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Transforming DPLL to Resolution

Olga Tveretina, Hans Zantema
Technical University of Eindhoven

o.tveretina@tue.nl, h.zantema@tue.nl

Abstract

Standard techniques for proving unsatisfiability of propositional formulas include
resolution and DPLL. It is well-known that a DPLL refutation straightforwardly
transforms to a resolution refutation of similar length. We give a transformation of a
DPLL refutation to a resolution refutation of a number of steps which is essentially
less than the number of unit resolution steps applied in the DPLL refutation. We
prove that our bounds are tight: for some CNFs we prove that no shorter resolution
refutation exists than we give by our transformation.

Keywords: propositional logic, satisfiability, DPLL, resolution

1 Introduction

The satisfiability problem (SAT) is to determine for a given propositional formula whether
there exists a satisfying assignment, i.e., whether it is not equivalent to false. In our paper
we consider propositional formulas in conjunctive normal form (CNF).

One of the simplest and most widely investigated method is resolution[ROB65]. It is
used for refuting unsatisfiable CNF formulas. It consists of the single rule V ∨ p,W ∨¬p `
V ∨W .

A related method is the DPLL procedure [DLL62]. It consists of a combination of unit
resolution (the special case of resolution where V or W is empty) and doing case analysis
upon p and ¬p and going on recursively. It is well-known ([GOL79],[PUD98]) that a proof
that a CNF is unsatisfiable by DPLL can be transformed to a resolution refutation of linear
length in the size of the DPLL proof. More precisely, the length of the resulting resolution
refutation does not exceed the total number of unit resolution steps executed in the DPLL
procedure.

In this paper we give a formal description of resolution and analyze the above relation
between DPLL and resolution in more detail, and improve the results. Our improvement
has no concern with the order of magnitude. In particular, we prove that if in the DPLL
procedure s unit resolution steps are executed and r recursive calls are done, a resolution
refutation exists of length at most s − r, being essentially better then s. Crucial for this
result is the observation that if l is the only unit clause in a CNF V admitting a unit
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resolution refutation of n steps, then ¬l can be derived from V \ {l} in at most n − 2
resolution steps. This result is constructive; apart from the proof as is given in this paper
we also implemented the procedure transforming a DPLL proof to a resolution refutation
of the given length.

We even prove for suitable formulas that no shorter resolution refutation exists than
we give by our transformation, so our bounds are tight.

The paper is organized as follows. In section 2 we give some definitions, preliminary
lemmas and the basic theorem. In section 3 we give the definition of a DPLL tree such
that the nodes correspond to recursive calls in the DPLL procedure. Section 4 contains
the main results about the length of the resolution refutation which are presented in two
theorems. In section 5 we show that the upper bound is tight. Section 6 contains an
overview of related work and section 7 contains some conclusions.

2 Basic definitions and Preliminaries

This section contains notations and definitions used throughout the paper.

Let A be a set of atoms. The symbols p, q and r are reserved to denote atoms.

A literal l is an atom or a negated atom, as ¬p.

A clause C is a finite, possibly empty, set of literals. The number of literals in the
clause is the length of this clause. Clauses of length one are called unit clauses. The empty
clause is denoted by ⊥.

A CNF is a finite, possibly empty, set of clauses. Letters V, W are reserved to denote
CNFs.

Suppose V1, V2 are CNFs; C ∪ {p}, D ∪ {¬p} ∈ V1, where p ∈ A. Then the transition

from V1 to V2, where V2 = V1 ∪ {C ∪D} is called a resolution step and denoted as V1
CDp7−→

V1. C,D, p can be omitted in the context where they are not relevant.

If C = ∅ or D = ∅ then the resolution step is called a unit resolution step. We use the

notation V1
l7−→u V2 for the unit resolution step, where l is either p if C = ∅ or ¬p if D = ∅.

This unit resolution step is called an l-step.

If V0 7−→ ... 7−→ Vn then V0, ..., Vn is called a resolution sequence of length n. If V0
l17−→u ...

ln7−→u Vn then V0, ..., Vn is called a unit resolution sequence.

Suppose V0 is a CNF and C is a clause. We say that C is derived from V0 in n > 0
resolution steps if there is a resolution sequence V0, ..., Vn such that Vn = Vn−1 ∪{C}. And
we say that C is derived from V0 in 0 resolution steps if C ∈ V0.

An assignment is a mapping that assigns false or true to atoms. If the atom p is assigned
to true then ¬p is assigned to false and vice versa. An assignment satisfies a clause if it
maps at least one of its literals to true. An assignment satisfies a CNF V if and only if it
satisfies each of its clauses, and V is called satisfiable. If there is no assignment that maps
a CNF V to true then V is called unsatisfiable.
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A resolution sequence V0, ..., Vn such that ⊥ ∈ Vn is called a resolution refutation and
n is called a length of the resolution refutation.

In the following we use the well-known fact that the CNF V is unsatisfiable if there is
a resolution refutation starting from V .

We introduce some notation.

Let V be a CNF and l be a literal.
Then V(V, l) = {W : ∀C ∈ V ∃D ∈ W : D = C ∨D = C ∪ {l}}.
At first we present the lemmas we use in the following.
The main observation of the lemmas that if the empty clause can be derived from some

CNF V ∪ {{l}} in n resolution steps then under some conditions ¬l can be derived from
V in less number of steps.

Lemma 1 Suppose V0 7−→ V1 and W0 ∈ V(V0, l). Then ∃W1 ∈ V(V1, l) such that W0 7−→
W1.

Proof. From W0 ∈ V(V0, l) it follows that ∀C ∈ V0 ∃D ∈ W0 such that D = C or
D = C ∪ {l}.

As V0 7−→ V1 then ∃C1 ∪ {p}, C2 ∪ {¬p} ∈ V0 such that V1 = V0 ∪ {C1 ∪ C2}.
By definition either C1 ∪ {p} ∈ W0 or C1 ∪ {p} ∪ {l} ∈ W0, and either C2 ∪ {¬p} ∈ W0

or C2 ∪ {¬p} ∪ {l} ∈ W0.

1. Let C1 ∪ {p}, C2 ∪ {¬p} ∈ W0.

Let us choose W1 = W0 ∪ {C1 ∪ C2}. Clearly W0 7−→ W1.

We check that W1 ∈ V(V1, l).

Let C ∈ V1.

If C = C1 ∪ C2 then there exists D ∈ W1 such that D = C.

If C ∈ V0 then by the lemma conditions there exists D ∈ W0 such that D = C or
D = C∪{l}. As W0 ⊆ W1 then there exists D ∈ W1 such that D = C or D = C∪{l}.

2. Let us in all other cases choose W1 = W0 ∪ {C1 ∪ C2 ∪ {l}}.
We check that W1 ∈ V(V1, l).

Let C ∈ V1.

If C = C1 ∪ C2 then there exists D ∈ W1 such that D = C ∪ {l}.
If C ∈ V0 then by the lemma conditions there exists D ∈ W0 such that D = C or
D = C∪{l}. As W0 ⊆ W1 then there exists D ∈ W1 such that D = C or D = C∪{l}.

¤

Lemma 2 Suppose V0 7−→ ... 7−→ Vn and W0 ∈ V(V0, l). Then there exists W0 7−→ ... 7−→
Wn such that ∀i ∈ {1, ..., n} Wi ∈ V(Vi, l).
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Proof. Induction on n.
Base case. The lemma holds for n = 1 by Lemma 1.
Inductive step. Let the lemma hold for n− 1.
Then Wn−1 ∈ V(Vn−1, l). By Lemma 1 there exists Wn ∈ V(Vn, l) such that Wn−1 7−→

Wn. ¤

Lemma 3 Suppose V ∪ {{l}} = V0
l7−→u V1 7−→ ... 7−→ Vn. Then there exists V 7−→ W1

7−→ ... 7−→ Wn−1 such that ∀i ∈ {1, ..., n− 1} Wi ∈ V(Vi+1,¬l).

Proof. The lemma holds by Lemma2.

Lemma 4 Suppose V ∪{{l}} = V0 7−→ V1 7−→ ... 7−→ Vn and ∃{i1, ..., im} ⊆ {0, ..., n−1}
s.t. ∀j ∈ {i1, ..., im} Vj

l7−→u Vj+1. Then there exists V 7−→ W1 7−→ ... 7−→ Wn−m such
that Wn−m ∈ V(Vn,¬l).

Proof. Induction on m.
Base case. m = 1.The lemma holds by Lemma 3.
Inductive step. Let the lemma hold for m− 1. Then the lemma holds for m by Lemma

2 and Lemma 3. ¤

Lemma 4 is needed for proving Lemma 5.

Lemma 5 If the empty clause can be derived from V ∪ {{l}} in m resolution steps then
either the empty clause can be derived from V in at most m resolution steps or ¬l can be
derived from V in at most m− 1 resolution steps.

Proof. Let V0 = V ∪ {{l}}. By the lemma assumption there exists V0 7−→ ... Vm such
that ⊥ ∈ Vm.

Then one of the following holds.

1. There exists V 7−→ V1 7−→ ... 7−→ Vm such that ⊥ ∈ Vm. Then ⊥ can be derived in
m resolution steps from V .

2. For k > 0 ∃ 0 ≤ i1 < ... < ik < m such that ∀j ∈ {i1, ..., ik} Vj
l7−→u Vj+1. Then by

Lemma 4 there exists V 7−→ W1 7−→ ... 7−→ Wm−k such that Wm−k ∈ V(Vm,¬l). As
⊥ ∈ Vm then by Lemma 4 either ¬l ∈ Wm−k or ⊥ ∈ Wm−k. And either ¬l ot ⊥ can
be derived from V in m− k ≤ m− 1 resolution steps.

¤

Now we prove the basic theorem we use in the following section.

Theorem 6 If the empty clause can be derived from V ∪ {{l}} in m > 0 resolution steps,
and the empty clause can be derived from V ∪ {{¬l}} in n > 0 resolution steps then the
empty clause can be derived from V in at most m + n− 1 resolution steps.
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Proof. By Lemma 5 the empty clause can be derived from V either in min(m,n) or in
m − 1 + n − 1 + 1 = m + n − 1 resolution steps. In both cases we have the number of
resolution steps no more than m + n− 1. ¤

Example 7 We consider a CNF V .
V = {{p1, p2, P3}, {¬p2, p3}, {p1,¬p3}, {¬p1, p4}, {¬p4, p5}, {¬p4,¬p5}}.
There exists V ∪ {{¬p}} 7−→ V1 7−→ V2 7−→ V3 7−→ V4, where
V1 = V ∪ {{¬p}} ∪ {{p2, p3}}, V2 = V1 ∪ {{p3}},
V3 = V2 ∪ {{¬p3}}, V4 = V3 ∪ {⊥}.
There exists V ∪ {{p}} 7−→ V1 7−→ V2 7−→ V3 7−→ V4, where
V1 = V ∪ {{p}} ∪ {{p4}, V2 = V1 ∪ {{p5}},
V3 = V2 ∪ {{¬p5}}, V4 = V3 ∪ {⊥}.
By Theorem 6 there exists a resolution derivation of length at most 7.
There exists V 7−→ V1 7−→ V2 7−→ V3 7−→ V4 7−→ V5 7−→ V6, where
V1 = V ∪ {{p1, p3}}, V2 = V1 ∪ {{p1}}, V3 = V2 ∪ {{¬p1, p5}},
V4 = V3 ∪ {{¬p1,¬p5}}, V5 = V4 ∪ {{¬p1}}, V6 = V5 ∪ {⊥}.

3 A DPLL tree

Given a CNF V and a literal l. Let V |l denotes the formula obtained from V by removing
all the clauses that contain l and deleting all ¬l from all clauses that contain ¬l.

A literal l in the CNF V is called monotone if ¬l does not appear in V .
The procedure of deleting monotone literals from V is denoted as mon lit(V ).
A DPLL tree T on V is a binary tree , where every node is labelled with a unit

resolution sequence. The root is labelled with a unit resolution sequence starting from
V . If a node is labelled with the unit resolution sequence V1, ..., Vn then the left child is
labelled with a unit resolution sequence starting from mon lit(Vn|p) and the right child is
labelled with a unit resolution sequence starting from mon lit(Vn|¬p). A node is a leaf if
either Vn = ∅ or ⊥ ∈ Vn.

A DPLL tree is nothing but a static representation of the recursive calls in the executing
of the usual DPLL procedure.

If T is a DPLL tree on V then V is satisfiable if and only if there exists a leaf in T
labelled with a unit resolution sequence V1, ..., Vn such that Vn = ∅.

Hence building a DPLL tree implies decision procedure for satisfiability, therefore we
will speak about DPLL proof rather than DPLL tree.

A DPLL tree on unsatisfiable formula is called a DPLL refutation.
Suppose a node is labelled with mon lit(V |l) 7−→ V1 7−→ ... 7−→ Vn. Then the number

of unit resolution steps corresponding to the node is defined to include the length of the
unit resolution sequence n and the number of ¬l in V .

The total number of unit resolution steps for the DPLL tree is called the length of the
DPLL proof.
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4 Upper bounds on resolution refutation length

In this section we give two upper bounds on resolution refutation length measured in the
length of the DPLL refutation and the number of its nodes. The first one is a direct
analysis of a DPLL refutation. The second one has an extra restriction on a resolution
sequence used in the first result. The second bound is stronger, we even show that it will
be tight.

Theorem 8 Suppose V is an unsatisfiable CNF; a DPLL refutation on V has length s
and the number of its nodes is r. Then there exists a resolution refutation on V of length
less or equal s− (r − 1)/2.

Proof. Induction on r.
Base case. Let r = 1. Then s− (1− 1)/2 = s. The lemma holds.
Inductive step. Assume that the Lemma holds for r − 2. By induction hypothesis the

lemma holds for the subtrees rooted at children nodes of the root.
Let one subtree have a DPLL refutation of length s1 and the number of its nodes be

r1. Let another subtree have a DPLL refutation of length s2 and the number of its nodes
be r2. And s0 be a number of unit resolution steps corresponding to the root.

Then by Theorem 6 the length of a resolution refutation on V is s0 +((s1−(r1−1)/2)+
(s2 − (r2 − 1)/2)− 1) = s− (r − 1)/2, where s = s0 + s1 + s2, r = r1 + r2 + 1. ¤

Example 9 We consider the pigeonhole formula Pn for n = 2.
P2 = {{p11, p12}, {p21, p22}, {p31, p32},
{¬p11,¬p21}, {¬p12,¬p22}, {¬p11,¬p31},
{¬p12,¬p32}, {¬p21,¬p31}, {¬p22,¬p32}}.
A DPLL refutation for P2 is depicted in Figure 1.

The node 1 is labelled with P2.

The node 2 is labelled with P 2
2 7−→ P 2

2 ∪ {{p22}}, where P 2
2 = {{p21, p22},

{p31, p32}, {¬p21}, {¬p12,¬p22}, {¬p31}, {¬p12,¬p32}, {¬p21,¬p31}, {¬p22,¬p32}}.
The node 3 is labelled with P 3

2 7−→ P 3
2 ∪ {{p32}} 7−→ P 3

2 ∪ {{p32}} ∪ {⊥},
where P 3

2 = {{p31, p32}, {¬p21}, {¬p12}, {¬p31, {¬p12,¬p32}, {¬p21,¬p31}, {¬p32}}.
The node 4 is labelled with P 4

2 , where P 4
2 = {{p21}, {p31, p32}, {¬p21}, {¬p31},⊥}.

The node 5 is labelled with P 5
2 7−→ P 5

2 ∪ {{¬p32}}, where P 5
2 = {{p12}, {p21, p22},

{p31, p32}, {¬p12,¬p22}, {¬p12,¬p32}, {¬p21,¬p31}, {¬p22,¬p32}}.
The node 6 is labelled with P 6

2 , where
P 6

2 = {{p12}, {p31, p32}, {¬p12}, {¬p12,¬p32}, {¬p21,¬p31}, {¬p32}}.
The node 7 is labelled with P 7

2 , where P 7
2 = {{p12}{¬p12}, {¬p21,¬p31},⊥}.

The node 8 is labelled with P 8
2 7−→ P 8

2 ∪ ⊥, where P 8
2 = {{p12}, {p31}, {¬p12},

{¬p21,¬p31}}.
The node 9 is labelled with P 9

2 7−→ P 9
2 ∪ {{p31}} 7−→ P 9

2 ∪ {{p31}} ∪ {{¬p21}}
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7−→ P 9
2 ∪ {{p31}} ∪ {{¬p21}} ∪ {⊥},

where P 9
2 = {{p12}, {p21}, {p31, p32}, {¬p12,¬p32}, {¬p21,¬p31}, {¬p32}}.

The DPLL refutation on P2 has s = 20 unit resolution steps and r = 9 nodes. Then by
Theorem 8 there exists the resolution refutation on P2 of length at most 16.

Figure 1: A DPLL refutation on P2

We can improve the upper bound by making a restriction on the unit resolution se-
quences associated with nodes of the DPLL refutation.

We say that a unit resolution sequence is complete if no unit resolution steps can be
applied at the last CNF of the sequence.

For the proof of the theorem we use the following lemmas.

Lemma 10 Let V be a CNF such that it contains no monotone literals, and no unit
resolution can be applied. Then V contains no unit clauses.

Proof. By contradiction.
Let V = {{l}} ∪ V ′, where V ′ is a CNF . By the lemma assumption V contains no

monotone literals so ∃C ∈ V ′ : ¬l ∈ C. And at least one unit resolution step can be
applied. We have a contradiction. And V contains no unit clauses. ¤

Now we arrive at the crucial observation mentioned in the introduction.

Lemma 11 If ⊥ can be derived from V ∪ {{l}} in n ≥ 2 unit resolution steps, and V
contains no unit clauses then either ¬l or ⊥ can be derived from V in at most n − 2
resolution steps.

Proof. Induction on n.
Base case. n = 2.
As V does not contain monotone literals so ⊥ cannot be derived from V in two unit

resolution steps . And the lemma holds for n = 2.
Inductive step. Let the lemma hold for n− 1.
Suppose ⊥ can be derived from V ∪ {{l}} in n ≥ 2 unit resolution steps.
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If the unit resolution sequence contains more than one l-step then the lemma holds by
Lemma 4.

As V contains no unit clauses the first unit resolution step is an l-step. So the remaining
case if this first step is the only l-step.

Then V ∪ {{l}} l7−→u V ∪ {{l}} ∪ {{l′}}. And ⊥ can be derived from V ∪ {{l}}
7−→u V∪{{l}} ∪ {{l′}} in n− 1 unit resolution step.

As the resolution sequence contains only one l-step then⊥ can be derived from V ∪{{l′}}
in n− 1 unit resolution step.

By induction hypothesis either ¬l′ or ⊥ can be derived from V ∪{{l′}} in no more than
n− 3 resolution steps. As {¬l, l′} ∈ V then we need one extra resolution step in case if we
derived ¬l′. And either ¬l or ⊥ can be derived from V in n− 2 resolution steps. ¤

Example 12 Let V = {{¬p1, p2}, {¬p2, p3}, {¬p2, p4}, {¬p3,¬p4}} and l = p1.
There exists the derivation of the empty clause from V ∪ {{p1}} in 5 unit resolution

steps V ∪ {{p1}} 7−→ V1 7−→ V2 7−→ V3 7−→ V4 7−→ V5, where
V1 = V ∪{{p2}}, V2 = V1∪{{p3}}, V3 = V2∪{{p4}}, V4 = V3∪{{¬p4}}, V5 = V4∪{⊥}.
There exists the derivation of {¬p1} from V in 3 resolution steps V 7−→ V1 7−→ V2 7−→

V3, where
V1 = V ∪ {{¬p2,¬p4}}, V2 = V1 ∪ {{¬p2}}, V3 = V2 ∪ {{¬p1}}.
Just like Theorem 6 was needed to prove Theorem 8 we now state Theorem 13 to use

it for proving Theorem 14.

Theorem 13 Suppose V contains no unit clauses. If ⊥ can be derived from V ∪ {{l}} in
m > 2 unit resolution steps, and ⊥ can be derived from V ∪{{¬l}} in n > 2 unit resolution
steps then ⊥ can be derived from V in m + n− 3 resolution steps.

Proof. If ⊥ can be derived from V ∪ {{l}} in m > 2 resolution steps then by Lemma 11
one of the following holds

1. ⊥ can be derived from V in at most m− 2 resolution steps.

2. ¬l can be derived from V in at most m− 2 resolution steps.

If ⊥ can be derived from V ∪ {{¬l}} in n > 2 resolution steps then by Lemma 11
one of the following holds

3. ⊥ can be derived from V in at most n− 2 resolution steps.

4. l can be derived from V in at most m− 2 resolution steps.

In cases 1 or 3 ⊥ can be derived from V in min(m − 2, n − 2) resolution steps. For
m > 2 and n > 2 min(m−2, n−2) ≤ m+n−3. In case of combination of cases 2 and 4 we
need extra resolution step to get ⊥. And it can be derived in m−2+n−2+1 = m+n−3
resolution steps. ¤
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Theorem 14 Suppose V is an unsatisfiable CNF; a DPLL refutation on V has length s,
the number of its nodes is r ≥ 3 and every unit resolution sequence associated with a node
is complete. Then there exists a resolution refutation on V of length less or equal s− r.

Proof. Induction on r.
Base case. Let r = 3. Then the Lemma holds by Lemma 10 and Theorem 13.
Inductive step. Assume that the Lemma holds for r − 2. By induction hypothesis the

lemma holds for the subtrees rooted at children nodes of the root.
Let one subtree have a DPLL refutation of length s1 and the number of its nodes be

r1. Let another subtree have a DPLL refutation of length s2 and the number of its nodes
be r2. And s0 be a number of unit resolution steps corresponding to the root.

Then by Theorem 6 the length of a resolution refutation on V is s0 + ((s1− r1) + (s2−
r2)− 1) = s− r, where s = s0 + s1 + s2, r = r1 + r2 + 1. ¤

Using the result a DPLL refutation can be transformed to a resolution refutation of
shorter length.

Example 15 We consider the pigeonhole formula P2 from Example 9. The DPLL refuta-
tion on P2 is depicted on Figure 2. It satisfies Theorem 14 conditions.

A DPLL refutation on P2 is depicted in Figure 2.

Figure 2: A DPLL refutation on P2

The node 1 is labelled with P2.

The node 2 is labelled with P 2
2 7−→ P 2

2 ∪ {{p22}} 7−→ P 2
2 ∪ {{p22}} ∪ {{¬p12}}

7−→ P 2
2 ∪ {{p22}} ∪ {{¬p12}} ∪ {{p32}} 7−→ P 2

2 ∪ {{p22}} ∪ {{¬p12}}∪
{{p32}} ∪ {{p31}} 7−→ P 2

2 ∪ {{p22}} ∪ {{¬p12}} ∪ {{p32}} ∪ {{p31}} ∪ {{⊥}},
where P 2

2 = {{p21, p22}, {p31, p32}, {¬p21}, {¬p12,¬p22}, {¬p31}, {¬p12,¬p32},
{¬p21,¬p31}, {¬p22,¬p32}}.
The node 3 is labelled with P 3

2 7−→ P 3
2 ∪ {{p22}} 7−→ P 3

2 ∪ {{¬p22}} ∪ {{¬p32}}
7−→ P 3

2 ∪ {{¬p22}} ∪ {{¬p32}} ∪ {{p21}} 7−→ P 3
2 ∪ {{¬p22}} ∪ {{¬p32}}∪

{{p21}} ∪ {{p31}} 7−→ P 3
2 ∪ {{¬p22}} ∪ {{¬p32}} ∪ {{p21}} ∪ {{p31}} ∪ {{¬p31}}

7−→ P 3
2 ∪ {{¬p22}} ∪ {{¬p32}} ∪ {{p21}} ∪ {{p31}} ∪ {{¬p31}} ∪ {⊥},

where P 3
2 = {{p12}, {p21, p22}, {p31, p32}, {¬p12,¬p22}, {¬p12,¬p32},

{¬p21,¬p31}, {¬p22,¬p32}}.

9



Example 16 Let V = {{p, q, r}, {p, q,¬r}, {p,¬q, r}, {p,¬q,¬r},
{¬p, q, r}, {¬p, q,¬r}, {¬p,¬q, r}, {¬p,¬q,¬r}.
The DPLL refutation on V is depicted on Figure 3
The root of the DPPL refutation is labelled with V .
The node 2 is labelled with Vn|p = {q, r}, {q,¬r}, {¬q, r}, {¬q,¬r}.
The node 3 is labelled with Vn|¬p = {q, r}, {q,¬r}, {¬q, r}, {¬q,¬r}.
The nodes 4, 5, 6, 7 are labelled with a resolution sequence {{r}, {¬r}} 7−→ {{r}, {¬r},⊥}.
By definition the number of unit resolution steps for the DPLL refutation on V is 20,

and it has 7 nodes.

By Theorem 14 there exists a resolution refutation of length no more than 13.
There exists the resolution refutation V 7−→ V1 7−→ V2 7−→ V3 7−→ V4 7−→ V5 7−→ V6

7−→ V7, where
V1 = V ∪ {{p, q}}, V2 = V1 ∪ {{p,¬q}},
V3 = V2 ∪ {{¬p, q}}, V4 = V3 ∪ {{¬p,¬q}}, V5 = V4 ∪ {{p}}
V6 = V5 ∪ {{¬p}}, V7 = V6 ∪ {⊥}.

Figure 3: A DPLL refutation on V

5 Tightness of the upper bound

One can wonder whether Theorem 14 can be improved further. In this section by analyzing
of some CNFs class we show that it cannot be done.

A CNF is minimally unsatisfiable if it is unsatisfiable and each of its subsets is satisfi-
able.

Let V0, ..., Vn be a resolution sequence, where Vn = {C1, ..., Cm}. Then a directed graph
G(V, E), where V is a set of vertices and E is a set of edges is called a resolution graph
if V = {C1, ..., Cm} and E = {(Ci, Cj) : ∃r ∈ {0, ..., n − 1} , l ∈ L, Ck ∈ Vr such that
Vr+1 = Vr ∪ Cj, where Cj = (Ci ∪ Ck)\{l,¬l}}.

Lemma 17 Suppose minimally unsatisfiable CNF V contains n clauses. Then there is no
resolution refutation on V with length less than n− 1.
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Proof. By contradiction.
Let V 7−→ V1 7−→ ... 7−→ Vr be a resolution refutation on V , and G(V ∗, E∗) be a

resolution graph on V 7−→ V1 7−→ ... 7−→ Vr.
By construction, |V ∗| = n + r, |E∗| = 2r.
Let r < n− 1. Then |E∗| < |V ∗| − 1 and G is a disconnected graph.
If G is a disconnected graph then by its construction ∃C ∈ V such that there is no

path from C to ⊥ on G. And ⊥ can be derived from V \C. We have a contradiction. ¤

We introduce some class of CNFs to prove that the upper bound presented by Theorem
14 is tight.

Let n ≥ 1. We define Vn = {{¬p1, q1}, {¬p2,¬q1, q2}, ..., {¬pn,¬qn−1, qn},
{¬qn, qn+1}, {¬qn, qn+2}, {¬qn+1,¬qn+2}, {p1, r11}, {¬r11, r21}, {¬r11, r31},
{¬r31,¬r21}, ..., {pn, r1n}, {¬r1n, r2n}, {¬r1n, r3n}, {¬r2n,¬r3n}}.

Lemma 18 For n ≥ 1 Vn is minimally unsatisfiable.

Proof. We prove that Vn is minimally unsatisfiable by giving a satisfying assignment
for W obtained by deleting a clause from V .

1. W = V \{¬p1, q1}
∀i ∈ {1, ..., n} pi = 1, r1i = 0, r2i = 0, r3i = 0 ; ∀i ∈ {1, ..., n + 2} qi = 0.

2. For k ∈ {2, ..., n} W = V \{¬pk,¬qk−1, qk}
∀i ∈ {1, ..., n} pi = 1, r1i = 0, r2i = 0, r3i = 0 ; ∀i ∈ {1, ..., n + 2}\{k} qi = 0; qk = 1.

3. W = V \{¬qn, qn+1}
∀i ∈ {1, ..., n} pi = 1, r1i = 0, r2i = 0, r3i = 0 ; ∀i ∈ {1, ..., n + 2}\{n + 1} qi = 1;
qn+1 = 0.

4. W = V \{¬qn, qn+2}
∀i ∈ {1, ..., n} pi = 1, r1i = 0, r2i = 0, r3i = 0 ; ∀i ∈ {1, ..., n + 1} qi = 1; qn+2 = 0.

5. W = V \{¬qn+1,¬qn+2}
∀i ∈ {1, ..., n} pi = 1, r1i = 0, r2i = 0, r3i = 0 ; ∀i ∈ {1, ..., n + 2} qi = 1.

6. For k ∈ {1, ..., n} W = V \{pk, r1k}
∀i ∈ {1, ..., n}\{k} pi = 1; pk = 0; ∀i ∈ {1, ..., n} r1i = 0, r2i = 0, r3i = 0 ;
∀qi ∈ {0, ..., k − 1} qi = 1; ∀qi ∈ {k, ..., n + 2} qi = 0;

7. For k ∈ {1, ..., n} W = V \{¬r1k, r2k}
∀i ∈ {1, ..., n}\{k} pi = 1; pk = 0; ∀i ∈ {1, ..., n}\{k} r1i = 0; r1k = 1; ∀i ∈ {1, ..., n}
r2i = 0; ∀i ∈ {1, ..., n}\{k} r3i = 0; r3k = 1; ∀qi ∈ {0, ..., k − 1} qi = 1; ∀qi ∈
{k, ..., n + 2} qi = 0.
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8. W = V \{¬r1k, r3k}
∀i ∈ {1, ..., n}\{k} pi = 1; pk = 0; ∀i ∈ {1, ..., n}\{k} r1i = 0; r1k = 1; ∀i ∈
{1, ..., n}\{k} r2i = 0; r2k = 1; ∀i ∈ {1, ..., n} r3i = 0; ∀qi ∈ {0, ..., k − 1} qi = 1;
∀qi ∈ {k, ..., n + 2} qi = 0.

9. W = V \{¬r2k,¬r3k}
∀i ∈ {1, ..., n}\{k} pi = 1; pk = 0; ∀i ∈ {1, ..., n} r1i = 0; ∀i ∈ {1, ..., n}\{k}
r2i = 0; r2k = 1; ∀i ∈ {1, ..., n}\{k} r3i = 0; r3k = 1; ∀qi ∈ {0, ..., k − 1} qi = 1;
∀qi ∈ {k, ..., n + 2} qi = 0.

¤

Lemma 19 For n ≥ 1 Vn has a DPLL refutation of length 7n + 3 and the number of its
nodes is 2n + 1.

Proof. In Figure 4 the DPLL refutation for Vn is depicted.

Figure 4: A DPLL refutation on Vn

The node 1 is labelled with original CNF Vn.

For i = 1, ..., n− 1 the node 2i + 1 is labelled with the resolution sequence
W2i+1 7−→ W2i+1 ∪ {r1i} 7−→ W2i+1 ∪ {r1i} ∪ {r2i}
7−→W2i+1 ∪ {r1i} ∪ {r2i} ∪ {r3i}
7−→W2i+1 ∪ {r1i} ∪ {r2i} ∪ {r3i} ∪ {¬r3i}
7−→W2i+1 ∪ {r1i} ∪ {r2i} ∪ {r3i} ∪ {¬r3i} ∪ ⊥,
where W2i+1 = {{¬pi}, {¬pi+2,¬qi+1, qi+2}, ..., {¬pn,¬qn−1, qn}, {¬qn, qn+1},
{¬qn, qn+2}, {¬qn+1,¬qn+2}, {p1, r11}, {¬r11, r21}, {¬r11, r31}, {¬r31,¬r21}, ...,
{pn, r1n}, {¬r1n, r2n}, {¬r1n, r3n}, {¬r2n,¬r3n}}.
The node 2n + 1 is labelled with the resolution sequence
W2n+1 7−→ W2n+1 ∪ {r1n} 7−→ W2n+1 ∪ {r1n} ∪ {r2n}
7−→W2n+1 ∪ {r1n} ∪ {r2n} ∪ {r3n}
7−→W2in+1 ∪ {r1n} ∪ {r2n} ∪ {r3n} ∪ {¬r3n}
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7−→W2n+1 ∪ {r1n} ∪ {r2n} ∪ {r3n} ∪ {¬r3n} ∪ ⊥,
where W2n+1 = {{¬pn, }, {¬qn+1,¬qn+2}, {p1, r11}, {¬r11, r21}, {¬r11, r31},
{¬r31,¬r21}, ..., {pn, r1n}, {¬r1n, r2n}, {¬r1n, r3n}, {¬r2n,¬r3n}}.
For i = 1, ..., n− 1 the node 2i is labelled with the CNF
W2i = {{¬p2i+1, q2i+1}, {¬p2i+2,¬q2i+1, q2i+2}, ..., {¬pn,¬qn−1, qn} {¬qn, qn+1},
{¬qn, qn+2}, {¬qn+1,¬qn+2}, {p1, r11}, {¬r11, r21}, {¬r11, r31}, {¬r31,¬r21}, ...,
{pn, r1n}, {¬r1n, r2n}, {¬r1n, r3n}, {¬r2n,¬r3n}}.
The node 2n is labelled with the resolution sequence
W2n 7−→ W2n ∪ {¬qn+2} 7−→ W2n ∪ {¬qn+2} ∪ ⊥,
where W2n = {qn+1}, {qn+2}, {¬qn+1,¬qn+2}, {p1, r11}, {¬r11, r21}, {¬r11, r31},
{¬r31,¬r21}, ..., {pn, r1n}, {¬r1n, r2n}, {¬r1n, r3n}, {¬r2n,¬r3n}}.
By definition of a DPLL refutation of a node is labelled with mon lit(V |l) 7−→ V1 7−→

...7−→ Vn. Then the number of unit resolution steps corresponding to the node includes
the length of the unit resolution sequence n and the number of ¬l in V .

And ∀n ≥ 1 Vn has a DPLL refutation of length 7n + 3 and the number of its nodes is
2n + 1. ¤

Now we are ready to prove tightness of our main result.

Theorem 20 For n ≥ 1 Vn has a DPLL refutation such that it has length s, the number
of its nodes is r and there is no resolution refutation on Vn of length less than s− r.

Proof. By Lemma 19 ∀n ≥ 1 Vn has a DPLL refutation of length 7n + 3 and the
number of its nodes is 2n + 1. By Theorem 14 there exists a resolution refutation on V of
length less or equal 5n + 2.

For n ≥ 1 Vn has 5n + 3 clauses. By Lemma 17 and Lemma 18 there is no resolution
refutation on V of length less than 5n + 2. ¤

6 Related work

In the last decade we can observe significant progress in solving SAT problems. Many
current propositional provers([ZHG97],[SIS99]) are based on this procedure.

In [RIS00] Rish and Dechter use directional resolution (a form of ordered resolution)
to search for SAT problems. Directional resolution identifies pairs of resolvable clauses
quickly. A heuristic for choosing a good ordering was. They also showed that two hybrid
algorithms combining resolution and search performed more efficiently than pure search .

Van Gelder [GEL95] replaces the unit propagation and pure literal operations of DPLL
with a number of resolution and subsumption operations. It is pointed out that efficient
data structures are extremely important in practical hybrid algorithms. They show that
their hybrid algorithm performs better than DPLL, and the performance improvement is
greater for more difficult problems.
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The use of trees (discrimination trees) is considered in [ZHA97, MEG93]. De Kleer
and H. Zhang used trees to represent propositional clauses for efficient subsumption. One
of the major motivations for developing these approaches was to solve open problems in
algebra concerning the existence of quasigroups satisfying certain constraints.

DDPP (Descrimination-tree-based Davis-Putman prover) is a straightforward imple-
mentation of the Davis-Putman method based on tree-merge operation [MEG93]. It per-
forms the operation nondestructively, and the result shares (nearly) maximal structure
with the original tree to minimize the memory allocation.

We can see in [GOM98] that randomization and restart strategies are very effective for
backtrack search. They eliminate this phenomenon. The randomization is introduced into
a backtrack algorithm bringing in certain randomness into branching heuristic, that has
affect the selection of variables and their values for branching and backtrack in the search
space. The randomization defines a cutoff value in some backtracks and repeatedly starts a
randomized complete search procedure at the root of the search tree. These two techniques
are very useful for solving some hard combinatorial problems, combining these technique
eg. with lemma learning helps to solve hard real world satisfiabily problems [BAP98].

In [ZHA00] a new random jump strategy which never cause any repetition of search
performed by original search algorithm. It does not demand any change to branching
heuristic. The space explored by backtrack search procedure can be represented by a tree
where an internal node represents a backtrack point and a leaf node represents either a
solution or no solution. At a check point author looks at the path from the current node
to the root of the tree to see how many branches have been closed and how many branches
are still open to estimate percentage of the remaining space. If the remaining space is
sufficiently large they may jump up along the path skipping some open branches along the
way. The checkpoints can be decided as the cutoff points in the restart strategy. If a restart
strategy explores only one leaf node , then this special case of restart strategy is a variant
of the limited discrepancy search proposed by Harvey and Ginsberg [HAR95a,HAR95b],
and modified by Korf [KOR96] and Walsh [WAL97].

There has been interest in using resolution in combination with DPLL search, to reduce
the amount of search required to solve SAT problems [GEL95,RIS00]. Resolution can
shorten the size of the search tree, but it is only useful if the time spent on resolution is
less than the time gained by reducing the search space.

In [DRA02] it is presented two techniques that combine resolution and DPLL search,
and describe the relationship between them. The first technique , neighbour resolution,
uses a restricted form of resolution during search, while the second uses a single level of
binary resolution as a preprocessing step. It is shown that the preprocessing technique can
cut the search tree as much as neighbour resolution during search.

7 Conclusions

We proved that if in the DPLL procedure s unit resolution steps are executed and r
recursive calls are done, a resolution refutation can be constructed of length at most s− r.
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We implemented this construction, and it turned out that for many formulas, including
pigeon hole formulas, the constructed resolution refutation had a length that was much
less than s− r. On the other hand we gave a class of formulas for which this bound s− r
is tight: we proved that no shorter resolution refutation exists. Since at every node DPLL
allows freedom of how to choose the next atom it is difficult to draw general conclusions
form experiments based on one particular choice.
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