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HARMONIC RAYLEIGH–RITZ FOR THE MULTIPARAMETER
EIGENVALUE PROBLEM

MICHIEL E. HOCHSTENBACH∗ AND BOR PLESTENJAK†

Abstract. We study harmonic and refined extraction methods for the multiparameter eigenvalue
problem. These techniques are generalizations of their counterparts for the standard and generalized
eigenvalue problem. The methods aim to approximate interior eigenpairs, generally more accurately
than the standard extraction does. We study their properties and give Saad type theorems. The
processes can be combined with any subspace expansion approach, for instance a Jacobi–Davidson
type technique, to form a subspace method for multiparameter eigenproblems of high dimension.

Key words. Multiparameter eigenvalue problem, two-parameter eigenvalue problem, harmonic
extraction, refined extraction, Rayleigh–Ritz, subspace method, Saad’s theorem, Jacobi–Davidson.

AMS subject classifications. 65F15, 65F50, 15A18, 15A69

1. Introduction. We study harmonic and refined Rayleigh–Ritz techniques for
the multiparameter eigenvalue problem (MEP). For ease of presentation we will focus
on the two-parameter eigenvalue problem

A1x1 = λB1x1 + µC1x1,
(1.1)

A2x2 = λB2x2 + µC2x2,

for given n1 × n1 (real or complex) matrices A1, B1, C1, and n2 × n2 matrices A2,
B2, C2; we are interested in eigenpairs ((λ, µ), x1 ⊗ x2) where x1 and x2 have unit
norm. The approaches for general multiparameter eigenproblems will be straightfor-
ward generalizations of the two-parameter case.

Multiparameter eigenvalue problems of this kind arise in a variety of applications
[1], particularly in mathematical physics when the method of separation of variables
is used to solve boundary value problems [25]; see [10] for several other applications.

Two-parameter problems can be expressed as two coupled generalized eigenvalue
problems as follows. On the tensor product space Cn1 ⊗ Cn2 of dimension n1n2, one
defines the matrix determinants

∆0 = B1 ⊗ C2 − C1 ⊗B2,

∆1 = A1 ⊗ C2 − C1 ⊗A2,(1.2)
∆2 = B1 ⊗A2 −A1 ⊗B2.

The MEP is called right definite if all the Ai, Bi, Ci, i = 1, 2, are Hermitian and ∆0 is
(positive or negative) definite; in this case the eigenvalues are real and the eigenvectors
can be chosen to be real. The MEP is called nonsingular if ∆0 is nonsingular (without
further conditions on the Ai, Bi, Ci). A nonsingular two-parameter eigenvalue problem
is equivalent to the coupled generalized eigenvalue problems

∆1z = λ∆0z,
(1.3)

∆2z = µ∆0z,
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where z = x1⊗ x2, and ∆−1
0 ∆1 and ∆−1

0 ∆2 commute. Because of the product dimen-
sion n1n2, the multiparameter eigenvalue problem is a computationally quite challeng-
ing problem.

There exist several numerical methods for the MEP. Blum and colleagues [2, 3, 4],
Bohte [5], and Browne and Sleeman [6] proposed methods for computing one eigen-
value, hopefully the closest one to a given approximation. There are also methods
which determine all eigenvalues. The first class is formed by direct methods for right
definite MEPs [22, 13, 7] and for non right definite MEPs [10]; these methods are suit-
able for small (dense) matrices only since their complexity is O((mn)3). The second
class consists of continuation methods [21, 18, 19] that are asymptotically somewhat
cheaper than direct methods, but are so far often not very competitive for small prob-
lems in practice; for larger problems their computational cost is still enormous.

Fortunately, in applications often only a few relevant eigenpairs are of interest, for
instance those corresponding to the largest eigenvalues, or the eigenvalues closest to
a given target. Recently some subspace methods for the MEP have been proposed
[11, 10] that are suitable for finding some selected eigenpairs. These methods com-
bine a subspace approach with one of the mentioned dense methods as solver for the
projected MEP. The approaches are also suitable for multiparameter problems where
the matrices are large and sparse, although convergence to the wanted eigenpairs may
sometimes remain an issue of concern. In particular, in [11] it was observed that
finding interior eigenvalues was one of the challenges for the Jacobi–Davidson type
method. It was left as an open question how to generalize the harmonic Rayleigh–
Ritz approach for the MEP. This paper addresses this issue, and also introduces a
refined Ritz method.

The rest of the paper has been organized as follows. In Section 2 we review the
harmonic Rayleigh–Ritz method for the generalized eigenproblem, after which this
method is generalized for the MEP in Section 3. In Section 4 we present two Saad
type theorems for the standard and harmonic extraction. Section 5 proposes a refined
Rayleigh–Ritz method for the MEP. We conclude with experiments and a conclusion
in Sections 6 and 7.

2. Harmonic Rayleigh–Ritz for the generalized eigenvalue problem. We
first briefly review the harmonic Rayleigh–Ritz for the generalized eigenvalue problem

Ax = λBx.

Suppose we would like to compute an approximation (θ, u) to the eigenpair (λ, x),
where the approximate eigenvector u should be in a given search space Uk of low
dimension k, and θ should be in the neighborhood of the target τ ∈ C.

Since u ∈ Uk, we can write u = Ukc, where the columns of Uk form an orthonormal
basis for Uk, and c is a vector in Ck of unit norm. The standard Ritz–Galerkin
condition on the residual r is (cf. [17])

r := Au− θBu ⊥ Uk,

which implies that (θ, c) should be a primitive Ritz pair (terminology from Stew-
art [24]), an eigenpair of the projected generalized eigenproblem

U∗
kAUkc = θ U∗

kBUkc.
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It follows that if u∗Bu 6= 0, then θ = u∗Au
u∗Bu ; the case u∗Bu = 0 is an exceptional

case where the Ritz value is infinite (if u∗Au 6= 0) or undefined (if u∗Au = 0). If B
is Hermitian positive definite, then we can define the B−1-norm of the residual by
‖z‖2

B−1 = z∗B−1z, and one can show that this θ minimizes ‖r‖B−1 .
However, the problem with this standard Rayleigh–Ritz approach is that even if

there is a Ritz value θ ≈ τ , we do not have the guarantee that the two-norm ‖r‖
is small, which reflects the fact that the approximate eigenvector may be poor. As
a remedy, the harmonic Rayleigh–Ritz was proposed by Morgan [15], Paige, Parlett,
and Van der Vorst [16] for the standard eigenproblem, and by Stewart [24] for the
generalized eigenproblem; see also Fokkema, Sleijpen, and Van der Vorst [9]. Assuming
A− τB is nonsingular, the idea is to consider a spectral transformation

(2.1) (A− τB)−1Bx = (λ− τ)−1x.

Thus, the interior eigenvalues λ ≈ τ are exterior eigenvalues of (A−τB)−1B for which
a Galerkin condition usually works well in practice. To avoid working with (A−τB)−1,
the inverse of a large sparse matrix, we impose a Petrov–Galerkin condition

(A− τB)−1Bu− (θ − τ)−1u ⊥ (A− τB)∗(A− τB)Uk,

or, equivalently,

(2.2) Au− θBu = (A− τB)u− (θ − τ)Bu ⊥ (A− τB)Uk,

leading to the projected eigenproblem

(2.3) U∗
k (A− τB)∗(A− τB)Ukc = (θ − τ) U∗

k (A− τB)∗BUkc.

Here we are interested in the primitive harmonic Ritz pair(s) (θ, c) with θ closest to
τ . This approach has two motivations:

• if an exact eigenvector is in the search space, x = Ukc, then the eigenpair (λ, x)
satisfies (2.3) (this implies that exact eigenvectors in the search space will be
detected unless we are in the special circumstance of the presence of multiple
harmonic Ritz values);

• a harmonic Ritz pair (θ, u) satisfies [24]

‖Au− θBu‖ ≤ |θ − τ | · ‖Bu‖ ≤ |θ − τ | · ‖BUk‖

which motivates the choice of the harmonic Ritz value closest to τ .
The harmonic Rayleigh–Ritz approach was generalized for the polynomial eigenprob-
lem in [12].

3. Harmonic Rayleigh–Ritz for the multiparameter eigenvalue problem.
For the MEP (1.1) it is natural to make use of two search spaces, Uk and Vk, for the
vectors x and y, respectively. Let the columns of Uk and Vk form orthonormal bases
for Uk and Vk. We look for an approximate eigenpair ((θ, η), u⊗ v) ≈ ((λ, µ), x⊗ y),
where u ⊗ v is of the form Uc ⊗ V d, where both c, d ∈ Ck are of unit norm. The
standard extraction,

(A1 − θB1 − ηC1) Ukc ⊥ Uk,
(3.1)

(A2 − θB2 − ηC2) Vkd ⊥ Vk
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was introduced in [11]. As is also experienced for the standard eigenvalue problem, the
standard extraction for the MEP works well for exterior eigenvalues, but is generally
less favorable for interior ones [11].

Now suppose we are interested in a harmonic approach to better approximate
eigenpairs near the target (σ, τ). One obstacle is that MEPs do not seem to allow
for a straightforward generalization of the spectral transformation (2.1). Therefore we
generalize (2.2) and impose the two Galerkin conditions

(A1 − θB1 − ηC1) u ⊥ (A1 − σB1 − τC1)Uk,
(3.2)

(A2 − θB2 − ηC2) v ⊥ (A2 − σB2 − τC2)Vk,

or, equivalently,

(A1 − σB1 − τC1) Ukc− (θ − σ) B1Ukc− (η − τ) C1Ukc ⊥ (A1 − σB1 − τC1)Uk,

(A2 − σB2 − τC2) Vkd− (θ − σ) B2Vkd− (η − τ) C2Vkd ⊥ (A2 − σB2 − τC2)Vk.

We call this the harmonic Rayleigh–Ritz extraction for the MEP. Introduce the fol-
lowing reduced QR-decompositions

(3.3) (A1 − σB1 − τC1) Uk = Q1R1, (A2 − σB2 − τC2) Vk = Q2R2,

which we can compute incrementally, i.e., one column per step, during the subspace
method. This is done for computational efficiency, as well as stability: cross products
of the form (Ai−σBi− τCi)∗(Ai−σBi− τCi) with a potential high condition number
are avoided. Then, computationally, the extraction amounts to the projected two-
parameter eigenproblem

R1 c = (θ − σ) Q∗
1B1Ukc + (η − τ) Q∗

1C1Ukc,

R2 d = (θ − σ) Q∗
2B2Vkd + (η − τ) Q∗

2C2Vkd.

We now compute the smallest eigenpair(s) ((ξ1, ξ2), c ⊗ d) (in absolute value sense,
that is, with minimal |ξ1|2 + |ξ2|2) of the low-dimensional MEP

R1 c = ξ1 Q∗
1B1Ukc + ξ2 Q∗

1C1Ukc,
(3.4)

R2 d = ξ1 Q∗
2B2Vkd + ξ2 Q∗

2C2Vkd,

which can be solved by existing low-dimensional techniques as mentioned in the in-
troduction.

As in the case for the generalized eigenproblem, there are two justifications for the
harmonic approach for the MEP:

• we have the following upper bounds for the residual norms:

‖(A1 − σB1 − τC1) u‖ ≤ |ξ1| ‖B1u‖+ |ξ2| ‖C1u‖ ≤ |ξ1| ‖B1Uk‖+ |ξ2| ‖C1Uk‖,
‖(A2 − σB2 − τC2) v‖ ≤ |ξ1| ‖B2v‖+ |ξ2| ‖C2v‖ ≤ |ξ1| ‖B2Vk‖+ |ξ2| ‖C2Vk‖,

so to minimize the residual norms it is clear that it is sensible to select the
smallest (ξ1, ξ2);

• if the search spaces contain an eigenvector, x = Ukc, y = Vkd, then the pair
((λ, µ), x⊗ y) satisfies (3.2); this means that this pair is a harmonic Ritz pair
unless the harmonic Ritz value (θ, η) is not simple. We will prove a more
precise statement in the next section.

In conclusion, the harmonic approach for the MEP tries to combine two desirable
properties: it will generally find an exact eigenpair present in the search spaces, while
it will also try to detect approximate eigenpairs with small residual norm.
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4. Saad type theorems. In this section, we derive Saad type theorems for both
the standard and harmonic extraction for the MEP. This type of theorem expresses
the quality of the approximate vectors in terms of the quality of the search spaces.
The original theorem by Saad [20, Thm. 3.6] was for the standard extraction for the
standard Hermitian eigenvalue problem. A generalization for non-Hermitian matri-
ces and eigenspaces was given by Stewart [23], while an extension for the harmonic
extraction for the standard eigenvalue problem was presented by Chen and Jia [8].

4.1. Saad type theorem for the standard extraction. Let w := u ⊗ v be
a Ritz vector corresponding to Ritz value (θ, η), and [w W W⊥] be an orthonormal
basis for Cn1n2 such that

span([w W ]) = Uk ⊗ Vk.

Define, for i = 0, 1, 2,

(4.1) Ei = [w W ]∗∆i[w W ].

We assume that E0 is invertible, which is guaranteed if ∆0 is definite as in the case
of a right definite MEP. From (3.1) we have that the Ritz pairs are of the form
((θ, η), Ukc⊗ Vkd) where ((θ, η), c⊗ d) are the eigenvalues of

U∗
kA1Ukc = θ U∗

kB1Ukc + η U∗
kC1Ukc,

V ∗
k A2Vkd = θ V ∗

k B2Vkd + η V ∗
k C2Vkd.

The three matrix determinants of this projected MEP (cf. (1.2)) are of the form
Q∗EiQ, where Q is the orthonormal basis transformation matrix that maps Uk ⊗ Vk

coordinates to [w W ] coordinates: Q = [w W ]∗(Uk ⊗ Vk). For instance, we have

U∗
kB1Uk ⊗ V ∗

k C2Vk − U∗
kC1Uk ⊗ V ∗

k B2Vk = (Uk ⊗ Vk)∗∆0(Uk ⊗ Vk)
= Q∗[w W ]∗∆0[w W ]Q = Q∗E0Q.

Therefore, the components θj and ηj of the Ritz values (θj , ηj) are eigenvalues of

E−1
0 E1 and E−1

0 E2,

respectively (cf. (1.3)). In particular we know that

(E1 − θE0) e1 = 0

so E−1
0 E1 is of the form

(4.2) E−1
0 E1 =

[
θ f∗1
0 G1

]
,

where the precise expression for G1 is not so much of importance as well as the fact that
its eigenvalues are the k2−1 θj-values other than θ. (Here, “other than” is different
from “not equal to”: even if (θ, η) is not a multiple Ritz value, its first coordinate may
still be equal to the first coordinate of other Ritz values.) Similarly, E−1

0 E2 is of the
form

(4.3) E−1
0 E2 =

[
η f∗2
0 G2

]
,
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where the eigenvalues of G2 are the k2−1 ηj-values other than η. Using these quan-
tities, we can now prove the following theorem, which extends [20, Thm. 3.6], [23,
Thm. 2], and [8, Thm. 3].

Theorem 4.1. Let ((θ, η), u⊗ v) be a Ritz pair and ((λ, µ), x⊗ y) an eigenpair.
Let Ei = [w W ]∗∆i[w W ] for i = 0, 1, 2 and assume E−1

0 is invertible. Then

(4.4) ϕ(sin(u, x), sin(v, y)) ≤ min
{(

1 +
γ2

1

δ2
1

)
,

(
1 +

γ2
2

δ2
2

)}
· ϕ(sin(Uk, x), sin(Vk, y))

where

ϕ(a, b) = a2 + b2 − a2b2,

γ1 = ‖E−1
0 ‖ ‖PUk⊗Vk

(∆1 − λ∆0)(I − PUk⊗Vk
)‖,

γ2 = ‖E−1
0 ‖ ‖PUk⊗Vk

(∆2 − µ∆0)(I − PUk⊗Vk
)‖,

δ1 = σmin(G1 − λI) ≤ min
θj 6=θ

|θj − λ|,

δ2 = σmin(G2 − µI) ≤ min
ηj 6=η

|ηj − µ|,

(θj , ηj) range over all k2−1 Ritz values other than (θ, η), and PUk⊗Vk
is the orthogonal

projection onto Uk ⊗ Vk.
Proof. From ∆1z = λ∆0z we get with a change of variables

[w W W⊥]∗(∆1 − λ∆0)[w W W⊥][a1 a2 a3]T = 0,

where

[a1 a2 a3]T = [w W W⊥]∗z.

Writing out the first and second (block) equation gives

(E1 − λE0)
[

a1

a2

]
= −[w W ]∗(∆1 − λ∆0)W⊥a3.

Left-multiplying by E−1
0 and using (4.2) yield[

θ − λ f∗1
0 G1 − λI

] [
a1

a2

]
= −E−1

0 [w W ]∗(∆1 − λ∆0)W⊥ a3.

Hence,

σmin(G1 − λI) ‖a2‖ ≤ ‖(G1 − λI) a2‖
≤ ‖E−1

0 [w W ]∗(∆1 − λ∆0)W⊥ a3‖
≤ ‖E−1

0 ‖ ‖[w W ]∗(∆1 − λ∆0)W⊥‖ ‖a3‖.

This gives us the bound ‖a2‖ ≤ (γ1/δ1) ‖a3‖. Similarly, if we start from ∆2z = µ∆0z
and use (4.3), we eventually get the bound ‖a2‖ ≤ (γ2/δ2) ‖a3‖.
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Since ‖a‖ = 1, with some calculations we see that

‖a1‖2 = cos2(u, x) cos2(v, y),
‖a1‖2 + ‖a2‖2 = cos2(Uk, x) cos2(Vk, y),
‖a2‖2 + ‖a3‖2 = 1− cos2(u, x) cos2(v, y)

= sin2(u, x) + sin2(v, y)− sin2(u, x) sin2(v, y),
‖a3‖2 = 1− cos2(Uk, x) cos2(Vk, y)

= sin2(Uk, x) + sin2(Vk, y)− sin2(Uk, x) sin2(Vk, y).

The result now follows from substituting the bound for ‖a2‖ in terms of ‖a3‖ in the
expression ‖a2‖2 + ‖a3‖2.

The main significance of the theorem is the following. If both sin(Uk, x) → 0 and
sin(Vk, y) → 0, then the right-hand side of (4.4) goes to 0. Since ϕ is nonnegative on
the domain [−1, 1] × [−1, 1] and has has only one zero in the origin, we know that
both sin(u, x) → 0 and sin(v, y) → 0, so there is a Ritz vector u⊗ v converging to the
eigenvector x⊗ y—unless both δ1 and δ2 are zero, which means that (θ, η) must be a
multiple Ritz value.

Moreover, as expected, to have an exact eigenpair in the search spaces, we see that
it is generally not sufficient if just one of sin(Uk, x) and sin(Vk, y) tends to zero.

4.2. Saad type theorem for the harmonic extraction. We have a similar
theorem for the harmonic extraction, mutatis mutandis, which means that the har-
monic extraction is also asymptotically accurate. Define the quantities

Ãi = (Ai − σBi − τCi)∗Ai, ∆̃0 = B̃1 ⊗ C̃2 − C̃1 ⊗ B̃2,

B̃i = (Ai − σBi − τCi)∗Bi, ∆̃1 = Ã1 ⊗ C̃2 − C̃1 ⊗ Ã2,

C̃i = (Ai − σBi − τCi)∗Ci, ∆̃2 = B̃1 ⊗ Ã2 − Ã1 ⊗ B̃2.

Let w̃ := ũ ⊗ ṽ be a harmonic Ritz vector corresponding to the harmonic Ritz value
(θ̃, η̃), and let [w̃ W̃ W⊥] be an orthonormal basis for Cn1n2 such that span([w̃ W̃ ]) =
Uk ⊗ Vk.

Similar to (4.1), define, Ei = [w̃ W̃ ]∗∆̃i[w̃ W̃ ] for i = 0, 1, 2. Then the components
θ̃j and η̃j of the harmonic Ritz values (θ̃j , η̃j) are eigenvalues of Ẽ−1

0 Ẽ1 and Ẽ−1
0 Ẽ2,

respectively. Since (Ẽ1 − θ̃Ẽ0) e1 = 0 we know that Ẽ−1
0 Ẽ1 is of the form

Ẽ−1
0 Ẽ1 =

[
θ̃ f̃∗1
0 G̃1

]
,

where the eigenvalues of G̃1 are the k2−1 θ̃j-values other than θ̃. Similarly, Ẽ−1
0 Ẽ2 is

of the form

Ẽ−1
0 Ẽ2 =

[
η̃ f̃∗2
0 G̃2

]
,

where the eigenvalues of G̃2 are the k2−1 η̃j-values other than η̃. Analogous to The-
orem 4.1 we can prove the following result.
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Theorem 4.2. Let ((θ̃, η̃), ũ⊗ ṽ) be a harmonic Ritz pair and ((λ, µ), x⊗ y) be
an eigenpair. Let Ei = [w̃ W̃ ]∗∆i[w̃ W̃ ] for i = 0, 1, 2 and assume Ẽ−1

0 is invertible.
Then

ϕ(sin(ũ, x), sin(ṽ, y)) ≤ min

{(
1 +

γ̃2
1

δ̃2
1

)
,

(
1 +

γ̃2
2

δ̃2
2

)}
· ϕ(sin(Uk, x), sin(Vk, y))

where ϕ(a, b) is as before and

γ1 = ‖Ẽ−1
0 ‖ ‖PUk⊗Vk

(∆̃1 − λ∆̃0)(I − PUk⊗Vk
)‖,

γ2 = ‖Ẽ−1
0 ‖ ‖PUk⊗Vk

(∆̃2 − µ∆̃0)(I − PUk⊗Vk
)‖,

δ1 = σmin(G̃1 − λI) ≤ mineθj 6=eθ |θ̃j − λ|,

δ2 = σmin(G̃2 − µI) ≤ mineηj 6=eη |η̃j − µ|,

(θ̃j , η̃j) range over all k2 − 1 harmonic Ritz values other than (θ̃, η̃).
This means that if sin(Uk, x) → 0 and sin(Vk, y) → 0, then there is a Ritz vector

ũ ⊗ ṽ converging to the eigenvector x ⊗ y—unless (θ̃, η̃) is a multiple harmonic Ritz
value.

Comparing Theorems (4.1) and (4.2), we see that both the standard and harmonic
extraction are asymptotically accurate: up to multiple (harmonic) Ritz values, they
will recognize an eigenvector which is in the search space.

5. Refined extraction for the multiparameter problem. The refined ex-
traction is an alternative approach that minimizes the residual norm over a given
search space. It was popularized for the standard eigenvalue problem by Jia [14]. We
now generalize this approach for the MEP.

Given σ and τ , for instance a tensor Rayleigh quotient [18] of the form

σ =
(u⊗ v)∗∆1(u⊗ v)
(u⊗ v)∗∆0(u⊗ v)

=
(u∗A1u)(v∗C2v)− (u∗C1u)(v∗A2v)
(u∗B1u)(v∗C2v)− (u∗C1u)(v∗B2v)

,

(5.1)
τ =

(u⊗ v)∗∆2(u⊗ v)
(u⊗ v)∗∆0(u⊗ v)

=
(u∗B1u)(v∗A2v)− (u∗A1u)(v∗B2v)
(u∗B1u)(v∗C2v)− (u∗C1u)(v∗B2v)

,

or a target, the refined extraction determines an approximate eigenvector û ⊗ v̂ by
minimizing the residual norms over Uk and Vk, respectively:

û = argmin
u∈Uk, ‖u‖=1

‖(A1 − σB1 − τC1) u‖,
(5.2)

v̂ = argmin
v∈Vk, ‖v‖=1

‖(A2 − σB2 − τC2) v‖.

In practice, it is often sensible to take the target in the beginning of the process, and
switch to the Rayleigh quotient when the residual norm is under a certain threshold,
because this indicated that the Rayleigh quotient is of sufficient quality. Computation-
ally, (5.2) is best determined by two incremental QR-decompositions (3.3), followed
by singular value decompositions of R1 and R2.

The following theorem is a generalization of [24, Thm. 4.10].
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Theorem 5.1. For the residuals of the refined Ritz vector (5.2) we have

‖(A1 − σB1 − τC1) û‖ ≤ |λ− σ| ‖B1‖+ |µ− τ | ‖C1‖+ ‖(A1 − σB1 − τC1)‖ sin(Uk, x)√
1− sin2(Uk, x)

,

‖(A2 − σB2 − τC2) v̂‖ ≤ |λ− σ| ‖B2‖+ |µ− τ | ‖C2‖+ ‖(A2 − σB2 − τC2)‖ sin(Vk, y)√
1− sin2(Vk, y)

.

Proof. Decompose x = γUxU + σUeU , where xU := UU∗x / ‖UU∗x‖ is the orthog-
onal projection of x onto U , ‖xU‖ = ‖eU‖ = 1, γU = cos(Uk, x), and σU = sin(Uk, x).
Since xU = (x− σUeU )/γU , we have by the definition of a refined Ritz vector (5.2)

‖(A1 − σB1 − τC1) û‖ ≤ ‖(A1 − σB1 − τC1) xU‖
≤ ‖(λ− σ)B1x + (µ− τ)C1x + σU (A1 − σB1 − τC1) eU‖/γU ,

from which the first result follows. The derivation of the second result is similar.

Similar to the refined extraction for the standard eigenvalue problem we see that, in
contrast to the situation for the standard and harmonic extraction methods (Theo-
rems 4.1 and 4.2), the conditions sin(Uk, x) → 0 and sin(Vk, y) → 0 are no longer
sufficient for convergence of the refined vectors to eigenvectors; we also need σ → λ
and τ → µ.

In principle we may vary σ and τ during the process, but this is computationally
more expensive, since each change makes the computation of new QR-decompositions
(3.3) necessary. This may make the refined approach less attractive in practice.

Additionally, the refined extraction seems to be not tailored for computing more
than one eigenpair. The reason for this is that this extraction, in contrast to the
standard and harmonic variants, renders only one approximate eigenvector. (In prin-
ciple we can do (5.2) for multiple shifts, but this is computationally unattractive.) In
the MEP, a standard deflation technique is not feasible [11, 10]. Avoiding previously
computed eigenvectors is ensured by examining their angles with new potential ap-
proximate vectors. However, this selection principle seems unsuitable for combination
with the principle of the refined extraction.

We note that the refined extraction for the MEP shares this disadvantage with the
refined extraction for the polynomial eigenproblem [12] because of related deflation
issues. The refined extraction for the standard and generalized eigenproblem do not
suffer from this problem.

For the reasons mentioned above, we will exclude the refined approach from the
numerical experiments in the next section.

6. Numerical experiments. The numerical results in this section were obtained
with Matlab 7.0.

Experiment 6.1. In the first example we consider a random right definite two-
parameter eigenvalue problems with known eigenpairs, which enables us to check the
obtained results. We take the matrices

(6.1) Ai = SiFiS
∗
i , Bi = SiGiS

∗
i , Ci = SiHiS

∗
i ,

where Fi, Gi, and Hi are diagonal matrices and Si are banded matrices generated
in Matlab by 2*speye(1000)+triu(tril(sprandn(1000,1000,d),b),-b), where d
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is the density and b is the bandwidth for i = 1, 2. We select the diagonal elements of
F1, F2, G2, and H1 as normally distributed random numbers with mean zero, variance
one and standard deviation one, and the diagonal elements of G1 and H2 as normally
distributed random numbers with mean 5, variance one and standard deviation one.
In this way, the problem is right definite and the eigenvalues can be computed exactly
from diagonal elements of Fi, Gi, and Hi, see [11] for details.

We are interested in approximating the innermost eigenpair ((λ, µ), x⊗y), i.e., the
pair of which the eigenvalue (λ, µ) is closest to the arithmetic mean of the eigenvalues.
For the search subspace U1 we take the span of x̃, which is a perturbation of the
eigenvector component x, and nine additional random vectors. The search space U2

is formed similarly.
We test with different perturbations which affect the quality of the 10-dimensional

search spaces U1 and U2. We compare the approximations for the innermost eigenpair
obtained from the Ritz extraction and the harmonic Ritz extraction. The results are
in Table 6.1. Let (θ, η) be a standard or harmonic Ritz value that approximates (λ, µ)
and let U1c1⊗U2c2 be the corresponding standard or harmonic Ritz vector, where the
orthogonal columns of Ui span Ui for i = 1, 2. The rows in Table 6.1 are:

• subspace: ∠(x ⊗ y, U1 ⊗ U2), the angle between the exact eigenvector x ⊗ y
and the search subspace U1 ⊗ U2; this quantity indicates the best result any
extraction method can obtain.

• vector : ∠(U1c1⊗U2c2, x⊗y), the angle between the exact eigenvector and the
(harmonic) Ritz vector.

• residual : the norm of the associated residual(
‖(A1 − θB1 − ηC1)U1c1‖2

2 + ‖(A2 − θB2 − ηC2)U2c2‖2
2

)1/2
.

• value: (|λ−θ|2 + |µ−η|2)1/2, the difference between the (harmonic) Ritz value
(θ, η) and the exact eigenvalue (λ, µ).

• RQ value: the difference between the tensor Rayleigh quotient (5.1) of the
standard or harmonic Ritz vector and the exact eigenvalue (λ, µ).

• RQ residual : the norm of the residual(
‖(A1 − θ̃B1 − η̃C1)U1c1‖2

2 + ‖(A2 − θ̃B2 − η̃C2)U2c2‖2
2

)1/2
,

where we take the tensor Rayleigh quotient instead of the (harmonic) Ritz
value.

Table 6.1
A comparison of the Ritz and harmonic Ritz extraction from three different subspaces for a right

definite two-parameter eigenvalue problem.

subspace=3.6e-3 subspace=4.0e-5 subspace=4.2e-7

Ritz harmonic Ritz harmonic Ritz harmonic

vector 1.9e-2 4.4e-3 3.7e-4 4.2e-5 1.6e-6 4.3e-7
value 1.2e-5 2.0e-2 1.2e-8 4.0e-5 2.5e-14 1.4e-8
residual 1.4e-1 1.8e-1 2.6e-3 4.2e-4 1.2e-5 3.0e-6
RQ value 1.2e-5 4.6e-6 1.2e-8 8.8e-9 2.5e-14 1.5e-14
RQ residual 1.4e-1 3.4e-2 2.6e-3 3.9e-4 1.2e-5 3.0e-6

From Table 6.1 we see that the harmonic extraction returns eigenvector approxima-
tions that are almost optimal, i.e., they are very close to the orthogonal projections
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of the exact eigenvectors onto the search subspace. On the other hand, as is also
usual for the standard eigenvalue problem, the harmonic Ritz values are less favorable
approximations to the exact eigenvalues than the Ritz values. However, if we use
the harmonic Ritz vector with its tensor Rayleigh quotient as approximation to the
eigenvalue, we get better approximations and smaller residuals than in the standard
extraction.

Experiment 6.2. In the second example we take a random non right definite
two-parameter eigenvalue problem of the same dimensions as in Example 6.1. Here
we select the diagonal elements of F1, F2, G1, G2, H1, and H2 as complex numbers
where both the real and the imaginary part are uniformly distributed random numbers
from the interval (−0.5, 0.5).

Table 6.2 contains the results of similar numerical experiments as in Example 6.1.

Table 6.2
A comparison of the Ritz and harmonic Ritz extraction from three different subspaces for a non

right definite two-parameter eigenvalue problem.

subspace=2.6e-3 subspace=4.8e-5 subspace=5.0e-7

Ritz harmonic Ritz harmonic Ritz harmonic

vector 7.4e-3 2.6e-3 1.8e-4 4.9e-5 1.0e-5 5.1e-7
value 2.7e-3 1.5e-4 4.9e-5 4.7e-6 1.4e-6 4.1e-8
residual 1.8e-2 5.8e-3 4.5e-4 1.3e-4 2.9e-5 1.5e-6
RQ value 2.7e-3 3.0e-3 4.9e-5 3.8e-5 1.4e-6 1.6e-6
RQ residual 1.8e-2 7.5e-3 4.5e-4 1.3e-4 2.9e-5 3.1e-6

As in the previous example, the harmonic extraction returns almost optimal eigen-
vector approximations which are clearly better than the results of the standard ex-
traction. Since this problem is non right definite, the error in the tensor Rayleigh
quotient is linear in the eigenvector approximation error, compared to quadratic for
the right definite problem in the previous example; see [11].

Experiment 6.3. We take the right definite examples from Example 6.1 with
density d = 0.01 and bandwidth b = 80. We compare the eigenvalues obtained by
the Jacobi-Davidson method [11] where we apply the standard and harmonic Ritz
extraction, respectively. We start with the same initial vectors and we test various
numbers of inner GMRES steps for approximately solving the correction equation. We
use the second order correction equation with the oblique projections, for the details
see [11]. The maximum dimension of the search spaces is 14, after which we restart
with three-dimensional spaces.

For the target (σ, τ) we take the arithmetic mean of the eigenvalues. In the extrac-
tion phase the standard or harmonic Ritz value is selected that is closest to a given
target. Subsequently, we take the corresponding eigenvector approximation and take
its tensor Rayleigh quotient as an approximate eigenvalue. As one can see in Examples
6.1 and 6.2, this gives a better approximation for the eigenvalue when we use the har-
monic extraction, whereas it–naturally–does not change the eigenvalue approximation
in the Ritz extraction.

We compute 100 eigenvalues, where we note that with a total number of 106

eigenvalues this problem cannot be considered a toy problem. The criterion for the
convergence is that the norm of the residual is below 5 · 10−7. In the correction
equation we use preconditioning with an incomplete LU factorization of the matrix
Ai − σBi − τCi with a drop tolerance 10−3 for i = 1, 2.
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The values in Table 6.3 are:
• iter : the number of outer iterations,
• time: time in seconds,
• in 50, in 100 : the number of the computed eigenvalues that are among the 50

and 100 closest eigenvalues to the target, respectively.

Table 6.3
Comparison of the standard and harmonic Ritz extraction for the JD type method for a right

definite two-parameter eigenvalue problem.

Ritz extraction Harmonic Ritz extraction

GMRES iter time in 50 in 100 iter time in 50 in 100

4 2270 373 50 96 917 234 50 96
8 913 191 50 98 379 118 50 97

16 370 99 50 93 179 72 46 80
32 278 107 50 98 140 76 50 88
64 305 129 50 92 131 86 49 85

The results in Table 6.3 show that the harmonic Ritz extraction is faster and only
slightly less accurate than the Ritz extraction. Solving the projected problems is more
expensive for the harmonic Ritz extraction because they are not right definite, which
is in contrast to the projected problems in the standard Ritz extraction. However,
as the harmonic Ritz extraction requires far fewer outer iterations, it computes the
eigenvalues faster than the standard extraction. On the other hand, the standard Ritz
extraction returns a bit more accurate results, for instance, in all cases we get all 50
closest eigenvalues to the target. Both methods are suitable for this right definite
two-parameter eigenvalue problem and based on the results we give the harmonic Ritz
extraction a slight preference over the Ritz extraction.

As one can see in the next example, the difference between the Ritz and the
harmonic extraction may be much more in favor of the harmonic Ritz extraction
when we consider a non definite two-parameter eigenvalue problem.

Experiment 6.4. In this example we take a random non right definite two-
parameter eigenvalue problem with matrices of size 1000 × 1000 from Example 6.2.
We perform similar experiments as in Example 6.3, the only difference is that now
we use the two-sided Ritz extraction as well. As discussed in [10], this is a natural
approach when we have a non definite two-parameter eigenvalue problem.

We limit the computation to 2500 outer iterations or to 50 extracted eigenvalues.
Neither the one-sided standard nor the two-sided standard Ritz extraction is able
to compute the required number of eigenvalues in the prescribed number of outer
iterations. This is not an issue for the harmonic Ritz extraction which is a clear
winner in this example. The results are presented in Table 6.4.

Figure 6.1 shows the convergence graphs for the two-sided Ritz extraction (a) and
the harmonic extraction (b) for the first 50 outer iterations, in both cases we take 2
GMRES steps in the inner iteration. One can see that the convergence is more erratic
when we use the standard extraction and smoother (almost monotonous) if we use the
harmonic extraction.

Experiment 6.5. Using the same non right definite problem as in Example 6.3
we test how many eigenvalues can we extract with a limited number of matrix-vector
multiplications, i.e., we fix the product of inner and outer iterations. The limit is 3200.

The results in Table 6.5 show that for a low number of inner iterations we get
12



Table 6.4
Comparison of one-sided Ritz, two-sided Ritz, and harmonic extraction methods for the JD type

method for a non right definite two-parameter eigenvalue problem.

One-sided Ritz Two-sided Ritz Harmonic Ritz

GMRES eigs in 10 in 30 eigs in 10 in 30 iter time in 10 in 30 in 50

4 9 9 9 8 8 8 594 286 10 30 47
8 17 10 17 12 9 12 226 127 10 30 46

16 19 10 19 19 10 19 106 79 10 30 44
32 20 10 20 22 10 22 89 97 10 29 40
64 22 10 22 30 10 29 93 136 10 28 40
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Fig. 6.1. Comparison of convergence using the two-sided Ritz extraction (a) and the harmonic
extraction (b)

fewer eigenvalues and spend more time, but the possibility to compute an unwanted
eigenvalue is smaller. If we use more inner iterations we get many unwanted eigenval-
ues, but spend less time. The optimal combination is to take a moderate number of
inner iterations, in this example this would be between 16 and 32 inner steps.

Besides the matrix-vector multiplications, the most time consuming operation is to
solve the projected low-dimensional two-parameter eigenvalue problem in each outer
step. If the search spaces are of size k, then we needO(k6) flops to solve these projected
problems. Since this is relatively expensive compared to the work for the matrix-vector
multiplications, it is a good idea to use several GMRES steps (but not too many to
avoid convergence to an unwanted eigenvalue) to try to reduce the number of outer
iterations.

Experiment 6.6. In this example we take a non right definite two-parameter
eigenvalue problem where Ai, Bi, and Ci are random complex banded matrices of size
500× 500 generated by the Matlab commands

M=sparse(triu(tril(randn(500)+i*randn(500),5),-5));

where M is respectively equal to A1, B1, C1, A2, B2, and C2.
We look for the eigenvalues closest to the origin and for a preconditioner we take

Mi = Ai for i = 1, 2. We limit the computation to 1000 outer iteration or 15 extracted
eigenvalues.

From the results in Table 6.6 one can see that the harmonic extraction clearly
extracts more eigenvalues than the Ritz extraction. Both the one-sided and the two-
sided standard Ritz extraction fail to compute 15 eigenvalues in 1000 outer iterations;
therefore, the number of iterations is displayed only for the harmonic extraction, the
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Table 6.5
Eigenvalues obtained using the harmonic extraction and 3200 inner iterations.

GMRES all in 25 in 50 time (sec)

4 59 25 50 381
8 68 25 50 231

16 75 25 49 154
32 52 24 40 97
64 24 18 21 63

Table 6.6
Comparison of Ritz and harmonic extraction for a non right definite two-parameter eigenvalue

problem.

One-sided Ritz extraction Two-sided Ritz extraction Harmonic Ritz extraction

GMRES eigs time in 5 eigs time in 5 iter time in 5 in 10

4 0 417 0 3 552 3 657 282 5 10
8 0 475 0 3 697 3 645 331 3 8

16 1 648 1 4 1016 4 292 195 5 8
32 0 745 0 3 1552 3 236 246 4 7
64 0 1065 0 3 1799 4 165 269 2 6

number of iterations for both the one-sided and two-sided Ritz extraction is 1000. The
one-sided Ritz extraction is particularly poor in view of the fact that it manages to
compute only one eigenvalue in five examples. The two-sided Ritz extraction computes
more eigenvalues, but falls considerably short of the required 15. For this example the
harmonic extraction is clearly the suggested method.

Experiment 6.7. We take the two-parameter eigenvalue problem from Example
8.4 in [10]. The problem is non right definite and the matrices are of size 1000× 1000.
We used this problem in [10] to demonstrate that the two-sided Ritz extraction may
give better results than the one-sided Ritz extraction. We limit the computation to
500 outer iteration or 30 extracted eigenvalues. For the target we take the arithmetic
mean of the eigenvalues.

The results in Table 6.7 show that the harmonic extraction is a substantial im-
provement to the standard Ritz extraction. As in the previous example, both the
one-sided and two-sided Ritz extraction fail to compute the required number of eigen-
values in the available number of outer iterations. The number of iterations is displayed
in Table 6.7 only for the harmonic extraction, the number of iterations for one-sided
and two-sided Ritz extraction is 500.

Table 6.7
Comparison of Ritz and harmonic extraction for a non right definite two-parameter eigenvalue

problem.

One-sided Ritz extraction Two-sided Ritz extraction Harmonic Ritz extraction

GMRES eigs time in 10 eigs time in 10 iter time in 10 in 20

10 11 659 4 15 1022 6 116 280 10 17
20 11 942 4 21 1533 9 95 305 10 18
30 10 1143 3 20 2062 8 110 399 10 19

7. Conclusions. It was observed in [11] that the multiparameter eigenvalue prob-
lem is a challenge, especially with respect to the task of finding interior eigenvalues.
The concept of a harmonic extraction technique for the MEP was left as an open
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question, and dealt with in this paper. We have seen that, although there seems to
be no straightforward generalization of a spectral transformation (2.1) for the MEP,
the harmonic approach can be generalized to the MEP, with a corresponding elegant
and intuitive generalization of Saad’s theorem. We also gave a generalization of the
refined extraction, which seems to be less suited for this problem.

Based on the theory and the numerical results, our recommendations for the nu-
merical computation of interior eigenvalues of a MEP are the following. For right
definite MEPs we use the one-sided Jacobi–Davidson method [11] for the subspace ex-
pansion. The harmonic extraction presented in this paper is at least very competitive
with the standard extraction described in [11].

For non right definite problems, the one-sided approach [11] combined with the
harmonic extraction, described in this paper, is both faster and more accurate than
the two-sided approach proposed in [10], which on its turn is more accurate than the
one-sided approach with standard extraction [11].

It is important to realize that for the MEP solving the projected problems is itself
already a computationally non-negligible task in view of the O(k6) costs. Therefore
it is advisable to invest in solving the correction equations relatively accurately to
minimize these costs. Hence, although just a few steps of GMRES may give more
accurate results because we compute fewer unwanted eigenpairs, this may be much
more time demanding.

For exterior eigenvalues we opt for the standard Ritz extraction, combined with a
one-sided approach for right definite MEPs [11], or a two-sided approach for non right
definite MEPs [10].

Finally, we remark that a two-sided harmonic approach is possible, but much less
effective since the correspondence between right and left approximate eigenvectors is
lost; we will not go into further details. The methods in this paper can be generalized
to MEPs with more than two parameters in a straightforward way.
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