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The Stokes flow inside a two-dimensional rectangular cavity �x��a, �y��b is analyzed for a highly
viscous, incompressible fluid flow, driven by a single rotlet placed at position �0,c�. Specifically, a
rigorous solution of the governing two-dimensional biharmonic equation for the stream function is
constructed analytically by means of the superposition principle. With this solution, multicellular
flow patterns can be described for narrow cavities, in which the number of flow cells is directly
related to the value of the aspect ratio A=b /a. The solution also shows that for a certain rotlet
position �0,c0�, which depends on a and b, the flow has a stagnation point �0,−c0� symmetrically
placed inside the rectangle. As the flow would not be affected by placing a second �inactive� rotlet
in this stagnation point, this allows us to construct a blinking rotlet model for the rectangular cavity,
with the inactive rotlet in the stagnation point of the flow induced by the active rotlet. For
rectangular cavities, it holds that more than one of these special rotlet positions can be found for
cavities that are elongated to sufficiently large aspect ratios. The blinking rotlet model is applied to
illustrate several aspects of stirring in a Stokes flow in a rectangular domain. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2742679�

I. INTRODUCTION

In many physical, technological, and biological systems,
viscosity-dominated flows can be found. The propulsion of
micro-organisms, viscous mixing processes in the chemical
industry, or in the mantle of the Earth are just a few ex-
amples of creeping flow systems. Within a simplified formu-
lation, such systems can be studied systematically using
techniques from applied mathematics. In this paper, flow
properties of a low Reynolds number flow confined in a
closed two-dimensional rectangular domain form the central
system of consideration. The situation is as follows. An in-
compressible, highly viscous fluid is confined in a rectangu-
lar cavity with fixed, impenetrable walls. Inside the cavity,
the fluid is driven by a thin, rotating cylinder with its axis of
rotation perpendicular to the fluid plane, thus resulting in a
two-dimensional creeping flow. To answer the question of
how the flow will be affected by the presence of the walls,
and in particular by the cavity’s aspect ratio, it is necessary
to have access to an accurate description of the velocity field.

In the mathematical analysis of the problem, the cylinder
is reduced by a limiting process to a singular stirring device:
a rotlet. In this process, the rotlet’s velocity field is under-
stood as the axisymmetric steady viscous flow around a
cylinder with radius R and angular velocity � in the limit
R↓0 and �→�, such that �ª�R2 has a finite value.1 The
quantity � is a measure of the fluid forcing and is denoted as
the rotlet intensity or rotlet strength. The position of the rot-
let is chosen arbitrarily on the long axis of the rectangular
cavity. With this definition, a rotlet may be regarded as the
viscous equivalent of a point vortex in inviscid fluids: both
are idealized stirrers with a singular nature, producing a flow

field in which the local velocity vector is tangential and is
inversely proportional to the distance from the center, al-
though the mechanism by which the fluid is brought to mo-
tion is obviously different. An interesting issue concerns the
comparison of the viscous flow induced by one or more rot-
lets in confined circular, square, or rectangular cavities with
the flow generated by one or more rotating real cylinders in
such domains.

It is well known that this type of slow moving, viscosity-
dominated flow is described by the two-dimensional bihar-
monic equation for the stream function.2 In the particular
case of a rotlet-driven Stokes flow, the biharmonic equation
can be solved analytically with an exact description of the
stream function as a result. With that result, accurate
knowledge of the flow field is not only directly available, it
is also of great use. This applies, for example, to studies of
kinematic transport of tracer particles. In those cases, the
flow can now be controlled and used as a given input vari-
able, with the advantage that one can focus directly on the
effects it has on the tracer transport itself. Therefore, a sig-
nificant part of this paper �Sec. II� is concerned with the
construction of the exact solution of this fourth-order differ-
ential equation, satisfying no-slip boundary conditions at all
four impenetrable walls.

The linearity of the biharmonic equation is used to con-
struct a solution in terms of a sum of ordinary Fourier series
on the complete system of trigonometric functions in x and y
coordinates. The origin of this superposition method for the
rectangular domain in two dimensions can be found in the
theory of elasticity and in the theory of bending plates, and
has an impressive history. It started with the famous lectures
of Lamé3 and was developed among others by Mathieu,4–6
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Koialovich,7 Bubnov,8,9 Lauricella,10 Hencky,11 and Inglis12

—see, e.g., classical textbooks13–15 and a review paper16 for
a detailed list of references. After that, the method was suc-
cessfully applied to fluid mechanical problems, in particular
to problems concerning Stokes flows in rectangular17 and
wedge cavities.18 In Ref. 17, the flow was driven by tangen-
tially moving top and bottom walls and it was demonstrated
that the superposition principle is extremely useful in deriv-
ing an analytical expression of the velocity field for this kind
of cavity flow, fulfilling the imposed boundary conditions
identically. The principles of this construction technique are
adopted and applied successfully in the analysis of the
Stokes flow produced by a single rotlet. Although the bound-
ing walls in the present problem are essentially not moving,
the formulation of the problem can be transformed into one
that involves an auxiliary stream function that has to satisfy
nonzero tangential and normal wall velocities imposed at all
four walls, instead of two as in Ref. 17. In comparison with
the study of Meleshko,17 the complexity of the problems has
increased. In adjusting the auxiliary solution to the boundary
condition, a system of two coupled infinite series, containing
known and unknown Fourier coefficients in a complicated
manner, has to be solved. Here the system is evaluated nu-
merically by using the method of successive approximation,
which is rapidly convergent. An alternative algorithm could
be the method of reduction as described in Refs. 19 and 20.

In Secs. III and IV, the practical value of solving the
biharmonic equation is illustrated by employing the result in
a qualitative study on multicellular flow structures �Sec. III�
and on chaotic advection of tracer particles in a time-
dependent viscous flow �Sec. IV�. In the first application, the
steady-state flow patterns inside a rectangular cavity are ex-
amined. By plotting the stream function for several values of
the aspect ratio of the cavity, a multicellular flow structure
becomes visible for narrow cavity geometries. The existence
of similar structures was already reported by Hellou and
Coutanceau21 and Jana, Metcalfe, and Ottino.22 Hellou and
Coutanceau21 describe a configuration that is similar to the
rotlet configuration in that the agitation of the fluid is ex-
ecuted by an internal forcing mechanism. There, a rotating
circular cylinder is set in the center of the cavity and is
responsible for an array of single-core cells which number is
determined by the aspect ratio A=b /a�1, with 2a the width
and 2b the length of the cavity. By increasing the value of A
gradually, it was shown numerically and experimentally how
these cells develop and how they are formed in a merging
process of two main corner cells.

A different pattern is found when a second rotlet is
added to the problem. Forcing the fluid with two spatially
separated rotlets gives rise to a flow that differs from the
single rotlet case by the existence of a double-core central
cell, of which the structure depends on the direction of rota-
tion of the individual rotlets. Related to that is the computa-
tional and experimental study of Jana et al.22 on mixing in
Stokes flows, in which a viscous cavity flow is described that
is completely determined by an externally assigned tangen-
tial moving top and bottom wall. For two active rotlets, be-
sides the presence of a double-core central cell, it was dem-
onstrated that a multicellular structure can be found when the

cavity is elongated to sufficiently large aspect ratios.
Section IV deals with chaotic advection in time-

dependent viscous flows. By adding a second, individually
adjustable rotlet to the problem, a blinking rotlet model can
be constructed. This means that both rotlets are switched
“on” and “off” periodically, but such that only one rotlet is
active at a time. Since the pioneering work of Aref23 more
than two decades ago, it has been widely recognized that
complex particle trajectories not only occur in high-Reynolds
number turbulent flows, but also in laminar flows and even in
viscosity-dominated �Stokes� flows. From dynamical sys-
tems theory, it is well known that a system is nonintegrable if
the system has more than one degree of freedom. In a two-
dimensional system, the governing equations for particle tra-
jectories in an incompressible flow form a dynamical system
in Hamiltonian form, where the stream function plays the
role of the Hamiltonian. As opposed to steady flows, which
have only one degree of freedom and are intrinsically non-
chaotic, a time-dependent flow has the necessary extra de-
gree of freedom by which it can produce complex particle
trajectories. In chaotically behaving flows, a patch of passive
fluid is deformed considerably by successive stretching and
folding during the evolution of the flow. This chaotic nature
may be characterized by an exponential growth in time of the
contact length of the patch with its surroundings. This means
that even in a two-dimensional laminar environment, chaotic
transport is possible and time dependency is an essential in-
gredient in “good stirring.”

An alternative method to create chaotic creeping flows
was employed by Otto, Yannacopoulos, and Blake.24 Instead
of alternating active rotlets, they considered forcing by a
blinking Stokeslet for the mixing and transport processes in
Stokes flow. Their study was motivated by the feeding cur-
rents induced by cilia or flagella in sessile micro-organisms,
indicating the importance of studying the distributive
properties of low-Reynolds number flows. In spite of this
particular motivation, their paper has a generic character.

A family of two-roll-mill flows in a circular domain was
investigated both numerically and experimentally by Price,
Mullin, and Kobine.25 They used two real rotating cylinders
inside a stationary outer cylinder. In this study, the ratio of
the angular velocities of the inner cylinders was varied, and a
complete sequence of complex transitions between the ex-
treme cases of counter- and corotation was uncovered. The
change in flow topology is extensively discussed, and they
have identified all the critical topological transitions occur-
ring in the flow during the change from fully counter-rotating
cylinders to fully corotating cylinders. This combined nu-
merical and experimental investigation is restricted to the
circular domain and no results in the same spirit have been
reported for rectangular cavities, although Moreau and
Bourot26 have considered the case of two-dimensional
Stokes flow driven by two cylinders in an unbounded recti-
linear channel. In their numerical study, the cylinders were
situated on a line perpendicular to the channel boundaries. A
similar numerical study of Stokes flows and associated mix-
ing properties induced by rotating cylinders in square and
rectangular cavities might provide an interesting connection
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with the work by Hellou and Coutanceau21 and the present
study.

The blinking rotlet model was introduced by Meleshko
and Aref1 as an alternative for the classical blinking vortex
model when discussing chaotic advection in Stokes flow. In
their study, the flow region is restricted by the boundary of a
circle, and, although there are some similarities with the
present work, the difference in geometry reveals a different
stirring pattern, making it worthwhile to study the problem
of a Stokes flow in a rectangular cavity. The possibility of
changing the aspect ratio of the domain dimensions appears
to be of great influence of the internal flow field and stirring
properties. The presence of an internal stagnation point, lo-
cated symmetrically with respect to the rotlet position, was
pointed out in Ref. 1 and allows a blinking rotlet model in
which the rotlet that is “off” does not disturb the flow gen-
erated by the rotlet that is “on.” This important feature also
holds for rotlet flows in slender cavities. But more impor-
tantly, it turns out that for certain aspect ratios, several of
these special rotlet positions can be found. How different
rotlet positions will influence the stirring quality of the
model is studied numerically by observing the deformation
in time of the boundary of a passive blob. For that purpose,
the advection of a number of boundary nodes is calculated
by integrating the Lagrangian equations of motion with a
Runge-Kutta method with variable time step and order �see
Hairer, Nørsett, and Wanner27�. The integration scheme is
area-preserving. Finally, Sec. V summarizes the most impor-
tant findings and results.

II. STOKES FLOW BY A SINGLE ROTLET

Consider a two-dimensional Stokes flow of an incom-
pressible fluid in a rectangular cavity �x��a, �y��b with
rigid, fixed walls. The fluid is driven by a single rotlet with
strength �, which is placed on the y axis at �0,−c�.

In terms of the stream function ��x ,y�, the components
of the velocity field are given by

u =
��

�y
, v = −

��

�x
. �1�

In the absence of the inertia terms, the steady-state equation
of motion reduces to the two-dimensional biharmonic equa-
tion for �,

�4�

�x4 + 2
�4�

�x2�y2 +
�4�

�y4 = 0, �2�

which must be satisfied in the whole domain except for the
rotlet’s point �0,−c�. At the boundaries, the condition of zero
velocity leads to homogeneous conditions for �,

� = 0,
��

�x
= 0, x = ± a, �y� � b , �3a�

� = 0,
��

�y
= 0, �x� � a, y = ± b . �3b�

Instead of solving the biharmonic equation for the overall
stream function � directly, the linearity of the equation is
used in order to split � into two so-called elemental stream
functions �1 and �2, such that

��x,y� = �1�x,y� + �2�x,y� . �4�

Each of the elemental stream functions satisfies the homoge-
neous biharmonic equation �2�. From a physical point of
view, the stream function �1 represents a steady viscous
flow generated by two simultaneously active corotating rot-
lets of intensity � /2 located at the points �0,−c� and �0,c�.
Therefore, �1 is an even function in both the x and y coor-
dinates. When, on the other hand, the fluid is stirred by two
simultaneously active counter-rotating rotlets of intensity
±� /2 located at the points �0,−c� and �0,c�, respectively, the
stream function, now denoted by �2, is an even function in x
and an odd function in the y coordinate. In Fig. 1, the de-
composition of � in terms of the elemental functions �1 and
�2 is shown graphically. The mathematical reason for mak-
ing this decomposition lies in the fact that certain symmetry
properties in the subproblems 1 and 2 arise in which the
parity of the elemental stream functions can easily be em-
ployed in constructing the solution of the full problem.

A. Problem 1

In problem 1, the creeping flow is created by two coro-
tating rotlets, each of intensity � /2 and symmetrically placed
on the y axis at points �0,c� and �0,−c�. By using the defi-
nition of a single rotlet, the rotlet stream function �1

��� for
this problem is readily found; it has two logarithmic singu-
larities and is given by

FIG. 1. The flow field associated with
the single rotlet is decomposed into
two flow fields associated with two
corotating and counter-rotating rotlets,
respectively, described by the elemen-
tal stream functions �1 and �2.
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�1
����x,y� =

�

4
ln�x2 + �y + c�2� +

�

4
ln�x2 + �y − c�2� . �5�

Obviously, the solution �5� does not satisfy the condition of
zero velocity at the walls. Therefore, a second stream func-
tion �1 is introduced, which can be determined analytically
by using the linearity of the problem, in writing �1 as the
sum of the preceding contributions

�1�x,y� = �1�x,y� + �1
����x,y� . �6�

With the particular form of �1
���, expressing the irrotational

nature of the direct rotlet flow, it follows that �2�1
���=0 in

the entire domain, except at the singularities. Since �1 is a
solution of the two-dimensional biharmonic equation, the un-
known function �1 is that as well. By shifting the focus from
the overall stream function �1 to the auxiliary function �1,
the zero-velocity boundary condition imposed on �1 is trans-
lated into inhomogeneous conditions for �1,

��1

�x
= 	 V1�y�, �1 = − g1�y�, x = ± a, �y� � b ,

�7�
��1

�y
= 	 U1�x�, �1 = − f1�x�, y = ± b, �x� � a .

It is seen that the homogeneous conditions of �3� are trans-
ferred into a mixed set of inhomogeneous boundary condi-
tions of the Neumann and Dirichlet type. Here, the assigned
functions at the walls follow from the rotlet stream function
�1

��� evaluated at the boundaries,

V1�y� =
�

2
� a

a2 + �y + c�2 +
a

a2 + �y − c�2� , �8a�

f1�x� =
�

4
ln�x2 + �b + c�2� +

�

4
ln�x2 + �b − c�2� , �8b�

g1�y� =
�

4
ln�a2 + �y + c�2� +

�

4
ln�a2 + �y − c�2� , �8c�

U1�x� =
�

2
� �b + c�

x2 + �b + c�2 +
�b − c�

x2 + �b − c�2� . �8d�

These even functions are infinitely differentiable and can be
presented in the form of the Fourier series,

V1�y� = �
l=1

�

�− 1�lVl
�1� cos�
ly� ,

�9a�

Vl
�1� =

�− 1�l

b
	

−b

b

V1�y�cos�
ly�dy ,

f1�x� = �
m=1

�

�− 1�mfm
�1� cos��mx� ,

�9b�

fm
�1� =

�− 1�m

a
	

−a

a

f1�x�cos��mx�dx ,

g1�y� = �
l=1

�

�− 1�lgl
�1� cos�
ly� ,

�9c�

gl
�1� =

�− 1�l

b
	

−b

b

g1�y�cos�
ly�dy ,

U1�x� = �
m=1

�

�− 1�mUm
�1� cos��mx� ,

�9d�

Um
�1� =

�− 1�m

a
	

−a

a

U1�x�cos��mx�dx .

The constants �m and 
l are defined as

�m =
�2m − 1��

2a
and 
l =

�2l − 1��
2b

. �10�

The leading terms of the Fourier coefficients are

Vl
�1� = −

2V1�b�
b
l

+
2V1��b�

b
l
3 +

�− 1�l

b
l
4 	

−b

b

V1
�IV��y�cos�
ly�dy ,

�11a�

fm
�1� = −

2f1�a�
a�m

+
2f1��a�
a�m

3 −
2f1

�IV��a�
a�m

5 −
�− 1�m

a�m
5 	

−a

a

f1
�V��x�


sin��mx�dx , �11b�

gl
�1� = −

2g1�b�
b
l

+
2g1��b�

b
l
3 −

2g1
�IV��b�
b
l

5 −
�− 1�l

b
l
5 	

−b

b

g1
�V��y�


sin�
ly�dy , �11c�

Um
�1� = −

2U1�a�
a�m

+
2U1��a�

a�m
3 +

�− 1�m

a�m
4 	

−a

a

U1
�IV��x�


cos��mx�dx . �11d�

The unknown function �1 is found by means of the
method of superposition17 by writing �1 as a sum of four
ordinary Fourier series,

�1�x,y� = b�
m=1

�
�− 1�m

�m
Xm

�1�Pm
�1��y�cos��mx�

− a�
l=1

�
�− 1�l


l
Yl

�1�Ql
�1��x�cos�
ly�

− �
m=1

�

�− 1�mfm
�1� cosh��my�

cosh��mb�
cos��mx�

− �
l=1

�

�− 1�lgl
�1� cosh�
lx�

cosh�
la�
cos�
ly� . �12�

Here the even functions Pm
�1��y� and Ql

�1��x� are given by
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Pm
�1��y� = b tanh��mb�

cosh��my�
cosh��mb�

− y
sinh��my�
cosh��mb�

,

�13�

Ql
�1��x� = a tanh�
la�

cosh�
lx�
cosh�
la�

− x
sinh�
lx�
cosh�
la�

.

Each term of the series satisfies the biharmonic equation and
the whole representation has enough functional arbitrariness
in terms of the Fourier coefficients Xm

�1� and Yl
�1� to fulfil all

boundary conditions formulated in �7�. In order to determine
Xm

�1� and Yl
�1� in accordance with the boundary condition for

the normal derivatives, the following expansions �see
Hansen28 and Oberhettinger29� are applied to rewrite expres-
sion �12�:

cosh��z�
cosh��L�

= −
2

L
�
p=1

�

�− 1�p �p

�2 + �p
2 cos��pz�, − L � z � L ,

�14�

L tanh��L�
cosh��z�
cosh��L�

− z
sinh��z�
cosh��L�

= −
4�

L
�
p=1

�

�− 1�p�p cos��pz�
��2 + �p

2�2 , − L � z � L . �15�

Here � is an arbitrary constant; �p and �p are given by

�p =
p�

L
, �p =

�2p − 1�
2L

�, p = 1,2,3, . . . .

The result can be rearranged leading to an infinite system of
linear algebraic equations for the unknown coefficients Xm

�1�

and Yl
�1�,

Xm
�1�b�1��mb� − �

l=1

�

Yl
�1� 4�m

2 
l

��m
2 + 
l

2�2 = Hm
�1�, m = 1,2, . . . ,

�16a�

Yl
�1�a�1�
la� − �

m=1

�

Xm
�1� 4
l

2�m

�
l
2 + �m

2 �2 = Il
�1�, l = 1,2, . . . .

�16b�

In this expression, the shorthand notation �1��� is
introduced,

�1��� = tanh��� +
�

cosh2���
. �17�

The free terms Hm
�1� and Il

�1� collect all the known coefficients
and are given by

Hm
�1� = �m

2
2

a
�
l=1

�

gl
�1� 
l

�m
2 + 
l

2 − fm
�1� tanh��mb� +

Um
�1�

�m
� ,

�18�

Il
�1� = − 
l

2
2

b
�
m=1

�

fm
�1� �m


l
2 + �m

2 − gl
�1� tanh�
la� +

Vl
�1�


l
� .

�19�

By combining the expressions for the Fourier coefficients
�9c� and �9b� and the Fourier expansion �14�, one can write

2�
l=1

�

gl
�1� 
l

�m
2 + 
l

2

= 	
−b

b

g1�y��2

b
�
l=1

�

�− 1�l 
l

�m
2 + 
l

2 cos�
ly��dy

= − 	
−b

b

g1�y�
cosh��my�
cosh��mb�

dy ,

2�
m=1

�

fm
�1� �m


l
2 + �m

2

= 	
−a

a

f1�x��2

a
�
m=1

�

�− 1�m �m


l
2 + �m

2 cos��mx��dx

= − 	
−a

a

f1�x�
cosh�
lx�
cosh�
la�

dx .

Next, integrating these expressions by parts and using the
representations �11�, the result for Hm

�1� reads after some
algebra

Hm
�1� =

2

a
�m�f1�a� − g1�b��tanh��mb� +

2

a
�g1��b� − U1�a��

−
2

a�m
�f1��a� + g1��b��tanh��mb� +

2

a�m
2 �g1��b� + U1��a��

+
2

a�m
3 �f1

�IV��a� − g1
�IV��b��tanh��mb�

+
�− 1�m

a�m
3 	

−a

a

�U1
�IV��x�cos��mx� + f1

�V��x�


tanh��mb�sin��mx��dx +
1

a�m
3 	

−b

b

g1
�V��y�



sinh��my�
cosh��mb�

dy . �20�

Because all terms within square brackets vanish according to
the definitions �8�, we finally find that

Hm
�1� =

�− 1�m

a�m
3 	

−a

a

�U1
�IV��x�cos��mx� + f1

�V��x�


tanh��mb�sin��mx��dx +
1

a�m
3 	

−b

b

g1
�V��y�



sinh��my�
cosh��mb�

dy = O�m−4�, m → � . �21�

On similar grounds, Il
�1� may be written as
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Il
�1� = −

�− 1�l

b
l
3 	

−a

a

�V1
�IV��y�cos�
ly� + g1

�V��y�


tanh�
la�sin�
ly��dy −
1

b
l
3	

−a

a

f1
�V��x�



sinh�
lx�
cosh�
la�

dx = O�l−4�, l → � . �22�

It was shown in Ref. 20 that the coupled infinite system �16�
is fully regular, that is, the sums of the outdiagonal elements
in each line of �16a� and �16b� are less than the diagonal
element by a finite positive value that is independent of the
numbers m and l. According to the general theory,19 these
infinite system can be solved by employing the method of
successive approximation. We state that the coefficients Xm

�1�

and Yn
�1� can be written as a sum,

Xm
�1� = Xm0

�1� + Xm1
�1� + Xm2

�1� + ¯ , m = 1,2,3, . . . ,

Yl
�1� = Yl0

�1� + Yl1
�1� + Yl2

�1� + ¯ , l = 1,2,3, . . . .

Here, the zeroth-order contributions Xm0
�1� and Yl0

�1� are con-
nected to the free terms via

Xm0
�1� =

Hm
�1�

b�1��mb�
, Yl0

�1� =
Il

�1�

a�1�
la�
.

Then, the higher-order contributions follow from a simple
summation routine,

Xms
�1�b�1��mb� = �

l=1

�

Yl�s−1�
�1� 4�m

2 
l

��m
2 + 
l

2�2 , m,s = 1,2,3, . . . ,

Yls
�1�a�1�
la� = �

m=1

�

Xm�s−1�
�1� 4
l

2�m

�
l
2 + �m

2 �2 , l,s = 1,2,3, . . . .

More important is the asymptotic behavior of the coef-
ficients with large numbers of indices, which was established
in Ref. 20 by using the asymptotic behavior of the free terms
expressed in �21� and �22�,

Xm
�1� =

E1

�m
+ Re
E1

���

�m
� �, m → � ,

�23�

Yl
�1� =

E1


l
− Re
E1

���


l
� �, l → � ,

where E1
��� is a complex-valued constant, and �=2.739593

+i1.119025 is the root of the transcendental equation

sin
��

2
+ � = 0, �24�

with the lowest real part �the root is not exact, and the accu-
racy is indicated by the number of digits�. Obviously, more
roots of �24� are possible. The reason for this particular
choice is related to the asymptotic behavior of the coeffi-
cients Xm

�1� and Yl
�1�, as explained in detail by Meleshko and

Gomilko.20 The real-valued constant E1 is determined by

�

2ab
E1 = �

m=1

�

Hm
�1� + �

l=1

�

Il
�1�. �25�

When we use the relations

1

L
�
p=1

�
�− 1�p

�p
3 cos��pz� =

1

4
�z2 − L2�, − L � z � L ,

�26�
1

L
�
p=1

�
�− 1�p

�p
cos��pz� = −

1

2
, − L � z � L ,

�
m=1

�
1

a�m
2

cosh��my�
cosh��mb�

− �
l=1

�
�− 1�l

b
l
2 tanh�
la�cos�
ly� =

a

2
,

�27�

and

�
l=1

�
1

b
l
2

cosh�
lx�
cosh�
la�

− �
m=1

�
�− 1�m

a�m
2 tanh��mb�cos��mx� =

b

2
,

�28�

then, after some tedious algebra, we obtain that the sum on
the right-hand side of �25� is identically equal to zero, and,
consequently, E1=0.

In order to improve the convergence of the stream func-
tion, new coefficients, related to fm

�1� and gl
�1�, are introduced,

f̄m
�1� = fm

�1� +
2f1�a�
a�m

−
2f1��a�
a�m

3 = −
2f1

�IV��a�
a�m

5 −
�− 1�m

a�m
5 	

−a

a

f1
�V��x�


sin��mx�dx = O�m−4�, m → � , �29�

ḡl
�1� = gl

�1� +
2g1�b�

b
l
−

2g1��b�
b
l

3 = −
2g1

�IV��b�
b
l

5 −
�− 1�l

b
l
5 	

−b

b

g1
�V��y�


sin�
ly�dy = O�l−4�, l → � . �30�

Hence, the final representation for the stream function �1

reads

�1�x,y� = b�
m=1

�
�− 1�m

�m
Xm

�1�Pm
�1��y�cos��mx� − a�

l=1

�
�− 1�l


l
Yl

�1�Ql
�1��x�cos�
ly� − �

m=1

�

�− 1�mf̄m
�1� cosh��my�

cosh��mb�
cos��mx�

− �
l=1

�

�− 1�lḡl
�1� cosh�
lx�

cosh�
la�
cos�
ly� − C1 + D1
a2 − x2

2
−

b2 − y2

2
� +

�

4
ln�x2 + �y + c�2� +

�

4
ln�x2 + �y − c�2� , �31�
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with

C1 = f1�a� = g1�b�

=
�

4
ln�a2 + �b + c�2� +

�

4
ln�a2 + �b − c�2�

and

D1 = f1��a� = − g1��b�

= −
�

2
� a2 − �b + c�2

�a2 + �b + c�2�2 +
a2 − �b − c�2

�a2 + �b − c�2�2� .

To obtain expression �31�, we used the relations

2

a
�
m=1

�
�− 1�m

�m

cosh��my�
cosh��mb�

cos��mx�

+
2

b
�
l=1

�
�− 1�l


l

cosh�
lx�
cosh�
la�

cos�
ly� = − 1 �32�

and

2

a
�
m=1

�
�− 1�m

�m
3

cosh��my�
cosh��mb�

cos��mx�

−
2

b
�
l=1

�
�− 1�l


l
3

cosh�
lx�
cosh�
la�

cos�
ly�

=
b2 − y2

2
−

a2 − x2

2
. �33�

Due to the asymptotic behavior of the coefficients Xm
�1�, Yl

�1�,

given by �23� with E1=0, and f̄m
�1�, ḡl

�1�, which are expressed
in �29� and �30�, respectively, the Fourier series in �31� con-
verge extremely rapid in all points of the rectangle, including
its boundary with corner points.

In order to give an idea of some typical values of the
relevant coefficients, as well as their accuracy, Table I lists
an overview of the first eight numerical values of the expan-

sion coefficients Xm
�1�, Yl

�1�, f̄m
�1�, and ḡm

�1� and the free terms
Hm

�1� and Il
�1� in the particular case of a rectangular cavity with

a=1, b=4, and rotlet position �0,−c�= �0,−2.256772�. For
this particular choice, a rotlet located in �0,−c� coincides
with the stagnation point of the flow induced by a rotlet

located in �0,c�. Thus the second, symmetrically placed rot-
let does not disturb the position of the first rotlet, and vice
versa. There might be more of these special positions, de-
pending on the aspect ratio of the container �see Sec. IV for

further discussion�. The coefficients −�mf̄m
�1�, −
lḡl

�1�, Hm
�1�,

and Il
�1� were calculated by evaluating the integrals expressed

in �29�, �30�, �21�, and �22� numerically with a relative error
of 10−7. The expansion coefficients Xm

�1� and Yl
�1� are deter-

mined with an absolute error of 10−7 by solving the coupled
infinite series �16� by means of the method of successive
approximation. By varying those parameters that control the
accuracy of the calculations over a wide range, the accuracy
displayed in Table I was obtained.

Another important issue related with representation �31�
for �1�x ,y� is the local behavior of the stream function near
a quiet corner, say, near x=a, y=b. Since the work of
Moffatt,30 it is known that, despite the exact nature of the
driving force, a creeping flow near the apex of a wedge
shows a sequence of corner cells, decreasing in size and
intensity when the corner is approached. Here, the solution
of the local stream function, expressed in plane polar coor-
dinates �� ,��, was of the form ��� ,��=��f����. Dean and
Montagnon31 already proved that for wedge angles smaller
than a certain critical angle of approximately 146°, the expo-
nent � is necessarily complex-valued; and it was Moffatt’s
merit to interpret this as the occurrence of a sequence of
corner eddies. In fact, it can be shown, following Meleshko,
Gomilko, and Gourjii,32 that when the stream function is
expanded in the local polar coordinates with x=a−� cos �

and y=b−� sin �, �1�� ,�� can be written in the above form
and that it has indeed a complex-valued exponent. Important
to notice is that the amplitude of these Moffatt eddies is
explicitly related to the value of E�

�1�.

B. Problem 2

The situation in problem 2 also consists of two rotlets,
still positioned at points �0,−c� and �0,c�, but now rotating
in opposite directions. Although the signs of the rotlet
strengths are different, their absolute value is � /2. The rotlet
stream function �2

���, therefore, reads

TABLE I. Numerical values of the first eight free terms and expansion coefficients of problem 1 for the case in which a=1, b=4,and c=2.256772. Any value
of c could be used for this purpose, provided �c��4. However, the particular choice of c here is related with a few applications; see Sec. IV.

m , l Hm
�1� Il

�1� −�mf̄m
�1� −
lḡl

�1� Xm
�1� Yl

�1�

1 −0.3194630 0.1808995 −0.1231876 −0.2090062 2.5691
10−3 0.2546654

2 4.0064748
10−3 0.4608897 −5.7542767
10−3 −0.18854587 2.8988
10−3 0.3855975

3 −2.7937793
10−5 −0.1178307 −2.3569776
10−3 4.0640223
10−2 −5.027
10−4 −0.1044729

4 1.6364437
10−7 −0.2743452 −1.2163433
10−3 5.5281448
10−2 −3.497
10−4 −0.2630945

5 −8.8029144
10−10 −1.9715015
10−2 −7.3912857
10−4 5.9057676
10−3 −2.071
10−4 −1.81120
10−2

6 4.5015035
10−12 8.55777365
10−2 −4.9585787
10−4 −7.8371548
10−3 −1.259
10−4 8.65503
10−2

7 −2.2258155
10−14 2.4397861
10−2 −3.5545151
10−4 −9.1852834
10−4 −7.98
10−5 2.54270
10−2

8 1.0745155
10−16 −1.9117824
10−2 −2.6718261
10−4 2.7216230
10−3 −5.25
10−5 −1.82171
10−2
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�2
����x,y� =

�

4
ln�x2 + �y + c�2� −

�

4
ln�x2 + �y − c�2� . �34�

As in the previous subsection, the second elemental stream
function �2 is written as a linear combination of the rotlet
stream function and a function �2 due to the presence of the
boundaries

�2�x,y� = �2�x,y� + �2
����x,y� . �35�

Because the second elemental stream function �2 is a solu-
tion of the linear biharmonic equation, �2 is forced to be a
solution of the biharmonic equation as well, although with
adjusted boundary conditions. The requirement of zero ve-
locities perpendicular and tangentially to the cavity walls
implies the following boundary conditions:

��2

�x
= 	 V2�y�, �2 = − g2�y�, x = ± a, �y� � b ,

�36�
��2

�y
= − U2�y�, �1 = 	 f2�x�, y = ± b, �x� � a .

The functions V2 and g2 are odd functions in their argument,
whereas U2 and f2 are even functions. They follow directly
from the rotlet solution �34�,

V2�y� =
�

2
� a

a2 + �y + c�2 −
a

a2 + �y − c�2� , �37a�

f2�x� =
�

4
ln�x2 + �b + c�2� −

�

4
ln�x2 + �b − c�2� , �37b�

g2�y� =
�

4
ln�a2 + �y + c�2� −

�

4
ln�a2 + �y − c�2� , �37c�

U2�x� =
�

2
� �b + c�

x2 + �b + c�2 −
�b − c�

x2 + �b − c�2� . �37d�

These functions are infinitely differentiable and can be pre-
sented in form of the Fourier series,

V2�y� = �
n=1

�

�− 1�nVn
�2� sin��ny� ,

�38a�

Vn
�2� =

�− 1�n

b
	

−b

b

V2�y�sin��ny�dy ,

f2�x� = �
m=1

�

�− 1�mfm
�2� cos��mx� ,

�38b�

fm
�2� =

�− 1�m

a
	

−a

a

f2�x�cos��mx�dx ,

g2�y� = �
n=1

�

�− 1�ngn
�2� sin��ny� ,

�38c�

gn
�2� =

�− 1�n

b
	

−b

b

g2�y�sin��ny�dy ,

U2�x� = �
m=1

�

�− 1�mUm
�2� cos��mx� ,

�38d�

Um
�2� =

�− 1�m

a
	

−a

a

U2�x�cos��mx�dx ,

where the shorthand notation for �m and �n,

�m =
�2m − 1��

2a
and �n =

n�

b
, �39�

was introduced.
The leading terms of the Fourier coefficients are

Vn
�2� = −

2V2�b�
b�n

+
2V2��b�

b�n
3 −

�− 1�n

b�n
4 	

−b

b

V2
�IV��y�


sin��ny�dy , �40a�

fm
�2� = −

2f2�a�
a�m

+
2f2��a�
a�m

3 −
2f2

�IV��a�
a�m

5 −
�− 1�m

a�m
5 	

−a

a

f2
�V��x�


sin��mx�dx , �40b�

gn
�1� = −

2g2�b�
b�n

+
2g2��b�

b�n
3 −

2g2
�IV��b�
b�n

5 +
�− 1�n

b�n
5 	

−b

b

g2
�V��y�


cos��ny�dy , �40c�

Um
�2� = −

2U2�a�
a�m

+
2U2��a�

a�m
3 +

�− 1�m

a�m
4 	

−a

a

U2
�IV��x�


cos��mx�dx . �40d�

The parity of these functions, implying that �2 has to be an
even function in the x coordinate and an odd function in the
y coordinate, leads to �the derivation is rather similar to that
of problem 1 and details are therefore omitted�

�2�x,y� = b�
m=1

�
�− 1�m

�m
Xm

�2�Pm
�2��y�cos��mx�

− a�
n=1

�
�− 1�n

�n
Yl

�2�Qn
�2��x�sin��ny�

− �
m=1

�

�− 1�mfm
�2� sinh��my�

sinh��mb�
cos��mx�

− �
n=1

�

�− 1�ngn
�2� cosh��nx�

cosh��na�
sin��ny� . �41�

Here the odd function Pm
�2��y� and even function Qn

�2��x� are
defined as
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Pm
�2��y� = b coth��mb�

sinh��my�
sinh��mb�

− y
cosh��my�
sinh��mb�

,

�42�

Qn
�2��x� = a tanh��na�

cosh��nx�
cosh��na�

− x
sinh��nx�
cosh��na�

.

The expansion coefficients Xm
�2� and Yn

�2� are specified by the
following coupled infinite series:

Xm
�2�b�2��mb� − �

n=1

�

Yn
�2� 4�m

2 �n

��m
2 + �n

2�2 = Hm
�2�, m = 1,2, . . . ,

�43a�

Yn
�2�a�1��na� − �

m=1

�

Xm
�2� 4�n

2�m

��n
2 + �m

2 �2 = In
�2�, n = 1,2, . . . .

�43b�

Within this formulation, the shorthand notation �2��� stands
for

�2��� = coth��� −
�

sinh2 �
, �44�

while the definition of �1��� is given by �17�.
The free terms Hm

�2� and In
�2� are given by

Hm
�2� = �m

2
2

a
�
n=1

�

gn
�2� �n

�m
2 + �n

2 − fm
�2� coth��mb� +

Um
�2�

�m
� ,

�45�

In
�2� = − �n

2
2

b
�
m=1

�

fm
�2� �m

�n
2 + �m

2 − gn
�2� tanh��na� +

Vn
�2�

�n
� .

�46�

As in the previous problem, the free terms may be ex-
pressed in an integral form, by which their asymptotic be-
havior for large indices becomes clear,

Hm
�2� =

�− 1�m

a�m
3 	

−a

a

�U2
�IV��x�cos��mx� + f2

�V��x�


coth��mb�sin��mx��dx +
1

a�m
3 	

−b

b

g2
�V��y�



cosh��my�
sinh��mb�

dy = O�m−4�, m → � , �47�

In
�2� = −

�− 1�n

b�n
3 	

−b

b

�V2
�IV��y�sin��ny� − g2

�V��y�


tanh��nb�cos��ny��dy −
1

b�n
3	

−a

a

f2
�V��x�



sinh��nx�
cosh��na�

dx = O�n−4�, n → � . �48�

In a similar way, the asymptotic behavior of the coeffi-
cients with large numbers of indices is

Xm
�2� =

E2

�m
+ Re
E2

���

�m
� �, m → � ,

�49�

Yn
�2� =

E2

�n
− Re
E2

���

�l
� �, n → � ,

where �=2.739593+i1.119025, as in problem 1, and E2
��� is

some complex-valued constant. The real-valued constant E2

is given by

�

2ab
E2 = �

m=1

�

Hm
�2� + �

n=1

�

In
�2� = 0. �50�

�Here the algebra becomes even more sophisticated than in
problem 1, although the final result is the same.�

The final representation for the stream function �2 reads

�2�x,y� = b�
m=1

�
�− 1�m

�m
Xm

�2�Pm
�2��y�cos��mx�

− a�
n=1

�
�− 1�n

�n
Yn

�2�Qn
�2��x�sin��ly�

− �
m=1

�

�− 1�mf̄m
�2� sinh��my�

sinh��mb�
cos��mx�

− �
n=1

�

�− 1�nḡn
�2� cosh��nx�

cosh��na�
sin��ny� − C2

y

b

+ D2
y

6b
�3�a2 − x2� − �b2 − y2��

+
�

4
ln�x2 + �y + c�2� −

�

4
ln�x2 + �y − c�2� .

�51�

The constants C2 and D2 are given by

C2 = f2�a� = g2�b�

=
�

4
ln�a2 + �b + c�2� −

�

4
ln�a2 + �b − c�2�

and

D2 = f2��a� = − g2��b�

= −
�

2
� a2 − �b + c�2

�a2 + �b + c�2�2 −
a2 − �b − c�2

�a2 + �b − c�2�2� .

To obtain the representation �51�, we had to introduce new

Fourier coefficients f̄m
�2� and ḡn

�2� �which follow directly from
�40b� and �40c��,
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f̄m
�2� = fm

�2� +
2f2�a�
a�m

−
2f2��a�
a�m

3

= −
2f2

�IV��a�
a�m

5 −
�− 1�m

a�m
5


	
−a

a

f2
�V��x�sin��mx�dx = O�m−4�, m → � �52�

and

ḡn
�2� = gn

�2� +
2g2�b�

b�n
−

2g2��b�
b�n

3

= −
2gn

�IV��b�
b�n

5 −
�− 1�n

b�n
5


	
−b

b

g2
�V��y�cos��ny�dy = O�n−4�, n → � . �53�

Besides that, we applied the following relations:

2

a
�
m=1

�
�− 1�m

�m

sinh��my�
sinh��mb�

cos��mx�

+
2

b
�
n=1

�
�− 1�n

�n

cosh��nx�
cosh��na�

sin��ny� = −
y

b
, �54�

and

2

a
�
m=1

�
�− 1�m

�m
3

sinh��my�
sinh��mb�

cos��mx�

−
2

b
�
n=1

�
�− 1�n

�n
3

cosh��nx�
cosh��na�

sin��ny�

= −
y

6b
�3�a2 − x2� − �b2 − y2�� . �55�

Table II displays the first eight values of the expansion
coefficients and the free terms for the second elemental
problem under the same conditions as used for Table I, thus
with a=1, b=4, and c=2.256772. The given free terms Hm

�2�

and In
�2� and the Fourier coefficients −�mf̄m

�2�, �nḡn
�2� have a

relative numerical error of 10−7. The expansion coefficients
Xm

�2� and Yn
�2� are determined with an absolute error of 10−7.

At this point, all the information is acquired to calculate
the overall stream function ��x ,y� of the full problem by
summing the results for the elemental stream functions
�1�x ,y� and �2�x ,y�.

III. MULTICELLULAR FLOW PATTERNS
IN A SLENDER CAVITY

Due to the viscosity of the fluid, the walls, and therefore
the geometry of the cavity, have a significant part in the
development of the final flow structure. For rectangular cavi-
ties, for instance, multicellular Stokes flows are observed in
narrow, elongated geometries, despite the exact nature of the
driving mechanism. In this section, two types of internally
stirred cavity flows will be examined on their characteristic
properties. In the first case, the creeping cavity flow is in-
duced by a single rotlet, whereas in the second case two
symmetrically placed—either corotating or counter-
rotating—rotlets are applied to generate the fluid motion. Ac-
tually, the latter case is identical to the elemental flow prob-
lems 1 and 2, as described in the preceding section.

Of special interest is the role of the geometry of the
cavity, and in particular in what way the flow will be affected
by a change in the cavity’s aspect ratio. It is known that in
this respect the corner points are of significant importance.
By setting the value of the rotlet position c equal to zero, the
elemental stream function �1 now represents a cavity flow
induced by a single rotlet of intensity �, as may easily be
seen from Fig. 1 by putting the imaginary rotlets of problem
1 at the center of the cavity. Because the rotlets of problem 2
rotate in opposite directions, their individual contributions
will be canceled out. Note that this is only true for the center
position; for all other positions, both �1 and �2 have to be
calculated individually and added up in order to obtain the
overall flow description. The same result may be obtained
formally by putting c=0 in the expressions derived for �1

and �2 in the previous section. Figure 2 displays some typi-
cal streamline portraits for different values of the domain
aspect ratio A. The streamline patterns show an increase of
the number of cells for increasing aspect ratio. It is clear that
the flow field shown in Fig. 2�b�, containing two hyperbolic

TABLE II. Numerical values of the first eight free terms and expansion coefficients of problem 1 for the case in which a=1, b=4, and c=2.256772. Once
again, any value of c could be used for this purpose, provided �c��4. However, the particular choice of c here is related with a few applications; see Sec. IV.

m ,n Hm
�2� In

�2� −�mf̄m
�2� �nḡn

�2� Xm
�2� Yn

�2�

0 — — — 0.2870743 — —

1 0.3189331 −0.4562471 0.1027773 −0.3178814 −2.5750
10−3 −0.4144911

2 −4.0064748
10−3 −0.1929772 3.6103397
10−3 −5.3351480
10−2 −2.8970
10−3 −0.1669958

3 2.7937793
10−5 0.2859568 1.5880261
10−3 6.6177047
10−2 5.029
10−4 0.2667589

4 −1.6364437
10−7 0.1536788 8.2441856
10−4 2.27275212
10−2 3.498
10−4 0.1492170

5 8.8029144
10−10 −6.4786355
10−2 5.0213684
10−4 −6.5003510
10−3 2.072
10−4 −6.57512
10−2

6 −4.5015035
10−12 −6.2210062
10−2 3.3724385
10−4 −5.3989318
10−3 1.259
10−4 −6.32539
10−2

7 2.2258153
10−14 5.6043915
10−3 2.4190134
10−4 1.3845507
10−3 7.98
10−5 4.6328
10−3

8 −1.0745049
10−16 1.8414175
10−2 1.8190027
10−4 2.1300894
10−3 5.25
10−5 1.75812
10−2
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points, can be considered as an intermediate state with the
single central cell shown in Fig.2�a� and the multicellular
pattern of Fig. 2�c�.

A comparison between Figs. 2�c� and 2�d� shows that—
while gradually increasing the aspect ratio—once the single-
core cells have been formed, their size and their position
within the cavity remain more or less unchanged. For the
central cell, this is clearly seen in Figs. 2�b�–2�d�. The same
holds for the secondary single-core cells and it is expected
that it is also true for additional cells formed in increasingly
slender cavities. So, once the cells have reached their final
size, new additional cells can only be formed when extra
space is added to the cavity, thus by elongating the cavity to
larger aspect ratios.

Figure 2�a� shows further the presence of small corner
cells; these corner eddies can also be observed for the other
aspect ratios when one would zoom in �here, only the divid-
ing �=0 streamlines were plotted�.

For the situation of Figs. 2�a� and 2�c�, we have plotted
in Fig. 3 the isovorticity lines. Figure 4 displays the corre-

sponding �, � scatter-plots showing that there is no func-
tional relation between the vorticity and the stream function
since the isovorticity lines and iso-� lines display different
patterns and do not coincide. Apparently, the Jacobian be-
tween the vorticity and the stream function does not have to
be zero for the stationary, highly viscous flow where the
Reynolds number has been set identically to zero. The ab-
sence of a one-to-one correspondence between these quanti-
ties was also reported by Van de Konijnenberg, Flór, and van
Heijst33 in their study on the decay of bounded quasi-two-
dimensional viscous flows. In the origin of the domain,
where the rotlet is positioned, the vorticity is determined by
the rotlet circulation ����=2�� around a closed contour en-
closing the rotlet.

An important issue concerns the question of how the
existence of a multicellular structure in slender cavities can
be explained. Hellou and Coutanceau21 demonstrated in a
rather detailed experimental and numerical study on a cellu-
lar Stokes flow induced by a rotating cylinder how the for-
mation process of a new single cell starts from the corners.

FIG. 2. Stream function contour plots
of the Stokes flow due to a single rot-
let, positioned in the origin of the do-
main, c=0 with �a� A=1, �b� A=2, �c�
A=3, �d� A=6. Dashed contours repre-
sent negative values of the stream
function, and solid contours represent
positive values. The contour level in-
crement is 0.15 for the dashed lines of
the central cell; 0.005 for the solid
lines in �b�; 0.001 for the solid lines in
frames �c� and �d�; and 1
10−5 for the
dashed lines of the outer cells in frame
�d�. For the corner cells of frame �a�,
the contour increment is 2
10−5.

FIG. 3. Contour plot of the vorticity
��� for aspect ratio A=1 �a� and A=3
�b�. Dashed contours represents nega-
tive values of the vorticity, and solid
contours represent positive values. The
contour level increment is 0.1 for the
dashed lines and 0.01 for the solid
lines.
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By increasing the value of the aspect ratio A gradually, nu-
merical and experimental results show how two main corner
cells grow in size until they come into contact by means of a
saddle point, to finally merge and give rise to the formation
of a new, single-core cell. If the aspect ratio is increased
further, more new cells will be formed, which ultimately
leads to a large number of cells. The multicellular flow struc-
ture in the present case of a single rotlet in a slender, rectan-
gular cavity can be explained in the same way as for the
cylinder-driven flow considered by Hellou and Coutanceau,21

as is demonstrated in Fig. 5. The main difference is that the
first additional cell will be formed at a larger aspect ratio, but
all the essential features of the merging process are present.
In Figs. 5�e�–5�g�, the presence of new corner cells can al-
ready be observed. The evolution of the axial stagnation

point of the first secondary cell during the process of coa-
lescing is shown in Fig. 6. Comparison with the cylinder-
driven flow shows a similar development, in which the stag-
nation point reaches a minimum at the stage at which the
corner cells have just been merged fully and the hyperbolic
stagnation point has become an elliptic point �A�2.08�. Fur-
ther increase of the aspect ratio shows that the stagnation
point reaches �asymptotically� a fixed position, independent
of further increment of A.

The flow structures of the elemental stream functions �1

and �2 �with c0�0� are displayed in Fig. 7 for two different
values of the aspect ratio and three values of the rotlet posi-
tion: A=4/3 and c0=0.71361; A=4 and c0=0.86097; and
A=4 and c0=2.2568. The resemblance with the Stokes flow
inside a rectangular domain of which the flow is completely

FIG. 4. The scatter-plot shows that there is no functional relation between � and �. �a� A=1, �b� A=3.

FIG. 5. Formation of the first second-
ary cell from the corner cells: �a� A
=1.50, ��c=2
10−5; �b� A=1.68,
��c=1
10−4; �c� A=1.75, ��c=1

10−4; �d� A=1.76, ��c=1
10−4;
�e� A=2.01, ��c=3.569
10−4; �f� A
=2.06, ��c=4.8605
10−4; �g� A
=2.08, ��c=5.39
10−4. Here, ��c

denotes the contour increment of the
corner cells. The dashed contours of
the central cell have negative values;
the increment is 0.01.
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determined by the externally assigned tangentially moving
top and bottom wall, as described by Jana, Metcalfe, and
Ottino,22 is evident. In order to make a more direct compari-
son, the same aspect ratios were taken as those used in Fig. 4
of Ref. 22. Globally, we recognize the same flow structure
for both forcing methods. For A=1.33, the �1 structure of
Fig. 7�a� corresponds to Fig. 4�a� of Ref. 22, in which the
walls move in opposite directions: both figures show the hy-

perbolic stagnation point at the origin of the domain. Two
elliptic stagnation points are found in the flows of �2 �Fig.
7�a�� and that induced by the comoving walls of Fig. 4�b� of
Ref. 22. Similar remarks can be made for the flow cells in-
side the cavity with A=4 provided the rotlets are placed rela-
tively close to the top and bottom wall �compare Fig. 7�c�
with Figs. 4�c� and 4�d� of Ref. 22�. For this value of the
aspect ratio and rotlet position, the secondary cells are now
the ones in the central part of the domain, since they are
induced by the primary cells at the short side of the domain.
When, on the other hand, the rotlets are placed near the ori-
gin of the domain, that is, if c0=0.86097, the central cells are
the primary ones. As a result, the flow pattern is different.
Although there is a global resemblance between the two cav-
ity flows, the fact that forcing mechanisms are different �ex-
ternally versus internally driven cavity flow� is responsible
for the fact that the primary cells in the externally driven
flow are much more flattened than those of the rotlet-induced
flow �the no-slip boundary condition of the moving walls is
obviously the reason for that�. But a more striking difference
is probably that the corner eddies of Fig. 7�c� have a rela-
tively large size compared to the driven-cavity case.22

The positions of the rotlets in Fig. 7 are not chosen ar-
bitrarily. The solution shows that for a certain position of the
rotlet �0,c0�, the flow has a stagnation point �0,−c0� sym-
metrically placed inside the rectangle. This means that the
rotlets do not influence each other’s flow field. It goes with-
out saying that for practical application this is of great im-
portance. Moreover, it turns out that for narrow cavity geom-
etries, several of these special rotlet positions can be found.

FIG. 6. Evolution of the position of the axial stagnation point during the
formation process of the first secondary cell.

FIG. 7. From the left to the right: iso-
lines of �1, �2, and �=�1+�2 for
different rotlet positions and two val-
ues of the aspect ratio. Dashed con-
tours represent negative values of the
stream function, and solid contours
represent positive values. For all plots,
it holds that the contour level incre-
ment is 0.03 for the main cells and
0.001 for the secondary cells. The con-
tour increment in the �1,2 plots of the
corner cells is 5
10−8 �b� and 1

10−4 �c�. For the � plots we used in
addition ��=0.0001 for the corner
cells �a�, ��=2
10−7 for the corner
cells �b�, and ��=0.0001 for the �bot-
tom� corner cells and ��=5
10−6

for the top cell �c�.
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In Table III, the values of c0 are listed for some different
aspect ratios.

It is important to notice that for slender cavities �large
aspect ratios�, the exact location of these special rotlet posi-
tions does not depend, at least not strongly, upon the value of
the aspect ratio. For those situations, the flanking single-core
cells have reached their final size and position, and a further
increase of A does not change that anymore.

IV. CHAOTIC TRANSPORT IN A BOUNDED
STOKES FLOW

In a second application, a time-dependent Stokes flow is
considered. Time-dependency of a two-dimensional flow
may give rise to chaotic advection of passive tracer particles
released somewhere in the fluid. The flow is generated by
two individually adjustable rotlets, which will be denoted by
� and 
. The rotlet forcing is made time-dependent in two
ways. First, the rotlets are switched “on” and “off” periodi-
cally, which is known as the blinking rotlet model. It was
used before by Meleshko and Aref1 in a study on chaotic
transport in a circular domain. Secondly, the forcing is made
time-dependent by changing the strength of the rotlets in
time sinusoidally. Besides the question of how these two
different time-dependent forcing protocols affect the stirring
properties of the flow, also the influence of the phase differ-
ence between the individual rotlets upon the stirring quality
is taken into account.

The two rotlets � and 
 are positioned at �0,c0� and
�0,−c0�, respectively, for which the rotlet position and stag-
nation point are indeed symmetrically located. With �� and
�
 denoting the stream functions associated with the flows
generated by the individual rotlets � and 
, the time-
dependent stream function � is assumed to be given in a
quasistationary form

��x,y,t� = ���t����x,y� + �
�t��
�x,y� . �56�

The time-independent contributions �� and �
 are directly
related to the elemental stream functions �1,2 through

���x,y ;c0� = �1�x,y ;c0� − �2�x,y ;c0� ,

�57�
�
�x,y ;− c0� = �1�x,y ;c0� + �2�x,y ;c0� .

In principle, the functions ��,
 may be any function in time.
What matters is that it is assumed that whenever a rotlet is

switched “on,” the impact on the surrounding fluid is instan-
taneously present in the entire domain. In general, this is
obviously not true, but under certain conditions a quasista-
tionary approach to the problem is justified; and if that is the
case, then the time-independent stream functions ��,
 are
given by the expressions derived in Sec. II.

Three different time scales can be introduced: the mo-
mentum diffusion time scale �d=L2 /�, the advection time
scale �a=L /U as the characteristic time of the tracer dynam-
ics, and the forcing period T. Here, L and U are typical
length and velocity scales, respectively. A natural choice for
L is the container width, and the typical velocity scale U
should be related with the rotlet intensity �, i.e., the best
choice is U=� /L. Two dimensionless numbers can be con-
structed: the forcing Strouhal number, Srf =�d /T, and the ra-
tio D=T /�a=UT /L=�T /L2. The latter quantity is a measure
for the dimensionless displacement of a tracer particle during
one forcing period. The assumption of quasistationarity re-
quires Srf �1, which translates into ��D� or �a��d /D. If
this condition is not satisfied, the fluid cannot respond in
time to the changes in forcing strength, and a solution based
upon the time-dependent equation of motion has to be taken
into account. In what follows, we assume that Srf �1.

In order to reveal the transport properties of this rotlet-
driven cavity flow, the deformation of a passive material blob
is monitored in time. Computationally, it is sufficient to con-
sider just the deformation of the enclosing contour C. The
contour is defined by markers connected by small linear line
segments. The number of marker points is chosen such that
the contour appears to be smooth. During the evolution of
the flow, the contour may be deformed considerably by suc-
cessive stretching and folding, which can lead to a significant
increase of the contact length with the surrounding fluid. As
time progresses, new �deformed� contours are calculated by
integrating the equation of motion numerically for each in-
dividual marker. The integration is performed by an extrapo-
lation algorithm, based on an explicit midpoint rule with
variable order and variable step size.27 In order to maintain
the smoothness of the initial contour, it might be necessary to
insert new marker points on the contour. These new points
are added when the distance between neighboring markers
exceeds a certain prescribed threshold value, or when the
angle between neighboring line segments becomes less than
120°. These points are placed on the initial contour after
which the time integration for the new markers starts from
the beginning until the present time has been reached and a
new calculation is continued for the entire collection of
markers. Instead of adding marker points, markers are re-
moved when the length of a connecting line segment be-
comes so small that computation time can be saved without
loss of noticeable smoothness or accuracy. Due to incom-
pressibility of the flow, the area S enclosed by the contour C
has to be conserved after each time step. The area is calcu-
lated numerically each time step by applying Stokes’
theorem,

TABLE III. Rotlet positions �x ,y�= �0,c0� producing symmetrically located
stagnation points �0,−c0� for various values of the aspect ratio A.

A c0
�1� c0

�2� c0
�3� c0

�4�

1 0.54328 — — —

2 0.84694 — — —

3 0.86076 2.19566 — —

4 0.86097 2.25677 3.4491 —

5 0.86098 2.25791 3.6477 —

6 0.86098 2.25793 3.6537 5.02045
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S =	 	
S

dxdy =
1

2



C

�xdy − ydx�

�
1

2 �
m=1

M

�xmym+1 − ymxm+1� , �58�

with M the number of markers defining contour C, and pro-
vides an instrument to check the accuracy of the advection
calculations. In the numerical calculation performed in this
section, the area is preserved with a relative error less than
1
10−3. A more detailed description of this contour-
kinematic method can be found in Meleshko and Van
Heijst.34

As mentioned before, in the blinking rotlet model, the
rotlets are switched “on” and “off” periodically and so the
time-dependent functions �� and �
 are periodic square
waves, which in general may be written as

���t� = ���0 + A0� , for nT � t � 
n +
1

2
�T ,

��0 − A0� , for 
n +
1

2
�T � t � �n + 1�T;� �59�

�
�t�

= ���0 + A0� , for �n + k
�T � t � 
n + k
 +
1

2
�T ,

��0 − A0� , for 
n + k
 +
1

2
�T � t � �n + k
 + 1�T .�

�60�

Here, �0 is the average forcing, A0 is the forcing amplitude,
and k
 is the phase at which rotlet 
 is switched “on” for the
first time; T is the full blinking period and n=0,1 ,2 , . . ..

In the situation in which the fluid is forced to motion by
a sine wave time-dependent forcing protocol, the functions
��,
 read

���t� = �0 + A sin
2�t

T
, �61�

�
�t� = �0 + A sin 2�
 t

T
+ k
� . �62�

Here A is the amplitude of the sinusoidal forcing. The pro-
tocols, which are displayed graphically in Fig. 8, are studied
upon their stirring quality, varying the phase difference be-
tween the rotlets activity. The forcing amplitudes are chosen
such that the shaded areas under the curves in Fig. 8, which
is a measure for the forcing quality, are in both cases the
same for a given average forcing �0. In addition, we impose
the restriction A0 ,A��0.

The influence of the aspect ratio is considered only for
the blinking rotlet scenario. But first a comparison is made
between the transport properties of a blinking rotlet flow
inside a square cavity �with k
=1/2� and a circular cavity,
which was the original geometry in which the blinking rotlet
model was first applied to study transport properties of a
confined Stokes flow.1 Figure 2 of Meleshko and Aref1 dis-
plays the deformation of an initially circular passive blob of
radius r0=0.1a, centered between two blinking rotlets with
strength �=1.17a2 /T �or D=1.17� after several blinking pe-
riods. Here a and T were the radius of the domain and the
blinking period, respectively. Each rotlet was placed sym-
metrically in the stagnation point of the other, i.e., in �r ,��
= �c0 ,0� and �r ,��= �c0 ,��, with c0=a���17−3� /4�1/2

�0.53a,1 and with r and � the plane polar coordinates with
respect to the domain center. It is noted here that the tracer
evolution is based upon the given closed form of the stream
function �Ref. 1, formula �11��, i.e.,

��r,�� =
�

2
�ln

r2 − 2c0r cos � + c0
2

a2 − 2c0r cos � + c0
2r2/a2

+
�1 − r2/a2��a2 − c0

2r2/a2�
a2 − 2c0r cos � + c0

2r2/a2� �63�

is only correctly reproduced by doubling of the rotlet
strength, i.e., if �=2.34a2 /T instead of �=1.17a2 /T.

The separate plots of Fig. 9 reveal a strong resemblance
with the tracer distribution for the circular geometry as stud-
ied by Meleshko and Aref.1 The distribution plots are not
exactly identical, however, as can be seen by comparing Fig.

FIG. 8. Time-dependent fluid forcing
by two rotating rotlets � �solid line�
and 
 �dashed line�.

FIG. 9. Stirring of an initially circular
blob �initial position indicated by the
black circular area in the first plot� due
to two blinking rotlets �indicated by
dots� after several periods of time.
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9�c� with Fig. 9�d� in which the tracer distribution in the
circular domain at t=4T is shown. The qualitative behavior
of the flow, however, is quite similar. Apparently, the influ-
ence that a difference in domain geometry could have is not
strongly apparent for the square domain.

The results of Sec. III demonstrated that the Stokes flow
inside a rectangular domain becomes more complex by the
appearance of a multicellular pattern when the aspect ratio of
the domain is increased. A question that arises immediately
is, how do these arrays of flow cells influence the stirring
properties of the system? To answer this question qualita-
tively, the evolution in time of a blob of tracer material is
followed numerically. For illustrative purposes, we briefly
discuss here the results of numerical experiments for contain-
ers with an aspect ratio of 4. The streamline patterns dis-
played in Figs. 7�a� and 7�b� show that in the center part of
the domain, the flows are more or less comparable for con-
tainers with aspect ratio A=4/3 and 4. The release of a blob
of passive tracer in the center of the container with an aspect
ratio of 4 would thus give similar results as shown in Fig. 9
for the square container �which would have a stream function
pattern similar to the one shown in Fig. 7�a��, at least for
short times. Long-time computations might eventually show
filaments of tracer in the outer parts of the container. Only
when the rotlets are put in the outer stagnation points, see
Fig. 7�c�, does a clear difference become noticeable between
this flow structure and the one displayed in Fig. 7�b�, and
similar remarks can be made for the tracer distribution. In
Fig. 10, the distribution evolution of a blob of passive tracer
with an initial radius r0=0.2a, advected due to a blinking

rotlet pair �with k
=1/2�, is presented in the case in which
the aspect ratio is 4.

The way in which the passive tracer blob has been ad-
vected in time reveals, to a certain degree, the structure of
the �1 function with its top and bottom cell and a rectangu-
larly shaped central cell �see Fig. 7�c��. In both situations, the
rotlets have the same intensity and direction of rotation. The
time-dependent nature of the flow allows the tracer blob to
intrude in all three regions.

We will now consider the effect of the phase difference
k
 on the advection properties. Let the functions ��,
 have a
square-wave time dependency �blinking rotlet model�. The
effect the phase difference may have upon the stirring quality
of the flow is studied by doubling the value of k
 in two
consecutive steps, starting at k
=1/12, and the results are
compared with the traditional blinking rotlet model, i.e., k


=1/2. Figure 11 displays the result of the tracer distribution
inside a square domain after several blinking periods.

It is clear that when the rotlets are almost simultaneously
active �k
=1/12�, the initially circular blob is stretched out
rapidly around the rotlets. But by no means are the tracer
particles distributed into a large area of the cavity’s interior.
By increasing the phase difference in two steps by a factor 2
�k
=1/6 and 1/3�, the structure of the tracer contour
changes by which the tracer particles can be found in a larger
part of the cavity. The situation in which the activity of the
rotlets is out of phase �k
=1/2� seems to be the most appro-
priate choice for optimal stirring. This situation was also
considered in the comparison between a square domain and a
circular domain. In the blinking rotlet model, the functions
��,
 are itself quasi-time-dependent. In that respect, we take
��,
 to have a sinusoidal time dependency �see �61�� and
study the effect it has upon the stirring quality of the flow.
For this comparison, we take k
=1/2. The value of the av-
erage forcing is the same as in the blinking rotlet case, as is
the mean deviation from the average value �indicated by the
shaded area under the curves of Fig. 8�. In Fig. 12, the evo-
lution in time of a blob consisting of passive tracer particles
is shown. Although the patterns look rather similar to the
patterns due to the square wave forcing protocol, a signifi-
cant difference can be seen from the more capricious form of
the contours �see the upper region of the domain�. This is
also shown by calculating the relative length of the contour,
which has been given in the caption of Fig. 12.

V. SUMMARY AND DISCUSSION

The slow viscous flow driven by one or two rotlets in-
side a rectangular cavity with nonmoving, impenetrable
walls and variable aspect ratio is described by means of the
stream function. The governing two-dimensional homoge-
neous biharmonic equation for the stream function has been
solved analytically with use of the superposition principle.
The flow was driven by a single rotlet on the y axis. Al-
though the expression for the stream function does not have
a closed form, an accurate description has been obtained in
which the no-slip boundary conditions are satisfied at all four
walls.

FIG. 10. Evolution of the distribution patterns of an initially circular blob in
a rectangular domain with aspect ratio A=4; �=11.76b2 /T, c0=2.25677,
r0=0.2a. The position of the rotlets is indicated by dots. For the blinking
rotlet model, we used k
=1/2.
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The associated velocity field has not only been applied
successfully to the description of the steady Stokes flow
structures in slender rectangular cavities, but it has also been
applied to chaotic transport of passive tracer particles in the
case of a time-dependent forcing by a set of two blinking
rotlets. The multicellular flow pattern that was observed in
the first application was due to the rotation of a centrally
located rotlet. An array of single-core cells appears in narrow
cavity geometries of which the number is directly related to
the domain aspect ratio A such that the number of cells in-
creases for increasing A. The formation of the single-core
cells involves the merging of the main corner cells �Moffatt
eddies�, which grow in size when the aspect ratio of the
domain is increased and finally merge into a new, separated
cell structure. This process continues when the domain is
elongated even further, by which new cell structures are
formed. Ultimately, this will lead to an infinitely large array
of cells.35 In this respect, the results are qualitatively compa-
rable to those of a cylinder-driven cavity flow:21 all the char-
acteristic flow properties that we could expect were also
found in the rotlet case. With two rotlets forcing the flow, the

structure of the central cell was determined by the rotation
direction of the rotlets.

In a second application, the transport of passive tracers is
illustrated in the case of a time-dependent flow forcing. The
symmetry of the problem made it possible to include a sec-
ond rotlet, to a certain degree independently adjustable of the
first one, into the cavity, forming a blinking rotlet pair. An
important property of the flow in the rectangular domain, as
was already reported for the circular domain,1 is that the
solution of the flow field allows for a rotlet position �0,c0�
that generates a flow with a stagnation point �0,−c0� located
symmetrically in the domain with respect to the x axis. By
placing the rotlets in these special positions �0, ±c0�, the
inactive rotlet does not disturb the flow generated by the
active rotlet. An essential difference with the circular geom-
etry is the existence of more than one of these special rotlet
positions. The explanation for this lies in the presence of an
array of single-core cells and the fact that these cells do not
change position when the aspect ratio is further increased.
Therefore, the number of these extra symmetric rotlet stag-

FIG. 11. Evolution of an initially cir-
cular blob containing passive tracer
particles after several blinking periods
�from left to right: T, 2T, 3T, and 4T�
for �0=1/2, A0=1/2, and different
values of the phase difference k
. The
position of the rotlets is indicated by
dots.
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nation point positions is related directly to the number of
single-core cells present inside the domain and thus related
to the aspect ratio. From this study, it can be concluded that
stirring by two blinking rotlets in circular and square con-
tainers yields similar results despite the different container
geometries. Moreover, the present computations clearly indi-
cate that the best stirring �for the present parameter settings�
is accomplished by perfect out-of-phase blinking rotlets
where the sine-wave rotlet forcing gives better results than
the square-wave rotlet forcing.

The stirring by rotlets is illustrated here by varying con-
tainer geometry, rotlet positions, and blinking protocols. The
present method enables further studies of mixing, although
not pursued here, on measurements of spreading, such as, for
instance, those based on using localized Lyapunov
exponents.

A possible extension of this study concerns the imple-
mentation of the method introduced by Price et al.25 for one
or two real rotating cylinders in rectangular cavities. This
requires designing and building a totally new numerical al-
gorithm that takes into account both the no-slip boundary
conditions at the cavity sidewalls and at the cylinder sur-
faces, which is a separate effort. However, if available it
would allow a detailed comparison of the Stokes flow in
rectangular cavities driven by real cylinders and those driven
by rotlets, as discussed in the present paper, and to compare
and analyze the advection properties of the flows driven by
these different forcing mechanisms. Keeping in mind the re-
markable qualitative agreement between the experimental
and numerical results obtained by Hellou and Coutanceau,21

based on a real cylinder and our results, based on a single
rotlet in a rectangular cavity, it can be justified to restrict
these investigations to the rotlet case for the moment and
leave the challenging comparison with the method of Price et
al. for future work.
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