

A modelling method using Movie SimCon/ExSpect

Citation for published version (APA):
Beelen, T. H. W., Stut, W. J. J., & Verkoulen, P. A. C. (1992). A modelling method using Movie
SimCon/ExSpect. (Computing science notes; Vol. 9226). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/d8b49ece-69f8-41db-9311-77df8605c32f

Eindhoven University of Technology

Department of Mathematics and Computing Science

A modelling method using MOVIE
SimCon/ExSpect

by

T.H.W.Beelen W.J.J.Stut P.A.C. Verkoulen

Computing Science Note 92/26
Eindhoven. December 1992

92/26

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M. van Hee.

A modelling method using MOVIE and
Sim Con/ExSpect

T.H.W. Beelen1 W.J.J. Stut Jr. 2 P.A.C. Verkoulen1

1 Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513
NL 5600 MB Eindhoven

the Netherlands
E-mail: {theo.verkoulen}@win.tue.nl

2 Central Development and Support Group Hospital Information System
BAZIS

P.O. Box 901
NL 2300 AX Leiden

the Netherlands

Abstract

Data and behaviour aspects of information systems are often modelled separately. In
this paper a modelling method is introduced that starts up the integration of two specific
techniques that deal with these different aspects. MOVIE, developed at BAZIS, is a se
mantic data modelling technique that models the static structure of an information system
at a conceptual level. SimCon/ExSpect, developed at Eindhoven University of Technology
is an executable specification framework that describes both static and dynamic aspects
of a system. In this paper the transformation of MOVIE into SimCon/ExSpect is intro
duced using a number of transformation rules. A considerable part of the transformation
can be done automatically, i.e. by a computer. However, in order to get a meaningful
and executable specification the role of an human expert is indispensable.
In the approach described in this paper, we cover the modelling process from the early con
ceptual phase to the generation of an executable prototype that can be used for validating
the design.

1

1 Introduction

In the field of information system development data modelling has been the main topic of
research. Data modelling basically concentrates on the organisation of a database, i.e. mod
elling data and their mutual relationships. For that purpose, relational, hierarchical, and
network models gained wide acceptance. In order to provide more powerful abstractions for
the specification of database schemas, (formal) semantic data models have been presented
(e.g. the Entity-Relationship Model [Chen, 1976], NIAM [Nijssen and Halpin, 1989J and
MOVIE [Stut jr. et al., 1992]).

Less attention has been paid to modelling the behaviour of information systems. Tradi
tionally, behaviour modelling has mainly been done for reactive and real-time systems. For
that purpose a number of modelling techniques have been introduced, such as CCS [Mil
ner, 1980J and (high-level) Petri Nets [Reisig, 1985J. As the specification of behaviour is
also important for data-intensive applications, an increasing interest in behaviour modelling
of information systems can be noticed. For more details about several data and behaviour
modelling techniques, a good overview can be found in [Brinkkemper, 1990J.

In order to promote consistency and comprehensibility between a data model on the
one hand and a behaviour model on the other hand, much research is conducted towards the
integration of existing data and behaviour modelling techniques. An example of such research
is [Sernadas et al., 1991J.

In this paper, a new modelling method is presented which integrates data and behaviour
modelling at a conceptual level. The method is based on MOVIE, a new formalism extend
ing semantic data modelling, and the integrated SimCon/ExSpect framework [Houben and
Verkoulen, 1991; Hee and Verkoulen, 1992J, a formalism extending Coloured Petri Nets. An
overview of the method is given in Figure 1.

Static
Stmcture

Modelling
MOVIE

SimCon

ExSpect

Figure 1: Overview of the modelling method.

As a first step MOVIE is used to specify the static structure of the system. A MOVIE
model not only includes the data objects and their mutual relationships, but also allows
to specify the so-called active objects that act on the data objects, their so-called activity
relationships, as well as the objects that influence the active objects.

In the second step, the MOVIE model is transformed into a SimCon/ExSpect specifica
tion. This transformation addresses both the specification of behaviour in terms of transitions
and places, and the reformulation of MOVIE's data relationships. The MOVIE's data rela-

2

tionships will be transformed to the SimCon part of the framework mentioned above. SimCon
allows to describe the system at a rather abstract level, without bothering about implemen
tation aspects in an early stage. The integrated SimConjExSpect framework provides an
executable specification.

This paper focusses on the transformation of MOVIE into SimConjExSpect. The remain
der of this paper is organised as follows: first a brief introduction in the formalisms MOVIE,
SimConjExSpect is given in Section 2. Next, the transformation is presented in terms of
transformation rules in Section 3. Finally, conclusions are stated in Section 4. For an exten
sive discussion of MOVIE we refer to [Stut jr., 1992]. A formal and more detailed description
of the transformation can be found in [Beelen, 1992].

2 Modelling Techniques

2.1 MOVIE

MOVIE (Modelling Object Views) is a formal semantic modelling technique that models the
static structure of a system. This structure is described by objects and relationships be
tween these objects. MOVIE distinguishes active and passive objects, as well as activity and
passivity relationships. Activity relationships model activities of active objects. Passivity
relationships model static properties of both active and passive objects. Passive objects dis
tinguish from active objects by autonomous behaviour. An object connected to a relationship
denotes that this object plays a (unique) role w.r.t. this relationship. Each activity relation
ship has exactly one active object that plays the role of agent. The agent object controls the
activity represented by the activity relationship.

A MOVIE model is decomposed in fragments. A fragment models the view on the system
of one single object or relationship. This object or relationship is called the central element of
the fragment. Formal consistency Tules take care of the syntactical correctness of the model.

Furthermore, structure rules restrict the fragment to those objects and relationships that
model only the relevant part of the system w.r.t. the central element.

Objects or relationships that have an identical view on the system belong to the same
type. A complete MOVIE model consists of a set of representative fragments, one fragment
for each (object or relationship) type.

Figure 2 shows the fragment of the object type Secretary. The (active) object secretary
of type Secretary calls a visitor of type Patient from a waitingRoom of type Room. An other
activity done by secretary is inspecting the patient's idCard of type IdCard. The secretary
wears a badge also of type IdCard. Note that each rectangle models one single object of a
certain type and each diamond-shaped box models one single relationship between individual
objects.

Furthermore, MOVIE provides some advanced features that enable a more concise nota
tion. In particular, MOVIE provides aggregation of isomorphic structures, multiple object
types, partial fragments, (multiple) inheritance, re-use of large structures and abstraction.

2.2 SimCon/ExSpect

The ExSpect (Executable Specification Tool) part of the integrated SimConjExSpect frame
work is a specification formalism for distributed systems. The description of the interaction
structure is based on Coloured Petri nets [Jensen, 1991], extended with the concept of time.

3

- '"'- visitor:
Ie"", {Pallenl}

-" """"
""""'"

§]] I~~I "-Canj, 1- {HaoCaO/

""""
-" ~ - '- -[§J -I I""'*"I PdCaO/ -
@J PdCaO/

Figure 2: Fragment of the secretary

The ExSpect model, describing the net-structure and system components, consists of two
kinds of basic components: processors and channels (corresponding with transitions and
places in Petri net terminology). Channels may contain (typed) tokens. Tokens are produced
and consumed by processors (firing). A token has a time-stamp which indicates the time
before which the token cannot be consumed. The basic components are extended by three
"derived" components: stores, systems and pins. A store is a channel that contains exactly
one token. A system is an aggregated structure of processors, subsystems, channels stores and
pins. A system can be specified as a hierarchy of subsystems. A pin, specified in a subsystem,
can be considered as a reference to a channel of the system lying above the subsystem.

\------10
P tS r Pa

Figure 3: Graphical representation of the secretary activities

Figure 3 shows the graphical representation of the specification of the secretary activi
ties. Processor Calls is connected to input channel Seer, input pin Room and output channel
PatSecr. As soon as a "Patient-token" arrives in channel Room and a "Secretary-token" is
present in channel Seer, the activity Calls can be executed. As a result of this execution, a

4

"Patient-token" is produced in channel PatSecr. This token represents the patient called by
the secretary and the secretary who actually called the patient.

The global state space of a system, i.e. the token sets contained in the ExSpect channels is
modelled by the SimCon part of the SimCon/ExSpect framework. SimCon (Simple Integrated
Model for Complex Object Networks) describes the static structure in terms of simple objects.
A simple object represents an entity of the system. For this representation a number of aspects
of a simple object are relevant: an object identity, a number of attribute values, and a number
of relationships with other simple objects. As usual, simple objects with similar properties
constitute a simple type. The model also includes the notion of inheritance. Attributes model
properties of simple objects. Attributes are defined using the type system of ExSpectl.

hasBadge

Secretary JdCani

Name

Figure 4: Example of a Simple Schema

Like in many models, schemas are used to define types. In Figure 4, a simple schema
specifies the simple types Secretary, Badge and Person, and for each type, attributes (e.g.
Name) and relationships (e.g. has Badge) with other simple types are specified. Relationships
between simple types are multi-valued. Moreover, the inheritance relationships are specified
in the schema by means of a boldface arrow (a Secretary is a Person). A simple schema induces
a universe of allowed simple objects.

Additional support for specifying complex objects including dynamic aspects like location
and time is given by means of container objects. A container object is a set of simple objects.
Besides that, a number of other aspects is relevant: A location states where a container
object resides in the system. A time-stamp models the time at which an object is available;
the simple objects from a container object are all at the same time at the same place. Just
like with simple objects, container objects with similar properties constitute a container type.

In the integrated SimCon/ExSpect framework, a container type is associated with each
channel. This means that the tokens that reside in that channel are objects of that particular
container type. A part of the simple schema is thus associated with each channel. In order to
be able to define container types, the schema concept is extended. An object schema not only
includes a simple schema, but also a set of container types together with their structures, a
set of location names, and a set of time-stamps. In the same way as for a simple schema, an

IThis type system is standard. It has some basic types (e.g. num for integers) and some type constructors
(e.g. power-set, tuples).

5

object schema induces a universe of allowed container objects.
Furthermore, the SimCon/ExSpect framework contains a set of tools: a graphical editor

to design a specification, a type checker to check the consistency of a designed specification,
an analysis tool and an interpreter to execute a specification [Broek and Verkoulen, 1992J.

3 Transforming MOVIE into SimCon/ExSpect

The modelling process as described in Section 1 is presented as an interactive process between
an automatic translator (computer) and an integrator (human expert w.r.t. the modelled
system)2. The translator generates ExSpect-code by applying a number of transformation
rules to a MOVIE model. The translator is not able to generate a complete specification of
the modelled system, because a MOVIE model contains insufficient information. It is the
task of the integrator to add missing information (e.g. the order of activities). In fact, this
addition is a further specification of the system to be developed. So the integrator is in fact
the modeller who is detailing the first conceptual specification.

This section informally introduces the transformation rules. Each transformation rule is
explained in the following way. First, the rule is motivated. Next, an informal description of
the transformation rule is given. The transformation rule is illustrated by applying the rule
on the secretary fragment in Figure 2. Finally, alternatives of the transformation rule, the
role of the integrator w.r.t. the transformation rule and semantical aspects are discussed. At
the transformation we assume that the MOVIE model is consistent and complete (Le. the
model contains a fragment for each object and relationship type that may occur in the set of
fragments).

3.1 Behaviour Modelling

Types

Both MOVIE and ExSpect classify objects that have the same properties by means of object
types. MOVIE distinguishes (active and passive) object types and (activity and passivity)
relationship types.

Rule 3.1 The abstract object types of a MOVIE model are directly translated to ExSpect
types3 . 0

The object types Secretary and IdCard (see Figure 2), for example, are translated to the
ExSpect types Secretary and IdCard respectively. They can be converted by the integrator to
basic ExSpect types as follows:

type Secretary from str;
type IdCard from num;

Note that only object types are translated to ExSpect, not the objects. The objects
themselves are transformed into a set of tokens of the ExSpect specification. Tokens have to
be added to the specification in order to realize a meaningful execution. The tokens of the

2you could also call him a modeller, as he has to add information, thus making a specification more specific.
JIn section 3.2, we will see a transformation directly in terms of SimCon. Such transformation is on a higher

level of abstraction.

6

ExSpect specification cannot be derived from the MOVIE model; A MOVIE fragment only
models the view of one representative object of an object type! The integrator has to take
care of the assignment of tokens to channels.

Note also that the relationship types are not directly transformed to ExSpect types. The
transformation of activity relationships (and their types) is explained below. The transfor
mation of passivity relationship types is discussed in Section 3.2.

Activity Relationships and Related Objects

Activity relationships model the activities of the system. An activity may change the global
state of the system. Since state changes in ExSpect are established by processors, activity
relationships will be transformed to processors. The transformation of an activity relationship
depends on the way the activity relationship appears in a fragment of the MOVIE model.
Three different appearances have to be distinguished:

1. The activity relationship is the central element of the fragment (e.g. activity relationship
Calls in Figure 5).

2. The activity relationship is a primary relationship in the fragment of its agent object
(e.g. activity relationship Calls in Figure 2).

3. Neither the activity relationship, nor its agent object is the central element of the
fragment.

Each appearance of an activity relationship is transformed differently.
The first appearance of an activity relationship can be considered as the definition of the

activity relationship. We assume that the defining fragment of an activity relationship defines
the direction of the edge between the central element (activity relationship) and an adjacent
object.

Rule 3.2 Each activity relationship fra.gment is transformed to a processor heading:

• The name of the processor is chosen equal to the relationship type.

• A formal input and output channel are introduced (by default: Agenti. and Agent",).
The agent object type is assigned to both channels. The meaning of these channels will
become clear in the paragraph dealing with the decomposition in subsystems.

• A formal input and output channel are introduced (by default: Gi. and Gout). To each
of these channels an abstract Simeon container type is assigned (by default: GT,. and
GTout). The abstract Simeon container types will be composed from the types of the
objects that playa role w.r.t. the activity relationship. The directed edge between
an object and the activity relationship defines to which container type the type of this
object will be added. If an object is connected to the activity relationship by an edge
pointing to the relationship, the object's type is added to the container type of the input
channel. Otherwise, if an object is connected to the activity relationship by an edge
pointing to the object, the object's type is added to the container type of the output
channel.

o

7

§] Calls -
"' .. "''"'

In: Agent 1n : Secretary
(PBlienIJ

C '"
: CT 1n -... Out: Agentollt : Secretary

Ioc:alion:
(Room' Cout : CT out

Figure 5: Translation of an activity fragment to a processor heading.

The primary objects of the activity relationship fragment (see left side of Figure 5), i.e.
the objects adjacent to the activity relationship, are included in the formal parameters of the
processor heading; formal input channels Agent;n of type Secretary and C;n of type CT;n and
formal output channels, Agentott' of type Secretary and C ott ' of type CTou' are defined. The
container types (CT;n and CTott') are defined as indicated by Figure 6; simple type Room is
contained in CT;n and simple type Patient is contained in CTott,.

CT ilt

Patient

Figure 6; SimCon container types assigned to input and output channels

Alternatively, the types of non-agent objects each can be modelled in a separate channel
(see [Beelen, 1992J). However, the use of complex container types provides a more convenient
integration with the transformation of the passivity relationships to SimCon (see Section 3.2).
Furthermore, since a processor consumes arbitrary tokens from each input channel, the use
of separate channels makes it more difficult to consume related tokens (representing related
objects).

The transformation described above must be considered as a basic transformation of the
objects that playa role w.r.t. an activity relationship. The semantics of an activity relation
ship may require that the type of an object (besides the agent object) which is connected to
the activity relationship by a uni-directed edge, is added to both an input and an output con
tainer type. Furthermore, the integrator may decide to split an input (or output) container
type into several input (or output) container types and to assign these types to several new
formal channels (see also the paragraph dealing with the decomposition in subsystems).

Rule 3.3 A primary activity relationship in the fragment of its agent object is transformed
to an installation of a processor(heading) defined by Rule 3.2;

8

• An actual input and output channel are introduced (by default: Agentin and Agent,.,).
The agent object type of the activity relationship is assigned to both channels.

• An actual input and output channel are introduced (by default: C;n and Co.'). An
abstract Simeon container type (by default: CTin and CTo.' respectively), constructed
with types of adjacent objects to the activity relationship in the same way as is described
in Rule 3.2, is assigned to each channel.

• The predefined processor representing the activity relationship is installed: each formal
channel of the processor is connected to an actual channel of a corresponding type.
Because of the consistency of the MOVIE model, there will be matching (container)
types.

o

The activity relationship Calls appearing in Figure 2 is installed as is indicated by Figure 7.
Input channels (Agentin and Cin) and output channels (Agento., and Co.') are introduced.
Each of these actual channels is connected to the formal channel with the same name (and
thus the same type).

Channel Type

Agent in : Secretary

C in : CT in

Agent out : Secretary

C out :CTout;

Figure 7: Processor installation of the activity Calls.

The third appearance of an activity relationship can be considered as a passivity relation
ship: such an activity relationship models an activity that was executed in the past. The
transformation of passivity relationships is discussed in Section 3.2.

So far, no attention has been paid to the specification of the processor bodies. First, a
difference of modelling activities in MOVIE and ExSpect has to be noticed: MOVIE merely
models the existence of an activity and the objects that playa role w.r.t. the activity. The
semantics of an activity is informally reflected by the activity relationship's name. ExSpect,
on the other hand, specifies an activity by program code for manipulating the objects involved.
The integrator has to translate the semantics of an activity relationship into ExSpect code
(Le. the processor body).

9

Decomposition into Subsystems

Due to the notion of fragments, the MOVIE model has a modular structure. In particular,
the activities executed by objects of a certain type are modelled within the fragment of that
object type. In order to retain the modularity, the decision has been made to decompose the
ExSpect model into subsystems. More specific: the activities controlled by the same active
object will be specified in the same subsystem. This subsystem will be called the "Activity
Handler" of the corresponding active object type.

Rule 3.4 A subsystem ('Activity Handler') is introduced for each active object type. 0

When transforming an activity relationship, the corresponding processor is installed in
the ActivityHandler-system of the agent object type. For example, the ExSpect structures
obtained by Rule 3.3, representing the activities (Calls and Inspects) of the Secretary as
modelled in Figure 2, are modelled in the subsystem Secretary-ActivityHandler as is indicated
in Figure 8.

Secretary-ActivityHandler

Figure 8: Subsystem representing the activities of the Secretary.

A MOVIE model does not address dynamic aspects, although this might be suggested by
the directed edges. Therefore, a subsystem obtained by an automated transformation from
MOVIE, does not express the order in which the activities are carried out. These dynamic
aspects have to be added explicitly by the integrator, based on the semantics of the activity
relationships and his or her knowledge of the system modelled.

In order to express a sequence of the activities of an object, the integrator has to put
the small ExSpect structures obtained by Rule 3.3 in the correct order. To this end the
agent channels are taken as a starting point: if activity A immediately precedes activity B,
the output agent channel of the processor representing A, is identified with the input agent
channel of the processor representing B.

When linking the other input and output channels of these processors (the "container
channels" introduced in Rule 3.2 and Rule 3.3), the channels may have to be split into several
container channels in order to specify dynamic aspects (such as synchronisation) correctly.
This change requires a modification of both a processor definition and a processor installation.

10

When two or more active objects playa role w.r.t. one single activity relationship, gen
erally communication between subsystems is indicated. In that case there are two aspects of
concern.

Firstly, objects that have to be exchanged cannot be derived from the MOVIE model
automatically. Candidate objects to be exchanged are those objects that playa role w.r.t.
the activity relationship in question. The integrator has to make the decision which objects
have to be exchanged.

Secondly, commumcation between subsystems takes place by means of a shared channel.
Each of both subsystems has a reference (pin) to this common channel. Hence, channels
generated by Rule 3.3 have to be replaced by a channel/pin-combination when the object
represented by the channel is a part of the communication.

Fnrthermore, untyped pins (c.q. channels) may have to be added to a system in order to
synchronise the activities of separate systems.

3.2 Transformation into Simeon Data Model

Passive Properties and Related Objects

The term passive properties indicates the set of passivity relationships and activity rela
tionships used passively. The passive properties determine the state space of the ExSpect
specification. The state space contains the description of the tokens in channels and stores.
Tokens generally tabulate related objects, i.e. individual objects and their properties. The
token of a channel can only be accessed by a processor when a connection with the store is
established. Data that are globally needed through the system, can be specified in functions
or constants. Each processor has access to functions and constants. The transformation of
passive properties will only define the types of channels, stores, functions and constants. The
integrator has to add the tokens and has to define the function bodies.

Alternatively, in [Beelen, 1992] a passivity relationship type is considered as a bag (multi
set) ofthe types ofthe objects that are adjacent to the relationship. Two transformation rules
describe different ExSpect-implementations of such a bag. On the one hand, all properties of
one single object type can be stored and, on the other hand, each single relationship type can
be stored in an ExSpect component. The contribution of the integrator to this transformation
of passive properties is significant: choice of ExSpect component, choice of implementation of
a bag of object types. Furthermore, the transformation of passive properties strongly depends
on the semantics of the relationships. A more abstract and convenient way of transforming
passivity relationship types to ExSpect is to transform them to SimCon relationships.

The transformation of the passive properties and the objects that playa role w.r.t these
relationships to a SimCon simple schema can be described by the following two rules:

Rule 3_5 Each object type is modelled as a simple type o

Rule 3_6 Each MOVIE relationship is modelled as a SimCon relationship. The latter con
nects the simple types that represent the object types that playa role w.r.t. the former.

o

The passivity relationships hasBadge and hasCard relevant to the Secretary (see Figure 2)
are translated to the SimCon simple schema as is shown in Figure 9. Objects playing a role
w.r.t. these relationships are modelled as simple types.

11

Secretary Patient

hasBadge hasCard

IdCard

Figure 9: SimCon simple schema of the secretary's properties.

The transformation of passive properties and objects that playa role w.r.t. these rela
tionships to a SimCon object schema is partly done by transformation Rule 3.2 and Rule 3.3.

Due to Rule 3.5, Rule 3.1 seems to be redundant. However, Rule 3.1 is not discarded in
order to be able to refer to ExSpect types in Rule 3.2 and Rule 3.3. Note that some rela
tionships in the MOVIE model may model attributes of objects. The integrator may decide
to model the objects that playa role w.r.t. these relationships as attributes in the SimCon
model (e.g. has relationships). Also note that SimCon only models binary relationships. A
MOVIE relationship with a degree higher than two has to be objectified (Le. modelled as an
object type) as a simple type in the SimCon model. In this case, the roles of the objectified
relationship can be used to access the simple types corresponding to the adjacent objects.
As an alternative of objectifying the relationship, the relationship can be split into binary
relationships between the adjacent objects.

The simple schema obtained by Rule 3.5 and Rule 3.6 has to be distributed to ExSpect
channels and stores (and functions and constants). The complete SimCon model can be
specified in one single complex store. The token of this store specifies the entire state space
and can be considered as the central database. In that case, the token is manipulated by
the processors which represent the activities. An advantage of specifying the database in one
single store is that data are not distributed. A disadvantage is the complexity of the token
and functions to manipulate the token. The integrated SimCon/ExSpect framework has to
take care of the partitioning of the simple schema into smaller structures, such that each
partial structure can be assigned to a channel or store. These channels and stores have to be
correctly distributed over the subsystems. Partial structures also can be added to an existing
container type defined by Rule 3.2 and Rule 3.3.

The specification of an object and its properties in a channel (instead of a store) may
cause problems in the transformation of so called prq-paths of which the objects are involved
in different activity relationships. A prq-path is a forward path in the graph of a MOVIE
fragment containing two objects (p and q) and one passivity relationship (r). A prq-path
indicates the access path to be followed to obtain a property of object p. A prq-path is shown
in Figure 2 by the following path: visitor-hasCard-idCard.

Based on Rule 3.2, the processors representing the activity relationships Calls or Inspects
have channels of type Patient and IdCard. A solution for linking these channels can be estab
lished in three different ways:

12

1. by an additional processor

2. by the processor representing the activity in which object p is involved

3. by the processor representing the activity in which object q is involved

Case 1 requires both an additional processor and an additional channel. Case 1 keeps the
flow of objects through the (sub)system clear to the user. The disadvantage of an additional
processor is a decreasing performance of an execution caused by the increasing number of
processors.

When the derivation step is not established by an additional processor, it has to be
established by one of the processors representing the activity relationships adjacent to the
prq-path (Calls and Inspects in Figure 2). The type of the channel that connects these two
processors is determined by the processor that derives the property. In case 2, the type of
the connecting channel equals to the type of object q (type IdCard in the secretary case); in
case 3, the type of the connecting channel equals to the type of object p (type Patient in
the secretary case). The semantics of the property and its interpretation by the integrator
determine which case will be chosen to establish the derivation step.

4 Conclusion

The transformation rules as described in Section 3 of this paper define the global structure of
the specification of the modelled system. A considerable part of an arbitrary MOVIE model
can be translated to the integrated SimCon/ExSpect framework by an automatic translator
(Le. computer tool). The definition of the following components can be established by an
au tomatic translator:

• object types;

• processors (heading and installation);

• (sub) systems;

• abstract (complex) types for stores and channels.

The transformation rules provide maintenance of objects and relationships that are re
lated. The rules also provide a ExSpect specification decomposed in subsystems. The mod
elling process seems to be convenient according to the transformation rules. However, the
completeness of the transformation rules can hardly be proved. The informal role of the inte
grator w.r.t. the modelling process takes care of the completeness. In order to complete the
components generated by the automatic translator to an executable and meaningful specifi
cation, the role of the integrator is indispensable. Among others, the integrator has to take
care of the following aspects:

• ordering of processors;

• communication between processors (and subsystems);

• functional aspects (processor and functiou bodies).

13

According to [Beelen, 1992], the advanced features of MOVIE can also be transformed in
a straightforward way.

This paper focussed on the syntactical description of the transformation process from
MOVIE into the integrated SimCon/ExSpect framework. An other important aspect that
has not been considered so far, is the consistency of the underlying semantics of both mod
els. Future research w.r.t. an integration of MOVIE and SimCon/ExSpect might focus on
seman tical aspects of the integration. Also optimisation of generated ExSpect code might be
discussed. This future research may then bring code generation within reach.

References

[Assche et al., 1991] F.J.M. van Assche, B. Moulin, and C. Rolland, editors. The Object Ori
ented Approach in Information Systems, IFIP TC8 Working Conference, Quebec, Canada,
1991. North-Holland.

[Beelen, 1992] T.H.W. Beelen. An integration of MOVIE and ExSpect. Master's thesis,
Eindhoven University of Technology, June 1992.

[Brinkkemper, 1990] S. Brinkkemper. Formalisation of Information Systems Modelling. PhD
thesis, University of Nijmegen, 1990.

[Broek and Verkoulen, 1992] E.M.M.A. van den Broek and P.A.C. Verkoulen. A Tool for
Integrated Modelling of Static and Dynamic Aspects of Systems. In K. Lyytinen and V-Po
Tahvanainen, editors, Next Generation CASE Tools, pages 75-98. lOS Press, 1992.

[Chen, 1976] P.P. Chen. The Entity-Relationship Model: Towards a Unified View of Data.
ACM Transactions on Database Systems, 1:9-36, January 1976.

[Hee and Verkoulen, 1992] K.M. van Hee and P.A.C. Verkoulen. Data, Process and Behaviour
Modelling in an Integrated Specification Framework. In H.G. Sol and R.L. Crosslin, editors,
Proceedings of the Second International Conference on Dynamic Modelling of Information
Systems, Washington, D.C., USA, March 1992. North-Holland.

[Houben and Verkoulen, 1991] G.J. Houben and P.A.C. Verkoulen. An Integrated Approach
to Modelling Structural and Behavioural Aspects of Complex Objects. In J. Goers,
A. Heuer, and G. Saake, editors, Third International Workshop on Foundations of Mod
els and Languages for Data and Objects, volume 91/3 of Informatik Bericht, pages 47-64,
Aigen, Austria, September 1991. Technische Universitiit Clausthal.

[Jensen, 1991] K. Jensen. Coloured Petri Nets: A High Level Language for System Design
and Analysis. In G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of Lecture
Notes in Computer Science, pages 342-416. Springer-Verlag, New York, 1991.

[Milner, 1980] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, New York, 1980.

[Nijssen and Halpin, 1989] G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational
Database Design: A Fact Oriented Approach. Prentice-Hall, 1989.

[Reisig, 1985] W. Reisig. Petri Nets: an Introduction. Prentice-Hall, 1985.

14

[Sernadas et al., 1991J C. Sernadas, P. Resende, P. Gouveia, and A. Sernadas. In-the-Iarge
object-oriented design of information systems. In [Assche et al., 1991], 1991.

[Stut jr. et al., 1992J W.J.J. Stut jr., M.R. van Steen, L.P.J. Groenewegen, and A.R. Bakker.
The MOVIE Modelling Technique. In J.L.G. Dietz, editor, Computing Science in the
Netherlands, pages 304-315, 1992.

[Stut jr., 1992J W.J.J. Stut jr. Constructing Large Conceptual Models with MOVIE. PhD
thesis, BAZIS Leiden, 1992.

15

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpe1t
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcobn
E. Voennans
J. v.d. Woude

91/11 R.c. Backhouse
PJ. de Bruin
G.Malcobn
E.Voennans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemrnens

91/15 AT.M. Aerts
K.M. van Hee

91/16 AJ.J.M. Marcelis

91/17 AT.M. Aerts
P.M.E. de Bra
K.M. van Hee

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

Implication. A survey of the different logical analyses
"if ...• then ... ". p. 26.

Parallel Programs for the Recognition of P-invariant
Segments. p. 16.

Perfonnance Analysis of VLSI Programs. p. 31.

An Implementation Model for GOOD. p. 18.

SPEClFICATIEMETHODEN. een ovenicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping. p. 49.

Tenninology and Paradigms for Fault Tolerance. p. 25.

Interval Timed Petri Nets and their analysis. p.53.

POLYNOMIAL RELATORS. p. 52.

Relational Catamorphism. p. 31.

A parallel local search algorithm for the travelling
salesman problem. p. 12.

A note on Extensionality. p. 21.

The PDB Hypennedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System. p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs.
p.25.

Transfonning Functional Database Schemes to Relational
Representations. p. 21.

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.Y. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Yoorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Yaandrager

91/31 H. ten Eikelder

91/32 P. Stroik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 I.C.M. Baeten
I.A. Bergstra

92/07 R.P. Nederpelt

92/08 RP. Nederpelt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags

92/11 RC. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 RR. Seljee

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 I.C.M.Baeten
J.A.Bergstra
S.A.Smoika

92/20 F.Kamareddine

92/21 F.Kamareddine

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

92{22 R. Nederpelt
F.Kamareddine

92f23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C.VerlmuJen

92/27 B. Watson
G.Zwaan

93/01 R. van Geldrop

93/02 T. Vemoeff

93/03 T. Vemoeff

93/04 E.H.L. Aarts
J.H.M. Korst
P.J. Zwietering

A useful lambda notation, p. 17.

Nominalization. Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p.33.

A Programming Logic for Fro, p. 15.

A modelling method using MOVIE and SimCon!ExSpect,
p. IS.

A taxonomy of keyword pattern matching algorithms,
p.50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

',',-,

	Abstract
	1. Introduction
	2. Modelling Techniques
	2.1 MOVIE
	2.2 SimCon/ExSpect
	3. Transforming MOVIE into SimCon/ExSpect
	3.1 Behavior Modelling
	3.2 Transformation into SimCon Data Model
	4. Conclusion
	References

