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Summary. Adaptive stepsize control is used to control the local errors of the nu
merical solution. For optimization purposes smoother stepsize controllers are wanted,
such that the errors and stepsizes also behave smoothly. We consider approaches
from digital linear control theory applied to multistep BDF-methods.
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1 Introduction to error control

'Transient simulation of electrical circuits is done by integration of the following
implicit Differential-Algebraic Equation

~ [q(t, x)] + j(t, x) = 0, j(O, x(O)) = 0, (1)

(2)

where q,j : jR x jRn -t jRn are nonlinear functions, that represent the charges
and currents in the circuit, while x is the state vector. Because the BDF
multistep-methods are the default methods used by analog circuit simulators,
we will concentrate on these methods. While Runge Kutta methods often
contain an embedded reference method to estimate the local error, for the
k-step BDF-method this can be done by means of the prediction qn which is
based on the extrapolation ofthe previous k +1 values of q. For the time-grid
{ti, i = 0, ... , N} with timesteps hi = t i - ti-l we obtain the estimate

rn = t
n

_ ~:-k-l Ilq(tn,x n ) - qnll·

If this estimate rn is larger than a given tolerance level TOL, the current step
is rejected. Otherwise, the solution X n is accepted and the next numerical
solution can be computed at a new timepoint.



(3)

2 A. Verhoeven, T.G.J. Beelen, M.L.J. Hautus, and E.J.W. ter Maten

The following stepsize controller is very commonly used for integration
methods of order p:

(
t )Phhn = -,- hn-l,

Tn -l

where t = e TOL. It is based on the assumption that the error estimate
satisfies the model

(4)

where 'Pn is an unknown variable which is independent of hn • This model is
a good description for onestep methods and also a first order approximation
for the BDF-methods.

However, it appears that the controller from eqn. (3) may produce rather
irregular error and stepsize sequences, which will decrease the effectiveness in
optimization.

2 Control-theoretic approach to stepsize control

It is possible to use control-theoretic techniques for error control. In [2] this
idea has been applied to onestep methods where we have the simple model of
eqn. (4). The logarithmic version of the onestep error model is

logfn = (p + 1) log hn + log<Pn. (5)

Indeed, this implies that the sequence logf = {logfn}nEN can be viewed
as the output of a digital (i.e. discrete) linear control system, where log h =
{log hn}nEN is the input signal and log <P = {log <Pn}nEN is an unknown output
disturbance. In general, one can denote all finite linear models for log f by

logr = G(q) log h + log<p, (6)

(7)

where q is the shift-operator, with q(log hn ) = log hn+1 and G(q) being a
rational function of q:

L(q) AOqM + ... + AM
G(q) = K(q) = qM + K1qM-l +... +KM .

For the onestep model (5), we have G(q) = p+ 1. The input log h is computed
on base of the previous values of the output log r and the reference log t.

All linear controllers can be denoted by

logh = C(q)(logt -logr),

where C(q) is a rational function of q:

C(q) = B(q) = (30qN-l + ... + (3N-l .
A(q) qN + a1qN-l +... +aN

For the controller (3) we just have that C(q) = ptl q':'l .

(8)

(9)
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3 Derivation of process model for BDF-methods

Unfortunately, for the multistep BDF-methods, it is not possible to derive
a linear model of the form of eqn. (6). In this case, we have the following
nonlinear model for log r
logrn = 2log hn+log(hn- I +hn)+ .. ·+log(hn-p+l + .. ·+hn)+log epn -logp!.

(10)
Note that log rn also depends on the previous stepsizes, because it is a mul
tistep method. In [5] it is tried to approximate this model by the previous
model for onestep methods. If the stepsizes only have small variations, also
linearization can be used [1]. In [3] it is proved that the linearized model is
equal to

p-I

logrn = l:(-yp - '/'k) loghn-k + logepn,
k=O

k 1
'/'0 = -1,'/'k = l: -.

m=1 m
(11)

This model can also be cast in the form of eqn. (6), where

G(q) = (1 + '/'p)qP-1 + (-yp - ,/,1)q:-2 + ... + (-yp - ,/,p-d . (12)
qP-

4 Design of finite order digital linear stepsize controller

Consider the error model in eqn. (6), which is controlled by the linear con
troller (8). It is assumed that G(q) is already be known, while C(q) still must
be designed. Now, the closed loop dynamics are described by the following
equations:

{
log h = Ur(q) log € + Uw(q) logep, (13)
logr = Yr(q)log€+ Yw(q)logep.

where by (7), (9) the transfer functions satisfy

Ur(q) = A(q):(~)lJ~q~)L(q)' Uw(q) = A(q)Kfq()~~f:~L(q)' (14)

Yr(q) = A(q)~qj:B(q)L(q)' Yw(q) = A(q):«(q)):~(~)L(q)'

Thus, the poles of the system are determined by the N + M roots of the
characteristic equation

R(q) == A(q)K(q) + B(q)L(q) = O.

If the poles lay inside the complex unity circle, the closed loop system is
stable. Suitable choices are R(q) = (q - r)N+M or R(q) = qN+M - rN+M

for r E [0,1) [3]. Assume that A(q),B(q) can be factorized like A(q) = (q
I)PA(q+ I)PRA(q) and B(q) = (q+ I)PF 13(q). Then, the order of adaptivity is
equal to PA, while the stepsize and error filter orders are PR and PF [2]. The
coefficients of A, 13 can be computed from

(q -1)PA(q + I)PR A(q)K(q) + (q + I)PF 13(q)L(q) = R(q). (15)
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5 Numerical experiments

Consider the circuit which corresponding equations are given by:

Parameters Value
Wl 1.Q.1I" .103

W2 111" .103
4

R 10
C 10-3

R l 1
R2 1

A transient simulation along [0, 0.08] is computed by a circuit simulator, while
several stepsize controllers are used. Because the theory only holds for fixed
integration order, the integration order is kept fixed at P = 3. By default, the
simulator uses the controller of eqn. (3) with a buffer such that the stepsize
remains constant for small variations (case 1). This control action is removed
for the other cases, because it destroys the characteristic behaviour of the
designed controller. For all controllers we have R(q) = (q - r)N+M. The
smoothness of the stepsize and error sequence is quantified by the number

s(x) = '/L~=l (xm - xm -t}2/lIxIl2' Table 1 shows the results of the several
testcases. For this circuit case 4 produces the smoothest results. Note at the
decline of the number of rejections for the cases 1,2 and 6 with PA = 1 and
PF = PR = O. Figure 1 shows the results for cases 1 and 4.

Table 1. Numerical results

caseiN M PA PF PR rl# stepsizes #rejections =!!t Net~On s(1ogf) s(logh)
1 era IOns

1 1 0 1 0 0 0 1258 222 1480 1.17 0.57
2 1 0 1 0 0 1 1277 198 1475 0.82 0.38"2
3 2 0 2 0 0 1 990 609 1599 1.14 0.83

f4 2 0 1 1 0 f 1053 0 1053 0.57 0.10
5 2 0 1 0 1 ¥ 1198 0 1198 0.75 0.22
6 3 2 1 0 0 "2 1015 0 1015 1.01 0.32

An important question is whether the new designed controllers also have
a better performance if variable order is used. For many tested cases it was
possible to get smoother results for a slightly increased or even decreased
computational effort [3].



Case 1: error sequence
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Case 4: error sequence

o 500 1000 o 500 1000

Fig. 1. Results of error sequences for cases 1 and 4 in Table 1.

6 Conclusions

If the error model is linear, control theory can indeed improve the smoothness
of the results. For multistep BDF-methods applied to smooth problems, where
the stepsizes have small variations, the linearized model works well. For more
stiff problems it is better to use the onestep model.

The process model depends on the integration order. The designed con
trollers are also applicable to variable integration order. From the experiments
it turns out that it is not attractive to use higher order adaptive controllers,
while filtering can be attractive.
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