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Abstract

In this paper we search for controllers which minimize an entropy function of the closed
loop transfer matrix under the constraint of internal stability and under the constraint
that the closed loop transfer matrix has Hoo norm less than some a priori given bound /.
We find an explicit expression for the infimum. Moreover, we give a charaterization when
the infimum is attained (contrary to the regular case, for the singular minimum entropy
Hoo control problem the infimum is not always attained).

Keywords H oo control, algebraic lliccati equation, quadratic matrix inequality, minimum
entropy.

1 Introduction

The H oo control problem has been investigated extensively in the last decade. Via several
techniques a complete solution is now available (see e.g. [3,4,8, 9]). However, most of these
results were derived under two kinds of essential assumptions:

• Two subsystems do not have invariant zeros on the imaginary axis .

• Two direct feed through matrices are injective and surjective respectively.

These assumptions were removed in [14, 15, 17, 18].
The minimum entropy H oo control problem is defined as the problem of minimizing an entropy
function under the constraint of internal stability of the closed loop system and under the
constraint of an upper bound 1 on the H oo norm of the closed loop transfer matrix. Under
the standard assumptions mentioned above, this problem was solved in [10]. It was shown
that there always exists a minimizing controller which is often called the "central controller".
The latter is due to the fact that the parametrization (given in [3]) of all internally stabilizing
controllers which yield a closed loop system with Hoo norm less than I' is centered around
this specific controller.
It should be noted that the interest in minimizing this entropy function is related to the
fact that the entropy function is an upper bound to the cost function used in the Linear
Quadratic Gaussian control problem. Therefore, it is hoped that by minimizing this entropy
function, one is minimizing the LQG cost criterion at the same time. This has, as far as we
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(2.1)

(2.3)

know, never been proven but this is the reason why the problem we discuss in this paper, is
sometimes referred to as the mixed LQG/Hoc> control problem. The reason for investigating
this mixed problem is the well-known fact that controllers which are optimal for the LQG
control problem are in general not robust, i.e. they are sensitive for perturbations on the
system parameters. By using Hoc> constraints it is hoped that this sensitivity is reduced.
In this paper we extend the results of [10] to so-called singular systems, i.e. systems which do
not necessarily satisfy the above mentioned assumptions on the direct feedthrough matrices.
We still exclude invariant zeros on the imaginary axis. This paper is in essence a combination
of the results in [10, 19]. Note that the singular LQG control problem has been investigated
in [20].

2 Problem formulation and results

Consider the linear time-invariant system:

{

X = Ax + Ew + Bu,

1: : z = Ctx + Dtu,

y = C2x +D 2w,

Here A, B, E, Ct, C2 , D t and D 2 are real matrices of suitable dimension. Let G be a strictly
proper real rational matrix which has no poles on the imaginary axis and which is such that

IIGlloc> := sup IIG(iw)11 < ,.
wE'R.

where II . II denotes the largest singular value. For such a transfer matrix G, we define the
following entropy function:

:l(G,,):= - ~; I: lndet (1 - ;2G"'(iw)G(iW») dw (2.2)

where G"'(s) := GT(-s). The following equality is easily derived using the Lebesgue domi
nated convergence theorem:

:l(G,,):= s~~ - ~;I: In det (1 - ;2 G"'(iw)G(iW») (S2: w2) dw

The latter expression was used in [10]. The minimum entropy Hoc> control problem for given
, is then defined as:

infimize:l(Gel,,) over all controllers which yield a strictly proper, internally stable
closed loop transfer matrix Gel with Hoc> norm strictly less than,.

We will investigate controllers of the form:

1:F: { p = Kp + Ly,
u=Mp+Ny.

It should be noted that the above class of controllers is restrictive since it will be shown that
in general for the singular problem the infimum is attained only by a non-proper controller.
A central role in our study of the above problem will be played by the quadratic matrix
inequality. For any, > 0 and matrix P E nnxn we define the following matrix:
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(2.4)

(2.5)

(

ATp + PA + GiGI + ,-2PEETp PB + GiDI )
F,(P):= .

BT P + DiGI D'fD I

We also define a dual version of this quadratic matrix inequality. For any, > 0 and matrix
Q E nnxn we define the matrix:

(

AQ+QAT+EET+,-2QGiGIQ QGi+EDi)
G,(Q):= .

G2Q + D2ET D2Di
In addition to these two matrices we define two polynomial matrices, whose role is again
completely dual:

L,(P,s):= (sI-A-,-2EETP -B)

M,(Q,s):= ( sI - A -,-2QCiGI )
-C2

(2.6)

(2.7)

We note that L,(P, s) and M,(Q, s) are the controllability and observability pencil respec
tively of related systems. Finally, we define the following two transfer matrices:

CI (s1 - A)-l B +Db

.- C2 (sI - A)-l E +D2 •

(2.8)
(2.9)

In the formulation of our main result we also require the concept of invariant zero of the
system I: = (A,B,C,D). These are all sEC such that

(
sI - A -B) ( s1 - A -B)

rank C D < normrank CD' (2.10)

Here "normran~' denotes the rank of a matrix as a matrix with entries in the field of rational
functions. Moreover let C+ ( Co, C- ) denote all sEC such that Re s > 0 ( Re s = 0, Re
s < 0 ). Finally, let p(M) denotes the spectral radius of the matrix M. We first formulate
the main result from [18]:

Theorem 2.1 : Consider the system {2.1}. Assume that both the system (A, B, CI , D I ) as
well as the system (A, E, C2, D2 ) have no invariant zeros on the imaginary axis. Then the
following two statements are equivalent:

(i) For the system {2.1} there exists a time-invariant, finite-dimensional dynamic compen
sator I:F of the form {2.3} such that the resulting closed loop system, with transfer
matrix Gel, is internally stable and has Roo norm less than" i.e. IIGcdioo <,.

(ii) There exist positive semi-definite solutions P, Q of the quadratic matrix inequalities
F,(P) ~ 0 and G,(Q) ~ 0 satisfying p(PQ) < ,2, such that the following rank condi
tions are satisfied

(a) rank Py(P) = normrank Gci,
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(b) rank G-y(Q) = normrank Gdil

(c) rank ( L-y(P, s) ) = n + normrank Gci
F-y(P)

(d) rank (M-y(Q,s) G-y(Q)) = n +normrank Gdi

v sEeD U C+,

vsEeD uC+. o

It has also been shown in [18] that P and Q satisfying the conditions in part (li) are unique
and can be calculated by solving reduced order Riccati equations. Note that the existence of
such P and Q guarantees that the system ~ is detectable from y and stabilizable by u. To
present our main result we need another definition:

Definition 2.2 : We define the detectable strongly controllable subspace ~(A, B, C, D) as the
smallest subspace T ofnn for which there exists a linear mapping G such that A+GC InnjT
is asymptotically stable and such that the following subspace inclusions are satisfied:

(A+ GC)T C T,

1m (B +GD) C T.

(2.11)

(2.12)

We also define the stabilizable weakly unobservable subspace Vg(A,B,C,D) as the largest
subspace V for which there exists a mapping F such that A +BF IV is asymptotically stable
and such that the following subspace inclusions are satisfied:

(A+BF)V ~ V,

(C +DF)V = {O}.

We can now formulate the main result from this paper:

(2.13)

(2.14)

Theorem 2.3: Consider the system (2.1). Let I > 0 be given. Assume that the systems
(A,B,CI,D l ) and (A,E,C2,D2) have no invariant zeros on the imaginary axis and assume
that there exists a controller which is such that the closed loop system is internally stable
and has Hoo norm strictly less than I' The infimum of (2.2), over all internally stabilizing
controllers of the form (2.3) which are such that the closed system has Hoo norm strictly less
than II is equal to:

where P and Q are such that part (ii) of theorem 2.1 is satisfied. The infimum is attained if
and only if

(i) 1mEQ ~ (I -,-2QP)Vg(~cd+B Ker D l

(ii) KerC1,p 2 (I _,-2QP)-1~(~di)n Ci l 1mD2

(iii) (I -,-2QP)Vg(~ci)2 ~(~di)
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where :Eci = (A + ,-2EETP,B,Cl ,p,Dp) and :Edi = (A + ,-2QC'IC2,EQ ,C2,DQ ). The
matrices Cl,P' D p , E Q , DQ are arbitrary matrices satisfying

(2.15)

o

Remarks:

(i) In the system (2.1) we have two direct feedthrough matrices which are identical to zero.
We can extend the above result to the more general case with all direct feedthrough
matrices possibly unequal to zero by loop-shifting arguments (see [13, 19]). The entropy
function we investigate in this paper behaves neatly under loop-shifting as can be seen
from lemma 3.5.

(ii) It is straightforward to prove that the conditions (i)-(iii) are independent of the par
ticular factorizations chosen in (2.15). It can also be shown that conditions (i)-(iii) are
automatically satisfied if D1 and D2 are injective and surjective respectively.

(iii) We will only prove this result for, = 1. The general result can then easily be derived
by scaling.

3 Properties of the entropy function

In this section we recall some basic properties of the entropy function as defined in (2.2).
These properties were derived in [10] but we give seperate proofs because we only investigate
what is called in [10] "entropy at infinity". This enables us to derive more straightforward
proofs. We first define the property of being inner.

Definition 3.1 : A proper rational transfer matrix G is called inner if G is a stable square
rational matrix such that G'"G = I. A system :E is called inner if the system is internally
stable and its transfer matrix is inner. 0

We can derive the following properties of our entropy function (2.2):

Lemma 3.2: Let G be a strictly proper, stable rational matrix and let, be such that
IIGlloo $ ,. Then we have

• .J(G,,) ~ 0 and .J(G,,) =0 implies G =O.

o
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Proof: Straightforward. •
Next, we relate our entropy function to the LQG cost-criterion. First we define the LQG
cost-criterion:

(3.1)

Definition 3.3 : Let E be given by

E: { dx = Axdt+ Cdw,
z =Cx.

Assume that A is stable. Let w be a standard Wiener process and define the solution to
the first equation (which is a stochastic differential equation) via Wiener integrals. Then the
associated LQG cost is defined as:

C(G):= lim £ {! r ZT(t)z(t)dt} ,
8 .....00 s Jo

where £ denotes the expectation with respect to the noise. o

Using the above definition of the LQG cost we find:

Lemma 3.4: Let E be defined by (3.1). Assume that A is stable and let G be the transfer
matrix from dw to z. For, ~ IIGlloo, the function .J(G,,) is a monotonically decreasing
function of, such that

.J(G"H C(G) as, ~ 00. o

Proof: It is well known that the LQG cost is equal to TraceBTXB where X is the unique
solution of the following Lyapunov equation:

XA+ATX+CTC=O

A proof oflemma 3.4 can then be based upon corollary 3.7, by showing that X ~ X. •

Next, we give two key lemmas. Of the first lemma, the first part stems from [3, 19] while the
second part originates from [10]. We give a seperate proof of the second part.

Lemma 3.5 : Suppose that two systems E and E2 , both described by some state space rep
resentation, are interconnected in the following way:

(3.2)u

z w-
~

I--

Y

~2
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(3.3)

Assume that the system ~ is inner. Moreover, assume that its transfer matrix G has the
following decomposition:

G (:) =: (~:: ~::) (:) = (;)

such that G';l E H00 and such that Gn , G22 are strictly proper. Under the above assumptions
the following two statements are equivalent:

(i) The closed loop system (3.2) is internally stable and its closed loop transfer matrix Gel
has Hoo norm less than l.

(ii) The system ~2 is internally stable and its transfer matrix G2 has Hoo norm less than l.

Moreover, Gel is strictly proper if and only if G2 is strictly proper. Finally, if (i) holds and
G2 is strictly proper then the following relation between the entropy functions for the different
transfer matrices is satisfied:

.l(Ge/, 1) =.l(Gn , 1) + .l(G2 , 1). (3.4)

o

Proof: The first claim that the statements (i) and (ii) are equivalent, has been shown in
[3, 19]. We know that Gll and G22 are strictly proper. Combined with the fact that G is
inner, this implies that G12 and G21 are bicausal. Using this, it is trivially checked that G2

is strictly proper if and only if Gel is strictly proper. Remains to show (3.4). The following
equality is easily derived using the property that ~ is inner:

1- GciGeI = G21 (I - G2G22 )-1 (I - G2G2) (I - G22G2)-1 G21

Therefore, we find that

Moreover, if statement (i) is satisfied and if G2 is strictly proper then we have

.l(Gn ,1)

= - 2
1 JOO In det (I - G2(iw)G2(iw)) clw,
11" -00

= -2
1 JOO Indet(1 _ G11(iw)Gn(iw))clw.
11" -00

(3.6)

(3.7)

"Is E CO UC+

Using the fact that G2 is strictly proper, stable and has H 00 norm strictly less than 1 and the
fact that also G22 is stable, strictly proper and has Hoo norm less than or equal to 1, we know
there exists a constant M such that

M
lIn det (I - G22(S)G2(s)) I < "jSj2

This implies, using Cauchy's theorem, that

7
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Combining (3.5),(3.6),(3.7) and (3.8) we find (3.4). •
The following lemma is an essential tool of actually calculating the entropy function for some
specific system:

Lemma 3.6 : Assume that a rational matrix G is given which has a detectable and stabiliz
able realization (A,B,C,D) with detD = 1. Finally, assume that G,G-I E Hoo and G has
H 00 norm equal to 1. Then we have:

I: In IdetG(iw)1 dw =-1T' Trace BD-1 C (3.9)

o

Proof: Denote the integral in (3.9) by K and define a = - Trace BD-Ie. We have
(remember that In Izi = Re In z):

K = Re (joo IndetG(iw) - -1a. dW) + ajoo 1 dw 2 (3.10)
-00 + tW -00 +w

Next, it is easily checked that p(s) := In det G(s) - 1+8 is an bounded analytic function in C+
such that pes) = 0(1/ s2) (Isl-? 00, Re s ~ 0). Hence using Cauchy's theorem we find

I: p(iw) dw = O. (3.11)

Combining (3.10) and (3.11) yields (3.9). •

Corollary 3.7: Let G be a strictly proper, stable transfer matrix with Hoo norm strictly
less than "/ and with stabilizable and detectable realization (A, B, e, 0). Then we have:

:J(G,,,/) = Trace B TXB

where X is the unique solution of the algebraic Riccati equation:

XA +ATX + ,,/-2XBBTX +eTc = 0

such that A + ,,/-2BBTX is asymptotically stable.

(3.12)

o

Proof: The existence and uniqueness of X is a well-known result (see e.g. [22]). It is easily
checked that the transfer matrix M with realization (A, B, _,,/-2BTX, I) satisfies:

I - ,,/-2G""G = M"" M

Moreover, M,M-I E Hoo , i.e. M is a spectral factor of I - ,,/-2G""G. We have

:J(G,,,/) = _;2 I: In IdetM(iw)1 dw

and therefore (3.12) is a direct consequence of applying lemma 3.6 to the above equation.•
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4 A system transformation

Throughout this section we assume that I = 1 and that there exist matrices P and Q satisfying
the conditions in theorem 2.1 for ,= 1. Note that this is no restriction when proving theorem
2.3. The assumption I = 1 can be easily removed by scaling while the existence of such P
and Q is implied by our assumption that there exists an internally stabilizing controller which
makes the H 00 norm strictly less than 1. We use a technique from [18] of transforming the
system twice such that the problem of minimizing the entropy function for the original system
is equivalent to minimizing the entropy function for the new system we thus obtain. In the
next section we will show that this new system satisfies some desirable properties which
enables us to solve the minimum entropy H 00 control problem for this new system and hence
also for the original system.
We factorize F(P) as in (2.15). This can be done since F(P) ~ O. We define the following
system:

{

xp = Apxp + Ewp + Bup,

~p : Zp = C1.pxp + Dpup,

yp = C 2 •pxp + D 2wp

where A p := (A +EETP) and C2 •P := (C2 +D2 ETP).

(4.1)

Lemma 4.1 : Let ~ and :Ep be defined by (2.1) and (4.1), respectively. For any system :Eu
of suitable dimensions consider the following interconnection:

(4.2)

and decompose the transfer matrix U of:Eu as follows:

U (wu
) =: (Un U12

) (wu) = (zu) ,
Uu U21 U22 UU yu

compatible with the sizes ofUu, W u, yu, and zu. Then the following holds: there exists a system
:Eu of suitable dimensions such that:

(i) The system ~u is inner

(ii) The transfer matrix U:;/ is well-defined and stable

(iii) The transfer matrices Un and U22 are strictly proper

(iv) .J(Un ,l) = TraceETPE
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(v) The system ~ and the interconnection in (../.2) have the same transfer matrix.

(vi) The interconnection in (4.2) is detectable from YP and stabilizable by Up. o

Proof: In [18] a system ~u is constructed which satisfies all of the above conditions. Note
that U21 is a spectral factor for I - Uli Ull which yields (iv) by using the state space realization
for U21 given in [18] and by applying lemma 3.6. •

Remark: A state space realization for a system ~u satisfying the conditions of lemma 4.1
in case D 1 and D 2 are injective and surjective respectively is given by:

{

Xu = !-xu + Ewu + Buu,

~u : Zu = C1 X U + Uu,

Yu = -ETPxu + wu.

Combining lemmas 3.5 and 4.1, we find the following theorem:

Theorem 4.2 : Let the systems (2.1) and (4.1) be given. Moreover, let a compensator ~F
of the form (2.3) be given. The following two conditions are equivalent:

• ~F is internally stabilizing for ~ such that the closed loop transfer matrix Gel is strictly
proper and has Roo norm strictly less than 1.

• ~F is internally stabilizing for E p such that the closed loop transfer matrix Gel,P is
strictly proper and has Roo norm strictly less than 1.

Moreover, if ~F satisfies the above conditions then we have

j(Gel, 1) = j(Gel,P, 1) + Trace E T PE, o

'V s E Co U C+,

Next, we make another transformation from ~p to ~P.Q' This transformation is exactly dual
to the transformation from ~ to ~p, We know there exists a controller which is internally
stabilizing for ~p which makes the Roo norm of the closed loop system strictly less than 1.
Therefore if we apply theorem 2.1 to ~p we find that that there exists a unique matrix Y
such that G(Y) ~ 0 and

(i) rank G(Y) = rankn(s)Gdi'

(ii) rank (M(Y,s) G(Y)) =n+rankn(s)Gdi'

10



where

(4.3)

YC;,p + EDI ) ,

D 2DI
._

(

ApY +Y A~ +EET +YC~pCl,pY
G(Y)

C 2 ,pY +D 2ET

M(Y,s) ._ (SI - A p - YCi,PC1,P ) ,
-C2 ,p

Gdi(S) .- C2 ,p (sl - Ap)-l E + D 2 •

In [18] it has been shown that Y := (I - QP)-l Q satisfies the above conditions. We factorize
G(Y):

G(Y) = ( Ep,Q ) (ET DT ).D ~Q ~QP,Q

(4.4)

where Ep,Q and Dp,Q are matrices of suitable dimensions. We define the following system:

{

xp,Q = Ap,Qxp,Q + Ep,Qw + Bp,Qup,Q'

Ep,Q : zp,Q = C1,pxp,Q + Dpup,Q'

YP,Q = C 2 ,pxp,Q + Dp,Qw,

where Ap,Q := A p +YCi,pCl,P and Bp,Q := B +YCi,pDp. Using theorem 4.2 and a dualized
version for the transformation from E p to Ep,Q we can derive the following corollary:

Corollary 4.3 : Let the systems (2.1) and (4.4) be given. Moreover, let a compensator EF
of the form (2.3) be given. The following two conditions are equivalent:

• EF is internally stabilizing for E such that the closed loop transfer matrix Gel is strictly
proper and has H 00 norm strictly less than 1.

• EF is internally stabilizing for Ep,Q such that the closed loop transfer matrix Gel,P,Q is
strictly proper and has Hoo norm strictly less than l.

Moreover, if EF satisfies the above conditions then we have

o

From this corollary it is immediate that it is sufficient to investigate Ep,Q to prove the results
in our main theorem 2.3. This is done in the next section.

5 (Almost) Disturbance Decoupling and minimum entropy

The first thing we would like to know is what we gain by our transformation from E to Ep,Q'
It turns out that we obtain in this way a system of the form (2.1) such that part (li) of

11



theorem 2.1 is satisfied for P = 0 and Q = o. This implies that:

rank (81 - Ap,Q

Gl,p

k (
81 - ApQran '

G2 ,p

-BpQ ), = n+ rank
D p

-EpQ ), = n +rank
Dp,Q

'V 8 E CO UC+

'V 8 E CO UC+.

(5.1)

(5.2)

By using these conditions we can derive the following theorem:

Theorem 5.1 : Let ~P.Q be defined by (4.4) such that (5.1) and (5.2) are satisfied. Then
there exists a sequence of controllers ~F,n of the form (2.3) such that the closed loop systems
are internally stable for all n and the closed loop transfer matrices Gcl,n are strictly proper
and satisfy:

IIGcl,nlloo ~ 0

IIGcl,nI12 ~ 0

as n ~ 00

as n ~ 00

(5.3)

(5.4)

where II ·112 denotes the L2( -ioo, ioo )-norm. o

Proof: In [18] a sequence of compensators is constructed which are internally stabilizing
and which are such that Ll-norm of the closed loop impulse response tends to zero as n ~ 00.

Moreover the closed loop transfer matrices are strictly proper. In [18] is referred to theorem
3.36 of [21]. By using theorem 3.25 of [21] instead it is straightforward to show that for this
sequence of controllers also the L 2 norm of the closed loop impulse response matrix tends to
zero as n ~ 00.

The L l norm of the closed loop impulse response matrix is an upper bound for the Hoo norm
of the closed loop transfer matrix. This yields (5.3). Since the L 2 norm of the closed loop
impulse response matrix is equal to the L 2( -ioo, ioo)-norm of the closed loop transfer matrix
by Parseval's theorem, we find (5.4). •

This theorem yields the following corollary:

Corollary 5.2: Gonsider the system (2.1). Assume that the systems (A, B, Gl , Dl) and
(A, E, G2 , D 2 ) have no invariant zeros on the imaginary axis and assume that there exists
a controller which is such that the closed loop system is internally stable and has H 00 norm
strictly less than 1. The infimum of (2.2), over all internally stabilizing controllers of the
form (2.3) which are such that the closed system has H oo norm strictly less than 1, is equal
to:

Trace ETPE + Trace (AT P + PA +GiGl +PEETP)(1 _ QP)-lQ

where P and Q are such that part (ii) of theorem 2.1 is satisfied.

12
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Proof: By corollary 4.3 and the non-negativity of the entropy function, the infimum is
always larger than or equal to (5.5). Next, choose a sequence of controllers EF,n satisfying
the conditions of theorem 5.1. These controllers applied to Ep,Q yield internally stabl~ closed
loop systems and it is straightforward to check that the closed loop transfer matrices Gel,n,P,Q
satisfy:

:J(Gel,n,P,Q' 1) --+ 0

as n --+ 00. By applying corollary 4.3 we find that if we apply the controllers EF,n to E then
we find closed loop systems which are internally stable and the closed loop transfer matrices
Gel,n are strictly proper, have H oo norm less than 1 and satisfy

:J(Gel,n, 1) --+ Trace E TP E +Trace (AT P +P A +CiG1 +P EET P)(I _ QP)-lQ

as n --+ 00, which completes the proof of this corollary. •
Corollary 5.2 is in fact the main part of theorem 2.3. Remains to investigate when the infimum
of the entropy function is attained. From the theory of almost disturbance decoupling (see
[21]), it is well known that lemma 5.1 implies that there always exists an in general non-proper
controller which attains the infimum. However, we would like to know when it is possible to
attain the infimum by a proper controller. Note that the infimum is attained if and only if we
can find a controller for Ep,Q which makes the closed loop system internally stable and the
closed loop transfer matrix Gel has H oo norm less than 1 and its entropy is equal to O. However,
the entropy is 0 if and only if Gel = 0 by lemma 3.2. This reduces our original problem to what
is often called the disturbance decoupling problem with measurement feedback and internal
stability (DDPMS), i.e. the problem of finding a stabilizing controller which makes the closed
loop transfer matrix equal to O. The following theorem is a generalization of the results in
[7, 16, 23].

Theorem 5.3 : Let E be given of the form (2.1). There exists a controller of the form (2.3)
such that the closed loop system is internally stable and the closed loop transfer matrix is
equal to 0 if and only if (A, B) is stabilizable, (C2, A) is detectable and

1mE ~ Vg(A,B,CI,Dd+BKerD1

KerG1 ;2 1;(A,E,G2,D2)nCillmD2

1;(A,E,G2,D2) ~ Vg(A,B,C1,D1)

After some extensive calculations the following two equalities can be derived:

Vg(A +EETP, B, Cl,P' D p) = VuCAp,Q, Bp,Q' Cl,p, D p)

1;(A + QGiG2,EQ,G2,DQ) = (I - QP)1;(Ap,Q,Ep,Q,G2 ,p,Dp,Q)

Applying theorem 5.3 completes the proof of the results in theorem 2.3.

o
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6 Conclusion

In this paper we have given a complete treatment of the singular minimum entropy Hoo control
problem. We have an explicit formula for the infimum. Moreover, we can characterize when
the infimum is attained. The construction of a controller can be done using some tools from
the geometric approach to control theory. However, this method is too extensive (though
straightforward) to discuss in this paper. Finally we would like to note that this paper gives
a nice structured approach to "entropy at infinity" with less technicalities than [10] where
entropy at infinity is simply a special yet important case.
A main open problem remains the problem of invariant zeros on the imaginary axis. Another
interesting extension is the case where we have two kinds of disturbances and two kinds of
to be controlled outputs. From one disturbance input to one of the outputs to be controlled
we want to satisfy an H 00 norm bound. For the closed loop transfer matrix from the other
disturbance to the other output to be controlled we want to minimize an entropy function. In
this way we can relate performance criteria to robustness criteria with much more arbitrary
structure for the parameter uncertainty.
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