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Abstract

This paper presents a Boyer-Moore type algorithm for regular expression pattern match-
ing, answering an open problem posed by A. V. Aho in 1980 [Aho80, p. 342|. The new
algorithm handles patterns specified by regular expressions — a generalization of the
Boyer-Moore and Commentz-Walter algorithms (which deal with patterns that are single
keywords and finite sets of keywords, respectively).

Like the Boyer-Moore and Commentz-Walter algorithms, the new algorithm makes use
of shift functions which can be precomputed and tabulated. The precomputation alge-
rithms are derived, and it is shown that the required shift functions can be precomputed
from Commentz-Walter’s shift functions known as d; and d.

In certain cases, the Boyer-Moore (Commentz-Walter) algorithm has greatly outper-
formed the Knuth-Morris-Pratt (Aho-Corasick) algorithm. In testing, the algorithin pre-

sented in this paper also frequently outperforms the regular expression generalization of
the Aho-Corasick algorithm.
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1 Introduction

The pattern matching problem is: given a non-empty language L (over an alphabet! V) and
an input string S (also over alphabet V'), find all substrings of S that are in L. Several
restricted forms of this problem have been solved (all of which are discussed in detail in
[Aho90] and [WZ92]):

e The Knuth-Morris-Pratt [KMP77] and Boyer-Moore [BM77] algorithms solve the prob-
lem when L consists of a single word (the single keyword pattern matching problem).

¢ The Aho-Corasick [AC75] and Commentz-Walter [Com79a, Com79b] algorithms solve
the problem when L is a finite set of (key)words (the multiple keyword pattern matching
problem). The Aho-Corasick and Commentz-Walter algorithms are generalizations of
the Knuth-Morris-Pratt and Boyer-Moore algorithms respectively.

e The case where L is a regular language (the regular expression pattern matching prob-
lem) can be solved as follows: a finite automaton is constructed for the language V*L;
each time the automaton enters a final state (while processing the input string S) a
matching substring has been found. This algorithm is detailed in [Aho90]. Tt is a
generalization of the Knuth-Morris-Pratt and Aho-Corasick algorithms. Most practical
algorithms solving the regular expression pattern matching problem are variants of this
(V*L} algorithm.

Although the Knuth-Morris-Pratt and Aho-Corasick algorithms have better worst-case run-
ning time than the Boyer-Moore and Commentz-Walter algorithms (respectively), the latter
two algorithrns are known to be extremely efficient in practice [HS91, Wat94]. The single and
multiple keyword pattern matching algorithms are derived {with proofs) in [WZ92]. Interest-
ingly, to date no generalization (to the case where L is a regular language) of the Boyer-Moore
and Commentz-Walter algorithms has been discovered. In [Aho80, p. 342}, A.V. Aho states
the following open problem:

“It would also be interesting to know whether there exists a Boyer-Moore type
algorithm for regular expression pattern matching.”

In this paper, we present such an algorithm. As with the Boyer-Moore and Commentz-Walter
algorithms, the new algorithm requires shift tables. The precomputation of these shift table is
discussed, and shown to be related to the shift tables used by the Commentz-Walter algorithm.
Finally, the new algorithm is specialized to obtain the Boyer-Moore (single keyword) algorithm
-— showing that it is indeed a generalization of the Boyer-Moore algorithm. The algorithm
has been implemented, and in practice it frequently displays better performance than the
traditional (V*L finite automaton) algorithm.
This paper is structured as follows:

¢ Section 2 presents the mathematical definttions and properties required for reading this
paper.

e Section 3 gives the problem specification, and a simple first algorithm.

! An alphabet is a finite, non-empty set of symbols. Throughout this paper we assume a fixed alphabet V.
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e Section 4 presents the essential idea of greater shift distances while processing the input
text, as in the Boyer-Moore algorithm.

e Section 5 derives algorithms required for the precomputation of the shift functions used
in the pattern matching algorithm.

e Section 6 specializes the new pattern matching algorithm to obtain the Boyer-Moore
algorithm.

e Section 7 provides some data on the performance of the new algorithm versus the
generalization of the Aho-Corasick algorithm.

e Section 8 presents the conclusions of this paper.

All of the algorithms are presented in the guarded command language of Dijkstra [Dij76],
using Dijkstra’s style of proof and program derivation.

Acknowledgements: We would like to thank the following people (in alphabetical order)
for their assistance in the preparation of this paper: Kees Hemerik, F. E. J. Kruseman Aretz,
Nanette Saes, Torn Verhoefl, and Gerard Zwaan.

2 Mathematical preliminaries

We now present some required definitions (most of which are taken from [WZ92]). For any
set G, P(G) denotes the set of all subsets of G. For n > 0, V™ denotes the set of all words
over V of length n. We have the property that V° = {¢}, where ¢ denotes the empty word.
Define V* = (Ui:0 <¢: V") (V* denotes the set of all words over alphabet V, including ¢).
For any w € V*, define |w]| to be the length of w.

The remaining definitions and properties are divided into five groups: prefixes and suffixes
of strings, language theoretic properties, string and language reversal, operators for manipu-
lating substrings, and properties of min and max. In the following definitions assume that
A, B C V”* are languages over alphabet V.

1. Define functions pref,suff : P(V*) — P(V*) as:

pref(A) = {z:(3y:yeV*:zyec A)}
suff(Ad) = {y:(z:zeV*:zy€ A)}

That is, pref(A4) is the set of all prefixes of words in A, while suff(4) is the set of all
suffixes of words in A. When w € V*, we will take pref(w) to mean pref({w}) and
suff(w) to mean suff({w}). If A # 0 we have ¢ € pref(A) A ¢ € suff(4). Note that
A C pref(4), A C suff(A), pref(pref(A)) = pref(A) and suff(suff(4)) = suff(A)
(ie. pref and suff are idempotent). We also define <, to be a partial order on strings
(known as the prefix order) as v <, v = u € pref(v). Function suff has the property
that:

suff(A) NB#B=ANV*B#0 (1)



2. The following language-theoretic property will be used in the algorithm derivation:
(VVANV*B#) = (VANB AWV (ANV*B £0) (2)

3. We use post-fix (superscript) operator R to denote the reversal of words and languages.
Note the following properties of reversal:

(AfHr = 4 (3)
ACB = ARcBR (4)
pref(A)® = suff(AF) (5)
suff(4)f = pref(4%) (6)

4. Since we wish to operate on strings at a high level (without resorting to indexing the
individual symbols in strings), we define some operators on strings. For any string
w € V*, we define:

o wik to be the £ min |w| leftmost symbols of w;
e wlk to be the &k min |w| rightmost symbols of w;
e w|k to be the (Jw| — &) max 0 rightmost symbols of w;
e wlk to be the (Jw| — k) max 0 leftmost symbols of w.
(The four operators i, [,], | are pronounced “left take,” “right take,” “left drop,” and

“right drop” respectively.) For example {(baab)13 = baa, (baab)|5 = baab, (baab)|]l =
aab, and (baah)|10 = €.

5. Given that universal quantification over a finite domain is shorthand for conjunction,
and existential quantification over a finite domain is shorthand for disjunction, we have
the following general properties (where P is some range predicate, f is some function,
and the ¥ and 3 quantified 7 is over a finite domain):

(MIN:: (Vj:P(,7): f(1) > (MAXj: (MINz:: P(i,7): f(i))) (7)
(MIN:: (37 P(,7): f(0)) = (MINj: (MIN: P(i,7) - f(2))) (8)

3 Problem specification and a simple first algorithm

Formally, the regular expression pattern matching problem is: given a regular expression E
(the pattern expression), regular language L C V* (the pattern language denoted by E)?,
and input string S € V*, establish postcondition R:

O={{l,v,r):lor=8SArvel}

When R holds, variable O is a set of triples (decompositions of input string 5), each denoting
a pattern occurrence and its left and right context within 5. An equivalent specification of
the postcondition is:

O=UlLvr:ler=8:{l} x{{v}nL)x{r})

In the remainder of this paper, we will use language L instead of regular expression E in order to make
the algorithm derivation more readable.
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This will prove to be more useful in the algorithm derivation.
To create a practical first algorithm, the postcondition R can be rewritten as:

O=UVu,r:uwr=8:UlLv:lv=u:{l} x ({v}NL)x{r}))

We can now give a first algorithm, in which the prefixes (u) of § and the suffixes (v) of u are
considered in order of increasing length® (where cand is conditional conjunction):

Algorithm 3.1:

u,m,0 =¢85, {e} x ({e} NL) x {§};
dor#e¢ —

w,r = u(r|l),vi1,

IL,v:i=mu,e€

0:=0U ({1} x ({v} N L) x {r})

do ! # € cand (I[1)v € suff(L) —

Lv.=11,()v;
: O =0U{l} x{{u}nLl)yx{r}

od {R}

This algorithm is taken from [WZ92, Algorithm 2.5]. The number of iterations of the inner
repetition is O(|S] - (MAX w : w € L : |w|)min|S|)). (This is not the same as the run-
ning time, as we have not taken the cost of operations such as {v} N L into account.) The
implementation of guard ({{1)v € suff(L) and expression {v} N L (in the update of variable
O} remain unspecified. In order to make the algorithm more practical, we introduce a finite
automaton.

3.1 A more practical algorithm using a finite automaton

Since L is a regular language, we construct (from F) a (possibly non-deterministic) e-transition-
free finite automaton M = (@, V, 6,1, F) accepting L® (the reverse language? of L), where:

o (J is the set of states of M.
o V is our fixed alphabet.

e §:P(Q) xV ~— P(Q) is the transition function. (In the case of a deterministic au-
tomaton, the (possibly partial) transition function would be é : @ x V-~ Q.) Function
& : P(Q) x V* — P(Q) is the usual Kleene closure of function §, defined inductively
as 6"(H,¢) = H and (for ¢ € V,w € V*) §*(H,aw) = §*(6§(H, a),w). (The signatures of
transition functions 6 and é* are slightly different from the ones usually found in text-
books. The signatures used in this paper are notational conveniences which shorten
some of the derivations, and simplify the extension of function § to function &*.)

30ther orders of evaluation can also be used. This order is only chosen so as to arrive at an algorithm
generally resembling the Boyer-Moore algorithm.

4The reverse is used, since we will be using automaton M to consider the symbols of substring v in right-
to-left order instead of left-to-right order.
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e [ C @ is the set of initial (i.e. start) states.
» I C Q is the set of final states.

(Such an automaton would normally be constructed from regular expression E; algorithms
doing this are, for instance, presented in [Wat93a, Constrs. 4.32, 4.39, 4.45, 4.50, 5.34, 5.69,
5.75, 5.82].) Since M is e-transition-free, we have the property that e € L = INF # @. Finite
automata with e-transitions could have been used; they are only excluded in order to simplify
the definitions given here.

To give the invariant in the new algorithm, we define a function £ : Q — P(V*) as

L@)={w:weV Ages(l,w)}

Function £ maps each state ¢ to the set of all words (in V*) taking M from an initial state
to the state g. (Note, by definition: Lf = (U f : f € F : £(f)).} For each state g, we also
define constant m, to be the length of a shortest word in L(g). Define m to be the length of
a shortest word in L.

The new algorithm using finite automaton M is (C is a new variable ranging over P(Q)):

Algorithm 3.2:

w,T,0:=¢,5,if INF # 0 then {(¢,¢,S}} else @ fi;
dor+#e¢—
u, 7 = u(ril),r|1;
Lv,C:=u,cel;
O :=0Uif CNF # 0 then {({,v,r)} else 8 fi
{invariant: C = {g:q€ Q AvT € L(g)} Au = lv}
do ! # ¢ cand 6(C,I[1) # 0 —
Lv, C = 11,11, 6(C,I11);
{CnF+#0=vel}
Q:=0Uif CNF #0 then {({,v,r)} else @ fi
od
od {R}

String v is reversed in the inner repetition invariant conjunct C = {q: ¢ € Q Av® € L(q)}
since v is processed in reverse. Given this conjunct, the conditional conjunct of the inner
repetition guard is now 6(C, 1) # 0, since §(C,{[1) # 0 = (I[1)v € suff(L).

There are a number of choices in the implementation of the finite automaton M. In
particular, if a deterministic finite automaton is used then the algorithm variable C would
always be a singleton set (and the algorithm would be modified so that C ranges over @ instead
of P(Q)). The use of a deterministic automaton requires more costly precomputation (of the
automaton), but enables the algorithm to process input string S faster. A non-deterministic
automaton would involve cheaper precomputation, but the input string would be processed
more slowly as all paths in the automaton are simulated. A hybrid solution is to begin with a
non-deterministic automaton, and then construct (and tabulate) a deterministic automaton
on-the-fly, as the non-deterministic automaton is simulated. In this paper, we continue to use
a possibly non-deterministic finite automaton.
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Figure 1: A finite automaton accepting the regular language L = {b}{c}* {db,ed} U {adb}.
The states are shown as circles (final states are depicted as concentric circles, and the single
initial state is the rightmost state).

Example: As an example of a regular language pattern, and a corresponding finite automa-
ton, consider the language L = {bd,de}{c}*{b} U {bda} (over alphabet V = {a,b,¢c, d,e}).
In this case, the automaton M (which is shown in Figure 1) accepts the language L% =
{b}{c}"{db,ed} U {adb}. Coincidentally, automaton M is deterministic. Within examples,
we will use names (such as L, V, and M) to refer to the concrete objects defined above, as
opposed to the abstract objects used elsewhere in the paper. The languages of each of the
states (for the automaton in Figure 1) are as follows:

£(0) = {e

£(1) = {a}

£2) = {pHe}

£(3) = {ad}u{bHc}"{d}
L£4) = {bHc} {e}

L(5) = {adb}u {b}{c}"{db}
£(6) = {b}{e}"{ed}

Additionally, m = 3, mp = 0, m; = mg = 1, m3 = mq = 2, and mz = mg = 3. Language
L and automaton M will be used as our running example throughout the paper. (End of
example.)

4 Greater shift distances

Upon termination of the inner repetition, we know (by the invariant of the inner repetition)
that C = {¢:q € Q Av® € L(g)}. This implies (V ¢: ¢ € C : v® € £(g)), and equivalently

(Vq:qEC:vEL(q)R)

In a manner analogous to the Boyer-Moore algorithm, this information can be used on a
subsequent iteration of the outer repetition to make a shift of more than one symbol in the
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assigninent:
u,r = u(ril),rjl

In order to make use of this information (which relates v and C) on the first iteration of
the outer repetition, we make the invariant of the inner repetition an invariant of the outer
repetition as well, by adding the (redundant) initialization [, v, := wu,¢,I before the outer
repetition®:

Algorithm 4.1:

u, 7,0 :=¢8,if INFE #0 then {{¢¢,5)} else § fi,
Lo, C:=wu,¢1;
{invariant: C = {g: ¢ € QAv? € L(q}} Au = lv}
dor#e—
u,r = u(ril),r|1;
Lv,C:i=u,¢ I
O:=0Uif CNF #0 then {({,v,7)} else 0 fi;
{invariant: C={g:q € QAvT € L(g)} Au=1Iv}
do ! # ¢ cand §(C,I[1) £#0 —
Lv,C:=11,1)v,5C,I1);
{CNF#£b=vel}
0:=0Uif CNF #0 then {{l,v,7}} else § fi
od
od {R}

4.1 A more efficient algorithm by computing a greater shift

We wish to use a greater shift distance in the assignment u,r := u(r{1),7|1. Ideally, we
require the shift distance to the nearest match to the right (in input string .5). Formally, this
distance is given by: (MINn:1 < n < |r| Asuff(u(rin)) N L # 0 : n). Computing this shift
is as difficult as the problem that we are trying to sclve. Fortunately, we can settle for any
shift approximation k satisfying

1<k<(MINn:1<n<|r|Asuff{u(rin))NL#0:n)

{Note that a MIN gquantification with an empty range has the value +o0c.) The assignment of
u, r then becomes u, r := u(r1k), r}k. Consider the range predicate of the MIN quantification
(the ideal shift); any weakening of the range predicate’s second conjunct, suff(u(rin))nL # @,
will give a valid approximation. {Note that, by using the weakest predicate (true) we trivially
obtain the algorithm above, with a constant shift distance of 1.) We begin by finding a
more effective weakening; later we will show that it is practical to precompute the resulting
approximation.

Assuming 1 < n < |r| and the (implied) invariant (¥ q: g € C : v € L(g)®) Au = lv, we
begin with the range predicate:

5This does not change the nature of the algorithm, other than creating a new outer repetition invariant.
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suff(u(rin)) N L # 0

{invariant: v =1{v}
suff(lo(rin))N L #0
= {domain of ,7 and n: { € V* and n < |r|, so (r1n) € V" }
suff(V*oV*)NL #0

{ property (1) of suff'}
VRV AVEL £ 0
= {invariant: (Vq:q¢€ C:v e L()")}

Vq:qeC: VLRV N V'L £ 0) (9)

The predicate is now free of [, v, 7 and § and depends only on state set C', automaton M, and
language L. We will continue this derivation from the last line.

The fact that the language L and the languages £{g) can be infinite (for a given ¢ € Q)
makes evaluation of this predicate difficult. In the following subsection, we derive a more
practical range predicate.

4.2 Deriving a practical range predicate

We aim at a finite language L, (corresponding to ¢ € Q) such that V*L(q)® C V*L, and a
finite language L' such that V*L C V*L .
Possible definitions of such languages are:

L, = suff(C(q)R)n Vimeminm)
L' = suff(L)ynvm™

(The definitions given here were chosen for their simplicity; other definitions are possible, but

these particular ones lead to a generalization of the Boyer-Moore algorithm.) In the following
intermezzo, we show that these definitions of L, and L’ satisfy the required properties:

We can see that the definition of L, satisfies the required property by considering a particular
word w:

we L{g)?
= { definition of my: |w| > myq = myminm }

(Bz,y:w=uay:yesuff(L(g)®) A |y| = m, minm)

{ definitions of concatenation and intersection of languages }
w € V*(suff(L{g)®) n V' (m. minm})
= { definition of L, }
weE V*L,

We conclude that £{g)® C V*L_. It follows that V*£(g)® C V*V*L,, and (since V*V* = V™)
V*L(g)® C V*L,. A similar proof applies to the L, L' case.

Example: Given our running example, we can see that L' = {bda, bdb,deb,dch, ech, cch}
and (for all states 0,...,6 in finite automaton M ):

LO = {E}
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Li = {a}

L, = {b}

Ly = {da,db,cb}
Ly = {eb,ch}

Ly = {bda,bdb,dch,cch}
L¢ = {deb,ech,cch}

(End of example.)
We can continue our previous derivation of a useable range predicate, from (9):

(Vq:q€C:VC(QORVNV*L £)

= { property: V*L{g) CV*L,; V*L CV*L'}
(Vag:qeC:V*L,V*NV*L £ §)

= { existentially quantify over all w € L}
Vg:qeC:(Fw:we L, : V*uwV*NV*L £ 0))

We now have a weakening of the range predicate of the ideal shift distance.
Recalling the properties of MIN quantification given in (7} and (8), we can now proceed
with our derivation {of an approximation), beginning with the ideal shift distance:

(MIN#:1<n<|r|Asuff(u{rin))NL#D:n)
{ weakening of range predicate (see derivation above) }
(MINn:1<nA{(Vg:qeC:Bw:weLy: VuV*NV*L #0)):n)
{ conjunctive (¥} MIN range predicate — property (7); |C| is finite }
(MAXq:geC:(MINn:1<nA(Bw:wéeL,: V*wV*NV*L #0):n))
= { disjunctive (3) MIN range predicate — property (8); |L,| is finite }
(MAXg:geC:MINw:w € Ly: ( MINn: 1 <nAVwWVTNVL # @ : n))}

IV

v

Recall property (2)}; this property is also used in the derivation of the Commentz-Walter
algorithm (WZ92]. We define two auxiliary functions dy,dy : V* — N as:

di(z) = (MINn:1<nAV*2V*NL #0:n)
do(z) = (MINn:1<nAzV"NV*L #0:n)

We can now rewrite the inner MIN quantification of our shift distance:

(MINn:1<nAV%VENVL £0:n)
= { property (2) }

(MIN#n:1<nA VRV *NL £0VwV"NV*L #0):n)
= { disjunctive range predicate }

(MINn:1<aAVwV"NL £ :n)min(MINn:1 <nAwV*NV*L' #0:n)
= { definitions of di,dy }

d1(w) min dg(w)
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The approximation of the ideal shift distance is:
(MAX¢:geC:(MINw: w € L, : di{w) min da(w)))

For readability, we define auxiliary function £: @ ~— N as
t(g) = (MINw: w € Ly : dy(w) min da(w))

Functions d;,dy and ¢ are easily precomputed as discussed in Section 5. The final algorithm
(using function ¢ and introducing variable distance for readability) is:

Algorithm 4.2:

u,7,0:=¢,8,if INF # 0 then {(¢,¢,5)} else @ fi;
Lv,C =u,¢1,
{invariant: C ={g:q€ QAvR e L(¢)} Au= v}
dor#e—
distance := (MAX g: q € C: t{g));
u, r := u(ridistance), r|distance;
Lv,C :=u,¢ 1
O:=0Vif CNF #0 then {({,v,r)} else § fi
{invariant: C = {g:q€ QAv® € L(¢)} Au = lv}
do ! # ¢ cand 6(C,{[1) # 0 —
Lv,C:=11,(I11)v,6(C,111);
{CNF#B=vel}
O:=0Uif CNF #§ then {(l,v,r)} else 0 fi
od
od {R}

5 Precomputation

In this section, we consider the precomputation of languages L, and L', and functions d,
dy, and t. The precomputation is presented as a series of small algorithms — each easier to
understand than a single monolithic one. All algorithms are presented and derived in the
reverse order of their application. In practice they would be combined into one algorithm, as
is shown in Section 5.9.

5.1 Characterizing the domains of functions d; and d,

Since functions dy, dy are only applied to elements of L, (for all ¢ € Q), their signatures can
be taken as di,dy : (U ¢ : g € Q: L;) — N. In order to make the precomputation of the
functions easier, we need a different characterization of their domains. To do this in a simple
manner, we require the automaton M to have a simple structural property:

For all states ¢ € @, there exists a path (in the transition graph induced by
function §) from an initial state to a final state, such that the path passes through
g. (This means that there are no useless states in M.)
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The property implies that (for all ¢ € Q) £(g) C pref((U f : f € F : L(f))) = pref(L?). In
[Wat93a], several general finite automata construction algorithms are given; many of those
algorithms construct automata with this property.

From the implication of the property above, and the domain of di, d2, we can restrict the
domains of d; and dy as follows (for all ¢ € Q}:

Lq
= { definition of L, }
suff(£(q}#) N ymaminm
{ assumption (structural property) £(q} C pref(L%}; property (4); monotonicity of suff}
suff(pref(LE)#) n ymeminm
= { property (5); function R is its own inverse — property (3) }
suff(suff(L)) N y™g minm
= {idempotency of suff}
suff(L) N Y™ minm
{myminm <mand (Vu:u€suff(L)ynVmeminm . (3 4.9y ¢ V*:yu € suff(L)NV™))}
suff(suff(L) N V™)
= { definition of L'}
suff(L’)

iN

N

Given this property (of each L), we can restrict the domain of functions d; and dz so that
dy,dy : suff(L’) — N. Since |L’| is finite, then [suff(L")] is finite as well.

Example: In our running example, where L' = {bda, bdb, deb, deb, ech, cch}, we have
suff(L’) = {¢, a, b, da, db, b, cb, bda, bdb, deb, dcb, ech, ccb}

Given the definitions of di,ds, we can compute the two functions by hand from their defini-

tions:

w € a b | da db eb ch | bda | bdb | deb | decb | ech | cch
di(w) | 1| +00 | 2| +oo | 400 | +oo | +00 [ +00 | 400 | 400 | 400 | +oo | +00
dw 3] s |2l 3| 2|22 |3s|2]2]|2]2]:

(End of example.)
Before precomputing dj, d2, we concentrate on the precomputation of function ¢.
5.2 Precomputing function ¢

Assuming that functions di, ds and sets L, (for all ¢ € Q) have been precomputed, we can
compute function ¢ as follows (variable tee is used to accumulate shift function t):
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Algorithm 5.1:

forg:qe @ do
tee(q) := +oo

rof;

for g u:q€ QAu€suff(L’)Au € Ly do
tee(q) := tee(q) min dy (u) min da(u)
rof

{tee =t}

Notice that we impose no unnecessary order of evaluation in either of the two repetitions. An
implementor of this algorithm is free to choose an order of evaluation which is most efficient
for the encoding used in the implementation.

Example: In our running example, we obtain the following values for function ¢ (given the
values of L, for all states g, and functions dy,dz): ¢(0) = 1,¢(1) = 3,4(2) = 2,¢(3) = 2,t(4) =
2,t(5) = 2,¢(6) = 2. (End of example.)

5.3 Precomputing functions d; and d;

With the domain of functions d; and d» restricted to suff(L’), functions d; and dy are the
Commentz-Walter precomputed functions for (finite) keyword set L' [Com79a).

We now present two algorithms, computing d; and ds respectively. The algorithms are
fully derived in [WZ94], and are given here without proofs of correctness. The two precom-
putation algorithms presented below depend upon a function f : suff(L’) \ {¢} — suff(L’)
(called the reverse failure function corresponding to keyword set L) which is defined as:

fr(u) = (MAX < w: w ¢ pref(u) \ {u} Nsuff(L) : w)
In the following two algorithms, we assume that function f, is precomputed:

Algorithm 5.2:

for u: u € suff(L’) do
deel(u) := +o0
rof;
for w:u € suff(L'} \ {¢} do
decl(f,(w) = deel(f,(u)) min(Ju| — |/ (w))

rof
{deel = dy}

Again, notice that we impose no unnecessary order of evaluation in either of the two repeti-
tions.
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Algorithm 5.3:

for w:u € suff(I/) do
dee2(u) = +o0
rof}
foru:ue Ll do
vi=u
do v #e —»
v = fo(v);
if Juf — |v| < dee2(v) — dee2(v) := |u| — |v]
P ul = |v| = dee2(v) — v :=¢
fi
od
rof;
n:=1;
do suff(L')NV" # 0 —
for u:u € suff(L’') N V" do
dee2(u) := dee2(u) min dee2(ul1)

rof;
ni=n+1
od
{dee2 = dy}

Notice that the third (un-nested) repetition is a breadth-first traversal of the set suff(L’), and
the second {un-nested) repetition requires that function f, is precomputed. By the definition
of language L', the depth of the traversal is m. Precomputation using these algorithms has
been found to be cheap in practice [Wat94].

5.4 Precomputing function f,

The following algorithm (taken largely from [WZ92, Section 6, pg. 33]) computes function f,:
Algorithm 5.4:

fora:ea eV do
if @ € suff(L’') — fr(a):=¢
| ¢ ¢ suff(L'y — skip

fi
rof;
n:=1
{invariant: (V u:u € suff(L'} A |u| < n: fr(u) = f(u))}
do suff(LYNV* £ —
for u,e:u esuff(LYNV*AacV do
if au € suff(L') —
' = fr(u);
do v # e A au' & suff(L') —

u' = fr(u)
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od;
if u' =enadsuff(L’) — friou) :=c¢
| v #eVaesuff(L') — frieu) = au’
fi
 au & suff(L’) — skip
fi
rof;
n:=n+1
od
{n>m}

{fr=1}

This algorithm also makes use of a breadth-first traversal (of depth m) of the set suff(L’).

Example: Consider the function f, for our running example:

w:wesuff(L )\ {e} || a | b |da|db|eb|chb|bda|bdb|deb| dch | ech | cch
fr(w) ele|l e | €| e]| e} b b € € € €

(End of example.)

5.5 Precomputing sets [,

The languages L, can be precomputed using an auxiliary relation and two auxiliary functions.
The auxiliary functions are st : suff{L') — P(Q) and emm : Q@ — [0,m] defined as:

st(u) = {g:¢9€QArueL(q)}

emm(q) = m,minm

The required relation, X, is a binary relation on states {called the reachability relation),
defined as (for any two state p, q):

(p,g) € X=(Fa:aeV:qeb{p} a))

A useful property (of any finite automaton) is that (for all states ¢ € Q):

pref(L(g)) = (Up:p € QA (p,q) € X* : L(p)) (10)

This property is given, in a slightly simpler form, in [Wat93b, Property 3.2].
Given relation X and functions emm and st, we can derive an expression for L, that is
easier to compute (than the definition):

Lq
= { definition of L, }
suff(ﬁ(q)R) () /Mg minm
= { property (5) }
pref(£(g))® n yme minm
= { property (10) }
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Upip€QA(p,q) € X" : Lp))FnVYmaminm
= {M and R distribute over U }
(Up:p€QA(p,q) € X™: Lp)R NV maminm)
= { quantify over all words w : w € L(p)}ft N Y™y minm ]
Uwp:peQA(pg) € X" Awe V™™™ Aw e L(p)T: {w})
= {w € VmMa™Minm = || = m, minm = [w| = emm(q) }
(Uw,p:p€QA(p,q) € X* Aw € suff(L') A |w| = emm(g) Aw € L(p)® : {w})
= {we Lp)R=wh e L(p) =pe st(w)}
(Uu,p:p€QA(p,g) € X* Aw € suff(L’) A |w] = emmi{q) Ap € st(w) : {w})

Assuming that relation X and auxiliary functions emm and st are precomputed, we can now
present an algorithm computing L, (for all ¢ € Q):

Algorithm 5.5:

for ¢: g€ @ do
ell(g) =10

rof;

for p,q,w: (p,q) € X* Aw € suff(L') A |w| = emm(g) Ap € st(w) do
ell(q) := ell(q) U {w}

rof

{(Vg:geQ:ellqg) =L,)}

5.6 Precomputing function emm

Assuming that function st had already been computed, the following algorithm computes
function emm using a breadth-first traversal of suff(L’):

Algorithm 5.6:

for g:¢q€ @ do
ifgel — emm(q) =0
| ¢ &I —s emm(q):=m
fi
rof;
n =1
do suff(LYNV™ # 0 —
for w:u e suff(L)NV™ do
for ¢ : g € st(u) do
emm(q) :== emm(qg) minn
rof
rof
od

{(Vg:qg€Q:emm(q) =m;minm)}




18 5 PRECOMPUTATION

5.7 Precomputing function st and languages L' and suff(L’)

The following algorithm makes a breadth-first traversal {of depth m) of the transition graph
of finite automaton M. It simultaneously computes function sf, languages L’ and suff(L’),
and m (the length of a shortest word in language L).

Languages L' and suff(L') are used in most of the precomputation algorithms already
presented. While the following algorithm computes language suff(L’), it is also an example
of a breadth-first traversal of suff(L’)} without having to explicitly compute and store the
language suff(L’); instead, the algorithm traverses the transition graph of finite automaton
M and implicitly performs a breadth-first traversal of suff(L’).

Algorithm 5.7:

st(e), current, SLprime,n, final .= I, {e}, {€},0,(I N F = 0);
{invariant:
current = suff(Lynv"
A SLprime = (Ui:i <n:suff(L)nV?)
AD<n<m
A{final =n =m)
ANV u:uesuff(L)A|u| < n:st(u) = {q:uf € L{g)})}
do —finel —
current’ = {;
n:=n+1;
for uw,a:u € current Aa € V do
if 6(st(u),a) #0 —
{au € suff(L)nV™}
st{au) := 6(st(u), a);
{(V q: q € stlau) : au € L(g)®))}
current' := current' U {au};
final := final V (st(au) N F # 0)
| 6(st(n),a) =0 — skip
fi
rof;
current ;= current’;
SLprime := SLprime U current
od
n=m}
{current = suff(L")nV™ = L'}
{SLprime = suff(L’)}
{(V v :uesuff(L'): st(u) = {¢: uf € L{g)})}

5.8 Precomputing relation X

Relation X can be precomputed using a reachability algorithm which traverses the transition
graph of automaton M. Relation X* can then be precomputed by a reflexive and transitive
closure algorithm. The two algorithms are combined into one below:
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Figure 2: The dependency graph of the precomputation algorithms. An arrow from algorithm
a to algorithm b indicates that algorithm b must be applied before algorithm a.

Algorithm 5.8:

Ezstar := §;
forga:a€e@AracV do
Ezstar := Fzstar U {{¢q,q)} U {{q} x 6({q}, a));
rof;
{Ezstar = X° U X1}
change := true;
do change —
change := false;
for p,q,r : (p,q) € Exstar A{q,r) € Fxstar do
change := change V (p,7r) ¢ Exstar;
Exstar := Exstar U {(p,r)}
rof
od
{Ezstar = X*}

5.9 Combining the precomputation algorithms

The precomputation algorithms can be combined into a single monolithic algorithm. Such
an algorithm is essentially the sequeniial concatenation of the separate precomputation al-
gorithms. The order in which the algorithms are applied is determined by their dependency
graph, which is shown in Figure 2. A possible order of execution is obtained by reversing a
topological sort of the dependency graph. One such order is: (Algorithms) 5.8, 5.7, 5.6, 5.5,
5.4, 5.2, 5.3, 5.1.

6 Specializing the pattern matching algorithm

By restricting the form of the regular expression patterns, we can specialize the pattern
matching algorithm to obtain the Boyer-Moore and the Commentz-Walter algorithms. In
this section, we specialize to obtain the Boyer-Moore algorithm that does not use a lookahead
symbol.
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To obtain the single-keyword pattern matching problem, we require that L be a singleton
set; that is L = {p}, a language consisting of a single keyword.

We define deterministic finite automaton M = (suff(p), Vv, {¢}, {p}). The states are
elements of suff(p). We define deterministic transition function v : suff(p) x ¥V — suff(p) U
{1} (the special value L denotes an undefined transition) as:

| aw if aw € suff(p)
v(w,a) = { 1 otherwise

Automaton M satisfies the structural property on page 12. Given function -, we have (for
every state w € suff(p)):

L{w) = {w™}

Automaton M is deterministic, and the current state-set variable (C in the algorithm) is
always a singleton set; call it state w € suff(p). Since L£{w) is a singleton set and |w| < [p|,
we have m,, = |w| and L, = L(w)® = {w}. Additionally, since m = |p|, L' = L = {p}.
Clearly, we have L,, C suff(L’) = suff(p). Function ¢ is defined as t(w) = d;(w) min dy{(w).
The shift distance will then be d)(w)minds{w) in the update of variables u,r. Elements
of suff(p) (in particular, current state variable w) can be encoded as integer indices (into
string p) in the range [0, |p|]. By making use of this encoding, and changing the domain of
the variables u,r and functions d;,ds to make use of indexing in input string S, we obtain
the Boyer-Moore algorithm. The Commentz-Walter algorithm can similarly be obtained as a
specialization.

7 Performance of the algorithm

Empirical performance data was gathered by implementing this algorithm in a grep style
pattern matching tool, running under UNIX (on a Sun SPARC Station 1+) and DOS (on a
20 Mhz 386).

On each run, the new algorithm was used in addition to the old (generalized Aho-Corasick)
algorithm which constructs a finite automaton accepting the language V*L. (For both the
old and the new algorithms, only deterministic finite automata were used. The time required
for precomputation was not measured, but for both algorithms it appeared to be negligible
compared to the time required to process the input string.) In the cases where m > 6 (the
length of the shortest word in L is at least 6), and |L’| < 18, this new algorithm outperforms
the other algorithm. These conditions held on approximately 35% of our user-entered regular
expression patterns.

In the cases where the new algorithm outperformed the traditional one, the differences in
execution speed varied from a 5% improvement to a 150% improvement. In the cases where
the new algorithm was outperformed, its execution speed was never less than 30% of the
execution speed of the traditional algorithm.

The conditions for obtaining high performance from the new algorithm (m > 6 A |L'] <
18) can easily be determined from automaton M. In a grep style pattern matching tool,
the automaton A can be constructed for language L®. If the required conditions are met,
the Boyer-Moore type pattern matcher is used. If the conditions are not met, M can be
reversed (so that it accepts language L), and converted to an automaton accepting V*L. The
traditional algorithm can then be used.
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8 Conclusions

We have achieved our aim of deriving an efficient generalized Boyer-Moore type pattern match-
ing algorithm for regular languages. The stepwise derivation began with a simple, intuitive
first algorithm; a finite automaton was introduced to make the implementation practical. The
idea of shift distances greater than one symbol (as in the Boyer-Moore and Commentz-Walter
algorithms) was introduced. The use of predicate weakening was instrumental in deriving a
practical approximation to the ideal shift distance.

Using a structural property of finite automata, the approximation was shown to be the
composition of several functions, all but two of which are easily computed. The remaining two
functions are the Commentz-Walter shift functions; an algorithin computing these functions
has previously been derived with correctness arguments in [WZ92].

The Boyer-Moore algorithm was derived as a special case of our algorithm, showing our
algorithm to be a truly generalized pattern matching algorithm.
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