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Chapter 1
Introduction

1.1 Introduction

To the present day, the television (TV) market has been dominated by bulky
cathode ray tube (CRT) displays. Yet, display researchers have always been looking
for more elegant alternatives. Recently, two alternative display technologies have
emerged, that offer the possibility of large, lightweight, flat TV monitors. Both of
these technologies make use of exceptionally small gas discharges: microdischarges.
The best known is the plasma display panel (PDP) technology, using microdischarges
to generate the light of the display. The other is the plasma addressed liquid crystal
(PALC) technology, where microdischarges serve as electrical switches.

Before the PALC and PDP displays are ready to replace the conventional CRT
displays, they need considerable improvements in performance, lifetime, and cost
price. Most of the weaknesses of PALC and PDP are directly related to the operation
of the microdischarges. To be able to improve the properties of these discharges, it is
necessary to understand the underlying physics. Discharge modeling can be very
useful in obtaining this understanding, even more so since the microdischarges are so
small that they are hardly accessible to most experimental diagnostics.

As suggested by its title, this thesis deals with the modeling of the
microdischarges. In this chapter we provide the necessary background information.
Sections 1.2 and 1.3 describe the operation principles and improvement issues of the
PALC and the PDP technologies, respectively. Section 1.4 physically characterizes the
microdischarges. Section 1.5 gives an introduction to discharge modeling. Finally, in
Section 1.6, we define the aim of the work presented in this thesis and give an outlook
over the following chapters.

1.2 The plasma addressed liquid crystal (PALC) technology

The PALC technology was invented at Tektronics in 1990, and has been
described in several publications from that company, e.g. in Refs. [Buz90, Buz93,
Kak95]. At present, several display manufacturers are involved in the development of
PALC displays.

The PALC technology is a variant of the liquid crystal display (LCD) technology
that is nowadays widely used in portable computers. Just like other LCDs, PALC
displays are passive: they do not generate light, but modulate the light generated by a
device behind the display (backlight), utilizing the unique optical properties of liquid
crystal. Liquid crystal (LC) is an electro-optic material: it alters the state of
polarization of light passing through it, where the polarization changing effect depends
on the electric field applied to the LC. In LCDs, light from a uniform backlight passes
first through a polarizing layer, then through a layer of LC, and finally through a
second polarizing layer. The percentage of light transmitted by the second polarizer
depends on the electric field in the LC, which is controlled independently for each
display element (pixel) by an electrical switching element. Conventional LCDs use
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thin film transistors (TFTs) as switching devices. Due to the extreme tolerances of the
submicron semiconductor technology needed to manufacture the TFTs, the yield
expectations are low for larger display sizes (>20 in. diagonal). In PALC displays,
however, the pixels are addressed by plasma switching devices, which are much more
easily manufactured, permitting the production of large size displays. In contrast to the
TFT LCD technology, the PALC technology does seem to be suitable for large size
TV applications.

Figure 1.1. Schematic drawing of a PALC display.

Figure 1.1 schematically depicts a PALC panel. The LC and a protective
microsheet are sandwiched between two glass plates. The rear plate contains parallel
channels filled with a discharge gas, typically helium or a helium-based binary mixture
at a pressure of a few hundred Torrs. The channels correspond to the picture rows of
the display. Two thin parallel electrodes run all along the bottom of each channel. The
front glass plate is patterned with so-called data electrodes: transparent, conductive
stripes of indium-tin-oxide (ITO), which correspond to the picture columns of the
display. A pixel is formed by the intersection of a channel and a data electrode.

The image on the display is written row by row, i.e. all pixels of one picture row
are addressed at the same time. In order to address a certain row, a discharge is created
in the corresponding channel, by applying a short DC voltage pulse to the channel
electrodes. During the afterglow of the discharge, small voltages - representing the
data to be written on the pixels of the row - are applied between the data and channel
electrodes. The decaying plasma in the channel screens itself from the resulting electric
fields, by depositing surface charge on the microsheet. It continues to build up this
surface charge until the fields in the channel have vanished and the data voltages stand
entirely across the LC layer and the microsheet. After the plasma has completely
decayed, the surface charge is fixed and unaffected by any change in the data voltages.
The electric fields in the LC - and the transmission through the second polarizer - will
now remain nearly unchanged until the next discharge pulse is applied to the channel.

One of the major concerns of PALC is the addressing speed. For modern high
definition TV applications, at least 1000 lines (rows) have to be addressed per frame,
that is, 50-60 times a second. This implies that the total time required to write one line
should be at most 16.7 µs, and preferably much shorter. The PALC discharges should
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therefore ignite quickly and have a short decay time; one should realize that if the
plasma is not entirely gone by the end of the addressing time, charging errors will
occur. In addition, it is important that the charging of the microsheet is accurate and as
uniform as possible: inhomogenities in the charging translate directly into a loss of
contrast. Another issue of concern is the lifetime of the displays, which might be
limited by ion-induced sputtering of channel electrode material. The PALC discharges
should also not emit disturbing light. Finally, in view of the cost price of PALC
displays, it is important that the required driving voltages are not too high and that the
microdischarge geometry can be manufactured easily.

1.3 The plasma display panel (PDP) technology

The basic principles of the PDP technology were first demonstrated in the 1960s.
Since then, the technology has continuously been improved and is now one of the most
promising technologies for large size TVs. Since the early 1990s most of the world’s
major TV manufacturers have been involved in the development of PDPs; recently the
first PDP TVs have appeared on the market. There is an extensive literature on the
principles of PDPs; here we explicitly mention the review articles [Wes75, Slo76,
Web85, Sob91].

A PDP consists of  two glass plates, which are sealed together with a gap of 100-
200 µm. The gap between the plates is filled with a discharge gas at a pressure of 400-
500 Torr. Each plate has a large number of thin parallel electrodes deposited on its
inner surface, where the electrodes on the two plates are at right angles, and
correspond to the rows and columns of the display. At each intersection of a row and a
column electrode, a gas discharge can be switched on and off independently, by
applying appropriate voltage pulses to the electrodes in question. The discharge leads
to the formation of a plasma that emits visible and ultraviolet (UV) light. In
monochrome PDPs the visible light is used directly, whereas in color PDPs the UV
radiation is used to excite phosphors that in turn emit red, blue, or green light. The
discharge gas is typically a rare gas mixture. Color PDPs always contain a percentage
of xenon; of the rare gases, xenon is the most efficient in emitting UV radiation.

The electrodes can be driven in various ways, where the discharges operate in
either the direct current (DC) or the alternating current (AC) mode. In DC driven PDPs
the electrodes are in direct contact with the discharge gas, whereas in AC designs they
are covered with a dielectric layer. Two types of AC PDPs can be distinguished: the
opposed-electrode type, where the discharges occur between the column and the row
electrodes on the different plates, and the coplanar-electrode type, where the
discharges occur between pairs of electrodes on one plate and are triggered by the
electrodes on the other plate. The coplanar-electrode AC PDP - also known as the
surface-discharge PDP - is considered by most manufacturers as the most promising
type for TV applications.

Figure 1.2 gives a schematic representation of a color PDP of this type. The
discharges occur between the so-called sustain electrodes on the front plate. These
electrodes are transparent and covered by a glass layer. A magnesium-oxide (MgO)
thin film is deposited on top of the glass layer to protect it from incident ion flux and to
increase the secondary electron emission coefficient of the surface. The rear glass plate
is equipped with so-called address electrodes, which are used to switch the discharges
on and off, and correspond to the picture columns. In order to avoid electrical and
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optical interaction between the columns, dielectric barriers (ribs) are deposited in
between the address electrodes. The rear plate and the side walls of the ribs are coated
with phosphors; alternately red, blue, and green phosphors are used for consecutive
columns. A picture element (pixel) is formed by the intersection of a pair of sustain
electrodes and one address electrode.

In operation a square wave voltage with a frequency of 50 – 250 kHz (sustain
voltage) is constantly applied to the sustain electrodes. This voltage is just below the
breakdown voltage: in itself cannot ignite a discharge. To turn a certain pixel on, an
additional voltage pulse (write pulse) is applied to the address electrode and one of the
sustain electrodes (scan electrode) of the pixel. The resulting discharge is quickly
quenched due to the accumulation of surface charge on the dielectrics covering the
electrodes, which screens the discharge gas from the sustain voltage. However, on its
next half cycle the sustain voltage changes polarity. The stored surface charge now
reinforces the effect of the sustain voltage, causing a new discharge to be ignited,
despite the fact that the sustain voltage itself is smaller than the breakdown voltage. A
new surface charge distribution quickly develops, quenches the discharge again, and so
on. In this way, a new transient discharge occurs at each half cycle of the sustain
voltage, as long as surface charge is present. Note that the surface charge changes
polarity every half cycle of the sustain voltage. The pixel is turned off by applying a
so-called erase pulse to the address and sustain electrodes, which disturbs or erases the
surface charge distribution.

When a pixel is on, pulses of UV photons hit the phosphors at twice the sustain
frequency, which results in a certain (time averaged) intensity of emitted visible light.
The intensity of the pixel is controlled by controlling the fractions of the time that the
pixel is on and off. For this purpose, every picture frame is divided into a number of
(binary weighted) subframes, during which pixels can be either on or off.

An important drawback of PDPs is their low luminous efficacy: only about 1
lm/Watt, compared to 4 lm/Watts for the conventional CRTs. One of the few
possibilities to improve this, is to improve the efficiency of the microdischarges in
generating UV photons, which is only about 10% in present-day PDPs. Another issue
that needs improvement is the writing and erasing of the pixels: this should be reliable
and – in view of the cost price - require not too high driving voltages.

Figure 1.2. Schematic drawing of a coplanar-electrode AC PDP.
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1.4 Physical characterization of the microdischarges

In gas discharges, electric current is conducted through a gas. There are many
different types of gas discharges, having different physical principles; an excellent
overview can be found in Ref. [Rai91]. The microdischarges in PALC and PDP
displays are of a discharge type called glow discharge. More specifically, they are
pulsed DC glow discharges; for even in AC PDPs, the discharges have a DC-like
character. Table 1.1 outlines the characteristic properties of the microdischarges
considered in this thesis.

In glow discharges the gas is only weakly ionized, but still has – for the most
part – clearly the character of a plasma. Due to the low ionization degree,
recombination is of minor importance, and most of the charged particles are lost by
transport to the surface. The plasma is far from thermal equilibrium: the gas and the
electrodes are relatively cold, heated only slightly above room temperature, while the
electron mean energy reaches values of 1 eV and beyond.

DC glow discharges are sustained by the emission of secondary electrons from
the cathode, due primarily to positive ion impact. The secondary electrons are
accelerated toward the anode by the electric field, and obtain such high energies that
they start ionizing neutral gas particles. The electrons thus created are also accelerated,
and an ionization avalanche forms. In a fully developed glow discharge, the region in
front of the cathode – known as cathode fall – contains a positive space charge, which
screens the remainder of the discharge largely from the applied electric field.
Ionization only occurs in and around the cathode fall, and the size of the cathode fall is
such, that the ionization exactly balances the ion loss at the cathode: if one ion releases
γ secondary electrons, then one secondary electron must cause 1/γ ionizations on its
trip to the anode.

Table 1.1. Typical values of some important discharge parameters for the microdischarges in PALC
displays and coplanar-electrode type PDPs. Parameters tagged with a star are given per unit of electrode
length.

Parameter DC PALC coplanar AC PDP
gas He-H2 (0 – 5%) Ne-Xe (3 – 10%)
gas pressure 100 – 200 Torr 400 – 500 Torr
gas temperature 300 – 320 K 300 – 320 K
electrode distance 200 – 300 µm 50 – 100 µm
discharge type pulsed DC glow pulsed DC glow
discharge duration 2 – 10 µs 30 – 100 ns
discharge frequency ~60 kHz 100 – 500 kHz
applied voltage 200 – 300 V 120 – 250 V
peak current* 1.5 – 5 mA cm-1 10 – 50 mA cm-1

energy deposition* 2 – 10 µJ cm-1 0.3 – 0.6 µJ cm-1

plasma density 5×1011 – 5×1012 cm-3 1013  – 1014 cm-3

ionization degree 10-7 – 10-6 10-6 – 10-5

electron mean energy (cathode fall) 40 – 70 eV 20 – 25 eV
electron mean energy (plasma) 4 – 10 eV 2 – 6 eV
electron elastic collision length 2 – 5 µm 1 – 3 µm
electron ionization length (cath. fall) 20 – 50 µm 2 – 10 µm
Debye length (plasma) 6 – 30 µm 1 – 6 µm
number of electrons in Debye sphere 4000 – 50000 400 – 8000
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The gas pressure in the microdischarges is much higher than the pressure in the
normal size glow discharges that are used in discharge lamps or for materials
processing. However, one should realize that not the pressure, but the product of
pressure and electrode distance – a measure for the number of atoms an electron
encounters on its trip from cathode to anode – determines the similarity of discharges.
For example, according to the Paschen law, the voltage required for the development
of a glow discharge (breakdown voltage) is a function of the pressure-distance product.
For microdischarges, as for other glow discharges, this product is around 5 Torr  cm.

Finally, we remark that the term microdischarges is not specific for the
discharges in display technology; it is also used for other small discharge phenomena
with fundamentally different characteristics.

1.5 Discharge modeling

In physics, the word “model” is used to indicate a system of equations, data, and
assumptions, which gives a mathematical representation of all the major features of a
certain physical phenomenon. By solving the model equations, the physical
phenomenon is simulated. Models are used to theoretically interpret and predict
experimental observations. They are crucial in the research of  phenomena that involve
many different theoretical aspects at the same time, so that the link between theory and
experiment is rather complicated; gas discharges are good examples of such
phenomena. The invention of the computer – an excellent tool for solving equations
numerically – has greatly increased the possibilities of modeling. Numerical models
have become so popular, that the word model itself has become associated with the
computer implementation of model equations, rather than with the equations
themselves. In the past few decades, numerical discharge models have been developed
in plasma groups all over the world. Two major modeling approaches can be
distinguished:

In the fluid approach, the plasma particle species (electrons, ions, excited
neutrals) are represented by macroscopic quantities such as particle number density,
flux, mean energy. The space and time variation of these quantities is described by
fluid equations, which are derived from the Boltzmann equation [Shk66, Gog92].
Surface processes are accounted for in the boundary conditions of the fluid equations.
Usually the fluid equations are coupled to macroscopic Maxwell equations, such as
Poisson’s equation, which describes the effect of space charge on the electric field. In
this way, a complete, self-consistent description of the discharge is obtained.
Unfortunately, the fluid equations and the boundary conditions incorporate restrictive
assumptions concerning the particle transport. In addition, they require input data on
macroscopic properties of the particles (diffusion coefficients, reaction rate
coefficients), which are based on assumptions of the particle energy distribution
function. Due to all these assumptions, the fluid approach can only be applied over a
limited range of discharge conditions. However, in the case of glow discharges, fluid
models have proved to be very useful in helping to understand the basic discharge
properties and in predicting trends. Fluid models are computationally efficient: they
can simulate the time evolution of a discharge in one or two spatial dimensions within
a manageable period of computation time, say, a few hours.

More detail is given by the particle approach. In particle models – also known as
Monte Carlo models – the paths of individual plasma particles are simulated, where the



Introduction 11

occurrence and effect of collisions are treated by random numbers. Since it is
infeasible to calculate the paths of all particles, only a number – sufficiently large to
produce reliable and smooth results – of representative test particles is followed. From
the test particle paths, macroscopic quantities (density, flux, etc.), as well as the
particle energy distribution function, can be inferred. To self-consistently calculate the
electric field, particle models require a rather complicated technique, called the
particle-in-cell technique. Since no assumptions are made concerning the particle
transport or the particle energy distribution functions, particle models can be applied
over wide range of discharge conditions. However, they need the input of collision
cross section data, which are often unknown or have large experimental uncertainties.
In view of the large computational effort they take, particle models are not very
suitable to study complex discharge geometries and chemistries; they are more often
used to validate fluid models.

The two major discharge modeling approaches can also be combined in one
single model: In hybrid models, one part of the particles is described by fluid
equations, and the other part (often the high energy electrons) is treated with a Monte
Carlo simulation.

The discharge conditions of microdischarges are on the edge of what can be
reliably simulated with a fluid model. However, the simulation of the rather complex
operation of these discharges absolutely requires the computational efficiency of the
fluid approach; particle models are simply too time consuming to study the full
microdischarge operation. Several fluid models of PDP discharges have been
developed and described in the literature, some of them 1D [Meu95, Vee95], some 2D
[Cho95, Cam95, Pun98, Rau99]. Much less work has been done on the modeling of
PALC discharges: so far, only one model [Ilc97] of PALC discharges has been
reported.

1.6 The scope of this thesis

The main aim of the work presented in this thesis is to obtain of a self-consistent
model, which is suitable for the simulation of the microdischarges used in PALC and
PDP, which helps understand the behavior of these discharges, and which can be used
as a tool for optimizing the microdischarge operating conditions, geometry, and gas
composition. In addition to this, there is the more academic goal to contribute to
discharge modeling in general. Let it be clear that the actual improvement of the PALC
and PDP technologies is not – at least not directly – the aim of this work.

The Chapters 2 through 5 form the basis of this thesis: they present a two-
dimensional fluid model that can be used for the complete simulation of the
microdischarges used in display technology. Chapter 2 discusses the physical basis of
the fluid model. In order to make the fluid model useful as a research tool, an efficient
numerical implementation is required. Chapter 3 provides all the details of this
numerical implementation. In the Chapters 4 and 5, we present examples of fluid
modeling studies of PALC and PDP discharges, respectively. The modeling results
presented in these chapters are compared with experimental results wherever possible;
experimental validation of the fluid model is thus done.

In the Chapters 6-8 we look beyond the fluid modeling approach. Chapter 6
presents a Monte Carlo (particle) model for the electrons in microdischarges. We use
this model to investigate the validity and the consequences of one of the most
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restrictive assumptions of the fluid model: the assumption concerning the electron
energy distribution function. In Chapter 7, we attempt to predict – on the basis of fluid
modeling results - the energy distribution of ions and fast neutrals impinging on the
surface; this is important for the lifetime of PALC and PDP displays. We use both an
elementary theoretical approach and a more comprehensive Monte Carlo approach.
Chapter 7 focuses on the resonance radiation transport in PDPs, which is only very
crudely accounted for in the fluid model. We present a Monte Carlo model for
resonance photons, which gives a much more accurate description of this phenomenon.
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Chapter 2
A fluid model of microdischarges

2.1 Introduction

The basis of the work presented in this thesis is a self-consistent fluid model.
This model gives a complete description of a discharge, accounting for all its major
physical aspects: transport of particles, transport of momentum, transport of energy,
plasma chemistry, space and surface charge induced electric fields, emission of
radiation. In this chapter we describe the physical equations and data that define the
fluid model. Section 2.2 outlines the basic system of equations. These equations
describe the relations between all important physical quantities in the bulk, but do not
describe what happens at the surfaces that surround the discharge. Surface processes
are incorporated as boundary conditions for the basic equations. Before lining up all
the boundary conditions in Section 2.4, we discuss, in Section 2.3, the physical
background of our boundary conditions for particle transport; these conditions are
different from anything previously used by other authors. In the Sections 2.5 and 2.6
we describe two extensive sets of input data for the simulation of discharges in helium-
hydrogen mixtures and neon-xenon mixtures, respectively.

2.2 The system of fluid equations

We pursue the well-known fluid approach and describe the behavior of plasma
particles by the first few velocity moments of the Boltzmann equation: the continuity
equation, the momentum balance equation, and the energy balance equation. These
equations – also known as transport equations - are coupled to Poisson’s equation for
the electric field. Since this approach has been described previously in numerous
papers [Mey90, Boe87, Meu95, Boe95, Pun98, Pas93, Cho95, Vee95, Vee96, Vee97,
Cam95, Iva99], we will only briefly outline it here. For the derivation of the transport
equations from the Boltzmann equation we refer to Ref. [Gog92].

Given the low ionization degree, the density and temperature of the gas particles
are assumed to be constant and unaffected by the discharge. For every plasma particle
species p, the time evolution of the density is described by a continuity equation
∂
∂
n

t
S

p

p p+ ∇ ⋅ =ΓΓΓΓ , (2.1)

where np is the density, ΓΓΓΓp the flux, Sp the source term, and the index p can indicate:
electrons (p = e), an ion species, or a neutral species. The flux is given by the
momentum balance equation, which we approximate by the drift-diffusion equation

( ) pppppp nDnq ∇−= EµsgnΓΓΓΓ . (2.2)

Here E is the electric field, qp the particle charge, µp the mobility and Dp the diffusion
coefficient. The first term gives the flux due to the electric field (drift) and the second
term represents the flux due to concentration gradients (diffusion). Particle inertia is
neglected.
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The source term Sp is determined by the reactions occurring in the discharge. It
consists of positive contributions from the reactions in which a particle of species p is
created and negative contributions from those in which such a particle is lost:

∑=
r

rrpp RcS , . (2.3)

The index r refers to a reaction; cp,r is the net number of particles of species p created
in one reaction of type r, and it can be negative as well as positive. The reaction rate R
is proportional to the densities of the reacting particles:

21nknR = (2.4)
for two-body reactions, and

321 nnknR = (2.5)

for three-body reactions. The proportionality constant k is the reaction rate coefficient.
Similarly, the rate of spontaneous decay processes is

knR = , (2.6)
where k is the decay frequency.

The transport equations (2.1) and (2.2) require the input of reaction rate
coefficients k and transport coefficients µ and D. In general these quantities depend on
the energy distribution of the considered particles. We use the following
approximations concerning these dependencies:

We assume that the charged particle transport coefficients satisfy the Einstein
relation

e

Tk
D B µ= , (2.7)

where kB is the Boltzmann constant, e is the elementary charge, and T is the particle
temperature, corresponding to the energy of the random particle motion.

For ions we use the local field approximation, which assumes a direct relation
between the particle energy distribution and the electric field. Transport and rate
coefficients are regarded as functions of the electric field:

( )Eµµ = , ( )EDD = , ( )Ekk = . (2.8)
These relations can be found in the literature as results of experiments and classical
theories. In particular, the ion diffusion coefficients are found from the mobilities by
the Einstein relation (2.7), in which the ion temperature is related to the electric field
by [Ell76, Ell84]

( )2

35
Em

mm

mm
TkTk g

g

g
gBB µ

+
+

+= , (2.9)

where Tg is the gas temperature and m and mg are the ion and gas particle mass,
respectively.

For electrons however, the local field approximation often leads to unsatisfactory
modeling results, as a result of the poor energy transfer in electron-neutral collisions
(due to the huge mass difference). Therefore, rather than using the relations (2.8), we
assume the electron transport coefficients and the rate coefficients of electron impact
reactions to be functions of the electron mean energy, as in Refs. [Pas93, Boe95]:

( )εµµ ee = , ( )εee DD = , ( )εkk = , (2.10)

where the subscript e refers to electrons, and the electron mean energy ε results from
an energy balance equation

εε
ε S
t

n
=⋅∇+

∂
∂

ΓΓΓΓ , (2.11)
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which has the form of a continuity equation for electron energy. In this equation nε is
the electron energy density

εε enn = , (2.12)

and ΓΓΓΓε is the electron energy flux

q+= eΓΓΓΓΓΓΓΓ εε 3

5
, (2.13)

where q is the heat flux, which we assume to be proportional to the gradient of the
electron mean energy according to [Rai91]

ε∇−= ee Dn
3

5
q . (2.14)

Substitution of equation (2.14) and the drift-diffusion expression (2.2) for ΓΓΓΓe casts
equation (2.13) into the form of a drift-diffusion equation for electron energy

 εεε µ nDn ee ∇−−=
3

5

3

5
EΓΓΓΓ . (2.15)

The source term for electron energy is given by

∑−⋅−=
r

rrree nkneS εε EΓΓΓΓ , (2.16)

where the two terms represent heating by the electric field and energy loss in
collisions, respectively. The summation in the loss term is only over the electron
impact reactions, with nr the density of the target particles and rε  the threshold energy.
Energy loss due to elastic collisions is included in this term by using an imaginary
threshold energy of 1 eV in combination with an effective rate coefficient.

The functions (2.10) are obtained from cross sections, assuming a Maxwellian
electron energy distribution function, or – which usually gives better results - using the
electron energy distribution function resulting from uniform-field Monte-Carlo or
Boltzmann calculations. In the above equations, the electron mean energy is assumed
to result mainly from random motion, so that it is consistent to use

ε
3

2
B =eTk (2.17)

with the Einstein relation (2.7) to find the electron diffusion coefficient.
Finally, the electric field depends on the space charge density according to

Poisson’s equation
( ) ( ) ρεε =∇⋅−∇=⋅∇ VE , (2.18)

where ε is the dielectric permittivity, V the electrostatic potential, and ρ the space
charge density

ρ = ∑q np p
p

. (2.19)

2.3 New boundary conditions for particle transport*

The boundary conditions for the above equations are an essential part of the
description of the problem. For the particle transport equations (2.1-2), a variety of

                                                
* This section, in slightly altered form, has been published in: G. J. M. Hagelaar, F. J. de Hoog, and G.
M. W. Kroesen, “Boundary conditions in fluid models of gas discharges,” in Phys. Rev. E 62 (1), 1452-
1454 (2000).
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boundary conditions can be found in the literature. Straightforward boundary
conditions, such as 0=n  or 0=⋅∇ nn  with n a normal vector, are satisfactory in
some cases [Mey90, Sur90, Pas93, Cho95], but do generally fail to fit the physics. In
particular, the physical phenomenon of secondary electron emission by the surface,
which is essential for many types of discharges, is not described by these conditions.
Most authors therefore use a more general approach, imposing expressions for the
particle fluxes, which for electrons may include secondary electron emission. For
instance, Refs. [Meu95, Boe95, Pun98, Iva99, Vee97] assume the flux to be directed
toward the surface according to

( ) nvnqa th4

1
sgn +⋅=⋅ nEn µΓΓΓΓ , (2.20)

where n is the normal vector pointing toward the wall and vth is the thermal velocity

m

Tk
v B

th π
8= . (2.21)

The number a is set to one if the drift velocity is directed toward the wall and to zero
otherwise:

( )
( )




≤⋅
>⋅

=
0gn     0

0sgn     1

nE

nE

µ
µ

qs

q
a . (2.22)

In the case of electrons, a flux due to secondary emission is added to the flux defined
by equation (2.20):

∑ ⋅Γ−+⋅−=⋅
p

ppeetheeee nvna nnEn γµ ,4

1ΓΓΓΓ , (2.23)

where the subscript e refers to electrons, and the summation in the last term is over the
ion species impinging on the wall. The secondary emission coefficient γ is the average
number of electrons emitted per incident ion.

We show here however, that the boundary conditions (2.20) and (2.23) fall short
of physical reality in several ways. We propose improved boundary conditions, which
can be used instead.

To start with, we discuss the particle flux toward the wall. From kinetic
considerations, it follows that under drift-diffusion conditions, the particle flux toward
the wall is given by [Mcd64, New48]

( ) 



 ⋅∇−+⋅−=⋅ nnEn nDnvnqar th 2

1

4

1
)sgn(1 µΓΓΓΓ , (2.24)

where r is the fraction of particles reflected by the surface, and a is once again given
by equation (2.22). The last two terms represent the diffusion flux, due to the random
motion of the particles. The last term, which is wrongly ignored by many authors, e.g.
in the boundary condition (2.20), reflects the fact that this random motion flux
involves all particles within a certain mean free path from the wall, not just the local
particles at the wall. In order to circumvent possible numerical difficulties in
accurately evaluating the density gradient in this term, we now rewrite equation (2.24).
Imposition of the expression (2.24) as a boundary condition for the drift-diffusion
equation (2.2) implies that the following equation must hold at the boundary:

( ) ( ) ( ) 



 ⋅∇−+⋅−=⋅∇−⋅ nnEnnE nDnvnqarnDnq th 2

1

4

1
sgn1sgn µµ . (2.25)

Note that although both members of this equation contain similar terms, their nature is
very different: the left member is a continuum expression, which in principle can be
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used anywhere in space, but only has physical meaning inside the plasma volume,
whereas the right member is a kinetic expression for the flux at the boundary. From
equation (2.25) we find an expression to replace the last term in equation (2.24).
Substitution of that expression gives

( ) ( ) 



 +⋅−

+
−=⋅ nvnqa

r

r
th2

1
sgn12

1

1
nEn µΓΓΓΓ . (2.26)

This equation is an appropriate boundary condition for heavy particle species. It has
the same structure as the usual condition (2.20), but gives a better physical description.
For neutral species (µ = 0), the equation (2.26) corresponds to the diffusion boundary
condition derived by Chantry, using the concept of “linear extrapolation length”
[Cha87].

In the case of electrons, influx due to secondary electron emission must be taken
into account. Simple addition of this influx to the flux toward the wall, as is done in
equation (2.23), gives

( ) ∑ ⋅−



 ⋅∇−+⋅−−=⋅

p
ppeeeetheeee nDnvnar nnnEn ΓΓΓΓΓΓΓΓ γµ

2

1

4

1
1 , . (2.27)

Equating the drift-diffusion flux, as before, equation (2.27) becomes

( ) ∑ ⋅
+

−



 +⋅−−

+
−

=⋅
p

pp
e

eetheee
e

e
e r

nvna
r

r
nnEn ΓΓΓΓΓΓΓΓ γµ

1

2

2

1
12

1

1
, . (2.28)

This boundary condition is our counterpart of the common electron condition (2.23).
However, as we point out now, both of these boundary conditions lead to an unrealistic
artifact: According to these conditions, all electrons in front of the surface contribute
to the diffusion flux toward the wall, including the electrons emitted by secondary
emission. In this way, the diffusion terms in (2.23) and (2.28) introduce an
overaccounting of the backscattering of emitted electrons: Several studies [Nag97,
Phe99] have demonstrated that in reality, virtually no emitted electrons are scattered
back to surface if a high enough electric field (> 100 V cm-1 Torr-1) is present, as is
typically the case in front of cathode surfaces.

In order to find a more realistic boundary condition for electrons, we distinguish
between two electron groups at the wall: α-electrons, coming from the bulk, and γ-
electrons, emitted by the surface. Both groups are treated equally and indistinguishably
with the drift-diffusion equation, but have different boundary conditions. To the α-
electrons we apply the boundary condition (2.26):

( ) 



 +⋅−−

+
−

=⋅ ααα µ nvna
r

r
ethee

e

e
,2

1
12

1

1
nEnΓΓΓΓ , (2.29)

where ΓΓΓΓα and nα are the flux and density of the α-electrons. In contrast, the γ-electrons
do not flow (back) to the wall:

( )∑ ⋅−−=⋅
p

ppea nn ΓΓΓΓΓΓΓΓ γγ 1 , (2.30)

where ΓΓΓΓγ is the flux of γ-electrons, and the factor (1 - ae) is included to cancel the flux
in case the electric field is directed away from the wall. The sum of the two fluxes
(2.29) and (2.30) can be used as a boundary condition for the total electron flux, if we
manage to relate the density of the α-electrons in (2.29) to the total electron density.
Keeping in mind that nα = ne - nγ, where nγ is the density of the γ-electrons, we choose
the following approach:
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We write expression (2.30) as the boundary condition for the drift-diffusion
equation for γ-electrons, in analogy to equation (2.25):

( )∑ ⋅−−=⋅∇−⋅−
p

ppeee anDn nnnE ΓΓΓΓγµ γγ 1 . (2.31)

Secondary electron emission is important mainly where a strong electric field is
directed toward the wall. In this case it is justified to neglect the second term in the left
member of this equation, which gives us the density of the γ-electrons

( )
nE

n

⋅

⋅
−=

∑
e

p
pp

ean
µ

γ

γ

ΓΓΓΓ
1 . (2.32)

Note that this expression may be incorrect if the electric field is small, but in that case
nγ is negligible anyway (nα ≈ ne). Realizing that the ion fluxes ΓΓΓΓp are largely
proportional to E, we find that

( ) ( ) ( ) ( )
( )∑
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11
1 . (2.33)

For this approximation we used the equations (2.26), (2.21), and (2.9), where we
neglected the gas temperature and assumed the electric field to be perpendicular to the
wall.

Finally, we obtain the appropriate boundary condition for the total electron flux,
by adding the fluxes (2.29) and (2.30) of the two electron groups, and substituting
nα = ne - nγ and expression (2.32):

( ) ( )∑ ⋅−
+

−

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2
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2

1
12
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1
,, ,

(2.34)
where nγ is once again given by (2.32) or by the numerically more convenient
expression (2.33). This boundary condition is similar to the boundary condition (2.28),
except for the term containing nγ, which provides a correction for the directed motion
of the emitted electrons. Due to this term, the boundary condition automatically
switches between the limit (2.30) for high fields toward the wall, and the limit (2.29)
for low fields or fields directed from the wall.

In order to demonstrate the effect of the correction term, we simulated a DC
discharge in an imaginary two-dimensional rectangular geometry, with one cathode
wall and three anode walls. The geometry is represented in Fig. 2.1. The discharge gas
is helium, only two particle species are taken into account, electrons and helium ions.
The secondary emission coefficient of the ions is assumed to be γ = 0.20. We
calculated the steady state solution of the transport equations, using (2.34) as the
boundary condition for electrons. It turned out that the correction term almost entirely
cancelled the diffusion flux (back) toward the cathode: nγ > 0.98 ne all over the cathode
surface, so that ΓΓΓΓe ⋅ n ≈ ΓΓΓΓγ ⋅ n. At the anode on the other hand, the correction term was
of minor importance: nγ < 0.1 ne, which means that nearly all electrons contributed to
the diffusion component. We did the same calculation without the correction term,
setting nγ = 0 everywhere. In this case we found that the electron influx due to
secondary emission from the cathode was partially cancelled by diffusion back to the
surface, so that ΓΓΓΓe ⋅ n ≈ 0.7 ΓΓΓΓγ ⋅ n at the cathode. As a result the steady state plasma
density was about one order of magnitude lower. This dramatic effect is illustrated by
Fig. 2.2, which shows the calculated steady state electron density for the two cases. It
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turned out that the unrealistic backscattering flux toward the cathode can be
compensated for by artificially increasing the secondary emission coefficient. Using
γ = 0.24 instead of γ = 0.20 leads to virtually the same plasma density as the corrected
boundary condition.

In conclusion, we have pointed out some shortcomings of the commonly used
boundary conditions (2.20) and (2.23): First, the diffusion flux to the surface is only
partially included. Second, the treatment of secondary electron emission may lead to
an unrealistic diffusion flux of emitted electrons back to wall. This artifact necessitates
the use of unphysically high secondary emission coefficients. We have presented
alternative boundary conditions, where these problems have been solved in an elegant
way.

Figure 2.1. Two-dimensional Cartesian DC discharge geometry used for the test calculations.
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2.4 The boundary conditions for the system of fluid equations

For the particle transport equations (2.1-2) we use the boundary conditions
presented in the previous section, where – because of the lack of data - we set all the
reflection coefficients to zero. The boundary condition for the transport of heavy
species reads

( ) ( ) ppthppppp nvnqa ,2

1
sgn12 +⋅−=⋅ nEn µΓΓΓΓ . (2.35)

For electrons we apply
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For the electron energy transport equations (2.11) and (2.15), we use a boundary
condition that is consistent with the boundary condition for electron transport:

( ) ( )∑ ⋅−−−+⋅−−=⋅
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and pε  is the mean initial energy of electrons emitted by incidence of species p.

The electrode potentials are boundary conditions for Poisson’s equation.
Dielectric materials surrounding the discharge gas do not naturally impose boundary
conditions for the electric potential or field, so that it is necessary to solve Poisson’s
equation in the entire dielectric surroundings of the plasma. The effect of surface
charge on top of a dielectric wall is described by Gauss’s law

σεε =⋅−⋅ nEnE gas0wallwall , (2.40)

where Ewall and Egas are the electric fields at the surface, respectively inside and
outside the dielectric material. The surface charge density σ results from discharge
currents striking the wall. We assume that this charge does not diffuse along the
surface, but stays in the very spot it is deposited by the discharge:

td∫ ⋅= njσ , (2.41)

where j is the plasma current density

∑=
p

ppq ΓΓΓΓj . (2.42)

The current through an electrode is given by

∫∫ 




 ⋅

∂
∂−⋅=

surface
electrode

2
0 d S

t
I nEnj ε . (2.43)

The second term of this equation is the displacement current; it corresponds to changes
in total amount of charge present at the surface of the electrode. An external electric
circuit, involving back-coupling from the discharge current to the electrode voltage, is
not included in the model: the electrode potentials are imposed at all time.
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2.5 Input data for the simulation of PALC discharges*

The reactions taken into account in the fluid simulation of PALC discharges are
listed in Table 2.1. This reaction scheme has been designed to describe the electrical
behavior of microdischarges in pure helium and helium-hydrogen mixtures with a
small percentage of hydrogen (< 5%). Since all the important metastable helium s tates
– He(2 3S), He(2 1S), and He2(2s 3Σu) – participate in similar reactions with very
similar rate coefficients, we have grouped them together into one species He*. Highly
vibrationally excited hydrogen molecules (v>6) are treated as one separate species
H2(v”).

Table 2.1. Reactions in helium-hydrogen mixtures. The second column gives the mean electron energy
lost in the reaction.

# Reaction Energy
(eV)

Rate coefficient Ref.

excitation
R1 e + H2 → e + 2H 11.7 b, Fig. 2.4(f) [Bol96]
R2 e + H2 → e + H2(v”) 12.0 b, Fig. 2.4(e) [Bol96]
R3 e + He → e + He* 20.215 b, Fig. 2.4(a) [Bol96]

ionization by electrons
R4 e + H2 → 2e + H2

+ 15.4 b, Fig. 2.4(d) [Bol96]
R5 e + He → 2e + He+ 24.58 b, Fig. 2.4(c) [Bol96]
R6 e + He* → 2e + He+ 4.365 b, Fig. 2.4(b) [Bol96]

ionization by excited atoms
R7 He* + H2 → e + H2

+ +He -4.815 3.2×10-11 cm3 s-1 [Mar89]
R8 He* + H → e + H+ + He -6.615 1.1×10-9 cm3 s-1 [Mot85]
R9 He* + He* → e* + He+ + He -15.0 8.7×10-10 cm3 s-1 [Ste82]
R10 He* + He* → e* + He2

+ -17.4 2.0×10-9 cm3 s-1 [Ste82]

ion conversion
R11 H2

+ + H2 → H3
+ + H 2.1×10-9 cm3 s-1 [Has99]

R12 H+ + 2H2 → H3
+ + H2 3.1×10-29 cm6 s-1 [Has99]

R13 He+ + 2He → He2
+ + He 1.1×10-31 cm6 s-1 [Joh80]

R14 He2
+ + H2 → H2

+ + 2He 4.1×10-10 cm3 s-1 [Col78]

recombination
R15 e + H3

+ → H + H + H 0 b, Fig. 2.4(g) [Bol96]
R16 e + H3

+ → H2(v”) + H 0 b, Fig. 2.4(h) [Bol96]
R17 H- + H3

+ → 2H2 2×10-7 cm3 s-1 [Bac81]

de-excitation
R18 e + He* → e* + He -20.215 2.9×10-9 cm3 s-1 [Ste82]

electron attachment
R19 e + H2(v”) → H- + H 0 b, Fig. 2.4(i) [Bol96]

electron detachment
R20 H- + H → e + H2 0 7.6×10-11 cm3 s-1 [Has99]

                                                
* This section, in slightly altered form, has been published in: G. J. M. Hagelaar, G. M. W. Kroesen, U.
van Slooten, and H. Schreuders, “Modeling of the microdischarges in plasma addressed liquid crystal
displays,” J. Appl. Phys. 88 (5), 2252-2262 (2000).
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The electron mobility and the rate coefficients of the electron impact reactions
are obtained with the Boltzmann code BOLSIG [Bol96], which calculates the electron
energy distribution in uniform electric fields, taking into account a comprehensive set
of cross sections. Figs. 2.3 and 2.4 show these coefficients for a mixture of 97%
helium and 3% hydrogen; for other mixing ratios they are slightly different. The
mobilities and diffusion coefficients of all heavy species are assumed to be determined
merely by the helium gas. Ion mobilities are shown in Fig. 2.5. The diffusion
coefficients of the neutral species are all taken from Ref. [Gri97]: D × p = 4.5×102

cm2 Torr s-1 for He*, D × p = 2.1×103 cm2 Torr s-1 for H, and D × p = 1.2×103

cm2 Torr s-1 for H2(v”), where p is the gas pressure.
We use constant secondary electron emission coefficients: 0.2 for helium ions

and 0.01 for hydrogen ions. [Mcd64] Possible dependence of the secondary emission
coefficients on the reduced electric field in front of the surface is not considered
because of the ambiguity in the published data on this topic. Most of the field
dependence reported in the literature is related to the backscattering of emitted
electrons. As follows from our discussion in Section 2.3, ambiguity arises when such
field-dependent secondary emission coefficients are combined with a fluid boundary
condition for electron transport. Secondary electron emission by neutral species is
neglected. The mean initial energy is taken to be 5 eV for the secondary electrons
emitted by helium ions [Mcd64] and 1 eV for those emitted by hydrogen ions.

The metastable-metastable ionization processes R9 and R10 produce electrons at
15 – 20 eV of energy, which is not enough to excite or ionize helium atoms, but at the
same time too much to be efficiently lost in elastic collisions. It is suggested in Ref.
[Ilc97] and proven in Chapter 6 of this thesis that these electrons are not thermalized
and treated incorrectly by the transport and rate coefficients calculated with BOLSIG
[Bol96]. In pure helium, where metastable-metastable ionization plays an important
role, we consider them as a separate species: e*, mono-energetic electrons of 15 eV,
which do not take part in any reaction. This approach is supported by the Monte-Carlo
calculations presented in Chapter 6.  For the mobility of these electrons we use a
constant value of µ × p = 6.8×105 cm2 Torr V-1 s-1, the diffusion coefficient is taken to
be D × p = 6.8×106 cm2 Torr s-1. In helium-hydrogen mixtures we use only one
electron group.

The importance of H- is unclear. The reactions R2 and R19 only represent the
most probable mechanism for its production. Details and reliable values for rate
coefficients are not known. The rate coefficient for dissociative attachment R19
increases by orders of magnitude with increasing vibrational level of H2; [His91] only
states H2(v > 6) may contribute significantly to the production of H-. It has been
suggested that these high vibrational levels are populated mainly through radiative
decay of higher singlet electronic states excited by energetic electrons. [Bac81,
Dem88, Has99] Since the exact vibrational distribution resulting from these processes
is unknown, the effective rate coefficient for reaction R19 is no more than a rough
estimate. The rate coefficient of reaction R2 is taken to be proportional to the
excitation rates of H2(C 1Πu) and H2(B 1Σu

+); [Bac81, Dem88] the proportionality
constant however is only a conjecture. In view of the large uncertainties concerning the
production of H-, we prefer to omit the species H- and H(v”), as well as the reactions
R2, R17, R19, and R20, from the reaction scheme, unless there is evidence for the
importance of H- in PALC discharges.
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Figure 2.3. Electron mobility in 97% helium – 3% hydrogen. The data come from Ref. [Mcd64]
(< 1 eV) and a BOLSIG29 calculation (> 1 eV).
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Figure 2.4. Rate coefficients of electron impact reactions in 97% helium – 3% hydrogen, as calculated
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2.6 Input data for the simulation of PDP discharges

Table 2.2 shows the reaction scheme for the simulation of PDP discharges in
neon-xenon mixtures. Similar reaction schemes have been reported in the literature,
e. g. in Ref. [Meu95]. The scheme is more comprehensive than the PALC scheme,
because it has to describe not only the electrical behavior of the discharge but also the
mechanisms of UV photon generation; the kinetics of excited neutrals must be
described in much greater detail. Of particular interest are the excited xenon states,
since these are mainly responsible for UV emission. We have included all excited
atomic xenon states, as four different species: The two lowest levels – the metastable
Xe*(3P2) and the resonant Xe*(3P1) states – are treated as separate species. The other
states are grouped into two compound species: Xe** represents the states indicated by
the Racah notations 6s’, 6p, 5d, 7s, as in Ref. [Meu95], and Xe*** are all the other
excited states.

The electron mobility and the rate coefficients of the electron impact reactions
are obtained by the Boltzmann code described in Ref. [Mue91]; Fig. 2.6 shows the rate
coefficients of selected reactions. The mobilities and diffusion coefficients of the neon
ions Ne+ and Ne2

+ are assumed to be the same as in pure neon, and taken from Ref.
[Ell76]. The mobilities of the xenon ion species Xe+, Xe2

+, and NeXe+ are obtained
from the data in Refs. [Bro69, Ell76, Ell84] using Blanc’s law [Bla08]

XeNe

11
µµµ
xx +−= , (2.44)

where x is the xenon fraction, and µNe and µXe are the mobilities in pure neon and in
pure xenon, respectively. An analogous expression applies to the diffusion coefficients
of these ions. The diffusion coefficients of the neutral species are calculated from a
hard-sphere model [Hir54] and Blanc’s law; for 5% xenon they are D × p = 3.7×102

cm2 Torr s-1 for neon atoms, D × p = 1.4×102 cm2 Torr s-1 for xenon atoms, and
D × p = 85 cm2 Torr s-1 for xenon dimers.
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Table 2.2. Reactions in neon-xenon mixtures. The second column gives the mean electron energy lost in
the reaction.

# Reaction Energy
(eV)

Rate coefficient Ref.

excitation
R21 e + Xe → e + Xe*(3P2) 8.32 b, Fig. 2.6(g) [Pue91]
R22 e + Xe → e + Xe*(3P1) 8.44 b, Fig. 2.6(f) [Pue91]
R23 e + Xe → e + Xe** 9.58 b, Fig. 2.6(d) [Fel68]
R24 e + Xe → e + Xe*** 11 b, Fig. 2.6(e) [Kle99]
R25 e + Xe*(3P2) → e + Xe** 1.26 b, Fig. 2.6(b) [Hym81]
R26 e + Xe*(3P1) → e + Xe** 1.14 b, Fig. 2.6(a) [Hym81]
R27 e + Ne → e + Ne* 16.61 b, Fig. 2.6(i) [Reg84]
R28 e + Ne → e + Ne** 18.38 b, Fig. 2.6(j) [Reg84]
R29 e + Ne* → e + Ne** 1.77 b [Hym79]
R30 e + Xe2

*(3Σu
+) → e + Xe2

*(1Σu
+) 0.06 b [Eck88]

R31 e + Xe2
*(3Σu

+) → e + Xe*(3P2) + Xe 1.12 b [Eck88]
R32 e + Xe2

*(3Σu
+) → e + Xe2

** 1.8 b [Eck88]

ionization by electrons
R33 e + Xe → 2e + Xe+ 12.12 b, Fig. 2.6(c) [Rap65]
R34 e + Xe*(3P2) → 2e + Xe+ 3.8 b, Fig. 2.6(k) [Hym79]
R35 e + Xe*(3P1) → 2e + Xe+ 3.68 b [Hym79]
R36 e + Xe** → 2e + Xe+ 2.54 b [Hym79]
R37 e + Ne → 2e + Ne+ 21.56 b, Fig. 2.6(h) [Rap65]
R38 e + Ne* → 2e + Ne+ 4.95 b [Hym79]
R39 e + Ne** → 2e + Ne+ 3.18 b [Hym79]

ionization by excited atoms
R40 Xe*(3P2) + Xe*(3P2) → e + Xe+ + Xe -4.52 5×10-10 cm3 s-1 [Eck88]
R41 Xe*(3P2) + Xe*(3P1) → e + Xe+ + Xe -4.64 1×10-9 cm3 s-1 [Eck88]
R42 Xe*(3P1) + Xe*(3P1) → e + Xe+ + Xe -4.76 5×10-10 cm3 s-1 [Eck88]
R43 Ne* + Xe → e + Xe+ + Ne -4.49 7.5×10-11 cm3 s-1 [Ney70]
R44 Ne* + Xe → e + NeXe+ -4.51 2.3×10-11 cm3 s-1 [Ney70]
R45 Ne** + Xe → e + NeXe+ -6.28 2.3×10-11 cm3 s-1 [Ney70]

ion conversion
R46 Xe+ + 2Xe → Xe2

+ + Xe 2.0×10-31 cm6 s-1 [Eck88]
R47 Xe+ + Xe + Ne → Xe2

+ + Ne 1.5×10-31 cm6 s-1 [Lev81]
R48 Xe+ + 2Ne → NeXe+ + Ne 1.5×10-31 cm6 s-1 [Lev81]
R49 Ne+ + 2Ne → Ne2

+ + Ne 4.4×10-32 cm6 s-1 [Hok84]
R50 Ne+ + Ne + Xe → NeXe+ + Ne 1×10-31 cm6 s-1 [Lev81]
R51 Ne2

+ + Ne + Xe → Xe+ + 3Ne 4×10-30 cm6 s-1 [Hok84]
R52 NeXe+ + Xe → Xe+ + Ne + Xe 5×10-10 cm3 s-1 [Meu95]
R53 NeXe+ + Xe → Xe2

+ + Ne 5×10-12 cm3 s-1 [Meu95]
R54 e + Xe2

+ → e + Xe+ + Xe 0.99 b [Eck88]

recombination
R55 e + Xe2

+ → Xe** + Xe 0 b [Bar70]
R56 e + Ne2

+ → Ne** + Ne 0 b [Bar70]
R57 e + NeXe+ → Xe** + Ne 0 b [Bar70]
(continued on the next page)
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Table 2.2. (continued)

de-excitation
R58 e + Xe*(3P2) → e + Xe -8.32 b [Pue91]
R59 e + Xe*(3P1) → e + Xe -8.44 b [Pue91]
R60 e + Xe** → e + Xe*(3P2) -1.26 b [Hym81]
R61 e + Xe** → e + Xe*(3P1) -1.14 b [Hym81]
R62 e + Ne** → e + Ne* -1.77 b [Hym79]
R63 e + Xe2

*(3Σu
+) → e + 2Xe -7.2 b [Eck88]

R64 e + Xe2
** → e + Xe2

*(3Σu
+) -1.88 b [Eck88]

R65 e + Xe2
** → e + Xe2

*(1Σu
+) -1.8 b [Eck88]

R66 e + Xe2
** → e + Xe2

*(Ou
+) -0.73 b [Eck88]

excited neutral kinetics
R67 Xe*(3P2) + Ne→ Xe*(3P1) + Ne 1.6×10-16 cm3 s-1 [Meu95]
R68 Xe*(3P2) + Xe→ Xe*(3P1) + Xe 1.3×10-16 cm3 s-1 [Meu95]
R69 Xe*(3P1) + Ne→ Xe*(3P2) + Ne 3.1×10-14 cm3 s-1 [Meu95]
R70 Xe*(3P2) + Xe→ Xe*(3P1) + Xe 2.2×10-14 cm3 s-1 [Meu95]
R71 Xe** + Ne → Xe*(3P2) + Ne 2×10-12 cm3 s-1 [Meu95]
R72 Xe** + Ne → Xe*(3P1) + Ne 2×10-12 cm3 s-1 [Meu95]
R73 Xe** + Xe → Xe*(3P2) + Xe 1×10-10 cm3 s-1 [Meu95]
R74 Xe** + Xe → Xe*(3P1) + Xe 1×10-10 cm3 s-1 [Meu95]
R75 Xe*(3P2) + Xe + Ne → Xe2

*(3Σu
+) + Ne 1.4×10-32 cm6 s-1 [Meu95]

R76 Xe*(3P2) + 2Xe → Xe2
*(3Σu

+) + Xe 8.5×10-32 cm6 s-1 [Meu95]
R77 Xe*(3P1) + Xe + Ne → Xe2

*(Ou
+) + Ne 4.1×10-32 cm6 s-1 [Meu95]

R78 Xe*(3P1) + 2Xe → Xe2
*(Ou

+) + Xe 1.6×10-31 cm6 s-1 [Meu95]
R79 Xe** + 2Xe → Xe2

** + Xe 5.1×10-31 cm6 s-1 [Eck88]
R80 Xe2

*(Ou
+) + Xe → Xe2

*(1Σu
+) + Xe 2.6×10-10 cm3 s-1 [Meu95]

spontaneous decay
R81 Xe*(3P1) → Xe + hν (147 nm) 2.2×106 s-1 [Kle97]
R82 Xe** → Xe*(3P2) + hν (800 nm) 3×107 s-1 [Meu95]
R83 Xe** → Xe*(3P1) + hν (800 nm) 3×107 s-1 [Meu95]
R84 Xe*** → Xe + hν 1×107 s-1 [Kle99]
R85 Xe*** → Xe** + hν 1×108 s-1 [Kle99]
R86 Xe2

*(3Σu
+) → 2Xe + hν (173 nm) 9×106 s-1 [Meu95]

R87 Xe2
*(1Σu

+) → 2Xe + hν (173 nm) 1.6×108 s-1 [Meu95]
R88 Xe2

*(Ou
+) → 2Xe + hν (150 nm) 5×108 s-1 [Meu95]

R89 Xe2
** → Xe(3P2) + Xe 5×107 s-1 [Eck88]

R90 Xe2
** → Xe(3P1) + Xe 5×107 s-1 [Eck88]

R91 Ne** → Ne* + hν(600 nm) 3.6×107 s-1 [LTI]

The secondary-emission coefficients for ion impact on magnesium-oxide are
assumed to be 0.45 for Ne+ and Ne2

+, and 0.001 for Xe+, Xe2
+, and NeXe+, as in Ref.

[Pun98a]. The small value for xenon ions is supported by the experimental data of Ref.
[Kle99]. Once again we do not consider dependence of γ on E/p, and neglect secondary
emission by neutral species. The mean initial energy of the secondary electrons is
assumed to be 1 eV.

The resonant state Xe*(3P1) decays with a natural decay frequency
ν0 = 2.89×108 s-1 [Ber79]. Under PDP conditions however, the emitted resonance UV
photons are many times absorbed by ground state xenon atoms and re-emitted, before
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reaching the discharge walls: they are imprisoned. We account for the imprisonment
by using an effective frequency for the decay of Xe*(3P1), which given by [Kle97]

0
5

eff

0408.0
1074.5 νν

xd

x +×= − , (2.45)

where x is the xenon fraction, and d is the typical distance in meters from the region of
photon generation to the wall. A similar approach is used in Refs. [Meu95, Mcg98,
Rau99]. Equation (2.45) has been obtained from a fit to the cylinder symmetrical
solution of Holstein’s equation for radiation transport [Hol51], using data from Ref.
[Iga95]. The rate coefficient of reaction R81 in Table 2.2 corresponds to equation
(2.45) with x = 0.05 and d = 10-4 m. The effective decay frequency only gives a very
crude description of the imprisonment of the resonance photons. A much better
description is given in Chapter 8 of this thesis, by a Monte Carlo model for resonance
photons.

In both PALC and PDP discharges molecular ions are formed, such as He2
+ and

Xe2
+. References [Gro73] and [Mai75] show that if the energy of these ions exceeds a

threshold on the order of 1 eV, collisions with gas atoms may well lead to their
dissociation. In Monte Carlo simulations (see Chapter 7 of this thesis) we found that
although these ions are stable in low field regions (<50 V cm-1 Torr-1), they are
massively dissociated in the microdischarge sheaths. Yet the dissociative ion-neutral
collisions are not mentioned by other authors in the field of discharge modeling, e. g.
in Ref. [Meu95]. The dissociation processes could be included in the fluid model using
field dependent rate coefficients. However, such rate coefficients would be no more
than conjectures, for lack of accurate experimental data. Moreover, the dissociation
reactions are unlikely to have a significant effect on the electrical or the radiative
behavior of the discharge, since we assume the same secondary emission coefficient
for molecular and atomic ions. We therefore follow Ref. [Meu95] and simply ignore
the dissociation of molecular ions.
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Figure 2.6. Rate coefficients of electron impact reactions in 95% neon – 5% xenon, obtained from
[Mue91]. (a) excitation Xe** from Xe*(3P1) (R26), (b) excitation Xe** from Xe*(3P2) (R25), (c) direct
ionization Xe (R33), (d) excitation Xe** (R23), (e) excitation Xe*** (R24), (f) excitation Xe*(3P1) (R22),
(g) excitation Xe*(3P2) (R21), (h) direct ionization Ne (R37), (I) excitation Ne* (R27), (j) excitation Ne**

(R28), (k) ionization from Xe*(3P2) (R34).
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Chapter 3
The numerical solution of the fluid equations*

3.1 Introduction

The system of fluid equations presented in the previous chapter is solved
numerically, by a computer code, taking into account both time evolution and two
spatial dimensions. We solve the equations by the finite difference method [Mor94],
where all quantities are represented by their values at a discrete set of points in time
and space. Using these values, the derivatives in the equations are approximated by
finite differences: the equations are discretized. In this chapter we describe in detail
how the equations are discretized and how the discretized equations are solved.

3.2 Time integration of the system of equations

When solving the system of fluid equations, one has to deal with the coupling
between the different equations. In this section we demonstrate how this is taken care
of in the discretization scheme for the time integration. The words “explicit” and
“implicit” will turn out to be the keywords in solving the couplings in the system. Let
upper indices refer to a moment in time, and let ∆t be a time step, with ttt kk ∆+=+1 .
Assume that the values of all quantities are known at a time tk and are to be calculated
at time tk+1. The continuity equations for particles (2.1) and for electron energy (2.11)
are discretized in time as follows:
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k
p S
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nn
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∆
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ΓΓΓΓ
1

, (3.1)

where l and m are the time indices pertinent to ΓΓΓΓ and S, respectively. The transport
term and the source term can be evaluated either at time tk (l, m = k) or at time tk+1

(l, m = k+1). Evaluation at time tk is explicit, since all quantities at tk are already
known. This is computationally attractive, but it can lead to fluctuations or even
instabilities in the calculation, unless restrictions are applied to the time step ∆t.
Evaluation at time tk+1 must be implicit, since no values are known yet. Implicit
treatment does not lead to fluctuations or instabilities, but it can be very hard to
accomplish: The coupling between different equations and non-linearities can make
implicit evaluations quite cumbersome or impossible. We now write equation (3.1)
more precisely as
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and discuss in detail the treatment of the different quantities appearing in the transport
and source terms of this equation:

                                                
* Parts of this chapter have been published in: G. J. M. Hagelaar and G. M. W. Kroesen, “Speeding up
fluid models for gas discharges by implicit treatment of the electron energy source term,” J. Comp.
Phys. 59, 1-12 (2000).
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The density in the transport term is always handled implicitly: ln = k+1, because
explicit treatment (ln = k) would lead to very severe time step restrictions due to a
fundamental necessary condition for the convergence of difference methods, known as
the Courant-Friedrichs-Lewy (CFL) condition [Roa76, Mor94].

The evaluation of the electric field in the transport term has drawn the attention
of many authors in the field of discharge modeling. If the electric field in the transport
term is treated explicitly (lE = k), as is done in conventional discharge models, the
following time step condition must be applied [Bar87]:

∑
<∆

p
ppp nq

t
µ

ε 0 , (3.3)

in order to avoid numerical instabilities. The electric field at tk+1 can then be calculated
straightforwardly after the calculation of the densities from

( ) ∑ ++ =⋅∇
p

k
pp

k nq 11Eε . (3.4)

The constraint (3.3) can be very prohibitive, especially for high plasma densities
(>109 cm-3). Implicit evaluation of E (lE = k+1) circumvents this time step restriction,
but is numerically unattractive, since it implies solving all the continuity equations
(2.1) and Poisson’s equation (2.18) at the same time. In 1-D models fully implicit
techniques have been successfully applied [Nit94, Boe95a], but for multidimensional
problems these become too cumbersome. However, it can be shown that, in order to
avoid restriction (3.3), a strictly implicit evaluation of E is not necessary: a so-called
semi-implicit treatment [Ven93, Ven94, Lap95] will also ensure stability. In this case,
Poisson’s equation is solved before the continuity equations. Since the space charge
density at time tk+1 is not known yet, an estimate is used:

( ) ∑ ++ =⋅∇
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k
pp

k nq 11 ~Eε , (3.5)

where ñp
k+1 is an estimate for np

k+1, arising from the continuity equation (3.2) with ln =
lµ = lD = mn = mk = k and only lE = k+1:
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Note that the source term Sp has been omitted, since it does not create any space
charge: after substitution in equation (3.4), all source terms would cancel. Using this
semi-implicit technique, the time step can be several orders of magnitude larger than
the time step given by constraint (3.3), thus giving a tremendous speedup of the
calculation.

Transport coefficients and particle source terms are mostly evaluated explicitly
(lµ = lD = mn = mk = k). Fully implicit treatment of all densities in the particle source
terms (mn = k+1) is hardly feasible. Furthermore implicit evaluation of transport and
rate coefficients (lµ = lD = mk = k+1) is problematic since they are arbitrary functions of
the electric field (2.8) or the mean electron energy (2.10), read from lookup tables. For
spontaneous decay processes with a high decay frequency, the density is better
evaluated implicitly (mn = k+1).

3.3 Implicit treatment of the electron energy source term

Using the semi-implicit treatment of the electric field in the drift-diffusion flux,
the particle transport equations can be solved reasonably well. However, it turns out
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that the solution of the electron energy balance equation becomes limiting for the time
step. Small oscillations in the solution of this equation are amplified and spread rapidly
throughout the whole system of equations due to the strong dependence of rate
coefficients and electron diffusion coefficient on the electron mean energy. A typical
behavior is depicted in Fig. 3.1. It has been stated previously that this problem can be
avoided by evaluating the source term for electron energy implicitly, rather than
applying the conventional explicit treatment. For example, Ref. [Lap95] reports a
semi-implicit treatment of the inelastic energy losses, be it for a different type of
energy equation. We present here an implicit technique for the entire source term
(2.16) of the electron energy equation (2.11), that is, including the electron heating
term.
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Figure 3.1. Oscillations in the electron mean energy at one position in a simulation of a DC
microdischarge, for different values of the time step ∆t.

The electron energy source term has a different form than the particle source
terms:
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In this source term the electric field and the electron density can be taken at time tk

without any problem (mE  =  mn = k), but an explicit evaluation of the electron
mobility, electron diffusion coefficient, and especially of the reaction rate coefficients,
(mε = mµ = mD = mk = k) can easily cause and amplify fluctuations. We show now how
these quantities can be evaluated implicitly (mε = mµ = mD = mk = k+1). First, we
linearize the energy source term with respect to the electron mobility, electron
diffusion coefficient, and rate coefficients:
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Then, we linearize the dependencies of these quantities on the mean electron energy:
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and analogous expressions for De
k+1 and kr

k+1. Note that the energy derivatives of µe,
De, and kr are easily evaluated from the lookup-tables. Finally, we use
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Substitution of these expressions into equation (3.8) yields
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The last term on the right hand side provides an implicit correction of the energy
source term for changes in the electron mean energy, which prevents oscillations in the
solution of the energy equation. Possible time step restrictions arising from the
truncation errors in the linearizations (3.8-10) are usually not severe, since the
transport and rate coefficients are smooth functions of the mean electron energy. Note
that it is essential for this approach that the continuity equation for electrons be solved
before solving the energy equation, so that ne

k+1 is known.
We combine this technique with the semi-implicit treatment of the electric field,

and end up with the following scheme:
First Ek+1 is solved from
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Then for every species p the density np
k+1 is solved from
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Finally, nε
k+1 is calculated from
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An appropriate value for ∆t is determined by trial and error. We temporarily reduce the
time step for iterations where the densities change by more than a certain percentage,
say, 10%.

The time integration scheme (3.12-14) has been extensively tested in 2D
simulations of microdischarges. We discuss some typical cases. Figure 3.2 shows a
typical microdischarge geometry; this configuration was used for the test calculations
presented here.
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Figure 3.2. Two-dimensional microdischarge geometry used in the test calculations.

0 2 4 6 8 10
0.0

2.0x10
11

4.0x1011

6.0x1011

implicit ∆t=2x10-8s

implicit ∆t=1x10
-8
s

explicit ∆t=8x10
-11

s

implicit ∆t=5x10
-9
s

implicit ∆t=1x10-10s

e
le

ct
ro

n
 d

en
si

ty
 (

cm
-3
)

time (µs)

Figure 3.3. Space averaged electron density in the simulation of the development of a DC
microdischarge, for different time steps and different treatments of the electron energy source term.
Time steps larger than 10-10 s were impossible using an explicit energy source term evaluation. The
simulated discharge configuration is shown in Fig. 3.2.

First we considered the simulation of the ignition of a DC discharge, which is
one of the most transient phenomena in glow discharges. In this case the behavior of
the plasma is governed by ionization processes and the development of extremely high
space charge fields. Under these conditions an explicit evaluation of the electron
energy source term turned out to result in strong fluctuations in the mean electron
energy for ∆t > 10-10 s. Applying the implicit treatment to the electron energy source
term made it possible to use time steps up to ∆t = 10-8 s, without any significant
influence on the calculated results. For larger values of the time step errors in the
results could be observed, although even then the calculation remained stable. All
calculations yielded exactly the same steady state results, regardless of time step or
integration method. Using the implicit method only slightly increased the
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computational effort per iteration, so that the speedup gained by the increased time
step was tremendous. These calculations are illustrated in Fig. 3.3, which shows the
calculated development of the space averaged electron density for different time steps.

Figure 3.4 shows similar curves for the simulation of the afterglow, i.e. the decay
of the plasma after the DC voltage over the electrodes has been switched off. The
plasma conditions are completely different now: the electric fields and the electron
mean energy decrease rapidly and the behavior of the plasma becomes dominated by
ambipolar diffusion. Initially the plasma density rises, due to a sudden absence of drift
losses while production is still present; then it slowly decreases. Explicit evaluation of
the electron energy source term was possible up to ∆t = 10-9 s, but lead to large
inaccuracies for ∆t > 10-10 s. Once again implicit evaluation gave good results for
∆t = 10-8 s. The implicit correction of the electron heating part of the energy source
term turned out to be essential for these afterglow conditions.

The test results are summarized in Table 3.1. Since the test problems cover a
wide range of numerical conditions, similar results can be expected for discharge
simulations in general.
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Figure 3.4. Space averaged electron density in the simulation of the afterglow of a microdischarge, for
different time steps and different treatments of the electron energy source term. The simulated discharge
configuration is shown in Fig. 3.2.

Table 3.1. Comparison between the test results of different time integration schemes.

treatment of electric
field

treatment of electron
energy source term

typical maximum
time step

typical
CPU time ratio

explicit explicit 10-11 s, Eq. (17) 1
implicit explicit 10-10 s 1.5×10-1

implicit implicit 10-8 s 2.0×10-3
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3.4 Spatial grid and the definition of the discharge configuration

The equations (3.12-14) are solved for two Cartesian spatial dimensions, which
we indicate by x and by y, respectively. We use a two-dimensional uniform grid,
consisting of lines along the x- and y-directions, equally spaced with intervals ∆y and
∆x, respectively. In every separate grid cell we define material properties: a cell can be
filled with discharge gas, with electrode material at a certain voltage, or with dielectric
material with a certain permittivity. In this way, an arbitrarily shaped discharge
channel surrounded by an arbitrary configuration of electrodes and dielectric materials
can be defined, as is demonstrated in Ref. [Hag99]. The plasma equations (3.13,14) are
solved only inside the gas areas. Poisson’s equation (3.12) is solved on the entire grid,
except inside electrode areas.

Let the x- and y-positions of the grid points be referred by two lower indices,
where xI+1,j = xI,j + ∆x and yI,j+1 = yI,j + ∆y. We represent all scalar quantities X(x,y) by
their values XI,j at the grid points, and all vector quantities X(x,y) by the values of their
Cartesian components Xx,I+1/2,j and Xy,I,j+1/2 exactly midway between the grid points; see
Fig. 3.5 for illustration. The value of a scalar quantity midway between grid points is
taken to be the average of its values at the points: XI+1/2,j = (XI+1,j + XI+1,j)/2. In the next
two sections we describe how the different equations are spatially discretized.

Figure 3.5. Spatial grid used for the numerical solution of the equations. All scalars are evaluated at the
grid points marked with solid circles, x-components of vectors at the points marked with open circles,
and y-components of vectors at the points marked with open squares.

3.5 Spatial discretization of the transport equations

The transport term in the continuity equations for particles (3.13) and for
electron energy (3.14) is discretized as follows:
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In order to be able to calculate the density in this transport term implicitly, as is
required by the time integration scheme, we have to substitute a discretized expression
for the drift-diffusion flux. For this purpose we employ the exponential scheme of
Scharfetter and Gummel [Scha69], as is done in Refs. [Boe87, Pas93, Boe95, Nie97].
This scheme supports large density gradients, as opposed to the more straightforward
central difference scheme [Mor94]. It is based on the analytical solution for a constant
drift-diffusion flux between two grid points. For the x-component of the flux it reads
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and the functions f1(z) and f2(z) defined as
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for  z ≠ 0, and f1(0) = f2(0) = 1 . The expression for Γy is analogous.
After the substitution of the exponential scheme for the flux, the discretized

continuity equation has the form of a five-point equation for the density:
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a linear equation that relates the density in a grid point to the densities in the four
neighboring grid points. The east, west, north, south, central, and source coefficients of
equation (3.20) are given by
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respectively.
The five-point coefficients (3.21-26) apply to every grid point in the interior of

the gas areas of the grid. At the boundaries of the gas areas, the five-point coefficients
incorporate the boundary conditions (2.35-39). The boundary condition for the electron
flux is discretized as
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on a west (left) boundary point. Substitution of this expression in the discretized
continuity equation yields the following five-point coefficients for west boundary
points:



The numerical solution of the fluid equations 37

( )jixjiji
E zfD

x

t
a ,2/1,1,2/12, ++∆

∆−= , (3.28)

0,,, === ji
S

ji
N

ji
w aaa , (3.29)

( ) ( ) jithjixjijiji
W

ji
C v

x

t
Eqa

x

t
aa ,,,2/1,,,,1,

2
sgn12

2
1

∆
∆+−

∆
∆+−= ++ µ , (3.30)

( ) ( )∑ ⋅−
∆
∆+

∆
∆+∆+=

p
jippjijijithjiji

k
ji a

x

t
nv

x

t
S

t
nA

,,,,,,,,, 1
2

222
1

nΓΓΓΓγγ , (3.31)

where the factor 1/2 in the first term of aC and the first two terms of A results from the
fact that transport term (3.15) has been evaluated over the interval ∆x/2, instead of ∆x.
The expressions for east, north, and south boundaries, and for other particle species,
are analogous. For heavy particle species the secondary-emission terms are omitted
from the equations (3.27) and (3.31).

A few extra details need to be pointed out about the spatial discretization of the
source term for electron energy (3.11). The inner product in the electron heating part of
this source term is evaluated as
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An analogous discretization is applied to the inner product in the implicit correction of
the electron heating. Here too we use the exponential scheme for the electron flux.
This leads to the following discretized expression
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where the function h(z) is defined as
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In the derivation of equation (3.33) the Einstein relation (2.7,17) has been used.
If we write the discretized energy equation in the five-point form (3.20), the

energy source term does not only appear in the source coefficient A, its implicit
correction part is also included in the central coefficient aC. Let ν be defined by the
following representation of the energy equation (3.14):
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then the central and source coefficients of the discretized equation will be
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3.6 Spatial discretization of Poisson’s equation

The left hand side of Poisson’s equation is discretized by central differencing:
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The right hand side of the semi-implicit version of Poisson’s equation (3.12) contains
transport terms of charged particle species. To ensure a proper functioning of the semi-
implicit technique for the electric field, the discretization of these terms must be
consistent with the discretization of the transport equations. We use again the
difference expression (3.15). However, discretization of the fluxes according to the
exponential scheme (3.16) is inconvenient, because this scheme has the electric field
appearing within exponential functions, which makes the required implicit calculation
of the field very difficult. This problem is usually straightforwardly circumvented by
using a central difference scheme in case, which is linear in the electric field:
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We use however another, more consistent approach: we stick to the exponential
scheme and linearize this in tk:
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where the functions g1(z), and g2(z) are defined as
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for z ≠ 0, and g1(0) = -1/2 and g2(0) = 1/2; h(z) is once again given by equation (3.29).
The use of expression (3.40) for the fluxes in the semi-implicit Poisson equation

gives better results than the central difference scheme (3.39), especially if large time
steps of up to ∆t = 10-8 s are used. As an example, Fig. 3.6 compares both spatial
discretization schemes for the afterglow simulation discussed in Section 3.3, where the
effect is most apparent. The figure shows that the central difference scheme tends to
produce errors, in contrast to the linearized exponential scheme. In all calculations the
same uniform Cartesian grid was used. The grid size was appropriate for the
exponential scheme, that is, further grid refinement hardly changed the results obtained
with this scheme. The central difference scheme obviously requires a finer grid. We
did not see the effect in steady state calculations: both discretization methods lead to
virtually the same steady state results, even for very large time steps.



The numerical solution of the fluid equations 39

10 15 20 25
0.0

5.0x1011

1.0x10
12

exponential ∆t=10-10s

exponential ∆t=10
-8
s

central difference ∆t=10-9s

central difference ∆t=10
-10

s

central difference ∆t=10
-8
s

el
ec

tr
on

 d
en

si
ty

 (
cm

-3
)

time (µs)

Figure 3.6. Space averaged electron density in the simulation of the afterglow of a microdischarge. The
simulated discharge configuration is shown in Fig. 3.2. The figure compares the performances of two
spatial discretization schemes for the fluxes in the semi-implicit Poisson equation (3.12), the central
difference scheme (3.39) and the linearized exponential scheme (3.40), for different time steps. In all
calculations the electron energy source term was handled implicitly.

For the calculation of the electric field, we make use of the electric potential and
substitute the difference
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and an analogous expression for Ey,I,j+1/2 into the equations (3.38) and (3.40). On this
substitution Poisson’s equation becomes a five-point equation for the potential

jijiji
C

jiji
S

jiji
N

jiji
W

jiji
E AVaVaVaVaVa ,,,1,,1,,,1,,1, =++++ −+−+ , (3.44)

where

( ) ( )( )[ ]∑ +++++ −
∆
∆−

∆
=

p
pjixjijixjijijiji

E zgnzgnq
x

t

x
a ,2/1,2,,2/1,1,1,2/12,2/12,

1 µε , (3.45)

( ) ( )( )[ ]∑ −−−−− −
∆
∆−

∆
=

p
pjixjijixjijijiji

W zgnzgnq
x

t

x
a ,2/1,2,1,2/1,1,,2/12,2/12,

1 µε , (3.46)

( ) ( )( )[ ]∑ +++++ −
∆
∆−

∆
=

p
pjiyjijiyjijijiji

N zgnzgnq
y

t

y
a 2/1,,2,2/1,,11,2/1,22/1,2,

1 µε , (3.47)

( ) ( )( )[ ]∑ −−−−− −
∆
∆−

∆
=

p
pjiyjijiyjijijiji

S zgnzgnq
y

t

y
a 2/1,,21,2/1,,1,2/1,22/1,2,

1 µε , (3.48)

ji
S

ji
N

ji
W

ji
E

ji
C aaaaa ,,,,, −−−−= , (3.49)



Chapter 340

( )( )∑
 −

∆
∆+−= +++

p
jijijixjijiji nnzhqD

x

t
qnA ,,1,2/1,,2/12,,

         ( )( ) ( )( )jijijiyjijijijixji nnzhqD
y

t
nnzhqD

x

t
,1,2/1,,2/1,2,1,,2/1,,2/12 −

∆
∆+−

∆
∆− +++−−−

          ( )( )
p

jijijiyji nnzhqD
y

t



−
∆
∆− −−− 1,,2/1,,2/1,2 . (3.50)

Poisson’s equation is solved not only inside the gas areas, but also in the
surrounding dielectrics. Within the dielectric areas the space charge and charged
particle transport terms are omitted from the five-point coefficients (3.44-50). Surface
charge on dielectric walls is taken into account by Gauss’s law, which is discretized as
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for west walls. Here the surface charge density is to be evaluated semi-implicitly,
similar to the space charge density in Poisson’s equation:
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where the fluxes are given by equation (3.40). Dividing by ∆x casts equation (3.51)
into the form of the discretized Poisson’s equation. For the grid points on left walls we
find the following five-point coefficients:
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At the utter edges of the grid, the field inside dielectrics is taken to be parallel to the
edges: on the left edge we assume that VI,j = VI+1,j, i.e. aC

I,j = 1, aE
I,j = -1, and aW

I,j =
aN

I,j = aS
I,j = AI,j = 0. Note that this boundary condition is artificial and unphysical.

3.7 The solution of five-point equations

The discretization described in the previous sections transforms the transport
equations and Poisson’s equation into sets of linear five-point equations
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which need to be solved at every time step. Many numerical techniques exist for the
solution of such sets of five-point equations, varying in their efficiency and simplicity.
For our purpose iterative techniques – which iteratively improve an estimated solution
until a convergence criterion is met – are very efficient, because a good estimate for
the solution is always available from the previous time step. A well known iterative
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method that is often used in two-dimensional discharge modeling is the classical
successive overrelaxation (SOR) technique [Pre92].

Rather than SOR, we use the Modified Strongly Implicit (MSI) method
developed by Schneider and Zedan [Sch81]. Besides being extremely simple to
implement, this iterative method is very efficient and usually far more powerful than
SOR. However, when applied in the way it is presented in the original article [Sch81],
the MSI method sometimes fails to find a solution for the transport equations. By trial
and error, we have found a rough remedy for this problem. In this section we report
our modifications to the MSI method, without pretending to understand why they
work.

The original MSI method is implemented as follows:
First the following coefficients are calculated for every grid point:
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where α is a parameter which can be chosen between 0 and 1.
Then, an iterative procedure is followed to improve an estimated solution for u.

Each iteration requires four steps:
• The residual vector r is calculated as
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• An intermediate vector v is found by a forward substitution
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• A backward substitution of v gives the change vector δ:

1,,1,1,,1,,, ++−+ −−−= jijijijijijijiji vhvgvfvδ . (3.71)

• The change δ is added to u:

jijiji uu ,,, δ+= . (3.72)

The steps (3.69-72) are repeated until the norm of the residual r  is small enough to

satisfy the convergence criterion
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( )uaAr C+< −610 . (3.73)

Note that the coefficients b through h remain unchanged during this process.
The rate of convergence depends upon the choice for α. In most cases α = 0.9

gives the fastest convergence. However, when solving a transport equation the
procedure sometimes diverges for any α > 0. We never saw this problem with
Poisson’s equation, and remark that Poisson’s equation and the test problem
considered by Schneider and Zedan have in common that aC

I,j = -aE
I,j – aW

I,j – aN
I,j –

aS
I,j, which is not the case for the transport equations. Setting α to 0 prevents possible

divergence, but slows down the usual rate of convergence by a factor of 5-10
compared to using α = 0.9. However, we found out that using
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rather than equations (3.60) and (3.62), also avoids most cases of divergence. In the
equations (3.74-75) the denominators of the coefficients b and d are artificially
prevented from approaching zero. We use these modifications in combination with
α = 0.9. In the very rare case that divergence still occurs, i.e. r  increases rather than

decreases, we abort the iterative procedure and resume it after having recalculated the
coefficients b through h with α = 0.
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Chapter 4
The fluid simulation of PALC discharges *

4.1 Introduction

In this chapter we use the fluid model presented in Chapters 2-3, to simulate the
microdischarges in PALC displays. Our aim is more to demonstrate the possibilities of
the fluid model than to find actual improvements of the PALC technology. For a
description of the PALC operation principle we refer to Chapter 1.

All calculations presented here are based on the standard geometry shown in Fig.
4.1, which represents a cross section through three consecutive discharge channels of a
PALC display. Three channels are taken into account in order to be able to study cross-
talk effects: electrical influences of adjacent channels on each other. In addition, a
large region of the bottom glass plate is included in order to obtain the correct electric
field at the bottom wall of the discharge channels. As a discharge gas we consider pure
helium and helium–hydrogen mixtures; the species and reactions taken into account
can be found in Table 2.1. The simulation of one single PALC discharge and afterglow
takes 2 – 10 minutes of CPU time on a Pentium II PC.

We first present the simulation of a discharge pulse (Section 4.2) and an
afterglow (Section 4.3) in a PALC channel. Then we present the calculation of the
surface charge and the resulting transmission, that develops during a series of
discharge pulses and afterglows in three consecutive channels, corresponding to a
realistic addressing procedure (Section 4.4). Where applicable, we compare the
simulation results with experimental data, taken from Ref. [Slo99].

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

data electrode
LC layer + microsheet

channel 3channel 2channel 1

cathode 3 anodeanodecathode 2anodecathode 1

glass

position (mm)

po
si

tio
n

 (
m

m
)

Figure 4.1. Standard geometry used for the calculations. The dielectric constant of the glass plate with
inter-channel walls is 6.0, the LC layer with microsheet has an effective dielectric constant of 5.0.

                                                
This chapter, in slightly altered form, has been published in: G. J. M. Hagelaar, G. M. W. Kroesen, U.
van Slooten, and H. Schreuders, “Modeling of the microdischarges in plasma addressed liquid crystal
displays,” J. Appl. Phys. 88 (5), 2252-2262 (2000).
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Figure 4.2. Electric potential, electron mean energy, particle densities, and electron impact reaction rates
in a DC discharge in pure helium. These plots correspond to the middle channel of the geometry shown
in Fig. 4.1. The gas pressure is 150 Torr. Cathode 2 is set to –260 V, all other electrodes are grounded.
The resulting current is 3.0 mA/cm. The increment of the contours is 1/10 times the maximum value
indicated in the top right corner of each plot; the darkest regions correspond to this maximum value.
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Figure 4.3. Electric potential, electron mean energy, and particle densities in a DC discharge in a
mixture of 97% helium and 3% hydrogen. These plots correspond to the middle channel of the geometry
shown in Fig. 4.1. The gas pressure is 105 Torr. Cathode 2 is set to –320 V, all other electrodes are
grounded. The resulting current is 3.0 mA/cm. The increment of the contours is 1/10 times the
maximum value indicated in the top right corner of each plot; the darkest regions correspond to this
maximum value.



Chapter 446

4.2 Discharge pulse

A PALC discharge is generated by a DC voltage pulse on the channel electrodes.
Figs. 4.2 and 4.3 show the calculated steady state particle densities and electron mean
energy under typical conditions at the end of the pulse, for helium and a mixture of
97% helium and 3% hydrogen. These results clearly show a so-called cathode fall: a
region in front of the cathode where the total positive ion density exceeds the electron
density by orders of magnitude. The strong positive space charge density of the
cathode fall screens the remainder of the channel largely from the applied electric
field. This remaining region contains a quasi-neutral plasma. In the cathode fall region
an extremely high electric field heats the electrons to a mean energy of about 50 eV,
resulting in high electron impact ionization and excitation rates. As a result particle
species which are mainly created by electron impact reactions reach their maximum
density around the cathode fall region, whereas species created in heavy particle
reactions, such as He2

+, are mainly present in the plasma region. As can be seen
comparing Fig. 4.2 with Fig. 4.3, the cathode fall in the helium–hydrogen mixture is
very similar to the one in helium, but in the plasma region the role of the helium ions is
taken over by the hydrogen ions.

By performing steady state DC discharge calculations for different discharge
voltages, it is possible to calculate current-voltage (I-V) curves, which can be
compared with experimental data. Exact quantitative agreement cannot be expected, in
view of the fact that the I-V  curves are extremely sensitive to many delicate
parameters, such as secondary emission coefficients. However, trends in calculated I-V
curves turn out to be in very good agreement with trends in measured I-V curves. As
an example, Figs. 4.4 and 4.5 present a study of the influence of the channel height and
the electrode width on the I-V curve of a pure helium discharge. Figure 4.4 shows that
channel height does not affect the I-V curve as long as it is well above 200 µm. For
smaller channel heights the cathode fall region is somewhat squeezed by the channel
walls, which leads to an increase in the discharge voltage.
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Figure 4.4. Calculated and measured I-V curves of pure helium at 150 Torr, for different the channel
heights. The simulated discharge configurations are all similar to the one shown in Fig. 4.1; the
discharges are created only in the middle channel.
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Figure 4.5. Calculated and measured I-V curves of pure helium at 150 Torr, for different electrode
widths. The simulated discharge configurations are all similar to the one shown in Fig. 4.1; the
discharges are created only in the middle channel.

4.3 Afterglow

During the period immediately following the discharge pulse – the so-called
afterglow – the plasma in the channel decays. In the simulations we assume the
electrode voltage to go down abruptly to 0 V at the beginning of the afterglow; this
assumption seems to be a reasonable approximation of the reality. Figs. 4.6 and 4.7
show the simulated decay of the different particle species in the afterglow in pure
helium and in a mixture of 97% helium and 3% hydrogen, respectively. Initially the
densities of most charged species increase somewhat, due to the sudden decrease in
drift losses, while production still continues. During the first part of the afterglow the
electrons and ions are coupled together by space charge fields, resulting in ambipolar
diffusion. As the plasma density decreases, the space charge fields become weaker,
until the ambipolar diffusion breaks and the electrons run off, leaving the ions behind.

In pure helium however, the decay is not determined by diffusion alone. In this
gas the decay of charged species is enormously slowed down by metastable-metastable
ionizations R9 and R10 (Table 2.1), which continue far into the afterglow. As can be
seen in Fig. 4.6, the electrons produced by these processes leave the channel very
quickly, indifferent to the ambipolar coupling, due to their relatively high energies.
(See Section 2.4.) The produced ions then lead to enhanced trapping of the less
energetic thermalized electrons remaining from the discharge. In helium–hydrogen
mixtures the helium metastables are strongly quenched by Penning reactions R7 and
R8 so that the metastable-metastable ionizations have no influence.
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Figure 4.6. Decay of the numbers of particles in the afterglow in pure helium, per cm of channel length.
The particle numbers can be converted into space averaged densities by division by 7.6×10-4 cm2. Two
electron groups are shown separately in this figure: e are the (thermalized) electrons produced by
electron impact ionization, e* are the (non-thermalized) electrons originating from metastable-metastable
ionization. (See Section 2.4.) The discharge configuration is shown in Fig. 4.1; all electrodes are
grounded. The gas pressure is 150 Torr. This afterglow belongs to the discharge shown in Fig. 4.2.
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Figure 4.7. Decay of the numbers of particles in the afterglow in a mixture of 97% helium and 3%
hydrogen, per cm of channel length. The particle numbers can be converted into space averaged
densities by division by 7.6×10-4 cm2. The discharge configuration is shown in Fig. 4.1, all electrodes
are grounded. The gas pressure is 105 Torr. This afterglow belongs to the discharge shown in Fig. 4.3.
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Figure 4.8. Typical transmission-voltage curve. Note that all light is transmitted if the microsheet is
uncharged.

Figure 4.9. Two charge coupled device camera images of the same part of a PALC display. The
channels are directed horizontally; three and a half channels are shown. The two images correspond to
two different addressing procedures: in the left picture the channels were addressed from the top to the
bottom, in the right one from the bottom to the top. The horizontal black stripes are the opaque channel
electrodes. All the light stripes result from insufficient charging of the microsheet: the sharp horizontal
light stripes correspond to the inter-channel ribs, the vertical light stripes to the gaps between the data
electrodes. Additional horizontal vague light stripes can be seen inside the channels, close to the ribs,
indicating charging inhomogenities. In the left picture these effects mainly take place at the bottom sides
of the channels, in the right picture at the top sides. These images are taken from Ref. [Slo99].

4.4 Addressing

In true PALC operation, small voltages are applied to the data electrodes during
the discharge pulse and the afterglow, which leads to the buildup of surface charge on
the microsheet. The surface charge invokes an electric field in the LC layer, resulting
in a certain transmission of the polarizing layers. The percentage of light transmitted
by the polarizers as a function of the of the total voltage across the LC layer and the
microsheet is given by a so-called transmission-voltage curve. Using the transmission-
voltage curve shown in Fig. 4.8, it is possible to calculate transmission profiles of
simulated PALC channels, which can be compared with experimental results.
Transmission measurements on real PALC panels, such as shown in Fig. 4.9, have
raised the suspicion that the buildup of surface charge in a certain channel is
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influenced by the surface charge present in the adjacent channels (electrical cross-talk).
A proper calculation of the surface charge and the resulting transmission profile
therefore requires the full simulation of not only the channel in question, but also of
the two neighboring channels.

We use the three channel geometry of Fig. 4.1. Following a realistic addressing
procedure, the channels are addressed one by one, from the left to the right, every time
inverting the sign of the voltage on the data electrodes (row inversion). The exact
model addressing scheme is represented by Fig. 4.10. We apply a data voltage of ±20
V, corresponding to the maximum slope of the transmission-voltage curve, where the
transmission is most sensitive to charging errors. The calculated electric potential at
the end of the three channel addressing scheme is plotted in Fig. 4.11. It can clearly be
seen, that the surface charge field in the LC-layer and microsheet is directed oppositely
for the consecutive channels, due to the row inversion technique. Note that the outer
sides of first and the last channel are not properly modeled, given the artificial
boundary conditions for the electric field at the edges of the simulation domain; only
the middle channel has been treated correctly.

Figure 4.12 shows the final transmission profile of this middle channel. In the
center of the channel a homogeneous transmission has been achieved, but near the
inter-channel walls (ribs), transmission inhomogenities occur. The charging is
incorrect especially on the right hand side of the channel. This asymmetric effect is in
full agreement with the experimental observations shown in Fig. 4.9. It results from
electrical cross-talk: At the moment the surface charge in the middle channel is
established, the right neighbor channel contains a repelling surface charge with the
same polarity, whereas the left neighbor channel has an attracting surface charge with
opposite polarity. In fact, the phenomenon depends on the addressing procedure; if the
channels are addressed in reverse order (so: from right to left), the main charging
errors occur on the other side of the channel.

Figure 4.10. Electrode potentials as a function of time in a realistic addressing procedure. This figure
relates to the three channel geometry shown in Fig. 4.1. The last three discharge pulses (in the channels
1, 2, and 3, respectively) represent one picture frame, where the rows are addressed from left to right.
The first pulse (in channel 3) belongs to the previous frame.
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Figure 4.11. Calculated electric potential in the three channel geometry of Fig. 4.1, at the end of the
addressing procedure represented by Fig. 4.10. The unit of the indicated potentials is Volt. The
increment of the contours is 4 V.
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Figure 4.12. Calculated transmission profiles of a PALC channel filled with pure helium, for different
addressing times. This graph corresponds to the middle channel of the geometry shown in Fig. 4.1. The
vertical lines indicate positions of the channel walls. The gas pressure is 150 Torr. The pulse voltage is
260 V, the addressing voltage –20 V.

Figure 4.12 also illustrates that a minimum of addressing time is required for a
proper charging: If the addressing time is too short for the plasma to decay, the row
inversion will partially erase the surface charge, leading to an increase of the
transmission. According to Fig. 4.12, at least 30 µs of addressing time are needed for
pure helium channels. The minimal required addressing time is determined by the
decay rate of the plasma; one can define a plasma decay time as the addressing time
corresponding to a 1% increase in transmission in the center of the channel. Figure
4.13(a) shows a comparison of calculated and measured decay times for helium at
different pressures. The helium decay time goes up as the pressure increases, due to an
increase of the metastable density and a decrease of the diffusion coefficients. In Fig.
4.13(b) the calculated and measured decay times for different helium-hydrogen
mixtures are compared. Adding hydrogen to helium strongly decreases the decay time,
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due to the quenching of the helium metastables. For all calculations the agreement with
experiment is excellent.
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Figure 4.13. Decay time as a function of (a) gas pressure, where the discharge gas is pure helium, and
(b) percentage of hydrogen, where the gas pressure is 105 Torr. Here the decay time is defined as the
addressing time corresponding to a transmission error of 1%. (See text.) For all calculations the
discharge current is 3.0 mA/cm and the data voltage –20 V. The experimental data are taken from Ref.
[Slo99].

4.5 Conclusions

The fluid model presented in Chapters 2-3 is capable of simulating the full
PALC operation. We have reproduced a series of discharge pulses and afterglows in
three consecutive PALC channels, filled with pure helium or helium–hydrogen
mixtures. The simulations show that at the end of a discharge pulse a cathode fall and a
plasma region are present in the channel in question. Calculated I-V curves of the
PALC discharges are in good agreement with measurements. The simulations
reproduce non-uniformities in the charging of the microsheet, known from
experiments, and related to electrical cross-talk between adjacent channels. Calculated
plasma decay times are in excellent agreement with measured decay times. In pure
helium, the decay is slowed down enormously by a continuous plasma production
through metastable-metastable ionization; in helium–hydrogen mixtures the helium
metastables are quenched so that this effect does not take place.
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Chapter 5
Energy loss mechanisms in PDP discharges*

5.1 Introduction

One of the major drawbacks of PDPs is their low luminous efficacy: about 1
lm/W, compared to 4 lm/W for the conventional CRT displays. Energy loss in color
PDPs occurs in various ways: Only about 40% of the UV photons emitted by the
discharges is captured by the phosphors, where an additional 80% of photon energy is
lost in the conversion to visible light, mainly due to the difference in wavelength of the
visible light and the UV radiation. Next, only about half of the visible light emitted by
the phosphors leaves the display on the front side, the other half is absorbed
somewhere in the display. However, the largest energy loss occurs in the
microdischarges themselves: less than 10% of the electrical input energy is used for
the emission of UV photons. In this chapter we analyze the energy loss mechanisms in
the PDP discharges, using the fluid model presented in Chapters 2-3. Once again, our
aim is more to demonstrate the possibilities of the model than to find technological
improvements. For a description of the PDP technology we refer to Chapter 1.

We simulate the discharges occurring in a coplanar-electrode type PDP. [Hir98]
The considered model geometry, shown in Fig. 5.1, represents a discharge cell, or
actually an entire row, of the display. Due to its two-dimensionality, the model
geometry is only an approximation of the real PDP geometry, which has important
three-dimensional features. The barrier ribs that separate the columns of the display are
not represented in the model; instead, the model cell has side walls along the sustain
electrodes. Simulating a real driving scheme, we apply a square wave voltage to the
two sustain electrodes (common and scan), with an amplitude below the breakdown
voltage. Each simulation is started with a write pulse, which initiates the discharges
and switches the cell on. The exact model driving scheme is shown in Fig. 5.2. An
external circuit, involving back-coupling from the current to the electrode voltage, is
not included in the model. We do however take into account a small rise time (∼100
ns) for all voltage changes; this seems to be a reasonable approximation of the reality.
The discharge gas is a mixture of a small percentage of xenon in neon, at a pressure of
450 Torr. We take into account the extensive reaction scheme presented in Table 2.2,
which describes both the electrical behavior of the discharge and the mechanisms of
UV generation. The simulation of a single discharge takes 10-20 minutes on a modern
PC.

Section 5.2 presents the simulation results illustrating to operation of a typical
PDP discharge. In Section 5.3 we analyze how the electrical energy is dissipated in the
discharge. In Section 5.4 we study how the energy dissipation and the resulting
discharge efficiency are influenced by several discharge parameters.

                                                
* This chapter, in slightly altered form, has been submitted for publication.
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Figure 5.1. Model geometry used in the calculations. This geometry represents a discharge cell of a
coplanar-electrode PDP. The top of the geometry corresponds the back plate of the display, the bottom
to the front plate. The sustain electrodes are indicated as the common and scan electrodes. The dielectric
constant of the glass is 11.0.

Figure 5.2. Electrode potentials as a function of time in the model driving scheme. This figure relates to
the model geometry shown in Fig. 5.1, where the common and scan electrodes are the sustain electrodes.
Typically the amplitude of the sustain voltage is Vs = 180-300 V, its frequency 50-250 kHz.

5.2 Simulation of a PDP discharge

Once a PDP cell has been switched on, a transient discharge occurs each time the
sustain voltage changes polarity. Each discharge is quenched by the accumulation of
surface charge on the dielectric layer that covers the electrodes. Figs. 5.3 and 5.4 show
the electric potential and the xenon excitation rate in the model geometry, during
simulation of a typical PDP discharge. By the end of the discharge that precedes the
one considered in these figures, stored surface charge screens the discharge gas almost
entirely from the applied voltage. After the sustain voltage has been switched, the
same surface charge reinforces the applied voltage, rather than canceling it. The total
voltage across the discharge gas is now so high that the ignition of a new discharge
takes place, despite the fact that the sustain voltage itself is below the breakdown
voltage.
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Figure 5.3. Time evolution of the electric potential profile during a PDP discharge. The geometry is
shown in Fig. 5.1. The sustain voltage is 225 V, the sustain frequency is 50 kHz, the pressure is 450
Torr, and the xenon percentage is 5%. The moment t = 0 corresponds to the end of the previous sustain
pulse; the sustain voltage is switched between t = 0 µs and t = 0.10 µs, with a rise time of 0.10 µs. The
increment of the contours is 1/10 times the difference of the maximum and minimum values, which are
indicated in each plot. The unit of the indicated potentials is V.
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Figure 5.4. Time evolution of the excitation rate of the resonant Xe*(3P1) state during a PDP discharge.
This figure shows results of the same simulation as Fig. 5.3; the discharge conditions are indicated in the
caption of that figure. For all plots the contours correspond to a logarithmic scale covering the range
from 1018 to 1022 cm-3 s-1; the increment of the contours is a factor of 2.51. The unit of the values
indicated in the plots is cm-3 s-1.

It appears from Figs. 5.3 and 5.4 that the discharge starts in the center of the
geometry, where the electrodes are close together. As soon as a new surface charge
distribution is established in the center of the geometry, the discharge spreads outward.
Eventually the entire electrodes are screened by the new surface charge distribution,
and the discharge stops. Note that the current through the electrodes is a displacement
current, resulting from the changes in the electric fields in the dielectric layer that
covers them. During the discharge, extremely strong electric fields are present in the
plasma sheath front of the cathode, which has the character of a cathode fall. Ionization
and excitation mainly take place in the vicinity of this cathode sheath.
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Figure 5.5 shows the calculated time evolution of the (space integrated) densities
of the most important species during the discharge. The densities rapidly increase at
the beginning of the sustain pulse, and then gradually decay. Neon ions are only
present during the very first part of the discharge; during the plasma decay Xe2

+

becomes the most important ion species.
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Figure 5.5. Time evolution of the numbers of particles of the most important species. The particle
numbers per cm of row length on the vertical axis can be converted into averaged densities by division
by 1.11×10-3 cm2. This figure shows results of the same simulation as Fig. 5.3; the discharge conditions
are indicated in the caption of that figure.

5.3 Analysis of the energy dissipation

During the discharge, electrical energy is transferred to the plasma through the
acceleration of the charged particles. The energy that is thus consumed by the particle
species p is

∫ ∫∫∫ ⋅=
time

volume
discharge

3 dd tVqW ppp EΓΓΓΓ , (5.1)

where q is the particle charge, ΓΓΓΓ is the particle flux, and E is the electric field. Note
that the sum of these energies must be equal to the total electrical energy input:

∫∑ ×=
time

dtVIW
p

p , (5.2)

where I is the (displacement) current through a sustain electrode and V is the sustain
voltage. We  confirmed that this relation is reproduced by the fluid model within
0.01%, which illustrates its numerical consistency. The main energy consumption
takes place in the plasma sheaths, mostly on the cathode side of the discharge, where
the sheath contains an extremely strong electric field, as can be seen in Fig. 5.3.

Figure 5.6 shows the calculated energy consumption of the various charged
particle species in a typical PDP discharge. The larger part of the energy turns out to
be consumed by ions. This energy is lost for the production of UV photons: under the
PDP discharge conditions, ionization or excitation by ion impact seem negligible,
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which implies that all the ion energy is eventually transferred to the gas and the
surface. Note that ion impact ionization or excitation are not included in the model;
even if they would occur, we would not see them in the simulations. The electron
energy, on the other hand, is largely used for the excitation and ionization. The energy
that is used for a reaction r is

∫ ∫∫∫=
time

volume
discharge

3 dd tVRW rrr ε (5.3)

Figure 5.7 shows the how the electron energy is used in the different reactions.
Of all the processes in Fig. 5.7, it is mainly the excitation of xenon atoms that

eventually leads to the generation of UV photons. There are several possible
mechanisms: First, the resonant state Xe*(3P1) decays directly to the ground state,
emitting UV photons at a wavelength of 147 nm. Second, both the resonant Xe*(3P1)
and metastable Xe*(3P2) state may attach to xenon gas atoms and form excited dimers
Xe2

*; these dimers decay radiatively into ground state atoms. The photons thus emitted
by the higher vibrational levels Xe2

*(Ou
+) are distributed around 150 nm, those emitted

by the lower vibrational levels Xe2
*(3Σu

+, 1Σu
+) around 173 nm. The higher atomic

states Xe** and Xe*** do not directly lead to UV photons, but cascade down to the
Xe*(3P1, 

3P2) levels. In this case some energy is lost in the form of infrared radiation or
gas heating.

The energy that is emitted from the discharge in the form of UV photons with a
wavelength λ is

( )∫ ∫∫∫=
time

volume
discharge

3 dd tVRhcW λλ λ (5.4)

where h is Planck’s constant, c is the velocity of light, and Rλ is the rate of the decay
process leading to the emission. The relative importance of the different UV
wavelengths (147, 150, and 173 nm) depends on heavily on the partial xenon pressure.
Figure 5.8 shows the fraction of the UV energy emitted at 147 nm,
W147 nm/(W147 nm+W150 nm+W172 nm), as a function of the xenon content. The simulation
results are in excellent agreement with the experimental values of Ref. [Sni99],
determined by integrating the measured emission spectrum.
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Figure 5.6. Breakdown of the electrical input energy into the heating of the different charged particle
species. The total energy consumption is 3.4×10-7 J per discharge (pulse) per cm of row length. The
sustain voltage is 225 V, the sustain frequency is 250 kHz, the xenon percentage is 5%.
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Figure 5.7. Breakdown of the loss of electron energy into the different electron impact excitation and
ionization processes. The discharge conditions are indicated in the caption of Fig. 5.6.
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Figure 5.8. Ratio of the energy carried by 147 nm resonance photons and the total energy carried by UV
photons. This plot compares the results of fluid simulations with the experimental data of Ref. [Sni99].
The discharge conditions are the same as with Fig. 5.6.

5.4 Parametric studies

The efficiency of the discharge in generating UV photons is defined as

∑∑=
p

pWW
λ

λη , (5.5)

In view of the analysis given in the previous section, it is interesting to split  the
discharge efficiency into two partial efficiencies:

∑=
p

pe WW1ρ , (5.6)
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eWW∑=
λ

λρ2 , (5.7)

where We is the electrical energy transferred to the electrons, and η = ρ1ρ2 . The partial
efficiency ρ1 is the efficiency of the discharge in heating the electrons, ρ2 is the
efficiency of the electrons in generating UV radiation.

We now investigate how the η, ρ1, and ρ2 are influenced by various discharge
parameters. Wherever possible, we compare the simulation results with experimental
data on the PDP efficacy, taken from Ref. [Ove00]. The efficacy is a measure for the
light output of the display – weighted according to the sensitivity of the human vision
– per unit of electrical input energy; it is thus not only determined by the discharge
efficiency, but also by other factors, such as the efficiency of the phosphors in
converting the UV radiation into visible light. Here we assume that these other factors
stay constant.

We start with the influence of the secondary emission coefficient. In present day
PDPs, where the surface is coated with magnesium oxide, this coefficient has been
estimated to be around 0.45 for neon ions and below 0.001 for xenon ions. [Pun98a]
Figure 5.9 shows that both η and ρ1 increase with increasing secondary emission
coefficient; ρ2 is nearly unaffected. This result is not very surprising: The secondary
emission coefficient directly determines the relative contributions of the electrons and
the ions to the current density in the cathode fall, where the main particle heating
occurs. The relative contribution of the electrons – and consequently ρ1 – increases
monotonically with increasing secondary emission coefficient. Of main importance is
the secondary emission coefficient of the neon ions. For xenon ions, the secondary
emission coefficient is so low that its exact value does not really matter: xenon hardly
contributes to the secondary emission anyway.
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Figure 5.9. Calculated efficiency as a function of the secondary emission coefficient, for (a) neon ions
and (b) xenon ions. The sustain voltage is 225 V, the sustain frequency is 250 kHz, the xenon
percentage is 5%.
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Figure 5.10. Calculated efficiency as a function of the sustain voltage, for (a) two different frequencies
and a rise time of 100 ns, and (b) two different rise times and a frequency of 250 kHz. The xenon
percentage is 5%.

The effect of the sustain voltage is shown in Fig. 5.10. For not too high sustain
voltages, both η and ρ1 increase with increasing voltage. This trend is also seen in the
efficacy measurements shown in Fig. 5.11(a). The model reveals the mechanism
behind this trend: As the voltage increases, the electric fields and the electron energies
in the discharge go up. Since neon has a higher ionization energy than xenon, this is
leads to an increase of the relative contribution of neon to the total ion flux, which
implies an increase of the average secondary emission coefficient. As we have seen
before, this is favorable for the electron heating efficiency ρ1.

Figure 5.10(a) also shows that the sustain frequency has a strong effect on the
calculated efficiency. This fact is known from experiments; see Fig. 5.11(b): Beyond a
certain sustain frequency, the discharge efficiency drops dramatically. Also here, the
underlying mechanism is easily found with the model: At low frequencies (50 kHz),
there is a short while between the switching of the sustain voltage and the breakdown.
At high frequencies (250 kHz), the plasma does not completely decay in between the
discharges, which facilitates their ignition: breakdown now already occurs during the
switching of the voltage. This is illustrated by Fig. 5.12. Due to the premature
breakdown, the surface charge on the dielectric layer is already changed before the
sustain voltage reaches its full value, so that the final voltage across the gas is lower.
As we have seen before, this results in a lower ρ1. This observation suggests, that for
high frequencies (250 kHz) the rise time of the sustain voltage might influence the
efficiency. According to the simulation results shown in Fig. 5.10(b), this is indeed the
case. For 50 kHz no influence of the rise time is found. We remark that these results
are only of qualitative value: in general, the exact time between the switching of the
voltage and the breakdown is not very accurately predicted by fluid models. [Pun98]
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Figure 5.11. Measured luminous efficacy as a function of (a) the sustain voltage, where the frequency is
250 kHz, and (b) the sustain frequency, where the voltage is 225 V. The xenon percentage is 10%.
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Figure 5.12. Comparison between of the time evolution of the electron density for two different sustain
frequencies. The xenon percentage is 5%.

As we have seen, the amplitude, frequency, and rise time of the sustain voltage
mainly affect η via ρ1, leaving ρ2 nearly unchanged. A parameter that can be expected
to directly affect ρ2 is the xenon content of the gas mixture. Figure 5.13(a) shows that
the calculated efficiency increases with increasing percentage of xenon. This trend has
been reported in the literature, e.g. in Ref. [Meu95], but is not fully reflected by the
efficacy measurements shown in Fig. 5.13(b). We remark that it is known that the
phosphor performance strongly depends on the UV wavelength, which is influenced as
well by the xenon percentage. (See Fig. 5.8.) It appears from Fig. 5.13(a) that not only
ρ2, but also ρ1 is responsible for the increase of η with increasing xenon content.
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Figure 5.13. Influence of the percentage of xenon on (a) the calculated efficiency and (b) the measured
efficacy. The sustain voltage is 260 V, the sustain frequency is 250 kHz.

5.5 Conclusions

The fluid model presented in Chapters 2-3 is capable of simulating the
microdischarges in a coplanar-electrode PDP. We have reproduced a write pulse and a
series of sustain pulses in one cell of the display.

From the simulation results, we have analyzed how the electrical input energy is
dissipated in the cell. The largest part of the electrical energy is transferred to ions and
subsequently to the gas and the surface. The electrical energy transferred to electrons is
mostly used for ionization and excitation. The part used for xenon excitation largely
ends up in UV radiation. The calculated fraction of the UV energy that is carried by
resonance photons is in excellent agreement with experimental results.

We have studied how the energy loss mechanisms are influenced by several
discharge parameters. The amplitude, frequency, and rise time of the sustain voltage
mainly affect the losses due to ion heating. The xenon content also affects the
conversion of electron energy into UV energy. The trends in the calculated discharge
efficiency are in good agreement with measured trends in the luminous efficacy.
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Chapter 6
A Monte Carlo modeling study of the electrons
in PALC discharges*

6.1 Introduction

Fluid models, such as the model presented in Chapters 2-3 of this thesis, are
widely used in the research of microdischarges for display technology. [Meu95,
Pun98, Choi95, Vee96] These models provide a complete, self-consistent description
of the discharge, at relatively low  computational cost, using moments of the
Boltzmann equation to describe the plasma particle transport, coupled to Poisson’s
equation to describe the electric field. However, the fluid models are based on
restrictive assumptions for the electron energy distribution function (EEDF), thus
failing to account for the possible non-equilibrium nature of the electrons in
microdischarges. [Sur90, Ilc97]

Fluid models use mobilities µ, diffusion coefficients D, and reaction rate
coefficients k as input parameters. In general these coefficients depend on the energy
distributions of the plasma particles. For instance, the ionization rate coefficient kI is
determined by the EEDF:

( ) ( )∫
∞

=
0

d2 εεεεσ fmk eii , (6.1)

where ε is the electron energy, σI is the ionization cross section, me is the electron
mass, and f is the EEDF. However, in the fluid models the input coefficients are
assumed to be functions of the local electric field E: [Meu95, Pun98, Vee96]

( )Eµµ = , ( )EDD = , ( )Ekk = , (6.2)
or of the local electron mean energy ε : [Cho95, Mey90, Boe95]

( )εµµ ee = , ( )εee DD = , ( )εkk = . (6.3)

The first approach (6.2), known as the local field approximation, is valid if the energy
that plasma particles gain through acceleration by the electric field is locally balanced
by collisional energy losses. In case of the second approach (6.3), the electron mean
energy is evaluated in the fluid model as a function of time and space from an electron
energy equation. This allows the electrons to be somewhat out of local field
equilibrium; (6.3) is less strict than (6.2). The assumption (6.3) obviously only applies
to coefficients involving electrons, hence the subscripts “ e”.

The functions (6.2) or (6.3) that concern electrons, are obtained a priori from
uniform-field EEDF calculations. As an example, Fig. 6.1 shows the equilibrium
EEDF in helium, for various reduced fields and electron mean energies, as calculated
with the Boltzmann solver BOLSIG [Bol96]. Such EEDFs are typically at the basis of
the electron transport coefficients and the reaction rate coefficients used in fluid
models.

                                                
* This chapter, in slightly altered form, will be published in: G. J. M. Hagelaar and G. M. W. Kroesen,
“A Monte Carlo modeling study of the electrons in the microdischarges in plasma addressed liquid
crystal displays,” Plasma Sources Sci. Techn..
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Figure 6.1. Equilibrium EEDF in helium, for different reduced electric fields and electron mean
energies. These data are the result of calculations with the Boltzmann solver BOLSIG [Bol96]. Note
that, following the convention, the figure shows f(ε)ε-1/2 rather than f(ε), so that a Maxwellian
distribution would be represented as a straight line.

The fluid model presented in Chapters 2-3 of this thesis includes an energy
equation, with the assumption (6.3) made for the electron transport coefficients and the
rate coefficients for excitation and ionization. In the this chapter we investigate the
validity of this fluid approach for PALC simulations, using a Monte Carlo model.

The Monte Carlo model simulates the path of individual electrons in the plasma.
Since it only describes the electron transport, this model does not give a complete
description of the discharge and requires the input of several plasma quantities, of
which the most important is the electric field. We use the electric field obtained with
the fluid model for this purpose. No attempt is made to couple the Monte Carlo results
back to the fluid model and correct the electric field in a self-consistent way. Although
our approach is therefore incomplete, it stills permits a qualitative analysis, leading to
more insight in the electron behavior and the shortcomings of the fluid model. Having
the same electric field in the fluid and Monte Carlo calculations allows a direct local
comparison of the results obtained with both methods.

This chapter is organized as follows: In Section 6.2 we outline the
microdischarges in PALC displays and the fluid simulation of these discharges.
Sections 6.3 and 6.4 provide a detailed description of the Monte Carlo model. Sections
6.5 and 6.6 present and discuss the results of the Monte Carlo calculations.

6.2 PALC discharges

The PALC operation principle is explained in Chapter 1 and will not be
discussed here. We limit ourselves to outlining the PALC discharge geometry. The
PALC discharges occur in dielectric discharge channels, between two thin metal
electrodes that run all along the bottom of each channel. The inter-electrode gap is
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about 250 µm. Compared to this, the length of the channels is virtually infinite, so that
a two-dimensional (2D) description is fully satisfactory. Figure 6.2 shows a cross
section through a typical PALC discharge channel; this is the geometry we will
consider here. As a discharge gas we consider helium, this gas being used in most
PALC displays. The gas pressure is typically 150 Torr. Two discharge regimes are of
importance for the PALC operation: a direct current (DC) discharge between the
channel electrodes and the afterglow of such DC discharge.

Figure 6.3 shows results of the fluid simulation of a DC discharge in a PALC
channel. This simulation uses the relations (6.3), based on the equilibrium EEDFs
shown in Fig. 6.1. Besides electrons, the fluid simulation involves atomic and
molecular helium ions, and metastable excited helium atoms. According to Fig. 6.3,
almost the entire applied voltage of 300 V stands across a small region in front of the
cathode. The extremely high electric field in this cathode fall heats the electrons to an
average energy of over 50 eV, resulting in a high local ionization rate. In view of the
strong spatial variations of the electric field in the cathode fall, the assumption (6.3)
can be expected to be a poor description of the reality in and around this region.

In the afterglow the situation is very different. The electric potential now
constitutes a weak well for electrons. Figure 6.4 shows the potential and metastable
density profiles 10 µs after the discharge was switched off, as calculated with the fluid
model. In the helium afterglow, the enormous concentration of metastable excited
atoms that develops during the discharge, is gradually converted into charged particles
by metastable-metastable ionizations:
He* + He* → e(15.0 eV) + He+ + He (6.4)
He* + He* → e(17.4 eV) + He2

+ (6.5)
Although of minor importance during the discharge, the electrons and ions produced
by these processes dominate the afterglow. [Ilc97] The electrons are generated with 15
or 17.4 eV of initial energy. For these energetic electrons, elastic energy loss is very
inefficient, while at the same time ionization and excitation are out of the question in
the absence of an accelerating electric field. Hence also for these electrons, the
assumption (6.3) seems doubtful.

150 Torr helium

100 µm
 

dielectric surroundings

anodecathode

 

 

Figure 6.2. Schematic representation of the cross section through a typical PALC channel. This
discharge geometry was used in the calculations.
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Figure 6.3. Spatial profiles of various plasma quantities in the fluid simulation of a DC discharge in the
PALC geometry shown in Fig. 6.2. The applied voltage is 300 V, the helium pressure is 150 Torr. The
marked points A through F are referred to elsewhere in this article. The increment of the contours is
1/10 times the maximum value indicated in the top right corner of each plot. The darkest regions
correspond to this maximum value.
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Figure 6.4. Spatial profiles of the electric potential and metastable density in the fluid simulation of the
afterglow of the DC discharge shown in Fig. 6.3, 10 µs after switching off the DC voltage. The
increment of the contours is 1/10 times the maximum value indicated in the top right corner of each plot.
The darkest regions correspond to this maximum value.

6.3 Overview of the Monte Carlo model

In the Monte Carlo model, a large number of electrons are followed, one by one,
on their way through the plasma. The electric field that accelerates the electrons is
obtained from the electric potential profile calculated with the fluid model. The
occurrence and effect of collisions are treated by random numbers. Only electron
interactions with ground state helium atoms and helium atoms in the metastable states
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2 3S and 2 1S are taken into account. The 2 3S and 2 1S states are grouped together for
this purpose into one composite metastable state He*, of which the density is taken
from the fluid model. The density of the ground state atoms is assumed to be constant
at 4.924×1018 cm-3, corresponding to 150 Torr at 300 K. Besides elastic collisions, we
take into account seven different excitation processes, with threshold energies ranging
from 19.82 to 24.02 eV, de-excitation of He*, and the ionization of the ground and
metastable states, with threshold energies of 24.58 and 4.37 eV, respectively. Electron-
electron and electron-ion interactions are neglected. The velocity of the atoms is
assumed to be negligible compared to the electron velocity. Furthermore the center of
mass of the collision partners is assumed not to move in the laboratory system.

The electrons are sampled randomly from various electron sources, and followed
until they reach the channel walls. Three different electron sources are taken into
account: secondary electron emission from the surface, and the two metastable-
metastable ionization reactions (6.4) and (6.5). The rates of the source processes are
taken from the fluid calculations; for the processes (6.4-5) these are proportional to the
square of the metastable density, with the rate coefficients 9×10-10 and 2×10-9 cm3/s
[Ste82] as the respective proportionality constants. The initial energy of the sampled
electrons is assumed to be 5 eV for those created by secondary emission [Mcd64], and
15 and 17.4 eV for those created by the metastable-metastable ionizations (6.4-5),
respectively. The initial electron velocity is assumed to be isotropic. In addition to the
electrons sampled from the secondary emission and metastable-metastable ionization
sources, the new free electrons are followed from all electron impact ionization events
occurring in the Monte Carlo simulation. This way the electron impact ionization
sources are evaluated self-consistently in the Monte Carlo model. Reflection of
electrons at the channel walls is neglected.

The plasma quantities that are taken from the fluid calculations – the electric
potential, metastable density, and secondary emission rate – are assumed to be quasi-
stationary, remaining unchanged during the time the electrons need to reach the
channel walls; This makes these input quantities a function of space only. Since the
fluid model only yields these data in the grid points of a 2D uniform Cartesian grid,
interpolation is required. The grid points are spaced by ∆x = 10 µm horizontally and
∆y = 10 µm vertically. Within each grid cell we interpolate the potential V as
( ) jijijiji dxycybxayxV ,,,,, +++= , (6.6)

where x and y are horizontal and vertical position coordinates, and the indices I and j
indicate a certain grid cell. The coefficients a through d are determined by the
potentials in the four corners of the grid cell. The Cartesian components Ex and Ey of
the electric field within the grid cell are then given by

( ) ycayxE jijix ,,, −−= , (6.7)

( ) xcbyxE jijiy ,,, −−= . (6.8)

The metastable atom density is interpolated analogous to (6.6).
For the storage of Monte Carlo simulation results, the entire discharge is divided

in small 2D cells. We use the grid cells of the fluid model for this purpose. For every
cell, certain information is recorded, such as the total (cumulative) time the electrons
spend in the cell, and the electron energy and collision frequencies, integrated over this
time. Afterwards this information is converted into the electron density, the electron
mean energy, and the collision rates. In a similar way, the EEDF is determined in
every cell, by storing the time of electron presence separately for a large number of
small energy intervals.
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Figure 6.5. Cross sections of the electron collisions with helium atoms included in the Monte Carlo
calculations. (a) elastic collisions, (b) excitation 2 3S, (c) excitation 2 1S, (d) excitation 2 3P, (e)
excitation 2 1P, (f) total excitation 3 S,P,D, (g) total excitation 4 S,P,D, (h) total excitation 5 S,P,D, (i)
ionization 1 1S (ground state), (j) de-excitation 2 S (metastable states), (k) ionization 2 S (metastable
states). These data were taken from Ref. [Bol96], except for the curve k, which was taken from Ref.
[Jan87]. Curve j was obtained from b and c by detailed balancing.

6.4 The simulation of an electron path

In this section we describe in detail how the path of an individual electron is
simulated.  Consider a test electron somewhere in the plasma at a moment t = t0. The
probability P that the electron has no collision before time t is given by

( ) ( ) 









−= ∫

t

t

t tttP
0

'd'exp ν , (6.9)

where νt is the total collision frequency

( ) ( ) ( ) ( )
ek

kk
k

kt m
n

εεσενεν 2
,, ∑∑ == xxx , (6.10)

which may change in time as the electron moves, since it may depend on the position x
and the electron energy ε. The summation in (6.10) is over all possible collision types,
where νk is the collision frequency, nk is the density of the target species and σk is the
collision cross section. The cross sections σk(ε) of all collision types that we take into
account are shown in Fig. 6.5. The probability that the first collision (after t0) occurs
within an infinitesimal time interval dt starting at t is then

( ) ( ) ( ) ( ) ( ) ttttttPtPttp
t

t tt d'd'expdd
0




−=+−= ∫ νν . (6.11)

A random collision time tc can be determined according to this probability distribution
from the following equation:
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where r1 is a random number, uniformly distributed between 0 and 1, as generated by a
random number computer routine. The calculation of tc from equation (6.12) is greatly
simplified by the use of the so-called null collision method [Sku68]. This method
introduces an imaginary collision type: the null collision, which has no effect
whatsoever on the electron. The frequency ν0 of the null collision is chosen such that
the total collision frequency is completely independent of the electron energy and
position, and thus constant in time:
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,

0 xxx
x

ttt =+= , (6.13)

where νt is the total frequency of the real collisions (6.10), and νt’ is the total collision
frequency including ν0. Using νt’ instead of νt(t), equation (6.12) reduces to
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Between t0 and tc the electron moves freely. Its path is calculated by integrating
the equation of motion
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where e is the elementary charge and E is the electric field. The electric field being an
arbitrary function of x, this integration cannot be carried out analytically, and is done
numerically, using small time steps ∆t. We use the so-called leapfrog method: [Bir91]
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where the subscript l refers to a moment in time, with tl+1 = tl + ∆t. The time step is
chosen such, that the distance traveled within this time step is much smaller than the
size of the grid cells of the fluid model: ∆t < 0.01 ∆x/vx and ∆t < 0.01 ∆y/vy, vx and vy

being the horizontal and vertical velocity components. The leapfrog method (6.16-17)
can be shown to conserve the particle energy for one-dimensional parabolic electric
potential profiles. For arbitrary potential profiles however, the integration may lead to
numerical heating or cooling of the electron. We circumvent this effect by rescaling
the electron velocity from time to time, keeping the sum of the potential and kinetic
energy constant in between the collisions.

Once the energy εc and the position xc at the moment of the collision are known,
the nature kc of the collision is determined from another uniformly distributed random
number r2 between 0 and 1, taking into account the relative probabilities of the various
collision types:
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, ,' εννεν xx . (6.18)

Since we use the null collision method to find tc, one of the possible collision types in
equation (6.18) is the null collision, which has no effect on the electron. The other
collision types affect the electron velocity and energy.

The change in the direction of the electron velocity is described by two angles,
an azimuthal angle φ, and a scattering angle θ. For the sake of symmetry, the azimuthal
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angle is distributed isotropically. A random azimuthal angle φc is found
straightforwardly as

32 rc πφ = , (6.19)

where r3 is a uniformly distributed random number between 0 and 1. In contrast, the
scattering angle is generally anisotropically distributed. The probability for an electron
with incident energy εc to be scattered over an angle θ, is determined by the
differential cross section I(εc,θ). One can calculate a random scattering angle θc from a
uniformly distributed random number r4 between 0 and 1, using the following
equation:

( ) ( )cc rI
c εσθθθεπ

θ

40
dsin,2 =∫ . (6.20)

For the various collision types, we use the angular dependence included in various
theoretical approximations of I, as described in the following. For elastic collisions, we
assume that

 ( ) ( ) ( )
( )2cos12

1
,

θηπ
ηηεσ

θε
−+

+
= c

cI , (6.21)

which results from an approximation to Born’s approximation [Mot65, Mas69]. In this
equation, η is a Coulomb screening parameter which depends on the electron energy
εc:

( ) cZ εη eV9.10 3/2= , (6.22)

with Z the atom number of the target species and εc in eV. According to equations
(6.21-22), the elastic scattering is roughly isotropic for low energies, whereas in the
high energy limit the electrons are forwardly scattered. Substituting (6.21) in (6.20),
we find the following expression for a random elastic scattering angle θc: [Pit98]

( )
4

4

1

121
cos

r

r
c −+

+−+
=

η
ηηθ . (6.23)

For inelastic collisions leading to optically allowed atomic transitions, we use
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where cmn εεβ −= 1 , εmn being the atomic transition energy. This equation was

obtained from a small-angle approximation to Born’s approximation [Mas69], and
states that low energy electrons are more isotropically scattered, while high energy
electrons tend to be more forwardly scattered. Substitution in equation (6.20) gives us
the following random scattering angle:
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For inelastic collisions involving prohibited atomic transitions, we assume the electron
scattering to be always isotropic, regardless of the energy:

( ) ( )
π
εσθε

4
, c

cI = , (6.26)

so that a random scattering angle is given by

421cos rc −=θ . (6.27)
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In addition to changing the direction of the electron velocity, the collision affects
the electron energy. For elastic collisions, the energy ε1 after the collision is given by
[Mcd64]

( )[ ] cce Mm εθε cos211 −= , (6.28)

where me is the electron mass and M is the mass of the target particle. The electron
energy after an inelastic collision is straightforwardly

mnc εεε −=1 . (6.29)

In case of ionization, this energy is redistributed between the original electron (primary
electron) and the new free electron (secondary electron). The probability for an
electron with incident energy εc to produce a secondary electron at energy ε, is
determined by Iε(εc,ε), the differential cross section with respect to the secondary
electron energy. A random value ε2 for the energy of the secondary electron is found
from a uniformly distributed random number r5 between 0 and 1, using the following
equation:

( ) ( )cic rdI εσεεε
ε

ε 50

2

, =∫ , (6.30)

where σI is the ionization cross section. We use the empirical formula found by Opal
and co-workers [Opa71], as in Ref. [Yos83]:
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in which εI is the ionization threshold and ω is a fitting parameter. For helium,
ω = 15 eV is an appropriate choice. Substituting (6.31) into (6.30) and integrating
yields

( ) ( )( )[ ]ωεεωε 2arctantan 52 icr −= (6.32)

The energy of the primary electron is then

21 εεεε −−= ic . (6.33)

Given the scattering angle θc, the azimuthal angle φc, and the new energy ε1, the
electron velocity after the collision can be calculated. The Cartesian components of the
velocity v1 after the collision are given by
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where 2
,

2
, ycxc vvu += , ecc mv ε2=  and emv 11 2ε= .

The procedure described in this section is repeated until the electron reaches the
wall.

6.5 Results for a DC discharge

We simulated the paths of one million electrons in a DC discharge in a PALC
channel, assuming the electric potential and metastable density profiles shown in the
top two plots of Fig. 6.3. Figure 6.6 shows the resulting electron density, mean energy
and ionization profiles. These plots can be compared directly with the last four plots of
Fig. 6.3. At first sight the agreement between the results of the Monte Carlo and fluid
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models is quite reasonable. Especially the electron density obtained with both methods
is very similar. The largest difference occurs in the rate of ground state ionization. In
the fluid model this reaction is limited to the cathode fall region, whereas in the Monte
Carlo model it is spread out over a much larger area. Yet the volume integrals of both
ionization rates are virtually the same, which gives some sort of explanation for the
similarity of the electron densities.
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Figure 6.6. Results of the Monte Carlo simulation of electrons in a DC discharge in a PALC channel.
This figure corresponds to the fluid calculation represented in Fig. 6.3. The marked points A through F
are referred to in the text and in Fig. 6.7. The increment of the contours is 1/10 times the maximum
value indicated in the top right corner of each plot. The darkest regions correspond to this maximum
value.

The differences between the fluid and Monte Carlo model results become clear if
we take a look at the EEDF. Figure 6.7 shows the EEDF at different points in the DC
discharge. In addition to the EEDF obtained with the Monte Carlo model, this figure
shows the equilibrium EEDFs that correspond to the local electric field and to the local
electron mean energy calculated with the fluid model. This latter EEDF is the one that
is implicitly assumed in the fluid model, through the relations (6.3).

In the point A in the cathode fall, the EEDF calculated with the Monte Carlo
model has no tail: no electrons have an energy over 130 eV. This non-equilibrium
phenomenon results from the fact that the electrons started out from the cathode with
only 5 eV of energy, and have been subject to acceleration only for a limited time
since then. The peak at the high energy end of the distribution represents a group of
fast electrons that have not yet undergone any collision up to this point. Note that the
peak is somewhat broadened by the non-negligible size of the cell over which was
averaged; the position of the peak corresponds to the average potential difference
between this cell and the cathode. Moving away from the cathode, from point A to
point B to point C, the fast electron peak is decreasing and shifted towards higher
energy. A second, slightly lower, peak can be observed at about 25 eV lower energy
than the first peak. The energy difference between the peaks corresponds to the
ionization energy of helium atoms; obviously the second peak represents the electrons
emitted from the cathode, that have ionized once.
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Figure 6.7. The EEDF at different points in a DC discharge in the PALC geometry. The exact positions
corresponding to the plots A through F are marked in the Figs. 6.3 and 6.6. In each of the plots, the
EEDF obtained with the Monte Carlo model is represented by connected dots (•). The solid line ()
shows the EEDF that is implicitly assumed in the fluid model by the relations (6.3). The dashed line (----
-) represents the equilibrium EEDF corresponding to the local electric field. The mean energies and
reduced fields pertaining to the equilibrium EEDFs are indicated with the curves.
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Still further away from the cathode, in point D, the vast majority of the electrons
is in some low energy bulk distribution, which looks remarkably like the equilibrium
EEDF up to an energy of about 30 eV. Beyond that energy, a remainder of the fast
electron groups from the cathode is still present. At the center of the plasma E, the
resemblance with the equilibrium EEDF is even better, but even here the fast electrons
still exist. Finally, in the point F in front of the anode, the tail of the EEDF is
depopulated again. In this so-called anode fall region the electric field is considerably
higher than in the center of the channel, which causes the electron mean energy to
increase as the electrons approach the anode. Due to the very limited size of the anode
fall, field equilibrium cannot be established, and the high energy tail remains
underpopulated. Although less pronounced, this phenomenon is very similar to the
absence of the high energy tail observed in the cathode fall.

The EEDF assumed by the fluid model does not incorporate the non-equilibrium
phenomena seen in the Monte Carlo results, such as the existence of groups of fast
electrons that have undergone none or only a few collisions, and the absence of the
high energy tail. However, in the cathode fall it gives a much better description than
the local field equilibrium EEDF. In the plasma and the anode fall the EEDF assumed
by the fluid model is equal to the EEDF of local field equilibrium. In general, the low
energy bulk of the electrons is much better described than the fast electrons that are
capable of ground state ionization. This is the reason why the agreement between the
Monte  Carlo and fluid model results is much better for the electron density and the
excited state ionization than for the ground state ionization.

Note that although the bulk electron density seems to be correct in the fluid
model, the errors in the ionization profile may affect the ion density in the cathode fall,
and consequently also the electric field.

6.6 Results for the afterglow

The Monte Carlo simulation of electrons in the afterglow poses several
problems: First, the afterglow is not a stationary situation. The assumption that the
electric potential and the metastable density are constant, is therefore only justified in
case the lifetime of individual free electrons is negligible compared to the plasma
decay time, which is in the order of 10-5 s (see Chapter 4). Moreover, in the afterglow
the electric potential constitutes weak well for electrons. Due to the neglect of
electron-electron interactions and the helium atom temperature, low energy electrons
tend to get eternally trapped in this potential well, eventually losing all their energy.
This artifact can only be prevented by tricks that affect the reliability of the Monte
Carlo calculations.

However, the dominant electrons in the helium afterglow are generated by
metastable-metastable ionizations (6.4-5) with 15 or 17.4 eV of initial energy. For this
particular group of electrons, the problems mentioned above are not severe. We
simulated the paths of one million of these electrons in the afterglow, assuming the
electric potential and metastable density profiles shown in Fig. 6.4. We followed the
electrons for a maximum time of 10-8 s; if an electron had not yet reached the wall by
then, it was assumed to just miraculously disappear. This trick to avoid eternal
trapping was only needed for less than 100 electrons, which is a negligible number.



A Monte Carlo modeling study of the electrons in PALC discharges 75

0 5 10 15 20 25
0.0

0.1

0.2

0.3

0.4

0.5

 

 

f(
ε)

 (
eV

-1
)

ε (eV)

Figure 6.8. The EEDF of the electrons produced by metastable-metastable ionizations in the afterglow,
calculated with the Monte Carlo model.

Figure 6.8 shows the calculated EEDF in the center of the channel; on other
positions in the channel it looks very similar. This EEDF is entirely different from any
equilibrium EEDF. Apparently, most electrons lose only a small part of their initial
energy.  Based on this observation, we decided to consider the electrons produced by
metastable-metastable processes as a separate group in the fluid model. Instead of
making assumption (6.3), we assumed that the mobility and diffusion coefficient of
this electron group have constant values:
µe = 4.56×103 cm2/Vs, De = 4.56×104 cm2/s, (6.36)
based on a Dirac δ function at 15 eV for the EEDF. With this approach, the results of
the fluid model are in excellent agreement with the Monte Carlo results. This is
illustrated by Fig. 6.9, which shows for both models the calculated density of the
electrons produced by metastable-metastable ionization.

In fact, the potential and metastable density profile shown in Fig. 6.4 – input
data for the Monte Carlo model – were obtained by distinguishing the two electron
groups in the fluid model. Note that this last point is crucial for the validity of the
Monte Carlo analysis given here: If, in the fluid model, we would have treated all
electrons by the assumptions (6.3), that would have been completely inconsistent with
the Monte Carlo results. This would have made these results invalid, since they are
based on the potential profile obtained with the fluid model. Using the assumptions
(6.36), however, there is no essential inconsistency between the fluid model and the
Monte Carlo results.
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Figure 6.9. Comparison between the electron density profiles in the afterglow, calculated with the
Monte Carlo model, and with the fluid model, where the electrons were assumed to be mono-energetic
at 15 eV. The increment of the contours is 1/10 times the maximum value indicated in the top right
corner of each plot. The darkest regions correspond to this maximum value.

6.7 Conclusions

We have developed a Monte Carlo model for the electrons in the
microdischarges occurring in PALC displays. We have used the model to obtain
insight in the validity of the fluid approach for the simulation of PALC discharges,
with helium as a discharge gas. In general the Monte Carlo results are in reasonable
agreement with the results of fluid simulations.

In a DC discharge in a PALC channel, the EEDF calculated with the Monte
Carlo model displays several non-equilibrium phenomena, such as peaks of fast
electrons that have undergone none or only a few collisions, and the absence of the
high energy tail. The EEDF that is implicitly assumed by the fluid model does not
include these features, but still gives a much better description than the EEDF of local
field equilibrium. The poorest description is given of the high energy electrons capable
of ground state ionization. Whereas the bulk electron density in the fluid model is
correct, the ionization rate is too much localized in front of the cathode.

The electrons that are created by metastable-metastable ionization during the
helium afterglow in a PALC channel,  hardly lose any of their initial energy before
they are lost at the channel walls. The Monte Carlo calculations reveal that the EEDF
of these electrons is completely different from any equilibrium EEDF, and is better
approximated by a Dirac δ function at 15 eV. If we use this simple approximation in
the fluid model,  the calculated results are in very good agreement with the results of
the Monte Carlo model.
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Chapter 7
The energy distribution of ions and fast neutrals*

7.1 Introduction

In both PALC and PDP displays, an incident flux of energetic plasma particles
causes damage to the materials surrounding the microdischarges, thus limiting the
lifetime of the displays. Understanding and prediction of this phenomenon requires
knowledge of the energy distribution of the plasma particles impinging on the material
surfaces. Of particular interest are ions and fast neutrals with an energy beyond the
sputtering threshold, which varies from 10 to 100 eV, depending on surface material
and incident particle species. [Mat84]

Research on microdischarges leans heavily on discharge modeling tools, in view
of experimental difficulties due to their small size. By the use of self-consistent fluid
models a good picture can be obtained of the electric fields and the particle densities
and fluxes in microdischarges. [Meu95, Pun98, Choi95, Vee97] However, these fluid
models do not describe the energy distributions of the plasma particles. In this chapter,
we attempt to predict – on the basis of the results of fluid models – the energy
distribution of ions and fast neutrals impinging on the surface. We pursue both an
elementary theoretical approach (Sections 2 and 3) and a more comprehensive Monte
Carlo approach (Section 4).

Although many different designs exist for the PDP and PALC  discharges, they
all have very similar discharge characteristics. The inter-electrode gap is on the order
of a few hundred microns, the gas pressure is a few hundred Torrs. Typical discharge
voltages are a few hundred Volts, where the reduced electric field can reach values of
up to 500 V cm-1 Torr-1 locally in front of the surface. Figure 7.1 shows some typical
profiles of the electric potential in the microdischarge sheaths.  The sheaths are always
highly collisional: typically the ion mean free path is in the submicron range, about
two orders of magnitude smaller than the sheath thickness. This implies that the ion
energy distribution is determined by the local electric field rather than the total sheath
voltage, and that the ion mean energy is only a small fraction of this voltage.

The discharge gas used in PDP and PALC displays is typically a rare gas or a
mixture of rare gases. The main ion species are ionized discharge gas atoms. Typical
ionization rate profiles are shown in Fig. 7.1. Molecular ions, such as He2

+ and Xe2
+,

are also found, but tend to get dissociated in the sheaths: beyond a certain energy limit
on the order of 1 eV, the dissociation cross sections become so large that survival is
extremely unlikely. [Mai75, Gro73]

We thus focus on atomic rare gas ions, moving toward the surface in a highly
collisional sheath.

                                                
* This chapter, in slightly altered form, has been published in: G. J. M. Hagelaar, G. M. W. Kroesen, and
M. H. Klein, “Ion energy distribution in microdischarges for display technology,” J. Appl. Phys.,
(2000).
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Figure 7.1. Contour plots of the electric potential and the ion formation rate in front of the surface, at the
position and the moment where the incident ion flux is the highest and the most energetic. A typical
situation is shown for an AC PDP discharge in Ne-Xe 5% (left) and for a PALC discharge in He (right).
These profiles were obtained with a fluid model.

7.2 The ion energy distribution

On their path the ions undergo collisions predominantly with neutral gas
particles that are virtually at rest. Two different collision types are to be distinguished.
Firstly, there are elastic collisions, leading to the (more or less isotropic) scattering of
the ions in the center of mass (CM) system of the colliding particles. Secondly, when
moving in their parent gas, the ions are subject to symmetric charge transfer collisions.
In such a collision the ion charge is transferred to a parent gas particle, while the
velocities of both particles remain largely unaffected: after the collision the ion is
virtually at rest. A symmetric charge transfer collision is equivalent to an elastic
collision where the ion is scattered over 180° in the CM system. [Phe94] As appears
from Fig. 7.2, the cross sections of these collision processes are approximately
constant over the energy range of interest. The symmetric charge transfer cross section
is usually considerably larger than the cross section for elastic collisions.

If symmetric charge transfer is the dominant collision process, the ion energy
distribution can be predicted with an elementary theoretical approach. Consider an ion
with mass m and charge q in a uniform electrostatic field E, being subject to a constant
acceleration qE/m. Assume that the ion loses all its energy when it collides. The ion
energy as a function of the time t after a collision is then

2
22

2
t

m

Eq=ε . (7.1)

When looking at an ensemble of such ions, the fraction of them with an energy in

between ε and ε + dε is proportional to the average time dt  that one ion spends in this
energy interval during a free path:
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On average, the time spent in the interval is

( )dttPdt = , (7.5)
where P is the probability that no collision takes place before time t, which is related to
the collision frequency ν according to
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Assuming the gas particles to be at rest, the collision frequency is a function of ε:
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N
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where N is the gas particle density and σ the collision cross section. On combining the
equations (7.2-7), one finds straightforwardly that
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The appropriate proportionality constant in relation (7.8) can be found by normalizing
the distribution to unity. For a constant collision cross section this yields
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where the parameter ω is given by

σ
ω

N

qE= . (7.10)

Averaging ε over the distribution (7.9) shows that ω is equal to twice the ion mean
energy. Note that the distribution function (7.9) is essentially different from the
Maxwellian distribution function: the Maxwellian function is zero at ε = 0, whereas
function (7.9) goes to infinity for ε → 0. Realize furthermore that all the ions move in
the direction of the electric field: the ion motion is as anisotropic as can be. The ion
drift velocity w is hence found by simply averaging the velocity (2ε/m)1/2 over
distribution (7.9):
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Rearranging (11) yields an alternative expression for ω:
2

2
mw

πω = , (7.12)

which is of great practical use, because it provides a way to estimate the ion energy
distribution merely from the ion drift velocity, which is calculated in fluid models.

Expression (7.9) represents the energy distribution of the ion density. It is
important to realize, that this is not the energy distribution of the ion flux hitting the
surface. In view of the fact that all ions move in exactly the same direction, the latter
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distribution can be found by weighting (7.9) with the ion velocity (2ε/m)1/2. After
normalization, we find

 ( ) ε
ω
ε

ω
εε ddg 





−= exp

1
(7.13)

for the ion flux energy distribution. It follows from averaging ε over distribution (7.13)
that the average energy of the incident ions is equal to ω, twice the ion mean energy.
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Figure 7.2. Cross sections of some ion-neutral collisions relevant to PDP and PALC discharges. a:
elastic He+-He, b: charge transfer He+-He, c: elastic Ne+-Ne, d: charge transfer Ne+-Ne, e: elastic Xe+-
Ne, f: charge transfer Xe+-Xe. The data are taken from Refs. [Mcd64] and [Sak91]. A constant value
derived from mobility data [Ell84] is assumed for cross section e, except at low energy, where it is
assumed to be the same as c. The energy on the horizontal axis is the ion impact energy.

7.3 Fast neutrals

The ion-neutral collisions lead to the formation of energetic neutral particles.
The ion flux is thus accompanied by a flux of fast neutrals. In this section we estimate
the importance of this fast neutral flux. We consider the case that there is only one
species of gas particles and that symmetric charge transfer is the predominant collision
process for ions, as before. After a charge transfer collision the neutral particle has the
initial ion energy, which it loses again via elastic collisions with gas particles that are
virtually at rest. The energy transferred to a gas particle in an elastic collision is
[Mcd64]

( )εθε cos1
2

1 −=∆ , (7.14)

where ε is the initial energy of the fast neutral and θ is the scattering angle in the CM
system. In case the scattering is isotropic, the probability of cosθ is uniformly
distributed between –1 and 1. Equation (7.14) then implies that the probability of ∆ε is
uniformly distributed between 0 and ε: the energy is redistributed completely randomly
over the two colliding particles.
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The density N’(ε)dε of the fast neutrals with an energy in between ε and ε + dε
can be found by balancing the rates of their production and loss. Production of neutrals
in the energy interval occurs by symmetric charge transfer and by elastic collisions of
other fast neutrals with an energy larger than ε. The neutrals leave the energy interval
through elastic collisions. Balancing the rates of these three processes, we write
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where nI is the (total) ion density and Q is the cross section for elastic neutral-neutral
collisions. The second term on the left – representing the elastic production rate –
contains the factor 2dε/ε’. This is the probability that after an elastic collision between
a neutral with energy ε’ > ε and a neutral at rest, one of the two particles ends up in the
energy interval dε, assuming the energy redistribution to be completely random.

The density N’(ε)dε can be found from equation (7.15) by substituting N’(ε) =
ε1/2h(ε)/Q(ε) or N’(ε) = ε-5/2h(ε)/Q(ε), differentiating the entire equation with respect to
ε, and solving the resulting differential equation for h(ε). After back-substitution of
h(ε) we find that
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The first term of this expression is the density one would find from equation (7.15)
without the elastic production term: obviously it represents the neutrals that have been
produced directly by charge transfer collisions. For constant cross sections σ and Q the
ion energy distribution is given by (7.9), and equation (7.16) becomes
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where f(ε) is once again given by equation (7.9).
The flux Γ’(ε)dε of the fast neutrals with an energy in between ε and ε + dε is the

product of their density (7.17) and their average velocity. Since not all neutrals move
in exactly the same direction, the average velocity is somewhat smaller than (2ε/m)1/2.
An upper limit for the flux is thus found as
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where ΓI is the (total) ion flux and g(ε) is given by equation (7.13). Note however that
the neutrals represented by the first term of equation (7.16) do all move in exactly the
same direction, so that a lower limit for the flux is given by
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Since σ is generally larger than Q this means that the fast neutral flux impinging on the
surface exceeds the ion flux, for every energy.

7.4 Monte Carlo calculations

Although the above theoretical treatment gives a good feel for the ion and neutral
energy distributions, it is far from complete: the influence of (isotropic) elastic ion-
neutral collisions is neglected, the electric field and cross sections are assumed to be
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constant, etc. A more complete picture of the energetic ions and neutrals can be
obtained by Monte Carlo modeling. In this section we present the Monte Carlo
calculation of the ion and fast neutral energy distributions in some typical
microdischarge configurations.

The Monte Carlo model is basically the same as the model described in Chapter
6 of this thesis. It simulates the individual paths of a large number of ions and fast
neutrals. The ions are sampled randomly from an ionization rate profile that has been
calculated a priori with a fluid model, and then followed until they reach the surface.
The electric field that accelerates the ions is also taken from the fluid calculation. The
two-dimensional fluid model that we use for this purpose is described in Chapters 2-3
of this thesis. In addition to the ions, the neutrals with an energy higher than 1 eV are
followed from all collision events occurring in the simulations. Both symmetric charge
transfer collisions and isotropic elastic collisions are taken into account. The cross
sections of the ion-neutral collisions are considered as functions of the impact energy,
as represented in Fig. 7.2. For the cross sections of neutral-neutral collisions we
assume constant values, derived from a hard-sphere model: [Hir54] 1.36×10-15 cm2 for
He-He, 1.87×10-15 cm2 for Ne-Ne, 3.85×10-15 cm2 for Ne-Xe, and 6.53×10-15 cm2 for
Xe-Xe.

The trajectory of an ion or fast neutral is simulated by the following procedure:
1) A random value is chosen for the time until the next collision, taking into account

the appropriate probability distribution given by the total collision frequency. For
ions we use the null collision method. [Sku68]

2) The free path covered during this time is calculated by integrating the equation of
motion.

3) The type of the collision is determined randomly, taking into account the relative
probability of all possible collision types.

4) The velocities of the colliding particles are transformed to the CM system.
5) The effect of the collision is simulated. In case of symmetric charge transfer, the

ion and neutral velocities are simply swapped. In case of an isotropic elastic
collision, the velocities are turned to random (but mutually opposite) directions.

6) The velocities are transformed back to the laboratory system.
7) In case the laboratory energy of the original target particle now exceeds 1 eV, it is

considered as a fast neutral and is followed too.
The procedure 1-7 is repeated until the ion or fast neutral reaches the surface. Neutrals
are not followed anymore once their energy has dropped below 1 eV. Reflection at the
surface is not considered. For more details on the Monte Carlo model we refer to
Chapter 6.

We applied the Monte Carlo model described above to a standard PALC
discharge in pure helium. This case is relatively simple. The microdischarge operates
in the DC mode, where the main ion surface bombardment occurs at the cathode. The
gas pressure is 150 Torr. The only ion species of importance is He+. The two-
dimensional profiles of the electric potential and the ionization rate – input data of the
Monte Carlo simulations – are shown in Fig. 7.1. We simulated the trajectories of ten
million ions and all the neutrals beyond 1 eV formed in collisions. Figure 7.3 shows
the calculated energy distribution g(ε) of the incident ion flux, as well as the energy
distribution  Γ’(ε)/ΓI of the incident fast neutral flux. Note that the neutral energy
distribution is not normalized to unity, but scaled along with the ion energy
distribution. Besides the Monte Carlo results, the theoretical distribution function
(7.13) and the upper limit (7.18) are represented, where the parameter ω was found
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from the calculated drift velocity by equation (7.12). The fast neutral flux in the Monte
Carlo simulation turns out to be close to the upper limit (7.18).
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Figure 7.3. Energy distribution of the He+ flux and the accompanying fast neutral flux impinging on the
cathode in a PALC discharge in pure He. The neutral flux energy distribution is not normalized to unity
but related to the ion flux as Γ’(ε)/Γi. The connected symbols represent the result of a Monte Carlo
calculation, the lines are the theoretical functions (7.13) and (7.18).
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Figure 7.4. Energy distribution of the Ne+ flux and the accompanying fast neutral fluxes impinging on
the surface in a AC DPD discharge in Ne-Xe 5%, at the moment and the position where they reach their
maximum value. The neutral flux energy distribution is not normalized to unity but related to the ion
flux as Γ’(ε)/Γi. The connected symbols represent the result of a Monte Carlo calculation, the lines are
the theoretical functions (7.13) and (7.18).
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Figure 7.5. Energy distribution of the Xe+ flux and the accompanying fast neutral fluxes impinging on
the surface in a AC PDP discharge in Ne-Xe 5%, at the moment and the position where they reach their
maximum value. The neutral flux energy distribution is not normalized to unity but related to the ion
flux as Γ’(ε)/Γi. These data were calculated with a Monte Carlo model.

Then we considered a typical design [Hir98] for a surface-type AC PDP in a mixture
of 95% Ne and 5% Xe. This case is more complicated. In contrast to the PALC
discharge, the microdischarge in the PDP design has a transient character. However,
the typical lifetime of individual ions is shorter than the typical time scale for the
electric field variations. The gas pressure is 450 Torr. Two ion species are important:
Ne+ and Xe+. Figure 7.1 shows the electric potential and Xe+ formation rate at the
moment and position of maximum ion flux. The Ne+ formation rate is not shown here
but is similar to that of Xe+. The calculated energy distributions are shown in Figs. 7.4
and 7.5. For Ne+ the equations (7.13) and (7.18) are once again a good approximation
of the Monte Carlo results.

For Xe+ however the situation is entirely different. For these ions the parent gas
only constitutes a small percentage of the total gas mixture, so that the Xe+ energy
distribution is determined by elastic collisions with Ne rather than by symmetric
charge transfer. The equations (7.13) and (7.18-19) do hence not apply. At low energy
(ε < 10) the Xe+ distribution is underpopulated compared to the exponential function
(7.13). In contrast to what we found for Ne+, the fast neutrals produced by Xe+ are less
important than the ions themselves. This is not surprising, since elastic collisions are
far less efficient as to forming fast neutrals than charge transfer collisions. Figure 7.6
demonstrates that if we increase the Xe percentage, the influence of symmetric charge
transfer collisions rapidly grows: the Xe+ energies decrease and  the energy
distribution approaches the form (7.13). For 20% xenon, equation (7.13) already gives
quite a reasonable description.
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Figure 7.6. Energy distribution of the Xe+ flux impinging on the surface in an AC PDP discharge in Ne-
Xe, for different percentages of Xe. The connected squares represent the results of Monte Carlo
calculations, the line gives the theoretical estimate (7.13) for 20% xenon.

7.5 Conclusions

For ions that mainly undergo charge transfer collisions, the energy distribution
can be found from the drift velocity as a simple theoretical function, which is
essentially different from the Maxwellian distribution function. Also the energy
distribution of the fast neutrals formed in symmetric charge transfer collisions is well
described by a theoretical function. The motion of both ions and fast neutrals is
strongly orientated along the electric field.  In general the fast neutral flux is larger
than the ion flux itself. The simple functions fail to describe the energy distribution of
ions that mainly undergo elastic collisions. Full Monte Carlo calculations are required
in that case.
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Chapter 8
Resonance radiation transport in PDP
discharges*

8.1 Introduction

Fluid models are widely used to calculate the yield of UV radiation from the
microdischarges in PDPs. Examples of such calculations can be found in Refs.
[Meu95, Rau99a] and in Chapter 5 of this thesis. The most important UV radiation
utilized in PDPs is the resonance radiation emitted by the Xe*(3P1) state atoms at a
wavelength of 147 nm. The PDP discharge conditions are such that these resonance
photons are many times absorbed and re-emitted before leaving the discharge. This
phenomenon is known as imprisonment or trapping of resonance radiation. The most
obvious effect of the radiation trapping is that the photons emerge from the discharge
on a time scale that is much longer than the natural lifetime of the resonant state.
Another effect is that the density of the resonant state atoms is enormously increased.
This affects the entire kinetics of the excited species in the discharge, because the rates
of several important reactions – including collisional quenching of the resonant state
and the formation of dimers – depend on the density of the resonant state atoms. For
illustration, Table 8.1 gives an overview of the most important reactions involving
Xe*(3P1) in PDP discharges in neon-xenon; the time dependent rates of some of these
reactions are shown in Fig. 8.1. To properly predict the production of UV radiation in
PDP discharges, fluid models have to account for the effects of radiation trapping.

Table 8.1. The most important reactions involving Xe*(3P1), in typical PDP discharges in neon-xenon.
The numbering of the reactions is taken from Table 2.2.

# Reaction

production
R22 e + Xe → e + Xe*(3P1)
R72 Xe** + Ne → Xe*(3P1) + Ne
R74 Xe** + Xe → Xe*(3P1) + Xe
R83 Xe** → Xe*(3P1) + hν (800 nm)

loss
R26 e + Xe*(3P1) → e + Xe**

R69 Xe*(3P1) + Ne→ Xe*(3P2) + Ne
R77 Xe*(3P1) + Xe + Ne → Xe2

*(Ou
+) + Ne

R78 Xe*(3P1) + 2Xe → Xe2
*(Ou

+) + Xe
R81 Xe*(3P1) → Xe + hν (147 nm)

                                                
* This chapter, in slightly altered form, will be published in: G. J. M. Hagelaar, M. H. Klein, R. J. M. M.
Snijkers, and G. M. W. Kroesen, “Resonance radiation transport in plasma display panels,” J. Appl.
Phys..
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Figure 8.1. Time evolution of the space averaged reaction rates of the most important processes
involving the Xe*(3P1) state, in a fluid simulation of a typical PDP discharge in neon-xenon (5%). The
curves are tagged with the numbers of the corresponding reactions in Tab. 8.1. The time interval from 8
to 10 µs corresponds to one sustain pulse.

The exact calculation of the density of the resonant state atoms under the
influence of radiation trapping requires the solution of an integro-differential equation,
such as Holstein’s equation [Hol51]. However, solving such equation in time
dependent fluid models is practically infeasible. Most fluid models [Meu95, Mcg98,
Rau99] describe the resonant state by an ordinary differential equation – a rate
equation or a continuity equation – where they characterize the radiative decay by an
effective lifetime

0eff ττ g= , (8.1)

rather than the natural lifetime τ0. Here g is a trapping factor, which represents the
average number of absorption-re-emission events that a resonance photon undergoes
before escaping from the discharge. (Some authors use g-1 to indicate what we call g.)
The trapping factor is usually derived from a known solution of Holstein’s equation for
some symmetric geometry. Standard expressions for trapping factors under various
assumptions can be found in Refs. [Mol92, Mol93]. The trapping factor approach (8.1)
simulates – in a computationally very attractive way – the major effects of radiation
trapping: it slows down the release of resonance photons and increases the density of
the resonant state atoms. It does, however, not describe the spatial evolution of the
resonant state density.

An alternative and more accurate way to describe the radiation trapping is by a
Monte Carlo model for resonance photons. Besides the density of the resonant state
atoms, a photon Monte Carlo model predicts the spectral lineshape of the resonance
radiation escaping from the discharge. This offers the possibility of direct experimental
validation of the model. In this chapter we present such a Monte Carlo model of the
resonance photons in PDPs. The photon Monte Carlo model requires the input of the
rates of collision processes that lead to the formation of the resonant state. For this
purpose we use the results of the fluid model presented in Chapters 2-3 of this thesis.
For reasons of simplicity, the Monte Carlo model is not self-consistently coupled to the
fluid model; it just uses reaction rates that have been calculated a priori with the fluid
model. This approach is legitimate because the rates concerned are only weakly
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coupled to the radiation trapping problem. In the fluid model, the radiation trapping is
accounted for with the trapping factor approach (8.1).

In this chapter, we do the following: After describing the Monte Carlo model in
Section 8.2, we compare, in Section 8.3, the calculated resonant state atom density
profile with the density profile resulting from the trapping factor approach in the fluid
model. Then, in Section 8.4, we compare the calculated emission spectrum with
experimental data. The conclusions are given in Section 8.5. All calculations presented
are based on the two-dimensional model geometry shown in Fig. 8.2, which represents
a cross section through one row of a coplanar-electrode PDP. The considered
discharge conditions are also indicated in Fig. 8.2: the discharge gas is a mixture of
neon and a small percentage of xenon, at a pressure of 450 Torr, and the square wave
voltage applied  to the sustain electrodes has an amplitude of 260 V and frequency of
250 kHz.

Figure 8.2. Two-dimensional model geometry considered in the calculations, representing one discharge
cell of a coplanar-electrode type PDP. The surface on the top corresponds to the back plate of the
display, where the phosphors are located.

8.2 The photon Monte Carlo model

In the Monte Carlo model, a large number of resonant state excitation events is
sampled from the total excitation rate profile calculated with the fluid model. The
resonance photons that result from these excitation events, are followed – one by one –
until they escape from the discharge. Since the escape time of the photons is much
longer than the typical time scale for changes in the excitation rate, the Monte Carlo
model is not suitable to study the time dependence of the radiation transport. We can,
however, still calculate the time averaged photon transport. Below we describe how a
photon path is simulated.

We start from the time averaged effective excitation rate profile, shown in Fig.
8.3. It is the sum of the rates of the reactions R22, R72, R74, and R83, diminished with
the rate of reaction R26. An excitation event is randomly sampled from this profile. A
random lifetime τ of the resulting resonant state is determined, according to

( )11ln
1

r−−=
ν

τ , (8.2)

where r1 is a random number, uniformly distributed between 0 and 1, as generated with
a random number computer routine, and ν is given by

cν
τ

ν +=
0

1
. (8.3)

sustain electrodes
260 V, 250 kHz

back plate surface

neon-xenon
450 Torr

0.1 mm
glass
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Here τ0 = 3.46 ns is the natural lifetime of Xe*(3P1) [Ber79] and νc is the total
frequency of the collision processes R69, R77, R78, and R81. Note that νc is constant
in time. The time dependent frequency of electron induced quenching R26 is not
included in νc; this reaction is taken into account in the effective excitation rate profile.
(Fig. 8.1) This crude treatment of the electron induced quenching is somewhat justified
by the fact that this process, like the excitation, takes place only during a short fraction
of the time, as can be seen in Fig. 8.1. Another random number r2 is used to determine
whether a photon is emitted or the resonant state is lost in a collision process: if r2 >
τνc the photon is emitted, otherwise the resonant state is lost.

In the event that a photon is emitted, a random photon frequency is chosen. We
assume that the frequency distribution is mainly determined by the broadening of the
Xe*(3P1) level due to collisions between the gas atoms, and is given by the Lorentz
profile

( ) ( )
( ) 4

2
22

0 p

pL
ωωω
πω

ω
∆+−

∆
= , (8.4)

where ω is the angular frequency, ω0 is the central angular frequency (1.28×1016 Hz),
and  ∆ωp is the full width at half maximum. For the width of the profile we use the
experimental data from Ref. [Iga98]:

Ne
15

Xe
14 1000.11055.2 nnp

−− ×+×=∆ω , (8.5)

where nXe and nNe are the xenon and neon density in m-3. The influence of the Doppler
effect on the frequency distribution is neglected compared to the collisional
broadening (8.4), which seems a good approximation for partial xenon pressures
beyond 10 Torr.  A random angular frequency ω is chosen from the distribution (8.4)
as
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where r3 is a random number.
Given the photon frequency, the absorption coefficient is calculated from
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where L(ω) is once again the Lorentz profile (8.4), λ0 = 147 nm is the central
wavelength, and g1 = 1 and g2 = 3 are the statistical weights of the ground and resonant
states, respectively. A random value for the traveled distance until absorption is found
as

( )41ln
1

r−−=
κ

λ , (8.8)

in analogy to equation (8.2). Using two additional random numbers r5 and r6, a random
direction is determined for the photon emission, after which the position of the
absorption is calculated. The lifetime of the resulting resonant state is again
determined from equation (8.2), and so on. The procedure is repeated until the photon
reaches the wall or the resonant state is lost in a collision. Note that, each time the
photon is re-emitted, we assume that its frequency is independent of the frequency
before the absorption. This condition is known as complete frequency redistribution.

For the storage of Monte Carlo simulation results, the geometry is divided in
small two-dimensional cells. We make use of the numerical grid of the fluid model. In
each grid cell we record the cumulative lifetime of the resonant state. From this, the
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resonant state atom density can be directly derived. In a similar way, the photon
frequency distribution is determined in every cell, by recording the cumulative time of
photon presence separately for a large number of frequency intervals.

9.2x1019 cm-3

Figure 8.3. Time averaged profile of the effective excitation rate of Xe*(3P1), as calculated with the fluid
model. The discharge geometry and conditions are shown in Fig. 8.2; the xenon percentage is 5%. The
averaging was done over one address pulse and five sustain pulses. The increment of the contours is
9.2×1018 cm-3.

8.3 Comparison with the trapping factor approach

We simulated the paths of 107 photons, initially emitted according to the
effective excitation rate profile of Fig. 8.3. The gas pressure is 450 Torr, the xenon
percentage 5%. Fig. 8.4(a) shows the calculated spatial density profile of the resonant
state atoms. For comparison, Fig. 8.4(b) shows the resonant state density as it results
from the trapping factor approach in the fluid model. According to the Monte Carlo
model, the resonant state atoms are much more distributed over space than they are in
the fluid model. This result is not surprising: With the trapping factor approach, the
created resonant states are not spatially redistributed, so that their density profile
directly reflects the effective excitation profile of Fig. 8.3. The spatial integral of the
density – the total number of resonant state atoms per cm of row length – is
approximately the same for both models: in the Monte Carlo model it is 4.9×109 cm-1,
compared to 5.1×109 cm-1 for the fluid model.

One has to keep in mind that the density in the fluid model depends directly on
the choice for the trapping factor g. Typically, g is estimated from the solution of
Holstein’s equation for a plane-parallel slab geometry [Hol51, Mol92]:

dg 0146.1

1 πκ= , (8.9)

where κ0 is the absorption coefficient for the central frequency and d is the thickness of
the slab. Equation (8.9) is based on the same assumptions as the ones we make in the
Monte Carlo model, and the additional assumption that κ0d >> 1. On substituting d =
1.50×10-4 m, the height of the model geometry, and κ0 = 6.70×107 m-1, calculated from
the equations (8.4,5,7), we find g = 155. It is interesting to compare this trapping factor
to the escape time of the photons in the Monte Carlo model. To obtain a proper
comparison, we set the collisional loss frequency of the resonant state to zero, and
simulated again 107 photon paths. Fig. 8.5 shows for each position in the model
geometry the average escape time of photons initially emitted from that position. As
can already be expected from equation (8.9), the escape time changes only weakly over
space. The average escape time of the photons initially emitted according to the
excitation rate profile of Fig. 8.3 turns out to be 150 τ0, in good agreement of with the
trapping factor g = 155.
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Figure 8.4. Calculated spatial profile of the resonant state atom density, for (a) the Monte Carlo model,
and (b) the fluid model using a trapping factor of g = 155. The discharge geometry and conditions are
shown in Fig. 8.2; the xenon percentage is 5%. The increment of the contours is 1/10 times the
maximum value.
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Figure 8.5. Spatial profile of the average escape time, for the geometry of Fig. 8.2; the xenon percentage
is 5%. The indicated values are expressed in units of τ0 = 3.46 ns. The increment  of the contours is 20τ0.

8.4 Comparison with experimental results

Due to the radiation trapping, the spectral lineshape of the resonance radiation
that leaves the discharge is very different from the emitted Lorentz profile (8.4). This
can be seen as follows: Every time a photon is absorbed, it has a small probability to
be re-emitted in the wings of the Lorentz distribution, where it has a good chance of
escaping from the discharge without being absorbed again. Accordingly, the frequency
distribution of the escaping photons has stronger wings than the Lorentz profile, and
consequently a weaker center. Under PDP conditions, the lineshape becomes broader
by orders of magnitude, and even displays a minimum at the central frequency. Fig.
8.6(a) shows the spectrum of the resonance photons that leave the discharge at the
back plate, as it is calculated with the Monte Carlo model, for different cell heights;
these results are obtained by integration over the back plate surface indicated in Fig.
8.3. Note that here the actual width of the Lorentz profile is no more than 3.7×10-3 nm.
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Figure 8.6. Spectrum of the resonance photons leaving the discharge at the back plate, for different cell
heights. Each time the geometry and conditions are similar to the model geometry and conditions shown
in Fig. 8.2; the xenon percentage 10%. Plot (a) shows the results of the Monte Carlo model, as well as
the experimental apparatus profile. Plot (b) compares the convoluted modeling results with the
experimental results.

In order to check the validity of the model, we measured the emitted spectrum.
The measurement setup is similar to the one used in Ref. [Jeo99]. The photons enter a
vacuum UV monochromator (Acton Research VM 504) through an MgF2 observation
window, placed at the position of the back plate. The spectral information is read out
via an intensified charge coupled device camera (Princeton Instruments, IVUV
576x384 E) and is spectrally corrected. The experimental discharge geometry is very
similar to the model geometry of Fig. 8.3; the most important difference is that the
experimental geometry has additional side walls, which confine the discharge in the
direction of the sustain electrodes and represent the barrier ribs of a real display.

In order to be able to directly compare the calculated spectrum with the
measurements, we convolute it with the experimental apparatus profile. This profile,
which we assume to be identical to the measured profile of the 436 nm mercury line, is
shown in Fig. 8.6(a). The convoluted calculated spectrum is compared with the
measured spectrum in Fig. 8.6(b) for different cell heights, and in Fig. 8.7 for different
percentages of xenon. The overall agreement is very good: The width of the lineshape,
the width of the central dip, and even the relative intensities for the different conditions
are well predicted by the model. However, there are some differences: After
convolution, the central dip in the calculated  spectrum is less pronounced than the dip
in the experimental spectrum. This suggests that the assumed apparatus profile is
slightly wider than the actual apparatus profile. In addition, the wings of the measured
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lineshape are sometimes stronger than they are in the calculation, especially at higher
xenon pressures. For 20% xenon, the measured spectrum is also strongly asymmetric,
as can be seen in Fig. 8.7(b). These effects could well be caused by the molecular
radiation emitted by higher vibrational levels of Xe2
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Figure 8.7. Spectrum of the resonance photons leaving the discharge at the back plate, for different
percentages of xenon. Each time the geometry and conditions are similar to the model geometry and
conditions shown in Fig. 8.2; the cell height is 150 µm. The figure compares (a) the results of the Monte
Carlo model, after convolution with the experimental apparatus profile, with (b) the measured spectra.

8.5 Conclusions

We have presented a Monte Carlo model for the transport of resonance radiation
in PDPs. First, we have compared the results of this Monte Carlo model with the
results of the commonly used trapping factor approach. Although the trapping factor
approach does not yield the same spatial distribution for the density of the resonant
state atoms, the spatially integrated density is in good agreement with the results of the
Monte Carlo model. Next, we have compared the results of the Monte Carlo model
with measured spectra of the resonance radiation. The agreement is very good. The
minor differences between model and experiment can be easily be attributed to
experimental artifacts and do not give rise to doubts about the assumptions of the
model.

The overall conclusion is that, via the Monte Carlo model, we have provided
experimental support for the widely used trapping factor approach.
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Chapter 9
Conclusions

We have developed a two-dimensional (2D) self-consistent fluid model of the
microdischarges in PALC and PDP displays. This model is based on continuity and
drift-diffusion equations for plasma particle species, an electron energy equation, and
Poisson’s equation, all coupled together; it gives the space and time variations of the
particle densities, particle fluxes, electron mean energy, reaction rates, electric field.
The model is implemented as a computer code in such a way that arbitrary 2D
discharge geometries, driving schemes, and reaction schemes can be taken into
account. We have put together the required reaction schemes and data bases for PALC
discharges in helium-hydrogen mixtures and for PDP discharges in neon-xenon. The
fluid model is capable of simulating the full operation of PALC and PDP discharges,
although the three-dimensional features of the PDP geometry are not represented. The
simulation of a single PALC or PDP discharge takes 1-10 minutes of computation time
on a modern PC.

In order to test the reliability of the fluid model, we have compared the modeling
results with experimental results wherever possible. We have found the following:
• Calculated decay times of PALC discharges are in excellent quantitative agreement

with measured decay times.
• For PDP discharges, the calculated ratio of the energy of the emitted resonance

photons and the total energy of the emitted UV photons is in excellent quantitative
agreement with experimental results.

• Calculated current-voltage characteristics and power consumptions are only of
qualitative value, because these results are very sensitive to some delicate input
parameters, as such secondary emission coefficients. However, calculated trends in
the current-voltage characteristics of PALC discharges and in the UV generation
efficiency of PDP discharges turn out to be in good agreement with measured
trends.

• The model reproduces experimentally observed non-uniformities in the charging of
the microsheet in PALC displays.

For all of these cases, the model does not only reproduce the experimental results, but
also helps to understand them. For example, the model demonstrates that the non-
uniformities in the charging of the microsheet in PALC displays result from electrical
cross-talk between adjacent channels.

The basic principles of the fluid model are similar or identical to those of the
fluid models developed by other authors. However, the fluid model in this thesis has
several special features:
• The boundary conditions used for particle transport are different from the boundary

conditions used by other authors. We have shown that the usual boundary
conditions are inconsistent with classical diffusion theory, and lead to an
unrealistic diffusion flux of emitted secondary electrons back to the wall. In the
alternative boundary conditions we use, these problems have been solved.
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• The numerical method is simple and yet extremely efficient. To avoid strong
restrictions on the numerical time step, we use a (known) semi-implicit technique
for the self-consistent calculation of the electric field. In addition to this technique,
we have developed a new implicit technique for the evaluation of the electron
energy source term. This makes it possible to include the electron energy equation
in the fluid model, without significant consequences for the computation speed.

• For the simulation of the afterglow in pure helium, the electrons created by
metastable-metastable ionization are described by separate transport equations,
with the transport coefficients based on a Dirac function for the electron energy
distribution function (EEDF). This unusual approach is necessary to account for
the highly non-equilibrium nature of these electrons, and is supported by Monte
Carlo simulations.

 The results of the fluid model can be used as a basis for non-self-consistent
particle (Monte Carlo) models, which provide detailed information that is not given by
the fluid model itself. We have developed three of such Monte Carlo models,
describing electrons, ions, and resonance photons, respectively. These Monte Carlo
models are implemented as independent models, using results of the fluid model as
input data, but not self-consistently coupled to the fluid model. The results of the
Monte Carlo models are therefore invalid if they seriously contradict any fluid model
assumption that is crucial to obtaining the Monte Carlo input data. Fortunately, this is
not the case for any of the Monte Carlo studies presented in this thesis.

We have used the electron Monte Carlo model to obtain more insight in the
validity of the fluid approach for the simulation of PALC discharges, with helium as a
discharge gas. The EEDF calculated with the Monte Carlo model displays several non-
equilibrium phenomena, such as peaks of fast electrons that have undergone none or
only a few collisions, and the absence of a high energy tail. Although these features are
not incorporated in the fluid model, both models lead to virtually the same electron
density. However, the ionization rate obtained with the Monte Carlo model is spread
out over a larger region than the ionization rate in the fluid model. The Monte Carlo
calculations reveal that the electrons in the afterglow have a highly non-equilibrium
nature, and require a special treatment in the fluid model.

The ion Monte Carlo model predicts the energy distribution functions of the ions
and fast neutrals impinging on the surfaces surrounding the microdischarges; this
information is essential for understanding and predicting corrosion of the surface
materials. In most cases, the Monte Carlo results can be reproduced with an elementary
theoretical approach, which makes it possible to predict the ion and fast neutral energy
distribution functions directly from the ion drift velocity.

The photon Monte Carlo model gives an accurate description of the transport of
the resonance radiation in PDP discharges, predicting the density of the resonant state
atoms as well as the emitted spectrum. In the fluid model itself the radiation transport
is only crudely described, using a radiation trapping factor. By carefully comparing the
results of the photon Monte Carlo model with both the assumptions of the fluid model,
and the measured emission spectrum, we have been able to obtain experimental
support for the trapping factor approach used in the fluid model.

In short, the fluid model is supported by experimental data as well as Monte
Carlo calculations and uncovers the main physical mechanisms underlying the
behavior of the microdischarges.
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Summary

To the present day, the television (TV) market has been dominated by bulky
cathode ray tube displays. Recently however, two alternative display technologies have
emerged that offer the possibility of more elegant, flat, lightweight TVs. Both of these
technologies make use of exceptionally small gas discharges: microdischarges. Best
known is the plasma display panel (PDP) technology, which uses microdischarges to
generate the light of the display. The other technology, known as plasma addressed
liquid crystal (PALC), uses microdischarges as electrical switching elements.

The display industry asks for physical models that help to understand and predict
the behavior of the microdischarges, because these discharges are so small that they
are very hard to study experimentally. Within the past few years, several numerical
models of PDP discharges have been developed in plasma groups all over the world. In
contrast, only one model of PALC discharges has been reported in the literature so far.
The main goal of the work presented in this thesis is to obtain a numerical model that
is capable of simulating the full operation of both PALC and PDP discharges, and that
can be used in the display industry for optimization of the microdischarge properties.
In addition to this, there is the more academic goal to contribute to discharge modeling
in general.

The core of the work is the development of a two-dimensional self-consistent
fluid model. This model is based on continuity equations and drift-diffusion equations
for plasma particle species, a balance equation for the electron energy, and Poisson’s
equation for the electric potential. Surface processes, such as secondary electron
emission and the accumulation of surface charge, are taken into account in the
boundary conditions of these equations. It is shown in this thesis that the boundary
conditions used by most other authors fall short of physical reality in several ways. In
the present work alternative boundary conditions are used, which are more realistic.
The fluid model is implemented into a computer program in a flexible and userfriendly
way. A new numerical technique has been developed for the implicit time integration
of the system of fluid equations, which makes it possible to use large numerical time
steps, without consequences for the stability of the calculation. This makes the model
very fast: a typical micro-discharge simulation takes only a few minutes of
computation time.

The fluid model has been used to study PALC-discharges in pure helium and
helium-hydrogen mixtures. The results show that these discharges are similar to
classical direct current glow discharges. Trends in calculated current-voltage
characteristics agree with measured trends. For the PALC technology it is important
that the discharges are extinguished quickly. In pure helium this is not the case because
collisions between metastables lead to a persistent plasma production, as appears from
the simulations. Helium-hydrogen discharges contain much less helium metastables
and are extinguished almost instantaneously. Calculated plasma decay times are in
excellent agreement with measured decay times. De simulations demonstrate that
experimentally observed inhomogenities in the transmission of picture elements result
from electrical interaction between consecutive picture lines.

The fluid model has also been used to study the energy losses in PDP discharges.
The simulation results provide a detailed insight in the physical mechanisms behind
these energy losses, and agree with measured trends in the luminous efficacy of PDPs.
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It turns out that the larger part of the electrical input energy is used for the acceleration
of ions, and thus lost for light production.

The fluid model is based on assumptions for the electron energy distribution
function (EEDF). Using a Monte Carlo model for electrons, the validity of these
assumptions is investigated for the electrons in PALC-discharges in pure helium. The
Monte Carlo model simulates the paths of individual electrons, where the occurrence
and effect of collisions are treated by random numbers. The Monte Carlo calculations
show that near the cathode the EEDF displays peaks of fast electrons and has a
depopulated tail. Although these effects are not included in the fluid model, both
models lead to the same electron density. The ionization in the fluid model is too much
localized at the cathode. According to the Monte Carlo calculations, the energetic
electrons produced by metastable-metastable collisions hardly lose any of their initial
energy, and require a special treatment in the fluid model.

To be able to improve the lifetime of PALC and PDP displays, it is important to
know the energy distribution of the ions en fast neutrals that impinge on the surfaces
surrounding the microdischarges. This information cannot be obtained directly from
the fluid model. In this thesis however, simple analytical distribution functions are
derived, which make it possible to estimate the energy distributions from the results of
the fluid model. The distribution functions are essentially different from the
Maxwellian function, and are in good agreement with more comprehensive Monte
Carlo calculations.

In describing the emission of resonance radiation from PDP-discharges, the fluid
model uses a trapping factor. The validity of this crude approach is investigated using
a Monte Carlo model for the transport of resonance photons. The results of this model
are in good agreement with both the fluid modeling results and measured emission
spectra.

In short, the fluid model is supported by experimental data as well as Monte
Carlo calculations, and uncovers the main physical mechanisms underlying the
behavior of the microdischarges.
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Samenvatting

Tot op heden wordt de televisiemarkt overheerst door logge
kathodestraalbeeldbuizen. Sinds enkele jaren zijn er echter twee alternatieve
beeldschermtechnologieën in opkomst die de mogelijkheid bieden tot veel elegantere,
platte, lichtgewicht tv’s. Beide technologieën maken gebruik van uitzonderlijk kleine
gasontladingen: micro-ontladingen. Het meest bekend is de plasma display panel
(PDP) technologie, die micro-ontladingen gebruikt om het licht van het beeldscherm te
genereren. De andere technologie, plasma addressed liquid crystal (PALC) genaamd,
gebruikt micro-ontladingen als elektrische schakelelementen.

In de beeldschermindustrie bestaat behoefte aan natuurkundige modellen die het
mogelijk maken het gedrag van de micro-ontladingen beter te begrijpen en te
voorspellen, vooral omdat deze vanwege hun kleine afmetingen zeer moeilijk
experimenteel te onderzoeken zijn. De afgelopen jaren zijn dan ook in diverse
plasmagroepen over de hele wereld numerieke modellen voor PDP-ontladingen
ontwikkeld. Voor PALC-ontladingen is tot nu toe slecht één model beschreven in de
literatuur. Het hoofddoel van het werk beschreven in dit proefschrift is het verkrijgen
van een numeriek model dat in staat is om zowel PALC- als PDP-ontladingen volledig
te simuleren, en dat in de beeldschermindustrie gebruikt kan worden om de
eigenschappen van deze ontladingen te optimaliseren. Daarnaast is ernaar gestreefd bij
te dragen aan de gasontladingsmodellering in het algemeen.

De kern van het werk is de ontwikkeling van een tweedimensionaal
zelfconsistent vloeistofmodel. Dit model is gebaseerd op continuïteitsvergelijkingen en
drift-diffusievergelijkingen voor allerlei soorten plasmadeeltjes, een energiebalans
voor elektronen, en de Poisson-vergelijking voor de elektrische potentiaal.
Wandprocessen, zoals secundaire elektronemissie en de opbouw van wandladingen,
worden in rekening gebracht in de randvoorwaarden van deze vergelijkingen. In dit
proefschrift wordt aangetoond dat de randvoorwaarden die gebruikt worden door
menige andere auteur geen goede beschrijving geven van het deeltjestransport aan de
wand. In dit werk worden daarom alternatieve randvoorwaarden gebruikt, die
realistischer zijn. Het vloeistofmodel is op flexibele en gebruiksvriendelijke wijze
geïmplementeerd in een computerprogramma. Er is een nieuwe numerieke techniek
ontwikkeld voor de impliciete tijdsintegratie van het systeem van
vloeistofvergelijkingen, die het mogelijk maakt een zeer grote numerieke tijdstap te
gebruiken, zonder dat de berekening instabiel wordt. Het model is daardoor zeer snel:
een gemiddelde micro-ontladingssimulatie duurt slechts enkele minuten.

Met het vloeistofmodel zijn PALC-ontladingen gesimuleerd in puur helium en
helium-waterstofmengsels. De resultaten laten zien dat deze ontladingen nauw verwant
zijn aan klassieke gelijkstroom-glimontladingen. Trends in berekende stroom-
spanningskarakteristieken zijn in goede overeenkomst met gemeten trends. Voor de
PALC-technologie is het van belang dat de ontladingen snel uitdoven. In puur helium
is dit echter niet het geval doordat botsingen tussen metastabielen voor een
aanhoudende plasmaproductie zorgen, zo blijkt uit de simulaties. Helium-
waterstofontladingen bevatten veel minder heliummetastabielen en doven vrijwel
instantaan uit. Berekende plasmavervaltijden zijn in goede overeenkomst met gemeten
vervaltijden. De simulaties laten zien dat experimenteel waargenomen
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inhomogeniteiten in transmissie van beeldelementen veroorzaakt worden door
elektrische interactie tussen opeenvolgende beeldlijnen.

Tevens is met het vloeistofmodel een studie gedaan naar de energieverliezen die
optreden in PDP-ontladingen in neon-xenonmengsels. De simulatieresultaten geven
een gedetailleerd inzicht in de fysische mechanismen die ten grondslag liggen aan deze
energieverliezen, en vertonen bovendien een goede overeenkomst met gemeten trends
in de energie-efficiëntie van PDP’s. Het blijkt dat het merendeel van de elektrische
energie die aan de ontladingen wordt toegevoerd gebruikt wordt voor de versnelling
van ionen en derhalve niet bijdraagt tot de vorming van licht.

Het vloeistofmodel is gebaseerd op aannames met betrekking tot de
elektronenergieverdelingsfunktie (EEDF). Met behulp van een Monte Carlo-model
voor elektronen is de geldigheid deze aannames onderzocht voor PALC-ontladingen in
puur helium. In het Monte Carlo-model wordt de beweging van individuele elektronen
gesimuleerd, waarbij random numbers gebruikt worden om botsingen in rekening te
brengen. De Monte Carlo-berekeningen laten zien dat in de buurt van de kathode de
EEDF pieken vertoont van snelle niet-botsende elektronen en een ontvolkte staart
heeft. Ofschoon deze niet-evenwichtsverschijnselen niet zijn opgenomen in het
vloeistofmodel, leiden beide modellen tot dezelfde elektronendichtheid. De ionisatie is
in het vloeistofmodel echter te zeer gelokaliseerd bij de kathode. Volgens de Monte
Carlo-berekeningen verliezen de energetische elektronen die geproduceerd worden in
metastabiel-metastabielbotsingen slechts een klein gedeelte van hun oorspronkelijke
energie, waardoor zij een speciale behandeling behoeven in het vloeistofmodel.

In verband met de verbetering van de levensduur van de PALC- en PDP-
beeldschermen is het belangrijk de energieverdeling te kennen van de ionen en snelle
neutralen die inslaan op de wanden rondom de micro-ontladingen. Deze informatie kan
niet direct worden verkregen uit het vloeistofmodel. In dit proefschrift worden echter
door middel van een analytische beschouwing eenvoudige verdelingsfunkties afgeleid,
die het mogelijk maken om de energieverdeling van de bewuste ionen en snelle
neutralen af te schatten uit de resultaten van het vloeistofmodel. Deze
verdelingsfunkties zijn essentieel anders dan de Maxwellse verdelingsfunktie, en zijn
in goede overeenkomst met de resultaten van meer geavanceerde Monte Carlo-
berekeningen.

Bij de beschrijving van de emissie van resonantiestraling in PDP-ontladingen
maakt het vloeistofmodel gebruik van een opsluitingsfactor. Om de juistheid van deze
grove benadering te onderzoeken, is een Monte Carlo-model voor het transport van
resonantiefotonen ontwikkeld. De resultaten van dit model zijn in goede overeenkomst
met die van het vloeistofmodel alsook met gemeten emissiespectra.

Kortom, het vloeistofmodel wordt gesteund door zowel experimentele gegevens
als Monte Carlo-berekeningen en legt de belangrijkste fysische mechanismen bloot die
schuil gaan achter het gedrag van de micro-ontladingen.
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