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Asymptotics for first passage times

of Lévy processes and random walks

Denis Denisov∗ Vsevolod Shneer †

30 June 2006

We study the exact asymptotics for the distribution of the first time τx a Lévy process
Xt crosses a negative level −x. We prove that P(τx > t) ∼ V (x)P(Xt ≥ 0)/t as t → ∞
for a certain function V (x). Using known results for the large deviations of random walks
we obtain asymptotics for P(τx > t) explicitly in both light and heavy tailed cases. We also
apply our results to find asymptotics for the distribution of the busy period in an M/G/1
queue.

Keywords: Lévy processes, random walk, single serve queue, busy period, first passage times, subexponential

distributions, large deviations.

AMS 2000 subject classification: 60G50; 60G51; 60K25.

Introduction

Let {Xt}t≥0 be a Lévy process with the characteristic function E{eiθXt} = etΨ(θ), t ≥ 0, where Ψ
is given by the Lévy-Khinchine formula[29]

Ψ(θ) = iAθ − 1
2
σ2θ2 +

∫ +∞

−∞
(eiθx − 1− iθx1[−1,1])Π(dx). (0.1)

For x ≥ 0 let
τx = min{t ≥ 0 : Xt < −x}

be the first passage time. Throughout we assume that the Lévy process Xt drifts to −∞ a.s.
Rogozin’s criterion [26] (see also [5, p. 167] or [29, theorem 48.1]) says that Xt → −∞ if and
only if

∫ ∞
1

t−1P{Xt ≥ 0}dt <∞. (0.2)

This assumption implies that τx is a proper random variable with finite expectation:

τx <∞, E{τx} <∞.
∗EURANDOM, Eindhoven, The Netherlands; denisov@eurandom.tue.nl
†Department of AMS, Heriot-Watt University, Edinburgh, UK; seva@ma.hw.ac.uk
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The aim of this work is to study asymptotics

P{τx > t}

when x > 0 is fixed and t→∞.
An analogue of the Lévy processes for discrete time is random walks. Let Sn = ξ1 + · · ·+ ξn

be a random walk with i.i.d. increments and assume that Sn → −∞ a.s. Then an analogue of τx
is the stopping time νx = min{n ≥ 1 : Sn < −x}. Asymptotics for νx have been studied in [12]
for x = 0, and in [10], [6] for x > 0. In [12], it is shown that P{ν0 > n} ∼ P{Sn ≥ 0}/n if the
latter is a subexponential sequence (see definition below). In [10] and [6], the asymptotics for νx
have been found when x > 0. In these papers the authors considered four classes of distribution
of ξ. For each of these classes, they show that P{νx > n} is asymptotically proportional to
P{Sn ≥ 0}/n using large deviations asymptotics for P{Sn ≥ 0}.

In our work we develop the approach proposed in [10], [6]. The main results of our paper are
Theorems 1.1 and 1.2. Theorem 1.1 states that under some natural assumptions,

P{τx > t} ∼ V (x)
P{Xt ≥ 0}

t
,

for some function V (x) depending only on x. Theorem 1.2 shows that under identical conditions
for both Lévy processes and random walks,

P{νx > n} ∼ Vrw(x)
P{Sn ≥ 0}

n
,

P{τx > t} ∼ V (x)e−γ(t−[t]) P{X[t] ≥ 0}
t

for some γ ≥ 0, where by [t] we denote the integer part of t (the smallest integer smaller than
t) and functions V (x) and Vrw(x) depend only on x. It is worth mentioning that for the case of
Lévy processes both conditions of Theorem 1.2 and its result are given in terms of the values of
the process at discrete times. Therefore, the problem of finding asymptotics for P{τx > t} and
P{νx > n} is reduced to finding asymptotics for P{Sn ≥ 0}, or P{S̃n ≥ na} where a = −E{ξ1}
and S̃n = Sn+na is a random walk with zero drift. This is a problem of large deviations of sums
of independent identically distributed random variables which is extensively studied in literature.
We apply known results to obtain explicit asymptotics in various cases. It appears that in all
cases when asymptotics for P{Sn > 0} can be found explicitly, the conditions of Theorem 1.2 are
satisfied and hence, asymptotics for the tail distribution of τx and νx can also be found explicitly.

We consider distributions with heavy tails (such that E{eεξ1} =∞ for all ε > 0) and distribu-
tions with light tails (for which the latter condition is not fulfilled) separately. It has been pointed
out by various authors that for the problem of large deviations of sums of heavy-tailed random
variables, one should indicate two classes of distributions: those with tails lighter and heavier
than e−

√
t (we say that the tail of a distribution F is lighter than a function f if F (t)/f(t)→ 0 as

t→∞ and heavier than function f if F (t)/f(t)→∞). For the case of heavy-tailed distributions
we have some new results on large deviations that are presented in [9]. We also state these results
in the present paper, however, we do not concentrate on the problem of large deviations in this
work.

Theorem 1.2 can also be applied to the case of light-tailed distributions under some further
assumptions. In particular, the conditions of Theorem 1.2 are fulfilled if the distribution of ξ1
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satisfies the so-called Cramer’s (or classical) conditions. With the help of Theorem 1.2 we can
also cover the so-called intermediate case, when ξ1 has a distribution with a light tail but does
not satisfy Cramer’s condition.

Another motivation for our work was to find asymptotics for the busy period in the sta-
ble M/G/1 queue. Let A1, A2, . . . and B1, B2, . . . be two mutually independent sequences each
consisting of independent and identically distributed random variables. Assume that {Ai} are
inter-arrival times and {Bi} are service times. We assume throughout that E{B1}/E{A1} = ρ < 1
so that the system is stable. We use the usual notation: we denote by M/G/1 the system when
Ai are exponential random variables; in the case of a general i.i.d. sequence {Ai}, we denote the
system by GI/GI/1. Denote N(t) = max{n : A1 + . . .+An ≤ t}. Put X0 = 0 and

Xt =
N(t)∑

i=1

Bi − t. (0.3)

Then the busy period of the system with initial work x > 0 may be defined as

bp(x) = inf{t : Xt < −x}.

Hence, in an M/G/1 queue, finding asymptotics for the tail of bp(x) is equivalent to finding
asymptotics for the tail of τx when Xt is a compound Poisson process without negative jumps.

The tail behavior of the busy period in these systems has been studied by various authors
under different assumptions. Under Cramer-type assumptions, asymptotics for the M/G/1 set-
ting were studied in [1] and for the GI/G/1 setting — in [23]. Most of the papers on the tail
behaviour of the busy period are devoted to studying the case when B1 has a subexponential
distribution. All these papers investigate the asymptotic behaviour of bp — busy period of the
queue under the condition that the first customer arriving at the system finds it empty. In [19],
it was shown that if B1 has a regularly varying distribution then

P{bp > t} ∼ E{ν0}P{B1 > (1− ρ)t} (0.4)

as t→∞. This result has been generalized in [30] to the case of a GI/G/1 queue and under the
assumption that the tail B(t) = P{B1 > t} satisfies an extended regular variation condition (see
[7]).

Later on, it has been shown in [4] and [15], that the asymptotics (0.4) hold for the GI/G/1
model for another subclass of heavy-tailed distributions which includes the Weibull distributions
with parameter α < 1/2. The tails of the distributions considered in [4] and [15] are heavier than
e−
√
t. As is shown in [3] (see also [14]), the latter condition is crucial for the asymptotics (0.4)

to hold.
The method proposed in this paper allows to find asymptotics for P{bp(x) > t} in the M/G/1

queue for both light- and heavy-tailed distributions. Moreover, we are able to obtain these asymp-
totics when P{B > t} is lighter than e−

√
t but still heavier than any exponential distribution.

Using the results on tail asymptotics of the distribution of bp(x), we can also obtain the results
for the tail asymptotics of the distribution of bp.

The paper is organised as follows. In section 1 we present Theorems 1.1 and 1.2 that reduce
the problem of finding asymptotics for P{τx > t} and P{νx > n} to studying asymptotics of
P{Sn ≥ 0}. In section 2 we consider 4 classes of distributions: heavy-tailed distributions I (with
tails heavier than e−

√
t), heavy-tailed distributions II (with tails lighter than e−

√
t), distributions
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satisfying Cramer’s condition and distributions forming an intermediate case (distributions with
light tails not satisfying Cramer’s condition). For each of these cases we give known results on
asymptotics of P{Sn > 0}, show that the conditions of Theorem 1.2 are satisfied and hence,
obtain results on the tail asymptotics of the distributions of τx and νx. Appendix A is devoted
to the proofs of Theorems 1.1 and 1.2, in Appendix B we present some known results on Lévy
processes that are used in our paper.

1 Main results

In this section we present Theorems 1.1 and 1.2 which connect the asymptotics for τx and νx
with the asymptotics for P{Sn ≥ 0}. Before stating general Theorems, we need to introduce

Definition 1.1. A function f : R+ → R+ belongs to the class Sd(γ) with γ ≥ 0 if, starting
from some moment t, f(t) > 0 and

lim
t→∞ f(t− y)/f(t) = eγy, y ∈ R; (1.1)

lim
t→∞

f∗2(t)
f(t)

= lim
t→∞

∫ t
0 f(t− y)f(y)dy

f(t)
= 2d = 2

∫ ∞
0

eγyf(y)dy. (1.2)

The class Sd := Sd(0) is called the class of subexponential densities.

A discrete-time analogue of this definition is

Definition 1.2. A sequence {an}n≥0 belongs to the class Ss(γ) with γ ≥ 0 if starting from
some index n, an > 0 and

lim
n→∞ an−1/an = eγ , (1.3)

lim
n→∞

a∗2n
an
≡ lim

n→∞

∑n
i=0 aian−i
an

= 2d = 2
∞∑

i=0

aie
γi. (1.4)

The class Ss := Ss(0) is called the class of subexponential sequences.

Theorem 1.1. Let the function
P{Xt ≥ 0}

t
, t ≥ 1

belong to the class Sd(γ). In addition assume that for some α ≥ 0

lim
t→∞

P{Xt ≥ 0}
P{Xt ≥ y} = eαy, for any fixed y. (1.5)

Then,

P{τx > t} ∼ V (x)
P{Xt ≥ 0}

t
, (1.6)

for any x, a point of continuity of the function

V (x) ≡
{

E{τx}, γ = α = 0
eαx

∫∞
0 eγtE{eαNt ; |Nt| ≤ x}dt, otherwise

(1.7)

where Nt = inf
0≤s≤t

Xs.
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In the next Theorem we show that it is possible to obtain asymptotics for τx and νx under
the same conditions for both random walks and Lévy processes.

Theorem 1.2. Let Xt be either a Lévy process or a random walk. Let the sequence

P{Xn ≥ 0}
n

, n ∈ N

belong to the class Ss(γ). In addition assume that for some α ≥ 0

lim
n→∞

P{Xn ≥ 0}
P{Xn ≥ y} = eαy, for any fixed y, n ∈ N. (1.8)

Then, if Xt is a Lévy process, for any x,

P{τx > t} ∼ V (x)e−γ(t−[t]) P{X[t] ≥ 0}
t

,

where V (x) is defined in Theorem 1.1.
If Xn is a random walk, then

P{τx > n} ∼ Vrw(x)
P{Xn ≥ 0}

n
,

where

Vrw(x) =
{

Eνx, γ = α = 0
eαx

∑∞
k=0 e

γkE{eαNk ; |Nk| ≤ x}, otherwise

where Nk = min
0≤l≤k

Xl.

Remark 1. The conditions of Theorem 1.1 and (or) conditions of Theorem 1.2 imply that
e−γ = E{eαX1}. The proof of this fact is given in Appendix A. Note also that this fact implies
that α = 0 if and only if γ = 0. This corresponds to the subexponential case.

2 Explicit results

This section consists of 4 subsections. Each of these subsections is devoted to a class of distribu-
tions for which we present known results on large deviations of sums of random variables, with
the help of these results we show that the conditions of Theorem 1.2 are satisfied and as a result
we obtain the asymptotics for the tail distributions of τx and νx. First, we prove Theorem 2.2
in which we study the case when − ln P{X1 > t} = o(

√
t). Further, in Theorem 2.4, we analyse

the case when − ln P{X1 > t} is regularly varying with parameter α ∈ [1/2, 1). For the first two
cases, we use some results from paper [9]. Then, in Theorem 2.5 we give the asymptotics for
Cramer’s case. This includes (partially) the distributions with exponential tails and tails which
are lighter than exponential. Finally, in Theorem 2.7, we analyse distributions with exponential
tails that are not covered by Cramer’s case. As corollaries we give corresponding results for the
tail asymptotics of the busy period of an M/G/1 queue.
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2.1 Heavy-tailed distributions I

The following Theorem is a corollary of the results of [9].

Theorem 2.1. Let Sn =
n∑
i=1

ξi be a random walk. Let E{ξ1} = 0 and E{|ξ1|κ} < ∞ for some

κ ∈ (1, 2]. Assume that
F (n− n1/κ)

F (n)
→ 1 (2.1)

as n→∞ and assume also that

ε(n) ≡ sup
x≥2n1/κ

P{ξ1 > n1/κ, ξ2 > n1/κ, S2 > x}
F (x)

= o

(
1
n

)
(2.2)

as n→∞. Then for any a > 0,

P{Sn > na} ∼ nP{ξ1 > na} (2.3)

as n→∞.

For the tail asymptotics of τx and νx the following is true.

Theorem 2.2. Let Xt be either a Lévy process or a random walk. Assume that the distribution
of X1 satisfies the conditions of Theorem 2.1. Let E{X1} = −a < 0. Then

P{τx > t} ∼ E{τx}P{X1 > ta} ∼ E{τx}Π(ta), t→∞; (2.4)

P{νx > n} ∼ E{νx}P{X1 > na}, n→∞. (2.5)

Remark 2. Note that the conditions of the latter Theorem imply that F (y −√y) ∼ F (y).
It, in turn, implies that − lnF (y) = o(

√
y). Thus, we again have the Weibull distribution with

parameter 1/2 as a boundary.

Remark 3. The proof of Theorem 2.2 relies on Theorem 2.1 which is a result of [9]. How-
ever, the same asymptotics for τx and νx may be obtained for any distributions satisfying the
asymptotic equivalence P{Sn > na} ∼ nP{ξ1 > na}. For instance, from the results of [20] it
follows that such asymptotics hold for regularly varying distributions. The results of [27] imply
that the same holds for Weibull-type distributions with a parameter smaller than 1/2. In [9] it
is shown that Theorem 2.1 includes all the results known beforehand.

Remark 4. In this Remark we show that the conditions of Theorem 2.1 are satisfied for any
regularly varying distribution with a parameter greater than 1.

Proof of Theorem 2.2. We should check the conditions of Theorem 1.2. First, it follows
from Theorem 2.1 that P{Xn ≥ 0} ∼ P{Xn+1 ≥ 0} and P{Xn ≥ y} ∼ P{Xn ≥ 0}. It is then
easy to check that P{Xn ≥ 0}/n is a subexponential sequence.

Then, it follows from Theorem 2.1 and Theorem 1.2 that

P{Xt ≥ 0} ∼ P{X[t] ≥ 0} = P{X[t] + [t]a ≥ [t]a} ∼ [t]P{X1 ≥ [t]a}.
Then,

P{τx > t} ∼ E{τx}P{Xt ≥ 0}
t

∼ E{τx}P{X1 ≥ [t]a} ∼ E{τx}P{X1 > ta}.

We also present a direct corollary of Theorem 2.2.
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Corollary 2.1. Let E{Bκ
1 } <∞ and E{Aκ1} <∞ for some κ ∈ (1, 2]. Assume that the distribu-

tion of B1 satisfies the conditions (2.1) and (2.2). Then

P{bp(x) > t} ∼ x

EA1

1
1− ρP{B1 > (1− ρ)t} (2.6)

as t→∞ for any fixed x > 0.

Proof of corollary 2.1. In the case of an M/G/1 system, case X1 =
N(1)∑
i=1

Xi − 1 (see

(0.3)). Hence, E{X1} = ρ − 1 and P(X1 > t) ∼ 1
EA1

P(B1 > t) as t → ∞. Theorem 2.2 yields

that
P{bp(x) > t} ∼ E{bp(x)}P{B1 > (1− ρ)t}

as t → ∞. It remains to note that Ebp(x) =
x

1− ρ (this, for example, can be obtained from [8,

p.261, (4.94)]).

2.2 Heavy-tailed distributions II

Denote g(x) = − lnF (x). In this subsection we consider the case

lim sup
g(x)√
x
> 0.

For this we use [27, theorem 5a].

Theorem 2.3. ([27, theorem 5a]) Let P{ξ1 > y} ∼ e−g(y) as y →∞ with a doubly differentiable
function g such that g′′(y) does not decrease for y ≥ yo and yg′′(y) ∼ (β − 1)g′(y) as y →∞ for
some β ∈ (0, 1). Let

k = max
{
l ∈ {1, 2, . . .} : lim sup

z→∞
g(z)
zl/(l+1)

> 0
}
. (2.7)

Let
E{ξ} = 0,E{ξ2} = 1,E{|ξ|k+3} <∞,

R(y) = g(y) +
(t− y)2

2n
−

k∑

i=1

λi−1
(t− y)i+2

ni+1
. (2.8)

Let y∗ be the maximal solution of R′(y) = 0. Then y∗ ≤ t−√n and

P{Sn > t} ∼ n
√

1
nR′′(y∗)

exp {−R(y∗)}, n→∞ (2.9)

uniformly in t > 1.6η(n), where η(z) is such that η2(z)/g(η(z)) ∼ z, z → ∞. Here, λi are the
coefficients of the Cramer series (see [25] and [28]).

Remark 5. Note that the conditions of Theorem 2.3 imply that g′′(y) is a regularly varying
function with parameter (β − 2). This fact follows from the monotonicity of g′′ and Karamata’s
Theorem. Then, g′(y) is regularly varying with parameter (β − 1) and g(y) is regularly varying
with parameter β. Also, under these conditions η(z) may be equivalently defined as a function
such that |g′′(η(z))| ∼ β(1 − β)/z, z → ∞. Therefore, η(z) is a monotone regularly varying
function with parameter 1/(2− β).

7



Remark 6. In the statement of [27, theorem 5a] it is not said that y∗ ≤ t−√n, but one can
find this assertion in the proof of [27, Lemma 3a].

In this case we present some results from [9]. The detailed investigation may be found therein.
We find it difficult to apply Theorem 2.3 directly, since it gives the asymptotics in terms of the
maximal solution to an equation. Therefore, we use the approach developed in [14] to simplify
this equation.

Lemma 2.1. Let all conditions of Theorem 2.3 hold. Let tn → ∞ be a sequence such that
tn ≥ 1.6η(n). Let yn be any sequence such that yn ∼ tn and

R′(yn) = o(1/
√
n). (2.10)

Then,

P{Sn > tn} ∼ n
√

1
nR′′(yn)

exp {−R(yn)}, n→∞.

Also, for any sequence εn = o(
√
n),

P{Sn > tn} ∼ P{Sn > tn + εn}.

Proof of lemma 2.1. First, we note that since g′′ is monotone and regularly varying it is
true that

R′(y + z)−R′(y) = zR′′(y)(1 + o(1)), y →∞, z = o(y).

Also, R′′(yn) = (g′′(yn) + 1/n)(1 + o(1)) and

|g′′(yn)| ≤ |g′′(1 + o(1)tn)| ≤ (1 + o(1))|g′′(1.6η(n))|
≤ (1 + o(1))|g′′(η(n))| = (1 + o(1))β(1− β)/n ≤ 1/(4n)

Then, for any ε > 0,

R′(yn + ε
√
n) = R′(yn) + ε

√
nR′′(yn) ≥ o(1/√n) + 3/4ε/

√
n > 0

R′(yn − ε
√
n) = R′(yn)− ε√nR′′(yn) ≤ o(1/√n)− 1/4ε/

√
n < 0.

Since R′ is continuous there exists a sequence βn ∈ (yn−o(
√
n), yn+o(

√
n)) such that R′(βn) = 0

and βn ∼ tn. Further, if there exists some other solution β′n > βn, then with necessity β′n ∼ tn ∼
βn. But this is not possible since R′′(y) is positive on the interval (βn, tn).

To prove the first statement of the lemma, note

R(yn)−R(βn) = R′(βn)(βn − yn) + (1 + o(1))R′′(βn)
(βn − yn)2

2

= (1 + o(1))R′′(βn)
(βn − yn)2

2
∼ O(

1
n

)o(
√
n)2 = o(1).

To prove the second statement of the lemma we should note that if βn is a solution sequence
for the equation R1(βn) = 0 for the first sequence tn, then the corresponding equation for the
sequence tn + εn is R2(βn) = o(1/

√
n). Then we should just apply the first statement of the

lemma.

We shall now concentrate on the case tn = na, the case needed for our purposes.
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Corollary 2.2. Let all conditions of Theorem 2.3 hold. Let tn = na, where a > 0. Let yn be any
sequence such that yn ∼ tn and Condition (2.10) holds. Then,

P{Sn > na} ∼ n exp {−R(yn)}, n→∞.

Also, for any sequence εn = o(
√
n),

P{Sn > na} ∼ P{Sn > na+ εn}.

Proof. This is just a reformulation of Lemma 2.1. We should just note that in this case
R′′(yn) ∼ 1/n.

Lemma 2.2. Under the conditions of Theorem 2.3 let tn = na. Define a sequence

y(0)
n = na, y(j)

n = y(j−1)
n − nR′(y(j−1)

n ).

Then, for any j ≥ 1/(2k),
P{Sn > na} = n exp{−R(y(j)

n )}.

Proof of lemma 2.2. We have

|y(1)
n − y(0)

n | = n|R′(na)| = ng′(na).

This implies that y(2)
n ∼ na. Assume that we proved y

(i)
n ∼ na for all i < j. Then, using regular

variation of g′′ we obtain,

|y(j)
n − y(j−1)

n | = n|R′(yj−1
n )−R′(yj−2

n )|
= (1 + o(1))n|g′(yj−1

n )− g′(yj−2
n )| = (1 + o(1))n|g′′(na)||yj−1

n − yj−2
n | = o(n). (2.11)

Therefore, we can argue by induction that for j ≥ 1,

|y(j)
n − y(j−1)

n | = O(1)(n|g′′(na)|)j−1ng′(na) = O(1)n(g′(n))j = O(1)n
(
g(n)
n

)j
.

Now make use of Condition (2.7), then

|y(j+1)
n − y(j)

n | = o(1)n

(
n1−1/(k+2)

n

)j+1

= o(1)n1−(j+1)/(k+2) = o(
√
n), (2.12)

provided j ≥ k/2. Then

R′(y(j)
n ) =

y
(j)
n − y(j+1)

n

n
=
o(
√
n)

n
= o(1/

√
n).

Lemma 2.3. Assume that all conditions of the previous lemma hold. Then the sequence an =
P{Sn ≥ 0}

n
is subexponential.
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Proof of lemma 2.3.

It follows from lemma 2.2 that an ∼ e−R(y
(j)
n ) for sufficiently large j. We shall prove that for

any j,

lim
n→∞

nR′(y(j)
n )

R(y(j)
n )

= β. (2.13)

This will imply that the sequence an is subexponential due to the sufficient conditions given in
[16]. We prove (2.13) by induction. If j = 0, then R((y(j)

n ) = g(y(j)
n ) and (2.13) holds since g is a

regularly varying function with parameter β. Assume (2.13) holds for some j. Note that (2.12)

implies that R′(y(j)
n ) =

y
(j)
n − y(j+1)

n

n
is regularly varying, and hence, taking (2.13) into account,

R(y(j)
n ) is also regularly varying. Recall that y(j)

n ∼ na for each j and that y(j)
n − y(j+1)

n = o(n)
(see (2.11)). Then R(y(j+1)

n ) = R(y(j)
n + (y(j+1)

n − y(j)
n )) ∼ R(y(j)

n ) and also R′(y(j+1)
n ) ∼ R′(y(j)

n ).
Hence, (2.13) holds for j + 1 as well.

We now give the result on the asymptotic behaviour of the tails of τx and νx.

Theorem 2.4. Assume that {Xt} is a Lévy process or a random walk such that E{X1} = −a < 0.
Let all the conditions of Theorem 2.3 hold for the distribution of X1. Let R′(y(t)) = o(1/

√
t).

Then

P{τx > t} ∼ E{τx} exp {−R(y(t))}, t→∞, (2.14)

P{νx > n} ∼ E{νx} exp {−R(y(n))}, n→∞. (2.15)

Proof of Theorem 2.4. We use Theorem 1.2 again. First, it follows from Corollary 2.2
that P{Xn > y} ∼ P{Xn > 0} ∼ P{Xn+1 > 0}. Second, according to lemma 2.3, sequence
αn = P{Xn > 0}/n is subexponential. Then, we can just apply Theorem 1.2.

Corollary 2.3. Let P{B1 > y} ∼ e−g(y). Assume that g and B1 satisfy all conditions of Theorem
2.4 with a = 1− ρ. Then the asymptotics are given by

P{bp(x) > t} ∼ x

E{A}(1− ρ)
exp {−R(y(t))}, t→∞. (2.16)

Proof of corollary 2.3 repeats the proof of corollary 2.1.
It follows from the results of [9] that it is possible to give a more explicit answer in some

special cases.

Corollary 2.4. Under the conditions of Theorem 2.4 let g(y) = o(y3/4). Then

P{τx > t} ∼ E{τx} exp {−R(ta− tg′(ta))}, t→∞.

If P{B1 > t} ∼ e−tβ , β < 1, then for some positive constants D1, . . . , Dk > 0,

P{τx > t} ∼ E{τx} exp{−(at)β +D1t
2β−1 + . . .+Dkt

kβ−k+1}.

Similar corollaries can be formulated for νx and bp(x).
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2.3 Cramer’s case

Let m(s) = E{esX1} be the moment generating function of X1.

Theorem 2.5. Assume that {Xt} is a Lévy process or a random walk such that E{X1} = −a < 0.
Let solution α to the equation m′(s) = 0 exist and m′′(α) < ∞. Put γ = lnm(α). Assume also
that the distribution of X1 is non-lattice. Then

P{τx > t} ∼ V (x)
1√

2πt3/2σ̂(α)α
e−γt, t→∞,

P{νx > n} ∼ 1√
2πn3/2σ̂(α)α

e−γn, n→∞.

Proof of Theorem 2.5. It follows from the Petrov Theorem (see [24, theorem 2]) that
an = P{Xn ≥ 0}/n ∼ 1√

2πn3/2bσ(α)α
e−γn. Then an ∈ Ss(γ). Indeed, an−1/an → eγ and for some

constant C,
n−1∑

k=1

akan−k
an

≤ C
n−1∑

k=1

(
n

k(n− k)
)3/2 ≤ 4C

n−1∑

k=1

1
k3/2

< 4C
∞∑

k=1

1
k3/2

.

We can just apply the dominated convergence Theorem to ensure that
a∗2n
an
→ 2

∑∞
n=1 e

γnan.

Also, Petrov’s Theorem implies that

P{Xn ≥ y}/P{Xn ≥ 0} ∼ e−αy, n→∞.

Therefore, we can apply Theorem 1.2 to obtain the needed asymptotics.

Corollary 2.5. Let α > 0 be a solution to the equation λm′B(α) = 1 such that σ̂2 = λm′′B(α) <∞.
Put γ = α− λ(mB(α)− 1). Then,

P{bp(x) > t} ∼ 1√
2πσ̂2γt3/2

xeαxe−γt (2.17)

Proof of Corollary 2.5. It is clear that α and γ are exactly the same as in Theorem 2.5.
Therefore, we should just find V (x). Since e−γ = E{eαX1}, the process exp{αXt + γt} is a
martingale with mean 1. Then, since Xτx = −x, we have

1 = E{eαXτx+γτx} = e−αxE{eγτx}.

Then, C(x) = γ−1(E{eγτx} − 1) = γ−1(eαx − 1), and it follows from (A.9) that

V (x) = C(x) + αeαx
∫ x

0
e−αyC(y)dy =

α

γ
xeαx.

2.4 Intermediate case

We now proceed to the intermediate case, that is when equation the m′(s) = 0 does not have
a positive solution but m(s) < ∞ for some s > 0. In this case we shall assume that P{ξ1 >

t} = e−αtG(t) for all positive t where α > 0 and G(t) is a tail of some heavy-tailed distribution.

11



Introduce the random walk {S̃n} (called the adjunct random walk in [6]) whose increments have
the distribution

F̃ (dy) =
1

m(α)
eαyF (dy)

and denote δ = −E{S̃1}. The following result on large deviations may be found in [9]. It is
a generalization of the result of [6] where asymptotics for the large deviations probabilities are
obtained under the assumption that G(t) is a regularly varying function.

Theorem 2.6. Assume that P{ξ1 > t} = e−αtG(t) for all positive t where α > 0 and G(t)
satisfies conditions of Theorem 2.1. Let E{ξ1} < 0, and m′(s) 6= 0 for 0 < s ≤ α. Assume also
that δ <∞. Put e−γ = m(α). Then uniformly in x such that x ≥ −n(δ − ε)

P{Sn > x} ∼ 1
m(α)

e−γne−αxnG(x+ nδ).

Remark 7. It is easy to see that the conditions of Theorem 2.6 imply that δ > 0.

Using the latter Theorem, one can obtain the following result for the tail asymptotics of τx
and νx.

Theorem 2.7. Assume that {Xt} is a Lévy process or a random walk such that the distribution
of X1 satisfies the conditions of Theorem 2.6. Then

P{τx > t} ∼ V (x)
1

m(α)
e−γtG(tδ)

and
P{νx > n} ∼ Vrw(x)

1
m(α)

e−γnG(nδ).

Proof of Theorem 2.7.

Theorem 2.6 implies that

P{Xn ≥ 0} ∼ 1
m(α)

e−γnnG(nδ)

and
P{Xn ≥ y} ∼ 1

m(α)
e−γnnG(nδ + y)e−yα.

The conditions of Theorem 1.2 can now be checked in a straightforward manner.

Remark 8. To the best of our knowledge, the only result on large deviations of sums of
random variables belonging to the intermediate case is contained in [6]. The result presented
in this paper concerns distributions F such that the function eαxF (x) is regularly varying with
parameter −β, 2 < β <∞. The analogue of Theorem 2.7 for such distributions may be obtained
using Lemma 3 from [6] instead of our Theorem 2.6.
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A Proofs of Theorems 1.1 and 1.2

Proof of Remark 1. Indeed, prove first that EeαX1 ≤ e−γ . Fix arbitrary C > 0. Then for
large enough t, uniformly in y ∈ (−C,C),

eαy ≤ (1 + ε)
P (Xt > −y)
P (Xt > 0)

.

Consider now

∫ C

−C
eαyP (X1 ∈ dy) ≤ (1 + ε)

∫ C
−C P (Xt > −y)P (X1 ∈ dy)

P (Xt > 0)

= (1 + ε)

∫ C
−C P (Xt > −y)P (Xt+1 −Xt ∈ dy)

P (Xt > 0)

= (1 + ε)
P (Xt+1 −Xt ∈ (−C,C), Xt+1 > 0)

P (Xt > 0)
≤ P (Xt+1 > 0)

P (Xt > 0)
≤ (1 + ε)2e−γ

for large enough t. Since ε is an arbitrary positive number, we have
∫ C
−C e

αyP (X1 ∈ dy) ≤ e−γ

and hence, EeαX1 ≤ e−γ .
The inequality EeαX1 ≥ e−γ can be proved in a similar way. Take arbitrary C > 0 and

consider

∫ C

−C

P (Xt > −y)P (Xt+1 −Xt ∈ dy)
P (Xt > 0)

≤ (1 + ε)
∫ C

−C
eαyP (X1 ∈ dy) ≤ (1 + ε)EeαX1

for sufficiently large t. Since C is arbitrary, we have

P (Xt+1 > 0)
P (Xt > 0)

=
∫ ∞
−∞

P (Xt > −y)P (Xt+1 −Xt ∈ dy)
P (Xt > 0)

≤ (1 + ε)EeαX1 .

We also have that for sufficiently large t

e−γ ≤ (1 + ε)
P (Xt+1 > 0)
P (Xt > 0)

≤ (1 + ε)2EeαX1

which concludes the proof since the LHS does not depend on ε.

Proof of Theorem 1.1. Recall that Nt = infs≤tXs. It is clear that P{τx > t} = P{|Nt| ≤
x}. Our starting point is the formula which follows from the Wiener-Hopf identity for Lévy
processes, see [29, (47.9)] (with obvious changes: we should substitute the infimum process
instead of the supremum process). Thus, for q > 0 and u ≥ 0,

q

∫ ∞
0

e−qtE{euNt}dt = exp

{∫ ∞
0

t−1e−qtdt
∫

(−∞,0)
(euy − 1)P{Xt ∈ dy}

}
. (A.1)

For q > 0, make use of the Frullani integral

− ln q =
∫ ∞

0

e−qt − e−t
t

dt
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and rewrite (A.1) in the following form

∫ ∞
0

e−qtE{euNt}dt = exp
{∫ ∞

0

e−qt − e−t
t

dt

+
∫ ∞

0
t−1e−qtdt

∫

(−∞,0)
(euy − 1)P{Xt ∈ dy}

}
. (A.2)

First we want to show that the right-hand side in (A.2) converges as q → 0. For that, let us
represent the exponent on the right-hand side of (A.2) as follows,

∫ 1

0

e−qt − 1
t

dt +
∫ 1

0

1− e−t
t

dt−
∫ ∞

1

e−t

t
dt

+
∫ ∞

1
t−1e−qt

{
1 +

∫

(−∞,0)
(euy − 1)P(Xt ∈ dy)

}
dt

+
∫ 1

0
t−1e−qtdt

∫

(−∞,0)
(euy − 1)P(Xt ∈ dy). (A.3)

It is clear that the first integral converges to 0 as q → 0. The second and third integral are
well defined and constant. The fourth and fifth integral are monotone in q, and therefore it is
sufficient to prove that they are finite for q = 0 and then to apply the monotone convergence
Theorem. For q = 0, the fourth integral is equal to

∫ ∞
1

t−1

{
1 +

∫

(−∞,0)
(euy − 1)P{Xt ∈ dy}

}
dt

=
∫ ∞

1
t−1

{
P{Xt ≥ 0}+

∫

(−∞,0)
euyP{Xt ∈ dy}

}
dt. (A.4)

To deal with the second term in (A.4), we prove

Lemma A.1. Let function P{Xt ≥ 0}/t be such that Condition (1.1) holds. Assume also that
condition (1.5) of Theorem 1.1 holds. Then, there exists u0 such that for any u > u0,

∫

(−∞,0)
euyP{Xt ∈ dy} ∼ α

u− αP{Xt ≥ 0}. (A.5)

Remark. We use the convention that a(x) ∼ 0 · b(x) means that a(x) = o(b(x)).
Proof of Lemma A.1. Using integration by parts we obtain that

∫

(−∞,0)
euyP{Xt ∈ dy} = u

∫ ∞
0

(P{Xt ≥ −y} − P{Xt ≥ 0})e−uydy.

We can pick function h(t) ↑ ∞ such that (1.5) holds uniformly in y ∈ [−h(t), 0]. Then, for u > α,

u

∫ h(t)

0
(P{Xt ≥ −y} − P{Xt ≥ 0})e−uydy

= (1 + o(1))P{Xt ≥ 0}u
∫ h(t)

0
(eαy − 1)e−uydy =

α+ o(1)
u− α P{Xt ≥ 0}
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Further, since P{Xt ≥ 0}/t satisfies Condition (1.1), for sufficiently large t,

P{Xt+n ≥ 0} ≤ enP{Xt ≥ 0}, n ≥ 1. (A.6)

Since P{X1 > 0} > 0, then for some δ = 1/l > 0, P{X1 ≥ δ} > 0, where l is a positive integer.
Then,

P{Xln ≥ n} ≥ P{X1 ≥ δ,X2 −X1 ≥ δ, . . .Xln −Xln−1 ≥ δ} = P{X1 ≥ δ}ln.

Let u0 be such that e−u0 = e−2lP{X1 ≥ δ}l. Then, for all u > u0,

e−un ≤ e−u0n = e−2lnP{X1 ≥ δ}ln ≤ e−2lnP{Xln ≥ n}.

Therefore, for u > u0,

∫ −h(t)

−∞
(P{Xt ≥ −y} − P{Xt ≥ 0})e−uydy ≤

∞∑

n=[h(t)]

e−unP{Xt ≥ −n}

≤
∞∑

n=[h(t)]

e−2lnP{Xln ≥ n}P{Xt ≥ −n} =
∞∑

n=[h(t)]

e−2lnP{Xt+ln −Xt ≥ n,Xt ≥ −n}

≤
∞∑

n=[h(t)]

e−2lnP{Xt+ln ≥ 0}.

It follows from (A.6) that, as t→∞,

∞∑

n=[h(t)]

e−2lnP{Xt+ln ≥ 0} ≤ P{Xt ≥ 0}
∞∑

n=[h(t)]

e−ln = o(P{Xt ≥ 0}).

We may now continue to analyse (A.4). It follows from Lemma A.1 that for some constant
C > 0,

∫ ∞
1

t−1

{
P{Xt ≥ 0}+

∫

(−∞,0)
euyP{Xt ∈ dy}

}
dt ≤ C

∫ ∞
1

t−1P{Xt ≥ 0}dt <∞.

The finiteness of the latter integral follows from (0.2). We now proceed to the last term in (A.3).
Making use of the inequality: 1− e−x ≤ x, for all x ≥ 0, we obtain

∫ 1

0
t−1dt

∫

(−∞,0)
(1− euy)P(Xt ∈ dy)

≤
∫ 1

0
t−1dt

(∫

(−1,0)
(−uy)P(Xt ∈ dy) + P{Xt < −1}

)

=
∫ 1

0
E{uXtI(Xt ∈ [−1, 0])}t−1dt +

∫ 1

0
t−1dtP{Xt < −1} <∞.

The finiteness of the latter integral follows from the estimates in Lemma B.1 in Appendix A.
Therefore, the last term in (A.3) converges by the monotone convergence Theorem.
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Now, letting q → 0 in (A.2), we have,
∫ ∞

0
E{euNt}dt <∞.

For fixed u, let now

fu(t) =
E{euNt}∫∞

0 E{euNt}dt

be the density of a random variable Z. Then, using representations (A.3) and (A.4), we may
rewrite (A.2)

E{e−qZ} = exp
{∫ 1

0

e−qt − 1
t

dt +
∫ ∞

1

e−qt − 1
t

(
P{Xt ≥ 0}+

∫

(−∞,0)
euyP{Xt ∈ dy}

)
dt

+
∫ 1

0

e−qt − 1
t

dt
∫

(−∞,0)
(euy − 1)P(Xt ∈ dy)

}

≡ exp
{∫ 1

0
(e−qt − 1)ν1(dt) +

∫ ∞
1

(e−qt − 1)ν2(dt) +
∫ 1

0
(e−qt − 1)ν3(dt)

}
. (A.7)

Then Z is an infinitely divisible variable on [0,∞) with the Lévy measure ν(dt) = ν1(dt)+ν2(dt)+
ν3(dt). Indeed,

∫ 1
0 tν1(dt) < ∞. Further, as we have already shown ν3(0, 1) < ∞. Finally, as

follows from Lemma A.1,

f2(t) ≡ dν2

dt
=

P{Xt ≥ 0}
t

+
1
t

∫

(−∞,0)
euyP{Xt ∈ dy} ∼ u

u− α
P{Xt ≥ 0}

t
, t→∞.

Therefore, by Condition (0.2), ν2(1,∞) <∞. Now we are in the position to apply Theorem B.3
from the Appendix. Since the density of the Lévy measure f(t) ∼ P{Xt ≥ 0}/t belongs to the
class Sd(γ), by Theorem B.3, we have for any fixed u,

fu(t) ∼
(∫ ∞

0
eγyfu(y)dy

)
u

u− α
P{Xt ≥ 0}

t
.

Equivalently, for all u,

E{euNt}
P{Xt ≥ 0}/t →

u

u− α
∫ ∞

0
eγtE{euNt}dt. (A.8)

Then, changing the order of integration, we obtain
∫ ∞

0
eγtE{euNt}dt =

∫ ∞
0

eγt
(∫ ∞

0
e−uxP{|Nt| ∈ dx}

)
dt =

∫ ∞
0

e−uxdxC(x),

where C(x) =
∫∞

0 eγtP{|Nt| ≤ x}dt. Therefore, (A.8) is equivalent to

E{euNt}
P{Xt ≥ 0}/t →

u

u− α
∫ ∞

0
e−uxdxC(x).

Now note that u/(u−α) is the LST of the measure D which has unit mass at 0 and density αeαy

on the positive half-line. Therefore,

P{|Nt| ≤ x}
P{Xt ≥ 0}/t → D ∗ C(x) = V (x) = C(x) + αeαx

∫ x

0
e−αyC(y)dy (A.9)

= eαx
∫ ∞

0
eγtE{eαNt ; |Nt| ≤ x}dt
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for all x, where function V (x) is continuous. This is equivalent to

P{τx > t}
P{Xt ≥ 0}/t → V (x).

Finally, it is clear that if α = γ = 0 then

V (x) =
∫ ∞

0
P{|Nt| ≤ x}dt =

∫ ∞
0

P{τx > t}dt = E{τx}.

Now we will show that for Theorem 1.1 to hold it is sufficient that its conditions hold for
positive integers t. This will allow us to reduce the problem of verifying properties of Xt, t ∈ R
to verifying the corresponding properties of the random walk Xn, n ∈ N.

Lemma A.2. Assume that sequence P{Xn ≥ 0}/n, n ∈ N belongs to the class Ss(γ), for any
fixed y

P(Xn ≥ 0) ∼ eαyP(Xn ≥ y), n→∞, (A.10)

and e−γ = E{eαX1}. Then, function P{Xt ≥ 0}/t, t ∈ R belongs to the class Sd(γ) and for any
fixed y,

P(Xt ≥ 0) ∼ eαyP(Xt ≥ y), t ∈ R+, t→∞. (A.11)

Proof of Lemma A.2. First, we prove that for any 0 < ε < 1,

P{Xn+ε ≥ 0} ∼ e−γεP{Xn ≥ 0}. (A.12)

It is not difficult to prove that there exists a function h(n) ↑ ∞ such that Condition (A.10) holds
uniformly in |z| ≤ h(n). We start with the total probability formula

P{Xn+ε ≥ 0} ≡ P1 + P2 + P3 = P{Xn+ε ≥ 0, |Xn+ε −Xn| ≤ h(n)}
+ P{Xn+ε ≥ 0, Xn+ε −Xn > h(n)}+ P{Xn+ε ≥ 0, Xn+ε −Xn < −h(n)}. (A.13)

Then, since E{eαX1} = e−γ ,

P1 =
∫ h(n)

−h(n)
P{Xε ∈ dy}P{Xn ≥ −y} ∼ P{Xn ≥ 0}

∫ ∞
−∞

eαyP{Xε ∈ dy} = e−γεP{Xn ≥ 0}.

Before proceeding further, note that if we take ε = 1 then it follows from (1.3), (A.13) and the
latter equivalence that

P{Xn+1 ≥ 0, Xn+1 −Xn > h(n)} = o(P{Xn ≥ 0}). (A.14)

Further,

P2 = P{Xn ≥ −h(n)}P{Xn+ε − Xn > h(n)} +
∫ −h(n)

−∞
P{Xn ∈ dy}P{Xn+ε − Xn ≥ −y}.

Now note that

P{X1 ≥ y} ≥ P{Xε ≥ y,X1 −Xε ≥ 0} = P{Xε ≥ y}P{X1−ε ≥ 0},
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which implies that

P2 ≤ 1
P{X1−ε ≥ 0}(P{Xn ≥ −h(n)}P{Xn+1 −Xn > h(n)}

+
∫ −h(n)

−∞
P{Xn ∈ dy}P{Xn+1 −Xn ≥ −y}) =

P{Xn+1 ≥ 0, Xn+1 −Xn ≥ h(n)}
P{X1−ε ≥ 0} .

After applying (A.14) it is clear that P2 = o(P{Xn > 0}). Finally,

P3 ≤ P{Xn ≥ h(n), Xn+ε −Xn < −h(n)}
≤ P{Xn ≥ 0}P{Xε < −h(n)} = o(P{Xn ≥ 0}).

Now we should make use of the fact that if (A.12) holds for any fixed ε ∈ (0, 1), then, it holds
uniformly in ε ∈ (0, 1). Consequently, (1.1) holds for a(t) = P{Xt ≥ 0}/t. The proof of (A.11)
is similar. Finally, condition (1.2) for function a(t) follows from the dominated convergence
Theorem and the fact that for some constant C,

∫ y−1

1

a(y − t)a(t)
a(t)

dt ≤ C
[y−1]∑

k=1

a(k)a([y − 1]− k)
a[y − 1]

<∞.

Proof of Theorem 1.2. For Lévy processes the result follows directly from Theorem 1.1
and Lemma A.2. For random walks it can be proved along the lines of [10]. The only difference
is that we should apply our Lemma A.1 instead of Lemma 4 in [10].

B Lévy processes

In this section we collect some facts from the theory of Lévy processes that we use in this paper.
This Lemma and its proof may be found in [29, Lemma 30.3].

Lemma B.1. Let Xt be a Lévy process on Rd. For any ε > 0 there is C = C(ε) such that, for
any t,

P{|Xt| > ε} ≤ Ct.

There are C1, C2 and C3 such that, for any t ,

E{|Xt|2; |Xt| ≤ 1} ≤ C1t,

|E{Xt; |Xt| ≤ 1}| ≤ C2t,

E{|Xt|; |Xt| ≤ 1} ≤ C3t
1/2.

The next Theorem is a version of [29, theorem 25.3] adapted to our needs.

Theorem B.1. Let Xt be a Lévy process on Rd with the Lévy measure ν. Then, Xt has a finite
exponential moment if and only if [ν]|x|>1 has a finite exponential moment.
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Let F be an infinitely divisible law on [0,+∞). Its Laplace law can be expressed as ([29,
theorem 30.1]) ∫ ∞

0
e−λxF (dx) = exp

{
−γλ−

∫ ∞
0

(1− e−λx)ν(dx))
}
,

where γ ≥ 0 is a constant and ν is a Borel measure on (0,∞) for which µ ≡ ν(1,∞) < ∞ and∫ 1
0 xν(dx) <∞.

Theorem B.2. ([11, theorem 1]) For F infinitely divisible on [0,+∞), the following assertions
are equivalent:

(i) F ∈ S;
(ii) µ−1ν(1, x] ∈ S;
(iii) F (x) ∼ ν(x).

We also need a density version of this Theorem.

Theorem B.3. Let the infinitely divisible law F has a density f . Assume that there is x0 such
that ν has a density g(x) for x > x0. If g(x) belongs to the class Sd(γ), then

lim
x→∞

f(x)
g(x)

=
∫ ∞

0
eγxf(x)dx.

One can prove this Theorem exactly like [22, theorem 3.1] for a distribution function from
S(γ). Corresponding properties of the class Sd(γ) may be found in [17, Section 3].
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[16] Klüppelberg, C. (1988). Subexponential distributions and integrated tails. J. Appl.
Probab. 25, 132–141.
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