

A Boyer-Moore type algorithm for regular expression pattern
matching
Citation for published version (APA):
Watson, B. W., & Watson, R. E. (1994). A Boyer-Moore type algorithm for regular expression pattern matching.
(Computing science notes; Vol. 9431). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/c8978668-318b-4dcb-97a8-7e68b886fcd5

ISSN 0926-4515

All rights reserved

Eindhoven University of Technology

Department of Mathematics and Computing Science

A Boyer-Moore type algorithm for regular
expression pattern matching

by

Bruce W. Watson and Richard E. Watson
94/31

editors: prof.dr. J.C.M. Baeten
prof.dr. M. Rem

Computing Science Report 94/31
Eindhoven, January 1995

A Boyer-Moore type algorithm for regular
expression pattern matching

Bruce W. Watson
Faculty of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB
Eindhoven, The Netherlands
watson@win.tue.nl

January 24, 1995

Abstract

Richard E. Watson
Dept. of Mathematics

Simon Fraser University
Burnaby

B.C., Canada
watsona@sfu. ca

This paper presents a Boyer-Moore type algorithm for regular expression pattern match
ing, answering an open problem posed by A. V. Aho in 1980 [Aho80, p. 3421. The new
algorithm handles patterns specified by regular expressions - a generalization of the
Boyer-Moore and Commentz-Walter algorithms (which deal with patterns that are single
keywords and /inite sets of keywords, respectively).

Like the Boyer-Moore and Com mentz-Walter algorithms, the new algorithm makes use
of shift functions which can be precomputed and tabulated. The precomputation algo
rithms are derived, and it is shown that the required shift functions can be precomputed
from Commentz-Walter's shift functions known as d, and d2 .

In certain cases, the Boyer-Moore (Commentz-Walter) algorithm has greatly outper
formed the Knuth-Morris-Pratt (Aho-Corasick) algorithm. In testing, the algorithm pre
sented in this paper also frequently outperforms the regular expression generalization of
the Aho-Corasick algorithm.

1

2

Contents

1 Introduction

2 Mathematical preliminaries

3 Problem specification and a simple first algorithm
3.1 A more practical algorithm using a finite automaton

4 Greater shift distances
4.1 A more efficient algorithm by computing a greater shift
4.2 Deriving a practical range predicate

5 Precomputation
5.1 Characterizing the domains of functions d1 and d2

5.2 Precomputing function t

5.3 Precomputing functions d1 and d2
5.4 Precomputing function IT ..
5.5 Precomputing sets Lq
5.6 Precomputing function emm
5.7 Precomputing function st and languages L' and suff(L')
5.8 Precomputing relation X
5.9 Combining the precomputation algorithms ..

6 Specializing the pattern matching algorithm

7 Performance of the algorithm

8 Conclusions

References

CONTENTS

3

4

5
6

8
9

10

12
12
13
14
15
16
17
18
18
19

19

20

21

22

3

1 Introduction

The pattern matching problem is: given a non-empty language L (over an alphabet! V) and
an input string S (also over alphabet V), find all substrings of S that are in L. Several
restricted forms of this problem have been solved (all of which are discussed in detail in
[Aho90] and [WZ92]):

• The Knuth-Morris-Pratt [KMP77] and Boyer-Moore [BM77] algorithms solve the prob
lem when L consists of a single word (the single keyword pattern matching problem).

• The Aho-Corasick [AC75[and Commentz-Walter [Com79a, Com79b] algorithms solve
the problem when L is a finite set of (key)words (the multiple keyword pattern matching
problem). The Aho-Corasick and Commentz-Walter algorithms are generalizations of
the Knuth-Morris-Pratt and Boyer-Moore algorithms respectively.

• The case where L is a regular language (the regular expression pattern matching prob
lem) can be solved as follows: a finite automaton is constructed for the language V* L;
each time the automaton enters a final state (while processing the input string S) a
matching substring has been found. This algorithm is detailed in [Ah090]. It is a
generalization of the Knuth-Morris-Pratt and Aho-Corasick algorithms. Most practical
algorithms solving the regular expression pattern matching problem are variants of this
(V* L) algorithm.

Although the Knuth-Morris-Pratt and Aho-Corasick algorithms have better worst-case run
ning time than the Boyer-Moore and Commentz-Walter algorithms (respectively), the latter
two algorithms are known to be extremely efficient in practice [HS91, Wat94]. The single and
multiple keyword pattern matching algorithms are derived (with proofs) in [WZ92]. Interest
ingly, to date no generalization (to the case where L is a regular language) of the Boyer-Moore
and Commentz-Walter algorithms has been discovered. In [Aho80, p. 342]' A.V. Aho states
the following open problem:

"It would also be interesting to know whether there exists a Boyer-Moore type
algorithm for regular expression pattern matching."

In this paper, we present such an algorithm. As with the Boyer-Moore and Commentz-Walter
algorithms, the new algorithm requires shift tables. The precomputation of these shift table is
discussed, and shown to be related to the shift tables used by the Commentz-Walter algorithm.
Finally, the new algorithm is specialized to obtain the Boyer-Moore (single keyword) algorithm
- showing that it is indeed a generalization of the Boyer-Moore algorithm. The algorithm
has been implemented, and in practice it frequently displays better performance than the
traditional (V* L finite automaton) algorithm.

This paper is structured as follows:

• Section 2 presents the mathematical definitions and properties required for reading this
paper.

• Section 3 gives the problem specification, and a simple first algorithm.

1 An alphabet is a finite, non-empty set of symbols. Throughout this paper we assume a fixed alphabet V.

4 2 MATHEMATICAL PRELIMINAIDES

• Section 4 presents the essential idea of greater shift distances while processing the input
text, as in the Boyer-Moore algorithm.

• Section 5 derives algorithms required for the precomputation of the shift functions used
in the pattern matching algorithm.

• Section 6 specializes the new pattern matching algorithm to obtain the Boyer-Moore
algorithm.

• Section 7 provides some data on the performance of the new algorithm versus the
generalization of the Aho-Corasick algorithm.

• Section 8 presents the conclusions of this paper.

All of the algorithms are presented in the guarded command language of Dijkstra [Dij76],
using Dijkstra's style of proof and program derivation.

Acknowledgements: We would like to thank the following people (in alphabetical order)
for their assistance in the preparation of this paper: Kees Hemerik, F. E. J. Kruseman Aretz,
Nanette Saes, Tom Verhoeff, and Gerard Zwaan.

2 Mathematical preliminaries

We now present some required definitions (most of which are taken from [WZ92]). For any
set G, P(G) denotes the set of all subsets of G. For n :::: 0, vn denotes the set of all words
over V of length n. We have the property that VO = {f}, where f denotes the empty word.
Define V* = (u i : 0 :s i : Vi) (V* denotes the set of all words over alphabet V, including f).
For any w E V', define Iwl to be the length of w.

The remaining definitions and properties are divided into five groups: prefixes and suffixes
of strings, language theoretic properties, string and language reversal, operators for manipu
lating substrings, and properties of min and max. In the following definitions assume that
A, B <;; V* are languages over alphabet V.

1. Define functions pref, suff : P(V') ----; P(V') as:

pref(A)
suff(A)

= {x:(3Y:YEV':xYEA)}
{y : (3 x : x E V' : xy E A)}

That is, pref(A) is the set of all prefixes of words in A, while suff(A) is the set of all
suffixes of words in A. When w E V', we will take pref(w) to mean pref({ w }) and
suff(w) to mean suff({w}). If A =10 we have f E pref(A) 1\ f E suff(A). Note that
A <;; pref(A), A <;; suff(A), pref(pref(A)) = pref(A) and suff(suff(A)) = suff(A)
(i.e. pref and suff are idempotent). We also define :Sp to be a partial order on strings
(known as the prefix order) as u Sop v == u E pref(v). Function suff has the property
that:

suff(A) n B =10 == A n V' B =10 (\)

5

2. The following language-theoretic property will be used in the algorithm derivation:

(V* An V* B =F 0) '" (V* An B =F 0) V (A n V* B =F 0) (2)

3. We use post-fix (superscript) operator R to denote the reversal of words and languages.
Note the following properties of reversal:

(AR)R A

AC;;B AR C;; BR

pref(A)R = suff(AR)

suff(A)R pref(AR)

(3)

(4)

(5)

(6)

4. Since we wish to operate on strings at a high level (without resorting to indexing the
individual symbols in strings), we define some operators on strings. For any string
w E V*, we define:

• w1k to be the k min Iwlleftmost symbols of w;

• w[k to be the k min Iwl rightmost symbols of w;

• wJ k to be the (Iwl - k) max 0 rightmost symbols of w;

• wlk to be the (Iwl - k) max 0 leftmost symbols of w.

(The four operators 1, [, J, l are pronounced "left take," "right take," "left drop," and
"right drop" respectively.) For example (baab)13 = baa, (baab)r5 = baab, (baab)Jl =

aab, and (baab)110 = E.

5. Given that universal quantification over a finite domain is shorthand for conjunction,
and existential quantification over a finite domain is shorthand for disjunction, we have
the following general properties (where P is some range predicate, f is some function,
and the 'land 3 quantified j is over a finite domain):

(MINi: (V j:: P(i,j)): f(i)) >
(MINi: (3 j:: P(i,j)): f(i))

(MAXj:: (MINi: P(i,j): f(i)))

(MIN j :: (MIN i : P(i,j) : f(i)))

3 Problem specification and a simple first algorithm

(7)

(8)

Formally, the regular expression pattern matching problem is: given a regular expression E
(the pattern expression), regular language L C;; V* (the pattern language denoted by E)2,
and input string 5 E V*, establish postcondition R:

0= {(l,v,r): lvr = 5 II VEL}

When R holds, variable 0 is a set of triples (decompositions of input string 5), each denoting
a pattern occurrence and its left and right context within 5. An equivalent specification of
the postcondition is:

0= (U l,v,r: lvr = 5: {l} X ({v} nL) X {r})

2In the remainder of this paper, we will use language L instead of regular expression E in order to make
the algorithm derivation more readable.

6 3 PROBLEM SPECIFICATION AND A SIMPLE FIRST ALGORITHM

This will prove to be more useful in the algorithm derivation.
To create a practical first algorithm, the postcondition R can be rewritten as:

0= (U u,r: ur = 5: (u I,v: Iv = u: {I} x ({v} nL) x {r}))

We can now give a first algorithm, in which the prefixes (u) of 5 and the suffixes (v) of u are
considered in order of increasing length3 (where cand is conditional conjunction):

Algorithm 3.1:

u,r,O:= <,5,{<} x ({<} nL) x {S};
do r # <--+

u,r:= u(rll),rJl;
l,V:=U,E;
o := 0 U ({I} x ({v} n L) x {r});
do 1#< cand (lfl)v E suff(L) --+

od
od{R}

I, v := Ill, (lfl)v;
0:= OU({I} x ({v} nL) x {r})

This algorithm is taken from [WZ92, Algorithm 2.5]. The number of iterations of the inner
repetition is 0(151 . ((MAX w : W E L : Iwl) min 151)). (This is not the same as the run
ning time, as we have not taken the cost of operations such as {v} n L into account.) The
implementation of guard (lfl)v E suff(L) and expression {v} n L (in the update of variable
0) remain unspecified. In order to make the algorithm more practical, we introduce a finite
automaton.

3.1 A more practical algorithm using a finite automaton

Since L is a regular language, we construct (from E) a (possibly non-deterministic) <-transition
free finite automaton M = (Q, V, 8J, F) accepting LR (the reverse language4 of L), where:

• Q is the set of states of M.

• V is our fixed alphabet.

• 8: P(Q) X V --+ P(Q) is the transition function. (In the case of a deterministic au
tomaton, the (possibly partial) transition function would be 8 : Q x V + Q.) Function
8* : P(Q) X V* --+ P(Q) is the usual Kleene closure of function 8, defined inductively
as 8*(H, <) = H and (for a E V, wE V*) 8*(H, awl = 8*(8(H, a), w). (The signatures of
transition functions 8 and 8* are slightly different from the ones usually found in text
books. The signatures used in this paper are notational conveniences which shorten
some of the derivations, and simplify the extension of function 8 to function 8*.)

30t her orders of evaluation can also be used. This order is only chosen so as to arrive at an algorithm
generally resembling the Boyer-Moore algorithm.

4The reverse is used, since we will be using automaton M to consider the symbols of substring v in right
to-left order instead of left-to-right order.

3.1 A more practical algorithm using a finite automaton 7

• I <;;; Q is the set of initial (i.e. start) states.

• F <;;; Q is the set of final states.

(Such an automaton would normally be constructed from regular expression E; algorithms
doing this are, for instance, presented in [Wat93a, Constrs. 4.32, 4.39, 4.45, 4.50, 5.34, 5.69,
5.75,5.82].) Since M is <-transition-free, we have the property that < E L == InF # 0. Finite
automata with <-transitions could have been used; they are only excluded in order to simplify
the definitions given here.

To give the invariant in the new algorithm, we define a function £ : Q ---> P(V*) as

£(q) = {w: w E V* I\q E 8*(I,w)}

Function £ maps each state q to the set of all words (in V*) taking M from an initial state
to the state q. (Note, by definition: LR = (U f : f E F : £(1)).) For each state q, we also
define constant mq to be the length of a shortest word in £(q). Define m to be the length of
a shortest word in L.

The new algorithm using finite automaton M is (C is a new variable ranging over P(Q)):

Algorithm 3.2:

u, r, 0 := <, S, if In F # 0 then {«, <, S)} else 0 fi;
do r # < --->

u, r := u(rjl), rJl;
l,v,C:= u,€,I;
0:= OUif CnF # 0 then {(l,v,r)} else 0 fi;
{invariant: C = {q: q E Q 1\ vR E £(q)} 1\ u = Lv}
do 1 # < cand 8(C, trl) # 0 --->

od
od{R}

l, v, C := 1l1, (lrl)v, 8(C, m);
{CnF#0==vEL}
0:= Ouif CnF # 0 then {(l,v,r)} else 0 fi

String v is reversed in the inner repetition invariant conjunct C = {q : q E Q 1\ v R E £(q)}
siuce v is processed in reverse. Given this conjunct, the conditional conjunct of the inner
repetition guard is now 8(C,m) # 0, since 8(C,m) # 0 == (lr1)v E suff(L).

There are a number of choices in the implementation of the finite automaton M. In
particular, if a deterministic finite automaton is used then the algorithm variable C would
always be a singleton set (and the algorithm would be modified so that C ranges over Q instead
of P(Q)). The use of a deterministic automaton requires more costly precomputation (of the
automaton), but enables the algorithm to process input string S faster. A non-deterministic
automaton would involve cheaper precomputation, but the input string would be processed
more slowly as all paths in the automaton are simulated. A hybrid solution is to begin with a
non-deterministic automaton, and then construct (and tabulate) a deterministic automaton
on-the-fly, as the non-deterministic automaton is simulated. In this paper, we continue to use
a possibly non-deterministic finite automaton.

8 4 GREATER SHIFT DISTANCES

a

Figure 1: A finite automaton accepting the regular language LR = {b}{c}*{db,ed} U {adb}.
The states are shown as circles (final states are depicted as concentric circles, and the single
initial state is the rightmost state).

Example: As an example of a regular language pattern, and a corresponding finite automa
ton, consider the language L = {bd,de}{c}*{b} U {bda} (over alphabet V = {a,b,c,d,e}).
In this case, the automaton M (which is shown in Figure 1) accepts the language LR =

{b}{c}*{db, ed} U {adb}. Coincidentally, automaton M is deterministic. Within examples,
we will use names (such as L, V, and M) to refer to the concrete objects defined above, as
opposed to the abstract objects used elsewhere in the paper. The languages of each of the
states (for the automaton in Figure 1) are as follows:

£(0) {E}

£(1) {a}

£(2) {b}{c}*

£(3) {ad} U {b}{c}*{d}

£(4) {b}{c}*{e}

£(5) {adb} U {b}{ c} * {db}

£(6) {b}{c}*{ed}

Additionally, m = 3, mo = 0, ml = m2 = 1, m3 = m4 = 2, and m5 = m6 = 3. Language
L and automaton M will be used as our running example throughout the paper. (End of
example.)

4 Greater shift distances

Upon termination of the inner repetition, we know (by the invariant of the inner repetition)
that C = {q: q E Q A v R E £(q)}. This implies (V q: q E C: vR E £(q)), and equivalently

(V q : q E C : v E £(q)R)

In a manner analogous to the Boyer-Moore algorithm, this information can be used on a
subsequent iteration of the outer repetition to make a shift of more than one symbol in the

4.1 A more efficient algorithm by computing a greater shift 9

assignment:

u, T := u(rll), rjl

In order to make use of this information (which relates v and C) on the first iteration of
the outer repetition, we make the invariant of the inner repetition an invariant of the outer
repetition as well, by adding the (redundant) initialization I, v, C := u, E,I before the outer
repetition 5 :

Algorithm 4.1:

u,r,O:= E,S,if InF #0 then {(E,E,S)} else 0 fi;
l, v, C := u, t, I;
{invariant: C = {q: q E Q A v R E C(q)} Au = Iv}
do rolE ---;

u,r:= u(r11),rJl;
l,v,C:= u,E,I;
0:= OuifCnF # 0 then {(l,v,r)} else 0 fi;
{invariant: C = {q : q E Q A v R E C(q)} Au = Iv}
do 1# E cand b(C, lfl) # 0 ---;

od
od{R}

l,v,C:= Ill, (lfl)v,b(C,lfl);

{CnF#0=vEL}
o : = 0 u if C n F # 0 then {(l, v, r)} else 0 fi

4.1 A more efficient algorithm by computing a greater shift

We wish to use a greater shift distance in the assignment u,r := u(rll),rJ1. Ideally, we
require the shift distance to the nearest match to the right (in input string S). Formally, this
distance is given by: (MIN n : 1 :S n :S Irl A suff(u(r1n)) n L # 0 : n). Computing this shift
is as difficult as the problem that we are trying to solve. Fortunately, we can settle for any
shift approximation k satisfying

1 :S k :S (MIN n: 1 :S n :S Irl A suff(u(r1n)) n L # 0 : n)

(Note that a MIN quantification with an empty range has the value +00.) The assignment of
u, r then becomes u, r := u(r1 k), r J k. Consider the range predicate of the MIN quantification
(the ideal shift); any weakening ofthe range predicate's second conjunct, suff(u(r1n))nL # 0,
will give a valid approximation. (Note that, by using the weakest predicate (true) we trivially
obtain the algorithm above, with a constant shift distance of 1.) We begin by finding a
more effective weakening; later we will show that it is practical to precompute the resulting
approximation.

Assuming 1 :S n :S Irl and the (implied) invariant (V q : q E C: V E C(q)R) A u = lv, we
begin with the range predicate:

5This does not change the nature of the algorithm, other than creating a new outer repetition invariant.

10

suff(u(r1n)) n L # 0
{invariant: u = Iv }

sUff(lv(r1n)) n L # 0

4 GREATER SHIFT DISTANCES

=? {domain of I, rand n: I E V' and n :s; Irl, so (r1n) E vn}

suff(V*vvn) n L # 0
{property (1) of suff}

V*vvnnV*L#0

=? {invariant: (If q: q E C: V E C(q)R)}

(If q: q E C: V*C(q)Rvn n V'L # 0) (9)

The predicate is now free of I, v, rand 5 and depends only on state set C, automaton M, and
language L. We will continue this derivation from the last line.

The fact that the language L and the languages C(q) can be infinite (for a given q E Q)
makes evaluation of this predicate difficult. In the following subsection, we derive a more
practical range predicate.

4.2 Deriving a practical range predicate

We aim at a finite language Lq (corresponding to q E Q) such that V* C(q)R C;; V* Lq and a
finite language L' such that V'L C;; V* L'.

Possible definitions of such languages are:

Lq = suff(C(q)R) n v(m, rninm)

L' = suff(L) n vm

(The definitions given here were chosen for their simplicity; other definitions are possible, but
these particular ones lead to a generalization of the Boyer-Moore algorithm.) In the following
intermezzo, we show that these definitions of Lq and L' satisfy the required properties:

We can see that the definition of Lq satisfies the required property by considering a particular
word w:

w E £.(q)R

=;. {definition of m,: Iwl ::0: mq ::0: m, min m}

(3 x, y : w = xy : y E suff(£.(q)R) f\ Iyl = mq min m)

{ definitions of concatenation and intersection of languages}

wE V'(suff(£.(q)R) n v(m" rninm»)

= { definition of Lq }

wE V*L,

We conclude that £.(q)R C;; V'L,. It follows that V' £.(q)R C;; V'V'Lq, and (since V'V' = V')
V' £.(q)R C;; V'Lq. A similar proof applies to the L, L' case.

Example: Given our running example, we can see that L'
and (for all states 0, ... ,6 in finite automaton M):

Lo = {E}

{bda, bdb, deb, deb, eeb,eeb}

4.2 Deriving a practical range predicate

L1 {a}

L2 {b}

L3 {da,db,cb}

L4 {eb,cb}

L5 {bda,bdb,dcb,ccb}

L6 { deb, ecb, ccb}

(End of example.)
We can continue our previous derivation of a useable range predicate, from (9):

(V q: q E C: V*.c(q)Rvn n V*L # 0)

{property: V*.c(q)R c;: V* Lq; V* L c;: V* L' }

(V q : q E C : V* Lq vn n V* L' # 0)

{ existentially quantify over all w E Lq }

(V q : q E C: (3 w : w E Lq : V*wvn n V* L' # 0))

We now have a weakening of the range predicate of the ideal shift distance.

11

Recalling the properties of MIN quantification given in (7) and (8), we can now proceed
with our derivation (of an approximation), beginning with the ideal shift distance:

(MIN n: 1 :S n:S Irll\ suff(u(r1n)) n L # 0 : n)

> {weakening of range predicate (see derivation above)}

(MIN n: 1 :S n 1\ (V q : q E c: (3 w : w E Lq : V*wvn n V* L' # 0)) : n)

~ { conjunctive (V) MIN range predicate - property (7); ICI is finite}

(MAX q : q E C : (MIN n : 1 :S n 1\ (3 w : wE Lq : V*wvn n V* L' # 0) : n))

{ disjunctive (3) MIN range predicate - property (8); ILql is finite}

(MAX q : q E C: (MIN w : w E Lq : (MIN n: 1 :S n 1\ V*wvn n V* L' # 0 : nl))

Recall property (2); this property is also used in the derivation of the Commentz-Walter
algorithm [WZ92). We define two auxiliary functions d1 , d2 : V* ---> N as:

d1(x) (MINn:l:SnI\V*xvnnL'#0:n)

d2(x) (MINn: 1:S n/\xVnnV*L' # 0: n)

We can now rewrite the inner MIN quantification of our shift distance:

(MIN n: 1 :S n 1\ V*wvn n V* L' # 0 : n)

{property (2) }

(MIN n: 1 :S n 1\ (V*wvn n L' # 0 V wvn n V* L' # 0) : n)

{ disjunctive range predicate}

(MIN n : 1 :'0 n 1\ V*w vn n L' # 0 : n) min(MIN n : 1 :'0 n 1\ w vn n V* L' # 0 : n)

{ definitions of d1, d2 }

d1 (w) min d2 (w)

12 5 PRECOMPUTATION

The approximation of the ideal shift distance is:

(MAXq: q E C: (MINw: W E L q : dJ (w)mind2(w)))

For readability, we define auxiliary function t : Q ---> N as

t(q) = (MIN w : W E L q : dJ(w) mind2 (w))

Functions d J , d2 and t are easily precomputed as discussed in Section 5. The final algorithm
(using function t and introducing variable distance for readability) is:

Algorithm 4.2:

u, r, 0 := €, S, if I n F # 0 then {(€, €, S)} else 0 fi;
1,v,C:= u,E,Ij
{invariant: C = {q: q E Q 1\ vR E .c(q)} 1\ u = Lv}
do r # € --->

distance := (MAX q : q E C : t(q));
u, r := u(r1 distance), rJdistance;
1,v,C:= u,E,i;
0:= OUif CnF # 0 then {(l,v,r)} else 0 fi;
{invariant: C = {q : q E Q 1\ vR E .c(q)} 1\ u = Iv}
do 1# € cand O(C, lfl) # 0--->

od
od {R}

L, v, C := ill, (l[1)v, o(C, Ifl);
{CnF#0=vEL}
0:= Ouif CnF # 0 then {(I,v,r)} else 0 fi

5 Precomputation

In this section, we consider the precomputation of languages Lq and L', and functions dJ ,

d2 , and t. The precomputation is presented as a series of small algorithms - each easier to
understand than a single monolithic one. All algorithms are presented and derived in the
reverse order of their application. In practice they would be combined into one algorithm, as
is shown in Section 5.9.

5.1 Characterizing the domains of functions dJ and d2

Since functions dJ , d2 are only applied to elements of Lq (for all q E Q), their signatures can
be taken as dJ , d2 : (U q : q E Q : Lq) ---> N. In order to make the precomputation of the
functions easier, we need a different characterization of their domains. To do this in a simple
manner, we require the automaton M to have a simple structural property:

For all states q E Q, there exists a path (in the transition graph induced by
function 0) from an initial state to a final state, such that the path passes through
q. (This means that there are no useless states in M.)

5.2 Precomputing function t 13

The property implies that (for all q E Q) C(q) ~ pref((U f : f E F : CU))) = pref(LR). In
[Wat93a], several general finite automata construction algorithms are given; many of those
algorithms construct automata with this property.

From the implication of the property above, and the domain of d" d2 , we can restrict the
domains of d, and d2 as follows (for all q E Q):

Lq

{ definition of Lq }
suff(C(q)R) n V m, minm

C {assumption (structural property) C(q) ~ pref(LR); property (4); monotonicity of suff}
suff(pref(LR)R) n V m, minm

{property (5); function R is its own inverse - property (3) }

suff(suff(L)) n V m , minm

{idempotency of suff}
suff(L) n V m , min m

C { mq min m :'0 m and (\I u : u E suff(L) n V m, min m : (3 V : V E V· : vu E suff(L) n vm)) }

suff(suff(L) n vm)

{ definition of L' }

suff(L')

Given this property (of each L q), we can restrict the domain of functions d, and d2 so that
d" d2 : suff(L') --+ N. Since IL'I is finite, then Isuff(L')1 is finite as well.

Example: In our running example, where L' = {bda, bdb, deb, dcb, eeb, ccb}, we have

suff(L') = {E, a, b, da, db, eb, cb, bda, bdb, deb, dcb, eeb, eeb}

Given the definitions of d" d2, we can compute the two functions by hand from their defini
tions:

W E a b da db eb eb bda bdb deb deb eeb ccb
d,(w) 1 +00 2 +00 +00 +00 +00 +00 +00 +00 +00 +00 +00
d2 (w) 3 3 2 3 2 2 2 3 2 2 2 2 2

(End of example.)
Before precomputing d" d2 , we concentrate on the preeomputation of function t.

5.2 Precomputing function t

Assuming that functions d" d2 and sets Lq (for all q E Q) have been precomputed, we can
compute function t as follows (variable tee is used to accumulate shift function t):

14

Algorithm 5.1:

for q: q E Q do
tee(q) := +00

rof;
for q, u : q E Q 1\ u E suff(L') 1\ u E Lq do

tee(q) := tee(q) mind,(u) mind2(u)
rof
{tee = t}

5 PRECOMPUTATION

Notice that we impose no unnecessary order of evaluation in either of the two repetitions. An
implementor of this algorithm is free to choose an order of evaluation which is most efficient
for the encoding used in the implementation.

Example: In our running example, we obtain the following values for function t (given the
values of Lq for all states q, and functions d"d2): t(O) = 1,t(1) = 3,t(2) = 2,t(3) = 2,t(4) =
2, t(5) = 2, t(6) = 2. (End of example.)

5.3 Precomputing functions d, and d2

With the domain of functions d, and d2 restricted to suff(L'), functions d, and d2 are the
Commentz-Walter precomputed functions for (finite) keyword set L' [Com79aJ.

We now present two algorithms, computing d, and d2 respectively. The algorithms are
fully derived in [WZ94], and are given here without proofs of correctness. The two precom
putation algorithms presented below depend upon a function fT : suff(L') \ {E} ----; suff(L')
(called the reverse failure function corresponding to keyword set L') which is defined as:

fr(u) = (MAX< w: w E pref(u) \ {u} nsuff(L'): w)
-P

In the following two algorithms, we assume that function fT is precomputed:

Algorithm 5.2:

for u: u E suff(L') do
dee1(u) := +00

rof;
for u: u E suff(L') \ {E} do

dee1(fT(u)) := dee1(fT(u)) min(lul -lfT(U)I)
rof
{dee1 = dd

Again, notice that we impose no unnecessary order of evaluation in either of the two repeti
tions.

5.4 Precomputing function fT

Algorithm 5.3:

for u : u E suff(£') do
dee2(u) := +00

rof;
for u : u E £' do

v:=u;
do v =I E --+

od

V := fT(V);
if lul- Ivi < dee2(v) --+ dee2(v) := lul- Ivl
~ lui - Ivl :::: dee2(v) --+ v := E

Ii

rof;
n:= 1;
do suff(£') n vn =10 --+

for u: u E suff(£') n vn do
dee2(u) := dee2(u) min dee2(uJl)

rof;
n:= n + 1

od
{dee2 = d2 }

15

Notice that the third (un-nested) repetition is a breadth-first traversal of the set suff(£'), and
the second (un-nested) repetition requires that function fT is precomputed. By the definition
of language £', the depth of the traversal is m. Precomputation using these algorithms has
been found to be cheap in practice [Wat94].

5.4 Precomputing function fr

The following algorithm (taken largely from [WZ92, Section 6, pg. 33]) computes function fr:

Algorithm 5.4:

for a: a E V do
if a E suff(£') --+ fr(a) := E

~ a rt suff(£') --+ skip
Ii

rof;
n:= 1;
{invariant: (V u: u E suff(£') /\ lui:::; n: fr(u) = fr(u))}
do suff(£') n vn =I 0 --+

for u, a : U E suff(£') n vn /\ a E V do
if au E suff(£') --+

u' := fr(u);
do u' =I E /\ au' rt suff(£') --+

u' := fr(u')

16 5 PRECOMPUTATION

rofj

od;
if u' = E II a ~ suff(L') ---+ fr(au) := E

~ u' # E V a E suff(L') ---+ fr(au) := au'
fi

~ au ~ suff(L') ---+ skip
fi

n:= n + 1
od
{n > m}
{lr = fr}

This algorithm also makes use of a breadth-first traversal (of depth m) of the set suff(L').

Example: Consider the function fr for our running example:

w: w E suff(L') \ {E} II a b da dbl eb eb bda bdb J deb deb eeb I eeb I
fr(w) II E E E E I E E b b I E E E I E I

(End of exam pIe.)

5.5 Precomputing sets Lq

The languages Lq can be precomputed using an auxiliary relation and two auxiliary functions.
The auxiliary functions are st : suff(L') ---+ P(Q) and emm : Q ---+ [0, mJ defined as:

st(u) = {q: q E Q II u R E £.(q)}
emm(q) = mq min m

The required relation, X, is a binary relation on states (called the reaehability relation),
defined as (for any two state p, q):

(p,q) EX == (3 a: a E V: q E 6({p},a))

A useful property (of any finite automaton) is that (for all states q E Q):

pref(L:(q)) = (U p: p E Q II (p, q) EX' : L:(p)) (10)

This property is given, in a slightly simpler form, in [Wat93b, Property 3.21.
Given relation X and functions emm and st, we can derive an expression for Lq that is

easier to compute (than the definition):

{ definition of Lq }
suff(.c(q)R) n vm , minm

{ property (5) }

pref(.c(q))R n V m , minm

{property (10) }

5.6 Precomputing function emm

(u p : p E Q /\ (p, q) E X* : .c(p»R n V m, minm

{ nand R distribute over u}
(u p: p E Q/\ (p,q) E X*: .c(p)Rnvmqminm)

{ quantify over all words w : w E .c(p)R n V m, min m }

(u W,p : p E Q /\ (p, q) E X* /\ w E V m, minm /\ W E .c(p)R : {w})

{w E V m, minm "" Iwl = mq min m "" Iwl = emm(q)}

(u w,p:p E Q/\ (p,q) E X* /\w E suff(L') /\ Iwl = emm(q) /\w E .c(p)R: {w})

{w E .c(p)R "" wR E .c(p) "" p E st(w)}

(u w,p:p E Q/\ (p,q) E X* /\w E suff(L')/\ Iwl = emm(q) /\p E st(w): {w})

17

Assuming that relation X and auxiliary functions emm and st are precomputed, we can now
present an algorithm computing Lq (for all q E Q):

Algorithm 5.5:

for q: q E Q do
ell(q) := 0

rof;
for p, q, w : (p, q) E X* /\ wE suff(L') /\ Iwl = emm(q) /\ p E st(w) do

ell(q) := ell(q) u {w}
rof
{(V q: q E Q: ell(q) = Lq)}

5.6 Precomputing function emm

Assuming that function st had already been computed, the following algorithm computes
function emm using a breadth-first traversal of suff(L'):

Algorithm 5.6:

for q: q E Q do
if q E I ----> emm(q) := 0
~ q 'it 1----> emm(q) := m
fi

rof;
n:= 1;

do suff(L') n vn # 0 ---->

od

for u : u E suff(L') n vn do
for q : q E st(u) do

emm(q) := emm(q) min n
rof

rof

{(V q: q E Q: emm(q) = mqminm)}

18 5 PRECOMPUTATION

5.7 Precomputing function st and languages L' and suff(L')

The following algorithm makes a breadth-first traversal (of depth m) of the transition graph
of finite automaton M. It simultaneously computes function st, languages L' and suff(L') ,
and m (the length of a shortest word in language L).

Languages £' and suff(L') are used in most of the precomputation algorithms already
presented. While the following algorithm computes language suff(L'), it is also an example
of a breadth-first traversal of suff(L') without having to explicitly compute and store the
language suff(L'); instead, the algorithm traverses the transition graph of finite automaton
M and implicitly performs a breadth-first traversal of suff(L').

Algorithm 5.7:

st(E), current, SLprime, n,final := I, {d, {d, 0, (I n F = 0);
{ invariant:

current = suff(L') n vn
1\ SLprime = (U i : i :S n : suff(£') n Vi)
1\0:Sn:Sm
1\ (final == n = m)
1\ ('</ u: u E suff(L') 1\ lui :S n: st(u) = {q: uR E L(q)})}

do ~final ----->

current' := 0;
n:= n + 1;

od

for u, a : U E current 1\ a E V do

rof;

if 6(st(u), a) oF 0 ----->

{au E suff(L') n vn}
st(au) := 6(st(u), a);
{('</ q : q E st(au) : au E L(q)R)}
current' := current' U {au};
final := final V (st(au) n F oF 0)

~ 6(st(u), a) = 0 -----> skip
fi

current := current';
SLprime := SLprime U current

{n = m}
{current = suff(£') n vm = L'}
{SLprime = suff(L')}
{('</ u: u E suff(L') : st(u) = {q: u R E L(q)})}

5.8 Precomputing relation X

Relation X can be precomputed using a reach ability algorithm which traverses the transition
graph of automaton M. Relation X* can then be precomputed by a reflexive and transitive
closure algorithm. The two algorithms are combined into one below:

5.9 Combining the precomputation algorithms 19

5.2 5.6)-------;'"i 5.7

)-------;'"i 5.5

5.3

Figure 2: The dependency graph of the precomputation algorithms. An arrow from algorithm
a to algorithm b indicates that algorithm b must be applied before algorithm a.

Algorithm 5.8:

Exstar:= 0;
for g, a : a E Q /\ a E V do

Exstar:= ExstarU {(g,g)} U ({g} X 8({g},a));
rof;
{Exstar = XO U Xl}
change : = true;
do change ----;

od

change := false;
for p, g, r : (p, g) E Exstar /\ (g, r) E Exstar do

change := change V (p, r) 'i! Exstar;
Exstar := Exstar U {(p, r)}

rof

{Exstar = X*}

5.9 Combining the precomputation algorithms

The precomputation algorithms can be combined into a single monolithic algorithm. Such
an algorithm is essentially the sequential concatenation of the separate precomputation al
gorithms. The order in which the algorithms are applied is determined by their dependency
graph, which is shown in Figure 2. A possible order of execution is obtained by reversing a
topological sort of the dependency graph. One such order is: (Algorithms) 5.8, 5.7, 5.6, 5.5,
5.4, 5.2, 5.3, 5.1.

6 Specializing the pattern matching algorithm

By restricting the form of the regular expression patterns, we can specialize the pattern
matching algorithm to obtain the Boyer-Moore and the Commentz-Walter algorithms. In
this section, we specialize to obtain the Boyer-Moore algorithm that does not use a lookahead
symbol.

20 7 PERFORMANCE OF THE ALGORITHM

To obtain the single-keyword pattern matching problem, we require that L be a singleton
set; that is L = {p}, a language consisting of a single keyword.

We define deterministic finite automaton M = (suff(p), V",{E},{p}). The states are
elements of suff(p). We define deterministic transition function ,: suff(p) x V -----; suff(p) U
{l-} (the special value 1- denotes an undefined transition) as:

(w a) = {aw if aw E suff(p)
I, 1- otherwise

Automaton M satisfies the structural property on page 12. Given function I, we have (for
every state w E suff(p)):

[,(w) = {wR }

Automaton M is deterministic, and the current state-set variable (C in the algorithm) is
always a singleton set; call it state w E suff(p). Since [,(w) is a singleton set and Iwl :'0 Ipl,
we have mw = Iwl and Lw = [,(w)R = {w}. Additionally, since m = Ipl, L' = L = {pl·
Clearly, we have Lw C;; suff(L') = suff(p). Function t is defined as trw) = dJ(w) mind2(w).
The shift distance will then be dJ(w)mind2(w) in the update of variables u,r. Elements
of suff(p) (in particular, current state variable w) can be encoded as integer indices (into
string p) in the range [0, Ipll. By making use of this encoding, and changing the domain of
the variables u, r and functions dJ , d2 to make use of indexing in input string S, we obtain
the Boyer-Moore algorithm. The Commentz-Walter algorithm can similarly be obtained as a
specialization.

7 Performance of the algorithm

Empirical performance data was gathered by implementing this algorithm in a grep style
pattern matching tool, running under UNIX (on a Sun SPARC Station 1+) and DOS (on a
20 Mhz 386).

On each run, the new algorithm was used in addition to the old (generalized Aho-Corasick)
algorithm which constructs a finite automaton accepting the language V' L. (For both the
old and the new algorithms, only deterministic finite automata were used. The time required
for precomputation was not measured, but for both algorithms it appeared to be negligible
compared to the time required to process the input string.) In the cases where m :::: 6 (the
length of the shortest word in L is at least 6), and IL'I :'0 18, this new algorithm outperforms
the other algorithm. These conditions held on approximately 35% of our user-entered regular
expression patterns.

In the cases where the new algorithm outperformed the traditional one, the differences in
execution speed varied from a 5% improvement to a 150% improvement. In the cases where
the new algorithm was outperformed, its execution speed was never less than 30% of the
execution speed of the traditional algorithm.

The conditions for obtaining high performance from the new algorithm (m :::: 6 II IL'I :'0
18) can easily be determined from automaton M. In a grep style pattern matching tool,
the automaton M can be constructed for language LR. If the required conditions are met,
the Boyer-Moore type pattern matcher is used. If the conditions are not met, M can be
reversed (so that it accepts language L), and converted to an automaton accepting V' L. The
traditional algorithm can then be used.

21

8 Conclusions

We have achieved our aim of deriving an efficient generalized Boyer-Moore type pattern match
ing algorithm for regular languages. The stepwise derivation began with a simple, intuitive
first algorithm; a finite automaton was introduced to make the implementation practical. The
idea of shift distances greater than one symbol (as in the Boyer-Moore and Commentz-Walter
algorithms) was introduced. The use of predicate weakening was instrumental in deriving a
practical approximation to the ideal shift distance.

Using a structural property of finite automata, the approximation was shown to be the
composition of several functions, all but two of which are easily computed. The remaining two
functions are the Commentz-Walter shift functions; an algorithm computing these functions
has previously been derived with correctness arguments in [WZ92].

The Boyer-Moore algorithm was derived as a special case of our algorithm, showing our
algorithm to be a truly generalized pattern matching algorithm.

22 REFERENCES

References

[Ah080] AHO, A.V. Pattern matching in strings, in: R.V. Book, ed., Formal Language
Theory: Perspectives and Open Problems, (Academic Press, New York, 1980) 325-
347.

[Ah090] AHO, A.V. Algorithms for Finding Patterns in Strings, in: J. van Leeuwen, ed.,
Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity,
(Elsevier, Amsterdam, 1990) 256-300.

[AC75] AHO, A.V. and M.J. CORASICK. Efficient string matching: an aid to bibliographic
search, Comm. ACM, 18(6) (1975) 333-340.

[BM77] BOYER, R.S. and J.S. MOORE. A fast string searching algorithm, Comm. ACM,
20(10) (1977) 62-72.

[Com79a] COMMENTZ-WALTER, B. A string matching algorithm fast on the average, in:
H.A. Maurer, ed., Proc. 6th Internat. Coli. on Automata, Languages and Pro
gramming (Springer, Berlin, 1979) 118-132.

[Com79b] COMMENTZ-WALTER, B. A string matching algorithm fast on the average, Tech
nical report TR 79.09.007, IBM Germany, Heidelberg Scientific Center, 1979.

[Dij76] DIJKSTRA, E.W. A discipline of programming (Prentice-Hall Inc., New Jersey,
1976).

[HS91] HUME, A. and D. SUNDAY. Fast string searching, Software-Practice and Expe
rience, 21(11) (1991) 1221-1248.

[KMP77] KNUTH, D.E., J.R. MORRIS and V.R. PRATT. Fast pattern matching in strings,
SIAM J. Comput., 6(2) (1977) 323-350.

[WZ92] WATSON, B. W. and G. ZWAAN. A taxonomy of keyword pattern matching algo
rithms, Computing Science Note 92/27, Eindhoven University of Technology, The
Netherlands, 1992. Available from watson~win. tue. nl.

[WZ94] WATSON, B.W. and G. ZWAAN. The Commentz-Walter family of keyword pattern
matching algorithms, to appear as a Computing Science Note, Eindhoven Univer
sity of Technology, The Netherlands, 1994. Available from watson~win. tue .nl.

[Wat93a] WATSON, B. W. A taxonomy of finite automata construction algorithms, Com
puting Science Note 93/43, Eindhoven University of Technology, The Netherlands,
1993. Available from watson~win. tue. nl.

[Wat93b] WATSON, B.W. A taxonomy of finite automata minimization algorithms, Com
puting Science Note 93/44, Eindhoven University of Technology, The Netherlands,
1993. Available from watsonl!lwin. tue .nl.

[Wat94] WATSON, B.W. The performance of some multiple-keyword pattern matching
algorithms, Computing Science Note 94/19, Eindhoven University of Technology,
The Netherlands, 1994. Available from watson~win. tue. nl.

Computing Science Reports

In this series appeared:

91/01 D. Aistein

91/02 R.P. NederpeJt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voennans
J. v.d. Woude

91/11 R. C. B ackhouse
PJ. de Bruin
G.Malcolm
E.Voennans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J .M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if...,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Perfonnance Analysis of VLSI Programs, p. 3 I.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Tenninology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 3 I.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 2 I.

The PDB Hypennedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p. 25.

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Sehuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

Transfonning Functional Database Schemes to Relational
Representations. p. 21.

Transfonnational Query Solving. p. 35.

Some categorical propenies for a model for second order
lambda calculus with subtyping. p. 21.

Knowledge Base Systems. a Fonnal Model. p. 21.

Assertional Data Reification Proofs: Survey and
Perspective. p. 18.

Schedule Management: an Object Oriented Approach. p.
26.

Z and high level Petri nets. p. 16.

Fonnal semantics for BRM with examples. p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness. p. 52.

The GOOD based hypenext reference model. p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy. p. 17.

A compOSitional proof system for dynamic proees
creation. p. 24.

Correctness of Acceptor Schemes for Regular Languages.
p. 31.

An Algebra for Process Creation. p. 29.

Some algorithms to decide the equivalence of recursive
types. p. 26.

Techniques for designing efficient parallel programs. p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect. p. 23.

Specifying fault tolerant programs in deontic logic.
p. 15.

91/35 F.S. de Boer
J.W. K10p
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J .A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H. W.v .d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 R.P. Nederpelt

92/08 RP. NederpeJt
F. Kamareddine

92/09 RC. Backhouse

92/10 P.M.P. Rambags

92/11 RC. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 RR Seljee

92/17 W.M.P. van der Aalst

92/18 RNederpelt
F. Kamareddine

92/19 J.C.M.Baeten
J .A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

Asynchronous communication in process algebra, p. 20.

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nom inalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

92/21 F.Kamareddine

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
P.J. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.O. Moerland

93/08 J. Verhoosel

93/09 KM. van Hee

93/10 KM. van Hee

93/11 K.M. van Hee

93/12 KM. van Hee

93/13 KM. van Hee

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lam bda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bonum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. IS.

A modelling method using MOVIE and SimCon/ExSpect,
p. 15.

A taxonomy of keyword pattern matching algorithms,
p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

93/14 J.C.M. Baeten
J.A. Bergstra

93/15 J.C.M. Baeten
J .A. Bergstra
R.N. Bol

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-J. Houben

93120 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93124 E. Poll and Paula Severi

93125 H. Schepers and R. Gerth

93126 W.M.P. van der Aalst

93/27 T. KIoks and D. Kratsch

93128 F. Kamareddine and
R. Nederpelt

93129 R. Post and P. De Bra

93/30 J. Deogun
T. KIoks
D. Kratsch
H. Miiller

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L. Loyens and J. Moonen

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DE DOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program
ming, p. IS.

Freeness Analysis for Logic Programs - And Correct
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine)..-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. II.

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

ILlAS, a sequential language for parallel matrix
computations, p. 20.

93/34

93/35

93/36

93/37

93/38

93/39

93/40

].C.M. Baeten and
] .A. Bergstra

W. Ferrer and
P. Severi

].C.M. Baeten and
J.A. Bergstra

J. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

C. Verhoef

W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

P.D.V. van der Stok
M.M.M.P.J. Claessen
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.J. Luit
J.M.M. Martin

93/46 T. KIoks
D. Kratsch
1. Spinrad

93/47 W. v.d. Aalst
P. De Bra
G.]. Houben
Y. Komatzky

93/48 R. Gerth

94/01 P. America
M. van der Kammen
R.P. Nedcrpelt
O.S. van Roosmalen
H.C.M. de Swart

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process
algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. 11.

Automatic Verification of Regular Protocols in PIT Nets,
p. 23.

A taxomomy of finite automata construction algorithms,
p. 87.

A taxonomy of finite automata minimization algorithms,
p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

The object-oriented paradigm, p. 28.

94/02 F. Kamareddine
RP. Nederpelt

94/03 L.B. Hartman
K.M. van Hee

94/04 1. C.M. Baeten
J.A. Bergstra

94/05 P. Zhou
1. Hooman

94/06 T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

94/07 K.R Apt
R Bol

94/08 O.S. van Roosmalen

94/09 J.C.M. Baeten
J .A. Bergstra

94/10 T, verhoeff

94/11 J. Peleska
C. Huizing
C. Petersohn

94/12 T. Kloks
D. Kratsch
H. Miiller

94/13 R Seljee

94/14 W. Peremans

94/15 R.1.M. Vaessens
E.H.L. Aarts
J .K. Lenstra

94/16 RC. Backhouse
H. Doornbos

94/17 S. Mauw
M.A. Reniers

94/18 F. Kamareddine
R Nederpelt

94/19 B.W. Watson

Canonical typing and n-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Fonnal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A SUlVey, p. 62.

A Hierarchical Diagrammatic Representation of Class
Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network Structure.
p. 31.

A Comparison of Ward & Mellor's Transfonnation
Schema with Statc- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in
Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refining Reduction in the Lambda Calculus, p. 15.

The perfonnance of single-keyword and multiple
keyword pattern matching algorithms, p. 46.

jii

94/20 R Bloo
F. Kamareddine
R. Nederpelt

94/21 B.W. Watson

94/22 B.W. Watson

Beyond /3-Rcduction in Church's A->, p. 22.

An introduction lO the Fire engine: A C++ toolkit for
Finite automata and Regular Expressions.

The design and implementation of the FIRE engine:
A C++ lOolkit for Finite automata and regular Expressi
ons.

94/23 S. Mauw and M.A. Reniers An algebraic semantics of Message Scqucnce Charts, p.
43.

94/24 D. Dams
O. Grumberg
R. Gerth

94/25 T. Kloks

94/26 RR Hoogerwoord

94/27 S. Mauw and H. Mulder

94/28 C.W.A.M. van Overveld
M. Verhoeven

94/29 1. Hooman

94/30 J.C.M. Baeten
J.A. Bergstra
Gh. ~tefanescu

Abstract Interpretation of Reactive Systems:
Abstractions Preserving '<iCTL *, 3CTL * and CTL *, p. 28.

KI)-free and W,-free graphs, p. 10.

On the foundations of functional programming: a
programmer's point of view, p. 54.

Regularity of BPA-Systcms is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinitc tcchniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

.?n

	Abstract
	Contents
	1. Introduction
	2. Mathematical preliminairies
	3. Problem specification and a simple first algorithm
	3.1 A more practical algorithm using a finite automaton
	4. Greater shift distances
	4.1 A more efficient algorithm by computing a greater shift
	4.2 Deriving a practical range predicate
	5. Precomputation
	5.1 Characterizing the domains of functions d1 and d2
	5.2 Precomputing function t
	5.3 Precomputing functions d1 and d2
	5.4 Precomputing function fr
	5.5 Precomputing sets Lq
	5.6 Precomputing function emm
	5.7 Precomputing function st and languages L' and suff (L')
	5.8 Precomputing relation X
	5.9 Combining the precomputation algorithms
	6. Specializing the pattern matching algorithm
	7. Performance of the algorithm
	8. Conclusions
	References

