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Objectives

Upon successful completion of this module, the
student should be able to:

(1) explain the difference between self-diffusion, tracer
diffusion and chemical diffusion;

(2) Derive a relation for the temperature dependence
of the diffusion coefficients in terms of the atomic jump
mechanism, both for diffusion via an interstitial
mechanism and for a vacancy mechanism;

(3) Denote the influence of impurity concentration
and of partial gas pressure on the diffusion coefficients
in ceramic materials;

(4) Use the solutions of Fick's equations to
calculate the tracer diffusion coefficient from
experimentally determined concentration profiles.

Prerequisites

The reader should have completed a general chemistry
course, introductory courses in differemtial calculus and
an elementary course in thermodynamics. The reader should
be acquainted with the elementary concepts of defect
chemistry, e.g. vacancies, interstitials; a study of the
modules on point defects by R.F., Davis is recommended.
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Glossary of Terms

lattice

short-circuit diffusion

self—-diffusion

tracer diffusion

chemical coefficient

interstitial mechanism

interstitialcy mechanism

volume or bulk diffusion
coefficient refers to any
diffusion process within the
bulk of the crystal

refers to any diffusion process
not occurring within the bulk of
the crystal e.g. along a
surface, a grain boundary, a
dislocation

(or auto-diffusion) refers to
the random walk diffusion
process; Dself

refers to diffusion of a tracer
isotope in very dilute
concentration in an otherwise
homogeneous crystal without
chemical potential gradients;
D*, If the tracer atoms are of
the same species as the
nontracer atoms D¥ = Dself

(or interdiffusion coefficient)
refers to diffusiom in a
chemical-potential gradient; D

denotes a movement of an atom
from one interstitial position
to another

denotes a movement of an atom
from an interstitial position to
a normal lattice position
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DIFFUSION IN SOLIDS
PART ONE: INTRODUCTION TO THE THEORY OF DIFFUSION

R. Metselaar
Department of Chemical Technology
Eindhoven University of Technology
Eindhoven, The Netherlands

Introduction

When a person wearing perfume sits some distance
apart from you, you will smell the perfume after some time
- even if there are no apparent air currents or
movements. This is a well-known example of diffusion in a
gas. The kinetic theory of gas describes this phenomenon
as a random movement of colliding molecules. In liquids
this random movement can be easily demonstrated using the
Brownian movements of suspended particles. Likewise in
solids the atoms move through the material. However,
there is a large difference in the distance per unit of
time travelled by an atom in these three different states.
If the displacement of a gas molecule is 1 mina given
time, it will be about 1 cm in a liquid and of the order
of 10-100 pm in 8 solid., Yet, despite these small
relative distances, diffusion in solids plays an important
role. For instance, the rate of solid state reactionms,
the growth rate of oxide scales on metals, the sintering
rate, and the high-temperature creep rate of materials are
all determined by diffusion.

In this module we shall first look at the possible
mechanisms for the atomic movements. After a discussion
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of the jump frequencies of the atoms, we will define
diffusion coefficients and derive quantitative expressions
for these quantities.

Mechanisms for Atomic Displacements in Solids

In a crystalline solid there is a regular array of
lattice sites, These sites are low—energy positions for
the atoms, Atoms move by jumping from one lattice site to
another, Different jump mechanisms are possible,
depending on the nature of the moving atom and on the
crystal lattice. A number of possible mechanisms are
shown in Fig. 1.

O O O O O O O

O O O O O O

FIG. 1

Possible atomic movements contributing to diffusion.
(a) exchange, (b) ring, (c) interstitialcy,
(d) interstitial, (e) vacancy mechanism.

Figure 1la illustrates the so—-called exchange
mechanism, where the elementary jump consists of an
exchange of two neighboring atoms. The ring mechanism,
shown in Fig. 1b is a variant of the exchange mechanism,
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It will be clear that in most cases the direct exchange is
energetically improbable due to steric hindrance. For the
ring mechanism the lattice disturbance is less, but this
mechanism is also rather unlikely. The two mechanisms
discussed allow atomic movements in perfect crystals,
However, in actual crystals, at T > OK, there always
exists a finite number of point defects e.g. interstitial
atoms or vacancies. In this case other jump mechanisms
which are emergetically more favorable may occur. Figure
1c illustrates the interstitialcy mechanism. Here, an
interstitial atom moves onto a lattice site, thereby
forcing the atom off the lattice site into a new
interstitial position. Also direct jumps from onmne
interstitial site to another interstitial site are
possible (Fig. 1d). One of the most important mechanisms
is the vacancy mechanism, illustrated in Fig. le. An atom
jumps from a lattice site into an adjacent vacant lattice
site. Remember that vacancies are always present in the
crystal,

In a solid where Schottky defects (vacancies in the
cation and anion sublattices) are the main point defects,
one can expect vacancy diffusion., Similarly, interstitial
diffusion can be important in solids with Frenkel defects
{(vacancies and interstitial ions in ome sublattice).

QUESTION 1:

In pure metals diffusion occurs generally via the
vacancy mechanism, In alloys this is not always the
case, Could you suggest examples of alloys where
diffusion occurs via an interstitial mechanism?

So far we have discussed diffusion within the regular
lattice structure, so—called volume diffusion (also called
lattice— or bulk-diffusion). However, reality is always
more complicated. In practice diffusion can also occur in
disturbed regions of the crystal. As such we consider
jumps along the surface, at grain boundaries, along
dislocations or cracks. These processes are summarized
under the name short-circuit diffusion. Since the lattice
in these regions is less densely packed, short-circuit
diffusion often makes a major contribution to the atom
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displacements. As a result, diffusion in polycrystalline
materials often proceeds much faster than in singie
crystals. We shall show later that diffusion can be
characterized by a diffusion coefficient D, a quantity
with dimension m“s ", For single crystal Al 203 at 1500°C
the diffusion of oxygen is character1zed by a value
D = 4,10720,25-1 while in polycrystalline samples D =

6.10-18m2s_1.
QUESTION 2:

The relative contributions of lattice diffusion and
short-circuit diffusion change with temperature. Ve
shall prove in Section 6 that D = f( Q/RT),
where D is a constant (d1mens1on m s , Q an
activation enthalpy (in J mol™ ), the gas constant R
=837k1 mo1™1,’ T the temperature (in K). Make a
plot of 10log D versus 1000/T for volume diffusion
and grain boundary diffusion in silver, us1n Dy
(grain boundary) = 2.3 x 10 =9 exp(-110/RT) m2s” ang
Dpg (volume) = 8.95 x 1079 exp(-192/RT) n2s” 1, with
in Q in kJ mol 1. Vary 1000/T between 0.8 (melting
point of Ag) and 3.0. Compare the relative magnitude
of lattice diffusion and short-circuit diffusion.

Jump Frequencies

The atoms in the crystal lattice occupy positions
with a reiative minimum in the potential energy. In Fig.
2a such positions are p and r. However, the atoms are not
fized in the minimum energy positions. Due to the thermal
energy they perform a vibrational motion with a frequency
f. If an atom is transferred from position p to position
r, it has to pass over an energy barrier G According to
Boltzmann statistics the chance to make such a jump is
exp(—G /kT). Therefore the jump frequency is given by:

Py, = f exp(-G,/kT) (1)

In case there are no driving forces acting on the atoms, a
jump to the right is equally probable as a jump to the
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left. In this case the jumps are completely at random
with no preferred direction, i.e. each atom follows a
random walk. We call this self-diffusion or auto-
diffusion. We have to distinguish this completely random
movement from a movement under the influence of an
external force e.g. a gradient in the concentration ¢ or a
gradient in the electrical potential ¢. In the first case

the force F is given by F = —grad ¢, in the second case F
= -grad d¢.
A
(=]
(a) o
@
@
(TN
>
o
©
c
(b) o
(7]
@
w

posnio;
FIG. 2

Gibbs energy as a function of position in a lattice;
A is the jump distance. (a) Without external forces;
(b) With an external potential gradient.

QUESTION 3:

Which other forces can you think of in this context?

Figure 2b shows the Gibbs energy diagram in case
there is a driving force F making the atom jump
preferentially to the right. Without external force the
barrier between p and r has a height G and the jump
frequency from p to r and vice versa is given by Eq. (1).
Under the influence of the force the barrier for a jump in
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the direction of the force is lowered to (Gm~AGm), where
AG, = 1/2 AF (2)
As a result the jump frequency from p ‘to r becomes

-G_+AG AG,
Ppr = £ exp(r—) = P )

In most cases of practical interest AG_ << kT, so that we
can expand exp(AG, /kT) =1 + (AG,/xT), and

AG,

For an atom jumping in the opposite direction the barrier
height is (G + AG_), so

So, to first order approximation the net jump rate becomes

206,

Pnet = Ppr ~ Prp ¥ Po T

and from Eq. (2)

R
Ppet = Po ¢T

The net velocity of the atoms then is v = AD 4. By
multiplying the velocity by the number of atoms per unit
volume ¢, one obtains the atom flux J, i.e. the number of
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atoms passing a unit area per unit time. So,

M2 _  Falo
xT

T =101, exp (-G /kT) (3)

As discussed previously, f is the vibration frequency of
the atom, A the jump distance and G, the barrier height.

QUESTION 4:

Check the dimensions of the flux equation.

Diffusion Coefficients

Let us have a closer look at the self-diffusion
process, In all diffusion processes the driving force is
the decrease in Gibbs emergy. However, in the case of
self-diffusion the enthalpy remains constant and only the
entropy Sm changes. The atomic motionms lead to a random
distribution, which is statistically the most probable
state. .

Experimentally we cannot measure selif-diffusion
directly. Instead we use a trick, viz. we use tracer
atoms to reveal the movements we want to study. As such
we can use radioactive isotopes. Assume that we want to
study the self—-diffusion of Ag atoms in pure silver. Ve
can then take a bar of silver and deposit a few
radioactive Ag O 2toms on one end of the bar., After an
annealing experiment we can measure the radiation emitted
by the Ag atoms as a function of the distance along the
bar and so follow the progress of the diffusing atoms.

In such a diffusion couple of the type A/A* (where A*
denotes the radioactive tracer atoms) we can define the
flux of the isotopes. It seems reasonable to assume that
the flux is proportional to the gradient in the
concentration of A*, analogous to the case of a heat flux
under a temperature gradient., We define a diffusion
coefficient D by
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J = -D grad ¢ (4)

This equation is known as Fick's first law.

J is the flux of atoms, grad ¢ the concentration
gradient of the diffusing atoms., This equation defines
the diffusion coefficient D. J has the dimension
[time*areal . e.g. m “s™ ~ and grad ¢ has the dimension
[vol*lengthl]l™ -1, g 4, so D is expressed as [area/timel,
i.e. in units m“s . The minus sign in Eq. (4) expresses
that the atom flux is in the direction of decreasing
concentration. In general, in a crystal, J depends on the
crystallographic direction, so D is a temsor. However, in
this module we will only discuss one dimensional
diffusion. In that case, Eq. (4) can be simplified to

J =73, = -D(8c/bz) (5)
where the diffusion is chosen along the z—-direction. ‘
In the case of diffusion of a tracer isotope,
discussed above, the diffusion coefficient measured is
designated as D* and is called the “"tracer diffusion
coefficient." If the tracer atoms are isotopically
identical with the other atoms of the crystal D is called
the self-diffusion or auto—diffusion coefficient. In
principle the word self-diffusion is restricted to
diffusion in the absence of a gradient in chemical
potential., The tracer diffusion coefficient D* gives a
good approximation of D when only a very small amount of
A* (in practice for instance a layer of less than 50 nm
thickness) is deposited on A (or on an alloy AB). In this
case there is a concentration gradient, but it rapidly
becomes extremely small so that it is a justified
approximation to call this autodiffusion.

We can also use Eq. (4) or (5) to define a diffusion
coefficient for the case of diffusion under the influence
of a gradient in the chemical potential. A well known
example is that of diffusion in a couple of the type A/B,
where A and B are two metals, alloys or compounds., If the
total volume remains constant, the flux of moles of
component i across any section, fixed with respect to the
origin, can be expressed by
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J;=-D (801/82) (6)
This equation defines the chemical or interdiffusion
coefficient D. This coefficient is theoretically less
simple since it contains contributions from both A and B.
In part II of this module we will consider how the
jnterdiffusion coefficient D can be built up from so-
called intrinsic diffusion coefficients D, and Dg. If we
have a couple A/AB w1th a sufficiently low concentrat1on
of B, we measure D ~ D For an ideal solution DB ~ DB’
the diffusion coefflclent obtained when a very small
amount of the tracer B* diffuses through A.

The last column of Table I gives some examples of
values of D at a fixed temperature. For Zn two figures
are given. Zn is an element which crystallizes with a
hexagonal crystal structure. From the table we see that
tracer diffusion of Zn atoms parallel to the c—axis is
faster than diffusion in the plane perpendicular to the c-
axis. It can also be seen that the D-values cover a wide
range. Since the diffusion coefficient is strongly
temperature dependent we cannot compare data for different
materials. A comparison can be made, however, for
different species diffusing in the same matrix. For
instance, the high D value for H in Ag, compared with Ag
or Cu in Ag, points at a difference in diffusion
mechanism. The small H atom diffuses via interstitial
sites, while Ag and Cu move via a vacancy mechanism.

In Table I we have also included data for some binary
compounds. Here it is interesting to note the high D-
value for Ag in a—-AgI. This results in o—Agl being a
very good Ag ion conductor. The data in the third and
fourth column of this table, D_ and Q, will be discussed

o
later.

An Expression for D in Terms of Atomic Jumps

We have seen that the atom flux can be expressed in
terms of atomic jumps. Therefore it should be possible to
derive an equation for the diffusion coefficient expressed
in jump frequencies and distances. We will show this for
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TABLE 1
Values of Diffusion Coefficients for Different Materials.

e D Q D at 800K
Matrix Diffusing o o mo1”! 2 -1
Species m"s ) (kJ mol ) (s )
Ag Ag 4.0x1¢7° 185 3.6x107 7
u 1.2x107 193 3.0x10” 17
H 2.8x1077 31 2.5x107°
a-Fe Fe 1.9x1074 239 4.7x10720
H 8.8x1078 13 1.2x1078
c 2.0x10°0 84 6.6x107 12
Zn In//c-axis 1.3x107° 91 * 6.2x10713
Inlc-axis 5.8x107° 102 * 4.0x10713
Ge Ge 7.8x107% 287 1.4x107%2
Li 1.3x1077 45 1.5x10710
P 2.5x107% 239 6.2x10720
NaCl Na* 5.0x107° 155 3.9x10” 10
Nit* 2.0x1070 126 1.3x107 14
a” 1.1x1072 215 1.0x10710
a-Agl Ag 1.6x1078 9 a.1x107°
1 4.8x107° 61 5.0x10713
Cu,0 o' 4.3x1070 151 5.9x107 10
0" 6.5x1077 164 1.3x10717

* D-value at 650K, 40K below the melting point of Zn.
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the case of one~dimensional diffusion with a concentration
gradient (3c/3z).

We consider two adjacent lattice planes 1 and 2, at a
distance A (Fig. 3). Plane 1 contains nq diffusing atoms
per unit area, plane 2 contains n,. The jump probability
from plane 1 to plane 2 is pqg» and is pgq from plane 2 to
plane 1.

The net flux of atoms is

J = nypgy ~ DaP21 -

In the case of a random-walk process, i.e. in the absence
of driving forces pyy = P21- In this simple lattice,
jumps to left and right are equally probable. Therefore
the total jump probability p, is

«—— A ———>

L pa—
R2 B

planel plane?2

Z —»
FIG. 3

Two lattice planes at distance )\ with different demsities
of diffusing atoms. The jump probability from plane i to

j is Pij-

P12 = P21 = 1/22
Noting that the atom concentration per unit area (n) can
be expressed in concentration per unit volume (¢) by n =

Ac, T =1/2 lpo(c —cy).
Since (cq—cy /A = —(8c/d2)

3
T = -1/2 A2p, () &)
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Comparison with Eq. (5) gives
D =1/2 A%p, (8)

If the jumps occur in three equivalent directions, as in a
simple cubic lattice, Eq. (8) becomes

D = 1/6 a%p, (9)

For a general crystal structure, instead of 1/6, a
geometric factor g must be included.

D = ga?p, (10)

According to Eq. (1) the jump probability p, can be
written as

P, = £ exp(-Gm/kT)

SO
D = gA2 £ exp (-G, /kT) (11)

With typical values g = 1/6, A» = 28 = 2 x 10710 m, f =
1013 571, 6 =100 k7 mo17, T = 1200K, we obtain P, = 4.4
x 108571 and D = 2.9 x 107125271

In writing the expression for P, we have assumed that
the attempt frequency f and the barrier height Gm
determine the number of jumps. For atoms moving from one
interstitial position to another this is generally
correct. However, when the atoms move via a vacancy
mechanism a jump can only be carried out if a vacancy is
present at a neighboring site. Therefore the jump
probability is obtained by multiplying P, with the
probability that the jumping atom has a vacancy as
neighbor. This probability is given by the fractional
concentration of vacancies [V] = n,/N, where n, is the
number of vacancies and N is the total namber of lattice
sites (1).

D = ga £ [V] exp(~G_/kT) (12)
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In the derivation of Eqs. (11) and (12) it is assumed that
the jump probabilities are independent of the directions
of preceding jumps., In reality there is a correlation
between successive atom jumps. We can easily see this if
we look at a vacancy changing place with an adjacent atom,
After the first jump the vacancy can jump to one of Z
surrounding places i.e. there is a chance 1/Z that it
jumps back to its previous place. This correlation
reduces the number of effective jumps. Therefore p, has
to be multiplied by a so-called correlation factor. This
factor is determined by the symmetry of the crystal
structure and by the diffusion mechanism, e.g. for a
vacancy mechanism the correlation factor is 0.65 for
simple cubic, 0.73 for body centered cubic and 0.78 for
face centered cubic lattices. We will absorb this factor
into the constant g in Eqs. (11) and (12).

In the derivation of Eq. (10) and subsequent
equations only self-diffusion was considered. However, in
section 3 we found that the atom flux under an applied
force is expressed by Eq. (3).

For instance, when the driving force is a gradieant in
the chemical potential Bj, we have F; = 1/N, du;/dz (Ny =
Avogadro constant). Here, Bj =My + RT 1n v, [N;1, where
Y; is the activity coefficient and [N.] the molar fraction
of i, If the molar volume Vm is constant, and assuming
that y; =1 (ideal solution), substitution of Ny =¢;V.,
gives dui = RT dlnci. From Eq. (3) we then obtain

— 2 - .
T3 = —fA° exp (-G, /kT) (dc;/dz)
or
D = £22 exp (-G, /kT) (11a)
Including a geometrical factor g we arrive at an equation
for chemical diffusion which has the same form as Eq. (11)

[or Eq. (12) in the case of vacancy diffusion].

QUESTION 5:

a. Starting from Eq. (3), derive the contribution to
the electrical conductivity (o) for an ion i. (Note:
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o is the electrical current demsity per unit of
electric field.)
b. Derive a relation between o and D.

Temperature Dependence of Diffusion

The Gibbs energy G, can be divided into a migration
enthalpy term Hh and an entropy term TS Gm = Hm - TS

To a first approximation both H_ and S are
temperature independent. Therefore Egq. (11? for
interstitial diffusion becomes

D = ga2 £ exp(S,/k) exp(~H_/kT) (13)

For vacancy diffusion we also have to comnsider the
temperature dependence of the vacancy concentration (1).
For pure, elemental solids the number of vacancies in
thermal equilibrium is

n, = N exp(-G¢/kT) (14)

where N is the total number of lattice sites and G,y is the
Gibbs energy of formation of the defect (G, = He - TSg).
For a stoichiometric crystal MX with Schottky defects
the same expression is valid if n_ is the number of anion
vacancies, N is the number of ion pairs, Gf is half the
Gibbs energy of formation of a Schottky pair.
In either case we get, with [V] = n /N,

= 8% £ expl(S, + S;)/kT] exp [-(Hy + H,)/KT] (15)

By now it should be obvious that diffusion coefficients
can generally be written in the form

D = D, exp (-Q/kT) (16)
Note, however that the pre-expomential coefficient D, and
the activation enthalpy Q have different mean1ngs for
different diffusion mechanisms: in the case of
interstitial diffusion only the free emergy of migratiom
is involved, while for diffusion via vacancy mechanism a
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sum of migration and formation Gibbs energy contributions
is involved.

In Table I we have summarized some experimental data,

o galu%s for metals are generally inm the range

- 1, Examples are given in this table for
self d1ffus1on in Cu, Ag and Zn. The Q-values for self-
diffusion in these metals where a vacancy mechanism
applies, can be estimated by way of the empirical rule Q I~
150 T, J mol 1, with T the melting point in K. Much
lower Q values are observed for diffusion of H in Ag or
a-Fe, C in a-Fe and Li in Ge because we are dealing with
small atoms which occupy interstitial sites and diffuse
via the interstitialcy mechanism.

Table II gives some values for migration- and
formation enthalpies and entropies. We see that the
migration enthalpy and formation emthalpy are of the same
order of magnitude (for KC1 with Schottky defects the He
value given is half the enthalpy of formation of a
Schottky pair). Data on migration and formation entropy
are scarce. The entropy values are positive and are of
the order 1-4k where k is the Boltzmann constant (see
Table II).

TABLE IX
Values of Migration and Formation
Enthalpies and Entropies¥.

diffusing H, . He

Matrix species (k7 mo1™1) (kT mo171) Sp/k Sg/k
~ Ag vacancy 82 103

Al vacancy 43 73
- Cu vacancy 101 92
~ a~Fe interstitial c 84 - 1.5

Ge vacancy 92 200
xt KC1 67 125 2.7 4.8
S c1 KC1 96 125 4.1 4.8

Cuy0  Cu 58 91

*Entropy is expressed as a dimensionless quantity, by
division by the Boltzmann constant k = 1.38x10" 1
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QUESTION 6:

Verify that Eq. (16) also holds for cation diffusion
in an ionic crystal with Frenkel defects in the
cation sublattice. What is the meaning of Q in this
case?

Impurity Dependence of Diffusion

We have shown that the diffusion coefficient is
proportional to the fractional vacancy concentration in
cases where the particles move via a vacancy mechanism.
In metals or in pure, stoichiometric compounds the number
of vacancies in thermal equilibrium is determ1ned by the
Gibbs energy of formation G

However, in solid solut1ons or non—sto1ch1ometr1c
compounds the vacancy concentration may be determined
extrinsically. We shall consider two examples. First,
consider a compound MX, at a fixzed temperature, in
equilibrium with M atoms in the gas phase with a pressure
py. It is now possible that the fractional concentration
of M vacancies, [Vy] and of X vacancies, [Vg] is
controlled via the equilibrium reaction*

M(g) /. My + Vg (17a)

For each M atom incorporated on an M site a vacancy is
created on an X site The equilibrium position of this
equation is governed by the equilibrium constant

K = [Vgl/py = exp(-AGO/kT) (17b)

where AG: is the standard Gibbs énergy change of the
reaction. At M pressures where the vacancy concentration
is determined by this reaction the diffusion of X atoms is
given by

*If you are not familiar with the use of reaction
equations for point defect equilibria, you could study
ref. (2).
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gr2 £IVg] exp (-G /kT)

Dx

gr? £ py exp [-(G, + AGO)/KT1  (18)

Next, we consider the case that some NX, is dissolved
substitutionally in MX. For each molecule of NX2
incorporated in MX one M vacancy is created. At very low
concentrations of NX,, or at high temperatures, [Vy] is
determined by the thermal equilibrium i.e. by the
formation enthalpy Hg, and eq. (15) holds. At higher
concentrations of NX2 or at lower temperatures [VM] is
controlled by the substitutional atoms, or [Vy] = [NX,] =
constant. The temperature variation of [Vy] is negligible
in this region, so the activation enthalpy Q now only
contains H . Therefore, a plot of 1In Dy vs. T"~ has a
slope —(H /k) at low temperature and a slope —(Hm+Hf)/k at
high temperature.

Figure 4 gives an example of the temperature
dependence for DNa+ in NaCl.

L I I T 1 1

I
i

10°

10—10

10‘11_ |

1012_ |

D (cm%sec)

11 12 13 14 15 16
1000/ T (K

FIG. 4

Temperature dependence of the tracer diffusion
coefficient of Na¥ in NaCl.
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The

QUESTION 7:

Calculate the migration enthalpy H for Na and the
formation enthalpy H, for a Schottky pair in NaCl,
using the data in F1g. 4.

Example Problem: Figure 5 shows the dependence of Mn
diffusion in MnO on the partial oxygen pressure. If
you are familiar with defect chemistry you can verify
from this figure that Mn diffusion in MnO occurs via
doubly charged vacancies VMn Try to explain the
slope of this plot.

»
w @
T T
1 1

-log D (Mn)
=)

-—
—
T

]

1 1

1 I 1 I
18 16 14 12 10 8

-log P (0,
FIG. 5§
tracer diffusion coefficient of Mno% in MnO at 1305K
as a function of partial oxygen pressure.
Answer

Th? slope of log D (Mn) vs. log Pgy yields D(Mn) =«
Po, * This dependence can be explained if transport
occurs via vacancies Vﬂn. These vacancies are formed
via the equilibrium reaction
b
1/2 00 — 0, + Vg + 2h

Since the electroneutrality equation requires 2[Vﬂn]
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= Ib°] we find [V ] = (1/4K0)1/3p3/6. For tnis
derivation we have used the KrogerEVink notation
(ref. 2).

Fick's Second Law

In the following sections we shall discuss the
experimental determination of diffusion coefficients. For
this purpose Fick's First Law is generally not convenient
since we cannot measure the particle flux directly.
Instead we use Fick’s Second Law, which relates the
concentration of the diffusing species to the time and
position coordinates.

Consider a slab of solid with thickness dz, with an
incoming particle flux J. If no matter is created or
destroyed, the change in concentration in the given volume
equals the net flow into this volume i.e.

d¢ )
— - —— 19
5t dz (19)

Substitution of Fick's First Law [Eq. (5)] into this so-
called continuity equation yields

— =— (D =) (20)

This is called Fick'’s Second Law. If D is independent of
¢ and z

2

8 5

X_.p>® (21)
St 522

The solution of this second order differential equation
leads to an expression for the concentration as a function
of position and time. Therefore, from an experimental
determination of c(z,t) the diffusion coefficient can be
obtained.
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Solutions of the Diffusion Equation

The differential equation (21) can be solved omly ifg
the boundary conditions are known. Let us see first how a
tracer diffusion experiment can be performed. Suppose5
that we want to determine the self-diffusion coefficient
of Zn in Znos, To this end we can deposit a very thin
layer of Zn®> on the end of a Zn0 rod (e.g. by evaporation |
via the gas phase or electrolytically). To avoid
interference of grain boundary diffusion a single crystal
of ZnO would be preferable., At time t=0 we have a fixed
amount M (expressed e.g., in weight or number of atoms per
unit area) present at z=0. There are no radioactive Zn :
atoms present in the rod, therefore the concentration
c(z,t) is given by c(o0,0) = M and c(z,0) = 0, After
heating the rod at a temperature T, during a fixed time t,
we rapidly cool the rod to room temperature., Next we
measure the concentration c¢(z,t) of the tracer as a
function of the distance from the surface,

The solution of Eq. (19), with the boundary
conditions stated above, is

-z2
» t = — 22
c(z,t) (nDt)I/Z exp (4Dt) (22)
QUESTION 8:

Verify by differentiation that Eq. (22) satisfies Eq.
(21).

Figure 6 shows the development of the concentration
profile with time, It follows from Eq. (22) that a plot
of 1n c¢(z,t) vs, z“ is a straight line with slope 1/4Dt.

QUESTION 9:

The radioactive isotope Ni63 is used to determine the
self-diffusion coefficient in Ni. A layer of Ni is
deposited on one end of a long Ni bar, After a hegg
treatment of 1 hr at 1000°C the concentration of Ni

was measured at different positions along the bar,
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FIG, 6 ’

Development with time of the concentration profile
c¢(z,t) of a tracer atom deposited in an amount
c(o,0) = M on the end of a long rod [see Eq. (22)].

Determine Dfjy from the following concentration
profile.

z(cm) 1 2 3 4

c(mg/cm3) 14.3 10.3 5.8 1.0

This procedure cannot be used to determine the self-
diffusion coefficient of oxygen since there are no stable
radioactive tracers of this element. One possible method
is then to heat the oxide in an atmosphere enriched in O
and measure the decrease in O concentration with the aid
of a mass spectrometer.

Measurements of a chemical diffusion coefficient are
often performed with diffusion couples, e.g. a sandwich of
the type AB/A. In these cases the concentration of A at
the interface is kept constant during the experiment i.e.
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the boundary conditions are c(o,t) = ¢, and c(z,0) = 0.
The solution of the differential equation (21) is now
given by

z
,t) = 1 - f (=—— (23)
c(z,t) =c, [ er (2/Dt)]
Here erf(y) denotes the integral

z
erf(y) = ;i.of e az (24)

the so-called error function. Values for this integral
are given in tabular form. One has erf(0) =0, erf(x) =
1. Figure 7 shows the behavior of erf y; the function
reaches 1 within 1% for y = 1.8.

10

08
06
04 r

erf(y)—-»

02

10 20
y —~——b

FIG. 7
Exf(y) as a function of y.
In practice the geometry of the sample can also play
a role e.g. for a sphere, a cylinder or a2 thin plate the
dimensions are important parameters too. Solution of

Fick’s second law for many different cases can be found in
the literature (see e.g. ref. 3).
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We note that in Eqs. (22) and (23) a dimensionless
parameter (z//Dt) occurs. If we want to obtain a quick
estimate of the depth z, where an appreciable change in
concentration has occurred after a diffusion time tp, for
a known D, one sets

~ 1/2
z, (Dtp) (25)
For example, if the chemical diffusion coefficient of Cr
in MgO is 10716 n2571 ¢ 1700K, then the penetration d?Eth
of Cr after 1 hr will be of the order of (3600.10_16)1 =
60.10°8 m = 0.6 pnm.

QUESTION 10:
Calculate c(zp,tp)/c(o,o) using Eqs. (23) and (24).

In this last section we have learned how to find the
diffusion coefficient from experimentally determined
concentration profiles. In the preceding sections we
discussed the relation between the phenomenological tracer
diffusion coefficient and the atomic mechanism. From the
atomic jump mechanism we can also understand the
temperature and pressure dependence of the diffusion
coefficient. Practically no attention was paid to
chemical diffusion. We will treat this topic in greater
detail in a second module.

JOURNAL OF MATERIALS EDUCATION

I




258
DIFFUSION IN SOLIDS

Answer to Questions

Here is a complete list of the answers to the
problems found interspersed in the text.

1. Alloys which are interstitial solid solutions.
Small atoms like H, B, C, N often occupy interstitial
positions. Examples are TiB, ZrB, HfC, NbC, TiNi, ZrN and
hydrides of Ti, Zr or Hf.

2. You w111 find two straight lines crossing at
1000/T = 1.06K 1

3. Chemical, magnetic, gravitational and thermal
forces.

4. (time'area)-1

Sa. o; = q,J;/E, F,; q;E
Eq. (3§ gives
£,0%¢;
I, = o U E exp (-G, /kT)
$0 0; = ———— exp(—Gm/kT)

kT

b. From Eq. (11a) and the equation for 6; we find
cikT = quc This is called the Nernst-Einstein
relation.

6. The number of cations in a crystal with Frenkel
defects in the cation sublattice is of the same order of
magnitude as the number of available interstitial sites
Cf. the module by R.F. Davis, JEMMSE 2 (4):837 (1980)1.
Therefore Eq. (11) applies and Q is equal to the migration
enthalpy.

7. From the slope of log D vs. T™! in Fig. 4 we find
the low temperature region H = 0.76 eV, and from the high
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perature region H + He = 1.94 eV, so Hy = 2Hy = 2.36

c d2c Mz2 M -z2
—=D— = =75 T AT
T a2 4x/2p3/2,5/2  5,1/2;1/2,3/2 4Dt

8. By differentiation of Eq. (22) we find l

9, From the slope of 1ln ¢ vs. zz, which is a

aight line alccording to Eq. (22), we find D(Ni) =
10712 om? 71,

10. For z, = vDt, Eq. (23) gives c(z ,tp)/c(0,0)
- erf(1/2). From Fig. 7 we find erf (1/2? =0.52.
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