
 

Successive approximations for the average Markov reward
game : the communicating case
Citation for published version (APA):
Wal, van der, J. (1981). Successive approximations for the average Markov reward game : the communicating
case. (Memorandum COSOR; Vol. 8103). Technische Hogeschool Eindhoven.

Document status and date:
Published: 01/01/1981

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/8e1b3373-ddb2-4a89-9bca-83795846293c


£INDHOVEN UNIVERSITY OF TECHNOLOGY 

Department of Mathematics 

PROBABILITY THEORY, STATISTICS AND OPERATIONS RESEARCH GROUP 

Memorandum COSOR 81-03 

Successive approximations for the average 

Markov game; the communicating case. 

by 

J. van der Wal 

Eindhoven, January 1981 

The Netherlands 



I NTRODUCTI ON 

SUCCESSIVE APPROXIMATIONS FOR THE AVERAGE REWARD 
MARKOV GAME; THE COMMUNICATING CASE 

J. van der Wal 

Department of Mathematics 

Eindhoven University of Technology 

Eindhoven, The Netherlands 

This paper considers the two-person zero-sum Markov game 
with finite state and action spaces at the criterion of 
average reward per unit time. For two types of Markov 
games, the communicating game and the simply connected 
game, it is shown that the method of successive approxi
mations provides good bounds on the value of the game and 
nearly-optimal stationary strategies for the two players. 

This paper deals with two-person zero-sum average reward Markov games with finite 

state and action spaces. Recently Monash [61 and Mertens and Neyman [5J have shown 

that these games always have a value, though not necessarily within the class of 

stationary strategies nor within the class of Markov strategies (cf. Gillette [4] 

and Blackwell and Ferguson r21). 

Federgruen [3J showed that. if the underlying Markov games corresponding to a pair 

of (pure) stationary strategies all have the same number of irreducible subchains. 

then the game has a value within the class of stationary strategies. 

In Van der Wal [9,11] it is shown that in the unichain case one can obtain good 

bounds on the value of the game and nearly-optimal stationary strategies for the 

two players by the method of standard successive approximations. Here we want to 

ex tend the resu lts in 19, 11 J to the communi ca t i ng case (cf. Bather [1]) and the 

simply connected case (cf. Platzman 171). 

So we consider a dynamical system with finite state space S := {1,2 •...• N} and 

finite action spaces A and B for pldyel's l(f>t) and 2(P2) respectively. The system 
is observed at equidistant points in tillie, t = 0,1, ... say, and controlled by the 

tvJU players. At each time t, havin~ seen the state of the system, they choose an 

action. As a joint Y'esult of the dctions d by PI and b by P2 in state i. PI re
ceives a (possibly neljative) reward r(i,d,b) from P2 and the system moves to state 

j wltll pr'obability p(i,d,b,j), ):j f)(i,d,h.j) 1. 

In general a stt~dte9Y II for PI is any sequence (fO.f1 .... ) of mappings 

tn : S x A > 10,11 ~vith Xa fn(i ,a) :.:: 1 fut all itS. The functions fn are called 



policies and fn(i,a) denotes the probability that action a is taken if the system 

is observed in state i at time n. A strategy is called stationary if fn = fO for 

all n "1. Notation f6"") or simply fa. Similarly we define strategies y = (hO.h p ... ) 

for P2' 
It is sufficient to consider only Markov strategies since in the cases treated here 

the game has a value within the class of Markov strategies and as one may show a 
(nearly-) optimal Markov strategy in the game with Markov strategies only is also 

(nearly-) optimal in the galile with arbitrary strategies. 

For any two policies f and h define the vector r(f,h) and the matrix P(f,h) by 

i € S r(f,h)(i) :;;; LaLbf(i,a)h(i,b)r(i,a.b) 

P(f.h)(i,j):=):aLbf(i,a)h{i,b)p(i.a,b,j). i,j € S. 

Further define the operators L(f.h) and U on RN by 

L(f,h)v = r(f.h) + P(f.h)v 

Uv =- Illax min L(f,h) v. 
f h 

Then the average reward per unit time vector corresponding to a pai r of strategies 

1T;;; (fO,f
l

, ... ), Y;;; (hO,h!' ... ) is defined by 

g(ll,y) ;;; lim inf n-1L(fo,ho)···· ... L(fn_l,hn_1)O. 
n ) <x.) 

The game is saiJ to have the value g* if 

sup lnf g(i"d '" inf sup g(n,d;:: g*. 
IT Y Y n 

A strategy 'iT is called l-optirnal for PI if inf g(n,y) :> g*- Ee, eT ;;; (1.1 .... ,1). 
y 

Similarly'y is ,-optimal for P
2 

if 

g* + Le. 

In order to approximate g* and to find nearly-optimal stationary strategies for 

the two players we use the method of standard successive approximations (sa) 

( I) 

v n+ 1 ::::. Uv n ' n '"' 0,1,... . 



As will be shown for communicating and for simply connected games the value g* is 
independent of the initial state. Therefore the following lemma is of considerable 
i nteres t. 

Lemma 1 

Let v " RN be arb; trary and let f and h sati sfy L( f ,h)v.,; Uv::; L( f ,h}v for all 

f and h, then 

(i ) g(f,y) 2: m; n {Uv v)(i).e for all y 
iES 

(i i) g(l1,h) ~ max (Uv - v)( i) . e for all 1T 

icS 

(i i i ) min (Uv-v)(i).e :::; g* s;; max (Uv - v)( i ) . e 
iES iES 

Proof 

The proof is rather straightforward. see e.g [93. 

From this lenIDd we see that if vn+l - vn converges to a constant vector then g* 
is state independent and the method of sa yields good bounds on g* and nearly-op
timal stationary strategies for the two players. 

In order to avoid period behaviour of v 1 - v the following assumption is made. n+ n 
Strong aperiodicit,Y assumption (SAA) 
For some constant a / 0 and for all icS, aLA, b(B 

p(i ,a,b, i) 2. u.. 

This is no serious restriction. Any Markov game can be transformed into an equi
valent game satisfying SAA by means of a data transformation due to Schweitzer 
18] (cf. [9]). Now let us define the communicating and the simply connected game. 

Definition 1 (cf. Bather [lJ) 
A Markov game is called (jomnlwli(~,{t/{n!f if for any pair i,jES each of the two play

ers can force the system to reach state j from state i with positive probability 
in a finite number of steps whatever actions his opponent takes. 

As a consequence of the SAA we have that if the Markov game ;s communicating then 

there exists some constant TI / 0 and Markov strategies; = (fO ... · ,fN- 2) and 
y (hO, ... ,hN_1) such that for all i,j"S and all 'IT:: (fO, ... ,f

N
- 2) and 

y = (ho"" ,hN- 2) 



(2) and 

(Recall that N is the number of states in 5). This can be shown along similar 
1 i nes as 1 emma 13. 3 in r 11] . 

A somewhat weaker condition is the condition of simply connectivity. 
Definition (cf. P1atzman [7J) 

A Markov game is called sbrrply (!()nn;;x~t,tJd if the state space S can be divided into 
two disjoint subjects Sand S such that 

(i) p(i,a,b,j) = 0 for all i~S, jLS. aEA. bEl' 

(ii) the game is communicating on S 
(iii) the game is transient on S. i.e. there is some constant e > 0 such that 

for all i~S and for all n,Y 

In the sequel it will be shown that the conditions communicatingness and simply 
connectivity each guarantee that g* is constant and (together with the SAA) imply 

that.vn+1 ~ vn ~ g* (0 ~ 00). 

THE COMMUNICATING CASE 

In this section it will be shown that the communicating condition together with 
the SAA guarantees that vn+l - vn converges to the value function g* which is in
dependent of the initial state. 
Consider the sa scheme (I) and define for n = 0,1, ... 

Fralll 

M. := min 9 (i) n i n 

u .-max9n{i} 
n i 

min {v-w)(i).e Uv-Uw max (v-w)(i).e for all v.w c RN 
i 

we immediately have the following lemma. 



Lemma 2 

So the sequences {~n} and {un} are monotonically nondecreas;ng and nonincreasing 
respectively and bo~nded by 9*. Thus we can define 

~ * :;; 1 i m JI, • u*:;; 1 i m u n n n->-oo n+oo 

Now our aim is to prove that JI,* ;; U*. To prove this we follow the line of reaso
ning in Van der Wal [10,111. First it will be shown that sp(vn) is bounded,where 
the span of a vector v is defined by 

sp(v) ;; max v(i) - min v(i). 
i i 

Next this is used together with the SAA to prove ~* = u*. 
Let K be defined by 

K :;; max I r ( i • a • b) I • 
i ,a, b 

and let iES and n be arbitrary. Then it follows from (2) that 

(5) ~ -(N-l}K + max 
f O,··,fN_2 

~~ -(N-l)K + n m?x vn(j) 
J 

min P{fo,hO) ... P(fN_2,hN_2)vn(i) 
hO,··,hN_2 

+ (l-n) min vn(j). 
j 

And similarly if follows from (3) that for all k€S 

(6) vn+N_I(K) s (N-I)K + n m~n vn(j) + (l-n) m~x vn(j). 
J J 

So from (5) and (6) 

sp{vn+N_1) 2(N-l}K + (1-2n) sp(vn). 

Thus for all I< = O,l,. .. ,N-3 and all Q. = 0.1 ..... 

SP(vkH.(N-l) ) 1-{l-21i)~ 2{N-1)K + (l-2n)£ sp(V
k
} 

1- (1-2n) 



Hence for all n 

-1 sp(vn) ~ fl (N-l)K + max sp(vk), 
k=0, .. ,N-3 

so sp(vn) is bounded. 

In order to prove t* = u* we first have to derive some inequalities. Let f1,f2 ... 
and hI ,h2 , ... be policies satisfying 

Then 

So for all 5.t = 0,1 •... 

And for all hS 

Now let us fix for the time being nand m and let state i satisfy 9n+m(i) = £n+m' 
Then from (8), with 5 = n+k. t = m-k, 

m-k m-k 
£ = 9 (i) ~ a 9n+k(i) + (l-a )tn+k n+m n+m 

Hence for all k 0,1, ...• m 

(1")~ .. k-m(() ) -m{ * ) n 9n+k '(l, "'n+m - ~n + t n :;; rt R. - tn + "'n' 

So 



On the other hand there must exist a state j such that 9n+k(j) = un+k ~ u* for 
at least N of the indices k = 0,1, ...• m-1 and 9n+k(j) <!'; R.n+k :c: in for the other 
indices. Then for this state j 

Hence by (9) and (10) 

Now suppose i* < u*. then we can choose m as to make N(U* - t*) arbitrary large 
and next choose m so that mu-m(l* - .1 ) is small. Further sp(v ) is bounded, so n n 
if .1* < u* then we can choose nand m so that sp(vn+m) becomes arbitrarily large. 
This however violates the boundedness of {sp(vk)l. Hence t* = u*. 

With lemma 1 (iii) this implies that the communicating Markov game has a value 
independent of the initial state and that the sa scheme (1) yields good bounds on 
this value and nearly-optimal stationary strategies for the two players. 

THE SIMPLY CONNECTED CASE 

For the simply connected game it is clear that on the set S the sequence 
{vn+1 - vn} converges to a constant vector. 
From (4) we see that the system reaches S from S exponentially fast thus it follows 
from inequalities like (7) that {v 1 - v I becomes constant on the whole state 

n+ n 
space. So also the simply connected game has a constant value and the method of 
sa yields 900d bounds on g* and nearly-optimal stationary strategies for the two 
players. 

References 

[1] Bather, J.A., Optimal decision procedures for finite Markov chains, 
Part II, Adv. Appl. Prob. ~ (1973),521-540. 

I 2 J Blackwell, D. and Ferguson, 1.5., The big match, Ann. Math. Statist. 39 
( 1968), 159 -16 3. 

1 31 Federgruen. A., Successive approximation methods in undiscounted stochas-
tic games. Oper. Res. 28 (1980). 794-809. 

I 4.1 Gillette,D .• Stochastic games with zero stop probabilities, in Contribu-
tions to the theory of games, Vol.III, eds. M. Dresher, A. Tucker 
and P. Wolfe, Princeton Univ. Press, Princeton, New Jersey, 
179-187, 1957. 



[5J Mertens. J.F. and Neyman. A., Stochastic games, Univ. Catholique de 
Louvain, Dept. of Math., 1980. 

I 6] Monash, LA., Stochastic games: the minimax theorem, Harvard Univ,. 
Call1bridge, Massachusetts, 1979. 

t 7 J Platzman, L., IIIlI.lt'Oved condi tions for convergence in undiscounted Markov 
t'enewdl progranllling, Oper. Res . .?~ (1977), 529-533. 

[8J Schweitzer', P.J., Iterative solution of the functional equations of un-
discounted Markov renewal progranll1ing. J. Math. Anal. Appl. 34 
(1971), 495-501. 

[9J Van der Wal, J., Successive Approximations for average reward Markov 

games. Int. J. Game Theory ~ (1980). 13-24. 

[10] Van der Wal, J., The method of value oriented successive approximations 
for the average reward Markov decision process, OR Spektrum 1 
(1980), 233-242. 

[11J Van der Wal, J., Stochastic dynamic programming, to appear in the series 
of Mathematical Centre Tracts, Mathematisch Centrum, Amsterdam. 


