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1
Introduction

The past decade shows a growing interest in building models and algorithms for
planning and scheduling problems that arise in the supply chain. Motivated by the
globalization of supply chains there is a growing need for solving problems in an
integrated context, which is possible nowadays, because of the advances in infor-
mation systems like enterprise resource planning (ERP) and the growth of compu-
tational power. The goal of supply chain scheduling is realizing the benefits that
arise from coordinated decision making.

In this thesis we deal with an example of a supply chain scheduling problem:
we integrate a purchase and a production planning process. The resulting prob-
lem is handled through extensions of optimization techniques for more classical
production planning problems. Most of our algorithms are based on local search
techniques. In all our local search algorithms we use mathematical programming
techniques to incorporate problem-specific knowledge.

This introductory chapter continues with a description of supply chain schedul-
ing in Section 1.1. Next, we describe our supply chain scheduling problem in Sec-
tion 1.2. In Section 1.3 we give a short overview of optimization techniques for pro-
duction planning, and in Section 1.4 we give a short introduction into local search
techniques. This chapter concludes with an overview of the thesis in Section 1.5.

1



2 Introduction

1.1 Supply chain scheduling

Supply chain scheduling is the process of making a plan such that goods are pro-
duced and distributed in the right quantities, to the right locations, and at the right
time in such a way that the total costs are minimized. An introduction into supply
chain concepts is given by Simchi-Levi et al. [2000]. For a good description of cur-
rently available planning software like advanced planning systems (APS) we refer
to Stadler and Kilger [2000]. Before we describe our supply chain scheduling prob-
lem, we give two examples. In both examples two consecutive stages of the supply
chain are considered. In the first example the two consecutive stages are produc-
tion and distribution. In the second example two consecutive production stages are
considered.

Example 1.1. Newspaper production and distribution planning
Newspapers must be printed as late as possible in order to include the last minute
news, but they have to be delivered at the homes of subscribers before a given dead-
line. The time available for printing and distributing the newspapers is therefore
limited. Hence, the production and the distribution must be done in a very effi-
cient way. Teeuwen [1999] describes an approach to integrate the production and
distribution planning of two regional daily newspapers in the Netherlands.

Both newspapers have several editions, which are printed at one location. At
this location four identical presses are available. Before an edition can be printed,
printing plates have to be installed on the press. The time at which the printing
plates for an edition become available differs per edition. Between the printing
of two different editions some of the printing plates must be replaced. The time
required for this depends on the difference between the two editions.

After newspapers have been printed they are loaded into vehicles and trans-
ferred to drop-off points. From there they are distributed to the subscribers. The
newspapers that must be delivered at a given drop-off point are carried by the same
vehicle, and in case they belong to the same edition they must be printed without
interruption. Between the printing and the departure of the vehicle only a maximum
period of time may pass as a consequence of limited storage capacity. The goal is
to find a production and distribution plan such that the costs are minimized, where
the costs depend on the number and the types of vehicles to be used. 2

Example 1.2. The integration of two production stages in the steel industry
This supply chain scheduling problem deals with the production process of coils,
which proceeds in two stages. In the first stage liquid steel is cast into a solid steel
band using acontinuous casterand the resulting band is then cut into slabs. In the
second stage the slabs are rolled into coils in thehot strip mill. Traditionally these
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two production processes are decoupled by allowing a large inventory of slabs be-
tween the two production stages. This is useful since both planning problems have
rather different objectives. The production plan for the continuous caster is deter-
mined by the continuous arrival of liquid steel that must be casted immediately,
and the production plan for the hot strip mill is determined by the demand of the
customers. Cowling and Rezig [2000] describe an approach to integrate the two
individual planning problems in order to increase the profit by achieving a higher
customer satisfaction, a quality improvement of the coils, and a reduction in pro-
duction costs.

The production costs can be reduced by realizing smaller stocks of slabs be-
tween the two production stages. Furthermore, significant energy savings can be
realized when the slabs are hot-charged directly form the continuous caster into
the second production stage. Slabs that are used in the hot strip mill to produce a
specific customer order must have a certain quality. A measurement for the qual-
ity of the slabs is their grade. During the casting batches of slabs with a single
grade are produced. These batches can weigh 300 tonnes. On the other hand there
are customer orders of only a few tonnes. Therefore, a good coordination between
the produced slabs and the customer demand is needed in order to realize smaller
stocks. To simplify the coordination steel of a quality higher than required can be
delivered to the customer. By upgrading the quality of an order larger batches of
coils with the same grade can be realized. Hereby one must take into account that
upgrading the quality of an order may reduce the profit. 2

1.2 Problem under consideration

We look at supply chains that involve a manufacturer producing items for cus-
tomers. Each item should be produced before a given due date. The manufacturer is
penalized if the items are completed too late. The penalties depend linearly on the
size of the delay. We refer to all costs due to violations of the due dates as tardiness
costs.

The production process of each item consists of one or more steps. Such a step
in a production process is called an operation. In theproduction planwe describe
for all operations the starting times. An operation must be processed on a given
machine, which can handle at most one operation at a time. The limited capacity
of the machines is one of the main restrictions that are to be considered during the
design of a production plan. Another important restriction is the limited availability
of material that is consumed in the production of goods. We refer to these materials
asnonrenewable resources. An operation can only start if all required ‘nonrenew-
ables’ are available. All nonrenewables must be produced by other operations or
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purchased from external suppliers.
In the purchase planwe describe the suppliers, the purchased quantities, and

the moments of receipt of all purchased nonrenewables. To design a purchase plan
we must consider several suppliers. All of these suppliers have their own prices,
discounts, and restrictions. In such an environment, the manufacturer can save
money by grouping orders for nonrenewables. In order not to delay the production
plan, the only option is to advance orders. However, such decisions increase the
inventory costs of the nonrenewables.

The goal of the manufacturer is to ensure that his purchase and production plan
is designed in such a way that the costs are minimized. These costs consist of pur-
chase, tardiness, and inventory costs. We use an example to describe our supply
chain scheduling problem in more detail. In this example we consider a manu-
facturer who produces pre-stretched canvases, which are used as painting surfaces.
More complicated examples of our problem can be found in the semi-conductor and
the computer industry.

Example 1.3. The production of pre-stretched canvases
To produce a pre-stretched canvas four stretcher strips and a piece of cotton canvas
are required. The stretcher strips, which are made of fir wood, are purchased from
external suppliers or produced by the manufacturer himself. The fir wood and the
cotton canvas are always purchased from external suppliers. To produce the pre-
stretched canvases the manufacturer has three workstations. At the first workstation
there is one sawing machine to make stretcher strips from fir wood. At the second
workstation frames are constructed by putting the four stretcher strips together. At
the third workstation a tacker is used to stretch the cotton canvas over the frame. In
this example we make no distinction between stretcher strips of different sizes and
we assume that the three workstations are continuously available.

The production process of pre-stretched canvases consists of two operations For
each operation a release time at which it becomes available, a machine that has to
process it, and a positive processing time are given. In our example the workstations
are the machines. The processing time for the construction of one frame on the
second workstation is 10 minutes, and processing time for the stretching of one
canvas is 15 minutes. In our example there are no release times.

The relative ordering of the operations is specified by aprecedence relation. If
a precedence constraint between two operationsu andv exists, then operationv
cannot start before the completion of operationu. The precedence relation of the
production process of pre-stretched canvases is depicted in Figure 1.1. The oper-
ations are represented by rectangles, whose widths correspond to the processing
times. The nonrenewables and the delivered items are represented by diamonds,
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the canvas

stretcher
four

canvas

pre-

canvas
cotton

contructing

stretching

the framestrips

stretched

Figure 1.1: The production of pre-stretched canvases.

fir wood sawing
strip

stretcher
one

Figure 1.2: The production of stretcher strips.

and the precedence relations are represented by arcs. In our model we allow all
acyclic routings. Some precedence constraints may also stipulate apositive end-
start time lag. This means that between the completion of the first operation and
the start of the second operation a given positive amount of time must elapse. In
our example there are no time lags.

Fir wood, cotton canvases and stretcher strips are examples of nonrenewables.
For each operation a list of required nonrenewables is given. The operation can
only start when all required nonrenewables are available in sufficient quantities.
Nonrenewables must be produced by other operations or purchased from external
suppliers. One stretcher strip can for instance be produced in 10 minutes on the first
workstation. The routing to produce the stretcher strips is depicted in Figure 1.2. A
nonrenewable that is produced by another operation is only available for consump-
tion at a given amount of time after the completion of the producing operation. In
our example the stretcher strips are available immediately after the completion of
the sawing.

The cotton canvas and the stretcher strips can be purchased from two suppliers.
For the fir wood only one supplier is available. All of these suppliers have their own
prices, discounts, and other restrictions. Nonrenewables can only be purchased at
given moments in time, i.e., at the beginning of the week. The purchased quantity
of a nonrenewable from a supplier must be either zero or between a given lower and
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upper bound. Furthermore, we assume that for each nonrenewable the total quantity
that is to be purchased is given.

The manufacturer has to assign all operations to a starting time and all pur-
chased nonrenewables to a supplier and to a moment in time in such a way that all
constraints are satisfied and the sum of all costs is minimized. As mentioned before
the costs consist of purchase, tardiness, and inventory costs.

The purchase costsare the true purchase costs minus the discounts. The true
cost function for purchasing a quantity of a nonrenewable at a moment in time from
a supplier is piecewise linear, strictly increasing, and concave. In addition the man-
ufacturer receives discounts based on the total quantity bought from one supplier.
Discounts are always based on a weighted sum of the purchased quantities: we
assume that the discount function is piecewise linear, convex, and nondecreasing.

Thetardiness costsare calculated on the basis of a subset of the operations, the
so-called end-operations, which are the operations that produce the items that must
be delivered to the customers. For each end-operation a due date and a positive
weight are given. Thelatenessof an end-operation is defined as its completion time
minus its due date. Thetardinessof an end-operation is defined as the maximum
of its lateness and zero. Thetardiness costsare equal to the weighted sum of the
tardinesses of all end-operations.

The inventory costsare the costs of holding purchased nonrenewables during
the production process. A purchased nonrenewable stays in the production process
from the moment of receipt until the moment that the resulting end item is deliv-
ered to the customer. An item is delivered to a customer at the maximum of the
completion time and the due date of the corresponding end-operation. A part of the
inventory costs are included in the tardiness costs. Therefore, we use in the remain-
der of the thesis the term inventory costs to denote the costs from the moment of
receipt until the due date of the resulting item. These inventory costs are equal to a
weighted sum of the due dates minus a weighted sum of the moments of receipt of
the purchased nonrenewables, where the weights are based on the costs of holding
one unit of inventory of the purchased nonrenewable for one time unit.

Figure 1.3 shows a production plan for six pre-stretched frames with a due date
of 80 minutes. The depicted blocks correspond to the processing of the operations.
The operations with the same color (grey scale) depict the production plan of each
of the pre-stretched canvases. In this example 8 stretcher strips are produced on
workstation 1 and 16 stretcher strips are purchased from external suppliers. The
assignment of the purchased nonrenewables to a supplier and a moment in time is
part of our problem. Nonrenewables can only be purchased at the beginning of each
hour. All purchased stretcher strips, three pieces of cotton canvas, and all fir wood
are purchased at time zero. The rest of the cotton canvases are purchased after 60
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Workstation 1

Workstation 2

Workstation 3

0 10 20 30 40 50 60 70 80 90 100
Time (in minutes)    

Figure 1.3: A production plan.

minutes. Let the costs for holding one piece of fir wood, one stretcher strip, and one
piece of cotton canvas in inventory for one minute be€ 0.02, € 0.04, and€ 0.02,
respectively, and let the costs for a violation of a due date be€ 0.25 per minute. The
inventory costs for this example are calculated as follows. The three pre-stretched
canvases that are completed in the first 60 minutes are made of four purchased
stretcher strips and one piece of cotton each. All of these nonrenewables are present
in the production process from the first until the 80th minute. The inventory costs
of one such a pre-stretched canvas is€ 4·0.04 (80−0)+0.02 (80−0) = € 14.40.
In the same way we can calculate the inventory costs for the other pre-stretched
canvases: for the pre-stretched canvas completed after 75 minutes the inventory
costs are€ 4 · 0.04 (80− 0) + 0.02 (80− 60) = € 13.20, and for the other two
pre-stretched canvases the inventory costs are€ 4 · 0.02 (80− 0) + 0.02 (80−
60) = € 6.80. So the total inventory costs are€ 70.00. Furthermore, two pre-
stretched canvases are completed too late. The resulting tardiness costs are€ (90−
80) 0.25+ (105−80) 0.25= € 8.75. We do not discuss the purchase costs for this
example. 2

1.3 Optimization techniques for production planning

Scheduling is the process of allocating scarce resources to activities over time. In
the scheduling literature a lot of attention has been paid to problems that arise in
production planning. In these models the scarce resources are the machines, and the
activities are the operations that have to be performed on these machines. Other ap-
plications of scheduling models can be found in computer control, personnel plan-
ning, and maintenance scheduling. Lawler et al. [1993] give a review of the main
contributions to scheduling. This review is continued by Hoogeveen et al. [1997].
For an introduction to scheduling we refer to Pinedo [1995].
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The basic model for many practical production planning problems is thejob
shop scheduling problem.

Definition 1.1. In the job shop problem we have to schedule a set of jobs on a set of
machines subject to the following constraints. Each job consists of a number of op-
erations, which have to be processed in a given order, each on a specified machine.
Each machine can only handle one operation at a time. For all operations a pro-
cessing time is given. It is not allowed to interrupt the processing of an operation.
Subject to these constraints, we want to find a schedule for which the completion
time of the last operation (makespan) is minimal.

Like many other scheduling problems the job shop scheduling problem belongs to
the class ofNP-hard problems; see Garey and Johnson [1979]. It is generally be-
lieved that all instances ofNP-hard problems cannot be solved to optimality within
an amount of time that is polynomially bounded by the size of the problem instance.
If we want to be certain to find an optimal solution for the job shop scheduling
problem we can apply an enumerative algorithm likebranch and bound. Despite
the progress that has been made in the last years, enumerative algorithms still need
enormous amounts of computation time to solve problem instances of a realistic
size. Consequently, there is a lot of interest in approximation algorithms that can
find near-optimal solutions in reasonable computation times. Roughly speaking
there are two broad classes of approximation algorithms: constructive methods and
local search methods.Constructive methodscreate solutions by using some specific
rules. Examples of such an approach are list scheduling, linear programming and
rounding, and constraint propagation algorithms.

Local search methodsemploy the idea that a given solution may be improved
by making small changes. In the next section we give a short introduction into
local search techniques. There are also various solution methods that combine lo-
cal search techniques with constructive and enumerative methods. A well known
algorithm that combines constructive methods with local search is the shifting bot-
tleneck algorithm for the job shop scheduling problem. In this method the local
search algorithm is guided by construction algorithms that generates solutions to
single machine scheduling problems. An overview of local search algorithms for
the job shop scheduling problem is given by Vaessens et al. [1996].

In the job shop scheduling problem the machines and the operations are of a
relatively simply nature. The operations only require one machine, and the ma-
chines are only able to process at most one operation at a time. It is obvious that
in many practical situations more degrees of freedom are required, i.e., operations
may require several machines simultaneously or machines may be able to process
more than one operation at a time. These kinds of extensions and many others are
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covered by the area ofresource-constrained project scheduling. Extensive reviews
are given by Herroelen et al. [1998] and Brucker et al. [1999].

Another important extension of the job shop scheduling problem isflexible job
shop scheduling. In the flexible job shop problem operations can be processed by
any machine from a given set. The problem is to assign each operation to a machine
and to order the operations on the machines, such that the makespan is minimized.
An example of a local search algorithm for the flexible job shop scheduling problem
is given by Mastrolilli and Gambardella [2000].

1.4 Local search techniques

In most of our algorithms we use local search techniques. We refer to Aarts and
Lenstra [1997] for an overview of local search. In this section we give some guide-
lines for applying local search techniques. We use the job shop scheduling problem
to illustrate some concepts.

Local search is based on the idea that a given solution may be improved by
making small changes. Such a small change is called a move. The set of solutions
that can be reached from a given solution by making one move is called its neigh-
borhood. Roughly speaking a local search algorithm starts with an initial solution
and then continually tries to find better solutions by selecting in each iteration a
neighbor of the current solution. To apply a local search algorithm to a specific
problem the following three questions must be taken into consideration.

• How to navigate through the solution space?

• How to incorporate problem-specific knowledge?

• How to control the computational effort?

Below we elaborate on each of these items in more detail. A basic method to nav-
igate through the search method isiterative improvement. Iterative improvement
starts from an initial solution and repeatedly selects neighbors as long as they im-
prove on the current solution. Consequently, the algorithm stops when it reaches a
local minimum.

Escaping from poor local minima is one of the main challenges of local search.
Another challenge is to avoidcycling, i.e., revisiting the same solution over and
over again. Three well-known search strategies that try to handle these challenges
aresimulated annealing, tabu search, andvariable depth search.

Simulated annealingwas introduced by Kirkpatrick et al. [1983] anďCerńy
[1985]. In each iteration the algorithm evaluates the neighbors in a random order
until a neighbor is accepted. In addition to the better cost neighbors, which are
always accepted, the algorithm also accepts worse neighbors with a probability
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that is gradually decreased in the course of the algorithm’s execution. Decreasing
the acceptance probability is controlled by a set of parameters whose values are
determined by a cooling schedule.

Tabu searchalgorithms were introduced by Glover [1989, 1990]. In each it-
eration a tabu search algorithm forbids certain moves. Such a forbidden move is
called tabu. The set of moves that are tabu is often stored in so-called ‘tabu lists’.
These lists are dynamically updated during the execution of the algorithm. The tabu
search algorithm always accepts the best neighbor that is not tabu.

Variable depth search, which was introduced by Kernighan and Lin [1970]
starts from an initial solution and generates a sequence of subsequent neighbors
by making relatively small changes. From this sequence one solution is selected
to serve as the initial solution for a next sequence. During the generation of a se-
quence tabu search techniques are often incorporated to prevent cycling. All kinds
of variants of these search methods have been proposed in the literature.

Problem-specific knowledge may be incorporated in the choice of arepresenta-
tion methodand a neighborhood. The representation of a solution must be chosen in
such a way that all relevant solutions and suitable neighbors can be represented, but
also in such a way that the solution space is small. Another important feature of a
good representation method is that the objective value of the current solution and all
of its neighbors can be calculated easily. Therefore, the choice of the representation
depends on the choice of the neighborhood. A good example of a representation
method is the disjunctive graph representation of Roy and Sussmann [1964] for
the job shop scheduling problem. We use the following example for the job shop
scheduling problem to illustrate this representation method.

Example 1.4. In our example we have 3 machines, 3 jobs, and 9 operations. The
orders for jobsA, B, andC are 1→ 2 → 3, 4→ 5 → 6, and 7→ 8 → 9,
respectively. In the table below we give for each operationu the required machine
mu and the processing timepu.

u 1 2 3 4 5 6 7 8 9
mu 1 2 3 2 3 1 2 1 3
pu 9 8 2 4 2 4 3 6 7

In Figure 1.4 we give an example of a solution for this problem. In this solution the
processing orders are 1→ 6→ 8 on machine 1, 7→ 4→ 2 on machine 2, and
5→ 9→ 3 on machine 3. 2

The solution depicted in Figure 1.4 is an example of a so-called left-justified sched-
ule.
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Figure 1.4: A solution.

Definition 1.2. A feasible schedule is called left-justified if no operation can start
earlier without

• delaying another operation, or

• changing the processing order on any machine.

In standard job shop scheduling the first restriction is a direct consequence of the
second restriction. Now we can make the following trivial observation.

Observation 1.3. For the job shop scheduling problem there is always an optimal
schedule that is left-justified. 2

Apparently we can restrict our attention to the set of left-justified schedules.
An instance for the job shop scheduling problem can be represented by adis-

junctive graph. In thedisjunctive grapheach operation is represented by a node,
whose weight is equal to the processing time of the operation, and each prece-
dence relation is represented by an arc. If two operations are processed on the same
machine, then the two corresponding nodes are connected by an edge. Given the
processing order on each machine, we can orient these edges. The corresponding
digraph represents a left-justified schedule: the makespan of a solution is equal to
the longest path. Balas [1969] proved that reversing an oriented edge on a longest
path in the digraph always results in a feasible schedule.

Example 1.5. In Figure 1.5 we give an example of a disjunctive graph and the
digraph for the solution depicted in Figure 1.4. In the digraph we left out some re-
dundant arcs and we included a longest path. The makespan of the solution depicted
is 28. 2
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Figure 1.5: The disjunctive graph and the digraph for the solution
depicted in Figure 1.4.

The neighborhood for each solution is defined by a mapping, the so-calledneigh-
borhood function. A neighborhood function imposes a directed graph on the solu-
tion space. The nodes of thisneighborhood graphare the solutions, and there is an
arc from a node to another node if the latter node is a neighbor of the former one. A
theoretical measurement for the possibility of reaching solutions is the connectivity
of the neighborhood function.

Definition 1.4. A neighborhood functionN is called strongly connected if the cor-
responding neighborhood graph is strongly connected. A neighborhood functionN
is called optimum connected if for each solution there exists a path to an optimal
solution in the corresponding neighborhood graph.

In practice connectivity is not a necessary condition for a successful local search
algorithm as we will see later on. By using good initial solutions or restarting
mechanisms we can overcome a lack of connectivity. To select appropriate initial
solutions and restarting mechanisms we can use problem-specific knowledge and
information gathered during earlier parts of the search process. Hereby we must
take into account that it is important to search promising regions in more detail.

The computational effort of searching a neighborhood could be reduced by us-
ing a first improvement strategy or by estimating the objective values of the neigh-
bors. In a first improvement search strategy we accept the first neighbor that im-
proves upon the current solution. With a first improvement search strategy the or-
der in which the neighbors are evaluated affects the search process. Evaluating the
neighbors in a random order is useful to prevent cycling. If computing the exact
objective value takes too much time then the value of neighbors can be estimated
by using strong lower bounds. An example of such an approach for the job shop
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Figure 1.6: The oriented edges that must be reversed to obtain the
neighborhoodsN1 andN2, respectively.

scheduling problem is given by Taillard [1994].
Now we discuss two neighborhood functions for the job shop scheduling prob-

lem. Both neighborhood functions are based on the disjunctive graph representa-
tion, which has been described above. Van Laarhoven et al. [1992] propose a neigh-
borhood functionN1, which obtains a neighbor by reversing an oriented edge on
any longest path. They prove that the resulting neighborhood function is optimum
connected.

Nowicki and Smutnicki [1996] propose a neighborhood functionN2 that is not
optimum connected. To define their neighborhood function they consider only a
single arbitrarily selected critical path and use the concept ofblocks. A block is a
maximal sequence of adjacent operations that are processed on the same machine
in a chosen longest path. Each neighborhood consists of all orientations obtained
by swapping the first two or the last two operations of each block consisting of
at least two operations. In the first block only swaps of the last two operations
are considered, and in the last block only swaps of the first two operations are
considered. They prove that neighbors that are inN1 \ N2 will never improve
the current solution. Furthermore, they prove that an empty neighborhood implies
optimality. Computational experiments show that local search algorithms based on
neighborhood functionN2 are more efficient than local search algorithms based on
neighborhood functionN1.

Example 1.6. For the example depicted in Figure 1.5 the neighborhoodsN1 and
N2 consist of four and two solutions, respectively. All of these solution are obtained
by reversing one oriented edge. The oriented edges that must be reversed to obtain
such a neighbor are highlighted in Figure 1.6: for neighborhoodN1 in the digraph
on the left and for neighborhoodN2 in the digraph on the right. 2
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1.5 Overview of the thesis

This thesis is organized as follows. In the following three chapters we consider
three subproblems of the supply chain scheduling problem described in Section 1.2.
In Chapter 5 we integrate these algorithms to several solution approaches for our
supply chain scheduling problem.

In Chapters 2 and 3 we consider the design of a production plan. In both chap-
ters we assume that the purchase plan is given. As a consequence the purchase and
the inventory costs are fixed. Therefore, the problem is to find the starting times
for all operations such that all constraints are satisfied and the tardiness costs are
minimized.

In Chapter 2 we also assume that each produced or purchased nonrenewable
is pre-assigned to a consuming operation. We handle the resulting problem with a
tabu search algorithm that generalizes the Nowicki and Smutnicki [1996] approach
for the classical job shop scheduling problem by extending the classical disjunctive
graph representation. The starting times are now determined by solving maximum
cost flow problems in an efficient way. The solution of the maximum cost flow
problem is used to define an efficient neighborhood function.

In Chapter 3 we extend the problem considered in Chapter 2 by introducing the
additional problem to assign the produced or purchased nonrenewables to the con-
suming operations. We handle the resulting problem with a tabu search algorithm.
To account the nonrenewable resource constraints another representation method is
required: the activity list. Given an activity list a schedule can be generated by a
list scheduling algorithm. All neighbors are modifications of the activity list.

In Chapter 4 we consider the design of a purchase plan. Hereby we assume that
the production plan is given. As a consequence we know how much of each item
we need and the time at which we need it. Therefore, the problem is to assign all
demands to a supplier and to a moment in time in such a way that all constraints are
satisfied and the sum of the purchase costs and the inventory costs is minimized. A
way to solve small problem instances is by mixed integer programming: we give
two such formulations. Another option is using a local search approach. Our local
search approach consists of two stages. In the first stage we determine an initial
solution by using the solution of the linear programming relaxation of one of the
mixed integer programming formulations. In the second stage we try to improve
this solution by applying local search techniques. To determine the value of the
neighbors we solve generalized nonlinear knapsack problems.

In Chapter 5 we treat the entire supply chain scheduling problem. We develop
four integrated solution approaches. All approaches are based on the algorithms
developed in the earlier chapters. Our integrated approach to handle supply chain
scheduling problems works as follows. First we decompose the problem into ap-
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propriate subproblems. After that, we develop local search algorithms for these
subproblems. We hereby use mathematical programming techniques to employ
problem-specific knowledge. Finally, the local search algorithms are integrated
into one solution approach. Thereto we must specify an order in which we make
small changes to the solutions of the different subproblems. For our supply chain
scheduling problem we have implemented sequential and simultaneous approaches.
In a sequential approach the algorithm consists of a few consecutive runs of the al-
gorithms for the subproblems. In a simultaneous approach we allow in each step
changes to the solutions of both subproblems. Our computational experiments show
that, like in many supply chain scheduling problems, solving both subproblems si-
multaneously gives the best results.





2
Designing a production plan

In this chapter we assume that a purchase plan is given. As a consequence the pur-
chase and the inventory costs are fixed. Furthermore, we assume that each produced
or purchased nonrenewable has been assigned to a consuming operation. There-
fore, we only must assign all operations to a starting time in such a way that all
constraints are met, and the tardiness costs are minimized. The resulting problem is
a generalization of the classical job shop scheduling problem. The main extensions
are release times, positive end-start time lags, and a general precedence graph. The
total weighted tardiness is the objective function.

We attack our generalized job shop scheduling problem through a two-phase
method. We use atabu searchalgorithm to search for the order in which the op-
erations are processed on each machine. There is no reason to delay an operation.
Thus finding the optimal starting times given an execution order of the operations on
each machine can be done using the standard disjunctive graph representation; see
Roy and Sussmann [1964]. This method requires only the computation of a single
source longest path tree in an acyclic graph. For more general scheduling problems
the optimal starting times given an execution order on each machine can be found
by solving a sequence ofmaximum flowproblems; see Faaland and Schmitt [1987].
It is even possible to determine these starting times in polynomial time by solving a
maximum cost flowproblem; see Wennink [1995, 2000]. We show that in our case
the solution to the maximum cost flow problem can be determined without loss of

17
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much computation time in comparison with the disjunctive graph approach. This
is useful, since we use the solution to the maximum cost flow problem to deter-
mine the neighborhood function for our tabu search algorithm. All sequences in
our neighborhood are obtained by performing a swap of two adjacent operations.
We show that only swaps that possess a certain property can improve the current
solution; if no such swap is available in the neighborhood, then the current solution
is optimal.

This chapter is organized as follows. In Section 2.1 we describe the model
and its relation to the maximum cost flow problem. Furthermore, we describe how
we determine the starting times given the execution order on each machine. In
Section 2.2, we present our neighborhood function. Our tabu search method is
described in Section 2.3. In Section 2.4 we give extensive computational results.
Finally we make some concluding remarks.

2.1 Determining the starting times

In our model we have a set ofn operations, on which an arbitrary precedence re-
lation is defined. There is a given number of machines, each of which is available
from time zero onwards and can handle at most one operation at a time. For each
operationu there is a release timeru at which it becomes available, a machinemu

that has to process it, and a positive processing timepu. If there is a precedence
constraint between two operationsu andv, then operationv cannot start before the
completion of operationu. Some precedence constraints stipulate apositive end-
start time lag quv: between the completion of operationu and the start of operation
v at leastquv time units must elapse. The objective function is based on a subset of
the operations, the so called end-operations; for an end-operationu a due datedu

and a positive weightwu are given. Thelatenessof an end-operation is defined as
its completion time minus its due date. Thetardinessof an end-operation is defined
as the maximum of its lateness and zero. The problem is to assign the operations
to time intervals on the machines such that the schedule is feasible and thetotal
weighted tardinessis minimized. To determine the starting times given an execu-
tion order on each machine, we use the maximum cost flow problem; this method
was introduced by Wennink [1995, 2000].

2.1.1 Linear programming model

To model our generalized job shop problem, we add a dummy operations, which
precedes all operations. Its starting time and its processing time are both 0. We
define for some pairs of operations(u, v) constraints of the formSv − Su ≥ cuv or
Sv − Su + Tu ≥ cuv. We refer to these types of constraints asstart-start constraints
and adjusted start-start constraints, respectively. Adjusted start-start constraints
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form a generalization of start-start constraints. We use decision variablesSu andTu

to denote the starting time and the tardiness of operationu, respectively. We refer
to cuv as the cost of the constraint.

With start-start constraints we can model the following restrictions on the start-
ing timesSu. If there is a release timeru, we define for(s,u) a start-start constraint
with costru. If there is a precedence relation between the operationsu andv, we
define for(u, v) a start-start constraint with costpu. If there is a positive time lag
quv, then pu is replaced withpu + quv. A1 represents the set of all ordered pairs
for which a start-start constraint has been defined. If for a pair of operations(u, v)
more than one start-start constraint is defined, then only the one with the largest
costcuv is taken into account.

With adjusted start-start constraints we can model thetardiness Tu of an end-
operationu, which is defined as max{Su + pu − du,0}. We model the tardiness by
adding the adjusted start-start constraintSs−Su+Tu ≥ pu−du and the nonnegativity
constraintTu ≥ 0. In this way the tardiness is completely determined, because
wu > 0. E denotes the set of end-operations, andA2 denotes the set of all ordered
pairs for which such an adjusted start-start constraint has been defined given by

A2 = {(u, s)|u ∈ E}.

As mentioned earlier, we assume in this stage that the relative order of each
pair of operations that require the same machine is given. Orienting a pair of oper-
ations is the same as determining their relative order.A3 denotes the set of pairs of
operations that must be oriented given by

A3 = {{u, v}|mu = mv, (u, v) 6∈ A1, (v,u) 6∈ A1}.

After we have oriented{u, v} ∈ A3, we get an ordinary start-start constraint
Sv − Su ≥ pu. If we have oriented all pairs of operations inA3, then we have
anorientation. Aγ3 will denote the set of ordered pairs that result from orientation
γ ; φ(γ ) denotes the cost of an optimal schedule corresponding toγ .

Given an orientationγ , we can find optimal starting times by solving the fol-
lowing linear programming model; an introduction in linear programming is given
by Bazaraa et al. [1990].

φ(γ ) = min
∑
u∈E

wuTu

s.t. Sv − Su ≥ cuv, ∀(u, v) ∈ A1

Ss− Su + Tu ≥ pu − du, ∀u ∈ E
Sv − Su ≥ pu, ∀(u, v) ∈ Aγ3
Ss = 0
Tu ≥ 0, ∀u ∈ E
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If we defineAγ = A1∪A2∪Aγ3 and ifV denotes the set of all operations including
s, then the dual of this problem is

φ(γ ) = max
∑

(u,v)∈A1

cuvXuv +
∑
u∈E
(pu − du)Xus +

∑
(u,v)∈Aγ3

pu Xuv

s.t.
∑

(u,v)∈Aγ
Xuv −

∑
(v,z)∈Aγ

Xvz = 0, ∀v ∈ V

Xus ≤ wu, ∀u ∈ E
Xuv ≥ 0, ∀(u, v) ∈ Aγ

The last model is a maximum cost flow problem; see Ahuja et al. [1993]. It can
be represented by the following network. Each operation inV is represented by a
node. Every ordered pair(u, v) ∈ A1 is represented by an arc from nodeu to node
v with infinite capacity and costcuv. For every ordered pair(u, v) ∈ A1 we check
if there exists a path fromu to v in (V,A1 \ (u, v)) with length at leastcuv. If this
is the case, then we remove the arc(u, v). For every end-operationu ∈ E we add
an arc from nodeu to nodes with capacitywu and costpu − du. For every ordered
pair (u, v) ∈ Aγ3 we add an arc between operationsu andv with infinite capacity
and costpu; if we want to change the order of operationu andv, then we replace
arc (u, v) by arc(v,u) with infinite capacity and costpv. The decision variables
Xuv of the dual problem are the arc flows.

An orientation is feasible if the graph(V,A1 ∪Aγ3 ) is acyclic. The problem is
to find a feasible orientationγ for whichφ(γ ) is minimal. In the remainder of this
chapter we use the following example to illustrate our method.

Example 2.1. Our example has nine operations and three machines. Operation
4, 7, and 9 are end-operations. In the table below we give for each operation the
release time, the required machine, and the processing time. For each end-operation
the due date and the weight are given.

u 1 2 3 4 5 6 7 8 9
ru 0 0 0 0 0 0 0 1 0
mu 1 1 2 3 1 2 3 2 3
pu 5 2 3 2 2 4 1 3 2
du 12 9 7
wu 2 1 3

The precedence relations and the positive end-start time lags are given in the fol-
lowing table.

arc (1,2) (1,3) (2,4) (3,4) (5,6) (6,7) (8,9)
quv 3 3 0 0 3 0 1
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Figure 2.1: Our example graph after a orientation has been determined.

We consider the following orientationγ . The processing orders on machines 1, 2,
and 3 are 1→ 5→ 2, 8→ 6→ 3, and 9→ 7→ 4, respectively. In Figure 2.1 the
resulting graph(V,Aγ ) is given. The solid arcs belong toA1, the dotted arcs belong
to A2, and the dashed arcs belong toAγ3 . For every arc the cost is given. Notice
that an oriented edge(u, v) is only in the graph ifv is the immediate successor ofu
onmu. 2

2.1.2 Finding a maximum cost flow efficiently

Given a feasible orientationγ , we can determine optimal starting times and the cor-
responding objective value by solving a max cost flow problem. Since in our case
(V,Aγ ) has a special structure we can do this without losing much computation
time in comparison with the standard disjunctive graph approach. First we make
the following observations about(V,Aγ ).

Observation 2.1. (V,A1∪Aγ3 ) is an acyclic directed graph and all arcs ofA1∪Aγ3
have infinite capacity and nonnegative costs. 2

Observation 2.2. All arcs inA2 have finite capacity and the head of these arcs is
always s. 2

Since for each nodeu ∈ V its inflow is equal to the outflow, the optimal flow
is a union of cycles of positive costs. Observation 2.1 implies that every cycle
in (V,Aγ ) contains at least one arc fromA2. Observation 2.2 implies that every
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Figure 2.2: The single-source longest-path tree.

cycle contains exactly one arc fromA2. Thus for every(u, s) ∈ A2 only the most
expensive cycle that contains(u, s) is used to create the optimal flow. This cycle
consists of the longest path froms to u in (V,A1 ∪Aγ3 ) and the arc(u, s).

This suggests the following solution method. In the graph(V,A1 ∪ Aγ3 ) we
determine a single-source longest-path tree with respect to the arc costs; this takes
O(|V| + |A1 ∪ Aγ3 |) time. The source of this tree is sink nodes. We useLsu to
denote the longest path froms to u in the created tree. The distance from nodes to
nodeu is equal to the start timeSu of operationu. The valueφ(γ ) of the max-cost
flow problem is now given by

φ(γ ) =
∑
u∈E

wu max{pu − du + Su,0}.

Example 2.2. Figure 2.2 gives the single source longest path tree in our example
graph. In this caseS4 = 17, S7 = 14, andS9 = 5. 2

The optimal flow can now be found as follows. For everyu ∈ E we check if there
is a positive cycle containing(u, s). If u is tardy, i.e.Su + pu − du > 0, then there
is a positive cycle containing(u, s) and we sendwu units of flow throughLsu and
(u, s). Otherwise we do nothing. This procedure only takesO(|V|) time, which
is negligible in comparison with the computation time of the single-source longest
path tree.
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Example 2.3. Figure 2.3 gives the resulting flow for our example. For every arc
the cost and the amount of flow are given in this order. The objective value is
2(17− 10)+ 1(14− 8) = 20. 2

2.2 Neighborhood

In all our neighborhoods we use moves that replace an oriented edge(u, v) by
(v,u). We refer to such moves as a swap of(u, v). In case of the standard job
shop scheduling problem a swap of an oriented edge(u, v) results in a feasible
orientation if arc(u, v) is on the longest path. Wennink [1995] generalized this
lemma as follows.

Lemma 2.3. Let γ be a feasible orientation. Swapping an oriented edge(u, v)
with Xγuv > 0 results in a feasible orientation. 2

First we present our basic neighborhood function. Later on we present a neigh-
borhood function that also takes into account the amount of tardiness of an end-
operation and some connectivity results.

2.2.1 Basic neighborhood

Our basic neighborhood functionN (0) is a generalization of the neighborhood func-
tion for the standard job shop scheduling problem presented by Nowicki and Smut-
nicki [1996]. Their neighborhood function is one of the most effective neighbor-
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hood functions for the job shop problem. The solution to the maximum cost flow
problem are used to obtain the neighbors.

For an operationu we defineπ(u) as its predecessor on machinemu andσ(u) as
its successor on machinemu, if they exist. Ifu is the first operation on machinemu,
then we setXγ

π(u)u equal to
∑

z:(u,z)∈Aγ Xγ
uz if Sγu = 0, and 0 otherwise. Similarly, if

v is the last operation on machinemv, then we setXγ

vσ(v) equal to 0. Neighborhood
functionN (0) is based on the following lemma, which states that swaps with a
certain property never improve the current solution.

Lemma 2.4. Let γ be a feasible orientation and let(V,Aγ ) be the corresponding
graph. Let(u, v) be an oriented edge with Xγuv > 0, and letγ ′ and(V,Aγ ′) be the
orientation and the graph that result after swapping(u, v). If

pvXγ

π(u)u + pu Xγ

vσ(v) ≥ (pv + pu)X
γ
uv, (2.1)

thenφ(γ ′) ≥ φ(γ ).

Proof. For ease of exposition, we usea andb to denoteπ(u) andσ(v), respectively.
We will transform the optimal flow in(V,Aγ ) into a feasible flow in(V,Aγ ′)with a
value greater than or equal toφ(γ ); see Figure 2.4. WithXγ ′

i j we denote the created

flow through(i, j ) in (V,Aγ ′). We send the following amounts of flow through the
arcs(a, v), (v, u), (u,b), (a,u) and(v,b):

Xγ ′

av = Xγ
au,

Xγ ′

vu = Xγ
au+ Xγ

vb − Xγ
uv,

Xγ ′

ub = Xγ

vb,

Xγ ′

au = Xγ ′

vb = 0.
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All other arcs inAγ ′ have the same amount of flow as inAγ . Since

(pv + pu)(X
γ
au+ Xγ

vb) ≥ pvXγ
au+ pu Xγ

vb ≥ (pv + pu)X
γ
uv, (2.2)

we have
Xγ

au+ Xγ

vb − Xγ
uv ≥ 0.

It is now easy to verify that the created flow in(V,Aγ ′) is feasible. This implies
that the cost of the created flow is a lower bound on the value of the optimal flow in
(V,Aγ ′). Using (2.2), we find that

φ(γ ′)− φ(γ ) ≥ pvXγ ′

vu + pu Xγ ′

ub− pu Xγ
uv − pvXγ

vb =

pv(X
γ
au+ Xγ

vb − Xγ
uv)+ pu Xγ

vb − pu Xγ
uv − pvXγ

vb =

pvXγ
au+ pu Xγ

vb − (pu + pv)X
γ
uv ≥ 0.

2

We use this result to define our neighborhoodN (0)(γ ). First we replaceXγ

π(u)u
and Xγ

vσ(v) by 0 if (π(u),u) ∈ A1 and (v, σ (v)) ∈ A1, respectively. For every
oriented edge(u, v) with Xγ

uv > 0 the following inequality

pvXγ

π(u)u + pu Xγ

vσ(v) ≥ (pv + pu)X
γ
uv,

implies that equation 2.1 holds for the original flow. Thus Lemma 2.4 remains true
after this replacement.

The neighborhoodN (0)(γ ) consists of all orientations created by swapping an
oriented edge(u, v) for which

pvXγ

π(u)u + pu Xγ

vσ(v) < (pv + pu)X
γ
uv.

We now prove thatN (0)(γ ) = ∅ is a sufficient condition for optimality. To prove
this theorem we need some preliminary lemmas.

Lemma 2.5. If there is an oriented edge(u, v) such that Xγπ(u)u = 0 and Xγuv > 0,
thenN (0)(γ ) 6= ∅.

Proof. The proof is by contradiction. Letγ ′ denote the orientation after swapping
(u, v), and suppose thatγ ′ 6∈ N (0)(γ ), that is,pvXγ

π(u)u+ pu Xγ

vσ(v) ≥ (pv+ pu)X
γ
uv.

SinceXγ

π(u)u = 0 we have

pu Xγ

vσ(v) ≥ (pv + pu)X
γ
uv.
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Using Xγ
uv > 0 andpv > 0, we find

pu Xγ

vσ(v) ≥ (pv + pu)X
γ
uv > pu Xγ

uv,

and thusXγ

vσ(v) > Xγ
uv. SinceXγ

uv > 0 this contradicts the tree-structure of the flow
through(V,A1 ∪Aγ3 ). 2

Lemma 2.6. If N (0)(γ ) = ∅ and u is an operation with Xγπ(u)u > 0, then Xγπ(u)u >
Xγ

uσ(u).

Proof. Using the tree-structure of the optimal flow andXγ

π(u)u > 0, it follows that
Xγ

π(u)u ≥ Xγ

uσ(u). If Xγ

uσ(u) = 0 then the proof is trivial. Otherwise, letz denote the
last operation processed onmu such thatXγ

zσ(z) > 0 andXγ

π(z)z = Xγ

zσ(z); we usev
to denoteσ(z). Operationv exists sinceXγ

zv > 0. Now we haveXγ

π(z)z = Xγ
zv >

Xγ

vσ(v). Since the processing times are positive we have

pvXγ

π(z)z+ pzXγ

vσ(v) < (pz+ pv)X
γ
zv.

This implies that the orientation obtained by swapping(z, v) is inN (0)(γ ), which
contradictsN (0)(γ ) = ∅. ThusXγ

π(u)u > Xγ

uσ(u). 2

Now considerLsu, the longest path froms to u. For every tardy end-operation
e the tardiness cannot be reduced, if all arcs onLse belong toA1. LetE∗ denote the
set of tardy end-operationse for which there is an arc onLse that does not belong
toA1. For everye ∈ E∗ we denote byz= ε(e) the last operation onLse for which
Xγ

π(z)z > 0. The length of the longest path fromε(e) to e cannot be reduced since
all arcs on the longest path fromε(e) to e also belong toA1.

For all operationsu we defineE∗u as the set ofe ∈ E∗ for which u = ε(e).
In Lemma 2.6 we proved that in case of an empty neighborhoodXγ

π(u)u > Xγ

uσ(u)
for eachu with Xγ

π(u)u > 0. We now prove that the difference betweenXγ

π(u)u and
Xγ

uσ(u) is equal to
∑

e∈E∗u we.

Lemma 2.7. If N (0)(γ ) = ∅ and u is an operation with Xγπ(u)u > 0, then

Xγ

π(u)u − Xγ

uσ(u) =
∑
e∈E∗u

we > 0.
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Proof. As a consequence of Lemma 2.5 and the definition ofE∗u we can make the
following observation. If operationu is on the longest pathLse for somee∈ E∗\E∗u ,
then(u, σ (u)) belongs toAγ3 and is onLse. We also know that(u, σ (u)) can only
be onLse for somee ∈ E∗u , if (u, σ (u)) ∈ A1. But in that case we replacedXγ

uσ(u)
by 0. Since the amount of flow throughLse is equal towe, we get

Xγ

π(u)u − Xγ

uσ(u) =
∑
e∈E∗u

we.

As a consequence of Lemma 2.6 we have
∑

e∈E∗u we > 0, which completes the
proof. 2

We mentioned earlier that for eache ∈ E∗ the length of the longest path between
ε(e) ande cannot be reduced. Thus for everye ∈ E∗ the tardiness can only be
reduced ifSγε(e) can be reduced.

We now use Smith’s weighted shortest processing time rule to prove that∑
e∈E∗ weSγε(e) cannot be reduced in case of an empty neighborhood.

Lemma 2.8. If N (0)(γ ) = ∅, then there is no orientationγ ′ such that∑
e∈E∗

weSγ
′

ε(e) <
∑
e∈E∗

weSγε(e).

Proof. Since for each orientationγ ′ we have∑
e∈E∗

weSγ
′

ε(e) =
∑

v:Xγ
π(v)v

>0

∑
e∈E∗v

weSγ
′

v ,

we can prove the lemma by showing that for every machinei there is no orientation
γ ′ such that ∑

v∈Mi

∑
e∈E∗v

weSγ
′

v <
∑
v∈Mi

∑
e∈E∗v

weSγv , (2.3)

whereMi denotes{v|Xγ

π(v)v > 0∧mv = i }.
Let i be an arbitrary machine on which at least one operationε(e) with e ∈ E∗

is processed. Letz denote the last operation processed oni such thatXγ

π(z)z > 0.
As a consequence of Lemma 2.5 we haveXγ

π(u)u > 0 for all predecessorsu of
operationz on machinei . Thus all operations on the longest path froms to z are
predecessors ofz on machinei , which implies that there is no idle time on machine
i between time 0 and the start of operationz. Now letu be an arbitrary predecessor
of operationz on machinei , and letv denoteσ(u). SinceN (0)(γ ) = ∅ we have

pvXγ

π(u)u + pu Xγ

vσ(v) ≥ (pu + pv)X
γ
uv.
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Using Lemma (2.7) we can rewrite this as∑
e∈E∗u we

pu
≥

∑
e∈E∗v we

pv
.

Thus all operationsv processed on machinei with Xγ

π(v)v > 0 are scheduled in
order of nonincreasing

∑
e∈E∗v we/pv. Using the weighted shortest processing time

rule of Smith [1956], we get that there is no orientationγ ′ such that inequality (2.3)
holds. Sincei is chosen arbitrarily this completes the proof. 2

Now we can prove that an empty neighborhood implies optimality.

Theorem 2.9. Letγ be a feasible orientation. IfN (0)(γ ) = ∅, thenγ is an optimal
orientation.

Proof. Let ET denote the set of tardy end-operations. We have

φ(γ ) =
∑
e∈E

weTe =
∑
e∈E∗

weTe+
∑

e∈ET\E∗
weTe+

∑
e∈E\ET

weTe.

Note that the last term of this expression is equal to zero. For every end-operation
e ∈ E∗ we now definel ε(e)e as the length of the longest path fromε(e) to e in
(V,A1). Using this definition we get

φ(γ ) =
∑
e∈E∗

weSγε(e) +
∑
e∈E∗

we(l ε(e)e+ pe− de)+
∑

e∈ET\E∗
weTe.

For every end-operatione∈ ET
\E∗ its tardinessTe cannot be reduced and for every

e ∈ E∗ we have thatl ε(e)e cannot be reduced. Using Lemma 2.8 it follows thatγ is
an optimal orientation. 2

2.2.2 More sophisticated neighborhood

NeighborhoodN (0)(γ ) does not consider the amount of tardiness of each end-
operation. If an end-operation is tardy, then it is taken into account. A way to
use the amount of tardiness is to introduce afactor F, which is a value between
0 and 1. Only end-operations with a tardiness larger than or equal toF times the
maximum tardinessTmax are taken into account. We employ this idea to get a more
sophisticated neighborhood functionN (F) in the following way. First we define a
new flow in (V,Aγ ). For all e ∈ E with pe − de + Sγe ≥ max{dFTmaxe,1}, we
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Figure 2.5: The graph after swapping arc(1,5).

sendwe units of flow through(e, s) and Lse, and in all other cases we do noth-
ing. Let Xγ (F)

uv denote the resulting flow. The neighborhoodN (F)(γ ) consists of all
orientations created by swapping the oriented edge(u, v) for which

pvXγ (F)
π(u)u + pu Xγ (F)

vσ (v) < (pv + pu)X
γ (F)
uv .

If F > F ′, thenN (F)(γ ) does not have to be a subset ofN (F ′)(γ ), but in practice
N (F)(γ ) is usually smaller.

Example 2.4. In our example problem (see Figure 2.3) the neighborhood consists
of two orientations obtained by swapping the arcs (1,5) and (6,3), respectively. In
this case the factorF has no influence on the neighborhood. Now we swap(1,5).
The resulting graph and flow are given in Figure 2.5. It is easy to verify that the
neighborhood of the resulting orientation is empty ifF = 0, which implies optimal-
ity. If F > 1

3, then the neighborhoodN (F)(γ ) consists of the orientation obtained
by swapping arc (5,1). 2

2.2.3 Connectivity of the neighborhood

On page 12 we have defined the connectivity of a neighborhood function. Our
neighborhood functions have the following property.

Property 2.10. The neighborhood functionN (F) is not optimum connected for any
factor F between 0 and 1. 2
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Figure 2.6: A counterexample ((V,Aγ ) and (V,Aγ ′)).

Proof. Our counterexample has three operations and one machine. All operations
are end-operations. Their release times, processing times, due dates, and weights
are given below.

u 1 2 3
ru 1 1 0
pu 1 1 1
du 0 0 1
wu 1 1 1

Let the orientationγ specify the processing order 1→ 2→ 3 on machine 1. In
Figure 2.6 the resulting graph(V,Aγ ) is given. For every factor the neighborhood
consists of the orientation obtained by swapping arc(1,2). Let γ ′ and (V,Aγ ′)
denote the resulting orientation and graph, respectively. The only neighbor ofγ ′ is
γ . But it is easy to verify that the optimal processing orders are 3→ 2→ 1 and
3→ 1→ 2, which cannot be reached. 2

In our computational experiments we work with the neighborhoodN (F)(γ ), where
F is a factor defined beforehand. IfF > 0 andN (F)(γ ) is empty, thenN (0)(γ )

is used. In the remainder of this chapter we denote the resulting neighborhood by
N (γ ). All orientations inN (γ ) are feasible, and ifN (γ ) = ∅, then optimality has
been proven. We now describe our tabu search algorithm.

2.3 Tabu search algorithm

Our algorithm starts with the construction of an initial solution. The resulting ori-
entationγ is the input of our first iteration. In a single iteration we determine our
neighborhoodN (γ ) and use some neighborhood searching strategy to choose a
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neighborγ ′ ∈ N (γ ). To intensify the search we use a restarting strategy. We stop
the search process when a maximum number of iterations has been reached, when
all restarting possibilities are exhausted, or when optimality has been proven.

2.3.1 Finding an initial solution

To find an initial solution we use the dispatching version of the insertion algorithm
of Wennink and Vaessens [Wennink and Vaessens, 1995; Wennink, 1995]. This
algorithm starts with an empty schedule. In every step it randomly selects an oper-
ationu from the set of dispatchable operations. This operation is then inserted in
the schedule in such a way that the increase of the maximum tardiness is as small
as possible.

2.3.2 Neighborhood search strategy

In our neighborhood search strategy we allow non-improving moves to escape from
local minima. We use the following procedure to choose a neighbor. Given are the
current orientationγ , the nonempty neighborhoodN (γ ), and the current best so-
lution φ∗. We evaluate the neighbors in random order and apply afirst improve-
mentsearch strategy. This means that we take the first neighborγ ′ for which
φ(γ ′) < φ(γ ). If none of the neighbors satisfies this condition, then we use some
criterion to select a neighborγ ′, which is created by swapping some arc(a,b). We
implemented the following criteria:

Best swap (bs):select the neighborγ ′ for whichφ(γ ′) is minimal.

Maximum flow (fl):select the neighborγ ′ for which Xγ

ab is maximal.

Combined (bf):select the neighborγ ′ for whichφ(γ ′)/Xγ

ab is minimal.

Randomized (rbf):select the neighborγ ′ for which φ(γ ′)/Xγ

ab times a ran-
dom number is minimal.

To prevent short-term cycling we usetabu search. In tabu search we forbid
certain swaps that do not improve the best solution. When we have performed swap
(a,b), then swapping all arcs of the form(b, x) is forbidden for at mostN steps;
N is called thetabu tenureand is defined dynamically to prevent long term cycling.
We implemented the tabu search algorithm as follows. We introduce a mapping
τ : V → N and an iteration valueI . Initially τ(u) is set equal to 0 for allu ∈ V,
and I is set equal to 0. Every iteration we increaseI by at least one. Notice that
the iteration valueI is not the same as the number of performed iterations. A swap
(a,b) is tabu ifτ(a) > I . Swap(a,b) is only accepted if the current best solution
φ∗ is improved or if(a,b) is not tabu. If none of the neighbors satisfies one of these
criteria then we perform the swap(a,b) for which τ(a) is minimized, after which
I is set equal toτ(a).
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After performing the selected swap(a,b) the tabu tenureN is equal to the
number of neighbors ofγ plus a randomly drawn integer within the range [0,3].
We finally setτ(b) equal toI + N and increaseI by one.

2.3.3 Restarting strategy

We have extended our tabu search algorithm with the restarting strategy presented
by Nowicki and Smutnicki [1996]. Slightly modified approaches have been re-
ported by Aarts [1996] and Verhoeven [1998]. Restarting takes place from one of
the better local minima if the overall best solution has not been improved for a given
number of iterations.

If we reach a local minimum that improves the overall best solution and that
has at least two non-tabu neighbors, then we store that orientationγ , mappingτ ,
and iteration valueI in a listL. In L only a given number of local minima can be
stored. If we want to store a new local minimum andL is full, then we remove the
local minimum with the highest objective value.

When we restart the search process, then we select the local minimum with the
lowest objective value inL, and use its orientation, its mappingτ and its iteration
value I as a restarting point for the algorithm. In the first step after the restart we
select the best non-tabu neighbor, and the search process is restarted. If the number
of attempted restarts from the local minimum is equal to the number of non-tabu
neighbors of the local minimum minus one, then we remove the local minimum
fromL.

2.4 Computational results

We tested our algorithm on two test samples. The first one is due to Pinedo and
Singer [1999] and consists of 10× 10 instances for the total weighted tardiness job
shop scheduling problem. The second test sample was generated for the purpose of
this study and consist of randomly constructed instances.

We used the following parameter settings for both samples. The maximum
number of iterations is set equal to 100,000. We restart for the first time when
the overall best solution has not been improved for 5,000 iterations, otherwise we
restart when the overall best solution has not been improved for 2,500 iterations.
The maximum size ofL is set equal to 5. We tested our program for factorF =
0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 and for the four criteria mentioned in Subsection
2.3.2. We performed ten independent runs for each instance. The experiments were
performed on a Sun Ultra 10, 300 MHz workstation.
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criterionrbf criterionbf criterionbs criterionfl
factor best average best average best average best average

0.0 6919 7704.9 6841 7906.9 7158 8037.3 6947 8053.1
0.2 6848 7519.1 6706 7587.7 7005 7704.0 6640 7661.2
0.4 6748 7596.0 6863 7595.7 6926 7699.2 6870 7720.7
0.6 7057 7835.4 7015 7932.1 7078 7996.5 6971 7971.8
0.8 7361 8232.5 7591 8422.5 7507 8338.8 7637 8407.9
1.0 8081 9247.2 8133 9116.7 8233 9209.3 8195 9533.1

Table 2.1: The sum of the best and the average solutions.

2.4.1 First test sample

Pinedo and Singer presented a shifting bottleneck algorithm for the total weighted
tardiness job shop. They tested their algorithms on some well known 10× 10
standard job shop instances to which they added due dates and weights. A 10×

10 instance consists of 10 chains of 10 operations each and 10 machines. They
modified the job shop instances as follows. LetJ j denote the set of operations that
belong to jobj . The due date of jobj is set equal tob1.5

∑
u∈J j

puc. The weights
of job 1 and 2 are set equal to 4, the weights of job 3 to 8 are set equal to 2, and the
weights of job 9 and 10 are set equal to 1. In our model there are no jobs, so we
assigned the due dates and weights to the last operation of each chain.

To create their test sample, Pinedo and Singer modified 22 instances. ABZ5
and ABZ6 are due to Adams et al. [1988], ORB01-10 are due to Applegate and
Cook [1991], FT10 is due to Fisher and Thompson [1963], and LA16-24 are due to
Lawrence [1984]. LA21-24 are 15× 10 instances. Therefore they eliminated the
last 5 jobs to create 10× 10 instances. They used branch and bound techniques to
calculate the optimum for all of their instances; see Singer and Pinedo [1998].

In their shifting bottleneck approach they schedule one machine at a time. They
use a branching tree to find a good order to schedule the machines. Every node
of the tree represents a partial order in which the machines have been scheduled.
The machine backtracking aperture defines the maximal number of branches at ev-
ery node. They give test results for two variantssb2 and sb3. For sb2 and sb3
the machine backtracking aperture is 2 and 3, respectively. Their experiments were
performed on a DELL Dimension XPS P90c personal computer. Benchmark re-
sults of the Standard Performance Evaluation Corporation [1999] indicate that our
workstation is 4.2 times as fast.

These instances were also used by Kreipl [2000] to test his simulated annealing
approach for the total weighted tardiness job shop. He uses a neighborhood that
consist of all oriented edges that are element of at least one longest path froms to
a tardy end-operation. To intensify the search process he sometimes uses a smaller
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criterionrbf criterionbf criterionfl
name opt sb2 sb3 ls15 ls200 best average best average best average
ft10 394 394 394 485 414 394 414.7 394 428.3 394 416
abz5 69 109 77 88 70 69 78.6 70 79.4 69 73.4
abz6 0 0 0 0 0 0* 0.0 0* 0.0 0* 0.0
la16 166 178 175 166 166 166 181.3 169 204.1 166 176.9
la17 260 260 260 260 260 260 260.4 260 260.4 260 260.4
la18 34 83 34 39 34 34 34.4 34 42.8 34 40.0
la19 21 76 21 31 21 21 43.8 25 36.7 21 36.9
la20 0 0 0 1 0 0* 0.8 0* 0.9 0* 0.9
la21 0 16 0 13 0 0* 4.8 0* 4.0 0* 4.2
la22 196 196 196 196 196 196 204.1 196 203.2 196 196.0
la23 2 2 2 2 2 2 2.0 2 2.0 2 2.0
la24 82 82 82 96 90 82 89.9 88 92.4 82 96.7

orb01 1098 1539 1196 1328 1143 1231 1308.1 1124 1364.3 1141 1323.4
orb02 292 324 292 366 292 292 302.8 292 309.4 292 323.9
orb03 918 1073 967 1029 965 990 1027.9 928 1026.1 952 1035.0
orb04 358 358 358 387 358 358 446.6 358 472.6 358 642.4
orb05 405 524 517 527 455 443 491.5 478 484.6 429 513.8
orb06 426 650 426 459 426 455 528.7 426 489.9 426 490.2
orb07 50 193 50 126 119 50 63.0 50 82.0 50 78.1
orb08 1023 1298 1023 1221 1138 1023 1158.1 1023 1113.6 1035 1133.0
orb09 297 342 331 313 297 297 344.5 297 342.0 297 339.3
orb10 346 535 458 492 408 485 533.1 492 554.5 436 478.7

sum 6437 8232 6859 7625 6854 6848 7519.1 6706 7587.7 6640 7661.2

Table 2.2: Results per instance.

sb2 sb3 ls15 ls200 F=0.0 F=0.2 F=0.4 F=0.6 F=0.8 F=1.0
31.2 337.6 14,32 175,73 22.5 19.7 17.5 16.0 14.5 12.2

Table 2.3: Average running times.

neighborhood: in this case only oriented edges that are element of the longest path
from s to the tardy end-operation with the highest impact on the objective value are
considered. He gives test results for two variantsls15andls200. For ls15andls200
the maximum running time is 15 and 200 seconds, respectively. His experiments
were performed on a Pentium 233 MHz personal computer. Benchmark results of
the Standard Performance Evaluation Corporation [1999] indicate that our worksta-
tion is 1.3 times as fast. In Table 2.1 we give the sum of the best and the average
solutions for factor 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 and the four criteria. The best
results were obtained by a factor 0.2 and therbf, bf, andfl criteria. In Table 2.2 we
give for these algorithms the best and average results for each instance. If optimality



2.4 Computational results 35

criterionrbf criterionbf criterionbs criterionfl
factor best average best average best average best average

0.0 20862 23912.6 21179 24399.1 21162 24356.8 21271 24411.0
0.2 21801 25683.2 21973 25836.4 22339 25759.9 21921 25775.4
0.4 25994 30874.0 26036 30769.9 26097 30858.5 25891 31145.0
0.6 31626 37879.7 31229 37701.6 31372 37449.9 31587 38470.2
0.8 37739 47681.7 37661 47393.1 38067 47461.1 38297 46920.8
1.0 50729 68255.7 51717 68577.0 51670 68621.0 51094 68245.4

Table 2.4: The sum of the best and the average solutions.

has been proven, this is indicated by an *. Notice that this has only occurred when
the optimal value is zero. Also the optimum (opt), the results of the shifting bottle-
neck algorithms of Pinedo and Singer (sb2andsb3), and the results of the simulated
annealing algorithm of Kreipl (ls15andls200) are given for each instance. One run
of our algorithm is on average better thansb2andls15, and the best of ten runs of
our algorithm is slightly better thansb3andls200.

In Table 2.3 the average running time of one run ofsb2, sb3, ls15andls200are
given in real seconds, and the average running times of one run for factor 0.0, 0.2,
0.4, 0.6, 0.8, and 1.0 are given in cpu seconds. One run of our algorithm seems
to be 2.7 and 1.8 times slower thansb2, and ls15, respectively. Ten runs of our
algorithm seems to be 2.5 and 1.4 times slower thansb3andls200. Please note that
our implementation was made for more general problems and does not exploit the
special structure of the job shop problem for which more efficient data structures
exists.

2.4.2 Second test sample

There are no instances of a generalized job shop problem like ours available in lit-
erature. To fill this gap, we have generated a class of random instances, which are
publically available; see De Bontridder [2000b]. These instances were generated
as follows. First we randomly generated a precedence graph using techniques de-
scribed in Kolisch et al. [1995]. The processing time of each operation, the time
lag of each precedence relation, and the weight of each end-operation are randomly
drawn integers within [1,99], [0,19], and [1,4], respectively. Each operation is
randomly assigned to a machine, and suitable release times and due dates are ran-
domly generated. The test instances db01-10 consist each of 100 operations and 10
machines. Each instance has 10 end-operations. The instances db11-20 each have
225 operations, 15 end-operations, and 15 machines. The instances db21-30 each
have 400 operations, 20 end-operations, and 20 machines.

In Table 2.4 we give the sum of the best and the average solutions for factors
0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 and the four criteria. The best results were obtained
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criterionrbf criterionbf criterionbs criterionfl
name ub best average best average best average best average
db01 718 718 718.0 718 722.8 718 726.0 718 722.0
db02 216 216 216.0 216 216.0 216 216.0 216 216.1
db03 881 881 886.3 881 881.0 881 881.0 881 881.0
db04 104 104 104.0 104 104.0 104 104.0 104 104.0
db05 320 320 357.8 320 347.0 320 352.4 320 354.0
db06 68 68 68.0 68 68.0 68 68.0 68 68.0
db07 932 982 1011.7 982 995.8 982 994.0 978 984.6
db08 218 218 218.0 218 218.4 218 218.0 218 218.0
db09 490 490 492.2 490 490.4 490 490.4 490 491.4
db10 606 606 624.3 610 632.2 630 657.3 616 673.2
db11 136 136 148.7 136 144.4 136 143.6 136 142.7
db12 641 662 763.8 697 807.7 669 794.0 760 831.1
db13 234 244 264.8 236 261.6 244 264.9 238 251.0
db14 1044 1094 1223.0 1152 1240.9 1117 1228.7 1088 1212.0
db15 1017 1017 1211.7 1203 1373.2 1177 1303.9 1179 1303.2
db16 262 262 287.2 265 291.7 265 302.7 268 326.8
db17 276 276 307.0 276 322.2 276 293.4 276 306.4
db18 1151 1151 1233.6 1159 1242.4 1151 1236.6 1151 1251.0
db19 66 66 93.4 66 89.0 66 89.4 66 79.4
db20 1054 1118 1212.8 1108 1206.6 1160 1264.7 1069 1179.9
db21 1714 1716 2371.0 1714 2338.6 1764 2397.3 1854 2431.6
db22 8 44 239.2 44 210.4 34 212.2 8 210.6
db23 1412 1543 1685.1 1470 1686.8 1412 1655.3 1488 1719.9
db24 1066 1103 1334.9 1185 1437.6 1115 1491.9 1099 1411.5
db25 434 450 531.1 452 522.0 473 544.7 434 530.7
db26 1786 1795 1973.5 1786 2035.0 1795 2043.2 1787 2006.6
db27 178 229 280.4 178 267.7 229 253.3 214 277.3
db28 386 386 476.7 426 477.3 433 479.2 427 475.7
db29 1789 1849 2198.0 1883 2277.6 1875 2225.0 1978 2256.2
db30 1118 1118 1380.4 1136 1490.8 1144 1425.7 1142 1495.1
sum 20325 20862 23912.6 21179 24399.1 21162 24356.8 21271 24411.0

Table 2.5: Results per instance.

by the algorithms with a factor 0.0. In Table 2.5 we give per instance the best known
solution (ub), and the best and average results for factor 0.0 and the four criteria.

In Table 2.6 we give for the instances with respectively 100, 225, and 400 op-
erations the average running times of one run for factors 0.0, 0.2, 0.4, 0.6, 0.8, and
1.0 in cpu seconds.

2.5 Conclusion

In this chapter we have presented a tabu search algorithm for a generalization of the
classical job shop scheduling problem, which resembles practice more closely. All
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F = 0.0 F = 0.2 F = 0.4 F = 0.6 F = 0.8 F = 1.0
db01-10 24.9 19.5 16.5 14.7 12.3 7.9
db11-20 72.6 57.9 50.6 45.8 37.5 24.5
db21-30 167.2 136.7 115.6 99.5 83.3 51.4

Table 2.6: Average cpu running time per factor.

neighbors are obtained by swapping adjacent operations, where we have identified
a necessary criterion for improvement which reduces the size of the neighborhood
significantly. Our tabu search algorithm seems to be effective both with respect to
time and solution quality, but for the the randomly generated instances no hard con-
clusions can be drawn due to a lack of strong lower bounds. This is an interesting
subject for future research. Nevertheless, we conclude that also for a more practical
problem like this one exploiting the structure of a specific neighborhood helps.





3
Handling nonrenewable resource

constraints

In this chapter we generalize the problem described in the previous chapter by drop-
ping the assumption that the assignment of the produced or purchased nonrenew-
ables to the consuming operations is given. Therefore, we must assign all operations
to a starting time and all nonrenewables to a consuming operation in such a way that
all constraints are satisfied and the tardiness costs are minimized.

We handle the resulting problem by a tabu search algorithm. To account for
the introduced nonrenewable resource constraints we use another representation
method for the schedules: the activity list. Given an activity list a schedule can
be generated by a list scheduling algorithm. The list scheduling algorithm renders
starting times for the operations and an assignment of the produced or purchased
nonrenewables to the consuming operations. All neighbors are modifications of the
activity list.

This chapter is organized as follows. In Section 3.1 we describe the list schedul-
ing heuristic that, given an activity list, renders the starting times of the operations
and an assignment of the nonrenewables. In Section 3.2 we present our neighbor-
hood function. Our tabu search method is described in Section 3.3. In Section 3.4
we give extensive computational results. Finally, we make some concluding re-
marks.

39
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3.1 Using an activity list to determine the starting times

In our model we have a set ofn operations, on which an arbitrary precedence rela-
tion is defined. There are a given number of machines, each of which is available
from time zero onwards and can handle at most one operation at a time, and a
given number of nonrenewables. Each operationu has a release timeru at which it
becomes available, a machinemu that has to process it, and a positive processing
time pu. If there is a precedence constraint between two operationsu andv, then
operationv cannot start before the completion of operationu. Some precedence
constraints stipulate apositive end-start time lag quv: between the completion of
operationu and the start of operationv at leastquv time units must elapse. Some
operations produce or consume nonrenewables. LetCu andPu denote the set of
nonrenewables thatu consumes and produces, respectively. For every nonrenew-
able i ∈ Cu the consumed quantityki

u is given. For every nonrenewablei ∈ Pu

the produced quantityl i
u and a fixeddelivery time fiu are given; if operationv con-

sumes at least one unit of nonrenewablei produced by operationu, then f i
u time

units must elapse between the completion of operationu and the start of operation
v. Operationv can also consume nonrenewables that have been purchased from ex-
ternal suppliers. Each receipt is characterized by a triple(i, l , r ); i , l , andr denote
the type of nonrenewable, the purchased quantity, and the moment of the receipt,
respectively. If operationv consumes at least one unit of nonrenewable from receipt
(i, l , r ), thenv cannot start before timer .

The objective function is computed on the basis of only a subset of the oper-
ations, the so calledend-operations. For an end-operationu a due datedu and a
weightwu are given. The problem is to assign the operations to time intervals on
the machines such that the schedule is feasible and thetotal weighted tardinessis
minimized. The tardiness of an end-operation is defined as the maximum of its late-
ness and zero, where the lateness of an end-operation is defined as its completion
time minus its due date.

We use a list scheduling heuristic to generate a schedule. Theactivity list is the
order in which the operations are scheduled. Other examples of the use of activity
lists in combination with local search are given by Baar et al. [1998] and Kolisch
and Hess [2000]. An activity listγ is feasibleif it has the following characteristics.

• The activity list obeys the precedence relation.

• The operations can be scheduled in orderγ without creating negative
stocks.

With u ≺γ v (u �γ v) we indicate thatu is positioned before (after)v in activity
list γ . Given a feasible activity list, a processing order on each machine and an
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assignment of each produced or purchased nonrenewable to a consuming operation
can be determined inO(n). Thus every feasible activity list corresponds to a unique
schedule. There is always an optimal schedule that can be represented by an activity
list. It is known that finding an initial feasible solution is stronglyNP-complete; see
Carlier and Rinnooy Kan [1982]. We therefore allow schedules with negative stocks
during the search process. In Subsection 3.2.5 we show how we handle negative
stocks, but first we consider feasible activity lists.

3.1.1 Creating a schedule

We now show how to create a schedule given an activity listγ . We schedule the
operations in the order of activity listγ , where the operations are started as early
as possible. An operationv that requires some nonrenewable can only start if a
sufficient amount of this nonrenewable is available. We demand that the required
nonrenewables are produced by an operationu for which u ≺γ v or that they are
purchased from an external supplier: an operation consumes the nonrenewable that
becomes available for consumption as early as possible. In case of a receipt a non-
renewable becomes available at its moment of receipt. Otherwise, a nonrenewable
becomes available at the completion time of the producing operation plus its deliv-
ery time. We will use the following example to illustrate our method.

Example 3.1. Our example has 9 operations, 3 machines, and 2 nonrenewables.
Operations 3, 8, and 9 are end-operations. In the table below we give for each
operationu the release timeru, the required machinemu, and the processing time
pu. For each end-operation the due datedu and the weightwu are given. Also the
produced quantitiesl i

u, the consumed quantitieski
u, and the delivery timesci

u of both
nonrenewablesi = 1,2 are given.

u 1 2 3 4 5 6 7 8 9
ru 0 0 0 4 0 0 0 0 3
mu 1 3 3 1 3 2 2 3 1
pu 4 1 3 3 1 2 2 1 1
l 1
u 1 1

c1
u 4 0

k1
u 1 1 1 1

l 2
u 1 1

c2
u 3 0

k2
u 1 1

du 3 8 7
wu 2 1 3

There is a receipt of one unit nonrenewable 1 at time 1 and one unit nonrenewable 1
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Figure 3.1: The resulting schedule for activity list 123456789.

at time 4. The precedence constraints and the positive end-start time lags are given
in the following table.

arc (1,4) (4,9) (5,7) (6,9)
quv 1 0 0 2

The resulting schedule given activity list 123456789 is given in Figure 3.1. The
grey operations are end-operations. The solid arcs indicate that there are precedence
constraints or release times. The dotted and the dash-dot arcs indicate that there is
an assignment of nonrenewable 1 or nonrenewable 2, respectively. The vertical
dotted arcs under the x-axis indicate a receipt of nonrenewable 1. 2

3.1.2 Left-justified schedules

It is easy to see that it is not useful to introduce unnecessary idle time. To formalize
this we use again the concept of left-justified schedules; see definition 1.2. In our
case there is always an optimal schedule that is left-justified. We show that there
is always an optimal schedule that can be represented by an activity list by proving
the following theorem.

Theorem 3.1. Every left-justified schedule can be represented by an activity list.

Proof. Suppose that there is a left-justified schedule that cannot be represented by
an activity list. LetSu denote the starting times in such a schedule. We create activ-
ity list γ by ordering all operations according to nondecreasing starting times. We
apply our list-scheduling heuristic to activity listγ ; for each operationu we denote
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by Sγu the resulting starting time. Note that the processing order has remained the
same on each machine. Since the original schedule was left-justified, there must be
at least one operationu such thatSγu > Su. Let z be the first such operation inγ .
For all operationsv for which Sv < Sz we havev ≺γ z andSγv ≤ Sv, and for all
operationsv for which Sv > Sz we havev �γ z. This implies thatSγz ≤ Sz, which
is a contradiction. 2

It is clear that not every activity list results in a left-justified schedule. For ex-
ample, the schedule in Figure 3.1 is not left-justified: operation 6 can start at time
1 without delaying another operation.

3.2 Neighborhood

In Subsection 3.2.5 we discuss how we handle an infeasible activity list. Before that
we show how we determine the neighbors of a feasible activity list. Neighbors are
obtained by making one move from the current solution. We obtain a neighbor by
selecting two operationsa andb whose order we want to change. This is obtained
by modifying the activity list appropriately. Operationsa andb can be two adjacent
operations on some machine, two consumers of the same type of nonrenewable, or
a consumer and a producer of the same type of nonrenewable. To choosea andb
we use the concept of acritical graph.

3.2.1 Critical graph

In the critical graph we indicate for each operation the cause of its starting time,
e.g., an occupied machine, a precedence constraint, or an insufficient amount of
some nonrenewable. In the critical graph we represent each operation by a node.
Furthermore, we add a root nodes. With V we denote the set of all nodes.

For each operationv we now determine the cause of its starting time. If the
starting time of operationv is caused by

• a precedence constraint betweenu andv, then we add arc(u, v);

• a release time, then we add arc(s, v);

• the consumption of a nonrenewablei produced byu, then we add as-
signment arc(u, v|i );

• the consumption of a nonrenewablei purchased from an external sup-
plier, then we add assignment arc(s, v|i );

• the machine predecessoru, then we add a machine arc(u, v).
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Figure 3.2: The resulting critical graph.

If the cause of the starting time is not unique, then we select the one of highest
priority according to the following selection order.

1. a precedence constraint betweenu andv or release times;

2. the consumption of a nonrenewablei produced by machine
predecessoru;

3. the machine predecessoru;

4. the consumption of a nonrenewablei .

If not all ties are settled by this selection order, then we randomly select one of the
equivalent candidates. This order is required to prove some useful theorems later
on.

The collection of selected arcs will be denoted byAc. With A∗c we denote the
collection of all arcs belonging to a path froms to any tardy end-operation in the
critical graph(V,Ac).

Example 3.2. In Figure 3.1 the schedule resulting from activity list 123456789 was
given. The corresponding critical graph is shown in Figure 3.2. The solid arcs cor-
respond to precedence constraints or release times. The dashed arcs correspond to
machine arcs. The dotted and the dash-dot arcs are assignment arcs of nonrenew-
able 1 and nonrenewable 2, respectively. All end-operations are tardy. Therefore,
the arcs(s,1), (1,4), and(3,5) do not belong toA∗c. 2
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Figure 3.3: The resulting schedule for activity list 123564789.

3.2.2 Swapping two operations

As mentioned before, we obtain a neighbor by changing the order in the activity
list of two selected operationsa andb. Let γ be the current activity list, and letSγu
denote the corresponding starting times. We allow a swap of operationsa andb if

• a ≺γ b, and

• there is no precedence constraint betweena andb. Notice that there
is also a precedence constraint betweena andb if there is a ‘path’ of
precedence constraints betweena andb.

To swapa andb we introduce a variableQab. Depending on the type of neighbor,
Qab is equal toSγb or max{Sγa , Sγb }. We modify activity listγ as follows. The order
of the operations up to and includinga in activity list γ remains unchanged; the
same holds for the ones afterb. All operationsu between operationa and operation
b are now evaluated in the order of the activity listγ . If Sγu < Qab, thenu is
re-inserted just beforea; otherwise,u does not move. Finally we re-insertb just
beforea. With γ ′ we will denote the resulting activity list.

Example 3.3. Consider our example. Suppose that we want to swap 4 and 6.Q46

is in all cases equal to 5. The order of the operations 1, 2, 3, 4, 7, 8, and 9 remains
unchanged in the activity list. Now we evaluate operation 5. The starting time of
operation 5 is 4; therefore we insert 5 just before 4. Finally we insert 6 just before 4.
Therefore, swapping operation 4 and operation 6 results in activity list 123564789.
The resulting schedule is given in Figure 3.3. 2
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We now can state the following theorem.

Theorem 3.2. Let γ be a feasible activity list, and letγ ′ be the activity list that
results after swapping a and b. If there is no assignment arc between a and b and
Sγa + pa ≥ Sγb , then activity listγ ′ is feasible.

Proof. As mentioned in Section 3.1, activity listγ ′ is feasible if it satisfies the
following criteria.

• The activity list obeys the precedence relation.

• The operations can be scheduled in orderγ ′ without creating negative
stocks.

We must prove that ifu ≺γ v andu �γ ′ v, then there is no precedence constraint
betweenu andv and thatu does not produce nonrenewables that are consumed by
operationv. If there is a precedence constraint betweenu andv or if u produces
nonrenewables that are consumed by operationv, thenSγu + pu ≤ Sγv . We now
show that this cannot hold for any pair of operations(u, v) for which u ≺γ v and
u �γ ′ v with the exception of(a,b). If u 6= a andv 6= b, then

Sγu ≥ Qab > Sγv .

If u 6= a andv = b, then we have

Sγu + pu ≥ Qab+ pu ≥ Sγb + pu > Sγb .

The last case we have to consider isu = a andv 6= b. We distinguish between the
casesQab = max{Sγa , Sγb } andQab = Sγb . If Qab = max{Sγa , Sγb }, then

Sγa + pa ≥ Qab+ pa > Sγv + pa > Sγv .

If Qab = Sγb , then we have

Sγa + pa ≥ Sγb = Qab > Sγv .

Since there is no precedence constraint or assignment arc betweena andb, this
completes the proof. 2

We also have identified properties that guarantee that none of the operations will be
delayed in the resulting schedule after swapping two operations. These are stated
in the following theorem.
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Theorem 3.3. Let γ be a feasible activity list, and letγ ′ be the activity list that
results after swapping a and b. If Sγa ≥ Sγb , then Sγ

′

u ≤ Sγu for each u∈ V.

Proof. Suppose that there is an operationv such thatSγ
′

v > Sγv ; let z be the
first such operation inγ ′.As a consequence ofSγa ≥ Sγb we have for every pair of
operations(u, v) for whichu ≺γ v andu �γ ′ v that

Sγu ≥ Qab ≥ Sγv . (3.1)

There are only two reasons that can cause delay; we discuss them below.

• There is an operationu such thatu produces nonrenewables that are
consumed by operationz in scheduleγ andu �γ ′ z. As a consequence
of the consumption we haveu ≺γ z and Sγu + pu ≤ Sγz , which is in
contradiction with (3.1).

• There is an operationv and a nonrenewablei such thatz≺γ v, z�γ ′ v,
and nonrenewablei is consumed by both operationv and operationz.
As a consequence of (3.1) we haveSγz ≥ Sγv , which implies that the
nonrenewables consumed by operationv in scheduleγ are available
beforeSγz in scheduleγ ′. We can therefore conclude that also the sec-
ond option cannot cause the delay.

2

We use these theorems to define our neighborhood function. Each neighbor is cre-
ated by one of the following moves.

• The machine swap, which we discuss in Subsection 3.2.3;

• The critical assignment swap, which we will work out in Subsec-
tion 3.2.4.

3.2.3 Machine swap

For every machine arc(a,b) in A∗c we create a neighbor by swappinga andb; in
this case we setQab equal toSγb . Note that, since the machine arc(a,b) is inA∗c,
we have thata ≺γ b and Sγa + pa = Sγb . Moreover, we know that there is no
precedence constraint or assignment arc betweena andb, because of our selection
order for choosing the critical arc ofb; see Subsection 3.1.1. Hence, if activity list
γ is feasible, then Theorem 3.2 shows that the swap ofa andb results in a feasible
activity list.

Theorem 3.4. After performing swap(a,b), the processing order remains the same
on each machine with exception of the processing order of a and b.
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Proof. As mentioned in the proof of Theorem 3.2, we haveSγu + pu > Sγv for
every pair of operations(u, v) for which u ≺γ v andu �γ ′ v with the exception of
(a,b). Therefore,u andv are not processed on the same machine, which completes
the proof. 2

With Nm(γ ) we denote the neighbors ofγ created by a machine swap.

3.2.4 Critical assignment swap

If we have two operationsa andb such thata ≺γ b andSγa + pa > Sγb , then there
is no precedence constraint or assignment arc betweena andb. Thus in this case
swappinga andb yields a feasible solution. After swapping two operationsa and
b for which a ≺γ b andSγa + pa > Sγb , we haveSγu + pu > Sγv for every pair of
operations(u, v) for which u ≺γ v andu �γ ′ v. As a consequence we have the
following property.

Property 3.5. After swapping two operations a and b for which a≺γ b and
Sγa + pa > Sγb , the processing order remains the same on each machine. 2

For every operationv ∈ V for which there exists an assignment arc(u, v|i ) in Ac

we create at most two neighbors.
The first type of neighbor is created by swappingv with an operationa that

consumes nonrenewablei (i ∈ Ca) and precedes operationv in activity list γ (a ≺γ
v). In this caseQav is equal toSγv . Only one such operationa is selected. In case
of multiple options, we use the following order to select an operation.

1. An operationa for which Sγa ≥ Sγv . If there is more than one candidate,
then we choose the first one in the activity list. In this way all operations
z for which z≺γ v andSγz ≥ Sγv succeedsv in activity list γ ′.

2. An operationa for which Sγa + pa > Sγv . In case of multiple options
we choose a random candidate. In this case only the selected operation
succeedsv in activity list γ ′.

3. The last operationa in γ for which there is no precedence constraint be-
tweena andv. In this case swappinga andv can result in an infeasible
activity list.

The second type of neighbor is created by swappingv with an operationb
that produces nonrenewablei (i ∈ Pb) and succeeds operationv in activity list
γ (b �γ v). In this caseQvb is equal to max{Sγv , Sγb }. Only one such operationb is
selected. In case of multiple options, we use the following selection order to select
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an operation.

1. An operationb for which Sγv ≥ Sγb . If there is more than one candidate,
then we choose the last one in the activity list. In this way all operations
z for which z�γ v andSγz < Sγv precedesv in activity list γ ′.

2. An operationb for which Sγv + pv > Sγb . In case of multiple options
we choose a random candidate. In this case only the selected operation
certainly precedesv in activity list γ ′.

3. The first operationb in γ for which there is no precedence constraint be-
tweenv andb. In this case swappingv andb can result in an infeasible
activity list.

With Nc(γ ) andNp(γ ) we refer to the set of neighbors of the first and the second
type, respectively. Our neighborhoodN (γ ) is the union ofNm(γ ), Nc(γ ), and
Np(γ ).

Example 3.4. Consider our example.Nm(γ ) consists of the neighbor obtained by
machine swap(2,3). The neighbor obtained by critical assignment swap(4,6)
belongs toNc(γ ). SinceSγ4 ≥ Sγ6 we know that none of the operations will be
delayed in the resulting schedule; see Figure 3.3. This is also the reason why we
selected critical assignment swap(4,6) and not critical assignment swap(5,6).
Also the activity list obtained by swapping(6,8) belongs toNc(γ ). Np(γ ) consists
of the activity list obtained by swapping(6,7). 2

3.2.5 Handling an infeasible activity list

As mentioned earlier we allow activity lists that do not satisfy the nonrenewable
resource constraints. An activity list is infeasible if there is at least one operation
u that cannot be scheduled without causing a negative stock. To determine the
neighborhood of an infeasible activity list we do not use the critical graph. To
handle this situation we introduce a variableP with initial value 0 and an empty set
of arcsAc. Every time we find an operationu whose demand cannot be satisfied,
we increase the value ofP with the missing quantity, and we add an assignment arc
(0,u|i ) toAc. If P> 0, then the objective value is not equal to the total weighted
tardiness, butP times a large given number. In this caseA∗c remains empty, and
therefore there are no neighbors that are created through a machine swap. The
neighbors obtained by critical assignment swaps are determined as described in
Subsection 3.2.4.
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3.3 Tabu search algorithm

Our algorithm starts with the construction of an initial solution. The resulting ac-
tivity list γ is the input of our first iteration. In a single iteration we determine our
neighborhoodN (γ ) and use a neighborhood search strategy to choose a neighbor
γ ′ ∈ N (γ ). To intensify the search we use a restarting strategy. We stop the search,
when a maximum number of iterations has been reached, or when all restarting
possibilities are exhausted.

3.3.1 Finding an initial solution

We randomly generate an activity list that satisfies the precedence constraints.
Given this activity list we generate the initial schedule, which does not have to
satisfy the nonrenewable resource constraints.

3.3.2 Neighborhood search strategy

In our neighborhood search strategy we allow non-improving moves to escape from
local minima. Withφ(γ ) we will denote the objective value of activity listγ . We
use the following procedure to choose a neighbor. Given are the current orientation
γ , a nonempty neighborhoodN (γ ), and the current best solutionφ∗. We evaluate
the neighbors in random order and apply afirst improvementsearch strategy. This
means that we take the first neighborγ ′ for which φ(γ ′) < φ(γ ). If none of the
neighbors satisfies this condition, then we select a random neighborγ ′.

To prevent short-term cycling we usetabu search. In tabu search we forbid
certain swaps that do not improve the best solution obtained so far. When we have
performed swap(a,b), then swapping all arcs of the form(b, x), (y,a), and(a,b)
is forbidden for at mostN steps;N is called thetabu tenure.

We have implemented the tabu search algorithm as follows. We introduce the
iteration countI and two mappingsτ1 : V → N andτ2 : V → N. Initially both
τ1(u) andτ2(u) are set equal to 0 for allu ∈ V, and I is set equal to 0. Every
iteration we increaseI by at least one. Note that the iteration countI is not the
same as the number of performed iterations. A swap(a,b) is tabu if τ1(a) > I ,
τ2(b) > I , or if τ1(b) is equal toτ2(a) andτ1(b) > I . If τ1(b) is equal toτ2(a),
then the tabu value of swap(a,b) is equal to max{τ1(a)− I , τ2(b)− I , τ1(b)− I ,0}.
Otherwise, the tabu value is equal to max{τ1(a) − I , τ2(b) − I ,0}. Swap(a,b) is
accepted only if the current best solutionφ∗ is improved or if(a,b) is not tabu.
If none of the neighbors satisfies one of these criteria, then we perform the swap
(a,b) with minimum tabu value, after whichI is set equal to this tabu value.

After performing the selected swap(a,b), we setτ2(a) andτ1(b) equal toI +N
and increaseI by one. In our algorithmN is equal to 8.
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3.3.3 Restarting strategy

Again we have extended our tabu search algorithm with the restarting strategy pre-
sented by Nowicki and Smutnicki [1996]. Restarting takes place from one of the
better local minima if the overall best solution has not been improved for a given
number of iterations. If we reach a local minimum that improves the overall best
solution and that has at least two non-tabu neighbors, then we store activity listγ ,
iteration countI , and the mappingsτ1 andτ2 in a listL. In L only a given number
of local minima can be stored. If we want to store a new local minimum andL is
full, then we remove the local minimum with the highest objective value.

When we restart the search process, we select the local minimum with the low-
est objective value inL and use its activity list, its iteration countI , and its map-
pings τ1 and τ2 as a restarting point for the algorithm. In the first step after the
restart we select the best non-tabu neighbor that has not already been attempted,
and the search process is restarted. If there is only one neighbor that has not been
attempted, then we remove this local minimum fromL.

3.4 Computational results

We have tested our algorithm on two test samples. The first one consists of mod-
ified job shop instances. The second test sample was randomly generated. All of
the instances are available; see De Bontridder [2000a]. We used the following pa-
rameter settings for both samples. The maximum number of iterations is set equal
to 100,000. We restart for the first time when the overall best solution has not been
improved for 5,000 iterations; otherwise, we restart when the overall best solution
has not been improved for 2,500 iterations. The maximum size ofL is set equal
to 5. We performed ten independent runs for each instance. The experiments were
performed on a Sun Ultra 10 333 MHz workstation.

3.4.1 First test sample

To create the first test sample we have modified the job shop instances that were
used in Singer and Pinedo [1998]; Pinedo and Singer [1999] and in Subsec-
tion 2.4.1. To these 22 instances we added nonrenewable resource constraints. For
each job shop instance we generated two different instances. The instances are de-
noted by the name of the original instance with suffix 1 or 2. The optimum of the
original instance is a lower bound on the optimum of the modified instances. To
guarantee that this lower bound is not too weak we used the best available solution
of the original problem (twenty of which are known to be optimal) to generate the
nonrenewable resource constraints. We added nonrenewable resource constraints
to the original problem in such a way that the best known solution remained feasi-
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name n lb ub best average #best #inf time
abz5-1 100 69 69 69 78.3 7 0 63.3
abz6-1 100 0 0 0 0.0 10 0 43.9
ft10-1 100 394 394 394 394.0 9 1 40.7
la16-1 100 166 166 166 166.0 9 1 41.7
la17-1 100 260 260 260 260.0 9 1 34.5
la18-1 100 34 34 34 34.0 7 3 36.0
la19-1 100 21 21 21 32.4 7 1 55.5
la20-1 100 0 0 20 20.0 9 1 37.7
la21-1 100 0 0 0 0.0 9 1 45.5
la22-1 100 196 196 196 196.0 8 2 34.9
la23-1 100 2 2 2 2.0 8 2 41.9
la24-1 100 82 82 82 82.0 8 2 46.4

orb01-1 100 1098 1124 1124 1338.3 1 1 75.1
orb02-1 100 292 292 292 292.0 8 2 43.2
orb03-1 100 918 918 918 951.8 4 5 37.2
orb04-1 100 358 358 358 1386.0 3 1 46.3
orb05-1 100 405 405 405 405.0 10 0 44.0
orb06-1 100 426 426 426 476.6 4 1 57.4
orb07-1 100 50 50 50 56.8 4 2 45.7
orb08-1 100 1023 1023 1023 1182.3 3 4 34.3
orb09-1 100 297 297 297 297.0 10 0 66.0
orb10-1 100 346 424 424 424.0 8 2 60.0

Sum 6437 6541 6561 8074.5 155 33 1031.3

Table 3.1: Results per instance.

ble. In other words, the value of this solution is an upper bound for the modified
instance.

In our test instances there are 10 types of nonrenewables. For each nonrenew-
ablei the nonrenewable resource constraints were generated as follows. Each op-
erationu consumes nonrenewablei with probability 0.1; the consumed quantity
is equal to a randomly drawn integer withinU [1,10]. These nonrenewables are
produced by an operation that is completed before the start of operationu in the
used solution. The nonrenewables that are not produced by another operation are
purchased from an external supplier at time 0. An operation cannot produce nonre-
newablei if a direct predecessor consumes nonrenewablei . In the instances with
suffix 1 operationu produces with probability 0.1 a random part of the quantity of
nonrenewablei needed after the completion of operationu. In the instances with
suffix 2 operationu produces with probability 0.5 the quantity of nonrenewablei
needed after the completion of operationu.

As mentioned before we did 10 independent runs for each instance. In Table 3.1
and Table 3.2 we give the results for the modified job shop instances with suffix 1
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name n lb ub best average #best #inf time
abz5-2 100 69 69 69 370.0 4 1 89.9
abz6-2 100 0 0 0 0.0 9 1 57.6
ft10-2 100 394 394 394 394.0 10 0 72.8
la16-2 100 166 166 166 166.0 9 1 89.7
la17-2 100 260 260 260 554.0 1 0 85.0
la18-2 100 34 34 34 42.3 8 1 58.1
la19-2 100 21 21 21 21.0 10 0 110.5
la20-2 100 0 0 20 954.1 3 2 59.0
la21-2 100 0 0 0 130.7 1 0 80.7
la22-2 100 196 196 196 325.0 5 3 63.1
la23-2 100 2 2 2 562.5 7 0 103.5
la24-2 100 82 82 82 82.0 7 3 65.8

orb01-2 100 1098 1124 1244 1549.8 1 1 122.5
orb02-2 100 292 292 292 332.0 4 3 38.6
orb03-2 100 918 918 918 4108.8 1 2 75.6
orb04-2 100 358 358 358 368.0 6 0 83.6
orb05-2 100 405 405 405 718.3 7 1 92.7
orb06-2 100 426 426 426 2403.9 1 1 86.0
orb07-2 100 50 50 50 50.0 10 0 79.3
orb08-2 100 1023 1023 1023 2760.7 1 1 106.0
orb09-2 100 297 297 297 302.5 7 2 67.8
orb10-2 100 346 424 548 1758.4 2 3 59.0

Sum 6437 6541 6805 17954.0 114 26 1746.7

Table 3.2: Results per instance.

and 2, respectively. For each instance we give the number of operations (n), the
lower bound (lb), the upper bound (ub), and the best result (best). In the column
‘average’ the average result of the runs that resulted in a feasible solution is given;
the number of runs that resulted in the best solution or in an infeasible solution are
given in the sixth column (#best) and the seventh column (#inf), respectively. In the
last column we give the time of one run in cpu seconds.

The results for the modified job shop instances are satisfactory. The best results
of the instances with suffix 1 equal the upper bound 21 times. Also the average
results are acceptable. For the instances with suffix 2 the best result equals the
upper bound 19 times. The average results are less satisfactory.

3.4.2 Second test sample

We also modified the randomly generated instances used in Subsection 2.4.2. For
these 30 instances we again generated two different instances with nonrenewable
resource constraints, denoted by the name of the original instance with suffix 1 or
2. The nonrenewable resource constraints were generated in almost the same way
as in the modified job shop instances. We again used the best available solution
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name n ub best average #best #inf time
db01-1 100 718 718 718.0 8 2 37.0
db02-1 100 216 216 216.0 7 3 42.6
db03-1 100 881 881 881.0 9 1 42.2
db04-1 100 104 104 104.0 8 2 36.0
db05-1 100 320 320 320.0 7 3 36.3
db06-1 100 68 68 68.0 8 2 37.1
db07-1 100 932 918 935.9 1 1 52.7
db08-1 100 218 218 245.7 1 1 49.3
db09-1 100 490 490 490.0 8 2 39.5
db10-1 100 606 606 606.8 7 2 45.8
db11-1 225 136 115 115.0 7 3 162.0
db12-1 225 641 880 1061.2 1 2 312.1
db13-1 225 234 216 247.3 1 4 156.9
db14-1 225 1044 994 1458.2 1 2 234.8
db15-1 225 1017 1427 1672.2 1 0 369.2
db16-1 225 262 270 338.2 1 2 242.0
db17-1 225 276 276 343.6 3 1 235.2
db18-1 225 1151 1151 1225.9 2 1 325.7
db19-1 225 66 66 66.0 9 1 214.8
db20-1 225 1054 1210 1365.2 1 1 373.5
db21-1 400 1714 1688 2099.8 1 0 1282.1
db22-1 400 8 10 405.4 1 0 1259.3
db23-1 400 1412 1361 1730.3 1 1 864.5
db24-1 400 1066 2117 2831.4 1 2 1601.2
db25-1 400 434 1563 1879.4 1 3 971.5
db26-1 400 1786 1795 2157.0 1 2 907.9
db27-1 400 178 225 586.0 1 2 1375.3
db28-1 400 386 494 694.0 1 5 541.5
db29-1 400 1789 1513 1747.8 1 2 1001.6
db30-1 400 1118 1569 1950.0 1 1 1301.2

Sum 20325 23479 28559.3 101 54 14150.7

Table 3.3: Results per instance.

of the original problem to generate the nonrenewable resource constraints. The
only difference is that we generated delivery times within the range [1,20] and
appropriate moments of receipt; these data were generated in such a way that the
used solution of the original problem remained feasible.

In Table 3.3 and Table 3.4 we give the results for the randomly generated in-
stances with suffix 1 and 2, respectively. The results for the smaller randomly gen-
erated instances are satisfactory. The best results of the instances with suffix 1 are
equal to or less then the upper bound eighteen times. Seven times the upper bound
was improved. The average results are acceptable too. Only the results for some
of the larger instances are not satisfactory. For the small instances with suffix 2
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name n ub best average #best #inf time
db01-2 100 718 766 860.8 1 0 68.1
db02-2 100 216 216 271.1 2 1 83.4
db03-2 100 881 881 881.0 9 1 49.0
db04-2 100 104 104 104.8 7 0 69.4
db05-2 100 320 320 320.0 8 2 70.8
db06-2 100 68 68 68.0 10 0 90.2
db07-2 100 932 932 934.6 4 3 53.7
db08-2 100 218 218 296.3 4 1 90.7
db09-2 100 490 490 562.0 4 3 66.3
db10-2 100 606 606 667.3 3 1 67.2
db11-2 225 136 162 269.6 4 1 450.6
db12-2 225 641 1262 2246.3 1 0 589.4
db13-2 225 234 482 570.7 1 3 343.1
db14-2 225 1044 1612 2051.2 1 1 503.3
db15-2 225 1017 1912 2216.4 1 1 535.8
db16-2 225 262 705 1189.7 1 3 365.1
db17-2 225 276 474 599.6 5 1 471.0
db18-2 225 1151 1364 1590.4 1 2 446.9
db19-2 225 66 86 139.9 1 2 365.5
db20-2 225 1054 1578 1826.9 1 3 425.7
db21-2 400 1714 1924 2945.4 1 2 1440.1
db22-2 400 8 356 935.7 1 1 1831.6
db23-2 400 1412 1858 2522.1 1 0 1512.0
db24-2 400 1066 2117 2831.4 1 2 1606.8
db25-2 400 434 1563 1879.4 1 3 973.1
db26-2 400 1786 2290 2945.4 1 1 1722.6
db27-2 400 178 225 586.0 1 2 1249.1
db28-2 400 386 474 950.4 1 0 1423.8
db29-2 400 1789 1723 2573.1 1 0 2001.7
db30-2 400 1118 1670 3016.8 1 2 1773.8

Sum 20325 28438 38852.2 79 42 20739.6

Table 3.4: Results per instance.

the best result equals the upper bound eight times. The average results for these
instances are satisfactory as well. For the larger instances there seems to be room
for improvement.

3.5 Conclusion

In this chapter we have presented a tabu search algorithm for a generalized job
shop with nonrenewable resource constraints. For instances with 100 operations
the algorithm gives good results. For larger instances the algorithm is not robust
and quite slow. The results could be improved by using a more sophisticated initial
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solution. Furthermore, our representation method of a schedule by means of an
activity-list could be used for more complicated scheduling problems; this would
require a generalization of the techniques described in this chapter.



4
Designing a purchase plan

In this chapter we assume that the production plan is given. As a consequence we
know how much of each item we need and the time at which we need it. Therefore,
the problem is to assign all demands to a supplier and to a moment in time in such
a way that all constraints are satisfied and the sum of the purchase costs and the
inventory costs is minimized. In this chapter the inventory costs are the costs of
holding purchased nonrenewables in inventory from the moment of receipt until
the time at which we need it. We denote the resulting problem as thepurchase lot
sizingproblem. Purchase lot sizing problems play an important role when suppliers
specify price discounts based on the quantity ordered. In such an environment, a
business can save money by grouping several orders into one large order. In order
not to delay the production plan, the only option is to advance orders. However,
such decisions increase the inventory of the nonrenewable. Therefore, we must find
the optimal trade-off between the purchase costs and the inventory costs.

The purchase lot sizing problem is an extended version of the lot sizing prob-
lem; see Aggarwal and Park [1993] and Bahl et al. [1987]. The lot sizing problem
is defined as follows. Given are afinite time horizon, which is divided intoperiods,
and the demand for the nonrenewable in all periods. The problem is to determine
for all periods the quantity (the lot size) to be produced, such that the costs of the
production plan are minimized and the constraints are satisfied. In most of the ar-
ticles that have appeared in the literature the costs consist of production costs and

57
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inventory costs. In these models the production costs in a period are not affected by
the produced quantities in other periods.

In our purchase lot sizing problem we consider several nonrenewables, which
are delivered by external suppliers. Note that these nonrenewables only can be
purchased at given moments in time. Such a moment in time marks the beginning of
a new period. So a nonrenewable purchased in a period is received at the beginning
of that period. We assume that the length of the periods is a given constant and that
the number of periods is finite. Our goal is to find a purchase plan in such a way
that the sum of the purchase costs and the inventory costs is minimized. For each
nonrenewable the demand in each period and a number of alternative suppliers are
given. Each supplier has its own prices, discount functions, and other restrictions.
The purchased quantity of a nonrenewable in a period from a supplier must be either
zero, or between a given lower and upper bound. The true cost function for buying
a quantity of a nonrenewable in a time period from a supplier is piecewise linear,
strictly increasing, and concave. In addition the buying firm receives discounts
based on the total quantity bought from one supplier over the entire time horizon.
Discounts are always based on the purchased quantity: we assume that the discount
function is piecewise linear, convex, and nondecreasing. Thepurchase costsare the
true costs minus the discounts. In our model theinventory costsare proportional to
the inventory size. Notice that in our model the purchase costs of a nonrenewable in
a period are affected by the purchased quantities in other periods and the purchased
quantities of other nonrenewables.

Numerous articles have been published on techniques for the management and
control of inventory with quantity discounts. All of these articles use enhancements
of the classical economic order quantity (EOQ) concept; for an example see Rubin
and Benton [1993]. In these articles a standard assumption is a constant demand
rate. The problem is to find a fixed order size and a supplier for each nonrenewable
such that the total costs are minimized.

In our problem we do not assume a constant demand rate; we only assume that
we know the amount of each nonrenewable we need and the time at which we need
it. Therefore, we must determine for each nonrenewable the quantity to be bought
from each supplier in each period.

Small instances can be solved using a mixed integer linear programming ap-
proach for which we give two different formulations. Another option is using a
local search approach. Our local search approach consists of two stages. In the
first stage we determine an initial solution by using the solution of the linear pro-
gramming relaxation of one of the mixed integer linear programming formulations.
In the second stage we try to improve this solution by applying local search tech-
niques. To determine the value of the neighbors we solve generalized nonlinear
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knapsack problems.
This chapter is organized as follows. In Section 4.1 we give two mixed integer

linear programming formulations for the problem. In Section 4.2 we present our
neighborhood function. Our local search algorithm is described in Section 4.3. In
Section 4.4 we give extensive computational results: we compare the results of
our local search algorithm with the solutions of one of the mixed integer linear
programming formulations. We conclude with some final remarks.

4.1 Two mixed integer linear programming formulations

The mixed integer linear programming formulations are used for two purposes. In
our computational experiments we compare the results of our local search algorithm
with the solutions of two mixed integer linear programming formulations. The
solution of their linear programming relaxations are also used to construct initial
solutions for our local search algorithm. The first formulation is rather elementary.
In the second formulation we introduce a new set of decision variables, which allow
us to define some strong valid inequalities. The number of variables in the second
formulation is much larger than the number of variables in the first formulation.

4.1.1 Model

Let T denote the set of time periods andI the set of nonrenewables. For each
nonrenewablei ∈ I we are given the demandd

t
i per time periodt ∈ T and a set of

suppliersSi .
We use two types of decision variables in our model, namelyYt

si, which de-
notes the quantity of nonrenewablei purchased in periodt from suppliers, andU t

i ,
which denotes the inventory of nonrenewablei at the beginning of periodt . For
each quantityYt

si we are given a nonnegative lower boundbt
si, an upper boundb

t
si,

and a cost functionαt
si. The functionαt

si is piecewise linear, concave, and strictly in-
creasing, and can be defined as the minimum of a number of linear functions; each
linear function can be seen as onealternative. If G t

si denotes the set of possible
alternatives, then we have

αt
si(Y

t
si) =


min
j∈Gt

si

{g̃t j
siY

t
si + gt j

si} if Yt
si > 0,

0 if Yt
si = 0,

whereg̃t j
si andgt j

si represent the unit and the fixed purchase costs for alternativej ,
respectively. We request that minj∈Gt

si
{gt j

si} ≥ 0.
Each suppliers gives a discount based on a weighted sum of the purchased
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quantity
Vs =

∑
i :s∈Si ,t∈T

w̃t
siY

t
si,

wherew̃t
si is the given weight for triple(s, i, t). The discount functionβs is piece-

wise linear, convex, and nondecreasing. A set of alternativesKs is used to define
the discount function given by

βs(Vs) = max
a∈Ks

{̃ka
s Vs+ k

a
s},

wherẽka
s andk

a
s represent the unit and the fixed discounts for alternativea, respec-

tively. We assume that maxa∈Ks{k
a
s} = 0, and that̃gt j

si−w̃
t
sik̃

a
s > 0 for each possible

combination. Furthermore, we assume that we can discard purchased nonrenew-
ables without extra costs. As a consequence we have that increasing the purchased
quantity of a nonrenewable never decreases the purchase costs.

In our model inventory costs are proportional to the inventory size:hi denotes
the cost of holding one unit of inventory of nonrenewablei for one time period.
This results in the following model.

min
∑
t∈T

∑
i∈I

∑
s∈Si

αt
si(Y

t
si)−

∑
s∈S

βs(Vs) +
∑
t∈T

∑
i∈I

hi U t
i

s.t. U t
i +

∑
s∈Si

Yt
si ≥ U t+1

i + d
t
i ∀i, t

Vs =
∑

i :s∈Si

∑
t∈T

w̃t
siY

t
si ∀s

Yt
si = 0 ∨ Yt

si ≥ bt
si ∀s, i, t

Yt
si ≤ b

t
si ∀s, i, t

U t
i ≥ 0 ∀i, t

U0
i = 0 ∀i

The first class of constraints are the traditional lot sizing constraints. There is an
inequality sign, since we can discard nonrenewables without extra costs. The third
type of constraint indicates that the purchased quantity must be either zero or larger
than a given lower bound.

4.1.2 First formulation

We model the concave functionsαt
si by introducing for each alternativej ∈ G t

si a
binary variableZt j

si , which is equal to 1 if alternativej is chosen, and 0 otherwise.
The variableYt j

si is used to indicate the amount of nonrenewablei bought from
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suppliers in alternative j in period t . Alternatively, j can be chosen only ifYt j
si

belongs to the domain [bt j
si,b

t j
si]. If b

t j
si is infinite, then we replaceb

t j
si by some large

integer. Now we add the following constraints.

bt j
si Z

t j
si ≤ Yt j

si ≤ b
t j
si Z

t j
si ∀s, i, t, j∑

j∈Gt
si

Zt j
si ≤ 1 ∀s, i, t

Zt j
si ∈ {0,1} ∀s, i, t, j

Yt j
si ≥ 0 ∀s, i, t, j

The functionαt
si is now written as

αt
si(Y

t j
si , Zt j

si) =
∑
s∈Si

∑
j∈Gt

si

(g̃t j
siY

t j
si + gt j

si Z
t j
si).

To model the functionsβs we use the same techniques. Recall that the total pur-
chased quantity is equal to

Vs =
∑

i :s∈Si

∑
t∈T

∑
j∈Gt

si

w̃t
siY

t j
si .

The decision variableVa
s is equal toVs if alternativea is chosen, and zero otherwise.

The binary variableWa
s is equal to one ifVa

s > 0, and zero otherwise. Now we add
the following constraints.

ba
sWa

s ≤ Va
s ≤ b

a
sWa

s ∀s,a∑
a∈Ks

Wa
s ≤ 1 ∀s

Wa
s ∈ {0,1} ∀s,a

Va
s ≥ 0 ∀s,a

The functionβs can now be written as

βs(V
a
s ,W

a
s ) =

∑
a∈Ks

(̃ka
s Va

s + k
a
sWa

s ).
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Hence, we get the following formulation.

min
∑
t∈T

∑
i∈I

∑
s∈Si

∑
j∈Gt

si

(g̃t j
siY

t j
si + gt j

si Z
t j
si)−

∑
s∈S

∑
a∈Ks

(̃ka
s Va

s + k
a
sWa

s )+
∑
t∈T

∑
i∈I

hi U t
i

s.t. U t
i +

∑
s∈Si

∑
j∈Gt

si

Yt j
si ≥ U t+1

i + d
t
i ∀i, t

bt j
si Z

t j
si ≤ Yt j

si ≤ b
t j
si Z

t j
si ∀s, i, t, j∑

j∈Gt
si

Zt j
si ≤ 1 ∀s, i, t

Zt j
si ∈ {0,1} ∀s, i, t, j

Yt j
si ≥ 0 ∀s, i, t, j∑

a∈Ks

Va
s =

∑
i :s∈Si

∑
t∈T

∑
j∈Gt

si

w̃t
siY

t j
si ∀s

ba
sWa

s ≤ Va
s ≤ b

a
sWa

s ∀s,a∑
a∈Ks

Wa
s ≤ 1 ∀s

Wa
s ∈ {0,1} ∀s,a

Va
s ≥ 0 ∀s,a

U t
i ≥ 0 ∀i, t

U0
i = 0 ∀i

We refer to this mixed integer linear programming formulation and its relaxation by
MIP1 and LP1, respectively.

4.1.3 Second formulation

The first formulation is rather elementary. We now introduce a new set of decision
variables, which allow us to define some strong valid inequalities. To obtain these
inequalities we use techniques of Aghezzaf and Wolsey [1994]. Instead of using
the variableYt j

si we use variables of the formYt t ′ j
si , which indicate the amount of

nonrenewablei bought from suppliers in alternative j in period t to satisfy the
demand in periodt ′. We get the new formulation by replacingYt j

si by

∑
t ′∈T :t ′≥t

Yt t ′ j
si .
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As a consequence of̃gt j
si − w̃

t
sik̃

a
s > 0, max{bt

si,d
t ′

i } is a valid upper bound forYt t ′ j
si .

Therefore, the following constraints are valid.

Yt t ′ j
si ≤ max{bt

si,d
t ′

i }Z
t j
si ∀s, i, t, t ′, j .

By adding these constraints we get a stronger formulation, which can be solved for
small instances by a mixed integer linear programming solver.

The new variables can also be used to define the quantity of inventory of non-
renewablei . Therefore, we replace

∑
t∈T U t

i by∑
s∈Si

∑
t∈T

∑
t ′∈T :t ′≥t

∑
j∈Gt

si

(t ′ − t + 1)Yt t ′ j
si ,

and the first constraint by∑
t∈T :t≤t ′

∑
s∈Si

∑
j∈Gt

si

Yt t ′ j
si ≥ d

t ′

i ∀i, t ′.

We refer to the resulting mixed integer linear programming formulation and its
relaxation by MIP2 and LP2, respectively.

4.2 Neighborhood

In our local search algorithm we consider one nonrenewable at a time. For each
solution we must determine the quantity to be bought from each supplier in each
period. To obtain a neighbor we shift a certain amount of demand from one period
to another period or we change the assignment of the purchased quantity to the
various suppliers in one period. To determine the cost of a neighbor we need to
solve a nonlinear knapsack problem, which we discuss in Subsection 4.2.1. In
Subsection 4.2.2 we describe the resulting neighborhood function.

4.2.1 Nonlinear knapsack problem

To determine the cost of a neighbor we must assign the purchased quantities of a
nonrenewable in a period to suppliers. We determine these assignments by solv-
ing knapsack problems with piecewise linear, concave, and strictly increasing cost
functions. To solve these generalized knapsack problems we use an enumerative
algorithm that is based on the existence of simply structured optimal solutions. A
similar approach for a generalized knapsack problem without lower bounds is given
by Haberl [1999]. Our generalized knapsack problem is formally described as fol-
lows
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min
∑
s∈S

αs(Ys)

s.t.
∑
s∈S

Ys ≥ d

Ys = 0 ∨ Ys ≥ bs ∀s ∈ S

Ys ≤ bs ∀s ∈ S

For anys ∈ S the functionαs is nonnegative, piecewise linear, concave, and strictly
increasing forYs > 0 with αs(0) = 0. By α+s andα−s we denote the one-sided
derivatives ofαs: α+s andα−s give an indication of the additional costs of increasing
Ys by one unit and decreasingYs by one unit, respectively. Sinceαs is concave we
haveα+s (Ys) ≥ α

−

s (Ys) for all Ys ≥ 0. For each solutionδ we denote bySδ the set
{s |Yδ

s > 0}. Before we describe our solution approach, we prove that there is a
minimally optimal solution with a simple structure, where an optimal solutionδ is
minimally optimal if there does not exist an optimal solutionδ′ with |Sδ′ | < |Sδ|.

Theorem 4.1. There exists a minimally optimal solutionδ in which there is at most
one j ∈ Sδ such that bj < Yδ

j < b j .

Proof. Suppose to the contrary that we have for each minimally optimal solution
δ at least two variablesYδ

i andYδ
j such that

bi < Yδ
i < bi and b j < Yδ

j < b j .

Without loss of generality we may assume thatα−i (Y
δ
i ) ≥ α−j (Y

δ
j ). Sinceα j is

a concave function we haveα−i (Y
δ
i ) ≥ α−j (Y

δ
j ) ≥ α+j (Y

δ
j ). Therefore, we can

increaseYδ
j and decreaseYδ

i by min{b j − Yδ
j ,Y

δ
i − bi } without increasing the

costs. Notice that|Sδ| does not change. By repeating this argument we prove
the theorem. 2

Theorem 4.2. If δ is a minimally optimal solution, then for each variable Yδj with
Yδ

j > 0 andα−j (Y
δ
j ) = max{α−s (Y

δ
s )| s ∈ Sδ} we have that∑
s∈Sδ\{ j }

bs < d.
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Proof. Suppose to the contrary that there is a variableYδ
j for which Yδ

j > 0,
α−j (Y

δ
j ) = max{α−s (Y

δ
s )|s ∈ Sδ}, and∑

s∈Sδ\{ j }
bs ≥ d.

Sinceα−j (Y
δ
j ) ≥ α

−

s (Y
δ
s ) ≥ α

+

s (Y
δ
s ) for eachs ∈ Sδ, we can setYδ

j equal to zero and
get a feasible solution with equal or lower costs by increasingYδ

s for somes ∈ Sδ.
Since|Sδ| has been decreased, we have a contradiction. 2

We represent a solution by a permutation of the integer numbers 1 through|S|;
given a permutationπ we generate a solutionδ to our knapsack problem by the
following three steps.

Step 1. Fori = 1, . . . , |S| we setYδ
π(i )←− 0.

Step 2. While
∑

s∈S Yδ
s < d and j ≤ |S|

Yδ
π( j ) ←− min{bπ( j ),max{bπ( j ),d −

∑
s∈S

Yδ
s }};

j ←− j + 1.

Step 3. While
∑

s∈S Yδ
s > d and j ≥ 1

Yδ
π( j ) ←− max{bπ( j ),Y

δ
π( j ) −

∑
s∈S

Yδ
s + d};

j ←− j − 1.

Theorem 4.3. There exists a permutationπ that represents an optimal solution.

Proof. Let δ be an optimal solution that satisfies the properties of Theorem 4.1.
To prove the theorem we construct a permutationπ that results in solutionδ. We
distinguish two cases. If there is no variableYδ

i with 0 < bi = Yδ
i < bi , then

permutationπ starts with the indicess for which Yδ
s = bs in an arbitrary order.

These indices are followed by the indexs for which bs < Yδ
s < bs. We complete

permutationπ with the other indices in an arbitrary order. Byz we denote the last
index in permutationπ for which Yδ

z > 0. We haveYδ
s = bs for eachs ∈ Sδ \ {z}.

Combined by the optimality ofδ andαz(Yδ
z ) > 0, we get∑

s∈Sδ\{z}
bs < d. (4.1)

Now it is easy to see that permutationπ leads to solutionδ.
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Otherwise, if there is a variableYδ
i with 0< bi = Yδ

i < bi , we start permutation
π with the indicess for whichbs < Yδ

s = bs in an arbitrary order. These indices are
followed by the indexs for which bs < Yδ

s < bs. Thereafter, we continue with the
indices of the variables for which 0< bs = Yδ

s in order of nondecreasingα−s (Y
δ
s )

value. We complete permutationπ with the other indices in an arbitrary order. By
z we denote the last index in permutationπ for which Yδ

z > 0, and byi we denote
the index of an arbitrary variable for which 0< bi = Yδ

i < bi . As a consequence
of the optimality ofδ andYδ

i < bi , we haveα−s (Y
δ
s ) ≤ α

+

i (Y
δ
i ) for eachYδ

s > bs.
Therefore, we haveα−s (Y

δ
s ) ≤ α

+

i (Y
δ
z ) ≤ α

−

i (Y
δ
i ) ≤ α

−

z (Y
δ
z ) for eachYδ

s > bs, and
thusα−z (Y

δ
z ) = max{α−s (Y

δ
s )|s ∈ Sδ}. By applying Theorem 4.2 we get (4.1). Now

it follows that permutationπ leads to solutionδ. 2

So we can find an optimal solution by evaluating all possible permutations of the
numbers 1 through|S|. Our generalized knapsack problem isNP-hard, but it can
be solved by dynamic programming. From a theoretical point of view this seems
much better then evaluating|S|! permutations, but for our instances the dynamic
programming algorithm is very inefficient. Also the number of permutations eval-
uated by our algorithm is in practice much smaller than|S|!.

4.2.2 Resulting neighborhood

As mentioned earlier we consider one nonrenewable at a time. Letδ′ andi denote
the current solution and the nonrenewable under consideration, respectively. By
Di (t) we denote the quantity that in the current solution is purchased in periodt
to satisfy the demand restrictions. Hence, for eacht ∈ T the following restriction
must hold. ∑

t ′∈T :t ′≤t

(Di (t
′)− d

t ′

i ) ≥ 0.

It is possible that too much of a nonrenewable is purchased in order to satisfy the
lower bounds. We usẽYt

si to denote the quantity of nonrenewablei purchased in
periodt from suppliers that is used to satisfy the demand restrictions. Therefore,
we have ∑

s∈Si

Ỹt
si = Di (t). (4.2)

In our local search algorithm we record the valuesỸt
si. Given these values we

determineYt
si as follows. IfỸt

si = 0, then the purchased quantityYt
si = 0. Otherwise

the purchased quantity is calculated by

Yt
si = max{Ỹt

si,b
t
si}.
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For each pair(i, t) with Di (t) > 0 we have three types of neighbors. We refer
to each neighbor by(t ⇒i t ′, ω): each neighbor can be interpreted as movingω

units of nonrenewablei from periodt to periodt ′. To characterize the neighbors we
store the values1−(i, t) and1+(i, t ′), which we define later; the values1−(i, t)
and1+(i, t ′) give an indication of the additional costs of decreasingDi (t) by one
unit and increasingDi (t ′) by one unit, respectively. We use the values1−(i, t) and
1+(i, t ′) in our local search algorithm.

The first type of neighbor is created by changing the solution in periodt . In
this caseDi (t) remains the same for allt ∈ T . The new solution for pair(i, t) is
optimal given the current solution for the other pairs. IfŶt

si denotes the value ofYt
si

in the current solutionδ′, then the new solution is found by solving the following
problem.

min
∑

s∈Si

αt
si(Y

t
si)− βs(Vs− Ŷt

si + Yt
si)

s.t.
∑

s∈Si

Yt
si ≥ Di (t)

Yt
si = 0 ∨ Yt

si ≥ bt
si ∀s ∈ Si

Yt
si ≤ b

t
si ∀s ∈ Si

This is a generalized knapsack problem as discussed in Subsection 4.2.1. Solving
it yields an optimal set ofYt

si values, but as a consequence of the lower bounds
we can have an optimal solution with

∑
s∈Si

Yt
si > Di (t). We need values of̃Yt

si

such that equality (4.2) holds. We know that there exists ans′ ∈ Si with Yt
s′i ≥∑

s∈Si
Yt

si − Di (t). To satisfy equality (4.2) we put

Ỹt
s′i = Yt

s′i − (
∑
s∈Si

Yt
si − Di (t))

for a suppliers′ for whichYt
s′i ≥

∑
s∈Si

Yt
si − Di (t), andỸt

si = Yt
si for eachs ∈ Si \

{s′}. We refer to this neighbor by(t ⇒i t,1). In this case1−(i, t) and1+(i, t) are
equal to max{αt−

si (Ỹ
t
si)−β

−

s (Vs) | Ỹt
si > 0 } and min{αt−

si (Ỹ
t
si)−β

−

s (Vs) | Ỹt
si < b

t
si },

respectively. If there is a suppliers ∈ Si with Ỹt
si < bt

si, then1+(i, t) = 0.
The second type of neighbor is created by shifting a part of the demand to an

earlier periodt ′: a shift fromt to t ′ is only considered ifDi (t ′) <
∑

s∈Si
b

t ′

si and at
least one of the following two conditions holds.

• There is not ′′ with t ′ < t ′′ < t andDi (t ′′) > 0.

• Periodt ′ is the last period beforet for which there exists a suppliers

such that 0< Ỹt ′
si < b

t ′

si.
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We demand that the shifted quantity was purchased in periodt from the suppliers
for which Ỹt

si > 0 and1−(i, t) = αt−
si (Ỹ

t
si) − β

−

s (Vs) is maximal. Therefore,̃Yt
si

is an upper bound for the shifted quantity. We refer to this suppliers by ξ−(i, t).
A second restriction is that the shifted quantity must be purchased in periodt ′ from
one supplier. Only one suppliers′ is considered. To choose the supplier we use the
following selection order:

1. If there exists a suppliers with 0 < Ỹt ′
si < bt ′

si, then we choose an
arbitrary suppliers′ with 0 < Ỹt ′

s′i < bt ′
s′i . In this casebt ′

s′i − Ỹt ′
s′i is an

upper bound for the shifted quantity, and1+(i, t ′) is equal to 0.

2. Otherwise if there exists a suppliers with bt ′
si ≤ Ỹt ′

si < b
t ′

si, then we

choose the suppliers′ with bt ′
s′i ≤ Ỹt ′

s′i < b
t ′

s′i for which αt ′+
s′i (Y

t ′
s′i ) −

β+s′ (Vs′) is minimal. In this caseb
t ′

s′i − Ỹt ′
s′i is an upper bound for the

shifted quantity, and1+(i, t ′) is equal toαt ′+
s′i (Y

t ′
s′i )− β

+

s′ (Vs′).

3. Otherwise, we choose the suppliers′ with 0 = Ỹt ′
s′i < b

t ′

s′i for which

αt ′+
s′i (Y

t ′
s′i )−β

+

s′ (Vs′) is minimal. In this caseb
t ′

s′i − Ỹt ′
s′i is an upper bound

for the shifted quantity, and1+(i, t ′) is equal toαt ′+
s′i (Y

t ′
s′i )− β

+

s′ (Vs′).

The shifted quantityω is equal to the minimum of the two upper bounds. We refer
to this neighbor by(t ⇒i t ′, ω).

The third type of neighbor is created by shifting a part of the purchased quantity
to a later periodt ′. In this case we must take the inventories into consideration: it
must be possible to perform the shift without creating negative stocks. Therefore, a

shift from t to t ′ is only considered ifDi (t ′) <
∑

s∈Si

b
t ′

si, min
a∈{t,...,t ′−1}

{
∑

j∈T : j≤a
(Di ( j )−

d
j
i )} > 0, and at least one of the following two conditions holds:

• there is not ′′ such thatt < t ′′ < t ′ andDi (t ′′) > 0;

• periodt ′ is the first period aftert for which 0< Ỹt ′
si < b

t ′

si.

The second restriction indicates that it is possible to perform a shift without creating

a negative stock if at most mina∈{t,...,t ′−1}{
∑

j∈T : j≤a(Di ( j ) − d
j
i )} is shifted from

t to t ′. For each neighbor the shifted quantityω is determined in almost the same
way as the shifted quantity for the second type of neighbor. The only difference is
the third upper bound, which takes care of the danger of creating negative stocks.
The shifted quantityω is equal to the minimum of the three upper bounds. We refer
to this neighbor by(t ⇒i t ′, ω).

If t 6= t ′, then neighbor(t ⇒i t ′, ω) is created as follows. First we decrease
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Di (t) and increaseDi (t ′) with ω. In periodt we remove this quantity from supplier
ξ−(i, t). Next, we solve the nonlinear knapsack problem to determine the suppliers
of the purchased quantity in periodt ′.

4.3 Local search algorithm

Our local search algorithm repeatedly starts independent search processes in which
we consider one nonrenewable. Our local search algorithm consists of the following
three steps.

Step 1. Construct an initial solution.

Step 2. Apply a search process for all of the nonrenewables in any order.

Step 3. If Step 2 has been performed a given maximum number of times, or
if the best solution has not been improved in the previous run of Step 2,
then stop; otherwise, go back to Step 2.

The construction of an initial solution is described in Section 4.3.1. The search
process in which we consider nonrenewablei is a kind ofvariable depth search;
see Kernighan and Lin [1970]. In our search strategy we start from the current
best solution and generate a sequence of subsequent neighbors until some stopping
criterion is satisfied. Next, a new starting point is chosen for the next sequence.
In Subsection 4.3.2 we describe how we create a sequence given a starting solu-
tion. In Subsection 4.3.3 we describe how we choose the starting point for the
next sequence. We stop considering nonrenewablei when a maximum number of
iterations has been reached, or when all possible starting points have been used.

4.3.1 Finding an initial solution

To find an initial solution we solve one of the linear programming relaxations LP1
or LP2, which have been described in Section 4.1. In LP1Yt j

si indicates the amount
of nonrenewablei bought from suppliers in alternative j in period t . If we use
LP1, then we get as initial solution

Ỹt
si =

∑
j∈Gt

si

Yt j
si

for each triple(s, i, t). The second alternative is to use the linear programming
relaxation LP2. In LP2Yt t ′ j

si indicates the amount of nonrenewablei bought from
suppliers in alternativej in periodt to satisfy the demand in periodt ′. In this case
we get the initial solution

Ỹt
si =

∑
t ′∈T :t ′≥t

∑
j∈Gt

si

Yt t ′ j
si
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for each triple(s, i, t). For each pair(i, t) we obtain the value ofDi (t) by

Di (t) =
∑
s∈Si

Ỹt
si.

As a consequence of̃gt j
si − w̃

t
sik̃

a
s > 0, we have for each nonrenewablei that∑
t∈T

Di (t) =
∑
t∈T

d
t
i .

Given this assignment the inventory costs are equal to∑
i∈I

∑
t∈T

∑
t ′∈T :t ′≤t

hi (Di (t
′)− d

t ′

i ).

The initial costs are equal to the sum of the inventory costs plus the purchase costs.

4.3.2 Generating a sequence

Given are the nonrenewable under considerationi , a start pointδ, the costs of the
start solutionψ(δ), a nonempty neighborhoodNi (δ), and the costs of the current
best solutionψ∗. In each iteration we choose a new neighbor. The costsψ(δ)

consist of two components, namely the purchase costsψp(δ) and the inventory
costsψi (δ). If δ′ is neighbor(t ⇒i t ′, ω), then the inventory costs are calculated by

ψi (δ
′) = ψi (δ)− hiω(t

′
− t).

To guide the search process we use a variableI , which indicates the number of
moves that have been made to obtain the current solution. ByI ∗ we denote the
value ofI at the last improvement. The variablesI andI ∗ are both set equal to zero
when we start considering a new nonrenewable.

We use afirst improvementsearch strategy to choose a neighbor. This means
that we take the first neighborδ′ for whichψ(δ′) < ψ(δ). If none of the neighbors
satisfies this criterion, then we accept the neighborδ′ for which ψ(δ) − ψ(δ′) is
minimal with probability

e((I−I ∗)(ψ(δ)−ψ(δ′))/A).

HereA is a scaling parameter. If this neighbor is not accepted, then the sequence is
terminated and a new starting point is chosen.

With a first improvement search strategy the order of evaluation can affect the
search process. Therefore, we evaluate the neighbors in order of nonincreasing
priority: the priority of neighbor(t ⇒i t ′, ω) is given bye((1

−(i,t)−1+(i,t ′))/ω) mul-
tiplied by a random number. The randomization is useful to prevent long-term
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cycling, and the terme((1
−(i,t)−1+(i,t))/ω) is used to favor the more promising neigh-

bors. A first improvement strategy has the positive side effect that it reduces the
number of neighbors that have to be evaluated.

To prevent short-term cycling we use a kind oftabu search. In tabu search we
temporarily forbid certain shifts: such a forbidden shift is calledtabu. We have
implemented the tabu search algorithm as follows. We introduce two mappings
τ1 : T → Z andτ2 : T → Z. When we consider a new nonrenewable bothτ1(t)
andτ2(t) are set equal to−1 for all t ∈ T . A neighbor(t ⇒i t ′, ω) is tabu if

• t ′ = t , andτ2(t) ≥ I ∗ − 1, or if

• t ′ 6= t , τ1(t ′) = τ2(t) andτ2(t) ≥ I ∗.

If neighbor(t ⇒i t ′, ω) is accepted andt 6= t ′, then we setτ1(t) andτ2(t ′) both
equal toI . If neighbor(t ⇒i t, ω) is accepted, then we setτ2(t) equal toI . If the
best solutionψ∗ is improved, thenI ∗ is set equal toI +1. Finally we increaseI by
one.

It is easy to prove that the size of the neighborhoodNi (δ) is at most 5|T |. For
instances with a large number of periods the number of evaluated neighbors and
thus the computation time increases. Therefore, we have implemented a version
of our local search algorithm that restricts the growth of the number of evaluated
neighbors. In this version we increase the number of neighbors that are tabu. Neigh-
bors that only change the solution in periodt are considered only ifDi (t) has been
decreased in one of the previous steps; other neighbors(t ⇒i t ′, ω) are only con-
sidered ifDi (t) or Di (t ′) has been changed in one of the previous steps. This is
implemented by making neighbor(t ⇒i t ′, ω) also tabu if

• I > I ∗, t ′ = t , andτ1(t) < I ∗, or if

• I > I ∗, t ′ 6= t , τ1(t) < I ∗, τ2(t) < I ∗, τ1(t ′) < I ∗, andτ2(t ′) < I ∗.

In Section 4.4 we study the effect of this restriction for instances with 52 periods.

4.3.3 Choosing a new starting point

As mentioned above, we terminate a search sequence if none of the neighbors is
accepted. To choose the starting point for a new sequence we use the following
method. If we reach a local minimum that improves the overall best solution and
that has at least two non-tabu neighbors, then we store that solutionδ, the mappings
τ1 andτ2, and the iteration valuesI and I ∗ in a listL.

As starting point for the new sequence we use the local minimum with the
lowest objective value inL, and use its solutionδ, its mappingsτ1 andτ2, and the
iteration valuesI and I ∗ as a restarting point for the algorithm. In the first step



72 Designing a purchase plan

after the restart we select the best non-tabu neighbor that was not selected in the
first step of another sequence. If all neighbors of a local minimum have been used,
then we remove this local minimum fromL. The listL is emptied when we start
considering a new nonrenewable.

4.4 Computational results

We have tested our algorithm on a randomly generated test sample, which is pub-
lically available; see De Bontridder [2001b]. We compared the results of our algo-
rithm with the solutions of two mixed integer linear programming formulations. To
solve the mixed integer linear programming programs we used CPLEX; see CPLEX
[2000]. With CPLEX we also solved the linear programming relaxations which we
used to obtain the initial solutions. We used the following parameter settings. Step
2 of our local search algorithm is performed at most 10 times, and we consider a
nonrenewablei for at most 100 iterations. The scaling parameterA is set equal to
10. We performed 10 independent runs for each instance. The experiments were
performed on a Sun Ultra 10 333 MHz workstation.

4.4.1 Test instances

Our test sample is randomly generated, where the random variables are always
drawn from a uniform distribution. For each pair(i, t) the demandd

t
i is a random

integer fromU [1,100]. Each nonrenewablei is characterized by a global pricepi ,
which is a random integer fromU [1,1000]. For each nonrenewablei the unit inven-
tory costshi are equal todBpi e, whereB is an input parameter. The probability that
suppliers delivers nonrenewablei is equal to 4

|S| . If the number of suppliers of non-
renewablei is smaller than 3, additional suppliers are chosen. In our test instances
the true cost function, the lower bound, and the upper bound are independent of the
period. To generate the true and the discount cost functions we characterize each
suppliers by a randomly drawn number fromU [0.9,1.2]. In case of a small value
the prices of suppliers without incorporating any discount are low, but the amount
of discount is rather small. In case of a high value suppliers has high prices and
large discounts. The number of alternatives|G t

si| and|Ks| are random integers from
U [1,5] andU [2,5], respectively. The lower boundbt

si is strictly greater than zero

with probability 0.5, and the upper boundb
t
si is not infinite with the same proba-

bility. The fixed purchase costs are strictly greater than 0 with probability 0.5. We
generated 40 instances bp01-bp40. The first 20 instances bp01-bp20 have 5 sup-
pliers, 10 nonrenewables, and 12 periods; the other instances bp21-bp40 consist of
5 suppliers, 10 nonrenewables, and 52 periods. For the instances bp01-bp10 and
bp21-bp30 the input parameterB = 0.05. For the other instancesB = 0.1.



4.4 Computational results 73

CPLEX algorithmLS1 algorithmLS2
name opt time best average time best average time
bp01 2722868.7 106.3 0.03 0.08 2.7 0.00 0.00 7.6
bp02 2799213.3 356.1 0.21 0.22 2.6 0.19 0.20 8.0
bp03 3075404.8 356.1 0.02 0.05 2.6 0.02 0.04 7.2
bp04 1459908.7 74.0 0.00 0.02 3.2 0.00 0.00 6.6
bp05 2119740.7 145.2 0.24 0.24 2.5 0.20 0.20 8.6
bp06 2266288.8 263.2 0.43 0.43 2.2 0.38 0.38 7.1
bp07 2199606.1 155.7 0.07 0.10 2.6 0.00 0.00 6.2
bp08 2410382.1 99.3 0.02 0.06 2.5 0.03 0.03 5.5
bp09 2271796.1 83.1 0.02 0.18 2.0 0.08 0.08 5.9
bp10 3293095.1 89.7 0.00 0.02 2.0 0.01 0.01 6.5

average 2461830.4 172.9 0.11 0.14 2.5 0.09 0.09 6.9

Table 4.1: Results per instance.

CPLEX algorithmLS1 algorithmLS2
name opt time best average time best average time
bp11 2857638.0 47.5 0.12 0.14 2.3 0.00 0.00 6.1
bp12 2857991.4 108.5 0.99 1.04 2.1 0.16 0.47 7.2
bp13 3255613.0 72.8 0.00 0.13 2.8 0.00 0.00 6.4
bp14 1486949.8 53.0 0.00 0.00 1.7 0.00 0.00 5.7
bp15 2183421.6 85.7 0.27 0.29 2.0 0.00 0.03 7.3
bp16 2346366.1 65.0 0.14 0.61 1.9 0.09 0.57 6.0
bp17 2253123.7 82.8 0.06 0.33 2.2 0.00 0.00 6.2
bp18 2455873.0 53.4 0.01 0.12 1.9 0.26 0.26 4.7
bp19 2384743.1 46.7 0.07 0.13 1.7 0.12 0.12 5.0
bp20 3528175.8 48.0 0.12 0.12 2.4 0.03 0.03 5.5

average 2560989.6 66.3 0.18 0.29 2.1 0.07 0.15 6.0

Table 4.2: Results per instance.

4.4.2 Test results

We tested the following three versions of our local search algorithm.

LS1: The version that solves LP1 to obtain the initial solution.

LS2: The version that solves LP2 to obtain the initial solution.

LS3: The version that solves LP1 to obtain the initial solution, and reduces
the number of evaluated neighbors as described at the end of Subsec-
tion 4.3.2.

In Table 4.1 and Table 4.2 we give the results for the instances with 5 suppliers,
10 nonrenewables, and 12 periods. For these instances the optimal solution was
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algorithmLS1 algorithmLS3
name lb best average time best average time
bp21 9588494.2 27.66 27.79 43.8 27.51 27.69 9.9
bp22 9659587.6 24.06 24.11 43.9 24.04 24.12 10.6
bp23 10412502.4 28.70 28.77 40.0 28.62 28.82 9.6
bp24 4872783.5 16.21 16.23 36.7 16.21 16.22 9.7
bp25 7336676.5 20.43 20.46 39.4 20.38 20.45 10.6
bp26 7977911.6 28.85 28.96 41.1 28.78 28.91 9.7
bp27 7775529.7 18.93 19.04 41.8 18.97 19.03 9.4
bp28 8672549.8 21.04 21.09 31.3 21.04 21.07 8.2
bp29 6634407.4 29.62 29.73 36.6 29.59 29.73 9.8
bp30 10686751.1 31.13 31.32 40.4 31.12 31.36 9.1

average 8361719.4 24.66 24.75 39.5 24.63 24.74 9.7

Table 4.3: Results per instance.

obtained by solving MIP2. In the second and the third column we give the optimal
solution (opt) and the computation time in cpu seconds (time), respectively. We
performed ten independent runs of the algorithmsLS1 andLS2 on these instances,
and compared the best and the average solutions of both algorithms with the opti-
mal solutions. For both algorithms the percentage of deviation of the best solution
and the average solution from the optimal value are given. In the columns ‘time’
for each instance the average computation time per run is given in cpu seconds.
Both versions give good results in a small amount of time. The second version al-
ways needs only a few seconds. The differences between the computation times of
versionsLS1 andLS2 are caused by the computation of the initial solutions.

In Table 4.3 and Table 4.4 we give the results for the instances with 5 suppliers,
10 nonrenewables, and 52 periods. For these instances CPLEX was unable to find
the optimal solution. These instances are so large that CPLEX even was unable to
solve LP2, which renders algorithmLS2 impracticable. Therefore, we only did ten
independent runs of the algorithmsLS1 andLS3 on these instances. We compared
the best and the average solution of both algorithms with the solution of LP1, which
is a lower bound for the optimal solution. This lower bound is given in the second
column. For both versions the percentage of deviation from the solution of LP1
of the best solution and the average solution are given. In the columns ‘time’ for
each instance the average computation times per run is given in cpu seconds. It is
difficult to judge the quality of the solutions. To get an indication for the quality of
the lower bounds we compared the solutions of LP1 with the results of algorithm
LS1 for the small instances. For bp01-bp10 and bp11-bp20 the percentage deviation
is 26.61% and 31.25%, respectively. So the results seem to be good. Also notice
that the quality of the solutions of algorithmLS1 andLS3 is almost the same. So,
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algorithmLS1 algorithmLS3
name lb best average time best average time
bp31 9588494.2 34.93 34.94 30.7 34.90 34.93 8.1
bp32 9659587.6 27.87 28.12 37.5 27.89 28.06 10.0
bp33 10412502.4 33.93 33.98 24.9 33.89 33.92 7.7
bp34 4872783.5 18.15 18.15 15.7 18.15 18.15 5.3
bp35 7336676.5 24.22 24.25 42.5 24.21 24.23 9.1
bp36 7977911.6 34.39 34.43 36.5 34.37 34.39 8.3
bp37 7775529.7 22.28 22.31 30.1 22.29 22.30 8.0
bp38 8672549.8 23.47 23.49 18.8 23.47 23.48 5.9
bp39 6634407.4 37.71 37.77 33.6 37.68 37.79 8.2
bp40 10686751.1 39.67 39.75 32.6 39.56 39.67 8.3

average 8361719.4 29.66 29.72 30.3 29.64 29.69 7.9

Table 4.4: Results per instance.

evaluating fewer neighbors does not affect the quality of the solution, but reduces
the computation time significantly.

4.5 Conclusion

In this chapter we presented a local search algorithm for a purchase lot sizing prob-
lem with quantity discounts. For instances with 5 suppliers, 10 nonrenewables, and
12 periods we compared our approach with the solutions of a mixed integer linear
programming problem solved with a standard approach. We obtained good results
for instances with 5 suppliers, 10 nonrenewables, and 52 periods in a few seconds.

We made the assumption that the demand per period was given over time. In
practice these demands are chosen in such a way that external deliveries do not
cause delays in the production process. But there also will be some flexibility, i.e.
some production orders may be moved backward without serious problems. In the
next chapter we integrate the algorithms described in Chapters 3 and 4. In this way
we can use the flexibility to save costs.

Our model can be extended to handle discrete order quantities. A discrete order
quantity means that the order quantity should be a multiple of a given number,
which can be different for each supplier. Other extensions like capacity constraints,
i.e. a maximum or minimum order quantity per set of time periods, per supplier, or
per time period, can also be handled by our approach.





5
Integrating purchase and production

planning

In this chapter we present several approaches for the supply chain scheduling prob-
lem described in Subsection 1.2. All approaches are obtained by combining the
algorithms that we have described in the previous chapters. In the supply chain
scheduling problem under consideration we look at supply chains that involve a
manufacturer producing items for customers. To produce these items the manu-
facturer has to purchase nonrenewables from external suppliers. The manufacturer
must design its purchase and production plan in such a way that the total costs are
minimized. These costs consist of purchase costs, inventory costs, and tardiness
costs. When designing a purchase and a production plan we must take into account
that the purchased nonrenewables only can be purchased at given moments in time.
The formal description of the requirements for the purchase and the production plan
separately, including the notation, can be found in Chapter 3 and Chapter 4, respec-
tively. For completeness sake, we recapitulate relevant information when necessary.

This chapter is organized as follows. First, we give a straightforward approach
to combine the algorithms that we have described in Chapter 3 and Chapter 4. In
Section 5.2 we present some methods to improve the integration. In Section 5.3
we describe the solution approaches that we have evaluated in our computational
experiments and in Section 5.4 we give extensive computational results. Finally,
we make some concluding remarks.

77
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5.1 First approach

We start with a short summary of the problem. In our model we have a set ofn
operations, on which an arbitrary precedence relation is defined. There are a given
number of machines, each of which is available from time zero onwards and can
handle at most one operation at a time, and a set of nonrenewablesI. Each oper-
ationu has a release timeru at which it becomes available, a machinemu that has
to process it, and a positive processing timepu. If there is a precedence constraint
between two operationsu andv, then operationv cannot start before the comple-
tion of operationu. Some precedence constraints stipulate apositive end-start time
lag quv: between the completion of operationu and the start of operationv at least
quv time units must elapse. Some operations produce or consume nonrenewables.
Let Cu andPu denote the set of nonrenewables thatu consumes and produces, re-
spectively. For every nonrenewablei ∈ Cu the consumed quantityki

u is given. For
every nonrenewablei ∈ Pu the produced quantityl i

u and thedelivery time fiu are
given; if some operationv consumes at least one unit of nonrenewablei produced
by operationu, then f i

u time units must elapse between the completion of operation
u and the start of operationv. Operationv can also consume nonrenewables that
have been purchased from external suppliers. Remark that nonrenewables can be
purchased at given moments in time only. Such a moment in time marks the begin-
ning of a new period. We assume that the length of the periods is a given constant
b̃ and that the number of periods is finite. The set of periods is denoted byT . A
nonrenewable purchased in periodt is received at the beginning of periodt , that is,
at timet b̃ for t = 0, . . . , |T | − 1.

For each nonrenewablei ∈ I we are given a set of suppliersSi . For the quantity
of nonrenewablei purchased in periodt from suppliers we are given a nonnegative
lower boundbt

si, an upper boundb
t
si, and a cost functionαt

si. The functionαt
si is

piecewise linear, concave, and strictly increasing, and can be defined as the mini-
mum of a number of linear functions. Each suppliers gives a discount based on
the purchased quantity. The discount functionβs is piecewise linear, convex, and
nondecreasing. Furthermore, we assume that we can discard purchased nonrenew-
ables without extra costs. More details concerning the cost and discount functions
are given in Chapter 3.

The tardiness costs are calculated on basis of only a subsetE of the operations,
the so-calledend-operations. For an end-operationu a due datedu and a weight
wu are given. The tardinessTu of an end-operationu is defined as the maximum
of its lateness and zero, where the lateness of an end-operation is defined as its
completion time minus its due date. The tardiness costs are equal to

∑
u∈E wuTu.

The inventory costs are proportional to the inventory size:hi denotes the cost
of holding one unit of inventory of nonrenewablei for one period of̃b time units.
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Recall that we use the term inventory costs to denote the costs from the moment of
receipt until the due date of the corresponding end-operation. The other inventory
costs are included in the tardiness costs. The inventory costs are equal to a weighted
sum of the due dates minus a weighted sum of the moments of receipt of the pur-
chased nonrenewables. Note that if a nonrenewable is received after the due date
of the corresponding end-operation, then a negative term is added to the inventory
costs. In this way we compensate the inventory costs from the due date until the
moment of receipt that are included in the tardiness costs. The due dates are given.
Therefore, the inventory costs are equal to a constant minus a weighted sum of the
moments of receipt of the purchased nonrenewables.

Our goal is to determine a purchase planδ and a production planγ in such a
way that the total costsχ(δ, γ ) are minimized. The costsχ(δ, γ ) are equal to the
sum of the costs of the purchase planψ(δ, γ ) and the production planφ(δ, γ ). The
costs of the purchase plan consist of purchase and inventory costs. In this section
we describe a first approach to integrate purchase and production planning, i.e., the
integrated solution approach 1 (ISA1). To obtain algorithmISA1 we combine the
algorithms described in Chapters 3 and 4. The algorithm consists of the following
steps.

Step 1. Design a production plan.

Step 2. Determine the demands in each period given the production plan.

Step 3. Design the purchase plan given the demands.

First, we describe the three algorithms that we use in Step 1, Step 2, and Step 3.
Next, we give an overview of the complete algorithm.

5.1.1 Designing a production plan

To design a production plan a purchase plan is required. If no purchase planδ is
given, then we create an initial purchase plan by purchasing all nonrenewables that
we do not produce ourselves as early as possible. To design the production plan
we use the tabu search algorithm that we have described in Chapter 3. To apply the
algorithm we require a list of receipts, which are described in the purchase plan.
Each receipt is characterized by a triple(i, l , r ), wherei , l , andr denote the type of
nonrenewable, the purchased quantity, and the moment of the receipt, respectively.

In our tabu search algorithm we use an activity list to represent a schedule.
Given an activity list a schedule can be generated through a list scheduling algo-
rithm. The initial solution of the algorithm can be given as input or is randomly
generated in such a way that it satisfies the precedence relation. In each iteration we
determine a neighborhoodN (γ ) and use a neighborhood search strategy to choose
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a neighbor. To intensify the search we use a restarting strategy when the overall
best solution has not been improved for a given number of iterations. We apply our
first restart when the overall best solution has not been improved for 5,000 itera-
tions; the next restarts occur when the overall best solution has not been improved
for 2,500 iterations. We stop the search, when a maximum number of iterationsI
has been reached, or when all restarting possibilities are exhausted. The restarting
possibilities are stored in a listL. The number of restarts depends on the maximum
size of listL. In all our experiments the maximum size ofL is set equal to 5. The
maximum number of iterations can be extended to 100,000 if the algorithm has not
obtained a feasible solution.

Running the resulting algorithm results in a solution(δ′, γ ′). We refer to this
algorithm by

(δ′, γ ′) ← MINTAR (δ, γ, I ).

Here,δ andγ are the initial purchase plan and activity list, respectively. Ifδ = ∅,
then an initial purchase plan is generated, and ifγ = ∅, then the initial activity list
is generated randomly.

5.1.2 Determining the demand

Let (δ, γ ) be the current solution. Before we can design a new purchase plan we
first determine for each nonrenewablei the demandDi (t) per time periodt ∈ T . To
obtain a good purchase plan the demands must occur as late as possible. Therefore,
we calculate the demands as follows. First, we determine for each operationv the

latest possible starting timeS
δγ

v in such a way that

• the tardiness of none of the end-operations increases,

• the processing order on each machine remains the same, and

• the assignment of the produced nonrenewables to the consuming oper-
ations remains the same as in solution(δ, γ ).

The purchased nonrenewables that are consumed by operationv must be received

at or before timeS
δγ

v . If S
δγ

v belongs to periodt , we add these nonrenewables to

the demands at the beginning of periodt . If the last period finishes before timeS
δγ

v ,
the required purchased nonrenewables are added to the demands at the beginning
of the last period. Furthermore, we modify activity listγ by ordering all operations

according to nondecreasingS
δγ

v . It is easy to see that the resulting activity list is
feasible.
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Running the algorithm results in a modified activity listγ ′ and a list of demands
D. We refer to this algorithm by

(γ ′, D) ← DEMAND(δ, γ ).

5.1.3 Designing a purchase plan

Given the demandsD we can design a purchase plan by running one of the local
search algorithms described in Chapter 4. There are two ways to create an initial
solution for our local search algorithm. The first way is to use the solution of the
linear programming relaxation LP1. The second way is to use a purchase planδ

that has been given as input. If purchase planδ does not satisfy the demands, then
we advance the receipts of some nonrenewables as little as possible such that a
feasible purchase plan is obtained. In all periods where the total ordered demand
has changed for any itemi , we determine a new assignment of the demands to the
suppliers by solving generalized knapsack problems as described in Chapter 4.

Next we try to improve the initial solution by applying local search techniques.
To determine the value of the neighbors we solve generalized nonlinear knapsack
problems. We use the neighborhood searching strategy that reduces the number of
evaluated neighbors as described at the end of Subsection 4.3.2. The local search
algorithm consists of the following steps.

Step 1. Construct an initial solution.

Step 2. Apply a search for all of the nonrenewables in any order.

Step 3. If Step 2 has been performed a given number of timesH , or when
the best solution has not been improved in the previous run of Step 2,
then stop; otherwise, go back to Step 2.

The search process in which we consider nonrenewablei is a kind ofvariable depth
search; see Kernighan and Lin [1970]. In our search strategy we start from the
current best solution and generate a sequence of subsequent neighbors until some
stopping criterion is satisfied. Next, a new starting point is chosen for the next
sequence. We stop considering nonrenewablei when a maximum number of 100
iterations has been reached, or when all possible starting points have been used.
The scaling parameterA, which we have defined on page 70, is set equal to 10.

The output of the algorithm is purchase planδ′. We refer to this algorithm by

δ′ ← PURCHASE(δ, D, H).

If δ = ∅, then the initial solution is determined by using the solution of the linear
programming relaxation LP1.
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5.1.4 Overview of the algorithm

We start our solution approach by running the algorithm

(δ, γ ) ← MINTAR (∅,∅,100000).

We stop if no feasible solution is obtained. Otherwise, we calculate an appropriate
purchase plan by applying the algorithms

(γ, D) ← DEMAND(δ, γ );

δ ← PURCHASE(∅, D,10).

We create the final purchase and production plan by scheduling the operations ac-
cording to activity listγ . Note that the tardiness costs of the solution(δ, γ ) are
at most equal to the tardiness costs of the production plan that we obtained after
running algorithmMINTAR (∅,∅,100000).

5.2 Ways to improve the integration

In our computational experiments we have incorporated two ways to improve the
integration: updating purchase plans during the production planning and backward
scheduling.

5.2.1 Updating purchase plans during the production planning

During a run of the algorithmMINTAR (δ, γ, I ) we sometimes obtain schedules that
almost improve the current best schedule. After updating the purchase plan the total
costs may even be improved. Therefore, we check for such a schedules the possible
gain that could be realized by adapting the purchase plan.

Let (δ∗, γ ∗) andI be the best solution found during the current run of algorithm
MINTAR (δ, γ, I ) and the number of performed iterations, respectively. We denote
the value ofI at the last improvement byI ∗ and the tardiness costs of the current
best solution byφ∗. We adapt the purchase plan for some given solution (δ, γ ) if
the following three conditions hold.

• activity list γ is feasible,

• I = I ∗ or φ(δ, γ ) > φ(δ∗, γ ∗), and

• φ(δ, γ )+
∑
u∈E

wudu ≤ (1+ R)e
(I ∗−I )

500 (φ∗ +
∑
u∈E

wudu),

whereR is randomly drawn fromU [0,0.1].

To adapt the purchase plan we run the algorithms

(γ, D) ← DEMAND(δ, γ );

δ′ ← PURCHASE(∅, D,1).
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Purchase planδ′ is accepted only ifχ(δ′, γ ) < χ(δ∗, γ ∗). So running the algorithm
results in a solution(δ∗, γ ∗). We refer to this algorithm by

(δ∗, γ ∗) ← MINTAR +(δ, γ, I ).

In this version ofMINTAR we do not apply restarts: we stop the search process if the
best solution has not been improved for 2,500 iterations. Furthermore, a purchase
planδ and a feasible activity listγ are required as input.

5.2.2 Backward scheduling

In the algorithmDEMAND, which we have described in Subsection 5.1.2, we de-

termine for each operationv the latest possible starting timeS
δγ

v in such a way
that

• the tardiness of none of the end-operations increases,

• the processing order on each machine remains the same, and

• the assignment of the produced nonrenewables to the consuming oper-
ations remains the same as in solution(δ, γ ).

Given these latest possible starting times we determine for each nonrenewablei the
demandsDi (t) at the beginning of each periodt . Therefore, the costs of the new
purchase plan depend on the latest starting times. Let weightwv of operationv be
equal to the cost of holding the purchased nonrenewables consumed by operationv

in inventory for one time unit. A schedule with a higher value of∑
v∈V

wvS
δγ

v (5.1)

is likely to result in a better purchase plan. In order to increase the value of (5.1) we
relax the restriction that the processing order on each machine remains the same.

The resulting latest starting times may be smaller than the corresponding release
times. As a consequence the tardiness costs of the new solution may exceedφ(δ, γ ).
Therefore, we add to the cost function the penalty

w
∑
v∈V

max{0,−S
δγ

v + rv}, (5.2)

wherew is a given penalty weight.
The purchased nonrenewables that are consumed by operationv must be re-

ceived beforeS
δγ

v . If S
δγ

v belongs to periodt , we add these nonrenewables to the

demands at the beginning of periodt . If the last period finishes before timeS
δγ

v ,
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the required purchased nonrenewables are added to the demands at the beginning of

the last period. If the first period starts after timeS
δγ

v , the required purchased non-
renewables are added to the demands at the beginning of the first period. LetD̃i (t)
denote the resulting demands. Sometimes these demands cannot be satisfied due to
a lack of capacity of the suppliers. In that case a part of the demand is postponed
in such a way that they occur as soon as possible. The resulting demand for nonre-
newablei at the beginning of periodt is denoted byDi (t). Also this modification
can result in higher tardiness costs. Therefore, we add a penalty to the cost function
given by

w
∑
i∈I

∑
t∈T

max{
∑

t ′∈T :t ′≤t

(D̃i (t
′)− Di (t

′)),0}. (5.3)

The total costs are equal to value (5.1) minus penalty (5.2) minus penalty (5.3).
Given a penalty weightw, we maximize these costs by changing the processing

orders on the machines. This is done by a slightly modified version of the tabu
search algorithm described in Chapter 3. If the processing order on each machine
is given, then there is no reason to advance an operation. Thus finding the optimal
latest starting times given an execution order of the operations on each machine can
be done using a list scheduling algorithm. Also in this case we use a critical graph
to determine the neighborhood. Only in this case everything is reversed. So the
root nodes succeeds all operations. Since the produced nonrenewables have been
assigned to the consuming operations, there are no assignment arcs in the critical
graph. Hence, all neighbors are created by swapping pairs of adjacent operations
that are processed on the same machine. For every machine arc(u, v) that belongs

to a path in the critical graph froms to an operationz for which S
δγ

z < rz orwz > 0
we create a neighbor by swappingu andv.

Our algorithm starts with the construction of an activity list, which forms the
input of our first iteration. In each iteration we determine the neighborhoodN (γ )
and use some neighborhood searching strategy to choose a neighborγ ′ ∈ N (γ ).
We stop the search process if the optimum solution has not been improved for 1000
iterations, or if a maximum number of iterationsI has been reached. Finally, we
modify the obtained activity list by ordering all operations according to nonde-

creasingS
δγ

v . So running the algorithm results in a new activity listγ ′ and a list of
demandsD . We refer to this algorithm by

(γ ′, D) ← MAXSTART(δ, γ,w, I ).

By using a high penalty weightw the search is very restricted, but the tardiness
costs will never increase. In case of a low penalty weightw a higher value of (5.1)
is obtained, but the tardiness costs may increase.
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5.3 Resulting solution approaches

We have tested four ways to combine the algorithms described in the previous sec-
tions. In Section 5.1 we have described a straightforward approach, algorithmISA1.
Now we describe the three other approaches. Hereby, we assume that an appropri-
ate penalty weightw has been given. To choose a penalty weight information about
the test instances is required.

5.3.1 Solution approach 2

In the integrated solution approach 2 (ISA2) we use the algorithmMAXSTART,
which we have described in Subsection 5.2.2. We start with algorithm

(δ, γ ) ← MINTAR (∅,∅,90000).

We stop if no feasible solution is obtained. Otherwise, we run successively the
algorithms

(γ, D) ← MAXSTART(δ, γ,w,10000);

δ ← PURCHASE(∅, D,10).

5.3.2 Solution approach 3

In the integrated solution approach 3 (ISA3) we alternate several algorithms. The
outline of the algorithm is as follows.

Step 1. Run the algorithm

(δ, γ ) ← MINTAR (∅,∅,45000).

Step 2. If no feasible solution is obtained, then stop; otherwise, go to Step 3.

Step 3. Run the algorithms

(γ, D) ← MAXSTART(δ, γ,w,5000);

δ ← PURCHASE(∅, D,5).

Step 4. Run the algorithms

(δ, γ ) ← MINTAR (δ, γ,9000);

(γ, D) ← MAXSTART(δ, γ,w,1000);

δ ← PURCHASE(δ, D,2).

Step 5. If Step 4 has been performed 5 times, or if the best solution has not
been improved in the previous run of Step 4, then stop; otherwise, go
back to Step 4.
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5.3.3 Solution approach 4

In the integrated solution approach 4 (ISA4) we use the algorithmMINTAR +, which
we have described in Subsection 5.2.1. Again we start with algorithm

(δ, γ ) ← MINTAR (∅,∅,45000).

We stop if no feasible solution is obtained. Otherwise, we run successively the
algorithms

(γ, D) ← MAXSTART(δ, γ,w,5000);

δ ← PURCHASE(∅, D,5);

(δ, γ ) ← MINTAR +(δ, γ,50000).

5.4 Computational results

We have tested our algorithms on a randomly generated test sample, which is pub-
lically available; see De Bontridder [2001a]. We have generated instances in which
none of the nonrenewables are produced by the manufacturer itself. For all instances
a trivial lower bound is given. To solve the mixed integer linear programming pro-
grams and the linear programming relaxations we used CPLEX, see CPLEX [2000].
We have performed 10 independent runs for each instance. In all experiments the
penalty weightw was set equal to 1,000,000. The experiments were performed on
a Sun Ultra 10 333 MHz workstation.

5.4.1 Test instances

We have generated 32 test instances. In all instances we have 5 suppliers, 5 non-
renewables, 12 periods, 100 operations, 10 end-operations, and 10 machines. For
the first 22 instances we have modified the job shop instances that were used by
Singer and Pinedo [1998]; Pinedo and Singer [1999]. All of these instances consist
of 10 chains of 10 operations each and 10 machines. For all of these instances we
have generated an instance of the purchase planning problem as described in Sub-
section 4.4.1. The input parameterB was set equal to 0.05. To these 22 instances
we added nonrenewable resource constraints, due dates and weights. Each opera-
tion consumes nonrenewablei with probability 0.2; the consumed quantity is equal
to a random integer fromU [1,100]. The difficulty of the problem instances is de-
termined by the tightness of the due dates and the relation between the tardiness
weights, the inventory costs, and the purchase costs. We have chosen the due dates
and the weights in such a way that the resulting problems are interesting from a
mathematical point of view. The due dates and the weights are assigned to the last
operation of each job, the end-operations. WithJe we denote the set of operations



5.4 Computational results 87

that belong to the same job as end-operatione. The due datede of end-operatione
is

b1.7
∑
u∈Je

puc,

and the corresponding weightwe is

d(1.3+ R)
∑
u∈Je

∑
i∈Cu

hi k
i
u/b̃e,

whereR is random number fromU [0,0.4]. The resulting instances for our supply
chain scheduling problem are denoted by the name of the original job shop instances
with suffix 3.

The other 10 instances of our production planning problem have randomly been
generated. These instances were generated as follows. First, we have randomly gen-
erated a precedence graph using techniques described by Kolisch et al. [1995]. The
precedence graph has been generated in such a way that there are 10 end-operations,
that 25 operations have no predecessor, and that every operation has at most one di-
rect successor. The resulting problem consists of 10 jobs. The processing time of
each operation and the time lag of each precedence relation are random integers
from U [1,99] andU [0,19], respectively. Each operation is randomly assigned to a
machine, and suitable release times and due dates are randomly generated. Also for
these instances we have generated a purchase planning problem as described above.
The nonrenewable resource constraints and the weights are determined in the same
way as for the modified job shop scheduling instances. We denote the resulting
instances by bs01–bs10.

5.4.2 Test results

We performed ten independent runs of the algorithmsISA1, ISA2, ISA3 andISA4
on the test instances and compared the best and the average solutions of both al-
gorithms with a trivial lower bound, which was computed as follows. First, we
determine a lower bound for the purchase costs by solving the following instance
of the purchase planning problem to optimality. In this instance the inventory costs
per period are equal to zero for all nonrenewables and all required nonrenewables
are only required at the beginning of the last period. The optimal value of this prob-
lem is obtained by solving a mixed integer linear programming problem MIP2 as
described in Chapter 3. It is easy to verify that the optimal value is a lower bound
for the purchase costs.

Next we determine a lower bound for the sum of the inventory and the pur-
chase costs. In the precedence graph there is only one path from operationv to
its end-operation. Letl v denote the length of this path. As mentioned earlier the
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algorithmISA1 algorithmISA2
name lb best average time best average time

ft10-3 2434324.3 18.33 18.98 65.1 18.33 18.98 62.6
abz5-3 1996499.8 30.47 32.21 1.2 25.47 26.42 44.0
abz6-3 2329692.0 23.44 25.95 1.1 18.83 19.42 29.9
la16-3 1368850.7 18.85 20.88 1.4 17.32 17.53 36.2
la17-3 1513100.4 18.98 20.42 1.7 16.32 17.23 35.7
la18-3 1710800.7 28.22 29.07 1.3 25.13 25.61 39.6
la19-3 1369465.7 24.38 26.25 0.8 21.97 22.75 36.8
la20-3 2275350.9 24.60 25.68 1.0 18.96 19.48 25.8
la21-3 1538974.6 26.86 28.34 1.1 20.70 22.38 33.2
la22-3 3050348.8 22.79 24.90 1.2 19.97 20.38 37.8
la23-3 1814879.6 20.06 21.45 0.9 17.10 17.78 35.7
la24-3 1692463.8 24.14 25.90 1.1 20.86 21.22 31.0

orb01-3 2258817.3 26.17 27.77 69.2 26.17 27.77 65.8
orb02-3 1442598.9 24.26 26.18 2.2 23.51 24.16 24.5
orb03-3 1837348.6 29.68 32.12 64.8 29.64 32.11 63.4
orb04-3 1910843.2 22.01 23.13 5.1 21.79 22.48 27.0
orb05-3 1691513.4 27.96 29.32 51.3 27.96 29.33 53.1
orb06-3 2174932.8 21.45 22.66 16.1 21.06 21.55 55.0
orb07-3 2523152.1 18.09 18.30 1.3 16.32 17.21 37.7
orb08-3 2174471.2 22.25 23.38 76.9 21.86 23.13 87.1
orb09-3 1906651.4 26.03 27.60 5.0 23.94 26.14 30.4
orb10-3 3272011.6 21.43 22.69 3.4 19.74 20.39 29.6
average 2013049.6 23.66 25.14 17.0 21.50 22.43 41.9

Table 5.1: Results per instance.

weightwv of operationv is equal to the cost of holding the purchased nonrenew-
ables consumed by operationv in inventory for one time unit. It is easy to verify
that ∑

v∈V
wvl v

is a weak lower bound for the sum of the inventory and the tardiness costs. The
sum of both lower bounds is a valid lower bound for our supply chain scheduling
problem.

In Table 5.1 and Table 5.2 we give the results for the modified job shop in-
stances. The results for the instances bs01–bs10 are given in Table 5.3 and Ta-
ble 5.4. In the second column we give the lower bound (lb). For all algorithms the
percentage of deviation of the best and the average solution over the lower bound
are given. In the columns ‘time’ for each instance the average computation time per
run is given in cpu seconds.

As a consequence of the weakness of our lower bound, it is difficult to judge
the quality of the solutions. Nevertheless, we can conclude that the algorithmMAX -
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algorithmISA3 algorithmISA4
name lb best average time best average time

ft10-3 2434324.3 18.27 18.56 62.2 14.37 15.29 98.0
abz5-3 1996499.8 25.85 27.17 39.2 23.72 25.14 89.7
abz6-3 2329692.0 18.97 19.73 27.3 17.10 17.81 108.8
la16-3 1368850.7 16.89 17.74 32.1 14.74 15.73 65.8
la17-3 1513100.4 16.32 17.00 33.0 16.07 16.55 40.2
la18-3 1710800.7 25.32 25.70 32.0 22.28 22.95 108.4
la19-3 1369465.7 21.35 22.48 31.3 19.93 20.79 53.5
la20-3 2275350.9 18.96 19.59 26.7 16.37 17.88 62.8
la21-3 1538974.6 20.71 22.53 30.1 19.39 20.53 99.2
la22-3 3050348.8 19.97 20.49 32.1 18.15 18.94 61.8
la23-3 1814879.6 17.10 17.76 31.5 15.81 16.29 64.8
la24-3 1692463.8 20.72 21.40 26.1 18.31 19.40 84.7

orb01-3 2258817.3 25.81 27.60 66.1 23.55 24.73 115.1
orb02-3 1442598.9 23.51 24.40 27.8 20.08 21.47 61.5
orb03-3 1837348.6 29.75 32.06 60.0 27.32 29.35 89.7
orb04-3 1910843.2 21.79 22.48 27.8 18.40 20.15 44.7
orb05-3 1691513.4 27.67 29.17 58.3 22.14 23.71 123.8
orb06-3 2174932.8 21.06 21.83 49.2 17.88 19.07 81.4
orb07-3 2523152.1 16.38 17.27 30.1 15.34 16.36 45.5
orb08-3 2174471.2 22.00 22.97 61.5 19.78 21.61 86.2
orb09-3 1906651.4 23.94 26.48 28.6 24.07 25.15 60.1
orb10-3 3272011.6 19.74 20.54 29.3 18.57 19.46 61.9
average 2013049.6 21.46 22.50 38.3 19.24 20.38 77.6

Table 5.2: Results per instance.

START has a positive effect on the quality of the solutions. The quality of the solu-
tions of algorithmsISA2 andISA3 is almost the same, but the quality of the solutions
of algorithmISA4 is better.

5.5 Conclusion

In this chapter we have presented several solution approaches for our supply chain
scheduling problem. We tested these approaches on several test instances. During
our experiments we noted that the results highly depend on the type of problem
instances. So the chosen solution approach depends on the relation between the
tardiness costs, the inventory costs, and the purchase costs. The determination of
appropriate weighting factors for different costs is one of the main difficulties of
supply chain scheduling problems. Nevertheless, we can conclude that it is useful
to integrate purchase and production planning.

As in many supply chain scheduling problems it appears that solving both sub-
problems simultaneously gives the best results. This can easily be accomplished,
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algorithmISA1 algorithmISA2
name lb best average time best average time

bs01-3 2056234.7 15.50 16.68 0.9 11.55 11.71 35.6
bs02-3 2277500.9 17.27 18.00 0.7 14.86 15.20 38.8
bs03-3 2994444.1 10.48 11.06 41.1 10.48 11.06 41.1
bs04-3 1892658.7 18.03 19.00 0.9 14.22 15.25 46.5
bs05-3 3276393.2 19.70 20.76 1.3 15.60 15.92 39.4
bs06-3 2981442.0 12.59 12.99 1.2 9.92 10.16 50.1
bs07-3 1900203.4 12.40 13.48 0.8 9.88 10.81 47.2
bs08-3 2242311.5 12.48 13.83 0.8 8.47 9.18 38.1
bs09-3 2158115.4 19.17 19.76 46.4 19.17 19.76 46.5
bs10-3 2726096.2 17.59 18.11 65.0 16.76 17.96 72.6

average 2450540.0 15.52 16.37 15.9 13.09 13.70 45.6

Table 5.3: Results per instance.

algorithmISA3 algorithmISA4
name lb best average time best average time

bs01-3 2056234.7 11.55 11.85 32.8 9.70 10.21 138.0
bs02-3 2277500.9 14.78 15.20 37.7 13.23 13.99 65.9
bs03-3 2994444.1 9.37 9.46 64.1 8.47 8.67 221.3
bs04-3 1892658.7 14.22 15.26 37.6 13.45 14.05 74.4
bs05-3 3276393.2 15.60 15.92 35.0 13.82 15.03 80.6
bs06-3 2981442.0 9.92 10.22 41.7 9.11 9.56 107.2
bs07-3 1900203.4 9.88 10.75 36.8 9.09 9.83 57.8
bs08-3 2242311.5 8.47 9.18 32.9 7.89 8.56 75.5
bs09-3 2158115.4 17.14 17.43 72.1 14.28 15.31 96.7
bs10-3 2726096.2 16.76 17.01 69.8 16.49 16.84 76.6

average 2450540.0 12.77 13.23 46.1 11.55 12.20 99.4

Table 5.4: Results per instance.

since both subproblems are solved through local search approaches. In order to in-
tegrate both local search algorithms we have to make small changes to the solutions
of the different subproblems in some appropriate order. To handle other supply
chain scheduling problems the same straightforward approach can be used. First
we decompose the problem into appropriate subproblems. After that, we develop
for these subproblems local search algorithms. Hereby it is useful to use mathemat-
ical programming techniques to incorporate problem-specific knowledge. Finally,
the local search algorithms are integrated to one solution approach.

A very restrictive factor in our supply chain scheduling problem is the assump-
tion that the total purchased quantity of each nonrenewable is given. Dropping this
assumption results is an interesting problem. In this situation the manufacturer can
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purchase extra nonrenewables in order to obtain a better production plan. This prob-
lem can even be extended further by allowing modifications of the set of operations,
i.e., extra operations that produce certain nonrenewables could be added in order to
reduce the purchase costs, or operations could be removed in order to reduce the
tardiness costs.

Notice that we have only mentioned some extensions of our supply chain
scheduling problem. But in supply chains there are many other problems that could
be considered in an integrated context. So there are many interesting challenges in
the area of supply chain scheduling.
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Samenvatting

Door de sterke ontwikkeling van informatiesystemen zoals ERP, is er in de afgelo-
pen jaren een steeds grotere interesse ontstaan voor planningsproblemen die voor-
komen in supply chains. Door de invoering van ERP systemen komen alle data
uit de supply chain beschikbaar opéén lokatie. Hierdoor kunnen problemen die
vroeger apart werden bekeken nu op een geı̈ntegreerde manier worden aangepakt.
Het doel van supply chain scheduling is het realiseren van de voordelen die hier-
door mogelijk zijn. In dit proefschrift behandelen we een voorbeeld van een supply
chain scheduling probleem, waarin we het aankoop- en het productieplan van een
fabrikant op een geı̈ntegreerde manier bepalen. We kijken naar een fabrikant die
producten maakt voor klanten. Deze producten moeten worden geleverd op een
afgesproken tijdstip. Indien dit tijdstip niet gehaald wordt, moet de fabrikant een
boete betalen. Deze boetes hangen lineair af van de hoeveelheid vertraging.

Het productieproces van ieder product bestaat uitéén of meer stappen. In het
productieplan wordt het starttijdstip voor elke stap in het productieproces vastge-
legd. Zo’n stap in het productieproces moet worden uitgevoerd op een vooraf be-
paalde machine, die maaréén opdracht tegelijkertijd kan uitvoeren. Deze capaci-
teitsbeperking is een van de voornaamste restricties waar we rekening mee moeten
houden bij het bepalen van een productieplan. Een andere belangrijke restrictie is
dat een stap in het productieproces pas kan worden uitgevoerd als alle benodigde
materialen beschikbaar zijn. Deze materialen worden geleverd door verscheidene
externe leveranciers of geproduceerd door de fabrikant zelf.

In het aankoopplan worden de leveranciers, de levertijdstippen en de te leveren
hoeveelheden van de te leveren materialen vastgelegd. Met alle leveranciers zijn
prijzen, kortingen en andere voorwaarden overeengekomen. Bij het bepalen van
een aankoopplan moet de fabrikant twee zaken tegen elkaar afwegen. Door veel
materiaal tegelijkertijd te bestellen kan de fabrikant optimaal gebruik maken van
de door de leverancier aangeboden kortingen en zo de totale aankoopprijs drukken.
Aan de andere kant kunnen grote bestellingen tot grotere voorraadkosten leiden,
omdat het materiaal (al dan niet verwerkt) langer dan noodzakelijk in het produc-
tieproces is. Het doel van de fabrikant is om een aankoop- en een productieplan te
bepalen zodanig dat de som van de aankoopkosten, productiekosten en de boetes
veroorzaakt door een te late levering zo laag mogelijk zijn.
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In dit proefschrift beschrijven we eerst algoritmes voor het oplossen van drie
deelproblemen van dit supply chain scheduling probleem. Daarna beschrijven we
een methode om al deze algoritmes te combineren tot een geı̈ntegreerde aanpak
voor ons supply chain scheduling probleem. Bij de eerste twee deelproblemen gaan
we ervan uit dat het aankoopplan gegeven is en dat dus alleen het productieplan
bepaald moet worden. Het verschil tussen beide deelproblemen is dat in het eerste
geval voor de geproduceerde of geleverde materialen al exact bepaald is waarvoor
ze zullen worden gebruikt. In het tweede deelprobleem is dit niet het geval, waar-
door we meer vrijheid hebben bij het bepalen van het productieplan. In het derde
deelprobleem gaan we ervan uit dat het productieplan al vastligt en dat we alleen
het aankoopplan nog moeten bepalen.

In al onze algoritmes maken we gebruik van zogenaamde lokale zoektechnie-
ken. Het basis idee van lokale zoektechnieken is dat we een gegeven oplossing kun-
nen verbeteren door kleine veranderingen aan te brengen. Door te beginnen bij een
startoplossing en het herhaaldelijk aanbrengen van kleine veranderingen proberen
we steeds betere oplossingen te vinden. Het is van belang om bij het ontwikkelen
van een lokaal zoekalgoritme gebruik te maken van probleem-specifieke informatie.
Om dit te realiseren gebruiken we in al onze algoritmes technieken uit de discrete
optimalisering.
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I

Beschouw het volgende probleem. Gegeven een graaf, bepaal het maximale aantal
knoop-disjuncte paden van lengte 2. Voor dit probleem definiëren we een serie itera-
tieve verbeteringsalgoritmenHk (k ≥ 0). Algoritme Hk probeert in iedere stap het
aantal paden van lengte 2 met tenminsteéén te laten toenemen. Om dit te bereiken
mogen maximaalk paden van lengte 2 verwijderd worden. Het algoritme stopt als op
deze manier geen verbetering meer mogelijk is. De prestatiegarantieρk van algoritme
Hk voork = 0,1,2,3,4 is als volgt:

k 0 1 2 3 4

ρk 3 2 9
5

11
7

3
2

K.M.J. DE BONTRIDDER, B.V. HALLD ÓRSSON, M.M. HALLD ÓRSSON, C.A.J. HURKENS,
J.K. LENSTRA, R. RAVI , AND L. STOUGIE [2001], Approximation algorithms for the mini-
mum test set problem, Manuscript.

II

Beschouw het volgende probleem. Gegeven zijnm objecten enn tests. Ieder object
reageert positief of negatief op een test. Het doel is om het minimale aantal tests te
bepalen dat nodig is om alle objecten te kunnen onderscheiden. Twee objecten zitten
in één equivalentieklasse dan en slechts dan als ze niet te onderscheiden zijn door de al
uitgevoerde tests. Stel dat er na het uitvoeren van een aantal testsk equivalentieklassen
E1, . . . , Ek overblijven. Om de nog niet uitgevoerde tests te vergelijken kunnen onder
andere het onderscheidingsvermogen en de informatiewaarde gebruikt worden. Het
onderscheidingsvermogen van een testT is gelijk aan

k∑
i=1

min{|T ∩ Ei |, |Ei \ T |}.

De informatiewaarde is gelijk aan

log2 m−
1

m

k∑
i=1

|Ei | log2 |Ei |.

Uit rekenresulaten blijkt dat branch-and-bound algoritmen ter bepaling van het mi-
nimale aantal tests beter gebaseerd kunnen worden op het onderscheidingsvermogen
dan op de informatiewaarde.

K.M.J. DE BONTRIDDER, C.A.J. HURKENS, J.K. LENSTRA, J.B. ORLIN , AND L. STOU-
GIE [2001]. Branch and bound algorithms for the minimum test set problem, Manuscript.



III

Het gebruik van probleemspecifieke informatie in lokale-zoekalgoritmen is zinvol.

IV

Door lokale-zoekalgoritmen volgens de standaardregels uit de literatuur toe te passen
worden de mogelijkheden onnodig beperkt.

V

Vanwege de volgende omslachtige spellingregel is het in Nederland vaak onmogelijk
om persoonsnamen correct te laten schrijven.

Persoonsnamen krijgen een hoofdletter. Het voorzetsel of lidwoord krijgt een hoofdlet-
ter als er geen naam of voorletter aan voorafgaat. In Vlaanderen behouden lidwoor-
den en voorzetsels van persoonsnamen altijd hun originele schrijfwijze.1

Het verdient daarom aanbeveling om de Vlaamse schrijfwijze tot standaard te maken.

1 INSTITUUT VOOR NEDERLANDSE LEXICOLOGIE [1995], Woordenlijst Nederlandse taal,
Sdu Uitgevers, Den Haag.

VI

Gezien het programma van de Nederlandse voetbalcompetitie is het merkwaardig dat
champions league poules met Nederlandse deelname wel een regulier verloop kennen.

VII

Dat gemeenschapsonderdanen zich in Nederland eigenlijk nog altijd moeten melden
bij de vreemdelingendienst wijst op een gebrekkige Europese integratie.

In het EG-verdrag is de bepaling opgenomen dat de gemeenschapsonderdaan zijn ver-
blijf dient aan te melden bij het bevoegd gezag en dat de gemeenschapsonderdaan in
het bezit kan worden gesteld van een verblijfsdocument. Deze meldingsplicht en de
sancties op het zich niet houden daaraan, mogen echter niet leiden tot een belem-
mering van het vrij verkeer van personen. Daarom hoeft u zich niet te melden bij de
Vreemdelingendienst. Wij raden u echter aan om u wel te melden bij de vreemdelin-
gendienst, om eventuele problemen met andere overheidsinstanties te voorkomen.2

2 IMMIGRATIE - EN NATURALISATIEDIENST [2001],De toelating van gemeenschapsonderda-
nen tot Nederland, Ministerie van Justitie, Den Haag.



VIII

De omslag van een proefschrift geeft een goed beeld van de promovendus.

IX

Wetenschappelijk onderzoekers krijgen hun beste inspiratie niet op hun werkplek,
maar bijvoorbeeld in berghutten of treinen.

X

Tentoonstellingsmakers scheppen condities, af en toe kunnen ze het geheel dirigeren
maar de kunst blijft de hoofdzaak. Die kunst zal zich wel richten naar zijn ruimte-
lijke/tijdelijke context, maar die kunst spiegelt zich vooral aan de andere kunst; niet
omwille van zichzelf maar omwille van zijn toeschouwers. De toeschouwer is de con-
text.

G.P. DE BONTRIDDER [1986]. Context,Het Bassin, jaargang 2, nummer 2, 46–47.
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