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Action and Predicate Safety of Hybrid Processes

P.J.L. Cuijpers and M.A. Reniers

April 5, 2004

Abstract

In this paper, we study two kinds of safety properties for hybrid processes, namely safety
for actions and safety for predicates on model variables. We give an algebraic specification of
these safety properties using the process algebra HyPA, and show how to reduce the question
of safety of a linear process specification to the question of safety of its sub-processes. As
an example, we study a variant of Fischer’s protocol, in which there can be a relative error
between the clocks that are used.

1 Introduction

Safety, put simply, means that a certain property, which is considered bad, does not hold at any
time, during any of the possible executions of a system. The analysis of safety properties of a
model of a system, is an important way to study correctness of a design or implementation. A
famous example is that, when studying a design of a nuclear plant, one might want to verify that
certain high temperatures in the plant (causing meltdown) never occur during normal execution
of the system. Another example, is that when a certain resource is shared by two systems, but has
limited capacity, then the systems may not use that resource at the same time. This is is often
called ‘mutual exclusion’. Safety for actions and safety for predicates, are two special kinds of
safety properties. We have safety for a certain action, if this action cannot be executed from any
of the reachable states of a system, while safety for a predicate (or more precisely, a propositional
predicate on the model variables), means that this predicate is never satisfied during any of the
executions of the system. The high-temperature example and the mutual-exclusion example can
be expressed, both as safety for an action, or as safety for a predicate, depending on the precise
way in which the plant and the protocol are modeled. An important aspect of safety for actions
and safety for predicates, is that they can be verified locally, for each of the reachable states of a
system.

In this report, we describe a method for the analysis of safety for actions and safety for
predicates of hybrid systems [27, 16, 21], i.e. systems that display a mixture of physical and
computational behavior. Due to the growing use of embedded systems, where software is used
to control mechanical and electrical devices, research in this area has received a lot of interest in
the past few years [1, 4, 7, 12, 15, 14, 27]. As a specific example of our safety analysis method,
we analyze a variant of the well known Fischer’s protocol for mutual exclusion [18]. Although,
admittedly, not intrinsically hybrid, this protocol does allow us to show some of the strengths of
our method.

In our study of Fischer’s protocol, we focus on the possibility, that not all clocks that are
used in the protocol, are implemented in exactly the same way. The error between clocks can
be approached in two different ways. One may express the error that may occur in every clock
separately, giving rise to a bounded differential inclusion for each clock (for example of the form
ẋ ∈ [0.5, 1.5] for an absolute error of 0.5), or one may study the difference between clocks, and hence
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focus on a relative error (giving rise, for example, to an equation of the form ẋ1 ≤ 1.5 · ẋ2 ∧ ẋ2 ≤
1.5 · ẋ1). The latter, calls for a hybrid approach to safety analysis, because the analysis question
induces a dependence between the different clocks. This is the problem we focus on. The analysis
method we use, is based on process algebraic reasoning principles.

Process algebra, is a branch of computer science, in which computational systems are described
in an algebraic way, and analyzed using symbolic manipulation. Very recently, process algebras
have been developed in which hybrid systems can be modeled and analyzed [17, 9, 6, 23]. In this
report, we give a short presentation of such a hybrid process algebra, called HyPA [9], and then
focus on the analysis of safety for actions and safety for predicates of hybrid processes in this
algebra. The observation that safety for actions and safety for predicates can be verified locally,
makes it possible, for so-called linear process descriptions [2, 13, 26], to reduce the question of
safety of a process, to a number of questions on the safety of subprocesses. Furthermore, for
the example of Fischer’s protocol, we explicitly carry out the transformation into a linear process
description, and show some of the analysis on the subprocesses. In this way, we prove mutual
exclusion for certain given initial conditions.

The structure of this report is as follows. In section 2, we give a brief introduction to the
syntax of HyPA, and informally explain its semantics. We also discuss the concept of linear
process descriptions, since it plays a crucial role in this report. Due to space considerations,
we refer to [10, 9] for the formal semantics and most of the axiomatization. When we perform
equational reasoning in this report, we will attempt to give the intuitions on the steps of reasoning,
rather than to give the full axiomatic derivations. In section 3, we discuss the semantic model of
hybrid transition systems briefly, in order to give the reader enough background to understand
some of the definitions further on in the report. In section 4, we formalize the notions of safety
for actions and safety for predicates, and explain how these can be stated as a process algebraic
specification. Also, we give the basic axioms needed to do calculations on this specification. In
section 5, we discuss a method for the analysis of safety properties of linear process descriptions in
HyPA, and in section 6, this method is used for the analysis of our variant of Fischer’s protocol,
under given initial conditions on the parameters of the protocol. In section 7, we discuss the
results that we have found, and give recommendations for future research.

2 Hybrid process algebra

In this section, we discuss the syntax of HyPA, and informally explain its semantics. In appendix
A the full semantics is given for reference, but for a detailed explanation of this semantics we
refer to [9]. The syntax of HyPA is an extension of the process algebra ACP [2], with the disrupt
operator from LOTOS [8] and with variants of the flow clauses and re-initialization clauses from
the event-flow formalism introduced in [27]. The signature of HyPA consists of the following
constant and function symbols:

1. deadlock δ,

2. empty process ǫ,

3. discrete actions a ∈ A,

4. flow clauses c ∈ C,

5. a family of process re-initialization operators (d ≫ )d∈D,

6. alternative composition ⊕ ,

7. sequential composition ⊙ ,
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8. disrupt ◮ and left-disrupt ⊲ ,

9. parallel composition ‖ , left-parallel composition ‖ , and forced-synchronization | ,

10. a family of encapsulation operators (∂H ( ))H⊆A

The binding order of these operators is as follows: ⊙ , ◮ , ⊲ , d ≫, ‖ , ‖ , | , ⊕ , where alternative
composition binds weakest, and sequential composition binds strongest.

The atomic processes δ (called deadlock) and ǫ (called empty process) are used to model a
deadlocking process and a (successfully) terminating process, respectively. The atomic discrete
actions are used as an abstract model for discrete, computational behavior. The set A of discrete
actions is considered a parameter of the theory and can be instantiated at will by the user of the
algebra.

Flow clauses are used to model continuous, never terminating, physical behavior by describing
how the model variables Vm are allowed to change through time. Both the model variables Vm

(including the domains they range over) and the appropriate notion of time T (some totally ordered
set with a least element denoted 0) are problem-specific and should be given by the modeler. The
sets Vm of model variables and T of time points are therefore considered parameters of the theory
as well. The domain V(x) of a model variable x ∈ Vm is specified by the modeler at the first
introduction of the variables. In this report, the specification of domains is left out since, most of
the time, it is obvious from the context. We write V =

⋃

x∈Vm
V(x) for the union of all variable

domains, and Val = Vm → V for the set of variable valuations.

A flow clause describes a set of flows, where a flow is a (partial) function of time T with a
closed-interval domain starting from 0, to the valuations Val of model variables (with x ∈ Vm

taking value in the range V(x)). The flows that are described by a flow clause are called the
solutions of that flow clause. The set of all flows with a closed-interval domain starting in 0 is
F = {f ∈ T 7→ Val | dom(f) = [0, t] for some t ∈ T }. Formally, a flow clause is a pair (V |Pf) of a
set of model variables V ⊆ Vm, signifying which variables are not allowed to jump at the beginning
of a flow, and a flow predicate Pf ∈ Pf . The set of jump variables turns out to be important,
amongst others, in the context of higher index systems (see [10] and [24] for some examples), where
flows can sometimes be discontinuous. We consider the set of flow predicates Pf and the notion
of solution |=f⊆ F × Pf , that defines which flows are considered solutions of a flow predicate,
parameters of the theory. Furthermore, in this report we assume that the notion of solution is
closed under concatenation. Formally, we require that if σ |=f Pf , σ′ |=f Pf and σ(t) = σ′(0), with
dom(σ) = [0, t], then σ′′ |=f Pf , with σ′′ defined as the concatenation σ′′(τ) = σ(τ) if τ < t and
σ′′(τ) = σ′(τ − t) if τ ≥ t. This is not an unusual assumption in systems theory, see for example
[25]. More importantly, it turns out to be a convenient assumption for the axiomatization of the
notion of equivalence we use in this report. We define a valuation-flow pair (ν, σ) to be a solution
of a flow clause (V |Pf) (denoted (ν, σ) |=c (V |Pf)) if σ |=f Pf and ν(x) = σ(0)(x), for all x ∈ V .
The set of all flow clauses is denoted C. We usually leave out the brackets for V , and even omit
it (and the ‘|’ delimiter) if it is empty.

In the examples in this report, we parameterize HyPA using differential equations (i.e. predi-
cates on the model variables Vm and their time-derivatives V̇m) as flow predicates. For a differential
equation ẋ = f(x, u), the notion of solution assumes x and u to be piecewise continuous functions

such that x(t) = x(0) +
∫ t

0
f(x(τ), u(τ)) dτ for all t ∈ dom(x). Indeed, this notion of solution is

closed under concatenation.

A process re-initialization d ≫ p models the behavior of p where the model variables are sub-
mitted to a discontinuous change as specified by the re-initialization clause d. A re-initialization
clause describes a set of re-initializations, where a re-initialization is a pair of valuations repre-
senting the values of the model variables prior to and immediately after the re-initialization. Such
re-initializations are called solutions of the re-initialization clause. The set of all re-initializations
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Val×Val is denoted R. A re-initialization clause is a pair [V |Pr] of a set of model variables V ⊆ Vm

and a re-initialization predicate Pr. The set V models which variables are allowed to change. Note
that this is precisely opposite to flow clauses, where V denotes those variables that do not change.
This has turned out to be the most convenient choice of notation, for our modeling purposes.
For similar reasons as before, the set of re-initialization predicates Pr and the notion of solution
|=r⊆ R×Pr, that defines which re-initializations are considered solutions of a re-initialization pred-
icate, are considered parameters of the theory. We define a re-initialization (ν, ν′) to be a solution
of a re-initialization clause [V |Pr] (denoted (ν, ν′) |=d (V |Pr)) if (ν, ν′) |=r Pr and ν(x) = ν′(x),
for all x 6∈ V . The set of all re-initialization clauses is denoted D.

In the examples in this report, we parameterize HyPA using predicates on the previous (V−
m =

{x−
p x ∈ Vm}) and future (V+

m = {x+
p x ∈ Vm}) values of the model variables as re-initialization

predicates. The notion of solution, obviously, is such that (ν, ν′) |=r Pr(x
−, x+) if and only if

Pr(ν(x), ν′(x)) evaluates to true.

The alternative composition p ⊕ q models a (non-deterministic) choice between the processes
p and q. The sequential composition p ⊙ q models a sequential execution of processes p and q.
The process q is executed after (successful) termination of the process p.

The disrupt p ◮ q models a kind of sequential composition where the process q may take over
execution from process p at any moment, without waiting for its termination. This composition is
invaluable when modeling two flow clauses executing one after the other, since the behavior of flow
clauses never terminates. The left-disrupt p ⊲ q is mainly needed for calculation and axiomatiza-
tion purposes, rather than for modeling purposes. For example, it occurs in the axiomatization of
reachability in section 4. The left-disrupt first executes a part of the process p and then behaves
as a normal disrupt.

The parallel composition p ‖ q models concurrent execution of p and q. The intuition behind
this concurrent execution is that discrete actions are executed in an interleaving manner, with
the possibility of synchronization (as in ACP, where synchronization is called communication),
while flow clauses are forced to synchronize, and can only synchronize if they accept the same
solutions. The synchronization of actions takes place using a (partial, commutative, and associa-
tive) communication function γ ∈ A ×A 7→ A. For example, if the actions a and a′ synchronize,
the resulting action is a′′ = aγa′. This communication function is considered a parameter of
the theory. Actions cannot synchronize with flow clauses, and in a parallel composition between
those, the action executes first. Re-initializations synchronize their solutions only if the processes
on which they act synchronize.

As with the left-disrupt, the operators left-parallel composition and forced-communication are
mainly introduced for calculation purposes. The left-parallel composition p ‖ q denotes that p

performs a discrete action first (if possible), and then it behaves as normal parallel composition,
and the forced-synchronization p | q denotes how the first behavior (either a discrete action or a
part of a flow) of p and q is synchronized, after which it behaves as normal parallel composition.

Encapsulation ∂H (p) models that certain discrete actions (from the set H ⊆ A) are blocked
during the execution of the process p. This operator is often used in combination with the parallel
composition to model that synchronization between discrete actions is enforced. In section 4, we
introduce a variant of the encapsulation operator, aimed at blocking executions of processes that
violate certain predicates on model variables.

From the signature of HyPA, terms can be constructed using variables from a given set of
process variables Vp (with Vp ∩ Vm = ∅), as usual. These are referred to as terms or open terms.
Terms in which no process variables occur, are called closed terms. Finally, all the terms should
be interpreted in the light of a set E of recursive definitions of the form X : p, where X is a special
process variable, called recursion variable, and p is an open term, possibly containing recursion
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variables. Recursion is a powerful way to model repetition in a process. The set T (Vr) denotes
the set of all open terms in which only recursion variables are used. These terms we refer to as
process terms.

One of the more fundamental theorems about HyPA, presented in [9], is that every closed
term can be rewritten into a so-called basic term. These basic terms clearly show that parallel
compositions can be eliminated from all closed terms.

Definition 1 (Basic terms) A basic term is a closed term of the following form:

N ::= d ≫ ǫ p d ≫ a ⊙ N p d ≫ c ⊲ N p N ⊕ N,

where a ∈ A, c ∈ C, and d ∈ D.

Theorem 1 (Elimination) Every closed term is derivably equal to a basic term.

Proof See [9]. ⊠

Continuing from this, we conjecture that many recursive specifications can be transformed,
using similar techniques, into a so-called linear recursive specification, or linear process definition.

Definition 2 (Linear Recursive Specification) A linear recursive specification, also called
linear process definition, is a recursive specification of the form

Xi :





⊕

j∈J(i)

dj ≫ ǫ



 ⊕





⊕

j∈J ′(i)

d′j ≫ aj ⊙ Xj



 ⊕





⊕

j∈J ′′(i)

d′′j ≫ cj ⊲ Xj



 ,

where the Xi represent a family of recursion variables, parameterized by i ∈ I, and every J(i),
J ′(i), J ′′(i) ⊆ I is a finite subset of I. The notation

⊕

j∈J pj is used as a shorthand for a finite
alternative composition of processes pj.

Current work by Peter van den Brand and Michel Reniers is focussed on performing such a
transformation automatically for a certain class of recursive specifications, based on the work of
[26] for the process algebra µCRL.

3 Hybrid transition systems

The general semantic model that underlies HyPA, is that of hybrid transition systems [11]. The
model is based on that of ordinary labeled transition systems, but with two transition relations
instead of one. Computational behavior is modeled through action transitions, which, intuitively,
take no time to execute, and are labeled by the names of the actions and valuations they represent.
Physical behavior is modeled through the use of flow transitions, which represent the behavior
of model variables during the passage of time. The formalism is closely related to the hybrid
automata of [20].

Definition 3 (Hybrid Transition System) A hybrid transition system is a tuple < X,A,Σ, 7→
,;,X >, consisting of a state space X = T (Vr) × Val, containing pairs of process terms and
valuations, a set of action labels A = A× Val, containing action names and valuations, a set of
flow labels Σ = F , containing flows, and transition relations 7→⊆ X ×A×X and ;⊆ X ×Σ×X,
labeled by actions and flows respectively. Lastly, there is a termination predicate X ⊆ X.
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We use the notation < x>
a
7→ < x′ > for a transition (x, a, x′) ∈ 7→ with x, x′ ∈ X and a ∈ A.

Similarly, we use < x>
σ
; <x′ > for a transition (x, σ, x′) ∈; with σ ∈ Σ, and for arbitrary

transitions, we use < x>
l
→ <x′ > instead of (x, l, x′) ∈7→ ∪ ; and l ∈ A ∪ F . Finally,

termination is denoted <x>X instead of x ∈ X.

The notion of equivalence on processes we use in this report, is based on the notion of bisimi-
larity on hybrid transition systems.

Definition 4 (Bisimilarity on hybrid transition systems) A relation R ⊆ (T (Vr) × Val) ×
(T (Vr) × Val) on the state space of a hybrid transition system, is a simulation relation if

• for all < p, ν >,< q, µ> ∈ X such that < p, ν >R <q, µ>, we find < p, ν > X implies < q, µ>X;

• for all <p, ν >,< p′, ν′ >,< q, µ> ∈ X such that <p, ν >R <q, µ> and l ∈ A ∪ Σ, we find

< p, ν >
l
→ <p′, ν′ > implies there exists <q′, µ′ > ∈ X such that < q, µ>

l
→ < q′, µ′ > and

< p′, ν′ >R <q′, µ′ >.

A relation is a bisimulation relation if it is a symmetric simulation relation. Two process terms
p and q are bisimilar, denoted p - q, if there exists a bisimulation relation R such that for all
ν ∈ Val we find <p, ν >R<q, ν >.

Note, that bisimilarity reflects the intuition that only the labels of transitions, and the possi-
bility of termination, are visible to the environment of a process. Nevertheless, for HyPA, notion
of bisimilarity coincides with the notion of initially stateless bisimilarity defined in [22], in which
the valuations of variables in the state are also considered visible.

Theorem 2 Two process terms p and q are bisimilar, if and only if they are initially stateless
bisimilar in the sense of [22].

Proof A relation R is a statebased bisimulation relation, if it is a bisimulation relation
with the additional property that <p, ν >R< q, µ> implies ν = µ. Two process terms p and
q, are initially stateless bisimilar, if there exists a statebased bisimulation relation R such that
<p, ν >R< q, ν > for every ν ∈ Val .

Obviously, initially stateless bisimilarity implies bisimilarity. Furthermore, in [10], it is shown

that the semantics of HyPA is such that <x, ν >
l
→ < x′, ν′ > and < y, µ>

l
→ < y′, µ′ > im-

plies ν′ = µ′, for any x, x′, y, y′, ν, ν′, µ and µ′. In other words, that the valuation of the vari-
ables in a state can be deduced from the labeling of transitions to that state. Using this, it is
straightforward to show, that given a bisimulation relation R that witnesses p - q, the relation
R ∩ {(< x, ν >,< y, ν >) p x, y ∈ T (Vr), ν ∈ Val} is a statebased bisimulation relation witnessing
initially stateless bisimilarity of p and q. ⊠

It is important to know, that in [10, 9] a stronger notion of equivalence was used. For calcula-
tions in the context of parallel composition, namely, it is important that the used equivalence is
robust with respect to interference caused by processes executed in parallel. This is not the case
for the notion of (bi-)simulation presented above. As an example, one might study the following
discrete systems.

X :
[

x
∣

∣ x+ = 1
]

≫ a1 ⊙
[

x− = 1
]

≫ a2

Y :
[

x
∣

∣ x+ = 1
]

≫ a1 ⊙ a2
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Under the notion of (initially stateless) bisimilarity, we find that X - Y , since the value of x is set
to 1 by the first action a1, the second re-initialization of X is irrelevant. However, placing these
processes in parallel with the process

Z :
[

x
∣

∣ x+ = 2
]

≫ a3

clearly shows a difference. The sharing of variables, leads to the result that the sequence a1

followed by a3 gives a deadlock situation for X ‖ Z, while the action a2 can still occur for Y ‖ Z.
The interference of Z shows a difference between X and Y .

Interference can be modeled as a function ι : Val → Val . In order for the equivalence to be
robust for interference, we enforce that the bisimulation relation is closed with respect to any
interference function ι. Observe that we apply the same interference function to both variable
valuations.

Definition 5 (Robust) A relation R ⊆ (T (Vr) × Val) × (T (Vr) × Val) is robust if for all
〈p, ν〉, 〈q, µ〉 ∈ X such that 〈p, ν〉R 〈q, µ〉 we find 〈p, ι(ν)〉R 〈q, ι(µ)〉 for all interferences ι ∈ Val →
Val.

Now, in a similar way as before, robust bisimulation relations give rise to a notion of robust
equivalence on process terms. We say that two process terms p, q ∈ T (Vr) are robustly bisimilar,
denoted p ↔

= q, if there exists a robust bisimulation relation R such that < p, ν >R< q, ν > for all
valuations ν ∈ Val . For HyPA, this notion of equivalence coincides with the notion of stateless
bisimilarity in [22].

Theorem 3 Two process terms p and q are robustly bisimilar if and only if they are stateless
bisimilar in the sense of [22].

Proof Similar to the proof of theorem 2. ⊠

To conclude, three important properties of these equivalences, that are used implicitly through-
out this paper, are the following.

Theorem 4 Robust bisimilarity is a congruence for parallel composition. Hence, if p ↔
= q, then

p ‖ r ↔
= q ‖ r for all process terms r.

Proof See [9]. ⊠

Theorem 5 Robust bisimilarity and (initially stateless) bisimilarity are congruences for all oper-
ators of HyPA other than parallel composition.

Proof This is straightforward to verify using the congruence formats proposed in [22] on the
operational semantics of HyPA given in [9]. ⊠

Theorem 6 Robust bisimilarity is strictly finer than (initially stateless) bisimilarity. Hence, if
we have p ↔

= q then we may conclude p - q.

Proof Trivial. Any robust bisimulation relation is a bisimulation relation. ⊠
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4 Specification of safety

In the introduction, we have already recognized two special kinds of safety properties. Safety
properties in terms of actions, and safety properties in terms of model variables. Safety in terms
of actions means that certain ‘bad’ actions never happen, while safety in terms of model variables
means that certain ‘bad’ valuations never occur. In this section, we give a formal definition and
a process algebraic specification of safety for actions and safety for predicates. This means, that
we construct a process algebraic equation, in such a way that a hybrid transition system has a
certain safety property if and only if the process term associated with this transition system, is a
solution to that equation. In the next section, we use this specification as a starting point for our
analysis.

The predicates Pm that describe the aforementioned bad valuations, are taken from the set Pm

of predicates on model variables (i.e. we do not use ẋ, x− or x+ in these predicates). We write
ν |=m Pm, for a valuation ν ∈ Val , to denote that ν satisfies Pm. We start out by formalizing the
notions of safety for actions and safety for predicates on the semantic level, using the following
three definitions.

Definition 6 (Reachable set) Given a hybrid transition system, the set R(x) of reachable
states from a state x, is defined as the smallest set such that:

• x ∈ R(x);

• If x′ ∈ R(x) and <x′ >
l
→ <x′′ >, for some l, then x′′ ∈ R(x).

Definition 7 (Safety for actions) A state x is safe for the actions in H ⊆ A, if for every

x′ ∈ R(x) and every transition <x′ >
a,ν
7→ <x′′ > we find a 6∈ H. A process term p is safe for the

actions in H if, for every valuation ς ∈ Val, the state <p, ς > is safe for the actions in H.

Definition 8 (Safety for predicates) A state x is safe for a predicate Pm ∈ Pm on the model

variables Vm, if for every x′ ∈ R(x) we find, firstly, that for every transition <x′ >
σ
; < x′′ > we

have σ(t) 6|=m Pm for any t ∈ dom(σ), and secondly, that for every transition <x′ >
a,ν
7→ <x′′ >

we have ν 6|=m Pm. A process term p is safe for a predicate Pm if, for every valuation ς ∈ Val, the
state < p, ς > is safe for Pm.

Note, especially, that the definitions of safety we have given here, only look at what happens
in the labels of the transition system. This is in line with our intuition that only the labels of
a transition system are visible to the outside world. The semantics of HyPA is chosen in such a
way that the valuation in an action label, and the last valuation of a flow label, coincide with the
valuation in the state that is reached. So we may still draw some conclusions about what happens
in the states. However, the valuation in the initial state is not taken into account.

Algebraically, we can analyze safety for actions, using the encapsulation operator. If and only
if p is safe for H, then removing all actions in H from p will have no effect. In other words, in this
case p and the encapsulation of H over p are equivalent.

Theorem 7 (Specification of safety for actions) A process term p is safe for actions in H

if and only if p - ∂H (p).

Proof See appendix B. ⊠
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Analogously to the encapsulation operator for actions, we define an encapsulation operator
∂Pm

() for predicates Pm ∈ Pm on model variables, that will aid us in the algebraic specification of
safety for predicates. The operational semantics of this operator is given in table 1. Note, that the
predicate encapsulation operator, only blocks the execution of transitions, that have labels that
violate the predicate. It does not block violating valuations in the state, and hence may terminate
in a state that violates the predicate. The semantical rules for encapsulation of actions have also
been given, for reference.

Table 1: Semantical rules for encapsulation and predicate encapsulation

<p, ν >
σ
; < p′, ν′ >

<∂H (p) , ν >
σ
; < ∂H (p′) , ν′ >

< p, ν >
σ
; <p′, ν′ >,∀t∈dom(σ) σ(t) 6|=m Pm

< ∂Pm
(p) , ν >

σ
; <∂Pm

(p′) , ν′ >

<p, ν >
a,ν′

7→ <p′, ν′′ >, a 6∈ H

<∂H (p) , ν >
a,ν′

7→ < ∂H (p′) , ν′′ >

<p, ν >
a,ν′

7→ < p′, ν′′ >, ν′ 6|=m Pm

< ∂Pm
(p) , ν >

a,ν′

7→ <∂Pm
(p′) , ν′′ >

<p, ν > X

< ∂H (p) , ν >X

<p, ν >X

< ∂Pm
(p) , ν >X

An axiomatization of predicate encapsulation, for robust bisimilarity, is given in table 2. For
reference, the axioms regarding encapsulation of actions are given as well. We use a, c and d for
arbitrary actions, flow clauses and re-initialization clauses, and use x and y as process variables. H

and Pm denote arbitrary sets of actions and predicates on model variables. In the axiomatization
we use the following notational conventions.

• P−
m denotes a re-initialization predicate such that (ν, ν′) |=r P−

m iff ν |=m Pm. For the
re-initialization clause [P−

m ] we therefore obtain (ν, ν′) |=d [P−
m ] iff ν = ν′ ∧ ν |=m Pm.

• Pm is used also as a flow predicate such that σ |=f Pm iff σ(t) |=m Pm for every t ∈ dom(σ).
For the flow clause (Pm) we therefore obtain (ν, σ) |=c (Pm) iff ν |=m Pm ∧ σ(t) |=m Pm for
every t ∈ dom(σ).

• d ∼ d′ denotes a re-initialization clause such that (ν, ν′′) |=d d ∼ d′ iff there exists ν′ ∈ Val
such that (ν, ν′) |=d d and (ν′, ν′′) |=d d′. This models a concatenation of re-initializations.
For the re-initialization predicates Pr(x

−, x+), P ′
r(x

−, x+) ∈ Pr we have:

[

x
∣

∣ Pr(x
−, x+)

]

∼
[

x
∣

∣ P ′
r(x

−, x+)
]

=
[

x
∣

∣ ∃y Pr(x
−, y) ∧ P ′

r(y, x+)
]

.

Theorem 8 The axiomatization in table 2 is sound for robust bisimilarity.

Proof Soundness of the axioms is proven in appendix C. That bisimilarity and robust
bisimilarity are congruences for the predicate encapsulation operator, which is important for the
actual use of the axiomatization, becomes immediately clear using the formats proposed in [22]. ⊠

Using predicate encapsulation, we can obtain a similar theorem on safety for predicates as we
found on safety for actions.
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Table 2: Axiomatization of encapsulation and predicate encapsulation

∂H (δ) ↔
= δ ∂Pm

(d ≫ δ) ↔
= δ

∂H (ǫ) ↔
= ǫ ∂Pm

(d ≫ ǫ) ↔
= d ≫ ǫ

∂H (a) ↔
= δ if a ∈ H ∂Pm

(d ≫ a) ↔
=

(

d ∼
[

¬P−
m

])

≫ a

∂H (a) ↔
= a if a 6∈ H

∂H (c) ↔
= c ∂Pm

(d ≫ c) ↔
= d ≫

(

c ∧


 ¬Pm





)

∂H (d ≫ x) ↔
= d ≫ ∂H (x)

∂H (x ⊕ y) ↔
= ∂H (x) ⊕ ∂H (y) ∂Pm

(x ⊕ y) ↔
= ∂Pm

(x) ⊕ ∂Pm
(y)

∂H (x ⊙ y) ↔
= ∂H (x) ⊙ ∂H (y) ∂Pm

(x ⊙ y) ↔
= ∂Pm

(x) ⊙ ∂Pm
(y)

∂H (x ⊲ y) ↔
= ∂H (x) ⊲ ∂H (y) ∂Pm

(x ⊲ y) ↔
= ∂Pm

(x) ⊲ ∂Pm
(y)

Theorem 9 (Specification of safety for predicates) A process term p is safe for a predicate
Pm ∈ Pm on model variables, if and only if p - ∂Pm

(p).

Proof Similar to the proof of theorem 7. ⊠

Note, that the axiomatization of encapsulation also holds for bisimilarity, since that is a weaker
notion of equivalence than robust bisimilarity. Using the axiomatization, we then find, trivially,
that the processes δ and ǫ are always safe, because they cannot perform any transitions. Further-
more, basic compositions (⊕ , ⊙ , ⊲ ) of safe processes are again safe. In particular, if the process
terms p and q are safe for S, we find:

p ⊕ q - ∂S (p) ⊕ ∂S (q) - ∂S (p ⊕ q)
p ⊙ q - ∂S (p) ⊙ ∂S (q) - ∂S (p ⊙ q)
p ⊲ q - ∂S (p) ⊲ ∂S (q) - ∂S (p ⊲ q)

with ∂S ( ) standing for either action or predicate encapsulation.

Typically, the analysis of safety involves the calculation of reachable states of a system. How-
ever, the notion of robust bisimilarity that was used in [9], is far too strong to allow efficient
calculations on reachable states. As a consequence we need to use the weaker notion of (ini-
tially stateless) bisimilarity, which may not be used in the context of parallel composition. In the
axiomatization of bisimilarity, we use the following two additional notations:

• d! denotes a re-initialization clause such that (ν′, ν′′) |=d d! if and only if there exists ν ∈ Val
with (ν, ν′) |=d d and ν′ = ν′′. This models a boolean condition reflecting the reachable
valuations of d, starting from an arbitrary valuation. As an example, for the re-initialization

predicate Pr(x
−, x+) ∈ Pr we have

[

x
∣

∣ Pr(x
−, x+)

]!
=

[

∃y Pr(y, x+)
]

.

• D(c) denotes a re-initialization clause such that (ν, ν′) |=d D(c) if and only if there exists
σ ∈ F with dom(σ) = [0, t] and (ν, σ) |=c c and ν′ = σ(t). This models a re-initialization
reflecting the possible transitions of c. Recall, that consecutive transitions are also reflected,
due to the assumption that the solution of flow-predicates is closed under concatenation. As
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an example, for an algebraic differential equation of the form ẋ = f(x, u) we have:

D









x

u

∣

∣

∣

∣

ẋ = f(x, u)








=









x

u

∣

∣

∣

∣

∣

∣

∣

∣

∃t,ξ,ν















dom(ξ) = dom(ν) = [0, t]

∀0≤t′≤t ξ(t′) = x− +
∫ t′

0
f(ξ(τ), ν(τ))dτ

u− = ν(0) ∧ u+ = ν(t)
x+ = ξ(t)









.

where ξ and ν are piecewise continuous and piecewise differentiable.

The axioms listed in table 3, reflect how, after a transition, only the valuations that are actually
reachable are of importance to the equivalence of process terms.

Table 3: Axioms for (initially stateless) bisimilarity

d ≫ a ⊙ x - d ≫ a ⊙ d! ≫ x

d ≫ c ⊲ x - d ≫ c ⊲ (d ∼ D(c))! ≫ x

Theorem 10 The axioms given in table 3 are sound for (initially stateless) bisimilarity.

Proof This is proven in appendix D. ⊠

In the next section, we show how to use the axiomatization of HyPA from [9], together with
the axioms given above, for the analysis of safety properties of linear hybrid processes.

5 Algebraic safety analysis of linear hybrid processes

The problem we face in this section, is to show safety for actions or safety for predicates, for the
variable X0 in a linear recursive specification

Xi :





⊕

j∈J(i)

dj ≫ ǫ



 ⊕





⊕

j∈J ′(i)

d′j ≫ aj ⊙ Xj



 ⊕





⊕

j∈J ′′(i)

d′′j ≫ cj ⊲ Xj



 .

In particular, we study the question whether X0 - ∂Pm
(X0), for a predicate Pm on model

variables. The question whether X0 - ∂H (X0), for a set of actions H, can be treated in a
similar way. We perform the following calculation, using, amongst others, the axioms for (initially
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stateless) bisimilarity, and for predicate encapsulation, given in section 4.

∂Pm
(Xi)

↔
= ∂Pm





⊕

j∈J(i) dj ≫ ǫ ⊕
⊕

j∈J ′(i) d′j ≫ aj ⊙ Xj ⊕
⊕

j∈J ′′(i) d′′j ≫ cj ⊲ Xj





- ∂Pm







⊕

j∈J(i) dj ≫ ǫ ⊕
⊕

j∈J ′(i) d′j ≫ aj ⊙ (d′j)
! ≫ Xj ⊕

⊕

j∈J ′′(i) d′′j ≫ cj ⊲
(

d′′j ∼ D(cj)
)!

≫ Xj







↔
=











⊕

j∈J(i) ∂Pm
(dj ≫ ǫ) ⊕

⊕

j∈J ′(i) ∂Pm

(

d′j ≫ aj ⊙ (d′j)
! ≫ Xj

)

⊕
⊕

j∈J ′′(i) ∂Pm

(

d′′j ≫ cj ⊲
(

d′′j ∼ D(cj)
)!

≫ Xj

)

↔
=











⊕

j∈J(i) dj ≫ ǫ ⊕
⊕

j∈J ′(i)

(

d′j ∼
[

¬P−
m

])

≫ aj ⊙ ∂Pm

(

(d′j)
! ≫ Xj

)

⊕
⊕

j∈J ′′(i) d′′j ≫
(

cj ∧


 ¬Pm





)

⊲ ∂Pm

(

(

d′′j ∼ D(cj)
)!

≫ Xj

)

From this calculation, we may easily deduce the following.

Theorem 11 The question whether Xi is safe for a predicate Pm, i.e. whether Xi - ∂Pm
(Xi),

reduces to the following questions about subprocesses of Xi.

• d′j ≫ aj -

(

d′j ∼
[

¬P−
m

])

≫ aj, for all j ∈ J ′(i) and

• (d′j)
! ≫ Xj - ∂Pm

(

(d′j)
! ≫ Xj

)

, for all j ∈ J ′(i), and,

• d′′j ≫ c - d′′j ≫ (c ∧


 ¬Pm



), for all j ∈ J ′′(i), and,

• (d′′j ∼ D(cj))
! ≫ Xj - ∂Pm

(

(d′′j ∼ D(cj))
! ≫ Xj

)

, for all j ∈ J ′′(i).

Proof Substitution of these equivalences in the calculation above, easily gives the desired
result Xi - ∂Pm

(Xi). Notice, that D(c) = D(c ∧ (¬Pm)) if and only if c = c ∧ (¬Pm). ⊠

Apparently, if we study safety of X0, this depends only on the safety of the direct subprocesses
of X0, and on the safety of the Xj (with j ∈ J ′(0) ∪ J ′′(0)) under certain initial conditions.
Naturally, in the process of checking safety of Xj , loops may occur in which the process is called
again under different initial conditions. Gathering all initial conditions that may occur this way,
leads to the following recursive definition, for the total conditions Ri.

• R0 =
[

true
]

;

• ∀j∈J ′(i) (Ri ∼ d′j)
! ⇒ Rj .

• ∀j∈J ′′(i) (Ri ∼ d′′j ∼ D(cj))
! ⇒ Rj .

If we now assume, for every i, that

•
(

Ri ∼ d′j
)

≫ aj -

(

Ri ∼ d′j ∼
[

¬P−
m

])

≫ aj , for all j ∈ J ′(i), and

•
(

Ri ∼ d′′j
)

≫ cj -

(

Ri ∼ d′′j
)

≫ (cj ∧


 ¬Pm



), for all j ∈ J ′′(i),
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then we can derive the following equivalences:

Ri ≫ Xi -











⊕

j∈J(i) Ri ∼ dj ≫ ǫ ⊕
⊕

j∈J ′(i)

(

Ri ∼ d′j ∼
[

¬P−
m

])

≫ aj ⊙ Rj ≫ Xj ⊕
⊕

j∈J ′′(i)

(

Ri ∼ d′′j
)

≫
(

cj ∧


 ¬Pm





)

⊲ Rj ≫ Xj

∂Pm
(Ri ≫ Xi) -











⊕

j∈J(i) Ri ∼ dj ≫ ǫ ⊕
⊕

j∈J ′(i)

(

Ri ∼ d′j ∼
[

¬P−
m

])

≫ aj ⊙ ∂Pm
(Rj ≫ Xj) ⊕

⊕

j∈J ′′(i)

(

Ri ∼ d′′j
)

≫
(

cj ∧


 ¬Pm





)

⊲ ∂Pm
(Rj ≫ Xj)

Obviously, Ri ≫ Xi and ∂Pm
(Ri ≫ Xi) are both solutions of the same guarded recursive specifica-

tion with respect to bisimilarity. Hence, using the recursive specification principle (see appendix
E and [2, 9]), that states that a solution of a guarded recursive specification is unique mod-
ulo (initially stateless) bisimilarity, we may conclude Ri ≫ Xi - ∂S (Ri ≫ Xi) and especially
X0

↔
=

[

true
]

≫ X0
↔
= R0 ≫ X0 - ∂Pm

(R0 ≫ X0)
↔
= ∂Pm

(X0). Hence, X0 is safe.

We have shown, that the question of safety for actions or safety for predicates of a recursion
variable X0 in a linear recursive specification, depends only on the safety of the closed terms
(

Ri ∼ d′j
)

≫ aj and
(

Ri ∼ d′′j
)

≫ c with i ∈ I and j ∈ J ′(i), or j ∈ J ′′(i), respectively. Ad-
mittedly, the iteration leading to the initial conditions Ri is possibly infinite. One reason for this
is the fact that the set I, from which the indices are chosen, can be infinite. Another reason
may be that the set I is finite, but that every iteration in the definition of Ri introduces new
possible initial conditions. Luckily, for the example of Fischer’s protocol that we study in the
next section, the iteration terminates. Future research should, perhaps, concentrate on finding
solutions for the possibly infinite computation. One possible direction, in case I is finite, is to
use over-approximations of Ri, as is done in the method of predicate abstraction described in
[1]. Another possible direction, in case I is infinite, is to use induction techniques to derive Ri

algebraically.

6 Safety of a hybrid variant of Fischer’s protocol

A classical case study for safety analysis, is Fischer’s time based mutual exclusion protocol [18].
The protocol, often studied using timed automata [19, 3, 1], consists of a number of identical
processes (up to their parameters) containing four modes each. The goal of the protocol is to
ensure that no two processes enter a certain access mode at the same time. In our study, we will
restrict ourselves to the case where there are only two participants. The case in which we have
more participants, is expected to be safe under similar conditions, but more research is needed to
further that claim.

Although the protocol is not intrinsically hybrid, the variant we study in this section calls for
a hybrid approach. In its original form, the protocol uses timing restrictions on both processes to
guarantee safety. Our goal is to study in which way the safety of the protocol is affected, by a
difference in speed between the clocks of the two processes. In particular, we study a relative error
between the clocks. This introduces a dependency between the clocks, that makes the problem
hybrid in nature. The clocks that are used in our variant of the protocol can run with arbitrary
speed, assuming that there is a bounded relative error between the speeds with which they run.

In figure 1 we have depicted a hybrid automaton, modeling one of the participating processes.
Below, we give the associated recursive specification in HyPA. In our version of the protocol, we
require only that clocks (modeled by the xi variables) are increasing (ẋi ≥ 0) and that there
is at most a proportional error e ≥ 1 in the derivatives of the clocks of each of the processes.
The protocol is parameterized by the constant bounds d and D on clocks, and by the constant
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Idle Request
ẋi ≥ 0
xi ≤ D

Access Check
ẋi ≥ 0

turn− = 0
turn− = 0
x+

i = 0

x+
i = 0

turn+ = i

x−
i ≥ d

turn− = i

x−
i ≥ d

turn− 6= i

turn+ = 0

Figure 1: One process in Fischer’s protocol

proportional error e. The idea of a relative error, is modeled as a separate constraint C, and turns
out to be sufficient to guarantee safety of the protocol if the parameters satisfy d > e · D > 0.

C :









ẋ1 ≤ e ẋ2

ẋ2 ≤ e ẋ1









Note, that we find C - δ if e < 1, therefore, we assume e ≥ 1 in the remainder of this report.

The variable turn, is shared by all participating processes, and is used to communicate which
process wants to access the resource. The variable loci, is used in the process algebraic description
of the protocol, to refer to the name of the associated node of the hybrid automaton. Both turn and
loci are discrete variables, and we assume that all solutions to flow-predicates keep these variables
constant. The ι actions, are used in the process algebraic description to represent transitions in
the hybrid automaton. These actions are assumed not to synchronize. We model this by leaving
(ι γ ι) and (ι γ access) undefined.

Idlei :









turn
loci

∣

∣

∣

∣

loci = Idle








◮





xi

loci

∣

∣

∣

∣

∣

∣

turn− = 0
x+

i = 0
loc+

i = Request



 ≫ ι ⊙ Requesti

Requesti :















xi

turn
loci

∣

∣

∣

∣

∣

∣

loci = Request
ẋi ≥ 0
xi ≤ D















◮





xi

loci

turn

∣

∣

∣

∣

∣

∣

x+
i = 0

turn+ = i

loc+
i = Check



 ≫ ι ⊙ Checki

Checki :















xi

turn
loci

∣

∣

∣

∣

∣

∣

loci = Check
ẋi ≥ 0















◮























 loci

∣

∣

∣

∣

∣

∣

x−
i ≥ d

turn− 6= i

loc+
i = Idle



 ≫ ι ⊙ Idlei

⊕


 loci

∣

∣

∣

∣

∣

∣

x−
i ≥ d

turn− = i

loc+
i = Access



 ≫ ι ⊙ Accessi





















Accessi :









turn
loci

∣

∣

∣

∣

loci = Access








◮

[

turn
loci

∣

∣

∣

∣

turn+ = 0
loc+

i = Idle

]

≫ ι ⊙ Idlei

Our verification goal, is to show that loc1 and loc2 are never set to ‘Access’ at the same time,
during the execution of the protocol. We can show that the protocol is safe, if the parameters
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satisfy d > e · D > 0, and if we have the following initial condition:

init =





turn− = 0
loc−1 = Idle
loc−2 = Idle



 .

Formally, we have to prove for the process term

S : init ≫ (Idle1 ‖ Idle2 ‖ C)

that it is safe for the predicate Pm = (loc1 = loc2 = Access). I.e. that S - ∂Pm
(S).

Notice, that the initial condition is a global condition, i.e. one condition on all initial processes.
The reason for this, is that we are modeling a number of parallel hybrid automata, for which the
initial conditions are synchronized. If each process would be initialized separately, according to
initi =

[

turn− = 0 ∧ loc−i = Idle
]

, it turns out that a deadlock may occur if one of the processes
immediately performs actions leading to the check mode. In that case, one process must delay,
while the other cannot because the initial condition is not satisfied.

Next, we show some of the results, of applying the method of safety analysis presented in the
previous section, to our variant of Fischer’s protocol. Obviously, the definition of S is not a linear
process definition. However, using the rewriting techniques described in [9, 26], we can rewrite it
into the linear recursive specification given in appendix F, for which we have

S ↔
= init ≫ Xi,i .

In the linearization, there are 16 recursion variables involved. There is one variable for each
pair of recursion variables of the original two processes. We use the letter X for the variables in
the linearization, and label them using pairs of abbreviated location names ((i, i) for (Idle,Idle),
(i, r) for (Idle,Request), etc.). As an example, we find the following definition for the variable
Xc,r, which will turn out represent a decision in the protocol.

Xc,r :
[

true
]

≫































turn

loc1

loc2

x1

x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

loc1 = Check
loc2 = Request
0 ≤ ẋ1 ≤ e ẋ2

0 ≤ ẋ2 ≤ e ẋ1

x2 ≤ D































⊲ Xc,r

⊕





x1

loc1

turn

∣

∣

∣

∣

∣

∣

x
+

2 = 0
turn+ = 2
loc+

2 = Check



 ≫ ι ⊙ Xc,c ⊕



 loc2

∣

∣

∣

∣

∣

∣

x
−
1 ≥ d

turn− 6= 1
loc+

1 = Idle



 ≫ ι ⊙ Xr,i

⊕



 loc2

∣

∣

∣

∣

∣

∣

x
−
1 ≥ d

turn− = 1
loc+

1 = Access



 ≫ ι ⊙ Xr,a

As an example of the calculations involved in the safety analysis of the 16 recursion variables, we
show the calculation of the re-initialization clause d′′

c,r ∼ D(cc,r).

d
′′
c,r ∼ D(cc,r) =

[

true
]

∼ D































turn

loc1

loc2

x1

x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

loc1 = Check
loc2 = Request
0 ≤ ẋ1 ≤ e ẋ2

0 ≤ ẋ2 ≤ e ẋ1

x2 ≤ D































= D































turn

loc1

loc2

x1

x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

loc1 = Check
loc2 = Request
0 ≤ ẋ1 ≤ e ẋ2

0 ≤ ẋ2 ≤ e ẋ1

x2 ≤ D































=























x1

x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

loc−
1 = Check

loc−
2 = Request

∃t,v1,v2























x
+

1 = x
−
1 +

∫ t

0
v1(τ)dτ

x
+

2 = x
−
2 +

∫ t

0
v2(τ)dτ

∀τ 0 ≤ v1(τ) ≤ e v2(τ)
∀τ 0 ≤ v2(τ) ≤ e v1(τ)

∀t′≤t x
−
2 +

∫ t′

0
v2(τ)dτ ≤ D























=





















x1

x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

loc−
1 = Check

loc−
2 = Request

0 ≤ (x+

1 − x
−
1 )

(x+

1 − x
−
1 ) ≤ e(x+

2 − x
−
2 )

0 ≤ (x+

2 − x
−
2 )

(x+

2 − x
−
2 ) ≤ e(x+

1 − x
−
1 )

x
+

2 ≤ D
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Calculation of Ri in this way, is straightforward for Fischer’s protocol. Admittedly, this cal-
culation is performed in a rather ad hoc manner. The calculation of (Ri ∼ D(ci))

!, and similar
terms, turns out to be hard to automate in practice, and more research is needed to find out
for which classes of flow-clauses and re-initialization clauses these calculations are at all possible.
Some work in this direction is done, for example, in [1], showing results on the calculation of
(Ri ∼ D(ci))

! for linear differential equations ci and polyhedral initial conditions Ri.

For our variant of Fischer’s protocol, we ultimately, we find the following Ri, where i is taken
over the aforementioned pairs. Those re-initializations that are not mentioned here, can be easily
obtained using symmetry of the protocol.

Ri,i =
[

turn− = 0 ∧ loc−
1 = Idle ∧ loc−

2 = Idle
]

Rr,i =
[

turn− = 0 ∧ loc−
1 = Request ∧ loc−

2 = Idle ∧ x
−
1 ≥ 0

]

Rr,r =





turn− = 0 ∧ loc−
1 = Request ∧ loc−

2 = Request ∧
(

0 ≤ x
−
1 ≤ D

x
−
1 ≤ e · x−

2 ≤ e · D

)

∨

(

x
−
2 ≤ e · x−

1 ≤ e · D

0 ≤ x
−
2 ≤ D

)





Rc,i =
[

turn− = 1 ∧ loc−
1 = Check ∧ loc−

2 = Idle ∧ x
−
1 ≥ 0

]

Rc,r =
[

turn− = 1 ∧ loc−
1 = Check ∧ loc−

2 = Request ∧ 0 ≤ x
−
1 ≤ e · x−

2 ≤ e · D
]

Rc,c =









loc−
1 = Check ∧ loc−

2 = Check ∧




turn− = 1 ∧

0 ≤ x
−
1 ≤ e · x−

2

0 ≤ x
−
2 ≤ e · x−

1 + D



 ∨





turn− = 2 ∧

0 ≤ x
−
1 ≤ e · x−

2 + D

0 ≤ x
−
2 ≤ e · x−

1













Ra,c =

[

turn− = 1 ∧ loc−
1 = Access ∧ loc−

2 = Check ∧

d ≤ x
−
1 ≤ e · x−

2 ∧ d ≤ x
−
2 ≤ e · x−

1 + D

]

Ra,i =
[

turn− = 1 ∧ loc−
1 = Access ∧ loc−

2 = Idle
]

Ra,r = Ra,a =
[

false
]

Note, that Ra,a =
[

false
]

, is crucial to the safety of the protocol. It signifies that the
unwanted recursion variable Xa,a, in which both parties access the resource at the same time, is
unreachable. A prerequisite for this, turns out to be that Ra,r =

[

false
]

, which in turn follows
from the fact that the discrete action from Xc,r to Xa,r, is blocked. In other words, to obtain
Ra,a =

[

false
]

, we indirectly need that

Rc,r ∼ d
′
c,r,a,r =









turn− = 1
loc−

1 = Check
loc−

2 = Request
0 ≤ x

−
1 ≤ e · x−

2 ≤ e · D









∼



 loc2

∣

∣

∣

∣

∣

∣

x
−
1 ≥ d

turn− = 1
loc+

1 = Access





=









turn− = 1
loc−

1 = Check ∧ loc+

1 = Access
loc−

2 = Request
d ≤ x

−
1 ≤ e · x−

2 ≤ e · D









=
[

false
]

This is only true, because of our initial assumption that d > e · D.

Lastly, we have to verify safety for the predicate Pm = (loc1 = loc2 = Access), for the processes,
(

Ri ∼ d′j
)

≫ aj , with i ∈ I and j ∈ J ′(i), and
(

Ri ∼ d′′j
)

≫ cj , with i ∈ I and j ∈ J ′′(i). This is

straightforward to do, and in fact, can be concluded already from the fact that Ra,a =
[

false
]

.
We may finally conclude that Fischer’s protocol is indeed safe, if initially d > e · D > 0.
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7 Conclusive remarks

In this report, we have shown how the hybrid process algebra HyPA can be used for the analysis
of safety properties of hybrid systems. More precisely, we have shown how the question of safety
for actions and safety for predicates on model variables can be broken into (hopefully simpler)
questions, regarding flow clauses and re-initialization clauses. We have reduced the problem of
action and predicate safety of processes to smaller questions that cannot be answered using process
algebra, but must be answered using the theories for describing flows and re-initializations.

As an example, we have analyzed a variant of Fischer’s protocol, in which the only restriction
on the internal clocks is that they are monotone, and that their rates do not differ by more
than a given factor. Admittedly, similar analysis of this protocol has been shown before, but
not with those specific constraints, that in our opinion give new insights in the way the protocol
works. Hybrid process algebra, provides us with the opportunity to model dependence between
the continuous variables of parallel processes, which is used in the analysis of Fischer’s protocol
when we restrict the relative error between clocks.

Our recommendations for future research can roughly be divided into three directions. The
first direction is research on the process algebra HyPA itself. In particular, the two phase analysis
strategy that is used in this report, in which first a process definition is turned into a linear
process definition using one equivalence, and then further analysis is carried out using a weaker
equivalence, deserves more attention.

The second direction, is with respect to safety properties. The method we have shown in this
report, relies on an iteration that possibly does not terminate, and relies on the ability to analyze
flow-clauses and re-initialization clauses. Perhaps, the method can be combined with methods like
predicate abstraction [1], in order to guarantee termination and make automated calculation on
clauses possible. Even then, calculation on reachable sets (for our method captured in the formulas
(Ri ∼ d′j)

! and (Ri ∼ d′′j ∼ D(cj))
!), is often difficult. For simple linear differential equations, one

needs assumptions on the initial conditions in order to be able to perform calculations automat-
ically (see [1]). For more difficult flow-clauses, the calculation becomes impossible all together.
In the example we have shown in this report, symbolic reasoning solved the problem for us, for
a large part. However, this is only an option in manual analysis, or when process algebraic tools
can be coupled to tools like Mathematica, in which symbolic reasoning is possible. An advantage
of symbolic reasoning, is that also induction on the indices may be used, to exploit a possible
structure in Ri.

It may be interesting to note, that we have recently obtained new results, regarding manual
analysis of the variant of Fischer’s protocol discussed in this report. By inverse reasoning on the
construction of Ri, we have been able to derive the initial conditions for which the protocol is
safe, from the algebraic description of the protocol, rather than assuming them a priori. More
research in the direction of inverse reasoning on Ri, will hopefully lead to a more general strategy
for controlling processes in a safe manner.

The third direction, is to consider other kinds of analysis problems as well. More complicated
safety properties, but also fairness properties of systems (a certain desired property is eventu-
ally fulfilled) and analysis problems from the field of control theory, like for example stability,
come to mind. Process algebraic specification of these analysis problems, would then be the first
start. Admittedly, we expect the specification of fairness properties to be more difficult than the
specification of safety, because, in general, eventuality of an event is hard to express in process
algebra.

Acknowledgements The authors would like to thank George Pappas, Paulo Tabuada, Franjo
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A Semantics HyPA

Table 4: Operational semantics of HyPA

< ǫ, ν >X
(1)

< a, ν >
a,ν
7→ <ǫ, ν >

(2)
(ν, σ) |=c c, dom(σ) = [0, t]

< c, ν >
σ
; <c, σ(t)>

(3)

(ν, ν′) |=d d, < p, ν′ > X

<d ≫ p, ν > X
(4)

(ν, ν′) |=d d, < p, ν′ >
l
→ < p′, ν′′ >

<d ≫ p, ν >
l
→ < p′, ν′′ >

(5)
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Table 5: Operational semantics of HyPA, alternative and sequential composition

<p, ν >X

< p ⊕ q, ν > X

< q ⊕ p, ν > X

(6)
< p, ν >

l
→ <p′, ν′ >

<p ⊕ q, ν >
l
→ < p′, ν′ >

<q ⊕ p, ν >
l
→ < p′, ν′ >

(7)
< p, ν > X, < q, ν >X

< p ⊙ q, ν > X
(8)

<p, ν >
l
→ < p′, ν′ >

<p ⊙ q, ν >
l
→ < p′ ⊙ q, ν′ >

(9)
<p, ν >X, < q, ν >

l
→ < q′, ν′ >

<p ⊙ q, ν >
l
→ < q′, ν′ >

(10)

Table 6: Operational semantics of HyPA, disrupt

<p, ν >X

<p ◮ q, ν >X

<p ⊲ q, ν >X

(11)
<p, ν >

l
→ < p′, ν′ >

<p ◮ q, ν >
l
→ < p′ ◮ q, ν′ >

<p ⊲ q, ν >
l
→ < p′ ◮ q, ν′ >

(12)

< q, ν > X

<p ◮ q, ν >X
(13)

< q, ν >
l
→ <q′, ν′ >

<p ◮ q, ν >
l
→ < q′, ν′ >

(14)

Table 7: Operational semantics of HyPA, parallel composition

<p, ν >X, < q, ν > X

< p ‖ q, ν >X

< p | q, ν >X

(15)
< p, ν >

σ
; <p′, ν′ >, < q, ν >

σ
; < q′, ν′ >

< p ‖ q, ν >
σ
; < p′ ‖ q′, ν′ >

< p | q, ν >
σ
; < p′ ‖ q′, ν′ >

(16)

< p, ν >
σ
; <p′, ν′ >, < q, ν >X

< p ‖ q, ν >
σ
; < p′, ν′ >

< q ‖ p, ν >
σ
; < p′, ν′ >

< p | q, ν >
σ
; < p′, ν′ >

< q | p, ν >
σ
; < p′, ν′ >

(17)
<p, ν >

a,ν′

7→ < p′, ν′′ >

< p ‖ q, ν >
a,ν′

7→ < p′ ‖ q, ν′′ >

< q ‖ p, ν >
a,ν′

7→ < q ‖ p′, ν′′ >

< p ‖ q, ν >
a,ν′

7→ < p′ ‖ q, ν′′ >

(18)

<p, ν >
a,ν′

7→ <p′, ν′′ >, < q, ν >
a′,ν′

7→ <q′, ν′′ >, a′′ = a γ a′

<p ‖ q, ν >
a′′,ν′

7→ < p′ ‖ q′, ν′′ >

<p | q, ν >
a′′,ν′

7→ < p′ ‖ q′, ν′′ >

(19)
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Table 8: Operational semantics of HyPA, encapsulation and recursion

<p, ν >
a,ν′

7→ <p′, ν′′ >, a 6∈ H

<∂H (p) , ν >
a,ν′

7→ < ∂H (p′) , ν′′ >
(20)

<p, ν >
σ
; <p′, ν′ >

< ∂H (p) , ν >
σ
; <∂H (p′) , ν′ >

(21)
<p, ν >X

<∂H (p) , ν > X
(22)

<p, ν >X

< X, ν >X
(23) X - p ∈ E

<p, ν >
l
→ < p′, ν′ >

< X, ν >
l
→ < p′, ν′ >

(24) X - p ∈ E

B Specification of safety: proof

Theorem 12 (Specification of safety for actions) A process term p is safe for actions in H

if and only if p - ∂H (p).

Proof Suppose that indeed p - ∂H (p). Obviously, ∂H (p) is safe for actions in H, since
all unsafe actions are blocked. Now, suppose S is a bisimulation relation that witnesses p -

∂H (p). Then every reachable state from p has a related reachable state from ∂H (p). I.e. for every
(q, ν′) ∈ R(p, ν), with ν, ν′ ∈ Val , we find that there exists µ, µ′ ∈ Val and (q′, ν′′) ∈ R(∂H (p) , ν),

such that (q, ν′)S(q′, ν′′). Suppose that there is a transition <q, ν′ >
a,µ
7→ < r, µ′ >, then we may

use the fact that S is a bisimulation relation to conclude that there exists (r′, µ′′) such that

<q′, ν′ >
a,µ
7→ < r′′, µ′′ >. Finally, from the fact that ∂H (p) is safe, we conclude that a 6∈ H. So,

every transition from reachable states from p is safe, and hence p is safe.

Now, consider the reverse case, which we prove in more detail. Let p be a process term that is
safe for actions in H. Then we define the following relation

S = {(< q, ν >,< ∂H (q) , ν >) p ∃ν′ < q, ν > ∈ R(p, ν′)},

and show that it is a bisimulation relation that witnesses p - ∂H (p).

Obviously, it is a witness relation, since < p, ν > ∈ R(< p, ν >) for all ν and hence <p, ν >S< ∂H (p) , ν >.
Now, to show that it is a bisimulation relation, assume that < x, ν >S< ∂H (x) , ν > and consider
the following cases:

• < x, ν >X

Using the definition of encapsulation we find < ∂H (x) , ν > X.

• < ∂H (x) , ν >X

For this, we need to assume <x, ν >X, according to the semantics of encapsulation.

• < x, ν >
a,µ
7→ <x′, µ′ >

Using the fact that <x, ν > ∈ R(< p, ξ >) for some ξ, and using the fact that p is safe for
actions in H, we conclude that a 6∈ H. Then, using the semantics of encapsulation of actions,

we conclude <∂H (x) , ν >
a,µ
7→ <∂H (x′) , µ′ >. with < x′, µ′ >S< ∂H (x′) , µ′ >.
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• < ∂H (x) , ν′ >
a,µ
7→ <y, µ′ >

From the semantics of encapsulation it follows that for < ∂H (x) , ν >
a,µ
7→ <y, µ′ > we need

that y is of the form ∂H (x′) and that <x, ν >
a,µ
7→ <x′, µ′ >. Finally, because < x′, µ′ > is

reachable from <x, µ> and hence is reachable from < p, ξ > for some ξ, we may conclude
< x′, µ′ >S< ∂x′ (µ′)>.

• < x, ν >
σ
; < x′, µ>

Using the semantics of encapsulation of actions, we conclude < ∂H (x) , ν >
σ
; <∂H (x′) , µ>

with <x′, µ′ >S< ∂H (x′) , µ′ >.

• < ∂H (x) , ν′ >
σ
7→ < y, µ′ >

From the semantics of encapsulation it follows that for <∂H (x) , ν >
σ
7→ <y, µ′ > we need

that y is of the form ∂H (x′) and that < x, ν >
σ
7→ <x′, µ′ >. Finally, because <x′, µ′ > is

reachable from <x, µ> and hence is reachable from < p, ξ > for some ξ, we may conclude
< x′, µ′ >S< ∂x′ (µ′)>.

⊠

C Axioms for predicate encapsulation

C.1 ∂Pm
(d ≫ δ) ↔

= δ

Trivial.

C.2 ∂Pm
(d ≫ ǫ) ↔

= d ≫ ǫ

Trivial.

C.3 ∂Pm
(d ≫ a) ↔

= (d ∼ [¬P−

m
]) ≫ a

The axiom ∂Pm
(d ≫ a) ↔

= (d ∼ [¬P−
m ]) ≫ a is, for given Pm ∈ Pm, d ∈ D and a ∈ A,

witnessed by the relation S = {(< ∂Pm
(d ≫ a) , ν >,< (d ∼ [¬P−

m ]) ≫ a, ν >) p ν ∈ Val} ∪
{(< ∂Pm

(ǫ) , ν >,< ǫ, ν >) p ν ∈ Val}. That this is indeed a witnessing relation is obvious, and
also that it is robust is straightforward to verify. That it is a bisimulation relation follows from
the following cases.

Assume that < p, ν >S< q, ν >. From the definition, it follows that either p = ∂Pm
(d ≫ a) and

q = d ∼ [¬P−
m ] ≫ a, or p = ∂Pm

(ǫ) and q = ǫ. Since the proofs for the second case is trivial, we
will only discuss the first.

Because actions cannot terminate, nor can they perform flow transitions, we find that ∂Pm
(d ≫ a)

and (d ∼ [¬P−
m ]) ≫ a can both not terminate or perform flow transitions. We therefore only need

to consider the following cases.

• < ∂Pm
(d ≫ a) , ν >

a,µ
7→ <p′, µ′ >

For this, according to the semantics of HyPA, we need the assumption that µ |=m ¬Pm, that
p′ = ∂Pm

(ǫ) and that (ν, µ) |=d d. Hence, (ν, µ) |=d (d ∼ ¬P−
m ), from which we conclude
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that < (d ∼ [¬P−
m ]) ≫ a, ν >

a,µ
7→ <ǫ, µ′ > with < ∂Pm

(ǫ) , µ′ >S<ǫ, µ′ >.

• < (d ∼ [¬P−
m ]) ≫ a, ν >

a,µ
7→ < p′, µ′ >

For this, according to the semantics of HyPA, we need the assumption that there exists ν′

such that (ν, ν′) |=d d and (ν′, µ) |=d [¬P−
m ]. From this we conclude that ν′ = µ and hence

µ |=m ¬Pm. Finally, we find that <∂Pm
(d ≫ a) , ν >

a,µ
7→ < ∂Pm

(ǫ) , µ′ >

with <∂Pm
(ǫ) , µ′ >S< ǫ, µ′ >.

C.4 ∂Pm
(d ≫ c) ↔

= d ≫ (c ∧ (¬Pm))

The axiom ∂Pm
(d ≫ c) ↔

= d ≫ (c ∧ (¬Pm)) is, for given Pm ∈ Pm, d ∈ D and c ∈ C, witnessed by
the relation S = {(< ∂Pm

(d ≫ c) , ν >,< d ≫ (c ∧ (¬Pm)) , ν >) p ν ∈ Val}∪{(< ∂Pm
(c) , ν >,< c∧

(¬Pm) , ν >) p ν ∈ Val}. That this is indeed a witnessing relation is obvious, and also that it is
robust is straightforward to verify. That it is a bisimulation relation follows from the following
cases.

Assume that < p, ν >S< q, ν >. From the definition, it follows that either p = ∂Pm
(d ≫ c) and

q = d ≫ (c ∧ (¬Pm)), or p = ∂Pm
(c) and q = c ∧ (¬Pm). Since the proofs for these cases are

similar, we will only discuss the first.

Because flow clauses cannot terminate, nor perform actions transitions, ∂Pm
(d ≫ c) and d ≫

(c ∧ (¬Pm)) cannot terminate, nor perform action transitions. We, therefore, only need to study
the following cases.

• < ∂Pm
(d ≫ c) , ν >

σ
; <p′, µ′ >

From the semantics of predicate encapsulation, we obtain that for every τ ∈ dom(σ) we have
σ(τ) |=m ¬Pm, and hence σ |=f ¬Pm. Furthermore, for the above transition, we need the
assumption that there exists ν′ ∈ Val with (ν, ν′) |=d d and (ν′, σ) |=c c. From all this we

conclude that (ν′, σ) |=d [¬Pm], and hence < d ≫ (c ∧ (¬Pm)), ν >
σ
; < (c ∧ (¬Pm)), µ′ >.

Finally, by definition of S, we have < ∂Pm
(c) , µ′ >S< (c ∧ (¬Pm)), µ′ >.

• < d ≫ (c ∧ (¬Pm)), ν >
σ
; < p′, µ′ >

For this, we need the assumption that there exists ν′ ∈ Val with (ν, ν′) |=d d and (ν′, σ) |=c c

and (ν′, σ) |=c (¬Pm). Also, we need that µ′ = σ(t), with dom(σ) = [0, t]. From all this, we

may directly conclude that < ∂Pm
(d ≫ c) , ν >

σ
; < ∂Pm

(c) , µ′ >.
Finally, by definition of S, we have < ∂Pm

(c) , µ′ >S< (c ∧ (¬Pm)), µ′ >.

C.5 ∂Pm
(x ⊕ y) ↔

= ∂Pm
(x) ⊕ ∂Pm

(y)

Similar to the proof of axiom ∂H (x ⊕ y) ↔
= ∂H (x) ⊕ ∂H (y) in [9].

C.6 ∂Pm
(x ⊙ y) ↔

= ∂Pm
(x) ⊙ ∂Pm

(y)

Similar to the proof of axiom ∂H (x ⊙ y) ↔
= ∂H (x) ⊙ ∂H (y) in [9].

C.7 ∂Pm
(x ⊲ y) ↔

= ∂Pm
(x) ⊲ ∂Pm

(y)

Similar to the proof of axiom ∂H (x ⊲ y) ↔
= ∂H (x) ⊲ ∂H (y) in [9].

23



D Axioms for (initially stateless) bisimilarity

D.1 d ≫ a ⊙ x - d ≫ a ⊙ d! ≫ x

The axiom d ≫ a ⊙ x - d ≫ a ⊙ d! ≫ x, for a given re-initialization clause d and action
a ∈ A, is witnessed by the bisimulation relation S = {(< d ≫ a ⊙ x, ν >,< d ≫ a ⊙ d! ≫ x>) p

x ∈ T (Vr), ν ∈ Val} ∪ {(< ǫ ⊙ x, ν >,< ǫ ⊙ d! ≫ x, ν >) p x ∈ T (Vr), ν ∈ Val , (ν, ν) |=d

d!} ∪ {(< x, ν >,< x, ν >) p x ∈ T (Vr), ν ∈ Val}. Obviously, this is a witnessing relation. We will
now prove that it is also a bisimulation relation.

Assume that <p, ν >S< q, ν′ >. Obviously, ν = ν′. Furthermore, the case where p = q, and
the case where p = ǫ ⊙ x and q = ǫ ⊙ d! ≫ x with (ν, ν) |=d d!, are straightforward. We focus on
the case where p = d ≫ a ⊙ x and q = d ≫ a ⊙ d! ≫ x.

• < d ≫ a ⊙ x, ν >X

This cannot be the case, since (using the semantics of sequential composition and re-
initialization) we would need the assumption < a, ν >X, which is false.

• < d ≫ a ⊙ d! ≫ x, ν >X

Similarly, this can also not be the case.

• < d ≫ a ⊙ x, ν >
a,µ
7→ <x′, µ′ >

From the semantics of sequential composition and re-initialization it follows that x′ = ǫ ⊙ x

and that (ν, µ′) |=d d. Hence, we have that (µ′, µ′) |=d d!, from which we conclude that
(ǫ ⊙ x, µ′)S(ǫ ⊙ d! ≫ x, µ′). Furthermore, from the semantics it also follows that <d ≫

a ⊙ d! ≫ x, ν >
a,µ
7→ < ǫ ⊙ d! ≫ x, µ′ >.

• < d ≫ a ⊙ d! ≫ x, ν′ >
a,µ
7→ <x′, µ′ >

Similar to the previous case.

• < d ≫ a ⊙ x, ν >
σ
; < x′, µ′ >

This cannot be the case, since it would require a flow transition from a.

• < d ≫ a ⊙ d! ≫ x, ν′ >
σ
; < x′, µ′ >

Similarly, this cannot be the case.

D.2 d ≫ c ⊲ x - d ≫ c ⊲ (d ∼ D(c))! ≫ x

The axiom d ≫ c ⊲ x - d ≫ c ⊲ (d ∼ D(c))! ≫ x, for a given re-initialization clause d ∈ D and
flow clause c ∈ C, is witnessed by the bisimulation relation S = {(< d ≫ c ⊲ x, ν >,< d ≫ c ⊲

(d ∼ D(c))! ≫ x, ν >) p x ∈ T (Vr), ν ∈ Val} ∪ {(< c ◮ x, ν >,< c ◮ (d ∼ D(c))! ≫ x, ν >) p x ∈
T (Vr), ν ∈ Val , (ν, ν) |=d (d ∼ D(c))!} ∪ {(< x, ν >,< x, ν >) p x ∈ T (Vr), ν ∈ Val}. Obviously,
this is a witnessing relation. We will now prove that it is also a bisimulation relation.

In this proof, we need the assumption that the solutions of flow clauses are closed under
concatenation. Concretely, this means that if (ν, σ) |=c c and (σ(t), σ′) |=c c, with dom(σ) = [0, t]
then (ν, σ ◦ σ′) |=c c, with ◦ the concatenation operator on flows. As a result, we find for the
associated re-initializations that D(c) ∼ D(c) = D(c). In the proof, we also use the axiom on
reachability that (d ∼ d′)! = (d! ∼ d′)!.

Assume that < p, ν >S<q, ν′ >. Obviously, ν = ν′. Furthermore, the case where p = q is
trivial. We focus firstly on the case where p = d ≫ c ⊲ x and q = d ≫ c ⊲ (d ∼ D(c))! ≫ x.
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• < d ≫ c ⊲ x, ν >X

This cannot be the case, since (using the semantics of left-disrupt and re-initialization) we
would need the assumption <c, ν >X, which is false.

• < d ≫ c ⊲ (d ∼ D(c))! ≫ x, ν >X

Similarly, this can also not be the case.

• < d ≫ c ⊲ x, ν >
a,µ
7→ <x′, µ′ >

This cannot be the case, since it would require an action transition from c.

• < d ≫ c ⊲ (d ∼ D(c))! ≫ x, ν′ >
a,µ
7→ <x′, µ′ >

Similarly, this cannot be the case.

• < d ≫ c ⊲ x, ν >
σ
; < x′, µ′ >

From the semantics of the left-disrupt and re-initialization it follows that x′ = c ◮ x and that
there exists µ such that (ν, µ) |=d d and (µ, σ) |=c c. Hence, we have that (ν, σ(t′)) |=d (d ∼
D(c))! for every t′ ∈ [0, t] = dom(σ). In particular, we have (ν, µ′) |=d (d ∼ D(c))!, because
µ′ = σ(t). This leads to the conclusion that <c ◮ x, µ′ >S< c ◮ (d ∼ D(c))! ≫ x, µ′ >.

Furthermore, from the semantics it also follows that <d ≫ c ⊲ (d ∼ D(c))! ≫ x, ν >
σ
;

< c ◮ (d ∼ D(c))! ≫ x, µ′ >.

• < d ≫ c ⊲ (d ∼ D(c))! ≫ x, ν′ >
σ
; < x′, µ′ >

Similar to the previous case.

For the case where p = c ◮ x and q = c ◮ (d ∼ D(c))! ≫ x, and (ν, ν) |=d (d ∼ D(c))! we
find:

• < c ◮ x, ν >X

For which, according to the semantics, we need the assumption that <x, ν >X. From the
fact that (ν, ν) |=d (d ∼ D(c)!) we then derive that also < (d ∼ D(c))! ≫ x, ν >X and hence
< c ◮ (d ∼ D(c))! ≫ x, ν >X.

• < c ◮ (d ∼ D(c)!) ≫ x, ν >X

For which, according to the semantics, we need the assumption that <x, ν >X, and hence
< c ◮ x, ν >X.

• < c ◮ x, ν >
a,µ
7→ < x′, µ′ >

For which, according to the semantics, we need the assumption that <x, ν >
a,µ
7→ < x′, µ>,

since c cannot perform any action transitions. From the fact that (ν, ν) |=d (d ∼ D(c))!

we then derive that also < (d ∼ D(c))! ≫ x, ν >
a,µ
7→ < x′, µ> and ultimately <c ◮ (d ∼

D(c))! ≫ x, ν >
a,µ
7→ < x′, µ>. By definition, we have < x′, µ>S<x′, µ>.

• < c ◮ (d ∼ D(c))! ≫ x, ν >
a,µ
7→ <x′, µ>

For which, according to the semantics, we need the assumption that < x, ν >
a,µ
7→ <x′, µ>

and (ν, ν) |=d (d ∼ D(c))!. Obviously, we may conclude that < c ◮ x, ν >
a,µ
7→ < x′, µ> and

we find <x′, µ>S< x′, µ>.

• < c ◮ x, ν >
σ
; <x′, µ′ >

According to the semantics, we can distinguish two possible assumptions.

– <x, ν >
σ
; <x′, µ′ >

From which we conclude, using the assumption (ν, ν) |=d (d ∼ D(c))!, that < c ◮ (d ∼

D(c))! ≫ x, ν >
σ
; < x′, µ′ > and we find <x′, µ>S< x′, µ>.
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– <c, ν >
σ
; < c, µ′ > and x′ = c ◮ x

From which we conclude that (ν, σ) |=c c. Hence, using µ′ = σ(t), with dom(σ) = [0, t],
we find (ν, µ′) |=d (d ∼ D(c))! ∼ D(c). Using the assumption that flow clauses are
closed under concatenation of flows, we find that ((d ∼ D(c))! ∼ D(c))! = (d ∼ D(c) ∼
D(c))! = (d ∼ D(c))!, from which we conclude that (µ′, µ′) |=d (d ∼ D(c))! and
hence (c ◮ x, µ′)S(c ◮ (d ∼ D(c))! ≫ x, µ′). Finally, from the semantics, and the

assumption that (ν, σ) |=c c, we may conclude that < c ◮ (d ∼ D(c))! ≫ x, ν >
σ
;

<c ◮ (d ∼ D(c))! ≫ x, µ′ >.

• < c ◮ (d ∼ D(c))! ≫ x, ν >
σ
; < x′, µ>

According to the semantics, we can distinguish two possible assumptions.

– < (d ∼ D(c))! ≫ x, ν >
σ
; < x′, µ′ >

From which we conclude directly < x, ν >
σ
; <x′, µ′ > and hence <c ◮ x, ν >

σ
;

<x′, µ>, with <x′, µ>S< x′, µ>.

– <c, ν >
σ
; < c, µ′ > and x′ = c ◮ (d ∼ D(c))! ≫ x

From which we conclude directly that <c ◮ x, ν >
σ
; <c ◮ x, µ′ >. Furthermore,

using the concatenation closure of flow clauses, as before, we conclude that (µ′, µ′) |=d

((d ∼ D(c))! ∼ D(c))! = (d ∼ D(c) ∼ D(c))! = (d ∼ D(c))!, from which we ultimately
conclude <c ◮ x, µ′ >S< c ◮ (d ∼ D(c))! ≫ x, µ′ >.

E RSP for (initially stateless) bisimilarity

When reasoning about recursion, it is often useful to have a principle that claims that a solution of
a certain recursive specification exists, and is unique modulo the notion of equivalence that we are
interested in. That a solution exists modulo (initially stateless) bisimilarity, follows directly from
the operational semantics of HyPA, but it is not immediately clear that that particular solution is
the only process term satisfying the recursive equations. In [9], existence and uniqueness of solu-
tions of so-called guarded recursive specifications, was shown for the notion of robust bisimilarity.
In this appendix, we adapt the proof of [9] for initially stateless bisimilarity. The changes we need
to make are only minor, so that we can restrict ourselves to the outline of the proof here, and refer
to [9] for most of the details.

We start out by formalizing what a solution of a recursive specification is.

Definition 9 (Solution) Let E be a recursive specification. An interpretation S ∈ Vr → T (Vr)
of recursion variables as process terms, is a solution of E (denoted S |= E) if for every recursive
definition X - p ∈ E we have S(X) - S(p), where S(p) denotes the process term induced by
application of S to the variables of p. In particular, S(X) is called a solution of X - p ∈ E.

The recursive specification principle RSP, which is quite standard in process algebra [5], states
that so called guarded recursive specifications have at most one solution. For HyPA, guardedness
of a recursive specification is defined as follows.

Definition 10 (Guardedness) A process term p is guarded if all occurrences of recursion vari-
ables in p, are in the scope of an action prefix a ⊙ or a flow prefix c ⊲ . A recursive specification
E is guarded if for each recursive definition X - p ∈ E, p can be rewritten into a guarded process
term using the axiomatization of HyPA.

This leads to the principle given in table 9.
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Table 9: Recursive Specification Principle

S |= E, S′ |= E, E guarded

S(X) - S′(X)
X ∈ Vr

The proof of this, usually goes via another principle, called the approximation induction prin-
ciple AIP [5], which makes use of a family of projection operators πn. AIP states that if every
finite projection of two processes is bisimilar, then the two processes are bisimilar. For the kind
of semantical model we use, AIP is restricted in the sense that one of the compared processes
should have bounded non-determinism. This is usually referred to as the restricted approximation
induction principle AIP−. In this section, we introduce the family of projection operators, and
formalize the notion of bounded non-determinism. Then we formally pose the approximation in-
duction principle. After that, we show the existence of a bounded solution for guarded recursive
specifications, and prove a projection property for guarded process terms. Finally, this allows us
to prove soundness of RSP using AIP−.

Projection has the operational semantics stated in table 10.

Table 10: Operational semantics of projection

<p, ν > X

<πn(p), ν > X
,

< p, ν >
l
→ <p′, ν′ >

< πn+1(p), ν >
l
→ <πn(p′), ν′ >

.

Based on the formats introduced in [22], we claim that initially stateless bisimilarity is a
congruence for projection.

Bounded non-determinism B(p) is defined as follows.

Definition 11 (Bounded non-determinism) Bounded non-determinism is recursively defined
as:

• Every state has bounded non-determinism in 0 steps.

• A state <p, ν > has bounded non-determinism in n + 1 steps, if for every l the set R =

{< p′, ν′ > p < p, ν >
l
→ <p′, ν′ >} is finite, and all elements <p′, ν′ > ∈ R have bounded

non-determinism in n steps themselves.

• A state < p, ν > has bounded non-determinism (denoted B(<p, ν >)) if it has bounded non-
determinism for any arbitrary number of steps.

• A process term p has bounded non-determinism (denoted B(p)) if for every valuation ν ∈ Val
we find that <p, ν > has bounded non-determinism.

These definitions allow us to state the restricted approximation induction principle AIP−, given
in table 11. Next, we prove that this principle is sound.
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Table 11: Restricted approximation induction principle

∀nπn(p) - πn(q) ∧ B(q)

p - q
AIP−

Theorem 13 AIP− is sound for the semantics of HyPA, modulo initially stateless bisimilarity.

Proof To prove this principle sound, suppose that R is the union of all bisimulation relations.
In particular, it contains the bisimulation relations witnessing πn(p) - πn(q). Note, that R is an
equivalence relation on states. We now construct the following relation

S = {(< x, ν >,< y, µ>) p ∀n <πn(x), ν >R< πn(y), µ>, B(<y, ν >)}.

The proof that this is indeed a witnessing bisimulation relation, follows the same lines as the proof
for robust bisimulation in [9]. ⊠

Before we can use AIP− to prove RSP, we need to study bounded non-determinism and projec-
tions of guarded recursive specifications in more detail. We need to show existence of a bounded
non-deterministic solution for each guarded recursive specification, and we need an axiomatization
for projection with respect to guarded process terms.

Theorem 14 (Bounded non-determinism) Each guarded recursive specification E has a bounded
non-deterministic solution.

Proof In [9], this was shown for robust bisimilarity. The same solution is also a solution for
the guarded recursive specification E under (initially stateless) bisimilarity. Hence, the theorem
also holds for this weaker equivalence. ⊠

Theorem 15 (Guarded projection push) Define the interpretation Πn ∈ Vr → T (Vr) as be-
fore, and let S be an arbitrary interpretation of recursion variables. Then, we find the following
axioms for guarded process terms p:

π0(p) ↔
= π0(S(p)), πn+1(p) ↔

= πn+1(Πn(p)).

Proof See [9]. ⊠

Corollary 1 Define the interpretation Πn ∈ Vr → T (Vr) as before, and let S be an arbitrary inter-
pretation of recursion variables. Then the axioms π0(p) - π0(S(p)), and πn+1(p) - πn+1(Πn(p))
are sound.

Now, using corollary 1, the theorem on bounded non-determinism of guarded recursive speci-
fications, and AIP−, it is easy to derive soundness of RSP.

Theorem 16 The recursive specification principle is sound.
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Proof For convenience assume that X - p ∈ E implies that p is already rewritten into a
guarded process term. Using the theorem on bounded non-determinism, we know that there exists
a solution S of E that has bounded non-determinism, i.e. B(S(X)) for every X ∈ Vr. Suppose
that S′ is an arbitrary other solution for E. We will show by induction on n that for every X ∈ Vr

we have πn(S(X)) - πn(S′(X)). From that we then may conclude S(X) - S′(X) using AIP−.
Note, that if we have two arbitrary solutions of E, that we may conclude them equal by showing
that both are equal to S.

The base case, where n = 0, is derived using congruence (derivation rule (4)) and the first part
of corollary 1:

π0(S(X)) - π0(S(p)) - π0(p) - π0(S
′(p)) - π0(S

′(X)).

Using the second part of corollary 1, and the induction hypothesis that πn(S(X)) - πn(S′(X))
we find firstly, using congruence again, that S(Πn(p)) - S′(Πn(p)), and using this we derive:

πn+1(S(X)) - πn+1(S(p)) - S(πn+1(p)) - S(πn+1(Πn(p)))
- πn+1(S(Πn(p))) - πn+1(S

′(Πn(p))) - S′(πn+1(Πn(p)))
- S′(πn+1(p)) - πn+1(S

′(p)) - πn+1(S
′(X)).

⊠

F Linearization of Fischers protocol

In this section, we give the linearization of the process S : init ≫ (Idle1 ‖ Idle2 ‖ C). We find
that S ↔

= init ≫ Xi,i with:

Xi,i :























turn
loc1

∣

∣

∣

∣

∣

∣

∣

∣

ẋ1 ≤ e ẋ2

ẋ2 ≤ e ẋ1

loc1 = Idle
loc2 = Idle























⊲ Xi,i ⊕





x1

loc1

∣

∣

∣

∣

∣

∣

turn− = 0
x+

1 = 0
loc+

1 = Request



 ≫ ι ⊙ Xr,i ⊕





x2

loc2

∣

∣

∣

∣

∣

∣

turn− = 0
x+

2 = 0
loc+

2 = Request



 ≫ ι ⊙ Xi,r

Xi,r :
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loc1
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x2
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ẋ1 ≤ e ẋ2
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⊲ Xi,r

⊕





x1
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∣

∣

∣

∣

∣

∣

turn− = 0
x+

i = 0
loc+

1 = Request



 ≫ ι ⊙ Xr,r ⊕





x2

loc2

turn
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∣
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∣

∣

x+
2 = 0

turn+ = 2
loc+

2 = Check



 ≫ ι ⊙ Xi,c
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Xi,c :
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⊲ Xi,c
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x1

loc1

∣
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∣

turn− = 0
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1 = 0
loc+
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 ≫ ι ⊙ Xr,c ⊕



 loc2

∣

∣

∣

∣

∣

∣

x−
2 ≥ d

turn− 6= 2
loc+

2 = Idle



 ≫ ι ⊙ Xi,i

⊕



 loc2
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x−
2 ≥ d

turn− = 2
loc+

2 = Access



 ≫ ι ⊙ Xi,a

Xi,a :
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ẋ2 ≤ e ẋ1
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⊲ Xi,a

⊕





x1

loc1

∣
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turn− = 0
x+

i = 0
loc+

1 = Request



 ≫ ι ⊙ Xr,a ⊕

[

turn
loc2

∣

∣

∣

∣

turn+ = 0
loc+

2 = Idle

]

≫ ι ⊙ Xi,i

Xr,i :
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⊲ Xr,i
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turn+ = 1
loc+
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 ≫ ι ⊙ Xc,i ⊕
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 ≫ ι ⊙ Xr,r

Xr,r :
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⊕
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1 = 0

turn+ = 1
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 ≫ ι ⊙ Xr,c ⊕
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 ≫ ι ⊙ Xr,c

Xr,c :
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turn+ = 1
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 ≫ ι ⊙ Xc,c ⊕



 loc2

∣

∣

∣

∣
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∣
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 ≫ ι ⊙ Xr,i
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 ≫ ι ⊙ Xr,a
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Xr,a :
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 ≫ ι ⊙ Xc,a ⊕
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≫ ι ⊙ Xr,i
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Xc,r :
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 ≫ ι ⊙ Xc,c

Xc,c :
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⊲ Xc,c
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 ≫ ι ⊙ Xi,c ⊕
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∣

∣

∣

∣

∣

∣

x−
2 ≥ d

turn− 6= 2
loc+

2 = Idle



 ≫ ι ⊙ Xc,i ⊕



 loc2

∣

∣

∣

∣

∣

∣

x−
2 ≥ d

turn− = 2
loc+

2 = Access



 ≫ ι ⊙ Xc,a

Xc,a :































turn
loc1

loc2

x1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ẋ1 ≤ e ẋ2

ẋ2 ≤ e ẋ1

loc1 = Check
loc2 = Access
ẋ1 ≥ 0































⊲ Xc,a
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⊕



 loc1

∣

∣

∣

∣

∣

∣

x−
1 ≥ d

turn− 6= 1
loc+

1 = Idle



 ≫ ι ⊙ Xi,a ⊕



 loc1

∣

∣

∣

∣

∣

∣

x−
1 ≥ d

turn− = 1
loc+

1 = Access



 ≫ ι ⊙ Xa,a

⊕

[

turn
loc2

∣

∣

∣

∣

turn+ = 0
loc+

2 = Idle

]

≫ ι ⊙ Xc,i

Xa,i :























turn
loc1

loc2

∣

∣

∣

∣

∣

∣

∣

∣

ẋ1 ≤ e ẋ2

ẋ2 ≤ e ẋ1

loc1 = Access
loc2 = Idle























⊲ Xa,i

⊕

[

turn
loc1

∣

∣

∣

∣

turn+ = 0
loc+

1 = Idle

]

≫ ι ⊙ Xi,i ⊕





x2

loc2

∣

∣

∣

∣

∣

∣

turn− = 0
x+

2 = 0
loc+

2 = Request



 ≫ ι ⊙ Xa,r

Xa,r :







































turn
loc1

loc2

x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ẋ1 ≤ e ẋ2

ẋ2 ≤ e ẋ1

loc1 = Access
loc2 = Request
ẋ2 ≥ 0
x2 ≤ D







































⊲ Xa,r

⊕

[

turn
loc1

∣

∣

∣

∣

turn+ = 0
loc+

1 = Idle

]

≫ ι ⊙ Xi,r ⊕





x2

loc2

turn

∣

∣

∣

∣

∣

∣

x+
2 = 0

turn+ = 2
loc+

2 = Check



 ≫ ι ⊙ Xa,c

Xa,c :































turn
loc1

loc2

x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ẋ1 ≤ e ẋ2

ẋ2 ≤ e ẋ1

loc1 = Access
loc2 = Check
ẋ2 ≥ 0































⊲ Xa,c

⊕

[

turn
loc1

∣

∣

∣

∣

turn+ = 0
loc+

1 = Idle

]

≫ ι ⊙ Xi,c ⊕



 loc2

∣

∣

∣

∣

∣

∣

x−
2 ≥ d

turn− 6= 2
loc+

2 = Idle



 ≫ ι ⊙ Xa,i

⊕



 loc2

∣

∣

∣

∣

∣

∣

x−
2 ≥ d

turn− = 2
loc+

2 = Access



 ≫ ι ⊙ Xa,a

Xa,a :























turn
loc1

loc2

∣

∣

∣

∣

∣

∣

∣

∣

ẋ1 ≤ e ẋ2

ẋ2 ≤ e ẋ1

loc1 = Access
loc2 = Access























⊲ Xa,a

⊕

[

turn
loc1

∣

∣

∣

∣

turn+ = 0
loc+

1 = Idle

]

≫ ι ⊙ Xi,a ⊕

[

turn
loc1

∣

∣

∣

∣

turn+ = 0
loc+

1 = Idle

]

≫ ι ⊙ Xa,i
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