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Markov processes without a finite invariant measure

by

F. R. Simons

O. Introduction

Spring 1975 at the Technological University of Eindhoven a group of people

studied the chapter on finite invariant measures in Foguel's book on the

ergodic theory of Markov processes [3J. This memorandum is a summary of the

discussed topics, and it contains known results, or slight extensions of

known results of which we were not able to discover them in literature.

The material is divided in two parts. The first part deals with properties

of Markov operators which do not admit a finite invariant measure, and the

second part gives some applications to the theory of measurable transforma

tions.

The author is very much indebted to the members of the group: L. Groenewegen,

K. van Ree, K van Harn, A. Nijst, D. Overdijk, B. Schaaf and F. Steutel. With

out the stimulating discussions these notes would not have been written.

1. Markov operators

We follow the terminology in Foguel [3J. A Markov process P is a quadruple

(X,L,m,P), where (X,L,m) is a probability space and P a positive linear opera

tor in £00 which satisfies PI $ 1 and which is a-additive, i.e.

00
P( I

n=1
f ) =
n

00

I Pfn' if fn E: £00 (n
n=l

00
1,2, ..• ) and L

n=1
f
n

E: £ 00

Such a Markov operator in £00 is the adjoint operator of a positive linear

contraction in £1' and conversely. We shall denote the £ I-operator also by P,

but, in order to distinguish, in this situation we shall write the operator

symbol P to the right of the function symbol. The relationship is then given

by

<uP,f> = <u,Pf>, U E: £ I ' f E: £00
where

<u,f> = f uP dm, UE:£I' f E: £00

The domain of the operator P in £1 and £00 can be extended to M+, the class

of the nonnegative extended real valued measurable functions. For these ex

tensions also the relation <uP,f> = <u,Pf>, U E: M+, f E: M+ holds.
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We say that the Markov process P admits a finite invariant measure if there

exists a function u € £~ wi th u t:. 0 such that uP = u.

The results of this section are collected in the next theorem:

Theorem 1.1. Let P be a Markov process on (X,I.m). The following statements

are equiva len t:

a) there does not exist a finite invariant measure.

b) for every E: > 0 there exists a function h with 0 < h ~ I and <l.h> > 1 - e:

such that

lim inf <J,p~> = 0 •
n-+oo

c) for every e: > 0 there exists a function h with 0 ~ h ~ 1 and <l,h> > l-e:

and a sequence of integers nO = 0 < n
l

< n
2

< ••• such that

00

L
i=O

d) for every e: > 0 there exis ts a function h with 0 ~ h ~ I and <I ,h> > 1 - e:

such that

n-I
lim 1 L pkh = 0
n~ n k=O

uniformly on X •

If the process satisfies the nonsingularity condition IP > 0, then each of

t these statements is also equivalent to any of the following ones:

c') for every E: > 0 there exists a function h with 0 < h ~ 1 and <I,h> > I-e:

and a sequence of integers nO = 0 < n l < ••• such that

co n.
L P 1 h :;; 1 •

i=O

d') for every E: > 0 there exists a function h with 0 < h ~ I and <I,h> > 1 - e:

such that

n-I
lim 1 E pkh = 0
n-+oo n k=O

uniformly on X •
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Proof. We shall proceed along the following lines:

a) 00 b){ 00 c) 00 d) 00 a)

00 c') =+ d') ". a) if IP > a •

a) =+b). The equivalence of a) and b) is due to Neveu [9J and can also be

found in Foguel [3J. We shall give a sketch of the proof of the implication

a) => b).

Let L be a Banach limit (see e.g. [12J, or [3J, p. 33), and define

A(h) = L«I,P~» for all h E £00. Then A(·) is a bounded positive linear

functional on £00 satisfying A(Ph) = A(h). and therefore there exists a non

negative charge A with XP = A and A « m such that

A(h) = f h dA for all h E £ 00

).lP + "OP, and since j.lP ~s a-additive, we have

Now we use a result due to Calderon [IJ which says that A = j.l + AO' where ).l is

the largest a-additive measure such that ).l(A) ~ A(A) for all A E L, and 1.0 is

a pure charge.

From AP = A we conclude A

llP ~ ll.

On the other hand. using "P = A and PI ~ I. we have

j.lP(X) = j.l(PI) = A(PI) - AO(PI) ~ A(I) - AO(I) = 1l(1) = ll(X) •

and we obtain llP = ll. Since P does not admit a finite invariant measure, we

have j.l = a and therefore A = AO• Now because of " « m and the fact that A

~s a pure charge, there exists a partition (mod m) X1'X2•••• , of X such that

A(X) = 0 for all n. Let (a ) be a.sequence with 0 < a ~ I ·for all nandn n n
a + 0 if n ~ 00. and define

n

00

Note that 0 < h ::; I, and that we can obtain < I.h> > I - e: by choosing suffi

ciently many a = I. Since every step function f with 0 ~ f ~ h is positive
n

on subsets of finitely many X , we have A(h) = O. hence L«I,P~» = O.
n

Statement b) now follows from the observation that

L«].P~» ~ lim inf <I,P~> •
n~



tion f has to be
E:

that 0 < c < 2 .
conditions.
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b) ~ c). Condition c) is also due to Neveu [9J. The proof of the implication

b) ~ c) can for instance be found ~n Foguel [3J, p. 40, 41, where the func-
E:

chosen such that <I,f> > I - 2 ' and the constant c such

The function g obtained in this proof then satisfies the

b) ~ c'). The proof of Neveu for the implication b) ~ c) to which we have

referred in the book of Foguel [3J, p. 40, 41 now needs a slight adaption.

For convenience of the reader we shall write out the proof in detail.

We start with some preliminaries.

+
Lennna I. I. Let A E: l: and h E: £ CXJ be given. For every sequence nO =°< n 1 <n 2 < ••

the following statements are equivalent:
n.

i) there exists a function u E: £~ such that {u > O} = A and lim <u,P ~h> = 0,
i-+<><>

ii) for all functions u € £~ with {u > O} = A we have

n.
lim <u,P ~h> = 0 .
i-+<><>

Proof. ii) ~ i) is obvious. Suppose i) holds and take

{v > O} = A. Define BNa{Nu < v}, then v ~ I
B

v + Nu,
N

n. n. n.
<v,P ~h> ~ <vl

B
,P ~h> + N<u,P ~h>

N

n.
~ "h "CXJ <vl

B
,1> + N<u,P ~h>

N

1'+
V € J. 1 such that

n.
o ~ lim sup <v,P ~h> ~ II h IICXJ

i-+<><>

Since BN ~ 0 if N + CXJ, it follows that

n.
lim <v,P ~h> = 0 •
i-+<><>

J v dm •

BN
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Lemma 1.2. Suppose IP > O. If for some h E £: and some sequence

we have

n.
lim <I ,P l.h> = a ,
i--

+
then for all u E £ J and all n E Z we have

n.+nl.lim <u,P h> = 0
i-+<»

n.+n
1.(put <u,Ph> = 0 if n. + n < 0) •

1.

Proof. First assume n ~ O. From lemma 1.1 we conclude

n.
lim <uPn ,P l.h>
i-+<»

n.+n
1.= lim <u,P h> = 0 •

i-+<»

Now assume n < 0. From

n.+n
lim <IP-n,P 1. h> =
i-+<»

n.
lim <1,P l.h>
i-+= °

and the fact that IP-n > a we conclude with lemma 1. J

n.+n
lim <u,P l. h> = 0
i~

£ +
for every u E l'

0, then for every E' > 0 there exists a

*o ~ h ~ f, <I,f - h> > E: and a subsequence (n.)
J

~ I, and some se-o < II f II
QO

+0. If for some f E £00'
n.

< 1,P 1. f >quence (n.) we have lim
1. •

1.-7«>

function hE £:, II h 1100 > 0,
00 n~

of (n.) such that L P Jh
1. • 0J=

Lemma 1.3. Suppose 1P >

Proof. The proof is practically idential to t he proof of lenuna C, chapter IV

as given in Foguel [3J. The function h we are looking for will be of the type

h (f - L
j=O

*where the sequence (n.)
J

this sequence we have

00 t
i=O

still has to be chosen. Note that for any choice of
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t * *00

pnj+l-nif0 :s; f - h :s; I
j=O i ...O

(t * * * *00

pnj-ni)pnj+l-njf
= L

j=O i=O

and therefore

00

< I ,f - h>:S; L
j=O

* *nj+l-nj<u. ,P f>, where
J

u ....
J

~
i=O

* *n.-n.
IP J 1.

<I,f-h> > E. Then necessarily we have h F o.
*n. have been constructed such that
J

E < <I, f>. We shall constructWithout loss of generality we may assume 0 <

*(n.) such that
J *Suppose nO < ••• <

the subsequence

*Put nO = O.

Then because of lemma 1.2 we have

*n.-n.
lim <u. ,P ~ J f> =

J
o ,

*hence there exists a n. I
J+

* *n. I-n.
<u. ,P J+ J f>

J

*> n. in the sequence (n.) such that
J ~

*For the subsequence (n.) constructed in this way we indeed have
J
00

< 1, f - h> < L~ = E: •

j=O 2J+ 1

i 2:: 0 we have

*n.
p Jh :s; I. To this end it suffices to prove by induc-

00

L
j=O
every

It remains to show

tion on k that for

i+k * *n.-n.
L p J 1.h :s; I .

j=i

For k ... 0 the statement is obvious. Suppose the formula holds for some k 2:: O.
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i+k+1
L

j=i

* *n.-n.
p J ~h =

* *n·+I-n.
h + P ~ ~

If hex) = 0, then the statement follows from the induction hypothesis and
* *

the fact that IIpni+l-nill ~ I. If hex) > 0, then

hex) = f(x) - I t
j=O i=O

* *
pnj+l-nif(x) ,

hence

i+k+ 1 * * * * i+k * *n.-n. i+k
pnj+I-nih(x) pnj+l-nif(x)L p J ~h (x) = h (x) + L ~ hex) + L

j=i j=i j=i

I * *00

pn j +I-ni f (x)
~ hex) + L = f(x) ~ I •

j=O i=O

take some function
000

nO = 0 < n l < n2 <

We now continu the proof of the implication b) ~ c'). Choose E > 0, and
EhO with 0 < hO ~ I, <1,hO> > 1 - 2 ' and a sequence

such that

n~
lim <I,P ~hO> O.
i~

1 •

exists a function hi with 0 ~ hi ~ hO such that

a subsequence (n}) of (n?) such that
~ ~

00

By lemma 1.3 there
e<I ,hO- hi> < 7; and

In.
L p ~h' ~

i=O I

Determine a such that 0 < a < 1, and <I,ahj> > 1 - E. Put hI = ahi, then

00

L
i=O

a < I •

Define Al = {hi> a}. Using lemma 1.3 we construct by an exhaustion procedure

a sequence of disjoint sets A2,A3, ••• , all also disjoint with Al and such the

h2 ,h 3, ••• such that

k(n.) such that fOl
~

00

u A, a sequence of nonnegative functions
n=I n
> O} = Ak and 0 ~ hk ~ hO' and a sequence of sequences

k > 2 ( k) . b f (nk.- I) d- n. ~s a su sequence 0 an
~ ~

x =

00

L
i=O

kn.
P ~h <k -
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Without loss of generality we may assume that for every k ~ 0

( k k) (k+ I k+ I)
nO.···. n k = nO.···. n k •

(Otherwise we add the missing terms and multiply hk by a suitable constant.)
co

Finally. define h = I h and ~ =
k= I k 1<

< I .h> ~ < I .h I> = I - e: and

k
n k' then we have h > O.

co

I
n=O

c) q d) ana c t ) q d'). Both proofs are immediate consequences of the follow

ing lemma of which the proof is taken from Foguel [3J, p. 42, 43.

Lemma 1.4. If for a function h with 0 ~ h ~ I there exists a sequence (n.)
~

co n.
such that L P l h ~ I. then

i=O

n-I
lim..!. I pkh
n~ n k=O

o uniformly on X •

Proof.

I) In the usual product topology, the space [O.IJ~ (i.e the set of all map

pings from the a-algebra ~ into [O.IJ) is a compact Hausdorff space and

therefore sequentially compact. In this space the class of all nonnegativE

charges A with A(X) ~ I is closed, and therefore sequentially compact. In

fact, if ~O E [O,IJ~ is not finitely additive, there exists sets

Au.AI •••• ,An in ~ such that Ad is the disjoint union of Al, •••• An • and

n
~O(AO) I I ~O(Ai) •

i=1

Put

n
e: = I~O(A) - I ~O(Ai)1

i=l

and consider

U= {~€ [O,IJ
E I I~(A.) - ~o(A·)1 <~. 0 ~ i ~ n}.

~ ~ n+1

The set U is an open neighborhood of ~O which does not contain a nonnega

ti ve charge.
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2) Let A be a charge with A(X) ~ 1, and suppose A is invariant, i.e. AP = A.

Then for eve ry r we have

r
~ A( L

i=O

n.
P l.h ) (r + 1) A(h) ,

hence A(h) = O.

3) Fix 8 > 0 and define

Suppose there exists a sequence (ki ) such that m(~.) > 0 for every i.

Define 1.

]J. (B)
1.

m(~. n B)
1.

then l.l. is a probability with support ~ .. Put
1.

1.

k.-I
1 1.

]J.p jA. =- I1. k. 1.
,

1. j=O

then A. loS a measure with A. (X) :::: 1, and
1. 1.

k.-I
1 1.

A. (h) = <]J. , k:" L pJh> ~ 8]J. (~ ) = 8 .
1. 1.

j=O
1. •

1. 1.

L:Let A be a limit point in [O,IJ of the sequence (A.), then A is a nonne
1.

gative finitely additive set function. Without loss of generality we may

assume A. ~ A if i ~ 00, which implies A. (B) ~ A(B) for all BEL:, and
1. 1.

therefore A. (f) ~ A(f) for all f E £+. It follows that A(h) ~ O.
1. 00

4) If we can show that AP = A, then the results in 2) and 3) give a contra-

diction, and therefore the assumption that m(~) > a for infinitely many

k will be wrong. This implies that

uniformly on X •

In order to prove AP = A, note that for all BEL:

2
::::k:'"

1.
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then we obtain AP(B) = A(B) for all BEE.

d) .. a) and d ') .. a). Since obviously d I) .. d) it remains to show that uP = u
+ implies {u > o} andfor some u E £ I u - 0 if condition d) holds. Put A = sup-

pose meA) = a > O. Take a function h which satisfies condition c) with £ = a

then <u,h> > O. On the other hand we have

1 n-l k
<u,h> = ~ l uP ,h> =

n k=O
<u, if n + 00 •

Contradiction, hence a = 0, u - O.

2. Measurable transformations

In this section we want to apply the previous results on the Markov process

induced by a measurable transformation. We shall also discuss a recent exten

sion of Jones and Krengel [8J of the weakly wandering set theorem of Hajian

Kakutani [4J.

Let T be a nonsingular transformation on a probability space (X,L,m), i.e. T

is a mapping of (almost all of) X into itself such that for all A E L we have
-1 -1

T A E L, and meA) = 0 iff meT A) = O.

For every f E £ we can define Pf by
00

Pf = f 0 T •

It is easily verified that P is a Markov process on (X,L,m) satisfying PI =
and IP > O.

A finite measure ~ « m 1.S said to be invariant under T if ~(T-IA) = ~(A) for

all A E L.

Let ~ « m be a finite measure, and put u ~~. Then ~ is invariant under T

if and only if

hence if and only if

for all A E L ,

f (uP) dm =

A

uP u.

I u dm
A

for all A E E ,
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Now let the transformation T have the property that there exists no positive

invariant finite measure ~ « m. Then there is no u € £~ with uP = u, and

u ~ O. and by theorem 1.1 there exists a function h with a < h ~ such that

uniformly •

Define A = {x I hex) > e}, then it follows

n-I
.!. l: 1 ° T

k
+ a

n k=O A
uniformly •

By choosing 0 sufficiently small. we can get A arbitrary close to X. Since

obviously for any set B c A we also have

I n-I k-l: 10T·+0
n k=O B

uniformly

we completed the proof in one direction of the following theorem which is a

slight extension of a theorem of Dowker [2J. (See also Foguel [3J, chapter

IV. theorem E).

Theorem 2.1. Let T be a nonsingular measurable transformation on a probabi

lity space (X.~,m). Then there exists no positive finite invariant measure

~ « m if and only if the class of sets A € ~ for which

_1 n~ 1 k
L. 1

A
oT +0

n k=O

is dense in Eo

uniformly on X

The proof of this theorem in the other direction is an immediate consequence

of the ergodic theorem (cf. [5J. p. 18) or of theorem I. I.

00

,Definition 2.1. A set E € ~ is said to be a sweep·out Set if l: T-~ = X.
n=O

00

U T-~E also T-n- 1·S aNote that if E is a sweep-out set, then since X = , ~

k=n
sweep-out set for every n. For later reference we state the following lemma

here.
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Lemma 2.1. If T admits no positive finite invariant measure ~ « m, then for

every e > 0 and every p there exists a sweep-out set E such that E,

T-IE -PE d··· d, ••• ,T are 1sJ01nt an

p
m( u

k=O

-k
T E) < E: •

Proof. Since on the periodic part of X there exists a positive finite inva

riant measure (cf. [7J), it follows that T is aperiodic. Hence, by [7J, thea
-I -£ .

rem 2.1 there exists a sweep-out set A such that A,T A, ••• ,T A are dlS-

joint, where £ is chosen such that t > P + I •
E:

Then it follows that for at least one n < t - P we must have

n+p
m( u

k=n

-k
T A)<E:.

Th E T-nA . f· h d··. e set = now satls 1es t e can 1tlons.

Remark. There also exist some results related to theorem 2. I. In [IIJ it is

shown that there exists a sweep-out set B with

n-I
~ I I 0 T

k
+ 0

n k=O B
(not necessarily uniformly)

if and only if T does not admit a positive finite invariant measure ~ « m.

It is also shown in [IIJ that in this case the sweep-out set B may be chosen

arbitrary small, and it follows that for every A E L: for every a. E [O,IJ and

for every € > 0, there exists a set A' E L: with m(AhA') < E: such that

I n-l k

- I lA' 0 T + a.
n k=O

We now turn to the Hajian-Kakutani theorem.

Definition 2.2. A set W E L is said to be weakly wandering if there exists a
-n

O ld· ..sequence nO = < n
1

< n2 < ••• such that W,T W, ••• are 1sJ01nt.

Theorem 2.2 (Hajian-Kakutani [4J). Let T be a nonsingular measurable transfor

mation on a probability space (X,L,m). Then there exists no positive finite

invariant measure ~ « m if and only if the class of weakly wandering sets

is dense in L:.
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Proof. Since every subset of a weakly wandering set again ~s weakly wandering,

it suffices to show that there exist weakly wandering sets arbitrary close

to X.

By theorem I. I there exists a function h with 0 < h ~ 1 and a sequence (n.)
~

such that
00 n. 2 3
I P ~h ~ I. Put A = {x I hex) > 3'}' then IA < '2 h. and

i=O

00

I
i=O

=

00

I
i=O

I 0 T
ni = {O X

A I on •

00 n. 00

Since L loT ~ is integer valued. it follows that L
i=O A -n i=O

Iand therefore the sets A,T A•••• are disjoint, A is weakly wandering. Since

the function h can be chosen arbitrary close to I, it follows that the set A

can be constructed arbitrary close to X.

Conversely. let B be an invariant set on which a positive finite invariant

measure ~ ~ m (on B) exists. Then because of the finiteness of ~ every weakly

wandering subset A of B has ~-measure. and therefore ~measure O. Since the

wandering sets are dense in r it follows m(B) = O. hence ~(B) = O.

Definition 2.3. A set W E r is said

there exists a sequence nO = 0 < n
l

are disjoint and

to be exhaustive weakly wandering if
-n -n

1 2
< n

2
< ••• such that W,T W,T W, •••

00

u
i=O

X •

00

Lemma 2.2. For every exhaustive weakly wandering set Wwe have WEn T-nr.
n=O

Proof. Let Wbe an exhaustive weakly wandering set. Then it follows
-n

definition that WET I r , i.e. there exists a set WI such that W =

Hence

from the
-n

l
T WI'

X

00

u
i=O

00

u
i=O

-no -n
T ~T I W

I

-n
= T I

00

u
i=O

-no
T ~W

I

Since T is nonsingular, it follows that X =

are disjoint (i = 0,1 •••• ).

00 -no -no
u T ~Wl' and the sets T ~Wl

i=O



it follows that

WI,WZ"" of exhaustive weakly wandering
-kn -kn

k = I ,Z,. .. . Hence W = T IWk E TIE

is a decreasing sequence of a-a1gebra's
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The set WI is therefore exhaustive weakly wandering under the same sequence

nO = O,nl,nZ"" • Repeating this argumentation, we construct a sequence
-n

l
sets such that Wk- 1 = T Wk for

-nfor all k. Since the sequence (T E)

W E

eo
n

k=O

eo
n

n=O

Recently, Jones and Krengel [8J have shown that, under the condition that T

is invertible, there exists no positive finite invariant measure ~« m if

and only if the class of exhaustive weakly wandering sets is dense in E.

We shall show that we can replace the condition that T is invertible by the

condition T-IE = E (which is hardly a weakening). Since by the previous lemma

exhaustive weakly wandering sets are ele~ent8 of the tail a a1gehra
eo

Leo = n T-nL, there exist arbitrary large exhaustive weakly wandering sets
n=O

if and only if the transformation T does not admit a finite invariant measure

on the measure space (X,Leo,m). Obviously on (X,Leo,m) the condition T-IEeo = Eeo
is satisfied.

In [lOJ an example 1S given of a dissipative transformation with a trivial

tail a-algebra, hence of a transformation without a finite invariant measure

for which no exhaustive weakly wandering sets exist.

We shall now give a modified proof of the theorem of Jones and Krengel.

Theorem Z.3 (Jones-Krengel [8J). Let T be a nonsingu1ar measurable transfor

mation on a probability space (X,E,m) such that T-IE = E. Then there exists

no positive finite invariant measure ~ « m if and only if the class of ex

haustive weakly wandering sets is dense in E.

Proof. Since exhaustive weakly wandering sets are weakly wandering, one di

rection of the proof 1S immediate.

For the proof in the other direction we need some preliminaries.
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-I
and the nonsingularity of conclude that for A EFrom T r = r T we every r

there exists a (mod m) unique set B E r such that A = r-IB. We shall denote

this set by -I
set of all points whichTA. Note that t while T A is the are

mapped by T into At the set TA is ~n general not the set of all images of

points of A.

The following properties are easily verified:

i) TT-IA = T-ITA = A for all A E r

ii) if AltAZt '" are disjoint t then TAltTAZt '" are disjoint and

00

T ( u
n=1

A ) =
n

00

u
n=1

TA
n

-I
It follows that if we define the operator P on £ by

00

for all A E r t

-I
then P induces a Markov process on (Xtrtm) satisfying

-I
ActuallYt P is the forward process and P is the backward process associated

with the transformation T t cf [6J.

The proof of theorem 2.3 ~s based on the existence of arbitrary small sweep

out sets, with arbitrary many disjoint preimages (lemma Z.I), and the follow

ing result.

-I
Lemma 2.3. If T E E and there does not exist a positive finite invariant

measure ~ « mt then for every £ > 0 there exist a set A E E and an integer

p such that At TPA and T-PA are disjoint and meA) > I - £.

-I
Proof. From the fact that uP = u implies u = 0, we conclude that also P

and pZ
do not admit positive finite invariant measures. In fact t if up- I = u,

-I Z
then u = uP P = uP t hence u 0t and if uP = u, then (u + uP)P = uP + u,

u + uP = 0, u = O.

Hence by theorem 1.1 there exist functions hi > 0, hZ > 0, h
3

> ° such that
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n-I_
1 \ pkh ~ 0 'f 1L ~ un1 orm y
n k=O I

n-l_1 \ p-kh ~ 0 "f 1L ~ un1 arm y
n k=O 2

n-I_I \ p2k
n3

~ 0 'f 1L ~ un1 arm y •
n k=G

uniformly .

Define AI = {x I.h(x) > 6}, where 6 1S chosen such that 0 > a and m(A) > I-~

It follows that

n-I

L (1 + 1 + 1 -2k ) -+ a
n k=O T-kAI TkA I T AI

uniformly

Hence there exists an integer P such that

E
< -2 .

0. Finally

r-PA = 0,

Put B = T-PA I u rPA' u r- 2PAI , and A = AI \ B, then m(A) > 1 - E.

Since rPA C Band T-PA c B, we have A n TPA = ¢ and A n T-PA

from T-P(TPA n T-PA) = A n T-ZPA ~ A n B = ~ we conclude rPA n

since r and therefore TP is nonsingular.

The rest of the proof of theorem 2.3 is rather technical. We first give a

rough scetch before writing the proof out in detail. In this scetch the no

tation A ~ AI will stand for A and Al differ as little as we want.

Start with some set A E L, fix an integer L > 0 and consider ~ T-nA. In
ncO

step 2, using a technical result given in step 1, and lemma 2.3, a set AI ~A

1S obtained and an integer P > L such that

L
u

ncO

L
T-nA I), T-P ( u T-nA I) are disjoint,

ncO
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L
u

n=O

L
u

n=O

L
T-nA ' ) ~ ~, T-P( u

n=O

This enables us by means of an exchange procedure (step 3) to construct a set
-n -~

A" ~ AI and a sequence nO = 0 < n
l

< ••• < n
k

such that A", T 1A",.: • , T A"

are disjoint and

L
u

n=O

L
u

n=O

k
u

i=O

-no
T ~A".

Because of the sweep-out set lemma 2.1 we may suppose that AM thus obtained

~s a sweep-out set (step 4), and therefore

L '
u

n=O

an exhaustive weakly wandering set B ~ A.

- E. In step 5 finally this construction

if L' is chosen sufficiently large. Repeating the construction from A to A",
-n -n.k

I I
a set Al ~ A such that AI,T AI,···,T Albut now starting with A", yields

kI -no
are disjoint and I m(T ~AI) >

i=O
is extended to the construction of

We shall now perform each of these steps in detail. Throughout, we shall assuml

T-IZ = Z and T does not admit a finite positive measure ~ « m.

Step I. Let the set A' E Z and the integer L be g~ven. Then for every E > 0

there exists a °> 0 such that for every BEL with m(B) < ° there exists a
L

set A' c A with m(A \ A') < E and -n
U T A' n B = ~.

n=O

Proof. Put A'
L

A \ u
n=O

L
Tn(T-nA n B), then we have u T-nA ' n B

n=O

Since T is nonsingular, the measures m and mTn are equivalent. This implies

that for

mTn(B) <

Take 0

every £ > 0 there exists a ° > 0 such that if m(B) < °, we haven n
E

L + l'
min(oO, ••• ,oL)' then m(A \ A') < £ if m(B) < 0.
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Step 2. Let A E ~ and the integer L be g~ven. Then for every e > 0 there

exists a set A' c A and an integer p such that meA \ A') < e,

u T-nA I, TP( u
n=O n=O

L L L
T-nA ' ) and T-P( u

n=O
T-nA ' ) are disjoint

and
L

mTP( u
n=O

L
T-nA ') < e, mT-P ( u ' T-nA') < e •

n=O

Proof. Take e > 0, and determine 0 > 0 as in step I. We may assume 0 < e. By

lemma 2.3 there exists a set E and an integer P such that m(E) > 1 - 0, and

E,TPE,T-PE are disjoint.
L -n

Put B = u T A\E, then m(B) < o. Finally let A' be as ~n step I, then A'
n=O

satisfies the conditions.

> a.,
~

ii)

Step 3 (Exchange procedure). Let there be given a set A E ~. integers

nO = 0 < n l < ••• < nk , 0 < m1 < ••• < m~, and sets AI, ••. ,A~ all contained

~n A, and real numbers aO, •.. ,ak , SI'.'.'S~ such that

-n
1

-n
k

-m
l

-m~

i) A,T A, •.• ,T A,T A1, •.• ,T A~ are disjoint

-no
meT ~A)

-m.
~m(T A.) > S., 1 ~ ~ ~ t .

~ ~

-mt _ 1 -~+l

n A'), ... ,T (A~_l n A'),T A' are

> a.,
~

disjoint.
-no

meT ~A')ii' )

Then for every £ > 0 there exists a set A' E E with meA ~ A') < e and an ~n

teger nk+
1

> nk such that

-n -n-m
~ ') A' T IA, k, I (... , , ... ,T A,T A

-m.
~meT (A. n A'» > /3., 0 ~ ~ ~ t-I

~ ~
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Proof. Fix L ~ ~ + m~. Because of step 2 and the equivalency of the measures
-no -m.

1. 1. £m,mT and mT there exists a set AO c A with m(A\AO) < 2 such that the

conditions i) and ii) hold with A replaced by AO' and moreover

L L L
u T-nA

O
' TP( u T-nA

O
), T-P( u T-nA

O
) are disjoint,

n=O n=O n=O

L L
m(TP( u T-nA

O
» < 1 ' m(T-P( u T-nAo» < I for some P > L .

~O ~O

< t ' hence m(A ' 6A) < £.

the following survey:

p-m p-m L -n
u T 9.,(A9., n AO)' From T 9.,(A9., n AO) c TP( u TAO) we

n=O
Then define A' = AOp-m
conclude mT 9..(AI). nAO)

Since AI). c A, we obtain

a.)

L
are disjoint subsets of TP( u T-nAo)'

n=O
-n -n

1 k
S) AO,T AO,···,T AO '

are disjoint subsets of
L -n
U TAO'

n=O

y)

Now using A. n A' = A. n A
O

for s i ~ I). and the fact that condition ii)
1 1.

holds for A replaced by AO' the verification of the condition i') and ii')

for A' with P = ~ + 1 is straightforward.

-n
l

-n
kA,T A, ... ,T A are disjoint. Fix L > ~.

L -nk) and m(u T A) > S, then for every £ > 0 there
o

with m(A6A ' ) < £ and integers ~+I""'~+p suchexists a sweep-out set A'

that

Step 4. Let A ELand suppose
-no

If meT 1.A) > a.. (0 sis
1.

, T-nl I -~ I -nk+1 I -~+p I •••
A, A , .•• ,T A,T A , ... ,T A are dlsJolnt
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-no
meT ~A') > a.

~

k+p -no
(0 sis k) and I meT ~A') > S •

i=O

Proof. It is easy to verify that for a suitable choice of the subsets

AI, ••• ,Ap of A and the integers ml, ••• ,mp we have

L
u

n=O

-m
U ••• U T PA

P

where the sets on the right hand side are disjoint.

If we apply the exchange procedure p times, we obtain a set A" with

m(A AA") < ~ ad' t h th t
il 3 n ~n egers ~+I""'~+p suc a

-n -n
All T JAil T k+PA", , ••• , are disjoint ,

-no
meT ~A") > a.

~

k+p -no
for 0 sis k, and I meT ~A") > S •

i=O

The only thing we still have to show ~s the sweep-out property.
-n -nk+p

By step I and the equivalence of the measures m mT J , ••• , mT there exists,
a 0 > 0 such that if m(B) < 0, there exists a set A"' C A" with

-n -n
m(A"\A"') <':;'3 A"' T IA", T k+PA"' B d' . ., , ••• , , ~sJo~nt,

-no
meT ~A"') > a.

~

(0 s
k+p -~

~ s k), I meT +PA"') > S
i=O

By lemma 2.1 there exists a sweep-out set E such that
~+p -n E:

disjoint and m( uTE) < minCo '3)' If we define B
n=O

A' = A"' u E, then A' satisfies the conditions.

-n
-1 k+p

E,T E, ••• ,T E
nk+p

u T-nE and
n=O

are

Step 5. Choose A E Z and E: > O. Let EO be a sweep-out set with m(Eo) < ~ ,

we have found a

are disjoint for

sequence

no = 0 < ••• < ~
1

o sis k , and
p

and put AO = A U EO' then AO ~s a sweep-out set. Put nO = O.

We now proceed by induction. Suppose after step p (p ~ 0)

sweep-out set A with meA /:;.A 1) < -!--) (A ) = A), and a
p p p- 2P+ - -no

~
< ••• < n

k
such that the sets T A

P P
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i
i=O

-no
meT ~A) > 1 _ 1

P j
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for 1 s J S P •

and

Then by 4) there exists a sweep-out set A +1 and integers nk +I, ••• ,nk
-~. p p+1

such that meA 16A) <~ , the sets T ~A 1 are disjoint for 0 sis kp+I '
p+ P 2PTL p+

k.
~ -no 1
L meT ~A I) > 1 -

i=O p+ J

Finally we shall show that the set

00 00

for 1 S J S P + 1 •

B n u
q=l p=q

A
P

is an exhaustive weakly wandering set under the sequence nO

••• ,nk , ••• with m(A6B) < E.
p+1

00

From A6B c u A 16A
p=O p- P

we conclude m(A6B) < E.

Fix p. Then for all q ~ p we have

k

I
i=O

-no
meT ~A) > 1

q
1- -
P

and therefore for all q ~ p

k

I
i=O

-n. 00

mT ( ~ ( u
p=q

1
A ) > 1 -

P P

Hence, if q -+ 00

k

I
i=O

-no
meT ~B) ~

1- -
P

It follows that

00 -no
I meT ~B) I.

i=O
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-no -no
It remains to show that T ~B n T J B = 0 if ~ r j. Choose E > 0, and take

o > 0 such that if m(E) < 8, we have

-no -no
m(T ~E U T JE) < E •

Since

co

(A liB) c
P

U

q=p
(A IliA) ,

q+ q

there exists an integer p such that m(A liB) < O. Hence
p

m«T
-no -no -no -no

~BlIT ;A) U (T JB~T JA »
p p

< E ,

-no
and because of T ~A

P
0, we conclude

-no -no
m(T ~B n T J B) < E •

Since E is arbitrary, we have

-no -no
m(T ~B n T J B) = a •

This completes the proof of the theorem.
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