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This paper presents a Boyer-Moore type algorithm for regular expression pattern match
ing, answering an open problem posed by A. V. Aho in 1980 [Aho80, p. 3421. The new 
algorithm handles patterns specified by regular expressions - a generalization of the 
Boyer-Moore and Commentz-Walter algorithms (which deal with patterns that are single 
keywords and /inite sets of keywords, respectively). 

Like the Boyer-Moore and Com mentz-Walter algorithms, the new algorithm makes use 
of shift functions which can be precomputed and tabulated. The precomputation algo
rithms are derived, and it is shown that the required shift functions can be precomputed 
from Commentz-Walter's shift functions known as d, and d2 . 

In certain cases, the Boyer-Moore (Commentz-Walter) algorithm has greatly outper
formed the Knuth-Morris-Pratt (Aho-Corasick) algorithm. In testing, the algorithm pre
sented in this paper also frequently outperforms the regular expression generalization of 
the Aho-Corasick algorithm. 
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1 Introduction 

The pattern matching problem is: given a non-empty language L (over an alphabet! V) and 
an input string S (also over alphabet V), find all substrings of S that are in L. Several 
restricted forms of this problem have been solved (all of which are discussed in detail in 
[Aho90] and [WZ92]): 

• The Knuth-Morris-Pratt [KMP77] and Boyer-Moore [BM77] algorithms solve the prob
lem when L consists of a single word (the single keyword pattern matching problem). 

• The Aho-Corasick [AC75[ and Commentz-Walter [Com79a, Com79b] algorithms solve 
the problem when L is a finite set of (key)words (the multiple keyword pattern matching 
problem). The Aho-Corasick and Commentz-Walter algorithms are generalizations of 
the Knuth-Morris-Pratt and Boyer-Moore algorithms respectively. 

• The case where L is a regular language (the regular expression pattern matching prob
lem) can be solved as follows: a finite automaton is constructed for the language V* L; 
each time the automaton enters a final state (while processing the input string S) a 
matching substring has been found. This algorithm is detailed in [Ah090]. It is a 
generalization of the Knuth-Morris-Pratt and Aho-Corasick algorithms. Most practical 
algorithms solving the regular expression pattern matching problem are variants of this 
(V* L) algorithm. 

Although the Knuth-Morris-Pratt and Aho-Corasick algorithms have better worst-case run
ning time than the Boyer-Moore and Commentz-Walter algorithms (respectively), the latter 
two algorithms are known to be extremely efficient in practice [HS91, Wat94]. The single and 
multiple keyword pattern matching algorithms are derived (with proofs) in [WZ92]. Interest
ingly, to date no generalization (to the case where L is a regular language) of the Boyer-Moore 
and Commentz-Walter algorithms has been discovered. In [Aho80, p. 342]' A.V. Aho states 
the following open problem: 

"It would also be interesting to know whether there exists a Boyer-Moore type 
algorithm for regular expression pattern matching." 

In this paper, we present such an algorithm. As with the Boyer-Moore and Commentz-Walter 
algorithms, the new algorithm requires shift tables. The precomputation of these shift table is 
discussed, and shown to be related to the shift tables used by the Commentz-Walter algorithm. 
Finally, the new algorithm is specialized to obtain the Boyer-Moore (single keyword) algorithm 
- showing that it is indeed a generalization of the Boyer-Moore algorithm. The algorithm 
has been implemented, and in practice it frequently displays better performance than the 
traditional (V* L finite automaton) algorithm. 

This paper is structured as follows: 

• Section 2 presents the mathematical definitions and properties required for reading this 
paper. 

• Section 3 gives the problem specification, and a simple first algorithm. 

1 An alphabet is a finite, non-empty set of symbols. Throughout this paper we assume a fixed alphabet V. 
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• Section 4 presents the essential idea of greater shift distances while processing the input 
text, as in the Boyer-Moore algorithm. 

• Section 5 derives algorithms required for the precomputation of the shift functions used 
in the pattern matching algorithm. 

• Section 6 specializes the new pattern matching algorithm to obtain the Boyer-Moore 
algorithm. 

• Section 7 provides some data on the performance of the new algorithm versus the 
generalization of the Aho-Corasick algorithm. 

• Section 8 presents the conclusions of this paper. 

All of the algorithms are presented in the guarded command language of Dijkstra [Dij76], 
using Dijkstra's style of proof and program derivation. 

Acknowledgements: We would like to thank the following people (in alphabetical order) 
for their assistance in the preparation of this paper: Kees Hemerik, F. E. J. Kruseman Aretz, 
Nanette Saes, Tom Verhoeff, and Gerard Zwaan. 

2 Mathematical preliminaries 

We now present some required definitions (most of which are taken from [WZ92]). For any 
set G, P(G) denotes the set of all subsets of G. For n :::: 0, vn denotes the set of all words 
over V of length n. We have the property that VO = {f}, where f denotes the empty word. 
Define V* = (u i : 0 :s i : Vi) (V* denotes the set of all words over alphabet V, including f). 
For any w E V', define Iwl to be the length of w. 

The remaining definitions and properties are divided into five groups: prefixes and suffixes 
of strings, language theoretic properties, string and language reversal, operators for manipu
lating substrings, and properties of min and max. In the following definitions assume that 
A, B <;; V* are languages over alphabet V. 

1. Define functions pref, suff : P(V') ----; P(V') as: 

pref(A) 
suff(A) 

= {x:(3Y:YEV':xYEA)} 
{y : (3 x : x E V' : xy E A)} 

That is, pref(A) is the set of all prefixes of words in A, while suff(A) is the set of all 
suffixes of words in A. When w E V', we will take pref( w) to mean pref( { w }) and 
suff(w) to mean suff({w}). If A =10 we have f E pref(A) 1\ f E suff(A). Note that 
A <;; pref(A), A <;; suff(A), pref(pref(A)) = pref(A) and suff(suff(A)) = suff(A) 
(i.e. pref and suff are idempotent). We also define :Sp to be a partial order on strings 
(known as the prefix order) as u Sop v == u E pref( v). Function suff has the property 
that: 

suff(A) n B =10 == A n V' B =10 (\) 
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2. The following language-theoretic property will be used in the algorithm derivation: 

(V* An V* B =F 0) '" (V* An B =F 0) V (A n V* B =F 0) (2) 

3. We use post-fix (superscript) operator R to denote the reversal of words and languages. 
Note the following properties of reversal: 

(AR)R A 

AC;;B AR C;; BR 

pref(A)R = suff(AR) 

suff(A)R pref(AR) 

(3) 

(4) 

(5) 

(6) 

4. Since we wish to operate on strings at a high level (without resorting to indexing the 
individual symbols in strings), we define some operators on strings. For any string 
w E V*, we define: 

• w1k to be the k min Iwlleftmost symbols of w; 

• w[k to be the k min Iwl rightmost symbols of w; 

• wJ k to be the (Iwl - k) max 0 rightmost symbols of w; 

• wlk to be the (Iwl - k) max 0 leftmost symbols of w. 

(The four operators 1, [, J, l are pronounced "left take," "right take," "left drop," and 
"right drop" respectively.) For example (baab)13 = baa, (baab)r5 = baab, (baab)Jl = 

aab, and (baab)110 = E. 

5. Given that universal quantification over a finite domain is shorthand for conjunction, 
and existential quantification over a finite domain is shorthand for disjunction, we have 
the following general properties (where P is some range predicate, f is some function, 
and the 'land 3 quantified j is over a finite domain): 

(MINi: (V j:: P(i,j)): f(i)) > 
(MINi: (3 j:: P(i,j)): f(i)) 

(MAXj:: (MINi: P(i,j): f(i))) 

(MIN j :: (MIN i : P(i,j) : f(i))) 

3 Problem specification and a simple first algorithm 

(7) 

(8) 

Formally, the regular expression pattern matching problem is: given a regular expression E 
(the pattern expression), regular language L C;; V* (the pattern language denoted by E)2, 
and input string 5 E V*, establish postcondition R: 

0= {(l,v,r): lvr = 5 II VEL} 

When R holds, variable 0 is a set of triples (decompositions of input string 5), each denoting 
a pattern occurrence and its left and right context within 5. An equivalent specification of 
the postcondition is: 

0= (U l,v,r: lvr = 5: {l} X ({v} nL) X {r}) 

2In the remainder of this paper, we will use language L instead of regular expression E in order to make 
the algorithm derivation more readable. 
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This will prove to be more useful in the algorithm derivation. 
To create a practical first algorithm, the postcondition R can be rewritten as: 

0= (U u,r: ur = 5: (u I,v: Iv = u: {I} x ({v} nL) x {r})) 

We can now give a first algorithm, in which the prefixes (u) of 5 and the suffixes (v) of u are 
considered in order of increasing length3 (where cand is conditional conjunction): 

Algorithm 3.1: 

u,r,O:= <,5,{<} x ({<} nL) x {S}; 
do r # <--+ 

u,r:= u(rll),rJl; 
l,V:=U,E; 
o := 0 U ({I} x ({v} n L) x {r}); 
do 1#< cand (lfl)v E suff(L) --+ 

od 
od{R} 

I, v := Ill, (lfl)v; 
0:= OU({I} x ({v} nL) x {r}) 

This algorithm is taken from [WZ92, Algorithm 2.5]. The number of iterations of the inner 
repetition is 0(151 . ((MAX w : W E L : Iwl) min 151)). (This is not the same as the run
ning time, as we have not taken the cost of operations such as {v} n L into account.) The 
implementation of guard (lfl)v E suff(L) and expression {v} n L (in the update of variable 
0) remain unspecified. In order to make the algorithm more practical, we introduce a finite 
automaton. 

3.1 A more practical algorithm using a finite automaton 

Since L is a regular language, we construct (from E) a (possibly non-deterministic) <-transition
free finite automaton M = (Q, V, 8J, F) accepting LR (the reverse language4 of L), where: 

• Q is the set of states of M. 

• V is our fixed alphabet. 

• 8: P(Q) X V --+ P(Q) is the transition function. (In the case of a deterministic au
tomaton, the (possibly partial) transition function would be 8 : Q x V + Q.) Function 
8* : P(Q) X V* --+ P(Q) is the usual Kleene closure of function 8, defined inductively 
as 8*(H, <) = H and (for a E V, wE V*) 8*(H, awl = 8*(8(H, a), w). (The signatures of 
transition functions 8 and 8* are slightly different from the ones usually found in text
books. The signatures used in this paper are notational conveniences which shorten 
some of the derivations, and simplify the extension of function 8 to function 8*.) 

30t her orders of evaluation can also be used. This order is only chosen so as to arrive at an algorithm 
generally resembling the Boyer-Moore algorithm. 

4The reverse is used, since we will be using automaton M to consider the symbols of substring v in right
to-left order instead of left-to-right order. 
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• I <;;; Q is the set of initial (i.e. start) states. 

• F <;;; Q is the set of final states. 

(Such an automaton would normally be constructed from regular expression E; algorithms 
doing this are, for instance, presented in [Wat93a, Constrs. 4.32, 4.39, 4.45, 4.50, 5.34, 5.69, 
5.75,5.82].) Since M is <-transition-free, we have the property that < E L == InF # 0. Finite 
automata with <-transitions could have been used; they are only excluded in order to simplify 
the definitions given here. 

To give the invariant in the new algorithm, we define a function £ : Q ---> P(V*) as 

£(q) = {w: w E V* I\q E 8*(I,w)} 

Function £ maps each state q to the set of all words (in V*) taking M from an initial state 
to the state q. (Note, by definition: LR = (U f : f E F : £(1)).) For each state q, we also 
define constant mq to be the length of a shortest word in £(q). Define m to be the length of 
a shortest word in L. 

The new algorithm using finite automaton M is (C is a new variable ranging over P(Q)): 

Algorithm 3.2: 

u, r, 0 := <, S, if In F # 0 then {«, <, S)} else 0 fi; 
do r # < ---> 

u, r := u(rjl), rJl; 
l,v,C:= u,€,I; 
0:= OUif CnF # 0 then {(l,v,r)} else 0 fi; 
{invariant: C = {q: q E Q 1\ vR E £(q)} 1\ u = Lv} 
do 1 # < cand 8( C, trl) # 0 ---> 

od 
od{R} 

l, v, C := 1l1, (lrl)v, 8(C, m); 
{CnF#0==vEL} 
0:= Ouif CnF # 0 then {(l,v,r)} else 0 fi 

String v is reversed in the inner repetition invariant conjunct C = {q : q E Q 1\ v R E £(q)} 
siuce v is processed in reverse. Given this conjunct, the conditional conjunct of the inner 
repetition guard is now 8(C,m) # 0, since 8(C,m) # 0 == (lr1)v E suff(L). 

There are a number of choices in the implementation of the finite automaton M. In 
particular, if a deterministic finite automaton is used then the algorithm variable C would 
always be a singleton set (and the algorithm would be modified so that C ranges over Q instead 
of P(Q)). The use of a deterministic automaton requires more costly precomputation (of the 
automaton), but enables the algorithm to process input string S faster. A non-deterministic 
automaton would involve cheaper precomputation, but the input string would be processed 
more slowly as all paths in the automaton are simulated. A hybrid solution is to begin with a 
non-deterministic automaton, and then construct (and tabulate) a deterministic automaton 
on-the-fly, as the non-deterministic automaton is simulated. In this paper, we continue to use 
a possibly non-deterministic finite automaton. 
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a 

Figure 1: A finite automaton accepting the regular language LR = {b}{c}*{db,ed} U {adb}. 
The states are shown as circles (final states are depicted as concentric circles, and the single 
initial state is the rightmost state). 

Example: As an example of a regular language pattern, and a corresponding finite automa
ton, consider the language L = {bd,de}{c}*{b} U {bda} (over alphabet V = {a,b,c,d,e}). 
In this case, the automaton M (which is shown in Figure 1) accepts the language LR = 

{b}{c}*{db, ed} U {adb}. Coincidentally, automaton M is deterministic. Within examples, 
we will use names (such as L, V, and M) to refer to the concrete objects defined above, as 
opposed to the abstract objects used elsewhere in the paper. The languages of each of the 
states (for the automaton in Figure 1) are as follows: 

£(0) {E} 

£(1) {a} 

£(2) {b}{c}* 

£(3) {ad} U {b}{c}*{d} 

£(4) {b}{c}*{e} 

£(5) {adb} U {b}{ c} * {db} 

£(6) {b}{c}*{ed} 

Additionally, m = 3, mo = 0, ml = m2 = 1, m3 = m4 = 2, and m5 = m6 = 3. Language 
L and automaton M will be used as our running example throughout the paper. (End of 
example.) 

4 Greater shift distances 

Upon termination of the inner repetition, we know (by the invariant of the inner repetition) 
that C = {q: q E Q A v R E £(q)}. This implies (V q: q E C: vR E £(q)), and equivalently 

(V q : q E C : v E £(q)R) 

In a manner analogous to the Boyer-Moore algorithm, this information can be used on a 
subsequent iteration of the outer repetition to make a shift of more than one symbol in the 
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assignment: 

u, T := u(rll), rjl 

In order to make use of this information (which relates v and C) on the first iteration of 
the outer repetition, we make the invariant of the inner repetition an invariant of the outer 
repetition as well, by adding the (redundant) initialization I, v, C := u, E,I before the outer 
repetition 5 : 

Algorithm 4.1: 

u,r,O:= E,S,if InF #0 then {(E,E,S)} else 0 fi; 
l, v, C := u, t, I; 
{invariant: C = {q: q E Q A v R E C(q)} Au = Iv} 
do rolE ---; 

u,r:= u(r11),rJl; 
l,v,C:= u,E,I; 
0:= OuifCnF # 0 then {(l,v,r)} else 0 fi; 
{invariant: C = {q : q E Q A v R E C(q)} Au = Iv} 
do 1# E cand b(C, lfl) # 0 ---; 

od 
od{R} 

l,v,C:= Ill, (lfl)v,b(C,lfl); 

{CnF#0=vEL} 
o : = 0 u if C n F # 0 then {(l, v, r)} else 0 fi 

4.1 A more efficient algorithm by computing a greater shift 

We wish to use a greater shift distance in the assignment u,r := u(rll),rJ1. Ideally, we 
require the shift distance to the nearest match to the right (in input string S). Formally, this 
distance is given by: (MIN n : 1 :S n :S Irl A suff(u(r1n)) n L # 0 : n). Computing this shift 
is as difficult as the problem that we are trying to solve. Fortunately, we can settle for any 
shift approximation k satisfying 

1 :S k :S (MIN n: 1 :S n :S Irl A suff(u(r1n)) n L # 0 : n) 

(Note that a MIN quantification with an empty range has the value +00.) The assignment of 
u, r then becomes u, r := u(r1 k), r J k. Consider the range predicate of the MIN quantification 
(the ideal shift); any weakening ofthe range predicate's second conjunct, suff(u(r1n))nL # 0, 
will give a valid approximation. (Note that, by using the weakest predicate (true) we trivially 
obtain the algorithm above, with a constant shift distance of 1.) We begin by finding a 
more effective weakening; later we will show that it is practical to precompute the resulting 
approximation. 

Assuming 1 :S n :S Irl and the (implied) invariant (V q : q E C: V E C(q)R) A u = lv, we 
begin with the range predicate: 

5This does not change the nature of the algorithm, other than creating a new outer repetition invariant. 
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suff(u(r1n)) n L # 0 
{invariant: u = Iv } 

sUff(lv(r1n)) n L # 0 

4 GREATER SHIFT DISTANCES 

=? {domain of I, rand n: I E V' and n :s; Irl, so (r1n) E vn} 

suff(V*vvn) n L # 0 
{property (1) of suff} 

V*vvnnV*L#0 

=? {invariant: (If q: q E C: V E C(q)R)} 

(If q: q E C: V*C(q)Rvn n V'L # 0) (9) 

The predicate is now free of I, v, rand 5 and depends only on state set C, automaton M, and 
language L. We will continue this derivation from the last line. 

The fact that the language L and the languages C(q) can be infinite (for a given q E Q) 
makes evaluation of this predicate difficult. In the following subsection, we derive a more 
practical range predicate. 

4.2 Deriving a practical range predicate 

We aim at a finite language Lq (corresponding to q E Q) such that V* C(q)R C;; V* Lq and a 
finite language L' such that V'L C;; V* L'. 

Possible definitions of such languages are: 

Lq = suff(C(q)R) n v(m, rninm) 

L' = suff(L) n vm 

(The definitions given here were chosen for their simplicity; other definitions are possible, but 
these particular ones lead to a generalization of the Boyer-Moore algorithm.) In the following 
intermezzo, we show that these definitions of Lq and L' satisfy the required properties: 

We can see that the definition of Lq satisfies the required property by considering a particular 
word w: 

w E £.(q)R 

=;. {definition of m,: Iwl ::0: mq ::0: m, min m} 

(3 x, y : w = xy : y E suff(£.(q)R) f\ Iyl = mq min m) 

{ definitions of concatenation and intersection of languages} 

wE V'(suff(£.(q)R) n v(m" rninm») 

= { definition of Lq } 

wE V*L, 

We conclude that £.(q)R C;; V'L,. It follows that V' £.(q)R C;; V'V'Lq, and (since V'V' = V') 
V' £.(q)R C;; V'Lq. A similar proof applies to the L, L' case. 

Example: Given our running example, we can see that L' 
and (for all states 0, ... ,6 in finite automaton M): 

Lo = {E} 

{bda, bdb, deb, deb, eeb,eeb} 



4.2 Deriving a practical range predicate 

L1 {a} 

L2 {b} 

L3 {da,db,cb} 

L4 {eb,cb} 

L5 {bda,bdb,dcb,ccb} 

L6 { deb, ecb, ccb} 

(End of example.) 
We can continue our previous derivation of a useable range predicate, from (9): 

(V q: q E C: V*.c(q)Rvn n V*L # 0) 

{property: V*.c( q)R c;: V* Lq; V* L c;: V* L' } 

(V q : q E C : V* Lq vn n V* L' # 0) 

{ existentially quantify over all w E Lq } 

(V q : q E C: (3 w : w E Lq : V*wvn n V* L' # 0)) 

We now have a weakening of the range predicate of the ideal shift distance. 

11 

Recalling the properties of MIN quantification given in (7) and (8), we can now proceed 
with our derivation (of an approximation), beginning with the ideal shift distance: 

(MIN n: 1 :S n:S Irll\ suff(u(r1n)) n L # 0 : n) 

> {weakening of range predicate (see derivation above)} 

(MIN n: 1 :S n 1\ (V q : q E c: (3 w : w E Lq : V*wvn n V* L' # 0)) : n) 

~ { conjunctive (V) MIN range predicate - property (7); ICI is finite} 

(MAX q : q E C : (MIN n : 1 :S n 1\ (3 w : wE Lq : V*wvn n V* L' # 0) : n)) 

{ disjunctive (3) MIN range predicate - property (8); ILql is finite} 

(MAX q : q E C: (MIN w : w E Lq : (MIN n: 1 :S n 1\ V*wvn n V* L' # 0 : nl)) 

Recall property (2); this property is also used in the derivation of the Commentz-Walter 
algorithm [WZ92). We define two auxiliary functions d1 , d2 : V* ---> N as: 

d1(x) (MINn:l:SnI\V*xvnnL'#0:n) 

d2(x) (MINn: 1:S n/\xVnnV*L' # 0: n) 

We can now rewrite the inner MIN quantification of our shift distance: 

(MIN n: 1 :S n 1\ V*wvn n V* L' # 0 : n) 

{property (2) } 

(MIN n: 1 :S n 1\ (V*wvn n L' # 0 V wvn n V* L' # 0) : n) 

{ disjunctive range predicate} 

(MIN n : 1 :'0 n 1\ V*w vn n L' # 0 : n) min(MIN n : 1 :'0 n 1\ w vn n V* L' # 0 : n) 

{ definitions of d1, d2 } 

d1 (w) min d2 (w) 
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The approximation of the ideal shift distance is: 

(MAXq: q E C: (MINw: W E L q : dJ (w)mind2(w))) 

For readability, we define auxiliary function t : Q ---> N as 

t(q) = (MIN w : W E L q : dJ(w) mind2 (w)) 

Functions d J , d2 and t are easily precomputed as discussed in Section 5. The final algorithm 
(using function t and introducing variable distance for readability) is: 

Algorithm 4.2: 

u, r, 0 := €, S, if I n F # 0 then {( €, €, S)} else 0 fi; 
1,v,C:= u,E,Ij 
{invariant: C = {q: q E Q 1\ vR E .c(q)} 1\ u = Lv} 
do r # € ---> 

distance := (MAX q : q E C : t(q)); 
u, r := u(r1 distance), rJdistance; 
1,v,C:= u,E,i; 
0:= OUif CnF # 0 then {(l,v,r)} else 0 fi; 
{invariant: C = {q : q E Q 1\ vR E .c(q)} 1\ u = Iv} 
do 1# € cand O(C, lfl) # 0---> 

od 
od {R} 

L, v, C := ill, (l[1)v, o(C, Ifl); 
{CnF#0=vEL} 
0:= Ouif CnF # 0 then {(I,v,r)} else 0 fi 

5 Precomputation 

In this section, we consider the precomputation of languages Lq and L', and functions dJ , 

d2 , and t. The precomputation is presented as a series of small algorithms - each easier to 
understand than a single monolithic one. All algorithms are presented and derived in the 
reverse order of their application. In practice they would be combined into one algorithm, as 
is shown in Section 5.9. 

5.1 Characterizing the domains of functions dJ and d2 

Since functions dJ , d2 are only applied to elements of Lq (for all q E Q), their signatures can 
be taken as dJ , d2 : (U q : q E Q : Lq) ---> N. In order to make the precomputation of the 
functions easier, we need a different characterization of their domains. To do this in a simple 
manner, we require the automaton M to have a simple structural property: 

For all states q E Q, there exists a path (in the transition graph induced by 
function 0) from an initial state to a final state, such that the path passes through 
q. (This means that there are no useless states in M.) 
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The property implies that (for all q E Q) C(q) ~ pref((U f : f E F : CU))) = pref(LR). In 
[Wat93a], several general finite automata construction algorithms are given; many of those 
algorithms construct automata with this property. 

From the implication of the property above, and the domain of d" d2 , we can restrict the 
domains of d, and d2 as follows (for all q E Q): 

Lq 

{ definition of Lq } 
suff(C(q)R) n V m, minm 

C {assumption (structural property) C(q) ~ pref(LR); property (4); monotonicity of suff} 
suff(pref(LR)R) n V m, minm 

{property (5); function R is its own inverse - property (3) } 

suff(suff(L)) n V m , minm 

{idempotency of suff} 
suff( L) n V m , min m 

C { mq min m :'0 m and (\I u : u E suff( L) n V m, min m : (3 V : V E V· : vu E suff( L) n vm)) } 

suff(suff(L) n vm) 

{ definition of L' } 

suff(L') 

Given this property (of each L q ), we can restrict the domain of functions d, and d2 so that 
d" d2 : suff(L') --+ N. Since IL'I is finite, then Isuff(L')1 is finite as well. 

Example: In our running example, where L' = {bda, bdb, deb, dcb, eeb, ccb}, we have 

suff(L') = {E, a, b, da, db, eb, cb, bda, bdb, deb, dcb, eeb, eeb} 

Given the definitions of d" d2, we can compute the two functions by hand from their defini
tions: 

W E a b da db eb eb bda bdb deb deb eeb ccb 
d,(w) 1 +00 2 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00 
d2 (w) 3 3 2 3 2 2 2 3 2 2 2 2 2 

(End of example.) 
Before precomputing d" d2 , we concentrate on the preeomputation of function t. 

5.2 Precomputing function t 

Assuming that functions d" d2 and sets Lq (for all q E Q) have been precomputed, we can 
compute function t as follows (variable tee is used to accumulate shift function t): 
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Algorithm 5.1: 

for q: q E Q do 
tee(q) := +00 

rof; 
for q, u : q E Q 1\ u E suff(L') 1\ u E Lq do 

tee(q) := tee(q) mind,(u) mind2(u) 
rof 
{tee = t} 

5 PRECOMPUTATION 

Notice that we impose no unnecessary order of evaluation in either of the two repetitions. An 
implementor of this algorithm is free to choose an order of evaluation which is most efficient 
for the encoding used in the implementation. 

Example: In our running example, we obtain the following values for function t (given the 
values of Lq for all states q, and functions d"d2): t(O) = 1,t(1) = 3,t(2) = 2,t(3) = 2,t(4) = 
2, t(5) = 2, t(6) = 2. (End of example.) 

5.3 Precomputing functions d, and d2 

With the domain of functions d, and d2 restricted to suff(L'), functions d, and d2 are the 
Commentz-Walter precomputed functions for (finite) keyword set L' [Com79aJ. 

We now present two algorithms, computing d, and d2 respectively. The algorithms are 
fully derived in [WZ94], and are given here without proofs of correctness. The two precom
putation algorithms presented below depend upon a function fT : suff(L') \ {E} ----; suff(L') 
(called the reverse failure function corresponding to keyword set L') which is defined as: 

fr(u) = (MAX< w: w E pref(u) \ {u} nsuff(L'): w) 
-P 

In the following two algorithms, we assume that function fT is precomputed: 

Algorithm 5.2: 

for u: u E suff(L') do 
dee1(u) := +00 

rof; 
for u: u E suff(L') \ {E} do 

dee1(fT(u)) := dee1(fT(u)) min(lul -lfT(U)I) 
rof 
{dee1 = dd 

Again, notice that we impose no unnecessary order of evaluation in either of the two repeti
tions. 



5.4 Precomputing function fT 

Algorithm 5.3: 

for u : u E suff(£') do 
dee2(u) := +00 

rof; 
for u : u E £' do 

v:=u; 
do v =I E --+ 

od 

V := fT(V); 
if lul- Ivi < dee2(v) --+ dee2(v) := lul- Ivl 
~ lui - Ivl :::: dee2(v) --+ v := E 

Ii 

rof; 
n:= 1; 
do suff(£') n vn =10 --+ 

for u: u E suff(£') n vn do 
dee2( u) := dee2( u) min dee2( uJl) 

rof; 
n:= n + 1 

od 
{dee2 = d2 } 
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Notice that the third (un-nested) repetition is a breadth-first traversal of the set suff(£'), and 
the second (un-nested) repetition requires that function fT is precomputed. By the definition 
of language £', the depth of the traversal is m. Precomputation using these algorithms has 
been found to be cheap in practice [Wat94]. 

5.4 Precomputing function fr 

The following algorithm (taken largely from [WZ92, Section 6, pg. 33]) computes function fr: 

Algorithm 5.4: 

for a: a E V do 
if a E suff(£') --+ fr(a) := E 

~ a rt suff(£') --+ skip 
Ii 

rof; 
n:= 1; 
{invariant: (V u: u E suff(£') /\ lui:::; n: fr(u) = fr(u))} 
do suff(£') n vn =I 0 --+ 

for u, a : U E suff(£') n vn /\ a E V do 
if au E suff(£') --+ 

u' := fr(u); 
do u' =I E /\ au' rt suff(£') --+ 

u' := fr(u') 
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rofj 

od; 
if u' = E II a ~ suff(L') ---+ fr(au) := E 

~ u' # E V a E suff(L') ---+ fr(au) := au' 
fi 

~ au ~ suff(L') ---+ skip 
fi 

n:= n + 1 
od 
{n > m} 
{lr = fr} 

This algorithm also makes use of a breadth-first traversal (of depth m) of the set suff(L'). 

Example: Consider the function fr for our running example: 

w: w E suff(L') \ {E} II a b da dbl eb eb bda bdb J deb deb eeb I eeb I 
fr(w) II E E E E I E E b b I E E E I E I 

(End of exam pIe.) 

5.5 Precomputing sets Lq 

The languages Lq can be precomputed using an auxiliary relation and two auxiliary functions. 
The auxiliary functions are st : suff(L') ---+ P(Q) and emm : Q ---+ [0, mJ defined as: 

st(u) = {q: q E Q II u R E £.(q)} 
emm(q) = mq min m 

The required relation, X, is a binary relation on states (called the reaehability relation), 
defined as (for any two state p, q): 

(p,q) EX == (3 a: a E V: q E 6({p},a)) 

A useful property (of any finite automaton) is that (for all states q E Q): 

pref(L:(q)) = (U p: p E Q II (p, q) EX' : L:(p)) (10) 

This property is given, in a slightly simpler form, in [Wat93b, Property 3.21. 
Given relation X and functions emm and st, we can derive an expression for Lq that is 

easier to compute (than the definition): 

{ definition of Lq } 
suff(.c(q)R) n vm , minm 

{ property (5) } 

pref(.c(q))R n V m , minm 

{property (10) } 



5.6 Precomputing function emm 

(u p : p E Q /\ (p, q) E X* : .c(p»R n V m, minm 

{ nand R distribute over u} 
(u p: p E Q/\ (p,q) E X*: .c(p)Rnvmqminm) 

{ quantify over all words w : w E .c(p)R n V m, min m } 

(u W,p : p E Q /\ (p, q) E X* /\ w E V m, minm /\ W E .c(p)R : {w}) 

{w E V m, minm "" Iwl = mq min m "" Iwl = emm(q)} 

(u w,p:p E Q/\ (p,q) E X* /\w E suff(L') /\ Iwl = emm(q) /\w E .c(p)R: {w}) 

{w E .c(p)R "" wR E .c(p) "" p E st(w)} 

(u w,p:p E Q/\ (p,q) E X* /\w E suff(L')/\ Iwl = emm(q) /\p E st(w): {w}) 
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Assuming that relation X and auxiliary functions emm and st are precomputed, we can now 
present an algorithm computing Lq (for all q E Q): 

Algorithm 5.5: 

for q: q E Q do 
ell(q) := 0 

rof; 
for p, q, w : (p, q) E X* /\ wE suff(L') /\ Iwl = emm(q) /\ p E st(w) do 

ell(q) := ell(q) u {w} 
rof 
{(V q: q E Q: ell(q) = Lq)} 

5.6 Precomputing function emm 

Assuming that function st had already been computed, the following algorithm computes 
function emm using a breadth-first traversal of suff(L'): 

Algorithm 5.6: 

for q: q E Q do 
if q E I ----> emm(q) := 0 
~ q 'it 1----> emm(q) := m 
fi 

rof; 
n:= 1; 

do suff(L') n vn # 0 ----> 

od 

for u : u E suff(L') n vn do 
for q : q E st(u) do 

emm(q) := emm(q) min n 
rof 

rof 

{(V q: q E Q: emm(q) = mqminm)} 
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5.7 Precomputing function st and languages L' and suff(L') 

The following algorithm makes a breadth-first traversal (of depth m) of the transition graph 
of finite automaton M. It simultaneously computes function st, languages L' and suff(L') , 
and m (the length of a shortest word in language L). 

Languages £' and suff(L') are used in most of the precomputation algorithms already 
presented. While the following algorithm computes language suff(L'), it is also an example 
of a breadth-first traversal of suff(L') without having to explicitly compute and store the 
language suff(L'); instead, the algorithm traverses the transition graph of finite automaton 
M and implicitly performs a breadth-first traversal of suff(L'). 

Algorithm 5.7: 

st(E), current, SLprime, n,final := I, {d, {d, 0, (I n F = 0); 
{ invariant: 

current = suff(L') n vn 
1\ SLprime = (U i : i :S n : suff(£') n Vi) 
1\0:Sn:Sm 
1\ (final == n = m) 
1\ ('</ u: u E suff(L') 1\ lui :S n: st(u) = {q: uR E L(q)})} 

do ~final -----> 

current' := 0; 
n:= n + 1; 

od 

for u, a : U E current 1\ a E V do 

rof; 

if 6(st(u), a) oF 0 -----> 

{au E suff(L') n vn} 
st(au) := 6(st(u), a); 
{('</ q : q E st(au) : au E L(q)R)} 
current' := current' U {au}; 
final := final V (st(au) n F oF 0) 

~ 6(st(u), a) = 0 -----> skip 
fi 

current := current'; 
SLprime := SLprime U current 

{n = m} 
{current = suff(£') n vm = L'} 
{SLprime = suff(L')} 
{('</ u: u E suff(L') : st(u) = {q: u R E L(q)})} 

5.8 Precomputing relation X 

Relation X can be precomputed using a reach ability algorithm which traverses the transition 
graph of automaton M. Relation X* can then be precomputed by a reflexive and transitive 
closure algorithm. The two algorithms are combined into one below: 
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5.2 5.6 )-------;'"i 5.7 

)-------;'"i 5.5 

5.3 

Figure 2: The dependency graph of the precomputation algorithms. An arrow from algorithm 
a to algorithm b indicates that algorithm b must be applied before algorithm a. 

Algorithm 5.8: 

Exstar:= 0; 
for g, a : a E Q /\ a E V do 

Exstar:= ExstarU {(g,g)} U ({g} X 8({g},a)); 
rof; 
{Exstar = XO U Xl} 
change : = true; 
do change ----; 

od 

change := false; 
for p, g, r : (p, g) E Exstar /\ (g, r) E Exstar do 

change := change V (p, r) 'i! Exstar; 
Exstar := Exstar U {(p, r)} 

rof 

{Exstar = X*} 

5.9 Combining the precomputation algorithms 

The precomputation algorithms can be combined into a single monolithic algorithm. Such 
an algorithm is essentially the sequential concatenation of the separate precomputation al
gorithms. The order in which the algorithms are applied is determined by their dependency 
graph, which is shown in Figure 2. A possible order of execution is obtained by reversing a 
topological sort of the dependency graph. One such order is: (Algorithms) 5.8, 5.7, 5.6, 5.5, 
5.4, 5.2, 5.3, 5.1. 

6 Specializing the pattern matching algorithm 

By restricting the form of the regular expression patterns, we can specialize the pattern 
matching algorithm to obtain the Boyer-Moore and the Commentz-Walter algorithms. In 
this section, we specialize to obtain the Boyer-Moore algorithm that does not use a lookahead 
symbol. 
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To obtain the single-keyword pattern matching problem, we require that L be a singleton 
set; that is L = {p}, a language consisting of a single keyword. 

We define deterministic finite automaton M = (suff(p), V",{E},{p}). The states are 
elements of suff(p). We define deterministic transition function ,: suff(p) x V -----; suff(p) U 
{l-} (the special value 1- denotes an undefined transition) as: 

(w a) = {aw if aw E suff(p) 
I, 1- otherwise 

Automaton M satisfies the structural property on page 12. Given function I, we have (for 
every state w E suff(p)): 

[,(w) = {wR } 

Automaton M is deterministic, and the current state-set variable (C in the algorithm) is 
always a singleton set; call it state w E suff(p). Since [,(w) is a singleton set and Iwl :'0 Ipl, 
we have mw = Iwl and Lw = [,(w)R = {w}. Additionally, since m = Ipl, L' = L = {pl· 
Clearly, we have Lw C;; suff(L') = suff(p). Function t is defined as trw) = dJ(w) mind2(w). 
The shift distance will then be dJ(w)mind2(w) in the update of variables u,r. Elements 
of suff(p) (in particular, current state variable w) can be encoded as integer indices (into 
string p) in the range [0, Ipll. By making use of this encoding, and changing the domain of 
the variables u, r and functions dJ , d2 to make use of indexing in input string S, we obtain 
the Boyer-Moore algorithm. The Commentz-Walter algorithm can similarly be obtained as a 
specialization. 

7 Performance of the algorithm 

Empirical performance data was gathered by implementing this algorithm in a grep style 
pattern matching tool, running under UNIX (on a Sun SPARC Station 1+) and DOS (on a 
20 Mhz 386). 

On each run, the new algorithm was used in addition to the old (generalized Aho-Corasick) 
algorithm which constructs a finite automaton accepting the language V' L. (For both the 
old and the new algorithms, only deterministic finite automata were used. The time required 
for precomputation was not measured, but for both algorithms it appeared to be negligible 
compared to the time required to process the input string.) In the cases where m :::: 6 (the 
length of the shortest word in L is at least 6), and IL'I :'0 18, this new algorithm outperforms 
the other algorithm. These conditions held on approximately 35% of our user-entered regular 
expression patterns. 

In the cases where the new algorithm outperformed the traditional one, the differences in 
execution speed varied from a 5% improvement to a 150% improvement. In the cases where 
the new algorithm was outperformed, its execution speed was never less than 30% of the 
execution speed of the traditional algorithm. 

The conditions for obtaining high performance from the new algorithm (m :::: 6 II IL'I :'0 
18) can easily be determined from automaton M. In a grep style pattern matching tool, 
the automaton M can be constructed for language LR. If the required conditions are met, 
the Boyer-Moore type pattern matcher is used. If the conditions are not met, M can be 
reversed (so that it accepts language L), and converted to an automaton accepting V' L. The 
traditional algorithm can then be used. 
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8 Conclusions 

We have achieved our aim of deriving an efficient generalized Boyer-Moore type pattern match
ing algorithm for regular languages. The stepwise derivation began with a simple, intuitive 
first algorithm; a finite automaton was introduced to make the implementation practical. The 
idea of shift distances greater than one symbol (as in the Boyer-Moore and Commentz-Walter 
algorithms) was introduced. The use of predicate weakening was instrumental in deriving a 
practical approximation to the ideal shift distance. 

Using a structural property of finite automata, the approximation was shown to be the 
composition of several functions, all but two of which are easily computed. The remaining two 
functions are the Commentz-Walter shift functions; an algorithm computing these functions 
has previously been derived with correctness arguments in [WZ92]. 

The Boyer-Moore algorithm was derived as a special case of our algorithm, showing our 
algorithm to be a truly generalized pattern matching algorithm. 
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