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Abstract 
This report describes the Coq Viewer tool, a system for presenting 

mathematical content encoded in typed lambda calculus. With mathe
matical content we mean mathematical theories including assumptions, 
definitions, theorems, and proofs. The presentation of the content is in
teractive and resembles informal mathematical documents, without giving 
up the formal nature which allows symbolic manipulation. This is possible 
because the presentation and formal content are kept separate. The tool 
takes as input a context developed in the Coq theorem prover. It then dis
plays the context in interactive views resembling informal mathematics. 
The views allow the user to change certain aspects of the presentation. 
The resulting presentation can be exported in the OpenMath Document 
format. 

1 Introduction 

Traditionally computers are useful for mathematicians in three ways. First, in 
type-setting mathematical texts, computers are used since they allow easy edit
ing of structured formulas. Second, computers take care of many computations 
needed by mathematicians, both concrete "number crunching" and symbolic 
computations. Third, more recently, computers are also employed to assist 
mathematicians in developing and proving theorems. 

There are differences in how these uses represent the mathematical content. 
If one implements a system for correctly type-setting mathematical formulas, 
such as the f,j.1EX system [Lam94]' it suffices to store only superficial presen
tation information. For example, type-setting the expression (xY . XZ) requires 
knowledge within the system about bounding boxes and baselines, but not about 
the meaning of the symbols or even their arity or types. 

More structure is needed when one wants to implement symbolic manip
ulation systems such as computer algebra systems. Consider for example a 
computer algebra system transforming the expression from the above example 
(xY . XZ) into x(Y+z). In order to perform this operation there is no need to know 
the exact semantics of the symbols, except for the rewrite rule that is applied 
here. It is, however, important to know the exact syntactic structure of the ex
pression. Internally the manipulations take place on a tree-like data-structure 
which captures the syntactic structure and which can be pretty-printed in a 
more appealing format. Note that there is a distinction between content and 
presentation here. 
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Still more structure is needed in theorem proving systems. Not only the 
exact syntactic structure of expressions, but also some semantical properties 
need to be specified before one can prove anything about an object. In many 
theorem provers this is achieved by allowing the user to completely define objects 
in the logical language of the system. This has the advantage that these systems 
are very general and able to deal with any mathematical theory. It also means 
that the presentation stays very close to the mathematical content. This is a 
drawback of many theorem provers, the content is not presented well to the end 
user. 

The Coq Viewer tool described in this paper is an attempt to interactively 
present formal mathematical content as used in theorem provers. To be more 
specific, formalizations developed in the the type theoretical theorem prover 
Coq [BBC+99] are used as input for the tool and views are created displaying 
the individual elements of the development. The views present the content in 
a way that resembles informal mathematics. The reader can interact with the 
views for example by changing the level of detail of the displayed proofs. The 
views can access the formal mathematical content so that in principle it can be 
exported to computational engines and be verified or manipulated. 

Since the tool is still work in progress, what is described here is the core func
tionality needed for the presentation. Some elementary activities for changing 
the presentation are possible but the tool is not an editor for mathematical con
tent yet. The implementation language is Java [GJS96], which makes it easy to 
create graphical user interfaces and to reuse the code in other systems. 

The next section introduces some of the main ideas behind theorem proving 
systems based on type theory. We elaborate on the differences between the three 
mathematical languages used in type theoretical theorem proving: The tactics 
language used to communicate with such systems, the language of formal objects 
used inside the theorem prover engine, and the informal natural language used 
by mathematicians. Section 3 presents a high level overview of the architecture 
of the tool we are building. Sections 4, 5, and 6 provide more details on the 
design and implementation of the tool. Section 7 sums up the main results and 
draws some conclusions from them. 

2 Type Theoretic Theorem Proving 

This section describes theorem proving based on type theory. It introduces some 
of the basic concepts and gives examples. All examples in this section are in 
Coq notation. 

An important idea connected to type theoretical theorem proving is the 
notion of context. A context is a list of items that are either assumptions or 
definitions. An assumption introduces a name N and states a type T for the 
new symbol. It is of the form: 

N:T 

A definition also states a defining lambda term T for the symbol. It is of the 
form: 

N=T:T 

Here is an example of a context that assumes a set A and a binary relation R 
on A, defines the notions of reflexivity, symmetry and transitivity, and assumes 
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that R is transitive. The example is in Coq notations, which denotes lambda
abstracted variables between square brackets and Pi-abstracted variables (a Pi
abstraction is a generalized Cartesian product) between parentheses. 

A: Set 
R: A->A->Prop 
isReflexive = 

[T:A->A->Prop] (x:A)(T x x): 
(A->A->Prop)->Prop 

isSymmetric = 
[T:A->A->Prop] (x,y:A)(T x y)->(T y x): 
(A->A->Prop)->Prop 

isTransitive = 
[T:A->A->Prop] (x,y,z:A)(T x y)->(T y z)->(T x z): 
(A->A->Prop)->Prop 

R_trans: 
(isTransitive R) 

SO, a context consists of a list of names with a type and optionally a defining 
term of that type. The fact that a term is typeable means that it is meaningful 
in a mathematical sense. 

The items in the context represent the usual elements one finds in a mathe
matical document, i.e. assumptions, definitions, axioms, theorems, and proofs. 
Theorems and their proofs are encoded as definitions, where the term repre
sents the proof and its type the statement of the theorem. The underlying 
principle is called the Curry-Howard-DeBruijn correspondence of propositions 
as types [How80j. Lambda terms representing proofs are called proof-objects. 
As an extension to the context from the above example, consider the definition 
of Leibniz' equality, and theorems with proof-objects that prove the relation 
reflexive, symmetric, and transitive. Readers unfamiliar with typed lambda cal
culus should not try to decode the proof-objects. Instead, note that theorems 
are treated exactly like definitions. 

leibniz = 
[x,y:A](P:(A->Prop))(P x)->(P y) 
: A->A->Prop 

leibniz_refl = 
[x:A; P:(A->Prop); H:(P x)]H 
: (isReflexive leibniz) 

leibniz_sym = 
[x,y:A; H:((P:(A->Prop))(P x)->(P y)); P:(A->Prop)] 

(H [z:A] (P z)->(P x) [H2: (P x)]H2) 
: (isSymmetric leibniz) 

leibniz_trans = 
[x,y,z:A; H:((P:(A->Prop))(P x)->(p y)); 

HO:((P:(A->Prop))(P y)->(P z)); 
P:(A->Prop); H1:(P x)] 
(HO [a:A](P a) (H [a:A](P a) H1)) 

(isTransitive leibniz) 

The fact that mathematical objects and propositions about those objects 
can be dealt with in a similar way, makes theorem proving based on type theory 
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so attractive. The kernel of the theorem prover engine can remain small, since 
all that needs to be done is type checking within a relatively small formal typing 
system. A small kernel means that it is trustworthy. That is, if one does not 
trust the results a type theoretical theorem prover produces, one can easily im
plement an independent type checker to check the proof-objects. This principle 
is called the DeBruijn criterion in [BB97]. 

The drawback of the DeBruijn criterion is that proof-objects tend to be 
very large and are hence difficult to read and construct. Proof-objects can be 
translated to natural language to make them more readable [CKT95]. To assist 
the human mathematician in constructing proof-objects, a language of tactics 
is used. Instead of requiring that the user inputs concrete lambda terms, the 
theorem prover builds the proof-objects according to high level tactics scripts 
given by the user. 

The tactics language constructs are inspired by informal top-down math
ematical proofs. For example, look at the following script which generates a 
proof-object for the statement that Leibniz-equality is transitive: 

Lemma leibniz_trans: (isTransitive leibniz). 
Proof. 

Unfold isTransitive leibniz. 
Intros x y z H HO. 
Apply HO. 
Apply H. 
Assumption. 

Qed. 

In fact, most users of type theoretical theorem provers consider tactics scripts, 
instead of proof-objects, to be the real proofs. 

There are some disadvantages to using tactics scripts to represent proofs. 
One drawback of is that tactics scripts represents only the user's half of a dialog. 
Starting with the theorem to be proved as initial goal, the user guides the system, 
replacing the current goal by new goals, until it can be reduced to some known 
tautology or assumption. The output of the system during such an interactive 
session is not recorded in the script. 

Another, related, drawback of tactics scripts is that it is hard to reconstruct 
intermediate goals. A normal top-down proof provides the reader with hints 
about what is the current statement that is proved. This can be compared to 
the notation used to report on chess games. All moves are stated, but from 
time to time also a diagram is printed to indicate the current state of the board. 
The diagram is helpful for the reader but is not necessary to reconstruct the 
game. Both tactics scripts and proof-objects lack intermediate goals. However, 
it is fairly easy to retrieve from a proof-object the intermediate goals, all that 
is needed is the type checking kernel of the theorem prover which is relatively 
small by the DeBruijn criterion. Reconstructing the intermediate goals from a 
tactics script is much harder, access to the complete theorem prover is needed. 

This is why the tool described in this paper will represent proofs with proof
objects and not tactics scripts. However, the other option is also possible, see 
[HMBC99]. 
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3 Overview of the System 

This section gives a high level overview of the the Coq Viewer presentation tool. 
Figure 1 shows the architecture of the system. A Coq context is parsed, which 

Author 

Cog 

Parse Generate (statements) 
e-:==--I 

( MetaTexts ) 

Annotate 
types 

Generate 

OMDOC 

Figure 1: Architecture of the system. 

Reader 

Browse 

results in an instance of the Coq Tree data-type. This data-type is described in 
detail in Section 4. Next, the tree is annotated with type information using 
the algorithm in Section 5.8. Type inference requires many more operations on 
Coq Tree. These operations are described in Section 5. Each node in the tree is 
annotated with the type of the term beneath that node. This type information 
is used by the views which present the CoqTree to the end user. Some of the 
views try to verbalize statements and proofs in the context. This is done by 
first translating the CoqTree versions of the proof-object to instances of the 
MetaText data-type. A MetaText consists of Statements. This data-type is 
described in Section 6.2. The verbalization to natural language is defined on 
this intermediate level so that the methods can be reused in multiple views. 
Currently there are two views available. The TreeView, see Figure 2, is the 
most basic view and shows the structure of the individual lambda terms. The 
NLView, see Figure 3, renders proofs as Fitch style natural language proofs. In 
this view assumptions are indicated by displaying them inside flags with the flag 
pole showing the scope of the assumption. Another possibility for displaying 
the content is exporting it to an OMDOC document [Koh99]' which can then 
be viewed in an appropriate browser. More details on the views can be found 
in Section 6. 

The creation and presentation of interactive mathematical documents using 
the CoqViewer, as we envision it, consists of three phases. First, during the 
formalization phase, a formal context is built using Coq. Next, after loading 
this context into the tool, during the authoring phase, the author can add 
presentation information to it. Currently this is done in the TreeView. Finally, 
during the presentation phase, the context is presented to the reader tbrough 
one of the views. The reader can then interact with the document, by browsing 
tbrough it and for example changing the level of detail in some of the proofs. 
H the reader has opened multiple views on the same object, the results from 
interaction are made visible consistently across all views. 
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3.1 Authoring 

During the authoring phase, the formal objects stored in the CoqTree are altered. 
However, the author is not allowed to change the mathematical structure of the 
formal objects, only the way they will be presented to the reader. By authoring 
we mean refining the presentation and not the mathematical content. 

Adaptation of presentation is implemented by extending the Coq Tree data
type with attributes containing presentation information. Currently only the 
TreeView can be used to add presentation information to CoqTree objects. This 
view presents to the author a tree-like representation of the document, compa
rable to the folder tree a file browser provides. Figure 2 presents the TreeView. 
The panel on the left shows the context. The panel on the right shows the con
text item that is selected. This view is described in more detail in Section 6.1. 
In this view, the author is allowed to change the following information in each 

node: 

I Coq Vkwer 
:;jJt n'" ,",": 

"'" R 
DEF ;"Rellex"" 

DEF isSyrrmelric 

DEF ioTransiti"= 

AXM R~tli!lns 

DEF lelbniz 

THM ItIibn,,-reli 

THM Ielbnlz..JrarlS 

, .. D Ielbnlz....SJm 

to II1'II LAMBDA .. 

~-Dx 

'~DA 
, IiSlLAMBOA .. 

0, 
'~'DA 
, III LAMBDA .. 

. 0" 
&1iII (pI P (-:>A Prop)(-,. (CD p x) (0 p y))) 

., I:!I LAMBDA .. 

Dp 
&-liiIpA Prop) 

• 1IiII., 
, IDI@·· 
~DH 

"iii! (LAMBOA it A (." (0 P it) (0 P xl) 

.Ii\il (lAMBDA fi2 (@P xl H2) 

il-li8lI (0 iss~tric lIIibnlz) 

Figure 2: Screenshot of the Tree View. 

• If the node is a variable (variables are the leaf nodes), the author can 
change its name. The variable name will be changed consistently through
out the document. All variables are bound, since the input is a complete 
theory development. 

• Each node which is not a variable can be either collapsed or expanded. 
This will affect the way this node is presented in the views. It depends 
on the view how this is done, but in general collapsed nodes are displayed 
concisely e.g. the translation will not recursively translate the subtrees of 
a collapsed node, expanded nodes are translated verbosely. 

• Nodes representing certain mathematical objects can have a preferred 
view. For example the author might assign the natural language view 
as default view for proof-objects. 
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More attributes might be added in the future. Perhaps even an extension mech
anism so the author can add annotations to suit new view specific properties of 
nodes. 

One might envision an editing environment based on the natural language 
view described in the next subsection. Currently the TreeView is the only view 
which allows this kind of authoring. 

3.2 Presentation 

The reader is not allowed to change any attribute, formal or presentation, of 
the CoqTree objects in the context. Figure 3 presents the NLView. This view 
presents proof-objects as Fitch style natural language proofs. The panel on the 
left shows the context. The panel on the right shows the context item that 
is selected. This view is described in more detail in Section 6.2. Statements 

Cnq Vi.lw~r ,,, 
~ )'" " v: 

PRM A heorem (lelbnlz_liIym): 
,~. 

DEF isReflexi\oe (i.Symmetnc lelblllZ) 

DfF ~Syrnnetrlc p,.." 
OEF isTranslliw 

AXM R_IIlIIlS Consider arbitrary x • y in A I 
DEF lelbnll. 

Assume (leibniz I<Y) (H) I THM ls,bniz;_",11 

THM lIIibniz._I""n9 Lot P bll an elament 01 .-'.->PIop I 
If (P ><) then (f' ><) 

For all P in A->PlOp : If (F xl then (P y) 

Bylaking (z:A]({? zl->(P l'O.)) lorF we gel II ([z:A]((F z)->(P x)) x) then ([:.::AX( 

We deduce If (P y) then (P xl 

We have proved (leibruzyx) 

We haw prowd If (leibniz :r:.y) then (leibmzyx) 

We haY!! proved (isS:o,.1Ult!Clric ~ibniz) since,.. y were arbitrary 

Figure 3: Screenshot of the Natural Language View. 

are presented in natural language, and the reader can change the level of detail 
of certain parts of the proof text. The data-structure allowing this form of 
interaction is described in Section 6.2. It uses the type inference algorithm 
defined in Section 5.S. 

The views on mathematical content that the tool generates can also be ex
ported as an OMDOC document and then presented to the reader using an 
OMDOC browser. For more details, see Section 6. 

4 Terms 

This section describes the data-type CoqTree and its implementation in Java. 
All Coq terms are encoded as Coq Tree nodes. The parser generates a Coq Tree 
containing as root a context node. 
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On the first level under the context node are the context item nodes. There 
are two possibilities for a context item node: An assumption node or a definition 
node. Both of these are described in Section 4.1. A special kind of definition 
node is the inductive definition node, which is described in Section 4.4. The 
context item nodes have CoqTree terms as subtrees describing mathematical 
objects, statements about mathematical objects, or proofs of those statements. 

Although, by the DeBruijn criterion, the set of nodes for terms can be limited 
to basic lambda calculus, the parser recognizes primitive nodes for many more 
notions, such as the logical connectives and the natural numbers. All of these 
notions can be defined in terms of lambda calculus, and this is how they are 
implemented in Coq. However, from a presentation point of view J since we want 
a presentation close to informal mathematics, it is a good idea to treat them as 
primitives. 

A CoqTree consists of nodes connected by pointers. There are a number 
of different kinds of pointers. The foremost one, subtree, connects a parent 
node to the root nodes of its subtrees. Then there are the bindvar and bindsym 
pointers, which are used to indicate formal binding of variables. Furthermore, 
some temporary pointers copylink, alphalink, and typelink are needed during some 
of the operations described in Section 5. 

Since the tool is implemented in the object oriented language Java, there 
are two distinct options for the representation of trees. The first option, in true 
object oriented style, is to define an abstract class Coq Tree and define subclasses 
for every different kind of node. These classes are then organized in a hierarchy 
based on the inheritance relation, such that operations on similar nodes need 
only be specified once. For example, lambda- and Pi-nodes are both abstraction 
nodes and behave the same with respect to alpha-conversion, substitution, etc. 
The drawback of this option is that methods to manipulate the terms, such 
as the operations described in Section 5, are scattered throughout the different 
classes. 

The second option, which is actually implemented, is to have one class for 
CoqTree of trees which has a field treekind indicating what kind of tree is rep
resented. Most of the algorithms from Section 5 can now be specified using 
case distinction on this field. This style of coding is closer to the functional 
programming style. 

4.1 Context and Context Item Nodes 

What the parser gets from Coq is a context with definitions, assumption, and 
theorems with proofs. One context node is created, which has as subtrees all 
definition and assumption nodes. In Figure 4 a context node with three context 
items is shown. The nodes labeled BV are abstraction variables which are 
discussed in Section 4.3. 

A definition node has three subtrees. The first one is its name (the definien
dum). The second subtree is the actual value of the definition (the definiens). 
And the third subtree is is its type. Assumption nodes are just like definition 
nodes except they do not have a definiens subtree. They only declare a name 
with a type. Inductive definition nodes are described in Section 4.4. 

Once a definition or an assumption has been declared, its name may be 
used in the rest of the context. These names are treated like variables, and 
therefore the definition and assumption nodes are in fact abstraction nodes, see 
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Figure 4: A context with two assumptions and a definition. 

Section 4.3. A definition node differs from ordinary abstraction nodes, such as 
lambda nodes, in that the scope of the bound name is not a subtree of the node, 
but all sibling trees in the context to the right. 

4.2 Basic Nodes 

The simplest of all nodes is the variable node. It has no subtrees. Variable nodes 
do not have a name. Since all variables are bound the name can be stored in the 
formal abstraction variable node, see Section 4.3. The only relevant attribute 
of a variable is a bindva, pointer to this formal abstraction variable node. 

Other basic nodes correspond to connectives like negation, conjunction, and 
application etc. These do have subtrees, but they introduce no other structure, 

Figure 5: Variable, negation, conjunction, and application. 

see Figure 5. 

4.3 Abstraction Nodes 

An abstraction node is used to introduce a formal name that binds occurrences 
of this name in the subtrees of the node. Usually there is only one subtree of 
an abstraction node where bound variable can occur called the body, but there 
are exceptions. The variable nodes occurring in the body in the tree need to 
be able to indicate that they are bound by this node. For example in the body 
(the third subtree) of the lambda abstraction node in Figure 6 a variable node 
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marked with v is bound by the lambda node. The binding is implemented using 
a bindvar pointer. 

, 
L _________ ...l 

Figure 6: An abstraction node. 

To be more accurate, the variable occurring in the body of the lambda term is 
bound by the formal abstraction variable, indicated by BV. It was decided to not 
bind variables to the abstraction node itself because we will encounter examples 
of abstraction nodes where multiple variables are bound at once. This decision 
forces us to add yet another link: The bindsym pointer provides a reference 
from the abstraction variable to the abstraction node. Certain operations on 
the tree use this bindsym reference to make decisions depending on the kind of 
abstraction used for some variable. 

The second subtree contains the type of the abstraction variable and is called 
the domain. 

Examples of abstraction nodes are lambda and Pi-nodes, but also defini
tion and inductive definition nodes and the match nodes occurring in the cases 
construct. 

4.4 Inductive Definition Nodes 

Inductively defined sets are often used in mathematics. For example the set of 
natural numbers can be defined as the smallest set which contains 0 and which 
is closed under the successor operation S. In Coq this type is introduced with: 

Inductive nat: Set := 0: nat I S: nat-)nat 

Although all inductive definitions can be encoded in the calculus of Coq as sec
ond order types, inductive definitions were explicitly added to the calculus both 
for convenience and for efficiency reasons. The extension is done by introduc
ing a new sort of definition called inductive definition. Both inductive sets and 
inductive propositions may be defined. 

An inductive definition introduces a new name and states a type for the 
object it defines. It also introduces a number of constructors. Each constructor 
introduces a new name with a type. The type of a constructor may contain 
a reference to the type we are defining. There are some restrictions on the 
position where this name may occur, ensuring that the type defined is well
founded. A description of these restrictions is beyond the scope of this report, 
see for example [Gim94J, and the CoqViewer does not check them since the 
context will be fully checked by Coq. 
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L ___________________ ~ 

Figure 7: An inductive definition node with two constructors. 

4.5 Cases and Match Nodes 

The cases construct was added to the language to allow case distinction on val
ues of inductive type. Every concrete object of an inductive type is constructed 
by repeated application of the type's constructors. Cases can be used to deter
mine which constructor was applied last. See Section 4.6 for some examples of 
expressions involving cases. 

Figure 8: A cases node with two match nodes. 

A cases node, Figure 8, has as subtree the term on which the case distinction 
is applied and the type of the expression itself. In addition there are several 
match nodes, marked with ~. 

Each match node, Figure 9, contains a pattern in the left subtree and a 
body in the right subtree. During reduction, the term on which case distinction 
is applied is compared to each of the patterns using the matching algorithm 
described in Section 5.6. The matching algorithm returns a substitution for 
variables occurring in the corresponding body. The result of the reduction is 
this body after applying the substitution. 
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Figure 9: A match node with a pattern and a body. 

4.6 Fixpoint Nodes 

Fixpoints are used to define recursive functions. In Coq a recursive function 
may only be specified over inductively defined types. A fixpoint introduces a 
temporary name, the jixpoint variable, which may be used again in the body of 
the fixpoint construct. 

0----~ 

, 
, L ______________ ..J 
L ________________________ ~ 

Figure 10: A fixpoint node with one recursion parameter. 

A general recursion scheme like this would allow non-terminating functions) 
therefore some restriction is necessary. In Coq this is solved by demanding that 
a recursion parameter is mentioned explicitly. This is a variable whose value 
gets structurally smaller with every recursive application of the function. Early 
versions of Coq used a positive integer to indicate which variable plays the role 
of recursion parameter. For example the definition of the addition function 
would be printed as: 

plus = fix f/i: nat->nat->nat := 
{ [n,m:nat] 

<nat>Cases n of 
o => m 

I (8 k) => (f k m) 
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end 
} 

The number 1 indicates that the first lambda abstracted variable in the body, n, 
is the recursion variable. This is (roughly) the same notation used in [Gim94]. 
In newer versions of Coq a slightly friendlier but equally powerful notation is 
used: 

plus fix f [n:nat): nat->nat := 
{ [m:nat) 

} 

<nat>Cases n of 
o => m 

I (5 k) => (f k m) 

end 

The name of the recursion parameter n is mentioned explicitly in the type of the 
fixpoint variable. The square brackets in the type act as a lambda abstraction. 
If the recursion parameter is not the first variable, more variables need to be 
abstracted in this way. 

The combination of fix and cases allows the Coq user to specify recursive 
functions using an intuitive looking syntax. The recursion check (to ensure 
recursive calls are applied to a smaller term than the value of the recursion 
parameter) and the positive occurrence check (on the definition of the inductive 
type) ensure that we get a terminating function. 

5 Operations 

Several operations can be defined on the CoqTree data-type. Ultimately what is 
needed for the NLView, described in Section 6.2, is a type inference algorithm. 
Type inference requires operations such as reduction and copying of terms. Be
cause of the representation of the terms described in Section 4 these operations 
may not be very standard anymore. This section describes some of the problems 
encountered in implementing them. 

5.1 Copy 

For various purposes, for example type inference, it is useful to be able to make 
a copy of a term. The obvious way to copy a tree is to go top·down from the 
root to the leafs, copying all information in this node to a newly created one, 
and applying the copy method recursively to all subtrees. A problem arises here 
because we do not want to copy the binding links of bound variables literally, 
as this would bind the variables to abstraction nodes in the source tree. We 
would rather bind those variables to the copy of this abstraction node in the 
destination tree. 

The solution is easy. While copying top-down, temporary copy links are 
made, connecting abstraction nodes, marked with BV in Figure 11, in the source 
tree to the corresponding abstraction nodes in the target tree. When a variable 
is encountered the copylink of the abstraction node in the source tree now points 
to the new abstraction node in the target tree. 
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copylink 
~-7~-----,L\----~~----~BV 

L ___________ ...J 

Figure 11: The copy method in action. 

5.2 Syntactical Equivalence 

, , 
? 

To test for syntactical equivalence of terms, the trees in question should be 
isomorphic. This operation suffers from the same problem as the copy operation. 
To determine if two variables have the same abstraction node, it is not enough 
to compare the binding links. If the pointers are exactly the same, then the 
variables are alpha equivalent, but the two variables are also alpha equivalent 
if they have alpha equivalent abstraction variables. 

alphalink 

, , 
L ___________ ..J L ___________ J 

Figure 12: Testing for syntactical equivalence. 

The solution is similar to the one used in the copy situation: we introduce 
temporary alpha links, connecting abstraction nodes, marked by BV in Fig
ure 12, in the first tree to abstraction nodes in the second tree. Now we can 
compare the abstraction node of a variable in the second tree with the alpha link 
of the abstraction node of a variable in the first tree. 

5.3 Currying 

The application in lambda calculus takes two arguments: a function and its 
argument. Functions of higher arity are specified through currying, i.e. define 
the function in such a way that the result after one application is again a function 
which can be applied to another argument. For some of the operations described 
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Figure 13: Currying of applications aod abstractions. 

in this section it is useful to be able to detect whether such a curried function 
is used, especially since most of the operations in this section traverse the tree 
recursively and can only see the kind of tree for the current node. We have 
operations that detect application spines such as in Figure 13 and yield pointers 
to the function and its arguments. This is for instance used in the reduction 
method to collect all the recursion parameters of a fix application. 

A related problem is detecting repeated lambda and Pi abstractions. We also 
have operations for this. These are primarily used for presentation purposes such 
as pretty-printing of expressions in the views described in Section 6. 

5.4 Substitution 

Since bound variables cannot be identified by their name (remember that the 
name of a variable is stored in the abstraction variable which binds the variable) 
we use a pointer to their binding abstraction variable to identify them. This 
node is passed to the substitution method as a parameter. 

The substitution method just traverses the tree top-down from root to leafs, 
replacing every variable bound to this parameter by a copy of the tree we want 
to substitute in place for it. This is done by the copy method. 

5.5 Reduction 

The reduction method reduces the term either to normal form or to weak head 
normal form. This method traverses the term leftmost outermost, reducing 
reducible expressions, or redexes. It considers three different kind of redexes: !3, 
cases, and fix. Furthermore, if a variable node is encountered which is bound 
by a definition node, a so-called J-redex, it is replaced by the corresponding 
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definition. 

((3) 

(cases) 

(fix) 

(Ax: A.B)C 

cases (constr.4) of 
P, =} B, 

(fixJxT B) (constrA) 

-+ B[x:= C) 

-+ B i [,,) 

-+ B(f:= (fixJxTB)](constrA) 

In the cases case, " is the substitution produced by the match method and Pi 
is the pattern which matches with (constrA), see Section 5.6. In the fix case, J 
is the fixpoint variable and x is the recursion variable. 

Weak head reduction only reduces the top level redex and does not continue 
to reduce the subterms. This is preferable if only the root symbol of a a term is 
needed. Weak head reduction is also useful in the natural language generation 
algorithms in Section 6.2. By only reducing a statement to weak head normal 
form, it remains as abstract as possible. 

5.6 Matching 

The matching method is only used in the cases construct to match terms against 
patterns that occur in the left hand side of the =} nodes. It takes as input a 
pattern and a tree and returns whether the tree matches the pattern. If they 
match, then a substitution a is returned. 

A pattern is either a new abstraction variable or a constructor (previously 
defined in an inductive type) or an application of patterns. Of course only well
typed patterns are allowed. Here P=M means the term M matches with the 
pattern P. The arrow on the left indicates that the rules should be tried from 
top to bottom, and the first rule that fits is used. 

j 
(constr C1) 

(bvar x) 
T, 

(constrc,) 
~ T 

5.7 Type Inference 

if Cl and C2 are the same 
for all trees T,":=" U {x r+ T} 
if root symbols are equal 
and all subtrees match 

Most typing algorithms for systems of typed lambda calculus are presented as 
inference rules, see for instance [Bar92]. The concept of local context plays an 
important role in this style of of presentation. Local contexts are used to keep 
track of free variables and their types. When the typing algorithm encounters 
an abstractor such as a lambda, it stores the variable with its type in the context 
and continues with the body of the term. 

In our system, however J all variables are bound through binding links to 
abstraction variables in the global context. Our typing algorithm does not make 
use of local contexts. Whenever the algorithm encounters a variable, it retrieves 
its type by following the binding link to the abstraction node and copying the 
associated type. 
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The type of a term is built recursively. Based on the symbol of the current 
node, new nodes are created and the method continues recursively with the 
subtrees. 

type(Prop) = Type type(Set) 
type( AX : A.B) 

type(FM) 
= (IIx: A.type(B)) 

type(var x) 

type( A ---+ B) 
type(IIx : A.B) 

type(ind x T 0) 
type(fix f x T B) 

type(A x B) 
type(,A) 

if (type(F) = (IIx : A.B)) 
then B[x := M] 
else failure 
find the abstraction var of x 
and determine its type 
type(B) 
type(B) 
T 
T 
type(A + B) = Set 
type(A II B) = type(A V B) = Prop 

The type inference algorithm makes some assumptions about the term to be 
typed. For example, in the application case it is assumed that M has type A. 
The algorithm can be made more robust, so that it will always yield failure for 
terms that are not typeable. As the terms are part of a context that is checked 
by Coq it can safely be assumed that the terms are typeable. 

During type inference, some copying of subtrees is required. For example 
when typing a tree with a lambda as root symbol, a new Pi-node is created 
which also abstracts a variable. The domain of this new binding variable is an 
exact copy of the domain of the binding variable of the lambda-node. A problem 
that arises is that the domain tree to be copied might contain variables with 
binding links which point to places outside of the destination tree. 

typelink 

typelink 

, 
L_~ ____ ...J , 

? 

Figure 14: The type inference method in action. 

For example to infer the type of the double lambda abstraction in Figure 14, 
a double Pi abstraction is created. In the tree on the left, the variable occurring 
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in the domain of the second lambda abstraction is bound by the first lambda 
abstraction. In the tree on the right, the corresponding variable needs to be 
bound by the first Pi abstraction. Therefore, the copy operations has to have 
knowledge about which lambda-nodes in the source tree correspond to which 
Pi-nodes in the destination tree. 

To solve this problem, we introduce type links which connect the binding 
variables in the term to binding variables in the type. The copy algorithm uses 
these type links just like it uses copy links. 

5.8 Computing the Expected Type 

The above type inference algorithm derives a type for a term based on the 
derived types of its subterms. A type for a term is derived top-down. 

Types for terms are not unique. A term can be assigned different types, 
although they will always be equivalent with respect to the reduction relation 
described in Section 5.5. Especially J-redexes, i.e. definitions, can be used to 
make types look more abstract. For example the proof-object proving reflexivity 
of Leibniz' equality has derived type: 

(x:A; P:A->Prop; H:(P x))(P x) 

but the same term can also be assigned the more descriptive type: 

(isReflexive leibniz) 

In order to ensure the most abstract type for the subterms of a proof-object, the 
above algorithm is augmented to compute both a derived type and an expected 
type, similar to the algorithm described in [Cos96]. It takes as input a term and 
an expected type for this term, and annotates the term and all of its subterms 
with expected type information. At the same time the node is also annotated 
with it's derived type. 

exptype(>'x: A.M,T) = Annotate current term with To 

Reduce T to WHNF: T = (Ux: A.B). 
Call exptype(M, B). 

exptype(FM,T) Annotate current term with T. 
Let Tp = type(F), TM = type(M). 
Reduce Tp to WHNF: Tp = (Ux: A.B). 
Call exptype( F, Tp). 

Call exptype(M, TM). 

exptype(var x, T) Annotate current term with T. 

After parsing, each subtree of the context tree is annotated with derived and 
expected type attributes. The expected type of a subterm is computed from 
the expected type of the parent node. This means that the algorithms needs to 
be initialized with an expected type of the context item. Fortunately, since all 
definitions and proofs occur in the context with a preferred type, such an initial 
expected type is always available. 

6 Views 

This section describes the view mechanism. The idea is to have multiple views 
which present the underlying formal structure consistently. For example, when 
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Figure 15: A Meta Text. 

a user changes the preferred level of detail at which a CoqTree object is viewed, 
this information is stored in the CoqTree itself and distributed to all views. 
Currently only two different views are available, the TreeView and the NLView. 
The context can also be exported as an OMDOC XML document, so that it 
can be viewed in a standard browser. 

6.1 Tree View 

The most basic view is called TreeView and just presents the context as a large 
tree, showing the nodes described in Section 4. Each node can be either collapsed 
or expanded. If a node is collapsed, the type of the tree starting beneath that 
node is displayed. If a node is expanded, the complete tree is displayed. See 
Figure 2 for a screenshot of this view. As described in Section 3, this view allows 
some simple editing of the presentation information. 

6.2 Natural Language View 

The natural language view NLView is based on the standard translation algo
rithm presented in e.g. [CKT95] and [Cos96]. However, instead of generating 
flat text, objects of a new class called Meta Text are generated, see Figure 15. 
The MetaText data-structure is intended to facilitate both the accessibility of 
the underlying formal proof-object, as well as the folding and unfolding mech
anism of proofs in the natural language view. Moreover, assumptions and their 
scope can be marked which makes Fitch style presentation of proofs possible, 
see [Zwa98]. See Figure 3 for a screenshot of this view. 

A MetaText contains a number of MathStatements which either consist of 
Objects or contain a recursive MetaText. Recursive MetaText statements also 
contain a conclusion statement. An Object is either some concrete text string 
or it is a pointer to a CoqTree representing a mathematical object term. 

A CoqTree object is translated to a MetaText using the algorithm below. 
Here [M1 on the left hand side means "M is of type r" and iiiiiI (M) on the 
right hand side means "create a recursive MetaText containing M here". The 
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conclusion of such an embedded Meta Text is the type of M. 

lli1 >-+ { 0 "By" h "we have" T 

{ Iiiil II M l(vx.AB)[R1l 
(M) 

>-+ 0 "By taking" N "for" x "we get" 'T 

{ 
Iiiil (N) 

I lm(A-;B)0A l >-+ iil (M) 
0 "We deduce" T 

{ 0 "Assume" A (h) 

I Ah: ffirop·lmB l >-+ Iiiil (M) 
0 "We have proved" T 

1 
0 "Consider an arbitrari' x "E" A 

I AX : met·lms l Iiiil (M) >-+ 0 "We have proved" T "since" x 
"is arbitrary" 

As can be seen from the many boxes on the left-hand side, unless every subterm 
is annotated with type information, a typing algorithm is necessary for this 
translation. The types T used in the above algorithm are the expected types of 
the terms involved. This means that the translation is as abstract as possible: 
Definitions are only unfolded when necessary. The initial expected type is the 
type of the proof-object as it occurs in the context. 

The above algorithm only specifies the translation for the basic calculus. 
Inhabitants of inductively defined theorems are translated as follows: 

0 "We reason by cases on" M 

<7> casesM of 0 "In case" M = PI ", then" 

PI '* Bl Iiiil (Bd 

Pn '* Bn 0 "In case" M = Pn ", then" 
end IiiiiiI (Bn) 

0 "In any case, we have" T 

Some constructions involving defined constants such as elimination of con
junction, disjunction, equality, and natural numbers (induction) require alter
native translations. Although these constants have a definition in Coq, we treat 
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them as primitives for the purpose of this translation. 

{ 
IBiI (a) 

I (andjnd AB pITlA-+B-+P 0AAB) l >-+ Iii! (f) 
D "So we have" T 

1 
IBiI (h) 
Iii! (q) 

I (eqjndAX PlliJ(PX) Y@1=y) l >-+ D "So, by replacing" X 
"with" Y "in" h 
"we get" T 

6.3 Generating OMDOC Documents 

OMDOC [Koh99] stands for OpenMath Document. It is an extension of the 
OpenMath [Ope99] language. OpenMath is intended as a communication medium 
between symbolic computation engines. Objects encoded in OpenMath can be 
shared by different systems. OMDOC enables the communication of complete 
contexts by providing constructs for assumptions, definitions, theorems and 
proofs. This makes it an excellent choice as a vehicle for type theoretical con
texts. 

A first prerequisite for converting CoqTree contexts to OMDOC documents 
is an OpenMath encoder which translates CoqTree object terms to OpenMath 
objects. In OpenMath terminology such an encoder consists of a content dic
tionary and a phrasebook. A content dictionary for Coq is defined in [CC99]. 

Using the translation for objects, it is easy to define the translation for 
contexts. The context items in an OMDOC document consist of a formal and 
an informal description of the object that is defined or assumed. For the formal 
description the OpenMath equivalent ofthe formal (proof-)object is taken. The 
informal description is generated by first verbalizing the object as a MetaText 
and then replacing the formal parts of the text by OpenMath objects. 

The OMDOC document can be exported in XML format. Consider for 
example a step from the proof of reflexivity of Leibniz' equality. 

<derive id="leibniz_refl-prf.2p.2p.2p.l l1 > 
<CMP> 

By 
<OMOBJ> 

<OMV name="H"/> 
</OMOBJ> 
we have 
<OMOBJ> 

<OMA> 
<OMV name="P"/> 
<OMV name="x ll /> 

</OMA> 
</OMOBJ> 

</CMP> 
</derive> 
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This step contains a commented mathematical property, between CMP tags, 
which consists of natural language text with embedded OpenMath objects. 

The generated XML can be transformed into for example HTML using an 
appropriate XSL style-sheet. The OMDOC view is not really a view in the 
sense described above. Since the presentation of the generated XML is done 
in a different tool, there is no direct connection back to the Coq Tree structure 
a document was generated from. However, all the formal MathObjects which 
occur in a MetaText are translated to OpenMath objects. This means that the 
formal content is still present in the OMDOC document. 

The use of standard export formats for mathematics like OpenMath and 
OMDOC potentially allows communication of objects to symbolic computation 
engines such as theorem provers and computer algebra systems. This may lead 
to true interactive mathematical documents in the sense of [COOOb, COOOa], 
and is object of future work. 

7 Conclusions 

We described the requirements and implementation of a prototype tool, called 
Coq Viewer. The tool can be used for authoring and presenting mathemati
cal content based on type theory. The Coq system is used to create an initial 
mathematical theory. Using the tool, an author can enhance the definitions and 
proof-objects that form a formally derived mathematical context with presen
tation information. 

The tool can then display the content in several views allowing for interac
tivity by presenting the formal content on different levels of detail. The formal 
content does not change as a result of these interactions. One example of a view 
is the natural language view. Although the reasoning displayed in this view 
resembles informal mathematics, the underlying formal objects remain accessi
ble. This means that they can still be communicated to symbolic computation 
engines. 

The lambda terms representing the mathematical content are implemented 
inside the tool as pointer trees. References are used to indicate bound variables. 
This causes some non-trivialities in implementing the usual algorithms such as 
copying, checking syntactical equivalence and type inference. 

Type inference is needed in order to implement the natural language view. 
Because it can be assumed that the input to the tool is a checked mathemat
ical context, some side conditions are not checked during reduction and type 
inference. 

The OpenMath language and its extension OMDOC may be used to connect 
this tool to other similar tools and makes viewing of the content in standard 
browsers possible. This is the subject of future work. 
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