

Explicit substitution : on the edge of strong normalisation

Citation for published version (APA):
Bloo, C. J., & Geuvers, J. H. (1996). Explicit substitution : on the edge of strong normalisation. (Computing
science reports; Vol. 9610). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/5bc4ad84-172c-416b-88a1-1f9611ecdd2e

Eindhoven University of Technology
Department of Mathematics and Computing Science

Explicit Substitution: on the Edge of Strong Normalisation

ISSN 0926-4515

All rights reserved
editors: prof.dr. R.C. Backhouse

prof.dr. J .C.M. Baeten

Reports are available at:
http://www.win.tue.nllwin/cs

by

R. Bloo and H. Geuvers

Computing Science Report 9611 0
Eindhoven, April 1996

96110

Explicit Substitution: on the Edge of Strong Normalisation

1 Abstract

Roel Bloo'
bloo@win.tue.nl

Herman Geuvers
herman@win.tue.nl

We use the Recursive Path Ordering (RPO) technique of semantic labelling to show the Preser
vation of Strong Normalisation (PSN) property for several calculi of explicit substitution. Preser
vation of Strong Normalisation states that if a term M is strongly normalizing under ordinary
,B-reduction (using 'global' substitutions), then it is strongly normalizing if the substitution is
made explicit (,local'). There are different ways of making global substitution explicit and PSN
is a quite natural and desirable property for the explicit substitution calculus. OUf method for
proving PSN is very general and applies to several known systems of explicit substitutions: AV of
Lescanne et al., AS of Kamareddine and RiDs and AX of Rose and Bloc.

Keywords: lambda-calculus, explicit substitution, recursive path order.

2 Introduction

Explicit Substitution was first studied by Abadi, Cardelli, Curien and Levy in [Abadi et al. 90].
They proposed a calculus AO" of explicit substitutions which can compose substitutions. Mellies
has shown that simply typable terms can have infinite reduction paths in AO" ([Mellies 95]). Sev
eral people (see [BBLR 95]'[Bloo & Rose 95]'[Bloo 95]'[Kamareddine & Rios 95]) have succeeded
in giving calculi of explicit substitutions which have the nice property that every term which
is strongly normalising for J1-reduction is also strongly normalising in the explicit substitution
calculus. We call this property: PSN (Preservation of Strong Normalisation).

In this paper we present a method to prove PSN for explicit substitution calculi based on
the recursive path order. Zantema used the recursive path order to show termination of the
substitution part of AO" [Zantema 94]' but the technique he used doesn't apply to show PSN. We
use a stronger technique called semantic labelling [Ferreira & Zantema 94] to show PSN for all
explicit substitution calculi known to have the PSN property. We also show why our method
doesn't work for AO". Our technique relies on introducing a first order term rewrite system where
function symbols for application and substitution are labeled with natural numbers and where
variables are represented by just one constant *. The recursive path order >rpo on this labelled
calculus is strongly normalising (or: terminating).

Then we take a look at the explicit substitution calculus Ax. The J1-reduction is here split up
into a reduction step ~Beta (contracting the tJ-redex and creating an explicit substitution) and
reduction steps ---+x (moving the explicit substitutions through the term to perform the substitu
tion). It is relatively easy (as usual in these calculi) to observe that ~x is strongly normalising
and confluent.

Now~and this is a crucial point in the proof of PSN-we take a look at the terms in AX of
which the substitution normal form of all of its subterms is J1-SN; we call this set AX<=. (The
substitution normal form of a term M is obtained by evaluating all the explicit substitutions in
M, not contracting any f3-redexes. That is, we take the ~x-normal-form of M.) We then define a
translation T from AX<= into the set of labelled terms. This translation T is reduction preserving

·address of both authors: Eindhoven University of Technology, P.O.Box 513, NL-5600 MB Eindhoven.

1

in the sense that, if M ->x N, then T(M) >,po T(N) or T(M) = T(N) and if M ->B,ta N, then
T(M) >,po T(N). Hence, using the fact that ->x is strongly normalizing, we conclude that every
M E AX<oo is strongly normalizing. So, AX has the PSN property (because every A-term that is
JJ-strongly-normalizing is an element ofAx<OO).

For those more familiar with the RPO technique in the way it has been presented in [Klop 92],
we also present, in the final section) a translation from AX<co to commutative labelled trees. This
translation is also reduction preserving in the same sense as just discussed. This gives a slightly
different way of obtaining the PSN property for AX.

To show the flexibility of our proof method we use it for different calculi of explicit substitution.
We start off with a calculus where we use named variables (different from, e.g. [Abadi et al. 90],
where de Bruijn-indices are used). We have chosen to use named variables because this makes the
presentation slightly more perspicuous. Moreover 1 it makes it easier to single out the places where
the difficulties arise in the calculus of [Abadi et al. 90]. We also apply our proof method to the
calculi AV of Lescanne et al. and AS of Kamareddine and Rios.

3 A calculus for explicit substitutions with named variables

In the standard definition of the untyped lambda calculus, substitution is a meta-operation, usually
denoted by [x:=N] or [N/x], where x is a variable and N a term. In the following we use the
notation [N/x] for a (global) substitution of N for x. For M and N terms and x, y distinct
variables, the term M[N/x] is then defined by structural induction as follows.

x[N/x]

y[N /x]

(PQ)[N/x]

(Ay.P)[N/x]

(kP)[N /x] .-

N,

y,ify'tx,

P[N /x]Q[N/x],

Ay'.P[y' /y][N Ix], if 11' j! FV(N) U {x} U (FV(P) \ {y})

AX.P.

We assume the notions of free variable (FV) and bound variable (BV) to be known. Furthermore, = denotes syntactical equality modulo a-conversion, which is defined as the smallest equivalence
relation such that

P == Nand Q == M => PQ == N M,

P==Q,yj!FV(Q)\{x} => AX.P==Ay.Q[y/x].

In the definition of substitution, there is a choice for the variable y'. For this definition to
make sense, it has to be shown that the specific choice for the variable y' is irrelevant. But this is
a consequence of the definition of == and the following Lemma.

Lemma 3.1 If P == Q and M == N, then P[M/x] == Q[N/x].

In order to get a calculus AX of explicit substitutions, two extensions have to be made. The
first is extending the terms with substitutions:

Definition 3.2 The set of terms AX is defined by the following abstract syntax:

A ::= x I AA I Ax.A I A(x:=A)

Where x denotes an arbitrary variable.
Substitution is defined on Ax-terms as for A-terms but with the extra clauses that

M(y:=P}[N/x] == M[y' /y][N/x](y':=P[N/x])ify' j! FV(N) U {x} U (FV(M) \ {y})

2

M(x:=P)[N/x]: M(x:=P[N/x]}

a-equivalence is defined on Ax-terms as for A-terms but with the extra clause that

M: N,P: Q,yrt- FV(Q)\ {x} =} P(x:=M) :Q[y/x](y:=N)

A E Ax is called pure if A E A, i.e., A does not contain any substitution (x:=B).

The second is refining the notion of ,B-reduction. Remember that the reduction relation ---+(3

on pure terms is defined as the contextual closure of

{Ax.A)B ->~ A[B/x]

We make the global substitution in ---+f3 explicit by splitting ---+f3 into two parts. --+Beta is for
the creation of a substitution out of a f3-redex; -+x is for the proliferation of substitutions through
a term to variables and for performing the actual substitution or throwing away the substitute if
the substitution turns out to be void.

Definition 3.3 The reduction relations ---+Beta and --+x are defined to be the contextual closures
modulo a-conversion of respectively

and

(Ax.A)B ->Beta A(x:=B)

(AB)(x:=C) ->x (A(x:=C))(B(x:=C))

(Ay.A)(x:=C) ->x Ay.A(x:=C) if x '¥ y and y rt- FV(C)

x(x:=C) x C

A(x:=C) ->x A if x rt- FV(C)

The explicit substitution reduction relation ---!o>..x is the union of ---!oBeta and ---!ox.

The reduction A(x:=C) x A if x rt- FV(A) is also called garbage collection. Since we consider
terms modulo a-equality, substitutions can always be distributed to variables, hence the rule
y(x:=C) ->x y if x '¥ y would already be sufficient. The more efficient garbage collection will do
no harm however.

The reduction relation ---!ox is called the substitution calculus. It has nice properties:

Lemma 3.4 ---+x is strongly normalising, confluent and has unique normalforms.

Proof: Strong normalisation is shown by defining a map h : Ax ---+ IN which decreases on x
reduction; define

h(x) =
h(AB)

h(Ax.A)

h(A(x:=B))

1

h(A) + h(B) + 1

h(A) + 1

h(A) . (h(B) + 1)

then by induction on the structure of A: if A ->x B then h(A) > h(B).
To prove confluence, it is now sufficient to show weak confluence which is easy. o

Definition 3.5 We write A E SN R if A is strongly normalizing with respect to the reduction
relation R.

We write x(A) to denote the x-normalform of A.
For pure terms A, we write J3(A) to denote the J3.normalform of A, if it exists.
We define J1(A) to be the maximal length of a J3·reduction path starting with x(A), if x(A) E

SNp.

3

Note that for A E Ax, x(A) is pure.
We now give some elementary but important properties of x and /3.

Lemma 3.6 (substitution) For all terms A, B: x(.4(x:=B)) == x(A)[x(B)/x].

Proof: We prove by induction on the number of symbols in the sequence A, Bl J ••• I Bm that
X(A(X1 :=B1) ... (xm:=Bm)) == x(A)[x(Bd/xd ... [x(Bm)/xm].

We distinguish cases according to the structure of A; we only treat some of them:

IH
• A == Xi. Then X(A(X1:=B1) ... (xm:=Bm)) == x(Bi (xi+1:=B,+1)' .. (xm:=Bm)) ==

X(Bi)[x(Bi+d/Xi+d ... [x(Bm)/xm] == x(A)[x(B1)/xd ... [x(Bm)/xm] .

• A == A1 (y:=A2). Then the number of symbols in the sequence A, B1, . .. , Bm is larger than
in the sequence A l , A2J Bl J ••• J Bm and the number of symbols in A is bigger than in Al J A2
so by the induction hypothesis:

x(Ady:=A2)(X1:=B1) ... (xm:=Bm)) == x(A1)[x(A2)/y][x(Bd/xd ... [x(Bm)/xm] ==

x(Ady:=A2))[x(Bd/xd'" [x(Bm)/xm].

Lemma 3.7 (projection) For all terms A, B:

1. if A ---+x B then x(A) == x(B)

2. if A ---+Beta B then x(A)--;;~x(B)

Proof:

o

1. is immediate and 2. is by induction on the structure of A. Note that if N --;;~N' then
M[N/x]--;;~M[N'/x]. We treat some cases:

• A == (Ax.A1)A2, B == A1 (x:=A2). Then x(A) == (Ax.x(Ad)x(A2) ---+~ x(Ad[x(A2)/X]
3.6 () == x(A1 x:=A2)) == x(B .

• A == A1(x:=A2), B == A1(x:=A2). Then x(A)
~6 x(B).

3.6 IH
== x(A!)[x(A2)/X] --;;~ x(A!)[x(A2)/x]

o
The projection lemma is not strong enough to give us PSN. The problem is that if A ---+Bet. B

then sometimes x(A) == x(B), as in x(y:=(Az.C)D) ---+Bet. x(y:=C(z:=D)). A proof of PSN by
analyzing what can happen inside 'void' substitutions such as in this example is given in [Bloo 95]
and in [Bloo & Rose 95].

Lemma 3.8 (soundness) For all pure terms A, B: if A ---+~ B then A--;;>xB.

Proof: Induction on the structure of A. We treat the case A == (Ax.AdA 2 , B == A1[A';x]. Then
Lemma 3.6 A pure

A ---+Beta A1 (x:=A 2)--;;xx(A1 (x:=A2)) == X(A1)[X(A2)/ x] == A1 [A2/X].
o

A final property of AX that can be shown easily is the confluence of ~..\x.

Theorem 3.9 ~..\x is confluent.

Proof: If A--;;,\xB1 and A--;;>xB2 then by projection x(A)--;;~x(Bi) so by confluence of ---+~ there
is a pure term C such that Bi--;;~C, now by soundness X(Bi)--;;'\xC. Then also B1--;;>xC. 0

4

4 The recurSIve path order

In this section we briefly introduce the recursive path order. For a more detailed description and
proofs, the reader is referred to [Dershowitz 79], [Zantema 94] and [Ferreira & Zantema 94].

Definition 4.1 Let F be a set of function symbols, X a set of variables such that F n X = 0, let
T(F, X) be the set of (open) terms over F and X. Let I> be a partial order on:F. Let T be a map
assigning to every function symbol f E :F one of the words mult or lex.

The recursive path order >",0 on T(F, X) induced by I> and T is defined by
/(81, ... ,Sm) >",0 g(tl, ... ,tn)

iff 3i[8; = g(t l , .. . , t n) V S; >,po g(tl, . .. , tn)]

V (J I> gil \lj[/(SI, ... , sm) >,po tjD

V (J = gil \lj[f(sl,"" 8 m) >,po tj] II (SI,' .. , sm) >;W (t l , . .. ,tn))

Here >~;o and >~~1 are respectively the lexicographic and the multiset extensions oj>rpo, i.e.,

• (51)"') 8m} >~-;;o (i l , ... , in) iff for some i ::; m, n, 81 = i1) . .. , Si-l = ii-l, Si >rpo ti or
81 =i1"",Sm =im,m>n .

• (81, ... , sm) >;~' (t l , ... ,tn) iff the multiset {{ 81, ... , Sm}} can be transformed into the
multiset {{t l , ... , t n }} by performing the operation 'replace a member s of the multiset by
finitely many terms t such that S >rpo t' one or more times.

In [Ferreira & Zantema 94], T is called status function. More complex extensions of >,po than
multiset or lexicographic are even possible.

Theorem 4.2 (Dershowitz) Let I> be a partial order and T a status function on a set of function
symbols :F, let >rpo be the induced recursive path order. Then

>rpo is well-founded <¢:::::=? [> is well-founded

Proof: see [Dershowitz 79] or [Ferreira & Zantema 94]' o

5 PSN for Ax

In this section we use the recursive path order to show that AX has PSN. Since the recursive
path order is about first order term rewrite systems, we need to translate terms of Ax into a first
order term rewrite system; to be able to prove PSN this translation must in some sense preserve
reductions. We do this by labelling (some) function symbols with maximal lengths of reduction
sequences; therefore we restrict to terms where these lengths are finite for all subterms. It will
turn out that these are exactly all the strongly normalizing Ax-terms.

Definition 5.1 We define the set AX<oo C AX by

h<OO = {A E AX I for all subterms B of A,x(B) E SN~}

Remark: A E AX<oo if and only if: for all subterms B of A, P(B) < 00.

Lemma 5.2 i3((Ax.A)B) > P(A(x:=B)).

Proof: Every ->~-reduction path of length n of x(A(x:=B)) can be extended to a reduction path
of length n + 1 of x((Ax.A)B) by prefixing it by x((Ax.A)B) == (Ax.x(A))x(B) ->~ x(A)[x(B)/x]
== x(A{x:=B)). 0

5

Lemma 5.3 If A E Ax<oo and A ---;,Ix A' then A' E ,\x<oo.

Proof: Induction on the structure of A.

Definition 5.4 We define the set of labelled terms Al by the following abstract syntax:

A ::= * I A 'n A I AA I A(A)n

where n ranges over the natural numbers.
We define by induction on the structure of terms a translation T : AX<oo ----+ AI:

T(x)

T(AB)

T(AX.A)

T(A(x:=B))

*
T(A)'n T(B)
AT(A)

T(A)(T{lI»n

Note that for all A E AX<oo, T(A) is well-defined.

where n = /3(AB)

where n = /3(A(x:=B»

o

Definition 5.5 We define a TRS Al using as terms the set Al and having the reduction relation
---;/ defined by

(AA)m B ---;1 A(B)" ifm> n

(A'm B)(C)n ---;1 (A(C)p) " (B(C).) ifn?:p,q,r

(AA)(C)n ---;1 A(A(C)n)

A(C) ---;/ C

A(C) ---;/ A

A·mB ---;1 A 'nB ifm > n

A(B)m ---;/ A(B)n ifm > n

Note that ---+/ is not confluent; for our purposes this is no problem since --+/ is only designed to
be useful for proving strong normalisation. The last two rules are called Deer in [Zantema 94]
and are necessary to decrease the labels of applications and substitutions if inside of them a
-7Beta-reduction is performed. Note that in the presence of the Deer rules we could also have
(AA) 'n+l B ---;/ A(B)n for all n instead of (AA) 'm B ---;/ A(B)n for all m > n.

Lemma 5.6 The relation ---+/ is a suhre/ation of some recursive path order. (That is, there is a
precedence relation I> such that for all A, BE Ai) if A -+/ B, then A >rpo B, where >rpo is the
rpo ordering induced by 1>.)

Proof: Define the precedence I> by

and the status function r by r(-n) = r(A) = r(On) = lex. Then ---;1 is a sub relation of the induced
recursive path order >rpo. 0

Corrollary 5.7 ---;/ is SN.

Proof: By Theorem 4.2, >,po of Lemma 5.6 is strongly normalising, hence by Lemma 5.6 ---;/ is
strongly normalising. 0

LeIllma 5.S If A E AX<oo and A ---;,Ix A' then T(A)---»tT(A').

Proof: Induction on the structure of Aj we treat some of the more interesting cases.

6

• A == (Ax.A')A, --+Beta A, (x:=A 2) == A'.

Then T(A) == (AT(A,)) 'm T(A,) --+/ T(A,)(x:=T(A,))n == T(A') where m = ,B(A); n =
,B(A'); note that m > n by Lemma 5.2.

• A == (A , A,)(x:=A3) --+x (A,(x:=A3))(A2(X:=A3)) == A'.

Then T(A) == (T(A,) 'm T(A,))(T(A3))n --+/ (T(A,)(T(A3))p 'n (T(A,)(T(A3))q == T(A'),
where m = ,B(A,A,), n = ,B(A), p = ,B(AI (X:=A3)), q = ,B(A,(x:=A3)); note that n ~ p and
n ~ q.

• A == X(X:=Al) --+x A, == A'. Then T(A) == *(T(A,))m --+/ T(A,) == T(A') where m = ,B(A).

• A == A, (x:=A,) --+gc A, == A'. Then T(A) == T(A,)(T(A'))m --+/ T(A,) == T(A') where

m = ,B(A).

• A == (Ay.A,)(x:=A,) --+x Ay.(A,(x:=A,)) == A'. Then T(A) == (AT(A,))(T(A,))m --+/

A(T(A,)(T(A,))m) == T(A') where m = ,B(A) = ,B(A').

IH

• A == AlA, --+.\x A\A, == A'. Then T(A) == T(A,) 'm T(A,) --;;j T(A\) 'm T(A,) --;;/
T(A\) 'n T(A,) where m = ,B(A) ~ n = ,B(A').

o

Corrollary 5.9 (PSN) 1. A E SN.\x ~ A E AX<oo

2. AX preserves strong normalisation

6 AV, AS and extensions

In this section we show that our method is general enough to show PSN for other calculi of
explicit substitutions such as AV of [BBLR 95] and As of [Kamareddine & Rios 95], and also some
extensions of AX. Furthermore, we discuss some extensions of AX, giving a counterexample to PSN
similar to the one of [Mellies 95], but less involved.

6.1 The calculi '\u and '\s

Definition 6.1 Terms and substitutions of AV are defined by the following abstract syntaxes:

a !J. I (aa) I (Aa) I (a[s])

8 al I 11" (8) I r
where n ranges over the set {I, 2, 3, 4, ... }.

The reduction relation ----.. AU is the union of ---+vBeta and ---+v which are defined by

(Aa)b ---;'vBeta a[bl]

(ab)[s] --+v a[s]b[s]
(Aa)[s] --+v A(a[11" (sm

l[a/] --+u a

n + l[a/] --+v !J.
1[11" (8)] --+u 1

n + 1[11" (s)] --+v !J.[sHl]

dl] """u n+l

7

Some initial intuition to motivate the reduction rules of AV: a[bj] stands for 'substitute b for
1 in a', [it (s)] stands for the substitution obtained by first raising all the indices in s by 1 and
substituting not the index 1, but the index 2, and [t] stands for the substitution that raises all
numbers (in the term in front of it) by 1. An example to explain these intuitive motivations is the
following. (For reasons of legibility we have removed some brackets.)

(A(A(12)))(11) -+vBeta (A(12))[ll/]

--+v A((12)[it (ill)])
--+v A(l[it (ilI)]~[it (ill)])
--+v A(12[it (ill)])
--+v A(l(l[ilI][lJ))

--+v A(l(11)[1])

--+v A (l(1[1llll]))
--+v A(1(22))

For a detailed explanation and motivation of the system Au we refer to [BBLR 95].

Definition 6.2 Terms and substitutions of As are defined by the following abstract syntaxes:

a ::= !! I (aa) I (Aa) I (,p}a) I (ao-'a)

where n, i range over the set {I, 2, 3, 4, ... } and j ranges over {O, I, 2, 3, ... }.
The reduction relation -+'\s is the union of -+sBeta and -+s which are defined by

(Aa)b --+,Beta ao-' b

(Aa)o-'b --+, A(ao-'+1b)

(a,a2)o-'b --+, (aw'b)(a10-'b)

11(,-i b --+,

,p~ (Aa) --+,

,pHa,a2) --+,

r/>'n k_ --+,

{

n-1

:&(b)
if n > i
if n = i
if n < i

A(r/>~+1a)

(<,6~a1)(r/>~a2)

{ ;+i-1 if n> k
if n ~ k

Again, we don't give a detailed explanation and motivation for the rules of this calculus, but
refer to [Kamareddine & Rios 95]. Some initial intuition: o-'(b) stands for the substitution of b for
i, ¢i(a) stands for 'raise all the numbers n > k in the term a with i-I'. To explain the rules, we
treat the same example as for Av.

(A(A(12)))(11) -+sBeta (A(12))0-' (11)

--+, A((12)0- 2(11))

--+, A(10-2 (11))(~0-2 (11)))

--+, A(1(20-2 (11)))

--+, A(Hi (11))
--+, A(l(<,65(l)r/>M))
--.., A(1(22))

8

The calculus AS is very similar to AV. The difference is mainly in the moment of updating: in
Av every step n + 1[-(t (s)]"""v !![s][1] creates an update substitution [I] whereas in As the update
functionsymbol q)i is only created at the actual moment of substitution in nuna -+s q){ja. Also, in
the reductions !1/Joib -+5 n - 1 (n > i)and !1/Ti b --+8.!.!. (n < i), there is no updatefunction generated
whereas in n + 1[-(t (s)] """v !![s][1] an update substitution is created regardless of whether the
substitution [, (s)] is binding n + lor is void.

In [BBLR 95] it is shown that Av has PSN by contradicting the existence of a minimal infinite
Av-reduction of a term which is SN for """f; in [Kamareddine & Rios 95] PSN is shown to hold for
AS in a similar way.

We show that Av and As are PSN by using the labelled calculus A'. The proof is very similar
to the proof of PSN for Ax that we gave in the previous section.

For AV and AS we have the usual properties such as SN, CR, UN for --+v respectively --+8'
substitution lemma, projection lemma, soundness lemma and confluence for --+).v respectively --+).8'
We denote the """v-normal form respectively ,-normal form of a term b by v(b) respectively s(b).
Note that a substitution of Av is of the form -(t" (b/) or -(t" (I) for some n.

We denote fi-reduction on Av-terms as well as on As-terms by -+f3; for a AV- respectively

As-term a we write ~(a) to denote the maximal number of ,6-reduction steps starting from v(a)
respectively s(a), if this number exists.

Definition 6.3

AV<= {a E Av I Vb <;; a[v(b) E SNf]}

AS<= .- {a E As I Vb <;; a[s(b) E SNf]}

Lemma 6.4 1. AV<oo is closed under -+).v-reduction

2. AS<oo is closed under -+).8-reduction

Definition 6.5 1. Tv : AV<= ---> A' is defined by

Tv(!!)

Tv(ab)

Tv(Aa)

1;,(a[-(t" (b/)])

1;,(a[-(t" (I)])

2. T, : AS<= ---> A' is defined by

T,(!!)

T,(ab)

T,(Aa)

T,(a,A)

T,(,pja)

•
= Tv(a).p Tv(b)

'\Tv(a)

Tv(a)(Tv(b))p

1;, (a)

•
T,(a).p T,(b)

AT,(a)

T,(a)(T,(b))p

T,(a)

where p = hab)

where p = ha[-(t" (b/)])

where p = ~(ab)

where p = ~(arT' b)

Lemma 6.6 1. If a E AV<= and a v b then Tv(a) ,Tv(b)

2. If a E AV<= and a """vB,ta b then 1;,(a) tTv(b)

3. If a E AS<= and a....." b then T,(a)---»,T,(b)

4. If a E AS<= and a """,B,ta b then T,(a) tT,(b)

Proof: Induction on the structure of a.

Theorem 6.7

9

o

2. -->AU has PSN

3. a E SNA, = a E AS<=

4. -->A' has PSN

Proof:

1. => by projection; ¢::: since -""'v is SN, any infinite ----+>.v-reduction must contain infinitely
many ---+vBeta-steps. Therefore an infinite reduction of a pure term which is SN for ---+f3
translates by Tv into an infinite ---+l-reduction which is impossible by 5.7.

2. follows from 1.

3. & 4. similar to 1. & 2.

o

6.2 Extensions of AX

In this section we consider several extensions of AX with some kind of composition. The calculus
A<T of [Abadi et al. 90] was designed to be able to compose substitutions. The price however is not
having PSN (of. [Mellies 95]). Since AX has no composition but does have PSN, it is an interesting
question where the borderline is between PSN and composition of substitutions.

We start with a short discussion of .\.0'. For the precise definition of AO', the reader is referred
to [Abadi et al. 90]. The composition of substitutions in A<T is mainly performed by two rules,
Camp and Map. The first glues two substitutions together: a[s][t] ~ a[sot], while Map allows the

distribution of the second substitution over the first: (b·c·s')ot ~ b[t]·« c.s')ot) ~ b[t]·c[t].(s'ot).
As was pointed out in [Kamareddine & Nederpelt 93], the substitutions of A<T are roughly the

same as simultaneous parallel substitutions in the following extension of AX:

terms t ::= x I tt I AX.t I t(£:=I}

where (i:=t) is shorthand for (Xl, ... ,Xm:=tl, . .. , tm); reductions are similar as for AX plus the
composition rule

a(£:=b) (ij:=C) ----; ali, ij:=b, (iJ:=C), ... , bm (iJ:=C), C)

In this calculus one can imitate the counterexample to PSN of A<T (of [Mellies 95]). In fact,
even the calculus Ax extended with the rule

a(x:=b)(y:=c) ----; a(x:=b(y:=c)) if y rt FV(a)

(no simultaneous substitutions needed) doesn't have PSN. We give an infinite derivation starting
from the term (Ay.(Ay' .x)«Ay.a)b))«Ay.a)b). Note that this term is even simpler than the term
used in [Mellies 95].

First we define substitutions Cfi for m E IN by

"0 = (y:=(Ay.a)b)

"m+' (y:=b"m)

Now consider the following three reductions. (For simplicity we forget about the variable conven
tion during this counterexample; furthermore, we freely change bound variables if convenient.)

(Ay.(Ay'.X)«Ay.a)b))«Ay.a)b) --» x(y' :=(Ay.a)b)(y:=(Ay.a)b)

--> x(y' :=«Ay.a)b)(y:=(Ay.a)b))

--» x(y' :=(Ay.a(y:=(Ay.a)b))(b(y:=(Ay.a)b)))

x(y' :=(Ay.a"o)(b"o))

--> x(y' :=a"o (y:=b"o))

x(y' :=a"o"')

10

a(y' :=(Ay.a)b) (y:=bam)
a(y' :=(Ay.a(y:=bam))(b(y:=bam»)
a(y' :=aam+1 (y:=b"m+I»

a(y' :=(Ay.a)b)(y:=b"m»
a(y' :=(Ay.aam+I)(bfrm+I»
a(y' :=afrm+1 frm+2)

a(y' :=b"m) (y:=b"n) --+ a(y' :=b"m (y:=b"n» =

These combine into an infinite derivation in the following way.
(Ay.(Ay' .X)((Ay.a)b»)((Ay.a)b)--»

. . . aQ'ocq ... --» ... aal 0:2 ...

--» . . . a0:'20'3 ... --» ... aO'l 0'3 ...

-;, ... aO:'OO'm+l ... --» . . . aam +l (Ym+2 ...

--» . .• aO'OO'Z ...

--» . . . aa00:'3···

--» ... aO'OO'm+2 ...

Recall that we proved PSN by showing that every term of which the x-normal form of any of its
subterms is in SNpl is also SN for ----1-Beta U ---+x. With the extra composition reduction defined
above, there is an easy counterexample to that: the term x(y:=zZ)(Z:=AW.WW) has x-normalform
x (and is also SN for Ax-reduction), but it has n as a sub term of a reduct if composition is allowed.

This example also shows why our method fails for the system extended with the extra com
position rule, and hence also for AO": T(x(y:=zZ)(Z:=AW.WW» == *(*'0 *)O(A(*'o *»0 whereas
after composition of the two substitutions, the label of the innermost substitution does not exist:
T(x(y:=(zZ)(Z:=AW. ww») == *((* '0 *)(A(* '0 * »00)0. So reduction in AO" does not always decrease
T-images.

One can try to give a rule for composition of substitutions such that reduction still decreases
T-images, the following rule seems best fit for this purpose:

a(x:=b)(y:=c) --+x' a(x:=b(y:=c» if y!/:: FV(a), x E FV(x(a»

The idea behind this rule is that, if x E FV(x(a», then b(y:=c) will occur as a subterm of some
--+.\x-reduct. Hence allowing to create b(y:=c) at this point will not spoil PSN. We strongly believe
that adding this reduction rule does not spoil SN (i.e. Ax extended with the rule --+x' has PSN),
but we have not been able to prove it.

7 Proof of PSN using labelled trees

In this section we outline a proof of the Preservation of Strong Normalization property, again using
the RPO technique, but now in the way it has been presented in [Klop 92]. One then looks at
the collection of commutative finite labelled trees Tree (i.e. trees are identified upto permutation
of branches; there is no order from left to right in the subtrees). The labels are taken from
N. Furthermore, one looks at the set Tree\ where some nodes in a tree may have a marker *.
It is convenient to denote the tree with root node n and subtrees t l , ... , tp by n(t l , ... , tp), and
similarly, if the root node has a marker, by n*(i l , ... , i p). In the following, we abbreviate i 1 , ... , ip
to f. On these commutative labelled trees with markers (the set Tree*), a reduction relation ~
is defined.

Definition 7.1 The relation ~ on Tree* is defined as follows.

n(i) ~ n*(i) ,
n*(t) ~ m(n*(i), ... , n*(i),

if m < n, zero or more copies of n*(i),

n*(s, t) ~ n(s*, ... ,s*,0,

zero or more copies of s,

n*(i) ~ ii,

l:C;i:C;p.

11

Furthermore, the relation ~ is compatible with the tree-forming operations, that is, ifti ~ til
then n(t" ... ,t;, ... ,tp) =t> n(t" ... ,t;, ... ,tp).

As usual, the relation ~+ denotes the transitive closure of ~ and ~* denotes the transitive
reflexive closure of ~.

For examples on the use of these rules we refer to [Klop 92]. we just mention the main result,
which will be applied here to the issue of PSN for explicit substituion.

Theorem 7.2 ([Klop 92],[Dershowitz 79]) The relation =t>+ is well-founded on Tree (the set
of trees without markers).

To prove PSN for the calculus Ax, we now proceed by defining a reduction preserving mapping
T from AX<oo to Tree: if M ---*x N, then M =c>* N and if M ---*Beta N, then M ~+ N. Hence,
using the fact that ---*x is strongly normalizing, we can again conclude that every M E AX<oo is
strongly normalizing and so that AX has the PSN property.

For notational convenience, we abbreviate the sequence of definitions (Xl:=P1)", (xn:=Pn) to
(x:=P).

Definition 7.3 For M E AX<=, we define the tree T(M) by induction on the length of M as
follows.

T(x) = 0,

~(QN)

T(QN) / ~
T(Q) T(N)

T(Ay.N) T(N)

0

/ ~ T(y(x:-P}) =

"" T(P,) T(Pn)

'fy rt {x" ... ,xn }

T(x;(x:-P}) =

T(P') ... T(Pi_')

T((QN)(x:-P}) = IN){'~,-;--=
T(Q(x:=P}) T(N(x:=P})

T((Ay.N)(x:_P}) T(N(x:-P})

12

The following Lemmas show that T preserves reductions (in the right sense as announced
above). The proofs of these Lemmas are not difficult, the main complication being to find out the
right induction loadings (and the right order on which the induction should be done). We just
outline the proofs.

Lemma 7.4 For ME h<=, if M -->x N, then T(M)~' T(N).

Proof: By induction on the length of M, distinguishing sub cases according to the structure
of M. Note that we need Lemma 5.3 to make sure that N E AX<= and hence that T(N) is
well-defined. 0

The following two Lemmas are sub lemmas necessary for the proof of preservation of ~Beta
reduction by T.

Lemma 7.5 For N(x:=P) E h<=, T(N(x:=P))~' T(N).

Proof: By induction on the length of N. o

Lemma 7.6 For ((Ay.N)Q)(x:-P) E AX<=, T(((Ay.N)Q)(x:=P)) ~+ T(N(y:=Q)(x:=P)).

Proof: By induction on the length of N, using Lemma 7.5. First write N as R(y:-Q), with
R not a term that ends with a substitution item. (So, the sequence (y:-Q) should be taken as
long as possible.) Then distinguish cases according to the structure of R. 0

Corrollary 7.7 The calculus AX has the PSN property.

8 Conclusions

We have introduced a new method for proving PSN of lambda calculi with explicit substitution.
The method involves four steps:

• determine a suitable set contained in the set of strongly normalising terms in the explicit
substitution calculus, containing the pure jJ-SN terms and closed under explicit substitution
reduction,

• give a translation from this set into a first order term rewrite system,

• define a strongly normalising reduction relation on this TRS by giving a well-founded prece
dence,

• show that the translation preserves infinite reduction paths.

For named calculi, the translation identifies all variables; for calculi using de Bruijn indices the
translation identifies all indices and erases update functions, giving evidence for the statement
'update functions do not matter for termination issues'. Kruskal's theorem ensures that a well
founded precedence yields a strongly normalizing term rewrite system.

Further applications of this method that are under investigation:

• give a maximal strategy for Ax-reduction and an inductive characterization of the set Ax<oo.

• give a general PSN proof for combinator reduction systems with explicit substitution
(cf. [Rose 95], [Bloo & Rose 96])

• give a (first order) calculus with explicit substitution which has PSN as well as confluence
on open terms.

13

9 Acknowledgements

Thanks to Thomas Arts for making us aWare of current notations for the recursive path orders,
using semantic labelling. We have also benefitted from discussions with the following people:
Hans Zantema, Gilles Barthe, Daniel Briaud, Twan Laan, Pierre Lescanne, Rob Nederpelt and
Kristoffer Rose.

References

[Abadi et aI. 90] Abadi, M" Cardelli, L., Curien, P.-L., and Levy, J.-J., Explicit substitutions, in POPL
'gO-Seventeenth Annual ACM Symposium on Principles of Programming Languages (San Francisco,
California, jan. 1990).

[Abramskyet ai. 1992] Abramsky, S., Gabbay, Dov M., and Maibaum, T. S. E. (eds.), Handbook of Logic
in Computer Science, Vol. II 1 Oxford University Press,] 992.

[B100 95] Bloo, R., Preservation of Strong Normalisation for Explicit Substitution, Computing Science
Report 95-08, Eindhoven University of Technology.

[Bloo & Rose 95] Bloo, R., and Rose, K. H., Preservation of Strong Normalisation in Named Lambda
Calculi with Explicit Substitution and Garbage Collection, in: J.C. van Vliet, ed., Proceedings of
CSN'95 (Computing Science in the Netherlands), ISBN 90 6196 460 I, also available as technical
report via WWW; URL: ftp:/jftp.diku.dkjdikujsemanticsjpapersjD-246.ps.

[Bloo & Rose 96] Bloo, R., and Rose, K. H., Combinatory Reduction Systems with Explicit Substitution
that Preserve Strong Normalisation, to appear in: Proceedings oj RTA '96.

{Dershowitz 79] Dershowitz, N., A note on simplification orderings, Inf. Proc. Letters 9 (5): 212-215,
1979

[Ferreira & Zantema 94] Ferreira, M.C.F. and Zantema, H., Well-foundedness of Term Orderings, Tech
nical Report UU-CS-1994-46, Utrecht University.

[BBLR 95] Benaissa, Z.E.A., Briaud, D., Lescanne, P. and Rouyer-Degli, J., AV, a calculus of explicit
substitutions which preserves strong normalisation, 1995, accepted for publication in Journal of Func
tional Programming.

[Kamareddine & Nederpelt 93] Kamareddine, F., and Nederpelt, R.P., On stepwise explicit substitution,
International Journal of Foundations of Computer Science 4 (3), 197-240, 1993.

[Kamareddine & Rios 95] Kamareddine, F., and Rios, A., A-calculus a la de Bruijn & explicit substitu
tion, Lecture Notes in Computer Science, Vol. 982, 7th international symposium on Programming
Languages: Implementations, Logics and Programs, PLILP '95, pages 45-62 , Springer-Verlag, 1995.

[Klop 92] Klop, J. W., Term rewrite systems, in: [Abramsky et al. 1992].

[Mellies 95] Mellies, P.-A., Typed A-calculi with explicit substitutions may not terminate, in: Proceedings
of TLCA '95 , Lecture Notes in Computer Science, Vol. 902, eds. M. Dezani-Ciancaglini and G.
Plotkin.

[Rose 95] Rose, K. H., Combinator Reduction Systems with Explicit Substitution, in: Proceed
ings of BOA '95, (Second International Workshop on Higher-Order Algebra, Logic and Term
Rewriting), Paderborn, Germany, 1995, also available as technical report via WWW; URL:
ftp:j jftp.diku.dkjdikujsemanticsjpapersjD-24 7. ps.

(Zantema 94] Zantema, H., Termination of Term Rewriting by Semantic Labelling, Fundamenta Infor
moticae, Vol. 24 (1,2), pp. 89-106, 1995

14

Computing Science Reports

In this series appeared:

93/01

93/02

93/03

93/04

93/05

93/06

93/07

93/08

93/09

93/10

93/11

93/12

93/13

93114

93/15

93/16

93/17

93/18

93/19

93/20

93121

93122

93/23

93/24

93/25

93/26

93/27

93/28

93129

93/30

R. van Geldrop

T. Verhoeff

T. Verhoeff

E.H.L. Aarts
J.H.M. Korst
P.l. Zwietering

J.C.M. Baeten
C. Verhoef

J.P. Veltkamp

P.O. Moerland

J. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

I.C.M. Baeten
J.A. Bergstra

J.C.M. Baeten
J.A. Bergstra
R.N. Bol

H. Schepers
J. Hooman

D. Aistein
P. van der Stok

C. Verhoef

G-J. Houben

F.S. de Boer

M. Codish
D. Dams
G. File
M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Gerth

W.M.P. van der AaIst

T. Kloks and D. Kratsch

F. Kamareddine and
R. Nederpelt

R. Post and P. De Bra

J. Deogun
T. Kloks
D. Kratsch
H. Muller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy of program
ming methods. p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real-Time Executions in
DEDOS, p. 32.

Systems Engineering: a Fonnal Approach
Part 1: System Concepts, p. 72.

Systems Engineering: a FormaJ Approach
Part 11: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods. p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach Part V: Specification Language. p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A ReaJ-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operationaJ
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.2l.

A Process Algebra of Concurrent Constraint Programming, p. 15.

Freeness Analysis for Logic Programs - And Correctness, p. 24

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A CompositionaJ Proof Theory for Fault Tolerant Real-Time Distributed Systems.
p. 31.

Multi-dimensionaJ Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine A-caJculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. 11.

93/31

93/32

93/33

93/34

93/35

93/36

93/37

93/38

93/39

93/40

93/41

93/42

93/43

93/44

93/45

93/46

93/47

93/48

94101

94/02

94/03

94104

94/05

94/06

94/07

94/08

94109

W. Korver

H. ten Eikelder and
H. van Geldrop

L. Layens and 1. Moonen

I.C.M. Baeten and
I.A. Bergstra

W. Ferrer and
P. Severi

I.eM. Baeten and
J A. Bergstra

1. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

C. Verhoef

W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
KM. van Hee

P.D.V. van der Stok
M,M.M.P.I, Claessen
D. Alstein

A. Bijlsma

P.M.P. Rambags

B,W. Watson

B.W. Watson

E.l. Luit
I.M.M. Martin

T. Kloks
D. Kratsch
1. Spinrad

W. v.d. Aalst
P. De Bra
G.J. Houben
Y. Komatzky

R. Gerth

P. America
M. van der Kammen
R.P. Nederpelt
O.S. van Roosmalen
RC.M. de Swart

F. Kamareddine
R.P. Nederpelt

L.B. Hartman
K.M. van Hee

I.eM. Baeten
I.A. Bergstra

P. Zhou
J. Haoman

T. Basten
T. Kunz
1. Black
M. Coffin
D. Taylor

KR. Apt
R.801

O.S. van Roosmalen

I.CM. Baeten
J.A. Bergstra

Derivation of delay insensitive and speed independent CMOS circuits, using
directed commands and production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

ILIAS, a sequentiaJ language for parallel matrix computations, p. 20.

ReaJ Time Process Algebra with InfinitesimaJs, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and AnaJysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A generaJ conservative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A HierarchicaJ Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers, p. II.

Automatic Verification of Regular Protocols in Pff Nets, p. 23.

A taxomomy of finite automata construction algorithms, p. 87.

A taxonomy of finite automata minimization algorithms, p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

The object-oriented paradigm, p. 28.

Canonical typing and II-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A HierarchicaJ Diagrammatic Representation of Class Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

94/10

94/11

94112

94/13

94/14

94/15

94/16

94117

94/18

94/19

94/20

94/21

94122

94123

94/24

94125

94126

94/27

94/28

94129

94130

94/31

94/32

94/33

94/34

94/35

94136

94/37

94138

T. verhoeff

J. Peleska
C. Huizing
C. Petersohn

T. Kloks
D. Kratsch
H. Muller

R. Seljee

W. Peremans

R.J.M. Vaessens
E.H.L. Aarts
1.K. Lenstra

R.C. Backhouse
H. Doornbos

S. Mauw
M.A. Reniers

F. Kamareddine
R. Nederpelt

B.W. Watson

R. Bloo
F. Kamareddine
R. Nederpeit

B.W. Watson

B.W. Watson

S. Mauw and M.A. Reniers

D. Dams
O. Grumberg
R. Gerth

T. K10ks

R.R. Hoogerwoord

S. Mauw and H. Mulder

C. W .A.M. van Overveld
M. Verhoeven

J. Hooman

I.C.M. Baeten
I.A. Bergstra
Gh. ~tefanescu

B.W. Watson
R.E. Watson

1.1. Vereijken

T. Laan

R. Bloo
F. Kamareddine
R. Nederpelt

I.C.M. Baeten
S. Mauw

F. Kamareddine
R. Nederpelt

T. Basten
R. Bol
M. Voorhoeve

A. Bijlsma
C.S. Scholten

The testing Paradigm Applied to Network Structure. p. 31.

A Comparison of Ward & Mellor's Transformation
Schema with State- & Activitycharts. p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refining Reduction in the Lambda Calculus. p. 15.

The performance of single-keyword and multiple-keyword pattern matching
algorithms, p. 46.

Beyond p-Reduction in Church's). -7, p. 22.

An introduction to the Fire engine: A C++ toolkit for Finite automata and Regular
Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving 'VClL *, 3ClL* and ClL *, p. 28.

Ku-free and W4-free graphs, p. 10.

On the foundations of functional programming: a programmer's point of view, p.
54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A formalization of the Ramified Type Theory, pAD.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and II-conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10.

/~

94139 A. Blokhuis
T. Kloks

94140 D. Alstein

94141 T. Kloks
D. Kratsch

94/42 J. Engelfriet
1.1. Vereijken

94/43 R.C. Backhouse
M. Bijsterveld

94/44 E. Brinksma I. Davies
R. Gerth S. Graf
W. Janssen B. Jonsson
S. Katz G.Lowe
M. Poet A. PnueH
C. Rump J. Zwiers

94/45 GJ. Hauben

94146 R. Bloo
F. Kamareddine
R. N ederpelt

94/47 R. Bloo
F. Kamareddine
R. NederpeJt

94/48 Mathematics of Program
Construction Group

94/49 I.C.M. Baeten
I.A. Bergstra

94/50 H. Geuvers

94/51 T. Kioks
D. Kratsch
H. Mtiller

94/52 W. Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

95/01 J.J. Lukkien

95/02 M. Bezem
R. Sol
I,F. Groote

95/03 I.C.M. Baeten
C. Verhoef

95/04 J. Hirlders

95/05 P. Severi

95/06 T.W.M. Vossen
M.G.A. Verhoeven
H.MM. ten Eikelder
E.H.L. Aarts

95/07 G.A.M. de Bruyn
O.S. van Roosmalen

95/08 R. B100

95/09 I.C.M. Baeten
I,A. Bergstra

95/10 R.C. Backhouse
R. Verhoeven
O. Weber

On the equivaJence covering number of splitgraphs. p. 4.

Distributed Consensus and Hard Real~Time Systems, p.34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice
Theory: An Illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect~bibliotheek voor "Administratieve Logistiek", p. 43.

The A~cube with classes of tenns modulo conversion,
p. 16.

On n~conversion in Type Theory. p. 12.

Fixed~Point Calculus. p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Nonnalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond~free graphs. p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time LogiC Model Checking. p. 20.

The Construction of a small CommunicationLibrary, p.16.

Formalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

An Isotopic Invariant for Planar Drawings of Connected Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative Anruysis of Iterated Locru Search, p.23.

Drawing Execution Graphs by Parsing. p. 10.

Preservation Of Strong Nonnalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

MathJpad: A System for On~Line Prepararation of Mathematicru
Documents, p. 15

II

95/11

95112

95/13

95114

95/15

95116

95117

95118

95/19

95/20

95121

95122

95/23

95124

95/25

95/26

95127

95128

95129

95130

95131

95/32

95133

95134

95135

96101

96102

96103

96104

96105

96106

96107

96108

96109

R. Seljee

S. Mauw and M. Reniers

B.W. Watson and G. Zwaan

A. Ponse, C. Verhoef,
S.F.M. Vlijrnen (eds.)

P. Niebert and W. Penczek

D. Dams, O. Grumherg, R. Gerth

S. Mauw and E.A. van def Meulen

F. Kamareddine and T. Laan

I.CM. Baeten and 1.A. Bergstea

F. van Raamsdonk and P. Severi

A. van Deursen

B. Arnold. A. v. Deursen, M. Res

W .M.P. van def Aalst

F.P.M. Dignum, W.P.M. Nuijten,
L.M.A. Janssen

L. Feijs

W.M.P. van def Aalst

P.D.V. van def Stok, J. van def Wal

W. Fokkink, C. Verhoef

H. Jurjus

J. Hidders, C. Hoskens, J. Paredaens

P. Kelb, D. Dams and R. Gerth

W.M.P. van def Aalst

J. Engelfriet and n. Vereijken

J. Zwanenburg

T. Basten and M. Voorhoeve

M. Voorhoeve and T. Basten

P. de Bra and A. Aerts

WM.P. van def AaIst

S. Mauw

T. Basten and W.M.P. v.d. Aalst

W.M.P. van def Aalst and T. Basten

M. Voorhoeve

A.T.M. Aerts, P.M.E. De Bra,
J.T. de Munk

F. Dignum, H. Weigand, E. Verharen

Deductive Database Systems and integrity constraint checking, p. 36.

Empty Interworkings and Refinement
Semantics of Interworkings Revised, p. 19.

A taxonomy of sublinear multiple keyword pattern matching algorithms, p. 26.

De proceedings: ACP'95, p.

On the Connection of Partial Order Logics and Partial Order Reduction Methods,
p. 12.

Abstract Interpretation of Reactive Systems: Preservation of CTL *, p. 27.

Specification of tools for Message Sequence Charts, p. 36.

A Reflection on Russell's Ramified Types and Kripke's Hierarchy of Truths,
p. 14.

Discrete Time Process Algebra with Abstraction, p. 15.

On Nonnalisation, p. 33.

Axiomatizing f,arly and Late Input by Variable Elimination, p. 44.

An Algebraic Specification of a Language for Describing Financial Products,
p. II.

Petri net based scheduling, p. 20.

Solving a Time Tabling Problem by Constraint Satisfaction, p. 14.

Synchronous Sequence Charts In Action, p. 36.

A Class of Petri nets for modeling and analyzing business processes, p. 24.

Proceedings of the Real-Time Database Workshop, p. 106.

A Conservative Look at tenn Deduction Systems with Variable Binding, p. 29.

On Nesting of a Nonmonotonic Conditional, p. 14

The Fonnal Model of a Pattern Browsing Technique, p.24.

Practical Symbolic Model Checking of the full .u-calculus using Compositional
Abstractions, p. 17.

Handboek simulatie, p. 51.

Context-Free Graph Grammars and Concatenation of Graphs, p. 35.

Record concatenation with intersection types, p. 46.

An algebraic semantics for hierarchical prr Nets, p. 32.

Process Algebra with Autonomous Actions, p. 12.

Multi-User Publishing in the Web: DreSS, A Document Repository Service
Station, p. 12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

Example specifications in phi-SOL.

A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

Life-Cycle Inheritance
A Petri-Net-Based Approach, p. 18.

Structural Petri Net Equivalence, p. 16.

0006 Support for WWW Applications: Disclosing the internal structure of
Hyperdocuments, p. 14.

A Formal Specification of Deadlines using Dynamic Deontic Logic, p. 18.

If;.
I

	1. Abstract
	2. Introduction
	3. A calculus for explicit substitutions with named variables
	4. The recursive path order
	5. PSN for lambda-X
	6. lambda-u-psilon, lambda-sigma and extensions
	7. Proof of PSN using labelled trees
	8. Conclusions
	9. Acknowledgements
	References

