presented in natural language, and the reader can change the level of detail
of certain parts of the proof text. The data-structure allowing this form of
interaction is described in Section 6.2. It uses the type inference algorithm
defined in Section 5.S.

The views on mathematical content that the tool generates can also be ex
ported as an OMDOC document and then presented to the reader using an
OMDOC browser. For more details, see Section 6.

4 Terms

This section describes the data-type CoqTree and its implementation in Java.
All Coq terms are encoded as Coq Tree nodes. The parser generates a Coq Tree
containing as root a context node.

7

On the first level under the context node are the context item nodes. There
are two possibilities for a context item node: An assumption node or a definition
node. Both of these are described in Section 4.1. A special kind of definition
node is the inductive definition node, which is described in Section 4.4. The
context item nodes have CoqTree terms as subtrees describing mathematical
objects, statements about mathematical objects, or proofs of those statements.

Although, by the DeBruijn criterion, the set of nodes for terms can be limited
to basic lambda calculus, the parser recognizes primitive nodes for many more
notions, such as the logical connectives and the natural numbers. All of these
notions can be defined in terms of lambda calculus, and this is how they are
implemented in Coq. However, from a presentation point of view J since we want
a presentation close to informal mathematics, it is a good idea to treat them as
primitives.

A CoqTree consists of nodes connected by pointers. There are a number
of different kinds of pointers. The foremost one, subtree, connects a parent
node to the root nodes of its subtrees. Then there are the bindvar and bindsym
pointers, which are used to indicate formal binding of variables. Furthermore,
some temporary pointers copylink, alphalink, and typelink are needed during some
of the operations described in Section 5.

Since the tool is implemented in the object oriented language Java, there
are two distinct options for the representation of trees. The first option, in true
object oriented style, is to define an abstract class Coq Tree and define subclasses
for every different kind of node. These classes are then organized in a hierarchy
based on the inheritance relation, such that operations on similar nodes need
only be specified once. For example, lambda- and Pi-nodes are both abstraction
nodes and behave the same with respect to alpha-conversion, substitution, etc.
The drawback of this option is that methods to manipulate the terms, such
as the operations described in Section 5, are scattered throughout the different
classes.

The second option, which is actually implemented, is to have one class for
CoqTree of trees which has a field treekind indicating what kind of tree is rep
resented. Most of the algorithms from Section 5 can now be specified using
case distinction on this field. This style of coding is closer to the functional
programming style.

4.1 Context and Context Item Nodes

What the parser gets from Coq is a context with definitions, assumption, and
theorems with proofs. One context node is created, which has as subtrees all
definition and assumption nodes. In Figure 4 a context node with three context
items is shown. The nodes labeled BV are abstraction variables which are
discussed in Section 4.3.

A definition node has three subtrees. The first one is its name (the definien
dum). The second subtree is the actual value of the definition (the definiens).
And the third subtree is is its type. Assumption nodes are just like definition
nodes except they do not have a definiens subtree. They only declare a name
with a type. Inductive definition nodes are described in Section 4.4.

Once a definition or an assumption has been declared, its name may be
used in the rest of the context. These names are treated like variables, and
therefore the definition and assumption nodes are in fact abstraction nodes, see

8

Figure 4: A context with two assumptions and a definition.

Section 4.3. A definition node differs from ordinary abstraction nodes, such as
lambda nodes, in that the scope of the bound name is not a subtree of the node,
but all sibling trees in the context to the right.

4.2 Basic Nodes

The simplest of all nodes is the variable node. It has no subtrees. Variable nodes
do not have a name. Since all variables are bound the name can be stored in the
formal abstraction variable node, see Section 4.3. The only relevant attribute
of a variable is a bindva, pointer to this formal abstraction variable node.

Other basic nodes correspond to connectives like negation, conjunction, and
application etc. These do have subtrees, but they introduce no other structure,

Figure 5: Variable, negation, conjunction, and application.

see Figure 5.

4.3 Abstraction Nodes

An abstraction node is used to introduce a formal name that binds occurrences
of this name in the subtrees of the node. Usually there is only one subtree of
an abstraction node where bound variable can occur called the body, but there
are exceptions. The variable nodes occurring in the body in the tree need to
be able to indicate that they are bound by this node. For example in the body
(the third subtree) of the lambda abstraction node in Figure 6 a variable node

9

marked with v is bound by the lambda node. The binding is implemented using
a bindvar pointer.

,
L _________ ...l

Figure 6: An abstraction node.

To be more accurate, the variable occurring in the body of the lambda term is
bound by the formal abstraction variable, indicated by BV. It was decided to not
bind variables to the abstraction node itself because we will encounter examples
of abstraction nodes where multiple variables are bound at once. This decision
forces us to add yet another link: The bindsym pointer provides a reference
from the abstraction variable to the abstraction node. Certain operations on
the tree use this bindsym reference to make decisions depending on the kind of
abstraction used for some variable.

The second subtree contains the type of the abstraction variable and is called
the domain.

Examples of abstraction nodes are lambda and Pi-nodes, but also defini
tion and inductive definition nodes and the match nodes occurring in the cases
construct.

4.4 Inductive Definition Nodes

Inductively defined sets are often used in mathematics. For example the set of
natural numbers can be defined as the smallest set which contains 0 and which
is closed under the successor operation S. In Coq this type is introduced with:

Inductive nat: Set := 0: nat I S: nat-)nat

Although all inductive definitions can be encoded in the calculus of Coq as sec
ond order types, inductive definitions were explicitly added to the calculus both
for convenience and for efficiency reasons. The extension is done by introduc
ing a new sort of definition called inductive definition. Both inductive sets and
inductive propositions may be defined.

An inductive definition introduces a new name and states a type for the
object it defines. It also introduces a number of constructors. Each constructor
introduces a new name with a type. The type of a constructor may contain
a reference to the type we are defining. There are some restrictions on the
position where this name may occur, ensuring that the type defined is well
founded. A description of these restrictions is beyond the scope of this report,
see for example [Gim94J, and the CoqViewer does not check them since the
context will be fully checked by Coq.

10

, ,
L ___________________ ~

Figure 7: An inductive definition node with two constructors.

4.5 Cases and Match Nodes

The cases construct was added to the language to allow case distinction on val
ues of inductive type. Every concrete object of an inductive type is constructed
by repeated application of the type's constructors. Cases can be used to deter
mine which constructor was applied last. See Section 4.6 for some examples of
expressions involving cases.

Figure 8: A cases node with two match nodes.

A cases node, Figure 8, has as subtree the term on which the case distinction
is applied and the type of the expression itself. In addition there are several
match nodes, marked with ~.

Each match node, Figure 9, contains a pattern in the left subtree and a
body in the right subtree. During reduction, the term on which case distinction
is applied is compared to each of the patterns using the matching algorithm
described in Section 5.6. The matching algorithm returns a substitution for
variables occurring in the corresponding body. The result of the reduction is
this body after applying the substitution.

11

---------8
o

Figure 9: A match node with a pattern and a body.

4.6 Fixpoint Nodes

Fixpoints are used to define recursive functions. In Coq a recursive function
may only be specified over inductively defined types. A fixpoint introduces a
temporary name, the jixpoint variable, which may be used again in the body of
the fixpoint construct.

0----~

,
, L ______________ ..J
L ________________________ ~

Figure 10: A fixpoint node with one recursion parameter.

A general recursion scheme like this would allow non-terminating functions)
therefore some restriction is necessary. In Coq this is solved by demanding that
a recursion parameter is mentioned explicitly. This is a variable whose value
gets structurally smaller with every recursive application of the function. Early
versions of Coq used a positive integer to indicate which variable plays the role
of recursion parameter. For example the definition of the addition function
would be printed as:

plus = fix f/i: nat->nat->nat :=
{ [n,m:nat]

<nat>Cases n of
o => m

I (8 k) => (f k m)

12

end
}

The number 1 indicates that the first lambda abstracted variable in the body, n,
is the recursion variable. This is (roughly) the same notation used in [Gim94].
In newer versions of Coq a slightly friendlier but equally powerful notation is
used:

plus fix f [n:nat): nat->nat :=
{ [m:nat)

}

<nat>Cases n of
o => m

I (5 k) => (f k m)

end

The name of the recursion parameter n is mentioned explicitly in the type of the
fixpoint variable. The square brackets in the type act as a lambda abstraction.
If the recursion parameter is not the first variable, more variables need to be
abstracted in this way.

The combination of fix and cases allows the Coq user to specify recursive
functions using an intuitive looking syntax. The recursion check (to ensure
recursive calls are applied to a smaller term than the value of the recursion
parameter) and the positive occurrence check (on the definition of the inductive
type) ensure that we get a terminating function.

5 Operations

Several operations can be defined on the CoqTree data-type. Ultimately what is
needed for the NLView, described in Section 6.2, is a type inference algorithm.
Type inference requires operations such as reduction and copying of terms. Be
cause of the representation of the terms described in Section 4 these operations
may not be very standard anymore. This section describes some of the problems
encountered in implementing them.

5.1 Copy

For various purposes, for example type inference, it is useful to be able to make
a copy of a term. The obvious way to copy a tree is to go top·down from the
root to the leafs, copying all information in this node to a newly created one,
and applying the copy method recursively to all subtrees. A problem arises here
because we do not want to copy the binding links of bound variables literally,
as this would bind the variables to abstraction nodes in the source tree. We
would rather bind those variables to the copy of this abstraction node in the
destination tree.

The solution is easy. While copying top-down, temporary copy links are
made, connecting abstraction nodes, marked with BV in Figure 11, in the source
tree to the corresponding abstraction nodes in the target tree. When a variable
is encountered the copylink of the abstraction node in the source tree now points
to the new abstraction node in the target tree.

13

copylink
~-7~-----,L\----~~----~BV

L ___________ ...J

Figure 11: The copy method in action.

5.2 Syntactical Equivalence

, ,
?

To test for syntactical equivalence of terms, the trees in question should be
isomorphic. This operation suffers from the same problem as the copy operation.
To determine if two variables have the same abstraction node, it is not enough
to compare the binding links. If the pointers are exactly the same, then the
variables are alpha equivalent, but the two variables are also alpha equivalent
if they have alpha equivalent abstraction variables.

alphalink

, ,
L ___________ ..J L ___________ J

Figure 12: Testing for syntactical equivalence.

The solution is similar to the one used in the copy situation: we introduce
temporary alpha links, connecting abstraction nodes, marked by BV in Fig
ure 12, in the first tree to abstraction nodes in the second tree. Now we can
compare the abstraction node of a variable in the second tree with the alpha link
of the abstraction node of a variable in the first tree.

5.3 Currying

The application in lambda calculus takes two arguments: a function and its
argument. Functions of higher arity are specified through currying, i.e. define
the function in such a way that the result after one application is again a function
which can be applied to another argument. For some of the operations described

14

Figure 13: Currying of applications aod abstractions.

in this section it is useful to be able to detect whether such a curried function
is used, especially since most of the operations in this section traverse the tree
recursively and can only see the kind of tree for the current node. We have
operations that detect application spines such as in Figure 13 and yield pointers
to the function and its arguments. This is for instance used in the reduction
method to collect all the recursion parameters of a fix application.

A related problem is detecting repeated lambda and Pi abstractions. We also
have operations for this. These are primarily used for presentation purposes such
as pretty-printing of expressions in the views described in Section 6.

5.4 Substitution

Since bound variables cannot be identified by their name (remember that the
name of a variable is stored in the abstraction variable which binds the variable)
we use a pointer to their binding abstraction variable to identify them. This
node is passed to the substitution method as a parameter.

The substitution method just traverses the tree top-down from root to leafs,
replacing every variable bound to this parameter by a copy of the tree we want
to substitute in place for it. This is done by the copy method.

5.5 Reduction

The reduction method reduces the term either to normal form or to weak head
normal form. This method traverses the term leftmost outermost, reducing
reducible expressions, or redexes. It considers three different kind of redexes: !3,
cases, and fix. Furthermore, if a variable node is encountered which is bound
by a definition node, a so-called J-redex, it is replaced by the corresponding

15

Lenie Kantelberg

Lenie Kantelberg

definition.

((3)

(cases)

(fix)

(Ax: A.B)C

cases (constr.4) of
P, =} B,

(fixJxT B) (constrA)

-+ B[x:= C)

-+ B i [,,)

-+ B(f:= (fixJxTB)](constrA)

In the cases case, " is the substitution produced by the match method and Pi
is the pattern which matches with (constrA), see Section 5.6. In the fix case, J
is the fixpoint variable and x is the recursion variable.

Weak head reduction only reduces the top level redex and does not continue
to reduce the subterms. This is preferable if only the root symbol of a a term is
needed. Weak head reduction is also useful in the natural language generation
algorithms in Section 6.2. By only reducing a statement to weak head normal
form, it remains as abstract as possible.

5.6 Matching

The matching method is only used in the cases construct to match terms against
patterns that occur in the left hand side of the =} nodes. It takes as input a
pattern and a tree and returns whether the tree matches the pattern. If they
match, then a substitution a is returned.

A pattern is either a new abstraction variable or a constructor (previously
defined in an inductive type) or an application of patterns. Of course only well
typed patterns are allowed. Here P=M means the term M matches with the
pattern P. The arrow on the left indicates that the rules should be tried from
top to bottom, and the first rule that fits is used.

j
(constr C1)

(bvar x)
T,

(constrc,)
~ T

5.7 Type Inference

if Cl and C2 are the same
for all trees T,":=" U {x r+ T}
if root symbols are equal
and all subtrees match

Most typing algorithms for systems of typed lambda calculus are presented as
inference rules, see for instance [Bar92]. The concept of local context plays an
important role in this style of of presentation. Local contexts are used to keep
track of free variables and their types. When the typing algorithm encounters
an abstractor such as a lambda, it stores the variable with its type in the context
and continues with the body of the term.

In our system, however J all variables are bound through binding links to
abstraction variables in the global context. Our typing algorithm does not make
use of local contexts. Whenever the algorithm encounters a variable, it retrieves
its type by following the binding link to the abstraction node and copying the
associated type.

16

Lenie Kantelberg

The type of a term is built recursively. Based on the symbol of the current
node, new nodes are created and the method continues recursively with the
subtrees.

type(Prop) = Type type(Set)
type(AX : A.B)

type(FM)
= (IIx: A.type(B))

type(var x)

type(A ---+ B)
type(IIx : A.B)

type(ind x T 0)
type(fix f x T B)

type(A x B)
type(,A)

if (type(F) = (IIx : A.B))
then B[x := M]
else failure
find the abstraction var of x
and determine its type
type(B)
type(B)
T
T
type(A + B) = Set
type(A II B) = type(A V B) = Prop

The type inference algorithm makes some assumptions about the term to be
typed. For example, in the application case it is assumed that M has type A.
The algorithm can be made more robust, so that it will always yield failure for
terms that are not typeable. As the terms are part of a context that is checked
by Coq it can safely be assumed that the terms are typeable.

During type inference, some copying of subtrees is required. For example
when typing a tree with a lambda as root symbol, a new Pi-node is created
which also abstracts a variable. The domain of this new binding variable is an
exact copy of the domain of the binding variable of the lambda-node. A problem
that arises is that the domain tree to be copied might contain variables with
binding links which point to places outside of the destination tree.

typelink

typelink

,
L_~ ____ ...J ,

?

Figure 14: The type inference method in action.

For example to infer the type of the double lambda abstraction in Figure 14,
a double Pi abstraction is created. In the tree on the left, the variable occurring

17

in the domain of the second lambda abstraction is bound by the first lambda
abstraction. In the tree on the right, the corresponding variable needs to be
bound by the first Pi abstraction. Therefore, the copy operations has to have
knowledge about which lambda-nodes in the source tree correspond to which
Pi-nodes in the destination tree.

To solve this problem, we introduce type links which connect the binding
variables in the term to binding variables in the type. The copy algorithm uses
these type links just like it uses copy links.

5.8 Computing the Expected Type

The above type inference algorithm derives a type for a term based on the
derived types of its subterms. A type for a term is derived top-down.

Types for terms are not unique. A term can be assigned different types,
although they will always be equivalent with respect to the reduction relation
described in Section 5.5. Especially J-redexes, i.e. definitions, can be used to
make types look more abstract. For example the proof-object proving reflexivity
of Leibniz' equality has derived type:

(x:A; P:A->Prop; H:(P x))(P x)

but the same term can also be assigned the more descriptive type:

(isReflexive leibniz)

In order to ensure the most abstract type for the subterms of a proof-object, the
above algorithm is augmented to compute both a derived type and an expected
type, similar to the algorithm described in [Cos96]. It takes as input a term and
an expected type for this term, and annotates the term and all of its subterms
with expected type information. At the same time the node is also annotated
with it's derived type.

exptype(>'x: A.M,T) = Annotate current term with To

Reduce T to WHNF: T = (Ux: A.B).
Call exptype(M, B).

exptype(FM,T) Annotate current term with T.
Let Tp = type(F), TM = type(M).
Reduce Tp to WHNF: Tp = (Ux: A.B).
Call exptype(F, Tp).

Call exptype(M, TM).

exptype(var x, T) Annotate current term with T.

After parsing, each subtree of the context tree is annotated with derived and
expected type attributes. The expected type of a subterm is computed from
the expected type of the parent node. This means that the algorithms needs to
be initialized with an expected type of the context item. Fortunately, since all
definitions and proofs occur in the context with a preferred type, such an initial
expected type is always available.

6 Views

This section describes the view mechanism. The idea is to have multiple views
which present the underlying formal structure consistently. For example, when

18

Lenie Kantelberg

DDDDDDDD

DDDDDDDO

IDDDDDDDr

~M etaText

C ompound
tatement S

0 bJect

M etaText

~C onclusion

~~ etaText
tatement

Figure 15: A Meta Text.

a user changes the preferred level of detail at which a CoqTree object is viewed,
this information is stored in the CoqTree itself and distributed to all views.
Currently only two different views are available, the TreeView and the NLView.
The context can also be exported as an OMDOC XML document, so that it
can be viewed in a standard browser.

6.1 Tree View

The most basic view is called TreeView and just presents the context as a large
tree, showing the nodes described in Section 4. Each node can be either collapsed
or expanded. If a node is collapsed, the type of the tree starting beneath that
node is displayed. If a node is expanded, the complete tree is displayed. See
Figure 2 for a screenshot of this view. As described in Section 3, this view allows
some simple editing of the presentation information.

6.2 Natural Language View

The natural language view NLView is based on the standard translation algo
rithm presented in e.g. [CKT95] and [Cos96]. However, instead of generating
flat text, objects of a new class called Meta Text are generated, see Figure 15.
The MetaText data-structure is intended to facilitate both the accessibility of
the underlying formal proof-object, as well as the folding and unfolding mech
anism of proofs in the natural language view. Moreover, assumptions and their
scope can be marked which makes Fitch style presentation of proofs possible,
see [Zwa98]. See Figure 3 for a screenshot of this view.

A MetaText contains a number of MathStatements which either consist of
Objects or contain a recursive MetaText. Recursive MetaText statements also
contain a conclusion statement. An Object is either some concrete text string
or it is a pointer to a CoqTree representing a mathematical object term.

A CoqTree object is translated to a MetaText using the algorithm below.
Here [M1 on the left hand side means "M is of type r" and iiiiiI (M) on the
right hand side means "create a recursive MetaText containing M here". The

19

conclusion of such an embedded Meta Text is the type of M.

lli1 >-+ { 0 "By" h "we have" T

{ Iiiil II M l(vx.AB)[R1l
(M)

>-+ 0 "By taking" N "for" x "we get" 'T

{
Iiiil (N)

I lm(A-;B)0A l >-+ iil (M)
0 "We deduce" T

{ 0 "Assume" A (h)

I Ah: ffirop·lmB l >-+ Iiiil (M)
0 "We have proved" T

1
0 "Consider an arbitrari' x "E" A

I AX : met·lms l Iiiil (M) >-+ 0 "We have proved" T "since" x
"is arbitrary"

As can be seen from the many boxes on the left-hand side, unless every subterm
is annotated with type information, a typing algorithm is necessary for this
translation. The types T used in the above algorithm are the expected types of
the terms involved. This means that the translation is as abstract as possible:
Definitions are only unfolded when necessary. The initial expected type is the
type of the proof-object as it occurs in the context.

The above algorithm only specifies the translation for the basic calculus.
Inhabitants of inductively defined theorems are translated as follows:

0 "We reason by cases on" M

<7> casesM of 0 "In case" M = PI ", then"

PI '* Bl Iiiil (Bd

Pn '* Bn 0 "In case" M = Pn ", then"
end IiiiiiI (Bn)

0 "In any case, we have" T

Some constructions involving defined constants such as elimination of con
junction, disjunction, equality, and natural numbers (induction) require alter
native translations. Although these constants have a definition in Coq, we treat

20

them as primitives for the purpose of this translation.

{
IBiI (a)

I (andjnd AB pITlA-+B-+P 0AAB) l >-+ Iii! (f)
D "So we have" T

1
IBiI (h)
Iii! (q)

I (eqjndAX PlliJ(PX) Y@1=y) l >-+ D "So, by replacing" X
"with" Y "in" h
"we get" T

6.3 Generating OMDOC Documents

OMDOC [Koh99] stands for OpenMath Document. It is an extension of the
OpenMath [Ope99] language. OpenMath is intended as a communication medium
between symbolic computation engines. Objects encoded in OpenMath can be
shared by different systems. OMDOC enables the communication of complete
contexts by providing constructs for assumptions, definitions, theorems and
proofs. This makes it an excellent choice as a vehicle for type theoretical con
texts.

A first prerequisite for converting CoqTree contexts to OMDOC documents
is an OpenMath encoder which translates CoqTree object terms to OpenMath
objects. In OpenMath terminology such an encoder consists of a content dic
tionary and a phrasebook. A content dictionary for Coq is defined in [CC99].

Using the translation for objects, it is easy to define the translation for
contexts. The context items in an OMDOC document consist of a formal and
an informal description of the object that is defined or assumed. For the formal
description the OpenMath equivalent ofthe formal (proof-)object is taken. The
informal description is generated by first verbalizing the object as a MetaText
and then replacing the formal parts of the text by OpenMath objects.

The OMDOC document can be exported in XML format. Consider for
example a step from the proof of reflexivity of Leibniz' equality.

<derive id="leibniz_refl-prf.2p.2p.2p.l l1 >
<CMP>

By
<OMOBJ>

<OMV name="H"/>
</OMOBJ>
we have
<OMOBJ>

<OMA>
<OMV name="P"/>
<OMV name="x ll />

</OMA>
</OMOBJ>

</CMP>
</derive>

21

This step contains a commented mathematical property, between CMP tags,
which consists of natural language text with embedded OpenMath objects.

The generated XML can be transformed into for example HTML using an
appropriate XSL style-sheet. The OMDOC view is not really a view in the
sense described above. Since the presentation of the generated XML is done
in a different tool, there is no direct connection back to the Coq Tree structure
a document was generated from. However, all the formal MathObjects which
occur in a MetaText are translated to OpenMath objects. This means that the
formal content is still present in the OMDOC document.

The use of standard export formats for mathematics like OpenMath and
OMDOC potentially allows communication of objects to symbolic computation
engines such as theorem provers and computer algebra systems. This may lead
to true interactive mathematical documents in the sense of [COOOb, COOOa],
and is object of future work.

7 Conclusions

We described the requirements and implementation of a prototype tool, called
Coq Viewer. The tool can be used for authoring and presenting mathemati
cal content based on type theory. The Coq system is used to create an initial
mathematical theory. Using the tool, an author can enhance the definitions and
proof-objects that form a formally derived mathematical context with presen
tation information.

The tool can then display the content in several views allowing for interac
tivity by presenting the formal content on different levels of detail. The formal
content does not change as a result of these interactions. One example of a view
is the natural language view. Although the reasoning displayed in this view
resembles informal mathematics, the underlying formal objects remain accessi
ble. This means that they can still be communicated to symbolic computation
engines.

The lambda terms representing the mathematical content are implemented
inside the tool as pointer trees. References are used to indicate bound variables.
This causes some non-trivialities in implementing the usual algorithms such as
copying, checking syntactical equivalence and type inference.

Type inference is needed in order to implement the natural language view.
Because it can be assumed that the input to the tool is a checked mathemat
ical context, some side conditions are not checked during reduction and type
inference.

The OpenMath language and its extension OMDOC may be used to connect
this tool to other similar tools and makes viewing of the content in standard
browsers possible. This is the subject of future work.

Acknow ledgments

Tijn Borghuis, Olga Caprotti, and Rob Nederpelt read early versions of this
report and gave many useful suggestions. Robert Brouwer and Roe} K6rvers
helped implement some of the fancy features in the natural language view.

22

Thanks also to Herman Geuvers and Jan Zwanenburg for many discussions
about presentation of mathematics.

References

[Bar92] H. Barendregt. Lambda calculi with Types, volume 2 of Handbook
of Logic in Computer Science, chapter 2, pages 117-309. Oxford
Science Publications, 1992.

[BB97] H. Barendregt and E. Barendsen. Autarkic computations in formal
proofs. Available from http://www.cs.kun.nl;-henk. 1997.

[BBC+99] G. Barras, S. Boutin, C. Comes, J. Courant, Y. Coscoy, D. Dela
haye, D. de Rauglaudre, J-C. Filliatre, E. Gimenez, H. Herbelin,
G. Huet, H. Laulhere, C. Munoz, C. Murthy, C. Parent-Vigouroux,
P. Loiseleur, C. Paulin-Mohring, A. Saibi, and B. Werner. The
Coq Proof Assistant, Reference Manual, Version 6.3. INRlA
Rocquencourt - CNRS-ENS Lyon, July 1999.

[CC99] O. Caprotti and A. M. Cohen. A Type System for OpenMath,
February 1999. OpenMath Deliverable 1.3.2b.

[CKT95] Y. Coscoy, G. Kahn, and L. Thery. Extracting text from proof.
In M. Dezani and G. Plotkin, editors, Proceedings of Int. Conf.
on Typed Lambda-Calculus and Applications (TLCA), Edinburgh,
volume 902. Springer-Verlag LNCS, April 1995.

[COOOa] O. Caprotti and M. Oostdijk. How to formally and efficiently prove
prime(2999). In Proceedings of Calculemus 11000, St. Andrews, Au
gust 2000.

[COOOb] o. Caprotti and M. Oostdijk. Proofs in interactive mathematical
documents. In Proceedings of AISC 2000, Madrid, July 2000.

[Cos96] Y. Coscoy. A natural language explanation for formal proofs. In
C. Retore, editor, Proceedings of Int. Conf. on Logical Aspects of
Computational Liguistics (LACL), Nancy, volume 1328. Springer
Verlag LNCS/LNAI, September 1996.

[Gim94] E. Gimenez. Codifying guarded definitions with recursive schemes.
Technical Report 95-07, Ecole Normale Superieure de Lyon, Decem
ber 1994.

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Specification.
Addison-Wesley, Reading, Massachusetts, 1996.

[HMBC99] A. M. Holland-Minkley, R. Barzilay, and R. Constable. Verbaliza
tion of high-level formal proofs. In Sixteenth National Conference
on Artificial Intelligence, 1999.

[How80] W. A. Howard. The formulae-as-types notion of construction, pages
479-490. To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism. Academic Press, 1980.

23

[Koh99]

[Lam94]

[Ope99]

[Zwa98]

M. Kohlhase. OMDOC: Towards an Openmath Representation of
Mathematical Documents. Technical report, DFKI, Saarbriicken,
1999.

L. Lamport. YTFfX.: A Document Preparation System, (2nd ed.).
Addison-Wesley, Reading, Massachusetts, 1994.

OpenMath Consortium. The Openmath Standard, August 1999.
OpenMath Deliverable 1.3.3a.

J. Zwanenburg. The Proof-assistant Yarrow. Technical Report
98/11, Eindhoven University of Technology, July 1998.

24

Computing Science Reports Department of Mathematics and Computing Science
Eindhoven University of Technology

If you want to receive reports, send an email to:m.m.j.l.philips@tue.nl (we cannot guarantee the availability of
the requested reports)
In this series appeared:

96/01

96/02

96/03

96/05

96/06

96/07

96/08

96/09

96110

96/11

96/12

96/13

96/14

96/15

96117

96/18

96/19

96/20

96121

96/22

96/23

96/24

96/25

97/02

97/03

97/04

97/05

97/06

97/07

M. Voorhoeve and T. Basten

P. de Bra and A. Aerts

W.M.P. van dec Aalst

T. Basten and W.M.P. v.d. Aalst

W.M.P. van dec Aa1st and T. Basten

M. Voorhoeve

AT.M. Aerts, P.M.E. De Bra,
J.T. de Munk

F. Dignum, H. Weigand, E. Verharen

R. Bloo, H. Geuvers

T. Laan

F. Karnareddine and T. Laan

T. Borghuis

S.H.J. Bos and M.A. Reniers

M.A. Reniers and 1.1. Vereijken

E. Boiten and P. Hoogendijk

P.D.V. van dec Stok

M.A. Reniers

L. Feijs

L. Bijlsma and R. Nederpelt

M.C.A. van de Graaf and G.J. Houben

W.M.P. van dec Aalst

M. Voorhoeve and W. van dec Aalst

M. Vaccari and R.C. Backhouse

J. Haoman and O. v. Roosmalen

J. Blanco and A. v. Deursen

I.CM. Baeten and I.A. Bergstra

I.C.M. Baeten and 1.1. Vereijken

M. Franssen

l.C.M. Baeten and l.A. Bergstra

Process Algebra with Autonomous Actions, p. 12.

Multi-User Publishing in the Web: DreSS, A Document Repository Service Station,
p.12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18.

Structural Petri Net Equivalence, p. 16.

OODB Support for WWW Applications: Disclosing the internal structure of
Hyperdocuments, p. 14.

A Ponnal Specification of Deadlines using Dynamic Deontic Logic, p. 18.

Explicit Substitution: on the Edge of Strong Nonnalisation, p. 13.

AUTOMATH and Pure Type Systems, p. 30.

A Correspondence between NuprJ and the Ramified Theory of Types, p. 12.

Priorean Tense Logics in Modal Pure Type Systems, p. 61

The /2 C-bus in Discrete-Time Process Algebra, p. 25.

Completeness in Discrete-Time Process Algebra, p. 139.

Nested collections and polytypism, p. 11.

Real-Time Distributed Concurrency Control Algorithms with mixed time constraints,
p. 71.

Static Semantics of Message Sequence Charts, p. 71

Algebraic Specification and Simulation of Lazy Functional Programs in a concurrent
Environment, p. 27.

Predicate calculus: concepts and misconceptions, p. 26.

Designing Effective Workflow Management Processes, p. 22.

Structural Characterizations of sound workflow nets, p. 22.

Conservative Adaption of Workflow, p.22

Deriving a systolic regular language recognizer, p. 28

A Programming-Language Extension for Distributed Real-Time Systems, p. 50.

Basic Conditional Process Algebra, p. 20.

Discrete Time Process Algebra: Absolute Time, Relative Time and Parametric Time,
p.26.

Discrete-Time Process Algebra with Empty Process, p. 51.

Tools for the Construction of Correct Programs: an Overview, p. 33.

Bounded Stacks, Bags and Queues, p. 15.

97/08

97/09

97/10

97/11

97112

97/13

97/14

97/15

97/16

97!17

97/18

98/01

98/02

98/03

98/04

98/05

98/06

98/07

98/08

98/09

98110

98111

98112

98/l3

98/l4

99/01

99/02

P. Hoogendijk and R.C. Backhouse When do datatypes commute? p. 35.

Proceedings of the Second International Communication Modeling- The Language/Action Perspective, p. 147.
Workshop on Communication Modeling,
Veldhoven, The Netherlands, 9-10 June, 1997.

P.C.N. v. Gorp, EJ. Luit, D.K. Hammer
E.H.L. Aarts

A. Engels, S. Mauw and M.A. Reniers

D. Hauschildt, E. Verbeek and
W. van dec Aalst

W.M.P. van dec AaIst

J.E Groote, F. Monin and
J. Springintveld

M. Franssen

W.M.P. van dec Aalst

M. Vaccari and R.C. Backhouse

Werkgemeenschap Informatiewetenschap
redactie: P.M.E. De Bra

W. Van dec Aalst

M. Voorhoeve

I.C.M. Baeten and l.A. Bergstra

R.C. Backhouse

D. Dams

G. v.d. Bergen, A. Kaldewaij
V.J. Dielissen

Distributed real-time systems: a survey of applications and a general design
model, p. 31.

A Hierarchy of Communication Models for Message Sequence Charts, p. 30.

WOFLAN: A Petri-net-based Workflow Analyzer, p.30.

Exploring the Process Dimension of Workflow Management, p. 56.

A computer checked algebraic verification of a distributed summation algorithm,
p.28

AP-: A Pure Type System for First Order Loginc with Automated
Theorem Proving, p.35.

On the verification of Inter-organizational workflows, p. 23

Calculating a Round-Robin Scheduler, p. 23.

Infonnatiewetenschap 1997
Wetenschappelijke bijdragen aan de Vijfde Interdisciplinaire Conferentie
Infonnatiewetenschap, p. 60.

Fonnalization and Verification of Event-driven Process Chains, p. 26.

State I Event Net Equivalence, p. 25

Deadlock Behaviour in Split and ST Bisimulation Semantics, p. 15.

Pair Algebras and Galois Connections, p. 14

Flat Fragments of CTL and CTL*: Separating the Expressive and Distinguishing
Powers. P. 22.

Maintenance of the Union of Intervals on a Line Revisited, p. 10.

Proceedings of the workhop on Workflow Management:
Net-based Concepts, Models, Techniques and Tools (WFM'98)
June 22, J 998 Lisbon, Portugal edited by W. v.d. Aalst, p. 209

Infonnal proceedings of the Workshop on User Interfaces for Theorem Provers.
Eindhoven University of Technology, 13-15 July 1998

edited by R.C. Backhouse, p. 180

K.M. van Hee and H.A. Reijers An analytical method for assessing business processes, p. 29.

T. Basten and J. Hooman Process Algebra in PVS

J. Zwanenburg The Proof-assistemt Yarrow, p. 15

Ninth ACM Conference on Hypertext and Hypennedia
Hypertext '98
Pittsburgh, USA, June 20-24, 1998
Proceedings of the second workshop on Adaptive Hypertext and Hypennedia.

J.F. Groote, F. Monin and J.

T. Verhoeff (artikel voigt)

V. Bos and J.J.T. Kieijn

H.M.W. Verbeek, T. Basten
and W.M.P. van der Aalst

v.d. Pol

Edited by P. Brusilovsky and P. De Bra, p. 95.

Checking verifications of protocols and distributed systems by computer.
Extended version of a tutorial at CONCUR'98, p. 27.

Structured Operational Semantics of X ' p. 27

Diagnosing Workflow Processes using Woflan, p. 44

99/03

99/04

99/05

99/06

99/07

99/08

99/09

99110

99/11

99/12

99113

99114

99/15

99/16

99117

99/18

99/19

R.C. Backhouse and P. Hoogendijk

S. Andova

M. Franssen, R.C. Veltkamp and
W. Wesselink

T. Basten and W. v.d. Aalst

P. Brusilovsky and p, De Bra

D. Bosnacki, S. Mauw, and T. Willemse

J. v.d. Pol, J. Hooman and E. de J ang

T.A.c. Willemse

I.eM. Baeten and c.A. Middelburg

S. Andova

K.M. van Hee, R.A. van dec Toom,
J. van dec Woude and P.A.c. Verkoulen

A. Engels and S. Mauw

J.F. Groote, W.H. Hesselink, S. Mauw,
R. Venneulen

G.J. Hauben, P. Lemmens

T. Basten, W.M.P. v.d. Aalst

I.eM. Baeten and T. Basten

I.CM. Baeten and CA. Middclburg

Final Dialgebras: From Categories to Allegories, p. 26

Process Algebra with Interleaving Probabilistic Parallel Composition, p. 81

Efficient Evaluation of Triangular B-splines, p. 13

Inheritance of Workflows: An Approach to tackling problems related to change, p. 66

Second Workshop on Adaptive Systems and User Modeling on the World Wide
Web, p. 119.

Proceedings of the first international syposium on Visual Fonnal Methods ~ VFM'99

Requirements Specification and Analysis of Command and Control Systems

The Analysis of a Conveyor Belt System, a case study in Hybrid Systems and timed
!l CRL, p. 44.
Process Algebra with Timing: Real Time and Discrete Time, p. 50.

Process Algebra with Probabilistic Choice, p. 38.

A Framework for Component Based Software Architectures, p. 19

Why men (and octopuses) cannot juggle a four ball cascade, p. 10

An algorithm for the asynchronous Write-All problem based on process collision*,
p. II.

A Software Architecture for Generating Hypermedia Applications for Ad~Hoc
Database Output, p. 13.

Inheritance of Behavior, p.83

Partial-Order Process Algebra (and its Relation to Petri Nets), p. 79

Real Time Process Algebra with Time-dependent Conditions, p.33.

99/20 Proceedings Conferentie Informatiewetenschap 1999
Centrum voor Wiskunde en Informatica

00/01

00/02

00/03

00/04

00/05

00/06

00/07

00108

00/09

00/10

00/11

00/12

00/13

12 november 1999, p.98 edited by P. de Bra and L. Hardman

1.C.M. Baeten and J.A. Bergstra

1.C.M. Baeten

S. Mauw and M.A. Reniers

R. 8100, J. Hooman and E. de long

l.F. Groote and M.A. Reniers

J.F. Groote and l. v. Wamel

c.A. Middelburg

J.D. van den Ende

R.R. Hoogerwoord

T. Willemse, l. Tretmans and A. Klomp

T. Basten and D. Bo~naCki

S. Mauw, M.A. Reniers
and T.A.C. Willemse

I.C.M. Baeten, M.A. Reniers

Mode Transfer in process Algebra, p. 14

Process Algebm with Explicit Termination, p. 17.

A process algebra for interworkings, p. 63.

Semantical Aspects of an Architecture for Distributed Embedded
Systems*, p. 47.

AlgebraiC Process Verification, p. 65.

The Parallel Composition of Unifonn Processes wit Data, p. 19

Variable Binding Operators in Transition System Specifications, p. 27.

Grammars Compared: A study on determining a suitable grammar for parsing and
generating natural language sentences in order to facilitate the translation of natural
language and MSC use cases, p. 33.

A Formal Development of Distributed Summation, p. 35

A Case Study in Fonnal Methods: Specification and Validation on the OMIRR
Protocol, p. 14.

Enhancing Partial~Order Reduction via Process Clustering, p. 14

Message Sequence Charts in the Software Engineering Process, p. 26

Termination in Timed Process Algebra, p. 36

00/14

00/15

M. Voorhoeve, S. Mauw

M.Oostdijk

Impossible Futures and Detenninism, p.19

An Interactive Viewer for Mathematical Content based on Type Theory. p. 24

	Abstract
	1. Introduction
	2. Type Theoretic Theorem Proving
	3. Overview of the System
	3.1 Authoring
	3.2 Presentation
	4. Terms
	4.1 Context and Context Item Nodes
	4.2 Basic Nodes
	4.3 Abstraction Nodes
	4.4 Inductive Definition Nodes
	4.5 Cases and Match Nodes
	4.6 Fixpoint Nodes
	5. Operations
	5.1 Copy
	5.2 Syntactical Equivalence
	5.3 Currying
	5.4 Substitution
	5.5 Reduction
	5.6 Matching
	5.7 Type Inference
	5.8 Computing the Expected Type
	6. Views
	6.1 Tree View
	6.2 Natural Language View
	6.3 Generating OMDOC Documents
	7. Conclusions
	Acknowledgments
	References

