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SUMMARY

The objective of this study is to increase the insight into the mechanical function of
the joint elements in the tibio-femoral contact complex. The relevant joint elements
are tibia, femur, cartilage layers, menisci and synovial fluid. The function of the single
elements is affected by interaction with other elements. A stepwise modelling
approach is adopted in which it is started with simple models. During every step,
parameter studies are executed to investigate the function of the relevant components.
Numerical analyses, based on the finite element method, are performed and validated
by experiments on physical models.

The contact problem is defined by equilibrium conditions for the set of sub-systems
and the appropriate contact conditions. Both contact conditions and contact forces are
generally dependent on the positions and the deformation field of all the sub-systems
in the problem. For the large sliding solid-solid interaction problem a formulation is
worked out for which friction is assumed to be zero. The presented algorithm proves
to be quite satisfactory for general contact problems.

An axisymmetric model has been utilized for the analysis of the force transmission
between the tibia-meniscus-femur connection. The model assumes linear elastic mater-
ial properties, static loading and frictionless sliding contact between the components.
The study explores the effects of the tibial surface geometry, of the presence of soft
layers on the bony components and of anisotropic properties of the meniscus. Studies
with eight combinations of parameters have been performed starting from a simple
reference model. The presence of articular layers and the circumferential stiffness of
the meniscus appeared to be very important for the load distribution.

The numerical formulation was extended in such a way that model components can be
considered as mixtures of a solid and a fluid phase. Interaction between mixtures and
interaction between mixtures and fluids can be described. In the model of the tibio-
femoral contact complex the cartilage layer and the meniscus are considered as
mixtures, These components interact with an ideal fluid, representing the synovia.
Frictionless sliding in the contacts between these sub-systems is allowed. The response
of the model for a step change in the load was calculated. Investigations are performed
concerning the effects of the permeability of surfaces and of different loading
magnitudes. The load distribution in the model appears to change considerably in the
course of time.



NOTATION

a scalar

a column

A matrix

H vector

A tensor

I unit tensor

_a_T transpose of a

Ac conjugate of A

ab dyadic product of 3 and B
3-8  inner product of 3@ and B
A :B double inner product of A and B
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chapter 1

INTRODUCTION

1.1 motivation and objectives

The investigations presented in this thesis aim at obtaining fundamental insight into
the mechanical behaviour of the tibio-femoral joint. In this joint various elements can
be distinguished such as femur, tibia, articular cartilage layers, menisci, synovial fluid,
joint capsule, ligaments, muscles etc.

During the past decades a large amount of literature has been published on the tibio-
femoral joint. In spite of these publications the knowledge concerning the mechanical
function of the distinct joint elements is limited and mainly qualitative in character.
For that reason the effects of surgical and non-surgical interventions to improve joint
function and the outcome of rehabilitation therapies can often be predicted and
evaluated only by extrapolation from clinical experiences. A validated mathematical
model of the knee joint would constitute a valuable tool for making predictions and
evaluations based on fundamental insight rather than on experience.

To get insight into some mechanical characteristics of the human knee joint an
exploratory experimental investigation has been carried out in our laboratory
( Dortmans ( 1988 ), Jans et al. ( 1988 ), Dortmans et al. ( 1991a+b ) ). The purpose of
the experiments was twofold. Firstly, the possibility was investigated of quantifying
the transmission of dynamic loads through the joint in terms of stiffness and damping
characteristics that are based on linear theories. Secondly, it was examined whether
changes in the load transmission, brought about by deliberately damaging of selected
joint elements, may provide an indication about the function of these elements.

Experiments were carried out with cadaveric knee joint specimens, consisting of the
distal part of the femur and the proximal part of the tibia. A limited number of muscle
tendons were preserved but the muscular tissues had been removed entirely. At the
femoral side the specimens were rigidly clamped onto a three-dimensional force
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platform by means of which reaction forces and torques could be measured. Static
forces were exerted on three tendons to maintain a static equilibrium configuration of
the joint. Dynamic loads were applied on the distal end of the tibia. The magnitude of
these loads was chosen in such a way that only small displacements of the tibia
relative to the femur occurred.

The results of the experiments lead to the conclusion that the dynamic behaviour of
the human knee joint is essentially non-linear. Furthermore, it was found that,
although damaging a particular joint element like a meniscus or a cruciate ligament
yields significant changes in the dynamic behaviour, interpretation of these changes in
terms of ( changes in ) the function of that element is difficult and actually not
possible if one cannot rély on a non-linear model of the joint. Such a model should
comprise parameters that can be interpreted in terms of properties and functions of
joint elements and their interactions. However, the development of such a model for
the complete knee joint is not feasible in view of its complex structure and because of
the lack of experimental data needed both in the determination of model system
parameters and in the validation of the model.

As may be clear from the foregoing the complete knee joint is a:very intricate
structure. From.a mechanical point of view the tibio-femoral joint can|be considered
as a complex load transmitting connection. In order to modei the kﬁee joint, it is
considered to be made up of three interacting sub-connections, constitutéd by

e capsule and ligaments,

¢ musles, tendons and related fibrous sheats,

¢ the contact ( direct and indirect via both the menisci and the synovial fluid )

between the cartilage layers.

Apart from the complex structure of the tibio-femoral joint, two main problems with
which one is confronted in modelling the knee joint are distinguished:
¢ The first problem is the determination of material characteristics of biological
structures. Conventional methods take for granted that samples have a well
determined geometry. A sample is isolated from the structure under consider-
ation and it is loaded with the intention to achieve a homogeneous stress and
strain distribution in at least a part of the sample. However, in biclogical tissues
severe disturbance of the structural integrity may result from the separation of
the sample from its natural surroundings. Moreover, the tissue is often highly
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inhomogeneous and anisotropic. Therefore, conventional methods are in fact not
suitable to assess the material properties of biological tissues. Hendriks ( 1991 )
proposed a hybrid numerical-experimental approach which is not limited to
homogeneous stress and strain fields. This alternative approach seems to offer
promising prospects for biological tissues.

¢ The other problem concemns the identification of characteristics for the contact
between the cartilage layers. The available techniques for identifying of the
frictional behaviour in contact surfaces start from the point that at least one
contact surface is rigid ( e.g. Starmans ( 1989 ) ). In that case transducers can be
integrated in the rigid component at the contact surface without disturbing the
load transmission, while this is not possible in deformable bodies. As surfaces
are soft and deformable in the contact between cartilage layers only global
observations can be made while local effects cannot be measured. Another
aspect of the identification of the contact characteristics is the hydrated character
of cartilage. This is a very difficult problem as no data are available with respect
-to the fluid-mixture interaction because of the deficiency of suitable experi-
mental techniques. The appropriate interface conditions can neither be fully
derived from theoretical considerations. Therefore, some of these conditions are
arbitrarily chosen. The relation between the tangential fluid velocity of the free
fluid and the fluid bounded to the tissue is an example of a condition that cannot
be deduced from theoretical considerations. Hou et al. ( 1989 ) proposed the
'pseudo-no-slip’ kinematic boundary condition for this velocity, which is

explained into more detail in chapter S. They got physically likely results.

The first problem is related to all sub-connections in the tibio-femoral joint, while the
second problem is affiliated with the sub-connection of the contact between the
cartilage layers. With respect to these problems more fundamental research has to be
performed before an experimentally validated mathematical model for describing the
dynamic behaviour of the human knee joint can be achieved. ,
The objective of this thesis is to evaluate a model describing some essential aspects of
the mechanical behaviour of the tibio-femoral joint. In particular the present study is
focussed on the direct and indirect contact between the cartilage layers.
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1.2  modelling strategy

The approach for the modelling process adopted in the present study can be charac-
terized as follows: At first instance the sub-connections as presented in the previous
section are taken into account separately. From considerations mentioned before, it is
started with models which are strongly abstracted, especially concerning the material
and frictional behaviour in the contacts. These models are developed step by step into
more realistic models of the concerned sub-connection. A numerical-mathematical
formulation is applied. The mechanical functions of the joint elements within a
particular sub-connection and the interactions of these elements resulting from their
structural relationships -are investigated using parameter studies during every step. It
has to be checked whether the mechanical characteristics,-displayed by the model,
suffer from artefacts which may be caused by the application of a particular numerical
technique. Therefore, validation experiments are carried out on physical models. For
the present, both numerical and physical models are strong simplifications of reality
and thus one has to be careful translating these functions to the real knee joint.
However, the explored functions of joint elements in the actual model will play an
important role in chosing adaptations of the model with respect to the next step in the
modelling process. After some time more realistic descriptions of thel geometry, the
constitutive behaviour and the interaction of the elements will be attainéd. When more
insight into the distinct sub-connections has been achieved, they can be lintegrated into
a model of the complete knee joint. Finally, when such a model is rather complete,
validation experiments can be carried out on real biological structures.

13  functional description of joint elements

The relevant elements in the sub-connection of the direct and indirect contact are the
bony ends of femur and tibia, their articular cartilage layers, the menisci and the
synovial fluid. A functional description of these elements is given in the following.

bone

By and large two forms of bony structure can be distinguished in adult bone. The
more massively built and relatively rigid is called cortical bone while the more lightly
built and weaker form is indicated as trabecular bone. Cortical and trabecular bone
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largely differ in stiffness ( e.g. Hayes ( 1986 ) ). In comparison to other joint
components the time-dependent and viscous effects of the material behaviour of the
bony components may be considered as very small.

Both the femur and the tibia may be imagined as a long hollow shaft of cortical bone
which ends in plugs of trabecular bone just under the pair of tibio-femoral contact
surfaces. The two articular surfaces of the distal femoral end are constituted by two
convex condyles while the tibial surfaces comprise convex and concave curvatures.
Both pairs of contact surfaces are incongruent.

articular cartilage

Articular cartilage is a bluish semi-transparent dense connective tissue that covers the
bony articulating ends. According to Mow et al. ( 1984 ) articular cartilage may be
considered as a porous composite organic solid matrix swollen by water ( Fig. 1.1). In
the water a variety of mobile electrolytes is distributed which maintain charge
neutrality of the ionized proteoglycan aggregates of the matrix.

Negative Charge Groups

Hyaluronic

‘ Acid

Collagen
|~ TN
Fibrils

Interstitial Proteoglycan
Water Aggregates

Fig. 1.1 Schematic representation of articular cartilage as a biphasic
medium. The solid matrix phase is mainly composed of a mixture
of proteoglycans and a collagen network. The fluid phase is
mainly water ( Mow et al. ( 1984)).
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In mechanical terms it is a multi-phasic non-linearly permeable anisotropic visco-
elastic material, consisting of two principal phases: A solid organic matrix, which is
composed predominantly of collagen fibrils and proteoglycan macro-molecules, and a
movable interstitial fluid phase, which is predominantly water.

Within the cartilage different sub-layers can be distinguished according to studies as
by e.g. Minns and Steven ( 1977 ). It is generally accepted that the deepest layer
consists of calcified cartilage and is fixed to the underlying bone. In the deepest and
middle layer collagen fibres are lying perpendicular to the contact surface. Super-
ficially these fibres make up a dense and irregular network and are oriented more
parallel to the outer surface.

The total thickness of the cartilage layers in the tibio-femoral contact area has been
measured by Swann and Seedhom ( 1989 ). They found this thickness varying from
about 1.5 to 4.0 mm.

nisci
The menisci are semi-lunar components with wedge-shaped cross-sections. They fairly
well fill the space between the incongruent articular surfaces. Posterior and anterior

Fig. 1.2 Meniscal structure according to Bullough et al. ( 1970).
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horns of both menisci are fixed to the centre of the tibial surface. Further, some
attachments to the capsule exist at the outer circumference of the menisci and the
anterior homs are connected by a ligament. Likewise there are rather frequently
posterior ligamentous attachments of the lateral meniscus to the femoral component.
Both menisci have a fibrous structure. Bullough et al. { 1970 ) investigated this
structure ( Fig. 1.2 ) and found that the fibres were mainly oriented circumferentially.
Only a few radially oriented fibres occur inside the meniscal bodies. Superficially a
fibrous netting is observed which may resist longitudinal splitting of the meniscus.

In earlier years opinions have differed on the function of the menisci in the
tibio-femoral joint. Fairbank ( 1948 ) indicated the relationship between the outward
displacements of the loaded meniscus and its load-bearing capacity. Since then the
function of the meniscus has been the subject of laboratory experiments and clinical
studies { e.g. Ahmed and Burke ( 1983), Kurosawa et al. ( 1980 ), Fahmy et al.
(1983 ), Jaspers et al. ( 1980 ), Walker and Hajek ( 1972), Walker and Erkman
( 1975 ) ) and more and more agreement was reached with respect to the importance
of the load-bearing function of the meniscus. Theoretical models for the load
transmission in the meniscus will be dealt with in chapter 3.

In addition to its load transmitting function also some importance with regard to joint
lubrication is attributed to the meniscus. Mac Conaill ( 1932 ) made the first attempt
to develop a coherent theory about joint lubrication. He stated that the hydrodynamic
action determines the friction in synovial joints. He also suggested that the menisci set
themselves at a slight inclination and thus act like Mitchell tilting pads. Because of the
predominantly intermittent motion of the knee joint Mac Conaill's suggestion is not
very likely to apply.

According to De Keizer ( 1976 ) the enclosure by the menisci of the direct contact
area in the joint prevents the synovial fluid to be squeezed out of this area.

Jaspers ( 1982 ) performed in vitro investigations with respect to the shock absorbing
capacity of the meniscus. Porcine knee joints were used for this purpose, which
generally have thicker and broader menisci than human joints. Damping of the
movement resulting from the applied load was found to be larger after meniscectomy.
This effect was credited to the larger sliding movements of articular contact surfaces

in the case the menisci were removed.
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synovial fluid

The healthy human knee joint contains only a small volume of synovial fluid. This
fluid comprises a hydrated hyaluronic acid-protein complex. These large molecules
cause the synovial fluid to have a viscosity that decreases with increasing shear rate
( Radin and Paul ( 1971 ), Droogendijk ( 1984 ) ). ‘

1.4 perspective and structure of this thesis

As has already been stated in section 1.1, the present study is intended to provide a
model of the sub-connection transmitting loads via the contact between femur and
tibia, both by direct contact of the cartilage covered articular. surfaces and indirectly
via the menisci and the synovial fluid. Such a model should meet the following
requirements:

* The final model should comprise the relevant joint elements such as bones,

articular cartilage, meniscus and synovial fluid.

* These elements should be deformable while they are allowed to make large

movements relative to each other.

e Simulation of solid-solid as well as fluid-solid interactions should be possible.
As an initial step a model with a straightforward geometry and material behaviour is
considered. Because in future models more complex geometries and material
properties will be used, the finite element method is a suitable tool for th;e analysis.

In chapter 2 the numerical formulation of the solid-solid interaction problem is
described in such a way that several kinds of interaction between the joint elements
can be taken into account. The large sliding contact interaction without friction is
specified in this chapter into detail. Chapter 3 describes the first step in the modelling
process. Starting from a reference model parameter studies concemning geometrical
and material aspects of the bony components and the meniscal ring are performed. In
chapter 4 the formulation of the solid-solid interaction problem is extended in such a
way that also mixture-solid, mixture-mixture, fluid-solid and fluid-mixture contact can
be described. Further, in chapter 5 the second step in the modelling process is made by
taking into account the joint fluid. Finally, some conclusions and recommendations

with respect to the continuation of these investigations are given in chapter 6.
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1.5 summary and conclusions

The objective of this study is to increase the insight into the mechanical function of
the joint elements in the tibio-femoral contact complex. This insight cannot be
obtained from the material and geometrical properties of the concerned elements
separately, because their function is affected by interaction with other elements. These
interactions make establishing the mechanical functions of joint elements a very
difficult job. Therefore, a stepwise modelling approach is adopted. During every step,
parameter studies are performed to investigate the function of the relevant
components. Also numerical analyses are executed and validated by experiments on
physical models.
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chapter 2

NUMERICAL FORMULATION

2.1 introduction

In the present study mathematical models of the load transmission in the tibio-femoral
contact area will be formulated by means of the finite element method. This finite
element formulation should be capable of simulating solid-solid, solid-mixture,
mixture-mixture, fluid-solid and fluid-mixture interactions.

In this chapter a general approach for modelling the mechanical interaction of coupled
sub-systems is described. After the definition of the problem, two different solution
strategies are discussed. Further, the solid-solid interaction without friction but with
large relative sliding of the contact surfaces is worked out. This interaction is a good
starting point of the modelling process as the contact of the cartilage layers in the real
knee joint can reasonably be characterized as frictionless ( e.g. Radin and Paul
( 1972 ) ). The elaboration of other kinds of interactions will be dealt with in
chapter 4.

2.2 description and discretization of coupled sub-systems

Consider a mechanical system comprising several possibly interacting sub-systems,
each of which can be represented as a continuum. By a continuum is meant either a
solid, a fluid or a mixture of a solid phase and a fluid phase.

Both solid and mixture continua are usually described using a Lagrangian formulatlon
while fluids are usually described using an Eulerian formulation. For the sake of
simplicity both solids and mixtures will be denoted by the collective noun 'structure’.

The part of this chapter concerning the solid-solid contact with large sliding has been submitted for
publication.

11
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In the following sub-system j is assumed to be a structure and related quantities will
be marked by the left subscript j. The volume of the sub-system is denoted by ;V. A
material point P on the outer surface of this sub-system is identified by its material
coordinates

&.[3‘1’] | (21)
- L8

The total outer surface that comprises all material points on the boundary of the
sub-system is indicated by ;A. It is supposed that this surface is smooth, such that the
normal direction is uniquely defined. The total outer surface of the sub-system under
consideration is decomposed according to

A = jAn + jA (22)

where ;A is a fixed set of material points which are possibly interacting with points of
other sub-systems or other points of ;A., and jA, is the complement of ;A and jA..
Points of jA; can be free or interacting. Assuming body forces to be negligible, the
weak formulation -of equilibrium reads

f(,-‘v'ja'z)czjadjv- fjw-jf;de- fj\?z-js dA=0 (23)
AY A A ¢
J j3n

where jo is the Cauchy stress tensor, j\_a'r is an arbitrary vector weighting function and
ﬁ' the gradient operator with respect to the actual configuration of sub-system j. The
load on A, and jA. is represented by jB and ch respectively, where jf;c generally will
depend on the actual state of all the sub-systems under consideration.

For the field of actual position vectors a finite element discretization is introduced
according to

F=d' (24)

jX being the column of nodal coordinates of the sub-system j with respect to an

12
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appropriate vector base, and j'g' being the column with vector interpolation functions
expressed in material coordinates. Using a Galerkin approach for the weighting’

function

with the column jw defined analogous to jx, it can be derived from equation ( 2.3 )
that

T
W (f-5r-1e)=0 (26)
The columns ;f, ;r and jc contain the intemmal nodal forces, the external nodal forces

applied on ;A, and the contact forces on ;A,, respectively. These columns are defined
by the equations

if= Vf(ﬂj?j)c:jodjv (27)
j

L= f,-?j-dejA (28)
iBa |

£= fj§~chde (29)
Be

It is supposed that the column of internal forces can be expressed in nodal coordinates
of the sub-system by

if = (%) (2.10)

while the column of nodal contact forces will depend on the nodal coordinates of the

total system

jg = JS( 11(',..., J.’.‘)’ Zi) . ( 2.11 )

where z is the number of sub-systems. The column r satisfies the user-supplied

13
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dynamic boundary conditions. Corresponding components of jr and jc cannot both be
unequal to zero.

The requirement that ( 2.6 ) applies for all arbitrary sets jw results in the balance of
nodal forces

foir-c=0 (2.12)

The number of equations in ( 2.12) is defined to be 3;m, jm being equal to the total
number of nodes in ;V. The number of non-trivial components in jc equals 3;n, in
being the number of nodes on jA..

Besides the equilibrium equations also contact conditions should be satisfied. These
conditions control the contact behaviour and comprise: both. kinematical constraints to
material points on the contact surfaces of the interacting sub-systems and restrictions
with respect to contact forces.

2.3 general elaboration of solution strategies

It is assumed that the interactive behaviour in general will be history-dependent so that
the column jc will not only depend on the actual position of the sub-systems, but also
on its history. Therefore, an incremental formulation is used. Contact problems will be
essentially non-linear and thus for each incremental step the solution has to be
calculated using an iterative procedure. The discrete contact problem is formulated by
the discretized equilibrium equations with respect to the end of an increment along
with the appropriate contact conditions.

Two methods for solving the interaction problem canbe distinguished, i.e. the direct
fully coupled solution strategy and the iteratively coupled solution strategy
( e.g. Horsten ( 1990 ) ). Both methods are explained underneath for the case where
the total system comprises only two sub-systems. A detailed elaboration of a simple
example using both strategies is presented in appendix A. In the case of two sub-
systems the equilibrium conditions are described by

1fC1x) -1r-1e( 1%, 2x) =0 (2.13)
2£(2X) - o1 - 2¢( 1%, 2%) =0 C O (214)

14
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the iteratively coupled solution strategy

A summary of this algorithm is given in the flow chart ( Fig. 2.1 ). Consider the
sub-systems 1 and 2. At the start of an increment the values of 1x and ,x for the
converged situation of the previous increment are used as initial estimates.

initialize increment

estimate X

1~

solve x from(2.13)

no

converged ?

yes

update ¢

1A

solve xfrom(2.14)

no
converged ?
yes
yes equilibrium and 10
contact conditions satisfied ?
Fig. 2.1 Flow-chart of the iteratively coupled solution strategy.

First, with respect to sub-system 2, {x is kept constant while a new estimate for the
column of coordinates of position vectors ox is calculated from the condition

15



chapter 2

2f(2x) -20-2¢(2x)=0 (2.15)

Next, with this estimate and the contact conditions, the contact forces on ;A can be
updated and a new estimate for the position of sub-system 1 is calculated ( 5x is kept
constant in the meanwhile ) from the condition

1£(1x) - 1r-16(1x) =0 (2.16)

The attained estimates of ;x and ,x will generally differ from the initial estimates.
New estimates will be calculated starting from the former. This algorithm proceeds
until the equilibrium condition as well as the contact constraints are satisfactorily met.
Then the increment is considered to be converged and the next-increment is started.

the direct fully coupled solution strategy

When the direct fully coupled solution strategy is used, the equilibrium equations for
both coupled sub-systems are solved simultaneously under estimated contact
conditions with respect to the end of the considered increment. Here, A, A, and A,
represent the sets comprising ;A, A, and ;A of all sub-systems, respectively, while V

is the set containing the volumes ;V of all sub-systems. The columns f, r, ¢ and x

£ L
comprise respectively the internal forces, the external forces applied on A, the contact
forces acting on A, and the coordinates of all nodal points in the system. For every
iteration new estimates for both x and the contact conditions are obtained by solving
the matrix equation that comprises both sub-systems. Eventually the equilibrium

condition
f(x)-r-c(x)=0 \ (217)

for the total system must be satisfied. The number of equations in ( 2.17 ) is defined to
be 3m, m equal to the total number of nodes in V. The number of non-trivial
components in ¢ equals 3n, n being the number of nodes in A.. A complication is the
combination of the Lagrangian description for the structural system ( nodal points
coincide with material points and move together with the structure ) and the Eulerian
description for the fluid ( nodal points are fixed in space ).
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Comparing both strategies, the direct fully coupling has the disadvantage that the
number of equations and the required computer memory increase. On the other hand
for the iteratively coupled strategy the number of iterations needed to obtain a solution
is larger. This disadvantage is especially a serious problem if more than two
sub-systems exist, because the number of iterations increases very strongly with the
number of sub-systems. Therefore, we will apply the direct fully coupled solution
method here for both structure-structure interaction problems and structure-fluid
interaction problems with fluid sub-systems which can easily be described using a
Lagrangian formulation. However, if a fluid sub-system which is described by a
Eulerian formulation is incorporated in a system with more than one structural
sub-system, then direct full coupling will probably be chosen for the structures while
the fluid sub-system will be iteratively coupled to the structures. Such problems are
not dealt with in this thesis.

2.4  solid-solid contact with large sliding

In literature ( e.g. Hughes et. al. ( 1976 ), Bathe and Chaudhary ( 1985 ) ) much
attention is paid to the contact of two material points and the appropriate constraints.
The ambiguity of criteria to identify sets of actual contacting material points
constitutes an important aspect of the contact algorithm. This is especially the case
when large sliding in the contact areas occurs. Till now relatively little attention has
been paid to this point in literature. Recently, Zhong and Nilsson ( 1990 ) described a
contact searching algorithm and specified contact criteria for sets of material points.
However, for large sliding contacts, the actual composition of the sets of contacting
points and the corresponding constraints change continuously. No special attention
was given by Zhong and Nilsson { 1990 ) to these aspects.

In this section a finite element formulation for large sliding static contact problems is
presented, in which friction in the contact areas is disregarded. The formulation can
easily be extended to incorporate frictional behaviour.

After the contact behaviour has been specified the solution strategy is outlined. Next
the possible contact states of a material point in the discrete formulation and the
modelling of the state transitions are discussed and illustrated in some examples.
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24.1

continuous formulation of contact behaviour

With respect to an arbitrary material point P of A, two contact states can be
distinguished:

18

At time T =t point P is contacting another material point of A. This is the case
if a point Q on A, exists, for which the position vector at time T =t is equal to
the position vector of P

¥<§P,t)=i’<§q,t) (2.18)

while at the same time the unit outward normal vectors to the outer surface at P
and Q are opposite

(& t) =-H( 5, t) (2.19)

Then the contacting state with respect to the point Q is attributed to P. The
principle of action and reaction has to be satisfied

P B, 1) =-Pd &, t) (220)

Because no friction is assumed in the interaction, the tangential component of
the contact stress vector Bc has to be zero. This condition is represented by

B ) - (1M O] =0 (221)

which describes a constitutive relationship for the contacting state. An additional
constitutive relationship results from the condition that the contact stress has to
be compressive

P B, t) - D( &R, 1) =<0 (2.22)
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* If point P is not coinciding with any other material point of V at time 7 = t, the
free state is attributed to P. Characteristic for the constitutive behaviour of the
free state is the equation

P, t)=0 (2.23)

Penetration of point P into a sub-system is not allowed.

2.4.2  discretization and solution strategy

While in the continuous formulation for the contacting state attention has been
focussed on a particular material point P on A, in contact with another material point
Q on A, in the discrete formulation a nodal point P on A, is considered to interact
with several other nodes on A.. For an adequate description the contact unit is
introduced. A contact unit is defined with respect to any node P on A; and consists of
node P and a set of nodes in the part of A, that may interact with node P. In general
one node will participate in more than one contact unit.

Suppose that with respect to every node on A, a contact unit is defined. The column ¢
is composed of the nodal interaction contributions of all the contact units in the
system. Let k, ( 3 components ) be the column with the nodal force contributions on
node P as a result of the interaction in the particular contact unit defined for P.

It is assumed that to every contact unit one of the following two contact states has
been assigned ( the procedure to assign a certain contact state will be explained later
on):

* passive state
This state corresponds to the situation previously called free. According to

equation ( 2.23 ) the contact behaviour for the contact unit is characterized by
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*  active state
This state is the equivalent of the contacting state of a point in:the continuous
formulation. Because k;, is the force contribution on node P of the contact unit,
’.ISP is the action of node P on a number of other nodes in this contact unit,
according to the principle of action and reaction. The distribution of -k, over
these nodes is formally given by

ape =-Dy(x) kp (225)

where Dy ( 3m rows, 3 columns ) is a distribution matrix, dependent on the
geometry at the end of-the increment as defined by the column x with nodal
coordinates. Then the total contribution to ¢ of the contact unit under
consideration is represented by

Cop=apc+Lpkp=[-Dy(x)+Lplky (226)

with Ly ( 3m rows, 3 columns ) being the appropriate location matrix. Because
of equation ( 2.21 ) the tangential contact forces are prescribed to be zero. The
corresponding conditions with respect to k, can be written as

Bo(x) kp=0 o (227)
with Py (2 rows, 3 columns ) the projection matrix to be derived from the actual
geometry..

Finally, a kinematic condition applies for node P, taking into account that the
contact unit is closed which means that node P is localized in a particular
element face of A.. This can be formulated by

k(x)=0 . (2.28)
where «;, is a scalar function of the nodal coordinates.
The set of contact units to which the active state has been assigned is denoted by S,

the number of active units by s. Summation over all the active contact units in the
system yields
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cp= 2 [-D(x)+Lplk=A(X)k (229)
peS

where the matrix A ( 3m rows, 3n columns ) controls the assemblage, whereas k
( 3n components ) is a column with the nodal force contributions k;, of all the contact
units. The conditions ( 2.24 ), ( 2.27 ) and ( 2.28 ) are similarly denoted by

Zk=0 (230)
B(x)k=0 (231)
K(x)=0 (232)

respectively, with Z ( 3(n-s) rows, 3n columns ), P ( 2s rows, 3n columns ) and
x (s components ) implicitly defined. The balance equation ( 2.17 ) and the
conditions ( 2.30 ), ( 2.31 ) and ( 2.32 ) constitute a set of 3(m+n) equations,
describing the discrete contact problem. In a more concise notation these can be
written as

Hx)-r-cxk)=0

(233)
hxk)=0
This set of equations is non-linear with respect to x and linear with respect to k. The
columns x and k contain the system degrees of freedom.
Because the problem formulation is essentially non-linear, an iterative solution
procedure is used to calculate the system degrees of freedom at the end of each
increment, starting from estimates according to the converged situation of the
preceding increment. Estimates of the incremental changes for the system degrees of
freedom are indicated by 6x and &k. Incremental changes of the corresponding
estimates for f, ¢ and h are represented by &f, 6c and 8h, respectively. Linearization
with respect to x and k yields the relationships

i+18f = iF, i+16x (234)
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i+1¢ = iC, i+18x + iCy i+18k (235)
i+lah = if, i+18x + iH, i+16k (236)

with the left superscripts referring to the iteration number ( i=1,2,... ). The matrices
iFx, 1Cx, ICy, IHy and iy are the derivatives of f, ¢ and h with respect to x and k

for x = ix and k = ik. Based on ( 2.33 ) the following equations to determine
approximations for 6x and 8k are obtained
iEx_iQx -igk 6‘)5 - i£ + iy + ig
[ = (237)
iH, iH J L ok - ih

The columns ix and ik are updated according to
i+1§' = i! + i+16§ (2.38 )
i1k = ik + i+18k (2.39)

and the iteration process is continued until convergence is reached. With respect to the
convergence criterion, not only the right-hand side of equation ( 2.37 ) ( the residual )
has to be negligibly small, but also the inequality conditions related to prevent
penetration as well as maintaining the compressive character of interaction forces have
to be satisfied. These conditions are not covered by ( 2.33 ) and they will often require
changes of the initially assigned contact state. For computational reasons the contact
state is allowed to change every iteration cycle. Contact state transitions, which will
be specified in the next section, play an important role to achieve convergence of the
iteration process.

2.4.3  contact state transitions

In this section the state transitions for the present algorithm are outlined. These
transitions are derived from the actual estimates for the columns x and k every
iteration again. On the basis of these estimates it is determined whether to a contact
unit the passive or active state will be assigned. In case of the active state it is also

22



numerical formulation

established with which element face the unit node P is in contact. It is assumed that all
units have the passive state at the start of an analysis.

*  transition from the passive state
If after iteration i the passive state has been assigned to the contact unit with
respect to node P there is no mathematical restriction to node P against penetra-
ting A.. After iteration i+1 it has to be checked whether this node passed any of
the element faces of the contact unit. Therefore, the trajectories of the nodal
points

x(m)=tx+p(iix-1x) , Ospsl (240)

from the beginning of the increment to the actual estimate are considered. All

values of g are calculated for which node P is located exactly on an element face

of the contact unit. Two cases are distinguished:

- Such a pu does not exist, which means that node P did not penetrate any of the
element faces of the contact unit and thus the passive state can be maintained.

- There are one or more values of u for which P is located on an element face.
Then the smallest value of u is considered. For iteration i+1 the active state
with respect to the related element face is attributed in such a way that the pe-
netration with respect to this element face is eliminated by condition ( 2.28 ).

* transition from the active state
In the active state node P is allowed to slip without friction over an element fa-

ce. Starting from the active state in iteration i the following strategy is proposed:

- If the contact force is not compressive and hence { 2.22 ) is not satisfied, the
passive state is attributed.

- In all other cases ( compressive contact force ) continuation of the active state
is assumed. According to this state the kinematical condition ( 2.28 ) is
applied requiring node P to be coplanar to the element face to which it is
coupled. If in iteration i+1 node P is located on the same element face as in
iteration i, P is coupled to this face. However, if node P leaves this element
face during the iteration i+1, it is automatically coupled to the adjacent
element face. The sliding movement from one element face to another is
controlled in this way.
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24.4  examples

To demonstrate the performance of the contact algorithm, some case-studies are
discussed in the following. Because the contact algorithm is essentially the same for
three- and two-dimensional analyses, for reasons of simplicity only plane examples
will be presented. Consequently A is defined by line segments bounded by two nodes.

In the first example the process of coming into contact and the termination of contact
is simulated by moving a small elastic square element in the direction of a spatially
fixed rigid large square element in the first increment and pulling them apart in the
second increment. Fig. 2.2a shows the reference configuration in which the prescribed

i N

Fig. 2.2 Iteration estimates during two increments ( abc and def).

displacements are indicated by vectors. Because the passive state is attributed to all
nodes in the reference configuration, only rigid body displacements occur in the first
iteration. At the end of this step ( Fig. 2.2b ) two nodes of the small square have
penetrated an element face of the large square and the penetrations are calculated. In
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the next iteration the active state is assigned to these nodes and penetrations are
corrected as is shown in Fig. 2.2c, while equilibrium is also achieved. In the second
increment the bodies are pulled apart by prescribing displacements as indicated by the
vectors in Fig. 2.2d. Because at first the active state is continued, contact is
maintained and tension contact forces will occur ( Fig. 2.2e ). Then the passive state
takes over for the next iteration and the final situation with zero stresses is given in
Fig. 2.2f.

In the second example the comer contact problem shown in Fig., 2.3a is examined.
Baaijens ( 1987 ) mentioned this problem as an illustration of stability aspects in
relation to choosing contact nodes and contact element faces. In this example the

u 12
7 8
9 10
4 5 6
[E——
1 2 3
a b ¢
d €
Fig. 2.3 Corner contact problem.

nodes 5, 6, 8, 9, 10 and 11 are considered to constitute A.. Node 12 is fixed in space.
Displacements are prescribed as indicated by the vectors in Fig. 2.3a. After a
rigid-body displacement step ( Fig. 2.3b ), the penetrations are calculated. Then the
active state is assumed for a set of nodes according to:
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node ‘5‘6‘8‘9‘10‘11

in contact with

9-11 | 9-10 | 9-11 | 5-8 | 5-6 | 5-8

element face

Table 2.1 Node - element face relations.

Node 5 is arbitrarily coupled to element face 9-11, alternatively it could be coupled to
element face 9-10. Similarly node 9 can be considered contacting either face 5-6 or
face 5-8. However, for the present combinations of nodes and faces, the active state
constraints ( 2.28 ) for these nodes are dependent because both nodes 5 and 9 are
projected onto parallel planes. This combination of active state constraints does not
prevent node 9 from penetrating element face 5-6. Penetration occurs as shown in Fig.
2.3c. Now, node 9 slips off element face 5-8, and in the next iteration step the active
state is assigned to node 9 ( in contact with face 5-6 ). A situation occurs in which the
coinciding nodes 5 and 9 both have the active state with respect to non-parallel
element faces. Constraints applied to coinciding nodes to non-parallel element faces
suppress the relative motion of these nodes. In the meanwhile the nodes 8 and 6 move
off their respective element faces and finally the equilibrium situation is achieved in
Fig. 2.3e. The situations in Figs. 2.3c and 2.3d have to be considered as entr' actes and
are avoided when the nodes 5 and 9 are bounded to orthogonal element faces in the
second iteration step.

Large slidings are considered in the third example. Fig. 2.4a shows a spatially fixed
point obstacle represented by node 12, and ten beam elements between ithe nodes 1 to
11. In node 1 the horizontal displacement is prescribed as indicated by the vector,
while the vertical displacement and rotation in this point are suppressed. In the fifth
increment ( Fig. 2.4f ) the beam comes into contact with the obstacleand the upper
nine beam elements start bending, while the lower one is still not loaded and makes a
rigid body movement. In the following increments the element faces slip over node
12, node 10 being passed in the 12th increment. In the 15th increment ( Fig. 2.4p ) the
end of the beam has passed the obstacle, and an unstressed equilibrium situation
results.
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Fig. 2.4 Beam and fixed obstacle in subsequent increments.
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2.5 discussion

Standard procedures for solving constrained problems most frequently encountered in
literature are the Lagrange multiplier method, which is similar to the method presented
here, and the penalty function formulation. Guerra and Browning ( 1983 ), comparing
these formulations, showed that the Lagrange multiplier method satisfies the contact
constraints more precisely. This method however, adds extra degrees of freedom
requiring additional storage and computational effort. Further, they noticed that in
most cases problems were encountered with respect to the convergence of the solution
process. Using the penalty formulation implies an inaccurate formulation of the
contact conditions. The resulting disturbances would affect our parameter studies in a
negative way and cannot be accepted in our approach.

The examples constitute various contact problems with possible state transitions. The
stability of the algorithm proves to be quite satisfactory for general contact problems.

In the actual implementation of the present algorithm in the TNO-DIANA software
package all nodes of A, are considered to constitute one element: the sd-called contact
interface element, containing contact units for each of the nodes. To account for the
contact constraints and the internal contact forces, only the right-hand ¢olumn and the
tangential matrix with respect to this element have to be composed. Such a program
structure offers the facility to control the element face transitions which are
characteristic for this algorithm. If an iteratively coupled problem involving
fluid-structure interaction has to be solved, the same TNO-DIANA basic program can
be used. Starting from the element routine composing the contact forces, another
element program code can be called to calculate the fluid problem.

Because in the formulation the contact is defined for every node on A, it is not
necessary for the user to distinguish between an object body and a target body as is
usually done in most formulations. However, because of possible dependences in the
system of equations, emanating from the involvement of all nodes on A, special
action has to be taken to solve these equations.
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2.6 summary and conclusions

In this chapter a general strategy is outlined for interaction problems. In this study two
solution methods are distinguished. The direct fully coupled solution strategy is
applied if all sub-systems are structures or fluids which are described using a
Lagrangian formulation. If a fluid sub-system, which is described by a Eulerian
formulation, interacts with one or more structures, then the structures are directly
coupled to each other while the fluid is iteratively coupled to the set of structures.

The mechanical interaction problem is defined by the equilibrium conditions for the
set of sub-systems and the appropriate contact conditions. These contact conditions
and the contact forces are generally dependent on the positions and the deformation
field of all the sub-systems in the problem. For the large sliding solid-solid interaction
problem a formulation is worked out for which friction is assumed to be zero. The
presented algorithm proves to be quite satisfactory for general contact problems.
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chapter 3

CARTILAGE AND MENISCUS

3.1 introduction

Fairbank ( 1948 ) indicated the relationship between the outward displacements of the
meniscus and its load bearing capacity. In later years, for example Ahmed and Burke
( 1983 ), Jaspers et al. ( 1980 ) and Walker and Erkman ( 1975 ) carried out
investigations to establish the direct and indirect contact areas under different
loadings. The results of these investigations confirmed Fairbank's opinion. Also
physical-mathematical models of the load transmission were presented by Seedhom
and Hargreaves ( 1979 ) and De Lange et al. ( 1979 ). In these models femur and tibia
were considered as rigid bodies while the load was carried by two or four non-linear

springs, representing the combination of meniscus and articular cartilage layers.

Recently Tissakht et al. ( 1989 ) presented a study of the stress-pattern in the menisci
for different joint loads. They developed a three-dimensional non-linear finite element
model incorporating the menisci and the distal femoral and proximal tibial ends, based
on measurements of adult specimens. In this model the menisci were allowed to move
without friction over the tibial surface while the attachments to the medial and
transverse ligaments were modelled by 'cable' elements. The menisci were assumed to
behave strongly anisotropic while the material properties of the bony components and
articular cartilage layers were not given. Because of its complexity and the -probably-
many assumptions, which were not stated explicitly, this descriptive model is in our
opinion not suitable to investigate the functions of the joint components.

Other finite element analyses have been presented by Aspden ( 1985 ), Hefzy and
Zoghi ( 1988 ), and Sauren et al. ( 1984 ). In these studies the meniscus was modelled
as a toroid with a wedge-shaped cross-section resting on a compliant flat base.

A part of this chapter has been published in Journal of Engineering in Medicine ( 1990 ) 204, 53-56.
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In the model of Aspden a prescribed load acted perpendicularly to the upper surface of
a meniscus and the material behaviour was considered to be transversely isotropic.
Aspden's description failed to clarify whether or not the meniscus was allowed to
move with respect to the base. The model was used to provide explanations for the
type and localization of meniscal lesions from the computed strain patterns.

Sauren et al. ( 1984 ) presented a more global axisymmetric model. Its main purpose
was to investigate the transmission of loads through the joint both by the direct contact
between the articular surfaces and by the indirect contact via the menisci. The
deformations and the part of the load transmitted by the meniscus were established for
three combinations- of stiffness parameters and two different widths of the meniscus.
The material behaviour of the meniscal ring, as well as the femoral and tibial
components was homogeneous, isotropic and linearly elastic. Most important feature
of this model, however, is that it allowed any of its parts to move without friction over
the surfaces of any of the other parts. The meniscus appeared to transmit up to 70 %
of the total load, depending on the material properties of the meniscal and bony
tissues. Moreover, -these properties were found to be more important than the meniscal
width for the meniscal share in load transmission. The present reference model is
based on the model of Sauren et al. ( 1984 ), in such a way that the numerical
formulation has been improved with respect to prevention for penetrations of
components and the stability of the solution process.

The model presented by Hefzy and Zoghi ( 1988 ) was identical to that of Sauren et
al. ( 1984 ) as far as geometry, dimensions, and material properties are concerned. The
models differed only with regard to the coarseness of the element mesh, the boundary
conditions at the lower end of the tibial component and probably the contact elements.
However, these differences seem to be of minor importance since the results of
analyses with two combinations of material properties of meniscal and bony tissues, as
reported by Hefzy and Zoghi ( 1988 ), confirmed the conclusions drawn by Sauren
et al. ( 1984 ) from the same analyses.

Both the models of Hefzy and Sauren took into consideration only the meniscus and
the stiff bony ends of femur and tibia, and these parts were modelled as linearly
isotropic materials. Their conclusion, that the results of their analyses point to a large
influence of stiffness values of the different components on the load distribution
within the joint, is rather tentative, because the relatively soft articular layers on the
bony ends, and the strong anisotropy of the meniscal tissue were not taken into
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account. Moreover, they modelled the tibial plateau as a flat plane, thus leaving out of
consideration the possible importance of local concavities and convexities in the real
joint.

The overall goal of the work described in this chapter is to investigate these possible
shortcomings starting from the reference model. The specific objectives are formulated
as the determination of the effects of (a) the surface geometry of the tibial
component ( that is a plane, convex or concave surface ), ( b ) the presence of a soft
layer on the surfaces of the bony components, and ( ¢ ) the anisotropy of the meniscus
on the meniscal share in load transmission.

3.2 reference model

The reference model ( Fig. 3.1 ) is axisymmetric and contains a planar tibial plateau, a
spherical femoral condyle and, in between, a toroid with a wedge-shaped cross-
section, representing the meniscus. The tibial plateau is the upper end plane of a
cylinder of circular cross-section. The lower end plane rests on a rigid foundation.
Except at the axis of symmetry, all points of this lower end plane are free to move
radially over the rigid foundation. The spherical condylar surface is the lower end
surface of a cylinder, the upper end plane of which is loaded with an axial force
during the analyses. All points of the upper end plane are free to move in the radial
direction, except at the axis of symmetry. The axial force is applied in such a way that
the upper surface of the femoral part remains planar and perpendicular to the axis of
symmetry. In the unloaded situation, the lower and upper surfaces of the meniscus
match the tibial and femoral surfaces, respectively, while there is direct femorotibial
contact only at the axis of symmetry. Both between the meniscal ring and the articular
surfaces and in the region where the surfaces come into direct contact, relative motion
of the components is allowed. No friction occurs in the contacts. By means of the
finite element method, deformations and stresses of the components and the load
distribution in the contact surfaces can be established. The analyses for this study have
been carried out with the TNO-DIANA software package. The contacts have been
modelled as described in chapter two. The three bodies in the model have been
divided into isoparametric ring-shaped elements with triangular cross-sections. For
these elements the displacement field is a linear function of the displacements in the
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three element nodes.

femoral

component
meniscal
ring

tibial

component

Fig. 3.1 Outline of the reference model, where one quarter of the femoral
component and the meniscus has been left out for the sake of
clariyy.

The material of the components has been assumed to be homogeneous, isotropic and
to behave according to Hooke's law, so that its constitutive relation is given by

€y 1 0 -V -V ter

- 1 02(1+v) 0 O tez

€0y =E v 0 1 v ||ty (3.1)
T -v 0 -v 1 teg

In this linear relationship between the second Piola-Kirchhoff stresses t and
Green-Lagrange strains €, the subscripts r, z, and f denote the radial, axial and
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Fig. 3.2 Half of a cross-section of the reference model in the unloaded

situation, with the dimensions ( mm ). Also denoted are the axial
compression U of the upper plane of the femoral component and
the radial displacement V of the lower inner edge of the meniscal

ring.

circumferential direction, respectively ( Figs. 3.1 and 3.2 ). The only parameters
needed are the Young modulus E and Poisson ratio v. In literature the values of the
Young modulus and Poisson ratio for bone, articular cartilage, and menisci differ
considerably. This is caused by the strongly anisotropic and inhomogeneous character
of these components and their visco-elastic nature. From this point of view Hooke's
law is not suitable to describe these materials. However, in this thesis it is intended to
start with a simple model and therefore in the reference model for the bony
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components the E and v values are taken 500 MPa and v = 0.2, respectively, while for
the meniscus these values are 20 MPa and 0.3, respectively. These values are
considered to represent a fair average of the values in literature. The dimensions of the
reference model are given in Fig. 3.2.

The analyses have been performed for axial loads F up to 1000 N using incremental
steps of 100 N. The response of the models will be given in terms of the axial
compression U of the complete model, the radial displacement V of the inner lower
edge of the meniscus ( Fig. 3.2 ) and the fraction q of the load transmitted by the
meniscus.

Analyses of the reference model with different coarsenesses of the element mesh
showed that the coarseness of the distribution. of nodes on the contact surfaces
influenced the results. However, the coarseness of the distribution of nodes on the
contact surfaces in the reference model ( approximately 500 elements ) is such that
further refinement has only minor effects on the results. In all paramFter studies the
- distribution of the nodes on the contact surfaces was chosen similar to the reference
model.

3.3 parameter studies

3.3.1  bony components

The reference model described before deviates from reality in two important aspects:
First, the tibial 'plateau is not a perfect plane, but locally conve:é and concave.
Secondly, the femoral and tibial articular surfaces are covered by a soft layer of
articular cartilage. Therefore, the following modifications are applied to the reference
model, indicated from now on as model A ( Fig. 3.3):

* To account for the first aspect a convex or a concave spherical tibial plateau is
incorporated ( models B and C, respectively, in Fig. 3.3 ). The radius of
curvature of each plateau was 60 mm. In the unloaded configuration the radial
dimensions of the meniscus remained unchanged while its lower surface was
accomodated to match the tibial surface.
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Fig. 3.4 Element mesh of model D in the unloaded situation ( left ), and in
the loaded situation with F=1000 N ( right ).

Fig. 3.4 shows the element mesh in the undeformed and in the deformed situation
( F=1000 N ) for model D. Comparison of the two meshes clearly illustrates the
axial compression, the increased area of contact between femur and tibia, and the
radial displacement of the meniscus upon application of the load. It is also perceptible
that the soft layers deform significantly in the neighbourhood of the direct contact
area.

Fig. 3.5 shows the distribution of the contact stresses over the cross-sections just
beneath the tibial contact surfaces for the models A and D at F = 1000 N. It is clear
that in the model without soft layers there is a stress concentration in the
neighbourhood -of the direct contact while the presence of a soft layer yields
smoothening of the stress distribution. This phenomenon is characteristic for all the
models studied.
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Fig. 3.5 Paths of axial stress over cross-section just under the tibial
surface of the models A and D, without and with soft layers,
respectively.

Variation of the geometry of the tibial component ( models C, A, and B ) with
successively a concave, plane, and convex contact surface results in an increasing U
( Fig. 3.6 ) and a decreasing V ( Fig. 3.7 ) and q ( Fig. 3.8).

Incorporation of soft layers in the models A, B, and C results in the models D, E, and
F, respectively. Analyses of these models yield higher values of U, V, and q for a
particular load in comparison with the corresponding models without soft layers ( Figs.
3.6, 3.7, and 3.8 ). Although for the models with soft layers the variations of U are
larger and those of V are smaller than for the models without layers, the effect of the
geometry on the displacements U and V is qualitatively the same for both categories
of models ( Figs. 3.6 and 3.7 ). However, the effect of the geometry of the tibial
component on the meniscal share q in load transmission in the models A, B, and C
almost disappears as soon as soft layers are applied while at the same time a
significant increase of q can be seen ( Fig. 3.8 ).
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Fig. 3.6 Axial compression U versus axial load F for models A, B, C, D, E,
and F
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Fig. 3.7 Radial meniscal displacement V versus axial load F for models A,
B,C,D,E, and F.
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Fig. 3.8 Load transmitted by the meniscus as percentage q of the total
axial load F versus F in models A, B, C, D, E, and F.

From Figs. 3.6 and 3.7, U and V can be seen to depend on the axial load F in a
slightly non-linear way. The decline of the curves in Fig. 3.8 confirms the non-linear
character of the load transmission for these models, because in a linear model the part
of the load borne by the meniscus would be independent of the total load.

From a geometrical point of view the reference model A might be considered as an
intermediate form of the models B and C with a convex and a concave tibial surface.
Indeed the results for model A are in between those of the models B and C. Therefore,
several effects on the load transmission are involved in changing the curvature of the
tibial surface.

The first effect is the axial stiffness of the meniscus. In comparison with the reference
model A, model B with a convex tibial surface has a meniscus with a larger
cross-sectional area and smaller axial stiffness. If we assume, in spite of the changed
curvature of the tibial plateau, that the local stiffness of the direct contact zone
remains unchanged, this smaller axial stiffness will lead to a lower load fraction q. A
concave tibial surface ( model C ) leads to a decrease in cross-sectional area and
consequently to an increase in axial stiffness of the meniscus, yielding a higher value

41



chapter 3

of q.

The second effect is less clear. In all models the upper and lower surfaces of the
meniscal ring, which are respectively in contact with the femoral and tibial surfaces,
are not parallel. The meniscal wedge area is largest for model B and smallest for
model C. Loadings only act on the upper and lower surfaces of the meniscal ring, and
as a consequence of the assumption that no friction occurs in the contacts, these
loadings are always directed normal to these surfaces. Therefore, the wedge shape of
the meniscus in these models means that an axial load on the meniscus is always
combined with a radial load. Radial forces can be resisted only if circumferential
stresses are generated. The magnitude of the radial reaction force so created depends
on the dimension of the cross-section of the meniscus and its radial displacement.
Comparison of model A with model C shows that the latter has a greater axial
stiffness because, as a whole, more stiff material is incorporated. Analyses indeed
show a lower axial compression for model C at the same loadings ( Fig, 3.6 ). Because
of the smaller cross-section of the meniscus in model C, an equivalent circumferential
stress results in a lower radial reaction force in the model with a'concave tibial
plateau. As a consequence, the bearing capacity of the meniscus is limited because of
this smaller reaction force.

In the models D, E and F, the ends of the bony parts are covered by soft layers. As
could be expected, the axial stiffness of the models decreases and the radial
displacement of the meniscus increases as a result of the presence of the soft layers.
Especially the effect of this variation on the load of the meniscus is noteworthy. The
soft layers lead to an increase of the load borne by the meniscus, while differences in
the curvature of the tibial plateau seem hardly to have any effect on q. Other authors
( e.g. Wismans et al. ( 1980 ) and Huiskes et al. ( 1985 ) ), investigating the geometry
of the ends of femur and tibia, go into great detail in describing the geometry of the
surfaces. The results of the present analyses indicate that, in a model of the dynamic
or static load transmission, the layers of articular cartilage should preferably be
incorporated for modelling of the load transmission.
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3.3.2  meniscal ring

The last class of parameter variations ( models G and H ) to be discussed took into
account the anisotropic material properties of the meniscal ring. In the fibrocartilage
of the meniscus the fibres run mainly in the circumferential direction ( Aspden et al.
( 1985 ), Bullough et al. ( 1970 ) ), so that the material stiffness in this direction
differs considerably from the material stiffnesses in the other directions. Taking this
into consideration and with Sauren's and Hefzy's conclusion in mind that the load
distribution strongly depends on the global stiffnesses of the components, Hooke's law
( 3.1 ) could not be used appropriately. For the meniscal ring, in this case, the
following constitutive relation was used:

[ E-! 0 -E-lvy -Eflvf tee
ex|_| 0 204WE 0 b, (32)
€z -E-ly 0 E-! -Eflvf t
Ef -Ef'v 0 -Eflvy Ef! ter

The two analyses with transversely isotropic meniscal properties were performed using
model D with a plane tibial plateau and soft layers. In these models the values applied
for the Poisson ratio's were v = 0.3 and vy = ( E¢/ E ) v. The values for E and E; are
represented in Table 3.1.

model| E(MPa) E;( MPa)

D 20.0 200
G 10.0 35.0
H 6.0 200

Table 3.1 values for moduli of the meniscal ring

For model G the value of E is equal to the Young modulus of the cartilage layer,
while Eg is larger than the Young modulus of the meniscal ring in the reference model.
Because the part of the load transmitted by the meniscal ring is rather high in model
D, it is interesting to find out to which degree the meniscal load decreases for model
H if a smaller E is applied.
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Fig. 3.10 Radial meniscal displacement V versus load F for models D, G,
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Fig. 3.11 Load transmitted by the meniscus as percentage q of the total

axial load F versus F in models D, G, and H.

The two models have an anisotropic meniscus in the sense that the stiffness in
circumferential direction is equal ( model H ) to the stiffness for model D, or higher
than ( model G ) the one for model D. In the other directions for both models the
stiffness is lower than in model D. Comparing the results of the analyses for these
models with those of model D, there are two striking points. In the first place the
much smaller radial displacement V ( Fig. 3.10 ) of the meniscus for model G is
remarkable, because model G has a lower meniscal radial stiffness than model D and
thus a larger V could be expected. Furthermore, taking into account the large
differences in the axial stiffness of the meniscal ring in the models D and H, the axial
compression U ( Fig. 3.9 ) and the meniscal load-fraction q ( Fig. 3.11 ) show only
small deflections from model D. These results point to an important role of the
circumferential stiffness of the meniscus in the load transmission through the knee
joint.
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3.4 model reductions

In the sections 3.3.1 and 3.3.2 parameter studies have been described conceming the
articular joint surfaces and the meniscal ring, respectively, in both cases starting from
the reference model. Comparing the results of these analyses, insight into the role of
the curvature of the articular surfaces, the presence of articular cartilage layers and the
anisotropy of the meniscus was achieved. The presence of the articular cartilage layers
appeared to be of major importance for the load bearing function of the meniscal ring,
whereas the effects of the curvature of the tibial surface were minor in the model with
soft layers.

The values for the stiffnesses of the soft layers and the bony components differ
enormously and ‘therefore the question arises whether it is necessary for the load
distribution to take the deformability of the bony components into account. If this
deformability does not affect the characteristics, then it is much more efficient to
leave it out of the model in future analyses.

In the models with a convex tibial surface ( B and E ) both articular surfaces are
convex. A plane of symmetry which is perpendicular to the axis of revolution can be
defined when a model with equal curvatures of the femoral and tibial surfaces is
considered. For such a model it is sufficient to analyse only one half of the model.
Because the curvature of the articular surfaces appeared to have minor effects on the
load transmission in the model, besides the deformability of the bony %tmctures, also
the necessity for modelling both articular cartilage layers is questioned. In literature
several models are presented ( e.g. Hou ( 1989 ) ) comprising only dne deformable
cartilage layer and both a rigid indentor and a rigid foundation.

A reduced model is introduced here and it is investigated whether the mechanical
characteristics with respect to the load distribution q of the reference model also apply
for this reduced model. If this appears to be the case, much more extensive parameter
studies can be used to investigate whether these characteristics apply onmly for a
particular set of parameters or also for a wider range of constitutive and geometrical
parameters.

Half of the cross-section of the reduced model is shown in Fig. 3.12. The reduced
model is similar to the reference model, but the spherical articular surface of the
femoral component is considered to be rigid. The articular cartilage on the tibial
plateau is a homogeneous cylinder with planar ends, fixed to a rigid foundation.
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Fig. 3.12 Half of the cross-section of the axisymmetric reduced model with

the parameters R and d.

Frictionless sliding between the rigid femoral sphere, the deformable meniscal ring
and the articular cartilage layer is also possible. In Fig. 3.12 the dimensions of the
reduced model are indicated. The material of the meniscal ring and the articular
cartilage layer is assumed to be isotropic and to behave according to Hooke's law, so
that its constitutive relation is given by ( 3.1 ). For both components the Poisson ratio
is v = 0.3. The Young modulus of the meniscal ring and the articular cartilage layer
are denoted by E and e, respectively. Their values are E = 20 MPa and e = 10 MPa.
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Parameter studies have been performed with respect to the radius R ( R = 20, 30, 40
and 60 mm ) of the spherical indentor, the thicknessd ( d = 0.1, 0.5, 1, 2, 4,8,
12 mm ) of the articular cartilage layer and the Young modulus e ( € = 5, 10, 20, 40
and 100 MPa ) of the articular cartilage layer, starting from the reduced model under
an axial load of 500 N. The results and graphs relating to the part q 6f the total load
borne by the meniscal ring, the total axial compression U of the model and the radial
displacement V of the inner side of the meniscal ring as functions of R, d and e are
shown in Fig. 3.13.
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Fig. 3.13 Results of calculations of the part q of the total load borne by the

meniscal ring, the axial compression U and the radial displace-
ment V of the innerside of the meniscal ring with respect to the
reduced model for a set of parameters corresponding with R = 30
mm, d = 4 mm and e = 10 MPa. Starting from this set the para-
meters R, d and e are varied respectively.
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From the results of these parameter studies the mechanical characteristics with respect
to the load distribution q of the reference model also appear to occur for the reduced
model. From these parameter studies it is concluded that q is between 0.60 and 0.70
for most of the performed analyses and thus virtually independent of R, d and e in a
wide range. However, for d <1 mm or e > 20 MPa ( Fig. 3.13 ) the meniscal load
decreases. A comparison with the reference model shows that for both models the
effects of the curvature of the articular surface on the load distribution are small. From
analyses with the reduced model this independency of q for changing R appears to
occur under the conditions that both d > 1 mm and e < 20 MPa. These are important
constraints for the choice of the stiffness and thickness of the cartilage layer in future
models. The axial compression U decreases with increasing radius R, which can be
explained by the increasing axial stiffness. The axial stiffness of the cartilage layer
depends on its thickness and its Young modulus e. At larger d the axial compression
increases while it decreases for larger e. The radial displacement V shows a similar
behaviour as q.

3.5 experimental analysis

As a first step in the experimental validation process, the reduced model of the
tibio-femoral contact complex is considered.

Agreement of results obtained from experimental and physical-mathematical analyses
is more valuable if the number of quantities that is compared is larger. With the
experimental techniques which are available at this time it is not possible to assess the
deformation field or the stress field of the complete system under consideration,
because only forces which act at the outer surface of the total system and
displacements at the outer circumference of the structure can be measured.

It is advantageous to take the reduced model rather than the reference model as the
starting point for the experiments, because in the reduced model one of the contacting
components is rigid, whereas both are deformable in the reference model. At contacts
of a rigid and a deformable component, the relevant contact stresses / forces can be
measured while this is practically impossible in contacts of two deformable
components. In the experimental model both the meniscal ring and the articular
cartilage layer are made of silicone rubber. Using uniaxial tensile tests, the material
characteristics of silicone rubber are determined. These characteristics are used in the
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and a piston that contacts the articular cartilage layer. The model is resting on a rigid
foundation that is spatially fixed. Contrary to the reduced model, as is described in
section 3.4, sliding movement of the cartilage layer over the foundation is possible
here. Three small cylinders, which are used for measuring the pressure under the
cartilage layer, are constructed in this foundation at a distance of 0, 27 and 41 mm
from the axis of revolution, respectively, while the outer radius of the cartilage layer is
55 mm.

Five force transducers ( F,, F, F3, F4 and F5 ) and two displacement transducers ( U,
and U, ) are installed. Using F; the total force on the model is measured. F, is applied
to register the force in the direct contact. Neglecting the friction between the piston
and the cylinder in the femoral component, from subtraction of the forces registered
by F; and F; the load of the meniscal ring is established. The inductive displacement
transducer U; measures the compression of the total system, while the radial
displacement of the outer edge of the meniscal component is recorded with the
displacement transducer U,. The forces on the cylindrical pistons in the rigid
foundation are measured by the force transducers F3, F, and Fs. Friction between the
pistons and their support appeared to be negligibly small in preliminary experiments.
A two component silicone rubber was used that can be moulded in arbitrary shapes
after the curing component is added to the basic component. Model components as
well as uniaxial tensile test specimens were prepared from the same mould, as the
final material properties depend on the proportion of both basic and curing component
in the rubber.

Three different specimens of this silicone rubber are applied, which can be
distinguished with respect to their stiffness and their colour ( yellow, green and
white ). In appendix B the Mooney-Rivlin material model is fitted on the experimental
results of the uniaxial tensile tests. From the fits the stiffness of the yellow, white and
green rubber appears to increase in this order.

The experiments which have been performed using the set-up in Fig. 3.14 comprise
the combination of a white meniscal ring with a yellow articular cartilage layer and
the combination of a white meniscal ring with a green articular cartilage layer. For the
first combination the layer is softer than the meniscal ring, while the layer is stiffer for
the second combination. To reduce the friction in the contacts, silicone oil of a
dynamic viscosity of 12,5 Pas was applied as lubricant.
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Fig. 3.17a

Fig. 3.17b
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The results of the measurements and of the corresponding numerical analyses are
summarized in Figs. 3.15 up to 3.18, where experimental results are indicated by
markers while numerical results are represented by drawn lines. Comparison of the
experimental and numerical results leads to the following conclusions:

The part q of the axial load ( Fig. 3.15 ) has a good agreement for the white-green
configuration, while for the white-yellow combination the calculated q is substantially
lower than the experimental q. Further, it is noticed that initially ( up to + 100 N ) the
total load is borne by the meniscal ring which can be explained by the fact that the
meniscal ring is too thick and no initial contact between indentor and articular
cartilage layer exists.

For the white-green configuration the experimental U ( Fig. 3.16 ) is clearly higher
than the calculated U, while for the white-yellow combination a deflection in the
opposite direction is found.

The experimental radial displacement V ( Fig. 3.17 ) of the outer edge;jof the meniscal
ring is lower than the calculated V for both the white-yellow and the white-green
configuration.

For the white-green combination the numerical and experimental pressures in the
contact of the articular cartilage layer and the rigid foundation ( Fig. 3.18 ) are
qualitatively in agreement, whereas for the white-yellow combination considerable
deviations are found. While for p; ( at the axis of symmetry ) the numerical results lay
underneath the experimental results, the opposite holds for p; and ps.

The elaboration of the numerical analyses yields problems with respect to the stability
of the solution process at loadings of approximately 500 N. These infstabilities result
from the numerical formulation of the rubber elements. Decreasing the incremental
load-size was not helpfull furthermore. However, this shortcoming does not prevent
comparison of the numerical and experimental results up to loads of S00 N. Although
a qualitative agreement is found, serious differences result, mounting up to + 20 % for
U, V and q and up to + 100 % for p;, p, and ps. Although explanations for these
deviations can be given, one should keep in mind that to some extent these
explanations will have a hypothetical character, because of the limited number of
measured quantities. Nevertheless, some explanations are given. The first concerns the
friction in the contact between cartilage layer and meniscal ring and the contact of
these components to the rigid foundation and the spherical indentor. Suppose that
friction in the experimental set-up is not reduced to such a degree that it reasonably
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can be considered to be zero. Because no friction is assumed in the physical-
mathematical models their q values will be smaller, while their U and V values can be
expected to be larger, because moving outward of the meniscal ring is disturbed by the
friction. In the physical-mathematical model the cartilage layer is assumed to move
without friction along the rigid foundation. Due to friction in the experiment in this
contact, the outward movement of the cartilage layer is disturbed and the contact
pressure p; at the axis of symmetry can be expected to be larger. As a result of this,
the contact pressures p, and ps at larger radii are smaller as the total axial force over
the contact surface of the cartilage layer and the rigid foundation is equal for
experiments and calculations.

All these deviations can be observed in Figs. 3.15 up to 3.18, except for Fig. 3.16b
where the calculated U is smaller while it is expected to be larger ( due to friction )
than the experimental U. Another explanation of the differences of experimental and
numerical results concerns the yellow moulding of the articular cartilage layer. Close
examination of this component by dissection after the experiments revealed that it
contained small air bubbles. Therefore its stiffness in the experiment is smaller than in
the physical-mathematical model, as in the specimens for the uniaxial tensile test no
air bubbles could be noticed. The differences of the values for U could be explained
by the lower stiffness of the yellow cartilage layer. The quantities q, V, p;, p2 and ps
would not be severely affected by a smaller stiffness of the cartilage layer.

3.6 summary and conclusions

An axisymmetric finite element model has been utilized for the analysis of the force
transmission in the tibia-meniscus-femur connection. The model assumes linear elastic
material properties, static loading and frictionless sliding contact between the
components. The study explores the effects of ( a ) tibial surface geometry ( plane,
convex, concave ), ( b ) presence of soft layers on the bony components and ( ¢ )
anjsotropic properties of the meniscus. Studies with eight combinations of parameters
are performed starting from a simple reference model. A reduced model is used to
generalize the preliminary findings for a wider range of parameter combinations. This
reduced model has also been used for experimental validation.
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The important conclusions of the analyses described in this chapter are:

The soft layers at the ends of femur and tibia, play a considerable role in the
force transmission in the models considered. For models with soft layers, the
geometry of the tibial plateau seems to have little influence and the load borne
by the meniscus increases, as compared to corresponding models without soft
layers.

The stiffness of the meniscus in the circumferential direction is found to be more
important for the amount of meniscal load transmission than the stiffness in
other directions.

The parameter studies with the reference model and the reduced model reveal
similar effects of the basic parameters as long as soft layers are applied.

In the range up to 500 N the experimental results in this chapter show
qualitatively similar effects as the numerical results. For the displacement
quantities and load distribution quantitative deviations up to approximately 20 %
occur, while local contact pressures differ up to 100 %. Elucidation of the origin
of these deviations can hardly be made, because the experimental measurements
are too limited for verifying the proposed explanations.

In the models used for the present study, the material of the components was assumed

to be homogeneous and to behave according to Hooke's law. In spite of the viscous,

inhomogeneous, and anisotropic nature of bone under certain loading conditions, this

assumption is reasonable for the bony structures. For the development of a dynamic

knee joint model it will be necessary to model cartilage as a multi-phasic medium

( Mow et al. ( 1984 ) ). In that case it seems also reasonable to consider meniscal
tissue as multi-phasic. From the eminent importance of both the presence of soft layers
and the circumferential stiffness of the meniscal ring, as found in this study, it is

expected that implementation of more appropriate constitutive equations for these

parts will undoubtedly yield a more realistic model for the dynamic behaviour of the
knee joint.
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chapter 4

FORMULATION OF INTERACTIONS

INVOLVING MIXTURES

4.1 introduction

The presence of soft cartilage layers on the articular bone surfaces appears to be very
important with respect to the load transmitting function of the meniscal ring in the
models discussed in chapter three. These models are based on the assumption that load
is fully transmitted by the direct contact between the cartilage layers and the indirect
contact via the meniscal ring. All joint components are considered as solids. In reality
some of these components are hydrated tissues in a humid environment. Loads acting
on these components cause fluid to move in or out. To account for these effects, some
components have to be modelled as mixtures. The numerical formulation of solid-solid
interaction, as described in chapter two, is adapted in such a way that mixture-mixture
interaction and mixture-fluid interaction can be described. Interactions between other
combinations of sub-systems can be directly derived from this formulation.

In the following the numerical formulations of a mixture sub-system as well as of a
sub-system consisting of an ideal fluid are defined separately. Then, the conditions for
the mixture-mixture and mixture-fluid interactions are specified. The numerical
formulation will be based on the directly coupled solution strategy.

4.2  mixture

A fictitious continuum is defined, in which each position is occupied by a fluid as well
as by a solid. The properties of the resulting continuum are averaged properties and
obey the equilibrium and conservation laws ( e.g. Oomens ( 1985 ) ; Mow et al.
( 1984 ) ). In order to describe the averaged properties an elementary volume V is
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used, The characteristic dimensions of the elementary volume are large enough for a
fair averaged continuum representation of all discontinuous properties. On the other
hand the dimensions have to be much smaller than the characteristic dimensions of the
total structure, in such a way that gross inhomogeneities will not be averaged out. The
elementary volume comprises a fluid phase and a solid phase

V=V, +V; (4.1)

where the subscripts s and f denote the solid and the fluid, respectively. The
corresponding fluid and solid volume fractions are

¢r=-“-jf D oh=Ys s geg=1 (42)

<=

The balance of mass requires the change of mass to be equal to the mass passing the
boundaries of the volume for each phase

v (p9)=0 5 p=dupt (43)
at s
L4 (p¥)=0 ; pr=drpt (4.4)
aT £

with ¥, V; and V; representing the gradient operator, and the solid and fluid phase
velocity, respectively, with respect to a spatially fixed reference. In these equations p
is the mass density with respect to the total elementary volume, and p* is the real
mass density of the concerned phase. Both phases in the mixture are: assumed to be
intrinsically incompressible ( p* = constant ). Mass transition from one phase to the
other is excluded.

Dividing ( 4.3 ) and ( 4.4 ) by p: and p?, respectively, subsequently adding the results
and using ( 4.2 ) yields

Ve (Ve-V)+7-¥,=0 (45)
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From this relation it can be easily derived that, as both phases are intrinsically
incompressible, volume changes of the mixture can only occur as a result of relative
motion between the fluid and solid phases.

Neglecting inertia effects, the balance of momentum for both phases can be written as

<l

-0, +Ts=0 (4.6)

<l

cop+T=10 (4.7)

with T representing the specific interaction forces between the solid and fluid phase.
Because of the principle of action and reaction

Ig=-1TI¢ (48)

The material behaviour of a mixture is determined by the behaviour of the phases
separately as well as by their interaction.

According to the usual approach of mixture theory the Cauchy stress tensor of the
solid and fluid phase are written as

&= O A gy (49)
o=-A¢el (4.10)
where A is the hydrostatic preséure of the ideal fluid in the mixture and o.f is the

effective stress. The deformation dependency of the latter will be specified in
chapter 5.

Substituting ( 4.9 ) and ( 4.10 ) into ( 4.6 ) and ( 4.7 ), respectively, and subsequently
adding the resulting equations leads with ( 4.8 ) to

V- (og-21)=0 (4.11)
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The interaction between the phases is described by Darcy's law

V-V,-9-(K-71)=0 (4.12)
with K representing the permeability tensor.

Consider a mixture sub-system j with volume ;V and outer surface ;A, that is
decomposed according to ( 2.2 ) in jA; and ;A,. A weak formulation both for
equilibrium of the mixture and for the momentum balance of the fluid phase reads

Vf( ﬁ' J\-i} )e: jOeff dJV - Anf J\?/ . jB dJA -

j j

j

- =
szjv'jvsdjv*' fﬁjz'jl(-ﬁjkdjv-
% A%

j-An jAc

where jv'\} and iz are arbitrary weighting functions used in the equilibrium and in the

momentum equations, respectively. The vectors jB, ch and jﬁ represent respectively the
load vectors on ;A and on jA., and the unit outward normal vector at jA.
The term

-+ -

jn-jK'jvjA=jq (4.14)
can be interpreted as the outward flow per unit area through the surface.

A finite element discretization is applied to both the fields of position vectors and the
field of fluid pressures
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T T :
R=jg x 5 jA=ja A (4.15)

with ;x and jA being the columns of nodal coordinates with respect to the solid phase

and nodal hydrostatic pressures, respectively, whereas chz_' and ja are columns with
vector and scalar interpolation functions. Similar interpolation functions are chosen for
the displacement components and for the hydrostatic pressures. Using a Galerkin
approach, the weighting functions are written as

T T
V=W s ozEie 2 (4.16)

with the columns ;w and ;z defined analogously to x and ;A respectively.
Using (4.14 ), (4.15) and ( 4.16 ), equation ( 4.13 ) can be transformed into

T
W il =sr-:c-st
ool B Badiadi el I (417)
jZ | | is*ik-n-jm
with
=it = S @B gy (418)
j
L= f,-?_z'-,-Bd,-A (4.19)
iAn
e S Bean (420)
iAc
T .
L=t = fji’"ﬂjﬂ A 4V (421)
N
£ =38(%) = vf g - ¥ gV (422)
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T
j=ip(A)= Vf,-i'jg-,-x-jng v (4.23)
j
= fjsjqde (424)
HAa
jm = fjsjqde (425)
A

The columns ;f, jr, jc and jt comprise the internal nodal forces resulting from the
deformation of the solid phase, the external nodal forces applied on ;A;, the contact
forces acting on ;A and the internal nodal forces resulting from the hydrostatic
pressure, respectively. The columns js, ;b, jn and ;m contain, respectively, the nodal
flows related to the volume change of the mixture, the nodal flows resulting from fluid
pressure gradients, prescribed nodal flows on jA, and the flow across jA..

The requirement that ( 4.17 ) applies for arbitrary weighting functions results in the

system equations

() -jr-je-t(54) =0
(4.26)
S(E)+p(A)-jn-jm=20

Applying the Houbol time integration scheme ( Bathe ( 1990 ) ) with constant
time-steps aAt, the velocity field is described by

X(t+at) = 6_1 [ 11 jx(t+a0) - 18 jx(t) + 9 jx(t-at) - 2 jx(t-2a1) | (4.27)
At

Now, the discretized formulation of the mixture problem can be written as

fCx)-jr-e-1(jA) =0
(4.28)

*e

is(jx) +b(jA)- jn-;m = "s
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*

where **;s comprises the contribution of jx in ;s from previous time steps according to
the Houbol time integration scheme and *js contains the contribution of ;x from the
actual time step. The degrees of freedom jx and jA of the sub-system satisfy the
kinematic boundary conditions, while ;r and ;n obey the dynamic boundary conditions.

43  fluid

Again an imaginary sub-system j with volume ;V and outer surface ;A; is considered.
The sub-system is assumed to be fully enclosed by structure sub-systems and
interaction occurs at all points of ;A.. Let the volume ;V be filled with an ideal fluid,
while fluid flow across the outer surface is not allowed. Because the fluid is ideal, two

conditions apply. The volume invariance condition is represented by

a;V
—=0 (429)
ar

The stress tensor is given by
jo=-ipl (4.30)

where jp is the hydrostatic pressure of the fluid, which is equal for all points in ;V.
However, if fluid flow across the outer surface is allowed, condition ( 4.29 ) has to be

replaced by

M fa. =
—+ jve - jn de=0 (431)
ar jAC

with ﬁf = j;(’f being the fluid velocity vector.
Consider an arbitrary point P on ;A at time 7=t. The position vector of P is expressed

as a function of the positions of a number of nodal points on jA. in the discretized

formulation. When these nodal positions are represented by jx, for the position vector
of point P holds
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j;"P(‘)=j§T(EP)j§(t) (432)

where j&' is a column of vector interpolation functions and &p is the column with

material coordinates for point P.
The actual volume ;V can be derived from the positions of all nodes on A,

iV =V(x) (4.33)
The stress principle of Cauchy-Euler is given by
Pe=jo- i (4.34)

Substituting ( 4.30 ) into ( 4.34 ), with the use of ( 2.9 ), the column with nodal
contact forces can be expressed as

js=js(jp)=-jijcfj§'jﬁ'de (4.35)

The flow across the outer surface of the fluid sub-system is distributed over the nodes
of the sub-system. The flow related to node P is indicated by jy, and is positive when
fluid flow is leaving the sub-system j. Let the total number of nodes on ;A in the fluid
sub-system be m. For the present increment or time step the equations ( 4.29)
and ( 4.31) are transformed into

V(iix) - V(1x) =0 (436)

V(x) - V(x)+ a3 (k- TE) =0 (437)
k=1

respectively, where At is the actual time step. In a more concise notation they are
formulated as
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aV(x)=0 (4.38)
aV(x)+Q=0 (439)

where ;Q is the total flow leaving the fluid sub-system during the actual increment.

4.4 interface conditions

4.44  introduction

In order to formulate the interface conditions between a sub-system consisting of an
ideal fluid and mixture sub-systems, it is assumed that the fluid sub-system is enclosed
by one or more structure sub-systems. Structure-structure interactions as well as
fluid-structure interactions may occur. Whether a material point on A, is involved in
structure-structure or in fluid-structure interaction is not known a priori, as this
depends on the actual deformation of the total system.

Let the nodal contact forces ¢ and the nodal positions ¢x be constituted by a selection
from ¢ and x representing the respective columns for the total system. This is
expressed by the equations

Se=-ig (440)
Sx=g (441)

where S( x ) is a selection matrix that selects only those nodes of A, that are actually
bordering the fluid sub-system.

Three cases are distinguished with respect to interactions involving mixture
sub-systems. In the first case fluid flow across the boundaries of the sub-system is not
allowed. The surfaces of the interacting mixtures are sealed and impervious. In the
second case fluid flow across the boundaries of the sub-systems is allowed. The fluid
pressures at both sides of A; are equal. In the third case the contact between sealed '
and not sealed surfaces is considered. These three cases are dealt with in the following
sub-sections.
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4.4.2  interaction between sealed mixture sub-systems

Starting from the mixture sub-system equations ( 4.28 ), the columns resulting from
interaction with other sub-systems have to be defined. These are the columns jc and
jm, containing the nodal forces and nodal flow at ;A respectively. When interactions
with sealed surfaces are considered fluid flow across A, is not permitted while the
fluid pressures at both sides of the seal are not necessarily equal. This situation is
achieved by assuming the contribution to the column m, comprising nodal fluid flows

across A of all contact units, to be zero, hence

m=0 (442)
The fluid sub-system is completely enclosed by impervious sub-system surfaces. Fluid
flow in or out of this sub-system is not possible and condition ( 4.38 ) applies. In
addition to the contribution of the structure-structure interaction to the column with
contact forces ¢, which is described in chapter two, we now have also a contribution
of the fluid-structure interaction that emanates from the pressure of the fluid
sub-system. Taking this contribution into account the expression ( 2.29 ) for the
column with contact forces is extended according to

c=Ax)k - Xx)ee(P) (4.43)

The formulation of the interaction between sealed mixture sub-systems and a

sub-system consisting of an ideal fluid is represented by

f(x)-1r-cdxk@)-12)=0

's(x)+b(A)-n=""s

(4.44)
h( x, k) =0
AJV(§ =0

The system degrees of freedom are denoted by x, A, k and (p, representing the nodal
displacements, hydrostatic pressures, contact forces and the pressure of the fluid
sub-system, respectively. When n is the number of nodes in the total system and m the
number of nodes on A, the equations in ( 4.44 ) represent respectively 3n equilibrium
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conditions, n mass balance conditions for the fluid, 3m contact conditions and 1
condition for the volume invariance of the fluid sub-system. In total ( 4n + 3m + 1)
equations and an equal number of system degrees of freedom are used for describing
the sealed mixture interaction problem.

4.4.3 interaction between mixtures which are not sealed

If mixtures interact that are not sealed, in addition to the conditions for the contact
forces, which are equal to the conditions described for interaction between sealed
sub-systems, conditions for the fluid flow across A. have to be formulated. Therefore,
the mixture-mixture and mixture-fluid contact are distinguished. For every node
( contact unit ) on A, it is checked whether this node is actually in contact with a
structure or with a fluid sub-system. The conditions under which the structure-
structure contact is assigned are described in section 2.4.3.

Let ¢p be the nodal flow in node P as a result of the interaction in the contact unit
defined for P, where ¢, is positive for fluid flow leaving the sub-system comprising P.
The following conditions apply

¢  mixture-mixture contact
Because ¢p is the flow contribution to node P of the contact unit, -¢p is the flow
contribution to a number of other nodes in this contact unit, according to the
mass balance of fluid. The distribution of -¢p over these nodes is formally given
by

8 = - dy( %) dp (445)

where g_p is a distribution column. Then the total contribution to m of the contact
unit under consideration is represented by

mp=apm+ 1, ¢p=[-dp+ 1,16 (4.46)
with 1, being the appropriate location column. Finally, a condition, taking into

account that the hydrostatic pressures at both sides of A are equal, applies for
node P. This is formulated by
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m(A)=0 (4.47)
where 7, is a scalar function of the column of hydrostatic pressures.

*  mixture-fluid contact

If the mixture-mixture contact is not active, it is assumed that the concerned
material point on A, is interacting with a fluid. This can be a fluid sub-system
which is enclosed by structure sub-systems, or it can be an environmental fluid
with external specified conditions. Here, contact with a fluid sub-system is
considered. The nodal flows y, which constitute the total flow Q out of the fluid
sub-system according to ( 4.39 ), are the sum of the components of the results
from § s and - § b. Further, in node P the hydrostatic pressure of the mixture is
equal to the pressure in the fluid sub-system

Ao=p (4.48)

Taking all contact units into account, the problem of interaction between one fluid
sub-system and several not sealed mixture sub-systems is characterized by

f(x)-r-c(xkep)-t(A)=0

s(x)+b(A)-n-m(¢)=""s
h( x, k) =0 (449)
1(x, & ¢p) =0

act(x) + Q=0

with y comprising the conditions ( 4.47 ) and ( 4.48 ) for all contact units. The system
degrees of freedom are given by x, A k, ¢ and @, representing the nodal
displacements, hydrostatic pressures, contact forces, flows across A. and the pressure
-in the fluid sub-system, respectively.
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4.4.4  other interactions

Several other interactions such as solid-fluid and solid-mixture interactions are
possible and can be described with the presented formulations.

When the fluid sub-system is enclosed by solid sub-systems, the appropriate
formulation can be derived from ( 4.44 ) for the sealed mixtures interaction. All
columns of ( 4.44 ), which are related to fluid movement inside the mixture
sub-systems, can then be left out of ( 4.44 ). A system of ( 3n + 3m + 1) equations
results.

Otherwise, when the fluid is enclosed by solids and mixtures which are not sealed, the
formulation is based on ( 4.49 ). A fluid pressure degree of freedom A is attributed to
every node on A, As those degrees of freedom only receive contributions from the
interaction with other sub-systems and not directly from mixture elements, these
contributions are forced to zero by the\systcm equations. The total number of system
degrees of freedom is ( 3n + h + 4m + 1 ), where h is the number of nodes in the
system which are part of a mixture element or lie on A,

4.5 summary and conclusions

A mixture sub-system and a sub-system comprising an ideal fluid have been
considered. Also the interface conditions for mixture-mixture and fluid-mixture
contacts have been defined. With respect to mixtures, sealed and not sealed contact
surfaces are distinguished. Concerning the interaction of sealed surfaces the contact
forces depend on the actual situation of the total system while the mass-balance
conditions for the fluid concern only the quantities of the considered sub-system.
When the surfaces are not sealed these mass-balance equations for the several
sub-systems are also coupled. For a node on A, equations take into account the
equilibrium conditions, the mass-balance for the fluid, the impenetrability conditions
for the contact and contact conditions for the hydrostatic pressure.
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chapter 5

INCORPORATION OF FLUID AND MIXTURES

IN THE TIBIO-FEMORAL CONTACT MODEL

5.1 introduction

Both the articular cartilage layers and the synovial fluid in the tibio-femoral joint are
hydrated tissues comprising free fluid that can move through the solid matrix and the
hyaluronic acid-protein complex, respectively. In literature the cartilage is often
described as a mixture ( Mow et al. ( 1984 ); Spilker et al. ( 1990 ); Spilker and Suh
(1990 ) ), while the synovia is considered as a viscous fluid ( Droogendijk ( 1984 ) ).
A complex interaction between the cartilage layers and the synovial fluid occurs when
the joint is loaded. Literature agrees to the importance of the tribological function of
the synovia ( Dowson ( 1967 ); Walker et al. ( 1968 ); Dowson et al. ( 1970 );
Armstrong and Mow ( 1980 ) ). Several lubrication mechanisms have been proposed
in which the deformability and permeability of the articular cartilage layers are taken
into account, but quantitative validation of these mechanisms fails. To achieve insight
into the lubrication in the knee joint, the importance of possibly relevant parameters
( such as viscosity of the synovial fluid, permeability and stiffness of the cartilage
layers, thickness of the cartilage layers, the presence of menisci and the curvature of
the articular surfaces ) have to be investigated.

A very valuable step in this direction has been done by Hou ( 1989 ). He developed a
model of squeeze film lubrication. According to this mechanism the load bearing
capability of the viscous fluid film is based on the resistance the fluid offers when it is
squeezed out of the contact zone. The axisymmetric model comprises a rigid imper-
vious spherical indentor and a plane deformable layer of a fluid-solid mixture, repre-
senting the cartilage layer. The layer is fixed to a rigid impervious underground. The
complete model is immersed in a Newtonian fluid. With respect to the boundary
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conditions for the fluid ﬁ'lm, at the solid indentor the no-slip condition applies, while
at the cartilage interface the tangential fluid velocity is assumed to be equal to the
averaged velocity, weighted by the volume fractions of the fluid and solid phases in
the mixture at this place. The coupled differential equations for the infinitesimal
deformations of the cartilage layer and the viscous fluid film are solved almost fully
analytically for step loadings of 30 N and 300 N, starting at a small initial gap
between the cartilage layer and the indentor. The initial gap reduces to zero in the
course of time and the fluid pressure in the film has its maximum value at the centre
of the contact of indentor and layer and decreases to zero with increasing radius. At
the centre of contact a small flow from the film into the cartilage occurs. Under the
load of 300 N the deformations of the cartilage are so large that the infinitesimal
deformation theory can no more be applied properly. Hou concluded that with the
development of finite element models for the mixture and fluid and by using more
accurate constitutive relations for the finite deformations, it will be possible to
describe the joint function more accurately.

The development of such models is difficult, especially when large relative move-
ments of joint elements such as articular surfaces and menisci are considered. In this
chapter a first step of numerical modelling of the fluid-mixture interaction in the
tibio-femoral joint is performed, based on the formulations as derived in the chapters
two and four. A model is defined using finite deformation mixture elements which are
coupled to a sub-system consisting of an ideal fluid.

5.2 description of the model

The first model in our approach comprising mixture-mixture and mixture-fluid inter-
action is based on the reduced model as presented in chapter three as far as geometry
is concerned. The model ( Fig. 5.1 ) is axisymmetric and contains a planar disc,
representing the articular cartilage layer, a spherical indentor, and, in between a toroid
with a wedge-shaped cross-section representing the meniscus. In the unloaded situ-
ation the upper end plane of the articular cartilage layer is in contact with the indentor
only at the axis of symmetry. The lower end plane of the cartilage layer is fixed to a
rigid underground. The lower end plane of the meniscal ring rests fully on this layer
while the upper surface of the meniscal ring matches the spherical indentor.
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< 8 ) | L
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[ 20 mm \Jl
Fig. 5.1 Half of the cross-section of the axisymmetric model with mixture

components ( /) and fluid component ( XX).

Frictionless sliding of the meniscal ring along the articular cartilage layer and the
spherical indentor as well as sliding of the articular cartilage layer along the spherical
indentor is allowed. Both the articular cartilage layer and the meniscal ring are
deformable mixtures of a solid and a fluid, while the spherical indentor and the
underground are rigid and impervious. The cavity enclosed by the cartilage layer, the
meniscal ring and the rigid sphere is filled with an ideal fluid. In the model this cavity
is considerably larger than in the real knee joint, because this is for the time being
easier to describe. Fluid flow across the interfaces of the fluid-mixture and mixture-
mixture contacts is allowed. The outflow at the outer radius of the meniscal ring and
the articular cartilage layer is free while the fluid pressure is assumed to be zero at
these places. It is assumed that no fluid layer is present between contacting surfaces.
The material behaviour is characterized by a linear coupling between the second
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Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor according to
Hooke's law ( equation ( 3.1 ) ) with E and v representing the Young modulus and
Poisson ratio, respectively. The effective Cauchy stress-tensor can be derived directly
from the second Piola-Kirchhoff stress tensor. Furthermore, an isotropic constant
permeability is assumed with the permeability tensor

K=kl (5.1)

with k being the permeability coefficient. The numerical values for the material
parameters are listed in Table 5.1.

IE(MPa) v(-) k(mm“/Ns)b

meniscal ring 20.0 0.3 0.001
articular cartilage 10.0 - 04 0.001

Table 5.1 values for material parameters

An axial load of 250 N is applied at T = 0 and the response of the model is calculated
for the next 25,000 seconds. The articular cartilage layer and the meniscal ring are
divided into four-node isoparametric mixture elements with linear interpolation
functions for the displacements and hydrostatic pressures.

The problem is solved using the directly coupled solution strategy and this strategy
seems to be very effective because no instabilities occurred.

From the performed analysis the load-distribution in this model seems to depend
strongly on time. In the reference model, presented in chapter three, the load was
borne by both the direct contact between the femoral and tibial component and by the
contact through the meniscal ring. In the model which is considered here, a third
sub-connection is constituted by the fluid enclosed in the cavity. Fig. 5.2 shows the
load-distribution over these three sub-connections as a function of time. Initially, just
after the load has been applied, the flow in the mixture components has not yet started
and about 75 % of the total load is borne by the fluid sub-system, while the direct and
meniscal contact bear 7 and 18 %, respectively. As time proceeds fluid can flow out
of the model at the circumferential outer surface of the meniscal ring and the articular
cartilage layer and the pressure in the fluid sub-system decreases. Because of the
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Fig. 5.2 Load-distribution versus time via direct contact ( — ), meniscal

ring ( // ) and fluid sub-system ( XX ).

outflow, the compression of the total model increases and the fluid sub-system carries
a continually decreasing part of the total load. Finally, after 10,000 seconds the
hydrostatic pressure is approximately zero all over the model and the load is borne
only by the direct contact ( 16 % ) and the meniscal ring ( 84 % ). Flow across the
upper surface of the cartilage layer only occurs when the concerned node is contacting
the fluid sub-system or the meniscal ring. When it is contacting the impervious
spherical indentor, the outflow ceases in this node.

Because of electrolytes are soluted in the fluid phase of the articular cartilage and the
proteoglycan aggregates of the solid matrix are ionized, local concentrations of
electrical loadings are created by forcing the fluid to move out of the model.
Therefore, the time that elapses until no further changes, resulting from the applied
load, occur will be probably smaller in reality.
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The meniscal ring has a dual function in this model. Initially, just after the load is
applied the enclosure of the fluid cavity by the meniscal ring results in a pressure
building up in the cavity, while finally, when fluid pressure approximates zero, the
meniscal ring carries the larger part of the total load.

53 parameter studies

5.3.1 introduction

In comparison with the models presented in chapter three, in the preceding section an
additional function for the meniscal ring with respect to the building up of pressure in
the cavity is found. To get some more insight into this function, parameter studies
have been performed with respect to the interface conditions and thé load which is
applied to the model, respectively. In the following the consequences of the trapsition
from the solid material models in chapter three to the mixture material models in this
chapter are studied systematically.

5.3.2  interface conditions

The interface conditions with respect to the fluid flow are considered in this
sub-section. Higginson and Norman ( 1974 ) questioned the necessity of taking into
account the cartilage components in the tibio-femoral joint as mixtures because of
their very low permeability. Both meniscus and cartilage layer comprise a dense
network of fibres at their outer surfaces and it might be speculated that this layer
hampers the fluid flow across these surfaces.

Five models are considered which differ from each other with respect to the boundary
conditions for the hydrostatic pressure. Two basic parameters are considered. First,
there is the presence or absence of fluid in the joint cavity. The other concems the
fluid flow. Next to models in which fluid flow across the outer surfaces;of components
is allowed, also models with sealed mixture- components and models with solid
components are considered. In model A ( Fig. 5.3 ) the meniscal ring and articular
cartilage layers consist of solid material while the cavity is empty. Model B is similar
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o model A, with the 'ybe'gﬁlldby'an'dlﬂ'dThemodelsCandDare
similar to the models A and B, respectiv ly xcept that the meniscal ring and articular
rtilage layers are mixtures bei g sealed at thei surfaces. Finally, model E is
the model presented in the pre section, which is identical to model D apart from

the fact that the surfaces ealed. The model which is similar to model C
but without sealed surfaces is not taken into account here. The reason for this is that it

/%

/ ///

//
7

E
Fig. 5.3 Half of the cross-sections of models A to E, where fluid
sub-systems ( gra y)mLxur components ( dashed ) and solid
components ( white ) are indicated. Impervious outer surface
indicated by fat lines
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Fig. 5.4 Finite element mesh of undeformed ( dashed ) and deformed
( drawn ) geometry of model A ( a ) and model B ( b ),
respectively.
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is considered to be a non-realistic model as no pressure is built up in the cavity
although the space is enclosed. The constitutive behaviour of all models is the same as
that of the model described in the previous section on the understanding that the
models A and B have zero permeability.

In Figs. 5.4a and 5.4b the undeformed and deformed element meshes for the models A
and B are shown. The axial compression of both models is clearly visible and larger
for model A than for model B. The contact area between the rigid sphere and the tibial
component is larger for model A than for model B. These effects can be deduced from
the larger axial stiffness of model B as a result of the load bearing capacity of the
fluid in the cavity. The volume of the cavity remains unchanged in model B while it is
reduced with increasing load for model A.

The Figs. 5.5a and 5.5b represent the principal stresses related to the Cauchy stress
tensor for the models A and B in the integration points. The stresses in the r-z-plane
are indicated by crosses while the circumferential stresses are represented by squares.
Dashed figures correspond to compressive stresses, while tensile stresses are indicated
by solid lines. For both models the stresses in the meniscal ring are mainly directed
circumferentially. In model B ( cavity filled ) at the inner side of the meniscal ring the
larger compressive stresses in the r-z-plane are mainly radially directed, while for
model A they are more axially oriented at this place.

Figs. 5.6 and 5.7 show the axial compression and the fraction of the total load that is
transmitted by the meniscal ring, respectively, versus time for all five models. Because
fluid flow is absent in the models A and B, their behaviour is constant in time. From
Fig. 5.6 the axial stiffness for the models with a fluid filled cavity:( B, D and E )
appears to be larger than for the models with an empty cavity ( A and C), because
the fluid bears part of the load. For the former models the loading of the meniscal ring
is smaller. Initially, the curves of model E are very close to the curves of model D, but
as time proceeds more and more fluid is squeezed out and at the end the hydrostatic

pressure equals zero everywhere, yielding the same conditions as in model A.

From these analyses it can be concluded that:
* The application of the mixture theory on the model of the tibio-femoral contact
complex only leads to significant effects if the outer surfaces of the components
are not sealed.
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Fig. 5.6 Axial compression of the models A to E versus time for a load step
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Fig. 5.7 Part of the load borne by the meniscal ring for the models A to E

versus time for a load step of 250 N at tv=0 s.
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e If these surfaces are not sealed the load distribution depends on the load-history
in such a way that the time that elapses untill no further changes resulting from
the applied load occur, is rather large for the parameter values.

¢ The fluid-filled cavity carries a large part ( up to 75 % ) of the total load applied
on the model and this fraction decreases to zero when the fluid is being squeezed
out of the model.

53.3  loadings

In the parameter studies described in chapter three, the joint load ranged from O to
1000 N. The load distribution appeared to depend on this load. In the preceding
section all analyses were done for a step change of the load from 0 to 250 N. The
influence of the magnitude of the step is still unknown. Two possible effects are
proposed beforehand. The first effect concerns an increasing total compression of the
model for larger loads. Thus more fluid has to be squeezed out of the model, resulting
in a larger time to elapse until no further changes occur-as a result of the step change
of the load. In the following this period is called the relaxation time. The other effect
implies an increase of the initial pressure in the cavity for larger loads. The resulting
fluid velocities will increase so that the relaxation time is expected to be smaller.
Taking these contradictory effects into account it cannot be predicted whether the
relaxation time will increase or decrease for larger loads. Therefore, the effect of the
magnitude of the load is investigated by performing an additional§ analysis for a
loading step of 500 N.

In Fig. 5.8 the pressure in the cavity is given as a function of time. Fig. 5.9 shows the
fraction of the load transmitted by the meniscal ring versus time for both loadings.
From both figures it can be seen that the relaxation time for the loading of 500 N is
approximately half of the relaxation time for the loading of 250 N.
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Fig. 5.8 Pressure in the cavity versus time for model E under load steps of
250N and S00N at t=0's.
1.00
0.80

0.60
L3
S
o
0.40
0.20
0'm ] 1 L . 1 1
0.1 1 10 100 1000 10000
T/s
Fig. 5.9 Part of the load borne by the meniscal ring versus time for model

E under load steps of 250 N and 500 N at v =0 s.
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Fig. 5.10 Part of the load borne by the meniscal ring versus time for the
models E, F and G under a load step of 250 N at =0 s. '

53.4  surface geometry

Both for the reference model and for the reduced model, presented in chapter 3, the
curvature of the contact surface(s) appeared to have only minor effects on the load
distribution in the models when the contact surfaces are covered by soft layers. This is
an important characteristic for the mechanical behaviour on the tibio-femoral contact
complex.v Therefore, we want to know whether it also applies when mixture materials
are used and the cavity is filled with fluid. Starting from model E, two models with
different curvatures of the rigid spherical indentor are defined. These models are
indicated by F and G and their radius is 20 mm and 60 mm, respectively. Thus, in
model G the wedge of the meniscal ring and the cavity are smaller while for model F
they are larger. To both models a step change of the load from 0 to 250 N is applied.
After load is applied, some time elapses until only the solid materials bear load. Then,
the load distribution in these models is similar to the load distribution in the reduced
models in section 3.4, and the fraction of the load borne by the meniscal ring can be
expected to be approximately the same for the models E, F and G. Whether this is the
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case for the initial response, when fluid bears part of the load, is not cléar on forehand.
In Fig. 5.10 the part of the load borne by the meniscal ring versus time for the models
E, F and G are shown as results of the performed numerical analyses. From this Figure
the initial loadings of the meniscal ring appear to differ for the three models up to 10
%. The relaxation time for the model G, with the larger radius, is smaller, while the
relaxation time for the model F with the smaller spherical radius is larger in
comparison with model E.

5.4 summary and conclusions

An axisymmetric finite element model is formulated which comprises a meniscal ring
and an articular cartilage layer, both considered as mixture materials which are
interacting with an ideal fluid sub-system,

From parameter studies it is concluded that the application of the mixture theory in
comparison with solid modelling only leads to significant effects when the outer
surfaces of the components are not sealed. The load-distribution seems to change
enormously during relaxation of the models. Initially the largest fraction of the load is
borne by the fluid in the cavity, while at the end, when the system has reached its
final configuration, the meniscal ring bears the major part of the load. Further, the
relaxation time appears to depend on the magnitude of the step change of the load.
Finally, the curvature of the spherical indentor appears to have significant effects on
the loading of the meniscal ring, just after the step changes of load are applied and
these effects disappear when the fluid is leaving the models.
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chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 conclusions

For the investigations reported in this thesis, conclusions with respect to the modelling
strategy as described in section 1.2, and conclusions conceming the mechanical
behaviour of the tibio-femoral contact complex, are distinguished.

The modelling strategy is characterized by a stepwise approach. Successive models
take more and more aspects of the mechanical behaviour of the tibio-femoral contact
complex into account. The material behaviour is assumed to be physically linear and
homogeneous over the joint components. Structural refinements of the materials are
applied, such as the application of mixture models for the cartilage components and
accounting for anisotropy in the fibrous meniscal ring. However, refinements
concerning physical non-linear behaviour, material inhomogeneities or a three-
dimensional geometry are left out of consideration and more priority is given to a
proper description of the interaction of the several components. From the results
presented in this thesis, the interaction between the components appears to be an
important aspect of the load transmission in the knee joint.

The model formulation is based on the finite element method and is easily adaptable
for application of more detailed and more complex material descriptions or for
extension to three-dimensional models. An important aspect of the numerical
formulation concerns the interaction of the different joint components. These
interaction problems are solved using the directly coupled solution strategy, as
described in the chapter two. This appears to be a very effective method because of
the stability of the solution process.
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Another important aspect of the modelling strategy is the validation of numerical
results by experiments on physical models. Experimental and numerical results have to
be compared with respect to a large number of quantities related to the important
aspects of the actual step in the modelling process. The search for explanations for
differences between experimental and numerical results is facilitated when the number
of quantities, that is compared, is larger. Measuring enough quantities for this purpose
is difficult.

The most important problem with respect to deformable solid and mixture components
is the fact that no techniques are available for a real three-dimensional experimental
registration of the deformation inside the components. Such techniques are necessary
for both a reliable registration of the deformation of the physical model and the
characterization of frictional and material behaviour of the real knee joint.

The mechanical characteristics, which are explored by parameter studies on the
different models, are lined up and the developments of the successive models are
described. Because of the abstraction of the actual models, one has to be very carefull
translating these characteristics to the real knee joint. However it is supposed that the
effects of basic parameters in the tibio-femoral contact complex are properly
described.

Starting from the reference model, as described in section 3.2, especially the presence
of soft layers on the articular surfaces of femur and tibia appears to be very important
for the load distribution in the joint. When such a layer is applied,|variations with
respect to the curvature of the tibial plateau have only minor effects on the loading of
the meniscal ring. Taking these characteristics into account, the reduced model is
derived from the reference model. Therefore, the bony componentsiare left out of
consideration and only one cartilage layer is modelled. The model components are
structurally refined by application of mixture materials. The cavity enclosed by the
meniscal ring and the articular surfaces is filled by an ideal fluid and bears a
considerable part of the total Joad. Possibilities of this fluid to flow out of the model
have to be investigated into more detail.
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6.2 recommendations

The most general recommendation for modelling the tibio-femoral joint is to continue
the similar strategy, with a stepwise evolution of models, as applied in this thesis.
Although the investigated mechanical characteristics seem to be sometimes trivial,
they are not because they cannot be predicted. To keep the several effects
distinguishable, it is advisable for every step in the modelling process to add or
change only a very limited number of parameters.

As long as only concise data are available with respect to the mechanical character-
istics of the real tibio-femoral joint, stepwise unravelling of mechanical characteristics
is performed in successive modelling steps. The characteristics for a certain modelling
stage are used as a guide-line for chosing subsequent modelling steps.

A possible way to arrive at a model for the complete joint is as follows. First,
attention has to be focussed on the interaction of mixture components with a
Newtonian fluid. Then squeeze film effects in both the direct and indirect contact area
have to be investigated. This aspect could cause the relaxation time of the model to
decrease considerably. Next, the application of more complex loading patterns, such as
harmonic axial loads, can be performed. When a three-dimensional formulation is
applied also bending of the knee may be simulated. Finally, more detailed descriptions
of the material and geometry of the real joint can be accounted for in the model. In
this stage e.g. physical non-linear material behaviour and effects.resulting from
moving electrical loadings in the articular cartilage can be taken into account. At the
end, the model of the tibio-femoral contact complex has to be integrated with or
extended to other sub-connections and a model of the complete joint results.
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appendix A

DIRECTLY AND ITERATIVELY
COUPLED SOLUTION METHODS

The direct fully coupled and the iteratively coupled solution strategies are illustrated
using a simple system. This system comprises two linear spring elements with
stiffnesses K; and K5, which are both considered to be sub-systems.

Fig. A.1 One-dimensional System comprising two structures.

The springs connect node 1 to 2 and 3 to 4 ( Fig. A.1 ). The system is
one-dimensional. The nodal displacements, the internal nodal forces, external nodal
forces and nodal contact forces of node P are indicated by up, fp, P and cp,
respectively. It is assumed that the nodes 2 and 3 are fixed to each other which results
in the contact conditions

uz=ud and c2=-c3 (A1)

Prescribing thie displacement of node 1 and suppressing the displacement of node 4
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yields the boundary conditions

ul=u and uw4=0 (A2)

The equilibrium equation is applied to all four nodes

fl-r1=0
-c2=
f3-¢3=0
f4-14=0
direct fully coupled solution strategy
Both sub-systems are assembled in one matrix equation
-K1 K1 0 o ul rl 0
K1 -K1 0 0 u2 0 c? ‘
0 0 K Kl|lw|[=lo|*]e (A4)
0 0 Ky-K || ut r4 0 .

Using the contact and boundary conditions, by substituting u3 and ¢3 by u2 and - c2,
respectively, this equation is transformed into

-Kl
Ky (K1+K2) Kz (AS)
0

from which it easily can be derived that

K,

uz= u (A6)

K1+K2
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Let a first estimate be

uZ=0 (A7)

From the equations concerning the first sub-system

FHEEEEE)

it is calculated that
c2=K, u (A9)

Because ¢3 = - ¢2, now an estimate of the contact force of the second sub-system is
known and from the equation concerning the second sub-system

K K |[w]_[o ], [-xuw (A.10)
Kz-Kz 0 I'4 0

it is calculated that

K,
W= —u (A1)
2

Using u2 = u3, from ( A.11 ) a second estimate for u2 is obtained and the iterative
solution process is continued. The iterative change of uZ after the i-th iteration stroke
is given by

o Kq\i
w2 itz = (-—) u (A12)
K,

From ( A.12) it is concluded that the iteration process will converge to the solution
( A.6 ) only if Kl < Kz.
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appendix B

CONSTITUTIVE BEHAVIOUR OF

SILICONE RUBBER

For three different silicone rubbers ( white, yellow and green ) the constitutive
parameters are established using the uniaxial tensile test. Therefore, four or five
specimens of every material of approximately 110 x 10 x 1 mm are prepared and
loaded in the uniaxial tensile test where the force is measured for different
elongations. The tested specimens seemed not to be fully elastic but some
stress-relaxation occured. The elongation is prescribed in steps of 4 mm while every
step 150 seconds it is waited before the related force is noted. Following this
procedure, for every step the relaxed state is considered, because after this time the
force does hardly change anymore. With respect to the experiments of the knee model
equivalent strain steps are prescribed while displacements and loading are measured
after similar relaxation periods. Let t be the second Piola-Kirchhoff stress tensor and B
the left Cauchy-Green tensor, then the Mooney-Rivlin constitutive relation for
incompressible materials is formulated as

dIB dIl

t=a——+
dB dB

B

(B.1)

where a and B are material parameters and IB and IIB are the first and second
invariants with respect to B, respectively. For the uniaxial tensile test, equation ( B.1)
can be transformed into

FzaAg(A-—)+BAg(1-—) (B2)
A2 A3

103



appendix B

F/N

Fig. B.1
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Fig. B.2
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represenis the fitted Mooney-Rivlin equation.
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represents the fitted Neo-Hookean equation.
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with F representing the tensile force and A being the elongation factor. Here, Ag is the
area of the cross-section of the specimen perpendicular to the stress direction in the
unloaded situation. Using regression analysis @ and B are deduced from equation
( B.2)) which fits best to the measurements. In Figs. ( B.1), ( B.2) and ( B.3) these
measurements and the appropriate Mooney-Rivlin model are shown for the white,
yellow and green rubber, respectively. The related material coefficients are given by

I white  yellow green

a| 0.15 008  0.61
plo.21 007 0.0

table B.1 Material coefficients.

Because the best fitted Mooney-Rivlin equation for the green rubber is not thermo-
dynamically allowable ( 8 < 0 ), it is prescribed that 8 = 0.00 and Neo-Hookean
behaviour results. As the green rubber is stiffer, for the deformation range we are
interested in only the smaller A's can be taken into account and doing so the increase
of F for A > 1.25 will not disturb the fitting.
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SAMENVATTING

Het doel van dit onderzoek is om het inzicht in de mechanische functie van de ge-
wrichtsonderdelen in het contact gebied van femur en tibia te vergroten. De beschouw-
de onderdelen zijn femur, tibia, kraakbeenlagen, menisci en synoviaal vloeistof. De
mechanische functies van de gewrichtsonderdelen zijn afhankelijk van hun interacties
met andere onderdelen. Er wordt uitgegaan van een stapsgewijze modelontwikkeling
waarbij wordt begonnen met eenvoudige modellen. In iedere stap worden parameter-
studies uitgevoerd om de functies van de relevante onderdelen te onderzoeken. Nume-
riecke analyses worden uitgevoerd met behulp van de eindige elementen methode en de
geldigheid van de resultaten wordt getoetst door experimenten met fysische modellen.
Contactproblemen zijn gedefinieerd door de balansvergelijkingen voor de afzonder-
lijke onderdelen en de contactcondities. Deze condities en de contactkrachten zijn in
het algemeen afhankelijk van de posities en de deformaties van alle onderdelen in het
beschouwde systeem. Voor vaste stof/vaste stof interacties met grote slip wordt een
probleemformulering uitgewerkt waarbij de wrijving nul is verondersteld. Dit algo-
ritme blijkt voor het oplossen van algemene contactproblemen goed te functioneren.
Een rotatie-symmetrisch model is gebruikt om de belastingdoorleiding in het contact
tussen femur, tibia en meniscus te analyseren. Dit model gaat uit van lineair elastisch
materiaalgedrag, statische belastingen en wrijvingsloze slip in de contacten tussen de
componenten. Het onderzoek is gericht op de effecten van de geometrie van het tibiale
oppervlak, de aanwezigheid van zachte lagen op botcomponenten en anisotrope eigen-
schappen van de meniscus op de belastingdoorleiding. Studies met acht combinaties
van parameters zijn uitgevoerd, uitgaande van een eenvoudig referentiemodel. De
aanwezigheid van kraakbeenlagen en de stijfheid van de meniscus in de omtrek-
richting blijken van groot belang te zijn voor de belastingverdeling.

Vervolgens wordt de probleemformulering zodanig uitgebreid dat modelcomponenten
kunnen worden beschouwd als een mengsel van een vaste stof en een vloeistof.
Interacties tussen mengsels onderling en interacties tussen mengsels en vloeistof
kunnen gesimuleerd worden. In het model worden de kraakbeenlaag en de meniscus
als mengsels beschouwd. Deze componenten interacteren met een ideale vloeistof die
de synovia representeert. Slip zonder wrijving in de contacten is mogelijk. De
responsie van het model ten gevolge van een stap belasting wordt berekend. Effecten
van de permeabiliteit van buitenoppervlakken en van verschillende belastingen worden
onderzocht. De belastingverdeling in het model blijkt aanzienlijk te variéren in de tijd.
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STELLINGEN
behorende bij het proefschrift

FORCE TRANSMISSION IN THE TIBIO-FEMORAL CONTACT COMPLEX

Voor de experimentele validatie van resultaten van analyses met sterk
geschematiseerde fysisch-mathematische modellen van het kniegewricht is het
gebruik van niet-biologische structuren zinvol.

( dit proefschrift, hoofdstukken 1 en 3)

De volledig gekoppelde directe oplossingsstrategie kan leiden tot een stabiel
algoritme voor problemen waarbij interactie optreedt tussen een vaste stof en een
vloeistof.

( dit proefschrift, hoofdstukken 2 en 5)

De menisci in het tibio-femorale gewricht dragen in belangrijke mate bij tot een
gelijkmatige belastingverdeling in het gewricht. Dit geldt voor schok-
belastingen en statische belastingen.

( dit proefschrift, hoofdstukken 3 en 5 )

In vergelijking met fenomenologische materiaalmodellen bieden structurele
materiaalmodellen meer perspectief bij het verkrijgen van inzicht in
mechanische karakteristieken van ingewikkelde structuren.

Om praktische redenen verdient een gesegmenteerde programma-opbouw de
voorkeur bij het ontwikkelen en testen van grote software-systemen.

Het beschikbaar zijn van snelle computers werkt inefficiént gebruik ervan in de
hand.

Multi-disciplinair werken weerspiegelt te vaak de statistische wetmatigheid van
regressie naar het gemiddelde.



10.

De begrippen centripetaalkracht, centrifugaalkracht en Corioliskracht worden
vaak gebruikt als vlaggen om een niet begrepen lading te dekken.

Het gebruik van 'schijnkrachten’ om een dynamisch probleem tot een 'schijnbaar’
statisch probleem te transformeren doet geen recht aan het feit dat een echt
statisch probleem een bijzonder geval is van een dynamisch probleem.
Bovendien kan deze werkwijze leiden tot oneigenlijke en foute beschouwingen.

Wat inspanning en beloning betreft zijn er veel overeenkomsten tussen
amateur-topsporters en assistenten in opleiding.

Eindhoven, juni 1991 Gerd-Jan Schreppers



