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SUMMARY. 

Spectral element methods are high order weighted residual techniques for partial 
differential equations. They combine the geometric fiexibility of the well known h- and 
p-type finite element meil"lud with the clttïaztive cmvergence ~ r q m f i e s  ef spectrd 
methods. Thus they are well suited for application of complex problems in complex 
geometries. 

In the spectral element discretization the domain is divided into (spectral) elements, 
and the dependent and independent variables are approximated by high order polynomial 
expansions within the individual subdomains. In order to decrease the demands of 
continuity at element boundaries, the partial differential equation is written in its 
equivalent variational form. The variational formulation is taken as a basis for the 
discretization process, in which high order Gauss-type numerical quadrature plays an 
essential role. Convergence of the approximate solution to the exact solution of the partial 
differential equation is obtained in a similar way as in spectral methods, by increasing the 
order of the approximation. The number of elements is kept fixed. 

In this report the discretization process of spectral element methods applied to a class 
of one-dimensional elliptic equations is described in detail. The final set of discrete 
equations will be presented and discussed. Also some approximation results will be given, 
that indicate the high accuracy of spectral element methods. Moreover, the application of 
spectral element methods to a non-linear testcase, the steady viscous Burgers equation is 
given. For  both problems numerical results are presented. 
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1. INTRODUCTION. 

This report deals with the fundamentals of the spectral element method. Spectral 
element methods are high order weighted residual techniques for partial differential 

element method with the attractive convergence properties of spectral methods. Thus 
they are well suited for application of complex problems in complex geometries. 

The analysis will be started in chapter 2 with a short review on spectral 
approximation. Origin and basic properties will be discussed and several important 
approximation results of direct importance to the spectral element method will be 
presented. Moreover the similarities and differences with finite element methods will be 
discussed. 

Chapter 3 will deal with spectral element methods. After a general introduction, a 
detailed theoretical formulation of the discretization process of one-dimensional elliptic 
equations will be analyzed. Some convergence results are presented for linear equations. 
Moreover we will give the application of the spectral element method to a non-linear 
testequation: the steady viscous Burgers equation. The set of discrete equations and the 
linearization process will be described. Numerical results are presented, both for linear 
and non-linear problems. Finally, conclusions will be drawn and some aspects of future 
research on the application of spectral element methods will be addressed. 

The results presented in this report are part of a larger project, which deals with 
experimental and numerical research on the atherosclerotic disease in the carotid artery 
bifurcation. As regards the numerical aspects, i t  is the ultimate goal to describe the flow 
phenomena in the bifurcation, using a spectral element discretization of the three 
dimensional incompressible Navier-Stokes equations. This report must be viewed as a 
foundation for later research. 

qaáiions. They í---rrûi~e the gzûmetriz 47n-:h:l:+w vf the x x r n l 1  lrnnmn h txrno finito I I C N  u111 IJy 1 V b L L  n u v r r s r  U - V J p u  YII1”” 
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2. A SHORT REVIEW ON SPECTRAL APPROXIMATION. 

2.1 Introduction. 

Spectïd iiiethûds %re a class ef discretizaticm a d  siluticrn prncediures for partial 
differential equations, in which the approximate solution to the problem is expanded in a 
global high order Fourier or polynomial series. For problems with analytic solutions 
spectral methods obtain exponential convergence if the order of the expansion is increased. 
Thus they afford the possibility of obtaining highly accurate solutions with relatively few 
degrees of freedom. A major limitation however, is their intrinsic limitation to  simple 
geometric configurations due to  the global character of the expansion. 

Spectral methods are a particular case of the more common, so called weighted residual 
approaches to partial differential equations. The key elements in this technique are the 
expansion functions and the testfunctions. The expansion functions are used as 
basisfunctions for a truncated series expansion of the solution. The testfunctions are used 
to ensure that the differential equation is satisfied as closely as possible by the truncated 
series expansion. This is done by minimizing the residual, due to truncation, with respect 
to a suitable norm. If we denote the partial differential equation by, 

Lu = f, 

the weighted residual equation can formally be written as, 

(Lu,,v) = (f,v) 

with un(x) the truncated series expansion, v(x) the testfunction and (.,.) denotes an inner 
product corresponding to a suitable norm. Equation (2.2) provides one or more relations for 
the unknown expansion coefficients. In other words, the coeffcients are determined by 
weighted residual projection of the continuous equation with respect to a suitable norm. 
I I L ~  choke of the basisfuzctims is the ma,;’or feature that distlngilishes spectral methods 
ficm low order methods like the h-type finite element technique. For  a mathematical 
review the reader is referred to (Axelsson and Barker, 1984), for application of finite 
element methods to the Navier-Stokes equations to (Cuvelier et al, 1986) and (Girault and 
Raviart, 1986). In spectral methods the expansion functions are infinitely differentiable 

ml. 
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high order global functions. 
In this chapter a short review will be given of some important aspects of spectral 

approximation. In particular, the choice of basisfunctions in a spectral approach will be 
explained, and several theorems that indicate the attractive approximation results of 
spectral expansions will be presented. For an introduction to spectral methods the reader is 
referred to (Gottlieb and Orszag, 1977, Gottlieb et al, 1984), a more detailed recent 
description is found in (Canuto et al, 1988). Also some aspects of s p e c i d  inierpoiatiön ör 
collocation will be addressed, see e.g. (Hussaini et al, 1989). Finally, in order to  pave the 
way for the spectral element method, a comparison will be made with the well known 
h-type finite element method. 

2.2 Spectral approximation. 

In spectral methods the approximate solution u,(,) to  the partial differential equation 
is expanded in a truncated series of expansion or basisfunctions, 

n 
Qx) = ;r: ui(t)$i(x> 

i = û  

with ii(t) the expansion or spectral coefficients and T)~(x) the basisfunctions. The essential 
point behind spectral methods is that they achieve convergence by letting n my that is by 
increasing the order of the expansion (2.3). The convergence rate of spectral methods is 
therefore determined by the smoothness of the function being approximated. 

For a special class of basisfunctions spectral methods have the property of exponential 
or spectral accuracy. In order to establish this property consider the expansion of a 

function u(x) in terms of an infinite sequence of orthogonal functions ($i}m , i = O  

m 

i = O  
u(x) = $&i(.) 

If the system of orthogonal functions is complete in a suitabie Hiibert space, reiation (2.4) 
caii be imerted. Thus the €uilnciion u[x> can be described both ihiough its vdUes in fysicd 
space and through its coefficients in spectral space, this relationship is called the 
continuous transform. 

In the case of periodic functions the obvious expansions are Fourier series. A well 
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known result of the Fourier theory is the following theorem. 

Theorem 2.1. 
If the function u(x) is periodic and infinitely smooth and its derivatives are periodic as 
well, the zth coefficient of i ts Fourier series decays faster than any inverse power of i, i.e. 

N . :-p ui \ 1 (2.5) 

This so called property of spectral accuracy can also be obtained for expansions in 
non-periodic functions. As will be deduced in the next paragraph, if the function u(x) is 
expanded in a series of eigenfunctions to a singular Sturm-Liouville problem spectral 
accuracy is also obtained. For reasons of efficiency polynomials solutions are of special 
importance. It will also be proven that the only polynomial solutions to singular 
Sturm-Liouville problems are encompassed in the class of Jacobi polynomials, the two 
most common applications of which are the Chebyshev and Legendre polynomials. 

In this way spectral approximation is a special case of the expansion of a function u(x) 
in terms of an infinite sequence of general orthogonal polynomials, the theory of which is 
provided in appendix A. 

2.3 Sturm-Liouville problems. 

Consider the following eigenvalue problem on the domain (-l,l), 

r 

plus homogenuous boundary conditions 

in (-1,i) 

Problem (2.6) i s  a Sturm-Liouville eigenvalue problem on (-1,l). The solution $n is called 
the eigenfunction to (2.6) with eigenvalue A,. The function p(x), q(x) and the weight 
function w(x) must be non-negative in (-1,i). The problem is called singular, or more 
specific, singular at the boundary points, if, 

(2.7) 

As already indicated, those eigenfunctions that form a complete orthogonal polynomial set 
in a Hilbert space are of special importance. First, consider the property of completeness. 
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Therefore consider the Lebesgue space, 

v u,v E #(-l,l) 

2 
and associated norm 11 v l l w  = (v,v),, v E 42(-l,l). 

Theorem 2.2. 

The eigenfunction solutions to the Sturm-Liouville problem (2.6) { 11,}" n=O form a complete 

set on the Lebesgue space J(,2(-l,l) if and only if, 

An 4 m (2.10) 

For a proof the reader is referred to (Courant and Hilbert, p. 424, 1953). 

It will be seen later that the polynomial eigenfunctions that we are interested in have the 
property (2.10). Therefore it  is allowed to assume in the further analysis that the 

eigenfunctions form a complete set in the Lebesgue space &2(-l,l). The orthogonality 
property of the eigenfunctions requires that, 

(2.11) 

The following theorem motivates the choice of eigenfunctions of singular 
cp,.l.m I> ,,,,,-Liouville prcb!err,s 8s expansim fir~ctions ir, a spectral asproximation. 
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Theorem 2.3. 
Consider the spectral expansion (2.4) of an infinitely smooth function u(x). If the 
basisfunctions are eigenfunctions of a singular Sturm-Liouville problem on (-1,l) 

then the expansion has the property of spectral accuracy, that is the coefficients Üi decay 
faster than any inverse power of the corresponding eigenvalue of the Sturm-Liouville 
problem, 

üi < A 1  V p > O  (i-’m) 

or equivalently, 

with u,(,) the truncated series expansion (2.3). 

For a proof the reader is referred to (Canuto et al, sec. 9.2 ,1988). 

It should be noted here that this spectral accuracy is normally 

(2.12) 

(n4m) (2.13) 

not obtained for 
eigenfunction expansions of a non-singular Sturm-Liouville problem (p(x) > O throughout 
(-l,l)), or even a half-singular Sturm-Liouville problem (p(-i) or p(1) equals O). The 

expansion coefficients Gi of an expansion in non-singular or half-singular eigenfunctions 
decay algebraically, unless the expanded function u(x) satisfies an infinite number of very 
special boundary conditions. Singular eigenfunction expansions converge at a rate governed 
by the smoothness of the function being expanded, not by any special boundary conditions 
satisfied by the function. A proof of these properties is given by Gottlieb and Orszag, (sec. 
3, 1977), who consider Sturm-Liouville problems with zero boundary conditions and extend 
the analysis to the special cases of Chebyshev and Legendre expansions. 

Consider now the second property that the spectral expansions must satisfy. Of specific 
interest are those orthogonal eigenfunctions of singular Sturm-Liouville problems, that are 
polynonrids, ‘Liecrt~se of the efficiency with which they car, he evdiiafed a d  diffeerentlôtes! 
niimerically . 
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Theorem 2.4. 
The class of polynomial solutions to a singular Sturm-Liouville problem on (-1,l) is the 
class of Jacobi polynomials. 

A proof of this theorem is given in appendix B. 

In appendix I3 the ciass of Jacobi poiyrioIILials i s  defiïìed. In practice o d y  the twn fnll~wing 
applications of Jacobi polynomials are used in spectral methods, Chebyshev and Legendre 
polynomials, see e.g. (Abramowitz and Stegun, 1968). The Chebyshev polynomials T,(x) 
are plotted in Fig. 2.1 for n = O ,.... 4. 

X 

Fig. 2. i Chebyshev polynomials. 

They can be evaluated using the recurrence relation, 

Tn+i(x) = 2x 'n(x) - 'n-t(x) n 2  1 (2.14) 

with T,,(x) = 1 and T,(x) = x. The Legendre polynomials Ln(x) n =O, .... 4, are plotted in 
Fig. 2.2. 

7 



-1 -0.5 0 0.5 1 

X 

Fig. 2.2 Legendre polynomials. 

The recurrence relation for Legendre polynomials is, 

n 2 2  (2.15) 

with L,(x) = 1 and L,(x) = x. 

2.4 Spectral collocation. 

In the previous sections spectral approximation of a smooth function u(x) in terms of a 
series of high order polynomial expansion functions was discussed. This approximation 
defined a continuous transform, see equation (2.4). The function u(x) could be described 
both by its values in physical space and by the set of its continuous expansion coefficients 

in spectral space. However, the continuous expansion coefficients are seldom 
computed exactly, since they depend on all the values of the function u(x) in physical 
space. 

In spectral collocation methods a set of approximate coefficients is calculated using the 
values oi  u(x) at a finite riiimbeï of high order Gauss type yrradrat~re ~r collocation points. 
This procedure dehes  a discrete transform between the values of u(x) at  the collocation 

points and the set of its discrete coefficients {Ui)” . The finite series defined by the 
discrete coefficients is actually the interpolant polynomial of u(x) at the collocation points. 

The fundamental representation of a smooth function u(x) defined on (-1,l) in spectral 

i=? 
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collocation, is in terms of its values at the discrete set of Gauss type points. If the set of 

Gauss type collocation points is denoted by {xj]: , then the interpolant polynomial Ün(x) 
satisfies, 

J =o 

Since i t  is a polynomial of degree n, it can be written as, 

j = O, ...., n (2.16) 

n 
ün(x) = L' 

i = O  

where the $i are the spectral expansion functions, eigenpolynomials 
Sturm-Liouville problems on (-1J). Obviously, 

n 
U(Xj) = L' Üi?ji(Xj) 

i = O  

Equation (2.18) gives the discrete transform between 

j = O, ...., n 

(2.17) 

of singular 

(2.18) 

the values of u(x) at the set of 
collocation points and the set of its discrete coefficients. For more details on interpolating 
polynomials we refer to appendix A, in which the more general case of discrete transforms 
in terms of general orthogonal polynomials is described. 

Naturally, it will be convenient if the property of spectral accuracy is retained in 
replacing the finite transform with the discrete transform in spectral Gauss type 
collocation. In appendix B it is deduced that the discrete coefficients can be expressed in 
the continous expansion coefficients, see equation (A.14). Since the continuous Coefficients 
show spectral accuracy, the next theorem is obvious. 

Theorem 2.5. 
Consider the spectral collocation expansion (2.17) (or interpolant at the Gauss type points) 
of a smooth function u(x). If the basisfunctions @i(x) are eigenfunctions of a singular 

equidently,  

s+..- bum-l i~~vi ! !e  p r ~ b k m  OE (--IJ) the2 the discrete expansion shows spectral accuray? or 
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For a recent review on spectral collocation the reader is referred to (Hussaini et al, 1989). 

2.5 A comparison to finite element methods. 

Before the spectral element method is discussed in the next chapter, a comparison is 
made between spectral and h-type finite element methods. This is done, because as will be 
seen, hoth methods are integrated within the spectral element approach. 

The most important similarity between the two methods is their weighted residual 
foundation, which provides the means to combine both methods. The differences occur 
when this weighted residual framework is expanded to the final set of discrete equations. 
As already seen in the previous sections, spectral methods use high order infinitely 
differentiable basisfunctions, mostly Chebyshev or Legendre polynomials. Finite element 
methods on the other hand use low order basisfunctions. Furthermore, the spectral basis is 
a global basis, defined over the whole domain of interest, whereas in finite elements (as in 
all domain decomposition methods), the basisfunctions are local in character. 

The above difference has an important consequence, in spectral methods convergence of 
the approximate solution of the partial differential equation is obtained by increasing the 
order of the spectral. expansion. In a finite element approach however, this is achieved by 
increasing the number of elements. Another major consequence is that whereas spectral 
expansions have the property of spectral or exponential accuracy, finite element methods 
achieve at most algebraic convergence. On the other hand the use of high order global 
approximations in spectral methods leads to full system matrices in the final set of discrete 
equations. Finite element systems are sparse due to the local character of the 
approximation. 

The element division of the finite element method ensures that they are perfectly 
suited to handle complex geometries, contrary to spectral methods. Moreover the 
possibility of local mesh refining in finite element approximation provides the means for 
handling complex physical phenomena, e.g. strong discontinuities of the solution, an 
advantage over the global spectral methods shared by the spectral element method. 

In summary, spectral methods are perfectly suited for problems in which the olution 
and data are highly regular and the domain not very complex. However, if either strong 
discontinuities in data or complexity in geometry occur, finite element methods are by far 
the mcre easier tc implement. 



3. FUNDAMENTALS OF THE SPECTRAL ELEMENT METHOD. 

3.1 Introduction. 

Spectral element methods, first propûseû by Pzteïa. (?%kt), %re high order weighted 
residual techniques for partial differential equations, that combine geometric flexible 
h-type, (Axelsson and Barker, 1984, Cuvelier et al, 1986, Girault and Raviart, 1986), and 
p-type, (Babuska and Dorr, 1981, Babuska et al, 1981) finite element methods, with the 
highly accurate spectral methods, (Canuto et al, 1988, Gottlieb and Orszag, 1977, Gottlieb 
et al, 1984) An extended theoretical foundation was presented recently by Maday and 
Patera (1989). 

In the spectral element discretization the domain is divided into spectral elements, and 
the dependent and independent variables are approximated by high order polynomial 
expansions within the individual subdomains. In order to decrease the demands of 
continuity at element boundaries, the partial differential equation is written in its 
equivalent variational form. The variational formulation is taken as a basis for the 
discretization process, in which high order Gauss-type numerical quadrature plays an 
essential role, (Davis and Rabinowitz, 1984). Convergence of the approximate solution to 
the exact solution of the partial differential equation is obtained in a similar way as in 
spectral methods, by increasing the order of the approximation. The number of elements is 
kept fixed. 

The element division of the spectral element methods ensures that even problems with 
complex geometries can be well approximated. Moreover in areas where rapid function 
variation or other physical complexities occur, the high order interpolation provides good 
results. Thus spectral element methods handle both geometric and physical complexity. 

As spectral element approximation can be viewed as a spectral collocation approach in 
fixed elements, the convergence rate of spectral element methods is equivalent to that of 
spectral methods and depends on the smoothness of the function that is approximated. For 
analytic solutions spectral element methods obtain thus spectral or exponential 
convergence. TnereÎore, they are well suited for problems in wkich Fig& ûïdeï regdarity is 
m t  excegted, e.g. incompressible !luid mechanics, (Korczak and Patera, 1986, Ronqaaist 
and Patera, 1988). If the regularity of the solution decreases spectral element methods may 
no longer be preferable to h-type finite element techniques. The same argument holds if 
the acceptable error level is relatively high. 
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In this chapter the discretization process of spectral element methods applied to a class 
of one-dimensional elliptic equations is described in detail. The final set of discrete 
equations will be presented and discussed. Also some approximation results will be given, 
that indicate the high accuracy of spectral element methods. Moreover, the application of 
spectral element methods to a non-linear testcase, the steady viscous Burgers equation is 
given. For both problems numerical results are presented. In the last section conclusions 
are drawn. 

3.2 Discretization process of a class of one-dimensional elliptic problems. 

In order to establish the spectral element concepts consider the following linear 
symmetric elliptic boundary value problem in one dimension, 

It is assumed that the functions p(x), q(x) and f(x) satisfy, 

where go(n) is the space of continuous functions on n, and the Lebesgue space Y2((n) is 
defined by, 

Equation (3.1) is sufficiently simple to allow for a clear illustration of spectral element 
discretization of elliptic problems. 

As already mentioned in the introduction to this chapter, the basis for the numerical 
scheme is the variational equivalent to (3.1). 'The space of acceptable solutions is d e h e d  to 

be the Soboiev space Zo:(f2), given by, 

"'(0) = { v E Y2(L?) 1 v, E P(Q), v(a) = v(b) = O } (3.5) 

12 



This space is equipped with the following inner product, 

v u,v E P(Q) 

2 
and associated norm 11 v 11 = (v,v). The variational formulation equivalent to the boundary 

vaiue problem (3.i) can weii ut: written a, fiiìd ü(x> E uól(iI) such that, I n  - r \  __.. LL-- t 

where the bilinear continuous form a(.,.) is defined by, 

v v E &l(Q) 

u,v E Jq(Q) 

(3.7) 

Theorem 3.1. 
The variational problem (3.7) has a unique solution. This solution is the generalized 
solution of the original boundary value problem (3.19, i.e. if (3.1) has a classical solution 
then it must coincide with the solution to the variational formulation. 

Proof. 

The bilinear form a( .,.) is bounded and coercive (positive-definite) in aO1( SZ) .  Application 
of the Lax-Milgram lemma, (Axelsson and Barker, sec. 3.2, 1984), immediately gives the 
required result. 

(End proof). 

The first step in the spectral element discretization is to  choose an integer pair h = (k,n) 
and break up the domain fl into k (spectral) elements, Qj = [wj,wj+J, of length $, 

k 
C l = U Q .  1 

j = 1, ...., k 
(3.9) 

(3.10) 

The spectral elements are non-overlapping, 
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Ri n R j  = 4 (3.11) 

The next step is to discretiee the solution space ZO1(s2). The space of approximation for 

the solution u(x) is taken to be the n-dimensional subspace x h  of the Hilbert space A$l(n) 
consisting of all piecewise high order polynomials of degree < n, 

with Yh defined by, 

(3.12) 

(3.13) 

where in(nj)  denotes the space of polynomials on Rj of degree 
problem now can be written as, find uh E x h  such that, 

n. The discrete variational 

(3.14) 

Theorem 3.2. 
There exists a unique solution u h  E x h  to the discrete problem (3.14). 

Proof. 
The space of approximation for the solution x h  is a finite dimensional subspace of a Hilbert 
space, and therefore itself a Hilbertspace. The Lax-Milgram lemma is now also applicable 
to the discrete problem. 

(End proof). 

The equation (3.14) cannot be implemented numerically without numerical quadrature. 
The choice of a numerical quadrature corresponds with the choice of a discrete inner 
product or norm. The high order discretization suggests a Gauss type quadrature formula. 
Morecver, since $he integrals appearing in (3.14) have a natural weight €unction equd i o  1: 
the quadrature should be a Legendre Gauss type quadrature. For reasons to be explained 
later, Legendre Gauss-Lobatt o numerical integration is chosen. This quadrature is defined 

by , 
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where the ti are the Legendre Gauss-Lobatto integration points given by, 

to = -1 
ti zeroes of Ln(t) ,  i = í,....,n-i 

t* = 1 

The wi are the Legendre Gauss-Lobatto integration weights given by, 

2 
2 w i  = n(n+i) Ln(tjJ i = O, ...., n 

(3.15) 

(3.16) 

(3.17) 

In (3.16) and (3.17) Ln(J) is the Legendre polynomial of order n, (Abramowitz and Stegun, 
1968). For an extensive description of numerical quadrature the reader is referred to (Davis 
and Rabinowitz, 1984). 

In order to  be able to apply Legendre Gauss-Lobatto quadrature an affine 
transformation is used to map each spectral element Rj = [wj,wj+J to the standard spectral 
element e = [-l,l] (x E Qj -f t E e). The corresponding global integration points and 
weights in the element Rj are then given by, (i = 1, ...., n j = 1 ,...., k), 

t i j  = wj + lj (ti + i)/ 2 
wij = lj Wi/ 2 

(3.18) 
(3.19) 

Applying the Legendre Gauss-Lobatto numerical integration to the discrete variational 
system (3.14) yields the following discrete problem, find uh E xh such that, 

The corresponding discrete norm 11 . [ I g l  with inner product (.,.)gl is given by, 

(3.20) 

(3.21) 
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where, 

@O(e,k) = { $ E  

Compare the definition of the discrete 

(3.22) 

inner product in appendix A, equation (A.13). 
Furthermore: the discrete bilinear form ;tg!(.'.) is given by, 

where, 

Equation (3.20) can be regarded as the complete spectral element discretization of the 
original partial differential equation (3.1). The next theorem is a natural extension of the 
two previous ones. 

Theorem 3.3. 
There exists a unique solution uh E x h  to the complete discrete spectral element problem 
(3.20). 

The proof of theorem 3.3  involves a non-trivial result on numerical quadrature. Therefore 
it is not a standard application of the Lax-Milgram lemma. I t  is given in appendix C. 

A detailed discussion on error estimates for the spectral discretization is given in (Maday 
and Patera, 1989). Here, the result for the case that p(x) and q(xj are constant is stated. 
The theorem involves the use of high order Soboiev spaces and norms; €oor a survey the 
reader is referred to (Axelsson and Barker, sec. 3.1, 1984). 

1 6  



Theorem 3.4. 
Let k be a fixed integer and let y be a non-negative real number such that, 

Let and 7- be real numbers such that, 

o _> i, r > 

j= 1, ...., k (3.25) 

(3.26) 

(3.27) 

For a proof the reader is referred to (Maday and Patera, 1989). 

The sources of the discretization error (3.27) are approximation errors, interpolation errors 
and quadrature errors. From (3.27) one can conclude that If the data are analytic, 
exponential convergence to the exact solution u(x) is obtained for uh as n -+ m. 

In order to  implement the discrete system (3.20) it is necessary to choose a basis for 
the polynomial space x h -  It should be noted that the choice of the basis does not effect the 
discrete error estimate. It does of course effect the form and conditioning of the discrete 
equations. Moreover, the choice of the basis is important as regards the inter elemental 
coupling. Therefore a Legendre Gauss-Lobat to Lagrangian interpolant basis is chosen to 

represent any function in Xh. The basisfunctions $i(() (j = l,....,k, p = O, ...., n) in each 
spectral element Rj with respect to the affine transformation (3.18) are polynomials of 
degree n. They satisfy, 

q = O, ...., n (3.28) 

where the tij are the Legendre Gauss-Lobatto points ref. equation (3.i8). Moreover, 

@;(o = 0 1 #  j (3.29) 

An explicit expression for the basisfunctions is given by  Gottlieb et al (1984), 
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(3.30) 

with &(e) the Legendre polynomial of order n. The approximate solution Uh in each 
spectral element iIj is now written, 

(3.31) 

where u i  = uh(tPj). To ensure continuity of the approximate solution over element 

boundaries (uh E ZO1(52)), i t  is required that, 

j = 2, ...., k 

Moreover uh must satisfy the Dirichlet boundary conditions, 

1 u0 = U: = O 

(3.32) 

(3.33) 

I t  will be convenient to represent the source term f(x) in terms of the basis in Xh. However 
f(x) need not satisfy the conditions (3.32) and (3.33). Therefore f(x) is approximated as, 

f h  E ‘h (3.34) 

Substitution of uh, f h  and the testfunction v h  into equation (3.20) in the standard Galerkin 
way by choosing each testfunction Vh to be unity at only one global Legendre 
Gauss-Lobatto point, yields the final discrete matrix system, 

(A + B) u = Mf - - 
or equivalently, 

(3.35) 

(3.36) 

with f: = f(tpj), (p = O ,...., n) and, 
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q,p = O,....+ (3.37) 

q,p = O,....+ (3.38) 

q,p = O,....yn (3.39) 

i,p = O,....yn (3.40) 

Explicit values for the collocation derivative matrix dIp are given by Gottlieb et al (1984). 

In equation (3.36) I? denotes direct stiffness summation, i.e. the contributions of the same 
global element boundary points are summed to ensure (3.32), and the Dirichlet boundary 
conditions (3.33) are taken into account by eliminating from the system those rows and 
columns corresponding to the boundary points (matrix condensation). 

To conclude this section some remarks are made on the final matrix system (3.36). As 
already mentioned, because of the choice of Gauss-Lobatto interpolation elements couple 
only at boundary nodes. I t  is now clear that Gauss-Lobatto quadrature in combination 
with Gauss-Lobatto interpolation results in a diagonal elemental mass matrix. This 
property ensures a rapid evaluation of the right hand side of equation (3.36). 

3.3 Application to the steady viscous Burgers equation. 

In this section the spectral element discretization of a one-dimensional test problem, 
the steady viscous Burgers equation is discussed, 

- Y u,, + uu, = f(x) (3.41) 

with v the viscosity. There are several motivations to do this. First of all, this equation 
introduces a non-linear term uu,. Moreover, Burgers equation offers the possibility to 
apply spectral methods to an equation yclosey to the Navier-Stokes equations, that will be 
investigated in a later report. It should also be stated that the viscous Burgers equation is 
often taken as a test problem for numerical methods, e.g. (Basdevant et al, 1986). 

The apxtra! demefit cliscïete system cmrespnding tc \"' f 9 41) can he written $8, 

(3.42) 

The elemental matrices can be deduced analogous to the analysis in the previous section. 
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They are given by, 

n 
gyp = O,....,n 

q,p = O, ...., n 

gyp = O,....,n 

i,p = O,....+ 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

The non-linear convective term flu) - -  u is linearized by a standard Newton-Raphson 
iteration scheme, (Cuvelier et al, sec 5.6, 1986). Given a non-linear discrete system, 

an initial solution - uo is chosen and then for each i = 1 ,2 , . . . . ~  

J(zi") (zi - - ui-') = R(gi-l) 

is solved, where R(u'-') - is the residual given by, 

and $(ui-') - is the Jacobian matrix of the residual defined by, 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

Application to the jiseïeie Büïgeïs systm (3.42) yields, in the ith iteratim step solve, 

(3.51) 

with <ui-') - the Jacobian matrix of the non-linear term - defined by, 



a? ( gi-l) 

a($ -l)k 
= (3.52) 

and the residual R(ui-') - given by, 

3.4 Numerical results. 

(3.53) 

In this section some examples of spectral element simulation will be presented to 
demonstrate numerically the predicted spectral accuracy. First consider an application of 
the one-dimensional elliptic problem (3.1), with data, 

p(x) = ex 

q(x) = 0 

f(x) = ex (cos x - sin x) 

on the domain ( 0 , ~ )  for which the exact solution is, 

u(x) = - sin x 

(3.54) 
(3.55) 

(3.55) 

(3.57) 

As all data are analytic on (O,T), exponential convergence to  the exact solution can be 
expected according to theorem 3.4. This is demonstrated in fig. 3.1, where the discrete 
maximum error in the approximate solution is plotted on a logaritmic scale as a function of 
the number of degrees of freedom in the mesh (number of nodes). For spectral element 
approximation the number of elements was kept fixed on 4. 

The same problem was solved using finite element quadratic approximation, the results 
of which are also plotted in fig. 3.1. Here convergence is achieved by increasing the number 
of elements. 



O 
O 

n O 0  

5 10 15 20 25 30 

number of nodes i n  the mesh 

o 
O 

Fig. 9.1 Plot of the maximum pointwise error for 
the elliptic problem (3.1), with data (3.54)-(3.57). 

o Legendre SEM 
o Quadra t i c  FEM 

It is also seen that finite element approximation achieves at  most algebraic 
convergence. This demonstrates the advantage of p-type spectral approximation (increase 
of the approximation degree in a fixed number of elements) over h-type approximation 
(increase of the number of  elements with a fixed approximation degree per element) for 
smooth linear problems. 

Next consider an example of the steady viscous Burgers equation (3.41). Consider 

solutions um(x) on the domain (0,l) that are written in a Fourier sine series, 

2 k + l  n-x U'"(,) = ; 
k=O 

with data, 

m 
f"(x) = v I: r2 (2k+l)  sin ( 2 k + l ) m  + 

k=O i u 2k+l n-x 
2K+ I 

T C O S  ( 2 k + l ) m  
k=O k=O 

(3.58) 

(3.59) 
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In fig 3.2 the solutions um(x) for m = 1,3,5 are plotted. Notice that the solution shows 
larger gradients if m increases. 

X 

X 

0 0.5 l a i  0 0.5 

X 
X 

Fig. 3.2 Plot of the exact solution (3.58) to the 
steady viscous Burgers equation (9.41) form = 1,3,5. 

In order to analyze the infiuence of the non-linear convective term uu,, the exact 
solution with m = 5 was numerically approximated, again using both spectral element and 
finite element approximation. Three testcases were examined, corresponding to a viscosity 
Y = 1, Y = 0.01 and u = 0.001. The number of elements in the spectral element approach 
was kept fixed on 4. Finite element approximation achieved convergence by increasing the 
number of elements. The initial solution to the Newton-Raphson linearization process was 

chosen to be um(x) = 1 on (0,l). The number of iterations needed for the process to 
converge with convergence criterion that the maximum pointwise error of the difference 

between the old and new solution should be smaller than lo-*, slowly increased as the 
convective term gained influence. For decreasing viscosity respectively 3 ,  6 and 7 iterations 
were needed, both for spectral and finite element approximation. 

In fig 3.3 the pointwise maximum error is plotted on a logaritmk scde as a function of 
iiie number of degrees of fïeedûm in the mesh. Ir? order to he able 10 compare the three 
testcases, dl resirlts are p!ot,t,ec! in one figure. 
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number of nodes in the mesh 

viscosity = 1 
-- Legendre SEM 
-+--e Quadratic FEM 

viscosity = @.ai 
--+---e Legendre SEM 
-+--e Quadratic FEM 

viscosity = @.@@I 
--e---+ Legendre SEN 
- + - - e  Quadratic FED 

Fig. 9.9 Plot of the pointwise maximum error for the 
non-linear problem (3.41) with data (3.58)-( 9.59) and 
with m = 5, for three testcases u = 1, 0.01, 0.001. 

Notice that spectral element approximation converges exponentially for all three 
testcases, although more degrees of freedom, i.e. a higher polynomial degree of 
approximation per element, is needed if  the convective term gains influence. On the other 
hand finite element approximation shows slower algebraic convergence with decreasing 
viscosity. From these testcases one may conclude that also for strongly non-linear 
problems spectral element approximation obtains exponential convergence to the exact 
solution, though at a slower rate if the convective term dominates the diffusive term. 

3.5 Conclusions. 

In this chapter the theoretical fundamentals of spectral element methods were 
described. I t  was seen that spectral element methods combine attractive properties of both 
h-type finite element methods and spectral methods. The spectral element method used a 
variational formulation equivalent to the partial differential equation. Legendre Gauss type 
quadrature app!ied ti; the variatiom! fcxrndatim ensured that for srno~th Enear problems, 
spectral elemerit approximation achieved exponential convergence to  the exact solution of 
the problem with relatively few degrees of freedom. Furthermore, in order to couple 
elements only a t  boundary nodes a Legendre Gauss-Lobatto interpolant basis for the 
approximation was chosen, that in combination with Legendre Gauss-Lobatto quadrature 
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resulted in an attractive system of discrete equations, e.g. a diagonal mass matrix. The 
results for linear elliptic equations were demonstrated by a numerical example. Moreover 
spectral element methods were applicated to a non-linear testexample, the steady viscous 
Burgers equation. Numerical examples of this non-linear problem also showed the property 
of exponential convergence, even if the convective term strongly dominated the diffusive 
term, although a higher degree of approximation and more iterations were needed as the 
convective non-linear term gained influence. Both the linear and the non-linear problem 
also were approximated by finite element methods, which showed only slow algebraic 
convergence. It therefore can be concluded that for smooth problems spectral element 
approximation is preferable to finite element approximation as regards accuracy of the 
approximate solution. 

Several aspects of spectral element methods are still open for research. At this moment 
the application of spectral element met hods to time-dependent problems is investigated, in 
particular spectral element spatial discretization combined with Runga-Kutta Chebyshev 
time discretization methods, (Verwer, 1990). In a future stadium the application of spectral 
element approxomation to the incompressible two- and three-dimensional Stokes and 
Navier-Stokes equations will be analyzed. The results of the application of spectral 
element methods to the strongly convective non-linear Burgers eqilation indicate that good 
results can be expected for spectral element simulation of flows at moderate and high 
Reynolds number. 
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Appendix A. Orthogonal system of plynomi&. 

In chapter 2 the spectral approximation of an analytic function u(x) in terms of a series of 
orthogonal expansion functions was discussed. By using eigenfunctions of a singular 

accuracy, that is the expansion coefficients decay faster than any inverse power of the 
eigenvalue of the corresponding Sturm-Liouville problem, see theorem 2.3. In this 
appendix the expansion of a function u(x) in terms of a system of orthogonal polynomials 
shall be discussed from a general point of view. 

The expansion of a function u(x) in terms of an orthogonal system defines a 

transformation between u(x) and the set of expansion coefficients {i&}@ . We call this the 
continuous transform between physical space and transform space (or spectral space in the 
case of a spectral expansion). If the system of expansion functions is complete in a Hilbert 
space, this transform can be inverted. Hence, the function u(x) can be described both in 
physical and transform space. 

rl ~tu€m-Liuü~'lle pï9b:eïìì the eiL?jansiûn ûf the f*mctioc n(x) BYOWPC! 8^ cdkc! spectral 

k =O 

First define the space 4 to be the space of polynomials of degree 5 n. Let  {&}O be a 
system of algebraic polynomials (with degree of pk = k) in 4, that are mutually 
orthogonal over the interval fl = (-1,l) with respect to a weight function w(x), 

k=û 

The classical Weirstrass theorem implies that the system {Pk) is complete in the Lebesgue 

space &2(-í,i), 

with the inner product (.,.)w defined as follows, 
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2 
and associated norm 11 v l l w  = (v,v),. 

A function u(x) E 42(-1,1) can be expanded in terms of the orthogonal system {Pk}. 
We denote this formal series expansion by, 

where the expansion coefficients i k  are defined as, 

Consider now the truncated series expansion Pnu(x) defined for any integer n > O by, 

Equation (A.6) denotes the continuous transform between physical and transform space. 
Due to the orthogonality relation (A. l )  Pnu(x) is the orthogonal projection of u(x) upon % 
with respect to the inner product (A.3), i.e. 

V V E  % 

The completeness of the system {pk}m 

property that for any function u(x) E 42(-1,1), 
in the space X2(-1,l) is equivalent to the 

k=û 

Equation (A.8) is a well known result of classical functional analysis. It states that the 
function u(x) is equivalent to its series expansion (A.4). Thus the function u(x) can not 
only be described by its values in physical space, but also by  the set of expansion 

coefficients in transform space. 
k=û 
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The expansion coefficients depend on all the values of u(x) in physical space. Hence 
they can rarely be computed exactly. A finite number of approximate expansion 
coefficients can easily be computed using the values of u(x) at at finite number of selected 
points, the so called collocation points. They usually are the nodes of high precision Gauss 
type quadrature, (Davis and Rabinowitz, 1984). This procedure defines a discrete 
transform between the set of values of u(x) at the collocation points and the set of 
approximate coefficients. The finite series defined by  the discrete iransform is actudiy the 
interpolant of u(x) at the collocation nodes. If the properties of accuracy (in particular the 
spectral accuracy defined in chapter 2), are retained if the finite transform is replaced by 
the discrete transform, the interpolant series can be used instead of the truncated series in 
approximating functions. This is done in spectral element methods. 

The nodes of Gauss type numerical quadrature play an important role in collocation or 

interpolation approximations. Let (pk}m be the sequence of othogonal polynomials, and 

let {xi}" and be the sets of Gauss type quadrature points and weights. In a 
collocation method an analytic function u(x) on (-1,l) is represented in terms of its values 
at the discrete Gauss type points. Derivatives of the function are approximated by analytic 
derivatives of the interpolating polynomial, which is an element of and can be written 

as, 

k=O 

i =O i=û 

n 

= 
k=O 

It  is uniquely defined by, 

InU(Xi) = U(Xi) 

and consequently, 

i = O, ...., n 

i = O, ...., n 

(A. io)  

(A . l l )  

Yqcatisu (A.11) denotes the discrete transform between physical space and transform 

space. The Üi are the set of discrete coefficients of u(x). They satisfy, 
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with (.,.)n the discrete inner product defined by, 

(A.12) 

compare equation (A.5). The discrete coefficients irk can be expressed in terms of the 

continuous coefficients u k  as follows, 

see e.g. (Canuto et al, sec. 2.2, 1988). Equivalently, one can write, 

Inu = Pnu + Rnu 

where, 

(A.14) 

(A.15) 

(A.16) 

is considered as the so called aliasing error due to interpolation. The aliasing error is 
orthogonal to the truncation or approximation error u - Pnu, so that, 

(A.17) 

In chapter 2 it was seen that in the case of a spectral expansion the aliasing error due to 
interpolation was of the same order as the truncation error. Therefore spectral collocation 
dso had the pïqeïty  ~f spectra! accuracy. For more ! ~ f ~ r ~ ~ t , t i o n  on orthogonal systems of 
p d y n o d d r  the reader is refeáes~ed to (Canuto et al, 1988). 
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Appendix B. Jacobi polynomials. 

The class of Jacobi polynomials is defined as follows, Jacobi polynomials are solutions to 
the singular S turm-Liouville problem on (-1,l) , 

- [ ( 1-X)lto( 1+x)IW( ?bn) x x  ] = An (l-X)O( l+xy$n 

with g,r > -1. The functions p(x), q(x) and w(x), see equation (2.5) are given by, 

1 +o f+7 
p(x) = (i-x) (l+x) 

w(x) = (i-x) ( 1 + X T  

q(x) = 0 

o 

The importance of Jacobi polynomials to spectral approximation was indicated in theorem 
2.4. In this éqpendix this theorem Is proven. 

Theorem 2.4. 
The class of polynomial solutions to a singular Sturm-Liouville problem on (-1,l) is the 
class of Jacobi polynomials. 

Proof. 
Let $n be a polynomial solution of degree n to a singular Sturm-Liouville problem on 
(-lJ), then, 

Consequently, 

p/w is a polynomial of degree 2 
q/w is a polynomial of degree 0 
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This implies that q(x) = qo w(x). Using now that p(-i) = p(1) = O gives, 

1+7 
p(x) = c, ( l-x)ltO( l+x) 

w(x) = c, (i-x)"(l+x)' 

(End proof). 

The two most common applications of Jacobi polynomials are Chebyshev and Legendre 

polynomials. The Chebyshev polynomials T,(x) have parameters c = r = - and 

eigenvalues An = n2. They can be evaluated using the recurrence relation, 

with To(x) = 1 and Ti(x) = x. Another formula for Chebyshev polynomials is, 

T,(x) = cos(n arccos(x)) (B.8) 

The Legendre polynomials L,(x) have parameters u = r = O and eigenvalues A, = n(n+l). 
They satisfy the recurrence relation, 

with Lo(x) = 1 and L,(x) = x. For more properties of Chebyshev and Legendre polynomials 
the reader is referred to (Abramowitz and Stegun, 1968). 



Appendix @. Uniqueness of the spectral element solution. 

In section 3.2 the complete discrete spectral element problem to the elliptic boundary value 
problerm (3.1) was derived, 

with (.,.)gl and agl(.,.) the discrete inner product and bilinear form defined in (3.21) and 
(3.23). 

Theorem 3.3. 

There exists a unique solution uh E Xh to the complete discrete spectral element problem. 

Proof. 
It must be proven that agl(.,.) is bounded and coercive in xh. Let $,# E xh, 

From equation (3.3) it follows that, using the Cauchy-Schwartz inequality, 

Then, using the following result concerning Legendre Gauss-Lobatto numerical integration, 
there exist two constants c1 and ca independent of n such that, V $ E z ( - l , l )  
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n 1 

-1  

see (Canuto and Quarteroni, 1982), yields, 

-1 

-1 

from which it follows immediately that, 

where 11 . 11 i is the dril-norm defined by, 

2 
1 

II  llr IIi = [ J + $“t) d t  ] 
-1 

v $ E  Zl(-l,l) 

This proves that the bilinear form agl( , ) is bounded. Now it must be shown that agl( , ) is 
coercive (or positive-definite) in Xh. Let $ E Xh, 

Using again equation (3.3) yields, 

with 11 . 11 the Y2-norm defined in (3.5). Now use Friedrichs’ first inequality, (Axelsson 
and Barker, sec. 3, 1984), 



where Q! is a positive constant, to show that, 

1 

2 c 5 $i(t) + $2(t) d t  
- 1  

with the positive constant C = min {1/2 po, u po). It is now ~ F Q V ~ R  that, 

$ €  Zl(-l,l) (3.29) 

i.e. the bilinear form agl(.,.) is coercive. Application of the Lax-Milgram lemma completes 
the proof. 

(End proof). 
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