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1. Introduction.

Consider the ODE

dx
dt = A(t)x + f(t),

- 3 -

t €. (0, 1), (1.1)

where f(t) is an n-vector function and A(t) an nxn matrix function,

both being at least continuous. Wherever it turns out to be more

practical we will write x rather than~.
We assume that we have boundary conditions (BCs)

(1.2)

o 1 nxn n
(B , B E:. Rand b G. R), by which the solution x of (Ll) is

uniquely determined.

There exists a host of methods for obtaining numerical

approximations of x satisfying (1.1) and (1.2). In this paper we are

interested in two special ones, or rather a hybrid version of them,

inspired by the Riccati method and the stabilized march. The former

method is attractive because it is able to split (1.1) into both a

stable initial value ODE and a stable terminal value ODE, by some

appropriate transformation, before discretization.

This gives good hopes that one may handle stiffness, which occurs

when (1.1) has a large (but sharp) Lipschitz constant, like in

initial value problems after discretization. The big problem with

the Riccati method lies in the fact that such a transformation may

not exist on the entire interval (see however [7]). The stabilized

march, on the other hand, employs (parts of) orthogonal matrices, is

stable indeed and moreover can be performed straightforwardly,

however for a discretized problem only (cf. [12]). Since in that

method the underlying discretization has to be done before

transformation (or decoupling, cf. [9]), it is clear that it is

unsuited for stiff problems.

It is very natural then that various authors, notably Davey [3] and

Meyer [11], have tried to combine the virtues of both methods into a

class of hybrid methods, to be called continuous orthonormalizations.
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The main incentive to write this note is that we believe that the

properties of continuous orthonormalization methods (good and bad)

become more transparent when viewed as decoupling techniques. In

particular this is useful to understand their stability. Their

efficiency turns out to be quite a delicate problem. The crucial

question here is of course what we have gained compared to other

methods, in particular when stiffness problems occur. In principle

one might hope to tackle stiffness problems successfully when the

rotational activity of the fundamental solutions belonging to (1.1)

is not large with respect to other time scales. Indeed as was shown

in e.g. [9] the activity of decoupling transformations commensurates

with rotational activity of these fundamental solutions.

Unfortunately, for the implementation suggested in [11], stiffness

does cause problems (in the sense that in the backward sweep the

stepsize is dictated by the Lipschitz constant in general). We shall

give an explanation for this and also indicate how to improve the

situation when classical invariant imbedding is employed as well.

But before that we give an overview of decoupling transformations

consisting of (parts of) orthogonal matrices, both continuous and

discrete, and their consequences for actual numerical algorithms.

We like to remark here that there exist other blends of the Riccati

method and the stabilized march; in particular we mention [8] and

[13] where algorithms are given that have more robustness and

efficiency than either one of the two.

This paper is built up as follows. First we describe Lyapunov

equations in section 2, showing that both Riccati transformations

and orthogonal transformations may be used for appropriate

decoupling; we also briefly discuss the choice for the initial

values. Then in section 3 we consider discrete analogues, notably

multiple shooting and marching techniques (as one might view the

algorithm in [11]). Finally we give an instructive numerical example

in setion 4 to illustrate the foregoing analysis.
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2. Transformations of the ODE.
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As is well-known, transformation of the dependent variable x in

(1.1) by a linear nonsingular (time-dependent) transformation T

leads to a kinematically similar system ([2]) p. 38). For the
-1

variable y:= T x we obtain ([9])

y = A(t)y + f(t)

subject to the BCs

~O ~l
B y(O) + B y(l) = b

where

) t t. (0) 1») (2.1)

(2.2)

A(t)

f(t)

and

-1 -1= T (t)A(t)T(t) - T (t)t(t)

-1
= T (t)f(t)

(2.3a)

(2.3b)

~O
B

~l 1
) B = B T(I). (2.3c)

Equation (2.3a) is often written in the form

T = A(t)T - TA(t). (2.4)

Hence, (1.1) is transformed into (2.1) with prescribed A by a

so-called Lyapunov equation for T.

Let Y be a fundamental solution corresponding to (2.1), i.e.)

Y = A(t)Y ) YeO) I •
n

(2.5 )

Thea a fundamental solution for the original system (1.1) is

obtai.ned by

x = TY. (2.6)
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As was shown in [9] many numerical methods for solving BVPs utilize

such a transformation T (or .an analogue in the discrete case) that

A has a decoupled form. say A( t) is (block) upper triangular for all

t €. (0, 1).

Under very general - and often prevailing - circumstances this

decoupling naturally induces a splitting of the dynamics into a part

that is stable for increasing time and a coplementary one that is

stable for decreasing time. (For the existence of such a dichotomy

and its relation to well-conditioning we may refer to [6]).
More specially there then exists a partitioning of vectors and

matrices

C)P
"" ""

lk
All Al2

and A =
y' Y

z
1n-k A

21
A

22 1n-k

~

(2.1 )

such that (2.1) can be written as

(2.8a)

(2.8b)

t~(O.l).

By a correct decoupling (2.8b) will be stable in forward direction

and (2.8a) in backward direction. Using the invariant imbedding

technique, cf. [8], all integrations can even be performed stably in

forward direction.

Realizing that (2.4) is actually not an ODE for T as such but rather

an equation for both the unknowns T and A simultaneously, we see

that we have n
2

degrees of freedom for 2n2 variables. Hence, there
"-

is a trade-off between requirements imposed on (the form of) A and

T. Below we shall consider some special choices for T (and A).
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2.1. Riccati transformations.
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~

By prescribing A to be block upper triangular, i.e. setting

A
21

= 0, we may hope that T can be prescribed to have the special

form

(2.9)

Let us assume for the moment such a T exists, then this is the

well-known Riccati transformation (cf. [8], [9]).
The matrix R satisfies

(2.10)

(being a Riccati equation for R). It can simply be checked that in

this case we have

(2.11)

and that Y (see (2.5» has such a block upper triangular form as

well. Hence, X := TY is a fundamental solution of (1.1) with

X(O) = T(O).

From this relation we may conclude that

By (2.9), (2.10) and (2.5) a block LU-decomposition of X is

implicitly given.

- The first k columns of T(t) span the same subspace in R
n

as the

first k columns of X(t). To obtain a correctly decoupled system

(2.8) these columns should represent (all) solutions of (1.1)

which are not significantly growing for decreasing t (see [9]).
-1

- R(t) = X21 (t)Xl1 (t). Hence, a solution of (2.10) exists as long

as X
11

, the left kxk upper block of X, is invertible. One might

therefore expect, from analogy with matrix decomposition

techniques, that some kind of permutation may be necessary (cf.

pivoting) when proceeding from 0 to 1; this question has been

investigated in [7].
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2.2. Orthogonal transformations.
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A decomposition that does not need pivoting is the factorization

of a matrix into an orthogonal and a (block) upper triangular

matrix. If we would require T(t) to be orthonormal, for all t, the

process is called continuous orthonormalization ([1]) and we

trivially have

(2.12)

T'
(i.e. T T is skewsymmetric). This reduces the number of degrees

of freedom to !n(n-l), which is, as will be shown, just sufficient

to make Aan upper triangular matrix. Hence, we have a unique

solution of (2.4) (with respect to the (orthogonal) initial value

T(O» subject to the conditions (2.12) and 1 upper triangular.

A possible construction is as follows. Let C ~ R
oxn

be decomposed

in

C (2.13)

where U and V are strictly upper triangular matrices and D is a

diagonal matrix. Define the operator ~ by

~(C) = U + D + V. (2.14)

Note that ~(C) is always an upper triangular matrix. We now have

Property 2.15.

Transformation of the system (1.1) by T, with T(t) orthonormal, for

all t, leads to an upper triangular system if and only if A,
,.... T

defined by (2.3a), satisfies A = ~(T AT) (~ as defined by (2.13)

and (2.14».

Proof.

By (2.3a) and (2012) we have <IleA)

triangular iff A c", ~ 0\).

T
~(T AT). Moreover, A is upper

o
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Let T

To make A only a block upper triangular matrix we need the

relation (see 2.3a)

Note that this implies

kxkwhere Cll €. IR (time-dependent). Furthermore, by the

orthonormality condition for T
I

,

So

(d. [4]).
In the same way we deduce from (2.12)

where C f. R(n-k)x (n-k) must satisfy
22

For A we thus obtain the matrix

(2.16)

(2.17 )

(2.18)

(2.19)

(2.20)



THE-RC 64515 - 10 -

Various choices for C
ll

and C
22

are possible.

For instance:

( cf. [3], [11]) and

(2.21a)

0). (2.2lb)

2° C
11

and C22 symmetric (cf. [2]):

C
ll

and C
22

upper triangular:

(2.22a)

(2.22h)

(2.23a)

(2.23b)

(see property 2.15).

We do not have a preference for any choice, although the last one

may be slightly more efficient for computational purposes, but the

first one more stable (cf. property 2.20). The following result

applies to all.

Property 2.24.

A sufficient condition for T
1

to be an asymptotically stable

solution of (2.16) is

an asymptotically stable solution of (2.18) it is sufficient that
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Proof.

The matrix Z := I - TTT considered as a function of t, satisfies
n '

the differential equation

z (2.25)

even if z(O) * O. From this ODE the required result follows in a

straightforward manner.

o
In favour of (2.21) is the following

Property 2.26.

TBy the choice C
ll

= T
1

AT
1

the quantity IIT
1

(t)1I is minimal for any

t (where we assume 11.11 to be the Frobenius-norm or the 2-norm).

TThe equivalent is true for e
22

= T2 AT2 and nTZ(t)lI.

Proof.

This property directly follows from Th. 8.1-10 of [5], which is

also valid for the 2-norm and for nonsymmetric A.

Remark 2.27.

For numerical purposes it seems worth-while to change in (2.16)
T -1

the matrix Cl1 into (T1 T1) Cll , since then the relation
d T
dt(Tl Tl ) = 0 (cf. (2.12» holds) even if Tl is not exactly

orthonormal. A similar update for C22 can be given.

In [3] and [11] it is suggested that we may restrict ourselves to

{
T -1 Tthe update diag (T1 T

1
)} C

l1
, where diag (T

1
T

1
) stands for the

diagonal matrix containing the diagonal elements of T1
T

Tl • We

believe that this correction may in general be sufficient, but

even this will often be superfluous (see (Z.25».



THE-RC 64515 - 12 -

2.3. Initial values.

So far we have not discussed how to find a suitable initial value

T(O) for (2.4). There are some fairly generally applicable

techniques for this (cf. [8], [10J, [12J). If the BCs are

separated there is a natural choice for T(O), which moreover

economizes on computational labour (see next section). Assume the

BCs are given by

(2.28a)

(2.28b)

For a well-conditioned problem it is known (cf. [9J) that a
-1continuous transformation T for which nTnnT n is not large and

o
B22J T(O) = [0

o
V22J ' (2.29)

o (n-k)x (n-k)(where V22 ~ lR is non-singular by the well-posedness),

implies stability of (2.8) in the indicated directions.
-1

The importance of the boundedness condition on nTllliT II is

illustrated by the next

Example: consider the BVP

. [-10
x =

20
o1x,

1~
subject to the BCs

This is, as one may easily show, a well-conditioned BVP. The

Riccati transformation corresponding to (2.29) is

and
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=
[
-10 0 J.A(t)
o 10

Hence t no correct decoupling has taken place. (In fact there is no

decoupling of increasing and decreasing solutions since both

columns of T describe directions of growing solutions).

This example also illustrates that the stability of (2.8) should
-lOt lOt -lOt T

be global t not local. Let z(t) = (e t e -e ). Then for an

orthogonal T we have

ZOt -ZOt 2
z/II zll 2 and Cll (t) = (IDe -20e )/11 zlIZ'

which moves rapidly from -10 to +10 as t goes from 0 to 1. This

shows moreover that the differential equation for T
1

(and T
Z

) may

be~. By theorem 3.14 of [9J we see that the choice (2.29)t

with T orthonormal, gives a correct decoupling of the increasing

and decreasing modes.

For more general BCs (2.29) is not useful. However, theoretically

we know that for any dichotomic system separated BCs exist such

that the resulting BVP is well-conditioned ([6]). The construction

of such separated BCs implicitly employs a fundamental solution t

which is yet to be computed. Hence, this result is not directly

applicable.

However, in general, we may still find a reasonable starting

guess using the Schur factorization: if Q is an orthogonal matrix,
T

such that Q A(O)Q is (quasi) upper triangular with ordered

eigenvalues (cf. [8J), then arguments related to the ones used in

subspace iteration (including the QR algorithm)t make it very

likely that this choice for Q induces the appropriate decoupling.
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3. Discrete analogues.
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In section 2 we have indicated ways to transform the system (1.1)

Into a special form. Typically such transformation methods may be

seen as continuous analogues of multiple shooting methods (cf. [1],
[7]), to be discussed next.

3.1. Multiple shooting.

Suppose (0, 1) is divided into subintervals (t
i

, t
i
+l ),

i = 0, •• , m-1, where to = 0 and t = 1. On each such subinterval
. m i

let F~(t) indicate a fundamental solution and p (t) a particular

1 i f (1 1) Th h f V i forso ut on 0 •• en we ave a sequence 0 vectors

which

(3.1)

(i = 1, •• , m). This leads to the one-step recursion
i

(N.B. det F (t i ) * 0)

(3.2)

which is, together with the BCs,

o o( ) 0 1 m( ) m b _ 0 o() lm()B F to v + B F t m v = B P to - B P t m

a discrete analogue of (1.1).

By introducing a sequence of (time-independent) discrete Lyapunov

transformations {Ti}~=O we can transform (3.2) into a one-step

recursion with incremental matrices of a special form. Defining

this leads via

~i
v
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to the recursion

- 15 -

For every kind of transformation discussed in section 2 there is a

discrete counterpart {Ti}~=O.
For instance: if all Ti are orthogonal and such that yi is upper

i
triangular then T = T(t.), where T is the solution of (2.4) with
~ T ~ a
A = ~(T AT) (cf. Property 2.15), subject to T(O) = T •

i -1
Moreover, Y is equal to Y(ti+l)Y (t i ) (see (2.5».

3.2. Marching techniques.

The above remarks are also true when the BCs are separated. Assume

the BCs are given by

(3.3a)

(3.3b)

Then we need to compute just a part of a fundamental solution

(marching technique, cf. [12]). Let p be a particular solution of

(1.1) satisfying

and X a fundamental solution with

Any solution of (1.1) can now be written as

x(t) = lXll
(t)

X
21

(t)
tE..(O, 1).

By the special choice of p(O) and X(O) we obtain c
2

O. Hence

x(t) • t 6 (0, 1),

and only Xl (the first k columns of X) has to be computed.
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~

If the continuous transformation T is such that AZI _ 0 (cf.

(Z.3a» and Tl(O) = Xl(O), then Xl = TlYll , where Yll is the

solution of

(see (2.5».

Observe that the computation of a particular solution still

includes the original stability problem. The transformation
-1

y := T x will not help us much since the coefficients in the ODE

are depending on TZ which is unknown, except for the Riccati case.

One possibility to solve this problem is to define
T

z : = (I - TIT1 )p and A by x = Tr\ + z (cf. [4], [11 J). One can

show that z is the solution of

T T
T1(t)Tl (t)A (t)z, (3.4a)

t ~ (0, I), subject to

and A the solution of

T TX = C11 (t)A + Tl (t)«A (t) + A(t»z(t) + f(t»,

(3.4b)

(3.5a)

t ~ (a, I), where the value of A(l) is determined by the relation

(3.Sb)

As one can see, salving (3.5) will be a tedious matter, since A

has to be computed in a backward sweep. For this reason Meyer

([11J) suggests to solve (3.4) and to determine x(l) as in (3.Sb).
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Hereafter the solution is computed by solving the terminal value

problem

{

X = A(t)x + f(t),

x(l) known • (3.6)

To control the inherent error the solution Is projected into the

solution manifold spanned by z and the columns of Tl , at a priori

determined points. By this projection the error is not directly

damped out, but its direction is such that by further integration

it initially will decrease.

Since most of the stability problems are still present in (3.6)

(which may lead to a very large numer of projections) it seems

better to use an invariant imbedding formulation. Let {t.} be the
i i ~

points where output is required and define RII and g

(i = 0, .'J m) by the relation

Then for t ~ (t
i

, t
i
+

1
) we obtain the ODEs

(3.7)

and

+ A(t»z(t) + f(t»

(3.8)

Now all ODEs are stable and can be solved from left to right.

Especially for stiff problems with just a few output points this

formulation may be useful.
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4. Example.
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The following example is very simple but illustrates quite nice the

features of the various methods.

Let x satisfy

subject to

, t e. (0, 1), (4.1a)

(4.1b)

(exact solution: x(t) = (e-w(t+1), ew(t-l) _ e-w(t+I»T).

Observe that in this example T
I

is one-dimensional, so C
II

of (2.16)

is unique.

The performance of continuous orthonormalization combined with the

backward sweep (3.6) is hard to check, since there is no adaptive

strategy for choosing the projection points. In this example

solutions are in both directions growing like e
wt

• Assume T1 is

determined with an accuracy 0 and x is to be determined within a

prescribed tolerance g. To control the error the distance ht between

two projection points must then satisfy the relation

wh to.g .e ~ €, (4.2)

00

is less dramatic in practice since the error in TI will mainly be in

the direction of T
1

itself. Not counting the attempts with too many

and/or too few projection points we obtained the following results:

so !J. t "
lne-_. Although this restriction looks quite disastrous, it
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by (3.10) expected

00 execution number of number of projection

time in sec. projection points points

10 0.49 10 1

103 1.35 50 75

105 22.39 100 7250

Table 1: Results on the Burroughs B7900 of the Eindhoven University

of Technology for solving (4.1) with (2.16) and (3.6). As

integrator the Algol-procedure MULTISTEP is used. which is
-6a GEAR-like code. Accuracy: 10 •

The results of continuous orthonormalization combined with invariant

imbedding are clearer. more transparent. It table 2 the execution

times are shown for various values of oo. With 114 the output points

where chosen as t i = i/4 (i = 0. ". 4) and with 1110 as t. = i/l0
,1

(i = 0, ••• 10).

w=10 w=103 5 7w=10 00=10

II4 0.39 1.18 1.35 1.30

1110 0.56 3.05 3.34 3.83

Table 2: Execution times in sec. on the Burroughs B7900 of the

Eindhoven University of Technology for solving (4.1) with
-6

(2.16) and (3.7). Integrator: MULTISTEP. Accuracy: 10 •

These numbers show that the stiffness of the problem has only a

minor influence on the performance of the code (the results became

even more accurate as w increased). This is just what we would

expect since. after an inital layer, the stepsize is mainly

determined by the smoothness of the outer solution.
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5. Conelusion.
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After the foregoing analysis and the simple example we believe that

continuous transformations may be an alternative for multiple

shooting methods. Especially when in both directions solutions are

growing very fast the merits of an adaptive stiff integrator may be

used to gain a lot of computation time. How much can be gained

strongly depends on the rotational activity of the dominant

solutions. If this activity is mainly within the dominant solution

space a Riccati transformation or formulation (2.21) may be used.

The resulting ODEs will then be stiff. 1f t however t the dominant

solution space itself is rapidly rotating then the Riecati

transformation will need too many restarts and hence is not

advisable. The solution of (2.16) will be a rapidly oscillating

function and therefore (2.16) is hard to solve. However t for these

kinds of problems any solution method will meet diffieulties.

The baekward sweep (3.6) is not recommendable t sinee in the non

stiff case multiple shooting will do and in the stiff case it is

much mot"e expensive than the Invat"iant imbedding formulation t since

too many projections will be necessary. Moreover t the projection

points eannot be determined adaptively.
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