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Explicit Substitution: on the Edge of Strong Normalisation 

1 Abstract 

Roel Bloo' 
bloo@win.tue.nl 

Herman Geuvers 
herman@win.tue.nl 

We use the Recursive Path Ordering (RPO) technique of semantic labelling to show the Preser
vation of Strong Normalisation (PSN) property for several calculi of explicit substitution. Preser
vation of Strong Normalisation states that if a term M is strongly normalizing under ordinary 
,B-reduction (using 'global' substitutions), then it is strongly normalizing if the substitution is 
made explicit (,local'). There are different ways of making global substitution explicit and PSN 
is a quite natural and desirable property for the explicit substitution calculus. OUf method for 
proving PSN is very general and applies to several known systems of explicit substitutions: AV of 
Lescanne et al., AS of Kamareddine and RiDs and AX of Rose and Bloc. 

Keywords: lambda-calculus, explicit substitution, recursive path order. 

2 Introduction 

Explicit Substitution was first studied by Abadi, Cardelli, Curien and Levy in [Abadi et al. 90]. 
They proposed a calculus AO" of explicit substitutions which can compose substitutions. Mellies 
has shown that simply typable terms can have infinite reduction paths in AO" ([Mellies 95]). Sev
eral people (see [BBLR 95]'[Bloo & Rose 95]'[Bloo 95]'[Kamareddine & Rios 95]) have succeeded 
in giving calculi of explicit substitutions which have the nice property that every term which 
is strongly normalising for J1-reduction is also strongly normalising in the explicit substitution 
calculus. We call this property: PSN (Preservation of Strong Normalisation). 

In this paper we present a method to prove PSN for explicit substitution calculi based on 
the recursive path order. Zantema used the recursive path order to show termination of the 
substitution part of AO" [Zantema 94]' but the technique he used doesn't apply to show PSN. We 
use a stronger technique called semantic labelling [Ferreira & Zantema 94] to show PSN for all 
explicit substitution calculi known to have the PSN property. We also show why our method 
doesn't work for AO". Our technique relies on introducing a first order term rewrite system where 
function symbols for application and substitution are labeled with natural numbers and where 
variables are represented by just one constant *. The recursive path order >rpo on this labelled 
calculus is strongly normalising (or: terminating). 

Then we take a look at the explicit substitution calculus Ax. The J1-reduction is here split up 
into a reduction step ~Beta (contracting the tJ-redex and creating an explicit substitution) and 
reduction steps ---+x (moving the explicit substitutions through the term to perform the substitu
tion). It is relatively easy (as usual in these calculi) to observe that ~x is strongly normalising 
and confluent. 

Now~and this is a crucial point in the proof of PSN-we take a look at the terms in AX of 
which the substitution normal form of all of its subterms is J1-SN; we call this set AX<=. (The 
substitution normal form of a term M is obtained by evaluating all the explicit substitutions in 
M, not contracting any f3-redexes. That is, we take the ~x-normal-form of M.) We then define a 
translation T from AX<= into the set of labelled terms. This translation T is reduction preserving 

·address of both authors: Eindhoven University of Technology, P.O.Box 513, NL-5600 MB Eindhoven. 
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in the sense that, if M ->x N, then T(M) >,po T(N) or T(M) = T(N) and if M ->B,ta N, then 
T(M) >,po T(N). Hence, using the fact that ->x is strongly normalizing, we conclude that every 
M E AX<oo is strongly normalizing. So, AX has the PSN property (because every A-term that is 
JJ-strongly-normalizing is an element ofAx<OO). 

For those more familiar with the RPO technique in the way it has been presented in [Klop 92], 
we also present, in the final section) a translation from AX<co to commutative labelled trees. This 
translation is also reduction preserving in the same sense as just discussed. This gives a slightly 
different way of obtaining the PSN property for AX. 

To show the flexibility of our proof method we use it for different calculi of explicit substitution. 
We start off with a calculus where we use named variables (different from, e.g. [Abadi et al. 90], 
where de Bruijn-indices are used). We have chosen to use named variables because this makes the 
presentation slightly more perspicuous. Moreover 1 it makes it easier to single out the places where 
the difficulties arise in the calculus of [Abadi et al. 90]. We also apply our proof method to the 
calculi AV of Lescanne et al. and AS of Kamareddine and Rios. 

3 A calculus for explicit substitutions with named variables 

In the standard definition of the untyped lambda calculus, substitution is a meta-operation, usually 
denoted by [x:=N] or [N/x], where x is a variable and N a term. In the following we use the 
notation [N/x] for a (global) substitution of N for x. For M and N terms and x, y distinct 
variables, the term M[N/x] is then defined by structural induction as follows. 

x[N/x] 

y[N /x] 

(PQ)[N/x] 

(Ay.P)[N/x] 

(kP)[N /x] .-

N, 

y,ify'tx, 

P[N /x]Q[N/x], 

Ay'.P[y' /y][N Ix], if 11' j! FV(N) U {x} U (FV(P) \ {y}) 

AX.P. 

We assume the notions of free variable (FV) and bound variable (BV) to be known. Furthermore, = denotes syntactical equality modulo a-conversion, which is defined as the smallest equivalence 
relation such that 

P == Nand Q == M => PQ == N M, 

P==Q,yj!FV(Q)\{x} => AX.P==Ay.Q[y/x]. 

In the definition of substitution, there is a choice for the variable y'. For this definition to 
make sense, it has to be shown that the specific choice for the variable y' is irrelevant. But this is 
a consequence of the definition of == and the following Lemma. 

Lemma 3.1 If P == Q and M == N, then P[M/x] == Q[N/x]. 

In order to get a calculus AX of explicit substitutions, two extensions have to be made. The 
first is extending the terms with substitutions: 

Definition 3.2 The set of terms AX is defined by the following abstract syntax: 

A ::= x I AA I Ax.A I A(x:=A) 

Where x denotes an arbitrary variable. 
Substitution is defined on Ax-terms as for A-terms but with the extra clauses that 

M(y:=P}[N/x] == M[y' /y][N/x](y':=P[N/x])ify' j! FV(N) U {x} U (FV(M) \ {y}) 
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M(x:=P)[N/x]: M(x:=P[N/x]} 

a-equivalence is defined on Ax-terms as for A-terms but with the extra clause that 

M: N,P: Q,yrt- FV(Q)\ {x} =} P(x:=M) :Q[y/x](y:=N) 

A E Ax is called pure if A E A, i.e., A does not contain any substitution (x:=B). 

The second is refining the notion of ,B-reduction. Remember that the reduction relation ---+(3 

on pure terms is defined as the contextual closure of 

{Ax.A)B ->~ A[B/x] 

We make the global substitution in ---+f3 explicit by splitting ---+f3 into two parts. --+Beta is for 
the creation of a substitution out of a f3-redex; -+x is for the proliferation of substitutions through 
a term to variables and for performing the actual substitution or throwing away the substitute if 
the substitution turns out to be void. 

Definition 3.3 The reduction relations ---+Beta and --+x are defined to be the contextual closures 
modulo a-conversion of respectively 

and 

(Ax.A)B ->Beta A(x:=B) 

(AB)(x:=C) ->x (A(x:=C) )(B(x:=C)) 

(Ay.A)(x:=C) ->x Ay.A(x:=C) if x '¥ y and y rt- FV(C) 

x(x:=C) ..... x C 

A(x:=C) ->x A if x rt- FV(C) 

The explicit substitution reduction relation ---!o>..x is the union of ---!oBeta and ---!ox. 

The reduction A(x:=C) ..... x A if x rt- FV(A) is also called garbage collection. Since we consider 
terms modulo a-equality, substitutions can always be distributed to variables, hence the rule 
y(x:=C) ->x y if x '¥ y would already be sufficient. The more efficient garbage collection will do 
no harm however. 

The reduction relation ---!ox is called the substitution calculus. It has nice properties: 

Lemma 3.4 ---+x is strongly normalising, confluent and has unique normalforms. 

Proof: Strong normalisation is shown by defining a map h : Ax ---+ IN which decreases on x
reduction; define 

h(x) = 
h(AB) 

h(Ax.A) 

h(A(x:=B) ) 

1 

h(A) + h(B) + 1 

h(A) + 1 

h(A) . (h(B) + 1) 

then by induction on the structure of A: if A ->x B then h(A) > h(B). 
To prove confluence, it is now sufficient to show weak confluence which is easy. o 

Definition 3.5 We write A E SN R if A is strongly normalizing with respect to the reduction 
relation R. 

We write x(A) to denote the x-normalform of A. 
For pure terms A, we write J3(A) to denote the J3.normalform of A, if it exists. 
We define J1(A) to be the maximal length of a J3·reduction path starting with x(A), if x(A) E 

SNp. 
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Note that for A E Ax, x(A) is pure. 
We now give some elementary but important properties of x and /3. 

Lemma 3.6 (substitution) For all terms A, B: x(.4(x:=B)) == x(A)[x(B)/x]. 

Proof: We prove by induction on the number of symbols in the sequence A, Bl J ••• I Bm that 
X(A(X1 :=B1) ... (xm:=Bm)) == x(A)[x(Bd/xd ... [x(Bm)/xm]. 

We distinguish cases according to the structure of A; we only treat some of them: 

IH 
• A == Xi. Then X(A(X1:=B1) ... (xm:=Bm)) == x(Bi (xi+1:=B,+1)' .. (xm:=Bm)) == 

X(Bi)[x(Bi+d/Xi+d ... [x(Bm)/xm] == x(A)[x(B1)/xd ... [x(Bm)/xm] . 

• A == A1 (y:=A2). Then the number of symbols in the sequence A, B1, . .. , Bm is larger than 
in the sequence A l , A2J Bl J ••• J Bm and the number of symbols in A is bigger than in Al J A2 
so by the induction hypothesis: 

x(Ady:=A2)(X1:=B1) ... (xm:=Bm)) == x(A1)[x(A2)/y][x(Bd/xd ... [x(Bm)/xm] == 

x(Ady:=A2))[x(Bd/xd'" [x(Bm)/xm]. 

Lemma 3.7 (projection) For all terms A, B: 

1. if A ---+x B then x(A) == x(B) 

2. if A ---+Beta B then x(A)--;;~x(B) 

Proof: 

o 

1. is immediate and 2. is by induction on the structure of A. Note that if N --;;~N' then 
M[N/x]--;;~M[N'/x]. We treat some cases: 

• A == (Ax.A1)A2, B == A1 (x:=A2). Then x(A) == (Ax.x(Ad)x(A2) ---+~ x(Ad[x(A2)/X] 
3.6 ( ) == x(A1 x:=A2 )) == x(B . 

• A == A1(x:=A2), B == A1(x:=A2). Then x(A) 
~6 x(B). 

3.6 IH 
== x(A!)[x(A2)/X] --;;~ x(A!)[x(A2)/x] 

o 
The projection lemma is not strong enough to give us PSN. The problem is that if A ---+Bet. B 

then sometimes x(A) == x(B), as in x(y:=(Az.C)D) ---+Bet. x(y:=C(z:=D)). A proof of PSN by 
analyzing what can happen inside 'void' substitutions such as in this example is given in [Bloo 95] 
and in [Bloo & Rose 95]. 

Lemma 3.8 (soundness) For all pure terms A, B: if A ---+~ B then A--;;>xB. 

Proof: Induction on the structure of A. We treat the case A == (Ax.AdA 2 , B == A1[A';x]. Then 
Lemma 3.6 A pure 

A ---+Beta A1 (x:=A 2 )--;;xx(A1 (x:=A2 )) == X(A1)[X(A2)/ x] == A1 [A2/X]. 
o 

A final property of AX that can be shown easily is the confluence of ~..\x. 

Theorem 3.9 ~..\x is confluent. 

Proof: If A--;;,\xB1 and A--;;>xB2 then by projection x(A)--;;~x(Bi) so by confluence of ---+~ there 
is a pure term C such that Bi--;;~C, now by soundness X(Bi)--;;'\xC. Then also B1--;;>xC. 0 
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4 The recurSIve path order 

In this section we briefly introduce the recursive path order. For a more detailed description and 
proofs, the reader is referred to [Dershowitz 79], [Zantema 94] and [Ferreira & Zantema 94]. 

Definition 4.1 Let F be a set of function symbols, X a set of variables such that F n X = 0, let 
T(F, X) be the set of (open) terms over F and X. Let I> be a partial order on:F. Let T be a map 
assigning to every function symbol f E :F one of the words mult or lex. 

The recursive path order >",0 on T(F, X) induced by I> and T is defined by 
/(81, ... ,Sm) >",0 g(tl, ... ,tn ) 

iff 3i[8; = g(t l , .. . , t n ) V S; >,po g(tl, . .. , tn )] 

V (J I> gil \lj[/(SI, ... , sm) >,po tjD 

V (J = gil \lj[f(sl,"" 8 m ) >,po tj] II (SI,' .. , sm) >;W (t l , . .. ,tn)) 

Here >~;o and >~~1 are respectively the lexicographic and the multiset extensions oj>rpo, i.e., 

• (51)"') 8m} >~-;;o (i l , ... , in) iff for some i ::; m, n, 81 = i1) . .. , Si-l = ii-l, Si >rpo ti or 
81 =i1"",Sm =im,m>n . 

• (81, ... , sm) >;~' (t l , ... ,tn) iff the multiset {{ 81, ... , Sm}} can be transformed into the 
multiset {{t l , ... , t n }} by performing the operation 'replace a member s of the multiset by 
finitely many terms t such that S >rpo t' one or more times. 

In [Ferreira & Zantema 94], T is called status function. More complex extensions of >,po than 
multiset or lexicographic are even possible. 

Theorem 4.2 (Dershowitz) Let I> be a partial order and T a status function on a set of function 
symbols :F, let >rpo be the induced recursive path order. Then 

>rpo is well-founded <¢:::::=? [> is well-founded 

Proof: see [Dershowitz 79] or [Ferreira & Zantema 94]' o 

5 PSN for Ax 

In this section we use the recursive path order to show that AX has PSN. Since the recursive 
path order is about first order term rewrite systems, we need to translate terms of Ax into a first 
order term rewrite system; to be able to prove PSN this translation must in some sense preserve 
reductions. We do this by labelling (some) function symbols with maximal lengths of reduction 
sequences; therefore we restrict to terms where these lengths are finite for all subterms. It will 
turn out that these are exactly all the strongly normalizing Ax-terms. 

Definition 5.1 We define the set AX<oo C AX by 

h<OO = {A E AX I for all subterms B of A,x(B) E SN~} 

Remark: A E AX<oo if and only if: for all subterms B of A, P( B) < 00. 

Lemma 5.2 i3((Ax.A)B) > P(A(x:=B)). 

Proof: Every ->~-reduction path of length n of x(A(x:=B)) can be extended to a reduction path 
of length n + 1 of x((Ax.A)B) by prefixing it by x((Ax.A)B) == (Ax.x(A))x(B) ->~ x(A)[x(B)/x] 
== x(A{x:=B)). 0 
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Lemma 5.3 If A E Ax<oo and A ---;,Ix A' then A' E ,\x<oo. 

Proof: Induction on the structure of A. 

Definition 5.4 We define the set of labelled terms Al by the following abstract syntax: 

A ::= * I A 'n A I AA I A(A)n 

where n ranges over the natural numbers. 
We define by induction on the structure of terms a translation T : AX<oo ----+ AI: 

T(x) 

T(AB) 

T(AX.A) 

T(A(x:=B) ) 

* 
T(A)'n T(B) 
AT(A) 

T(A)(T{lI»n 

Note that for all A E AX<oo, T(A) is well-defined. 

where n = /3(AB) 

where n = /3(A(x:=B» 

o 

Definition 5.5 We define a TRS Al using as terms the set Al and having the reduction relation 
---;/ defined by 

(AA)m B ---;1 A(B)" ifm> n 

(A'm B)(C)n ---;1 (A(C)p) " (B(C).) ifn?:p,q,r 

(AA)(C)n ---;1 A(A(C)n) 

A(C) ---;/ C 

A(C) ---;/ A 

A·mB ---;1 A 'nB ifm > n 

A(B)m ---;/ A(B)n ifm > n 

Note that ---+/ is not confluent; for our purposes this is no problem since --+/ is only designed to 
be useful for proving strong normalisation. The last two rules are called Deer in [Zantema 94] 
and are necessary to decrease the labels of applications and substitutions if inside of them a 
-7Beta-reduction is performed. Note that in the presence of the Deer rules we could also have 
(AA) 'n+l B ---;/ A(B)n for all n instead of (AA) 'm B ---;/ A(B)n for all m > n. 

Lemma 5.6 The relation ---+/ is a suhre/ation of some recursive path order. (That is, there is a 
precedence relation I> such that for all A, BE Ai) if A -+/ B, then A >rpo B, where >rpo is the 
rpo ordering induced by 1>.) 

Proof: Define the precedence I> by 

and the status function r by r(-n) = r(A) = r( On) = lex. Then ---;1 is a sub relation of the induced 
recursive path order >rpo. 0 

Corrollary 5.7 ---;/ is SN. 

Proof: By Theorem 4.2, >,po of Lemma 5.6 is strongly normalising, hence by Lemma 5.6 ---;/ is 
strongly normalising. 0 

LeIllma 5.S If A E AX<oo and A ---;,Ix A' then T(A)---»tT(A'). 

Proof: Induction on the structure of Aj we treat some of the more interesting cases. 
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• A == (Ax.A')A, --+Beta A, (x:=A 2 ) == A'. 

Then T(A) == (AT(A,)) 'm T(A,) --+/ T(A,)(x:=T(A,))n == T(A') where m = ,B(A); n = 
,B(A'); note that m > n by Lemma 5.2. 

• A == (A , A,)(x:=A3) --+x (A,(x:=A3))(A2(X:=A3)) == A'. 

Then T(A) == (T(A,) 'm T(A,))(T(A3))n --+/ (T(A,)(T(A3))p 'n (T(A,)(T(A3))q == T(A'), 
where m = ,B(A,A,), n = ,B(A), p = ,B(AI (X:=A3)), q = ,B(A,(x:=A3)); note that n ~ p and 
n ~ q. 

• A == X(X:=Al) --+x A, == A'. Then T(A) == *(T(A,))m --+/ T(A,) == T(A') where m = ,B(A). 

• A == A, (x:=A,) --+gc A, == A'. Then T(A) == T(A,)(T(A'))m --+/ T(A,) == T(A') where 

m = ,B(A). 

• A == (Ay.A,)(x:=A,) --+x Ay.(A,(x:=A,)) == A'. Then T(A) == (AT(A,))(T(A,))m --+/ 

A(T(A,)(T(A,))m) == T(A') where m = ,B(A) = ,B(A'). 

IH 

• A == AlA, --+.\x A\A, == A'. Then T(A) == T(A,) 'm T(A,) --;;j T(A\) 'm T(A,) --;;/ 
T(A\) 'n T(A,) where m = ,B(A) ~ n = ,B(A'). 

o 

Corrollary 5.9 (PSN) 1. A E SN.\x ~ A E AX<oo 

2. AX preserves strong normalisation 

6 AV, AS and extensions 

In this section we show that our method is general enough to show PSN for other calculi of 
explicit substitutions such as AV of [BBLR 95] and As of [Kamareddine & Rios 95], and also some 
extensions of AX. Furthermore, we discuss some extensions of AX, giving a counterexample to PSN 
similar to the one of [Mellies 95], but less involved. 

6.1 The calculi '\u and '\s 

Definition 6.1 Terms and substitutions of AV are defined by the following abstract syntaxes: 

a !J. I (aa) I (Aa) I (a[s]) 

8 al I 11" (8) I r 
where n ranges over the set {I, 2, 3, 4, ... }. 

The reduction relation ----.. AU is the union of ---+vBeta and ---+v which are defined by 

(Aa)b ---;'vBeta a[bl] 

(ab)[s] --+v a[s]b[s] 
(Aa)[s] --+v A(a[11" (sm 

l[a/] --+u a 

n + l[a/] --+v !J. 
1[11" (8)] --+u 1 

n + 1[11" (s)] --+v !J.[sHl] 

dl] """u n+l 
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Some initial intuition to motivate the reduction rules of AV: a[bj] stands for 'substitute b for 
1 in a', [it (s)] stands for the substitution obtained by first raising all the indices in s by 1 and 
substituting not the index 1, but the index 2, and [t] stands for the substitution that raises all 
numbers (in the term in front of it) by 1. An example to explain these intuitive motivations is the 
following. (For reasons of legibility we have removed some brackets.) 

(A( A(12)))(11) -+vBeta (A(12))[ll/] 

--+v A((12)[it (ill)]) 
--+v A(l[it (ilI)]~[it (ill)]) 
--+v A(12[it (ill)]) 
--+v A(l(l[ilI][lJ)) 

--+v A(l(11)[1]) 

--+v A (l(1[1llll])) 
--+v A(1(22)) 

For a detailed explanation and motivation of the system Au we refer to [BBLR 95]. 

Definition 6.2 Terms and substitutions of As are defined by the following abstract syntaxes: 

a ::= !! I (aa) I (Aa) I (,p}a) I (ao-'a) 

where n, i range over the set {I, 2, 3, 4, ... } and j ranges over {O, I, 2, 3, ... }. 
The reduction relation -+'\s is the union of -+sBeta and -+s which are defined by 

(Aa)b --+,Beta ao-' b 

(Aa)o-'b --+, A(ao-'+1b) 

(a,a2)o-'b --+, (aw'b)(a10-'b) 

11(,-i b --+, 

,p~ (Aa) --+, 

,pHa,a2) --+, 

r/>'n k_ --+, 

{ 

n-1 

:&(b) 
if n > i 
if n = i 
if n < i 

A(r/>~+1a) 

(<,6~a1)(r/>~a2) 

{ ;+i-1 if n> k 
if n ~ k 

Again, we don't give a detailed explanation and motivation for the rules of this calculus, but 
refer to [Kamareddine & Rios 95]. Some initial intuition: o-'(b) stands for the substitution of b for 
i, ¢i(a) stands for 'raise all the numbers n > k in the term a with i-I'. To explain the rules, we 
treat the same example as for Av. 

(A( A(12)) )(11) -+sBeta (A(12))0-' (11) 

--+, A( (12)0- 2(11)) 

--+, A(10-2 (11) )(~0-2 (11))) 

--+, A(1(20-2 (11))) 

--+, A(Hi (11)) 
--+, A(l(<,65(l)r/>M)) 
--.., A(1(22)) 
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The calculus AS is very similar to AV. The difference is mainly in the moment of updating: in 
Av every step n + 1[-(t (s)]"""v !![s][1] creates an update substitution [I] whereas in As the update 
functionsymbol q)i is only created at the actual moment of substitution in nuna -+s q){ja. Also, in 
the reductions !1/Joib -+5 n - 1 (n > i)and !1/Ti b --+8.!.!. (n < i), there is no updatefunction generated 
whereas in n + 1[-(t (s)] """v !![s][1] an update substitution is created regardless of whether the 
substitution [, (s)] is binding n + lor is void. 

In [BBLR 95] it is shown that Av has PSN by contradicting the existence of a minimal infinite 
Av-reduction of a term which is SN for """f; in [Kamareddine & Rios 95] PSN is shown to hold for 
AS in a similar way. 

We show that Av and As are PSN by using the labelled calculus A'. The proof is very similar 
to the proof of PSN for Ax that we gave in the previous section. 

For AV and AS we have the usual properties such as SN, CR, UN for --+v respectively --+8' 
substitution lemma, projection lemma, soundness lemma and confluence for --+).v respectively --+).8' 
We denote the """v-normal form respectively ...... ,-normal form of a term b by v(b) respectively s(b). 
Note that a substitution of Av is of the form -(t" (b/) or -(t" (I) for some n. 

We denote fi-reduction on Av-terms as well as on As-terms by -+f3; for a AV- respectively 

As-term a we write ~(a) to denote the maximal number of ,6-reduction steps starting from v(a) 
respectively s(a), if this number exists. 

Definition 6.3 

AV<= {a E Av I Vb <;; a[v(b) E SNf ]} 

AS<= .- {a E As I Vb <;; a[s(b) E SNf]} 

Lemma 6.4 1. AV<oo is closed under -+).v-reduction 

2. AS<oo is closed under -+).8-reduction 

Definition 6.5 1. Tv : AV<= ---> A' is defined by 

Tv(!!) 

Tv(ab) 

Tv(Aa) 

1;,(a[-(t" (b/)]) 

1;,(a[-(t" (I)]) 

2. T, : AS<= ---> A' is defined by 

T,(!!) 

T,( ab) 

T,(Aa) 

T,(a,A) 

T,(,pja) 

• 
= Tv(a).p Tv(b) 

'\Tv(a) 

Tv(a)(Tv(b))p 

1;, (a) 

• 
T,(a).p T,(b) 

AT,(a) 

T,(a)(T,(b))p 

T,(a) 

where p = hab) 

where p = ha[-(t" (b/)]) 

where p = ~(ab) 

where p = ~(arT' b) 

Lemma 6.6 1. If a E AV<= and a ...... v b then Tv(a) ....... ,Tv(b) 

2. If a E AV<= and a """vB,ta b then 1;,(a) ....... tTv(b) 

3. If a E AS<= and a....." b then T,(a)---»,T,(b) 

4. If a E AS<= and a """,B,ta b then T,(a) ....... tT,(b) 

Proof: Induction on the structure of a. 

Theorem 6.7 
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2. -->AU has PSN 

3. a E SNA, = a E AS<= 

4. -->A' has PSN 

Proof: 

1. => by projection; ¢::: since -""'v is SN, any infinite ----+>.v-reduction must contain infinitely 
many ---+vBeta-steps. Therefore an infinite reduction of a pure term which is SN for ---+f3 
translates by Tv into an infinite ---+l-reduction which is impossible by 5.7. 

2. follows from 1. 

3. & 4. similar to 1. & 2. 

o 

6.2 Extensions of AX 

In this section we consider several extensions of AX with some kind of composition. The calculus 
A<T of [Abadi et al. 90] was designed to be able to compose substitutions. The price however is not 
having PSN (of. [Mellies 95]). Since AX has no composition but does have PSN, it is an interesting 
question where the borderline is between PSN and composition of substitutions. 

We start with a short discussion of .\.0'. For the precise definition of AO', the reader is referred 
to [Abadi et al. 90]. The composition of substitutions in A<T is mainly performed by two rules, 
Camp and Map. The first glues two substitutions together: a[s][t] ~ a[sot], while Map allows the 

distribution of the second substitution over the first: (b·c·s')ot ~ b[t]·« c.s')ot) ~ b[t]·c[t].(s'ot). 
As was pointed out in [Kamareddine & Nederpelt 93], the substitutions of A<T are roughly the 

same as simultaneous parallel substitutions in the following extension of AX: 

terms t ::= x I tt I AX.t I t(£:=I} 

where (i:=t) is shorthand for (Xl, ... ,Xm:=tl, . .. , tm); reductions are similar as for AX plus the 
composition rule 

a(£:=b) (ij:=C) ----; ali, ij:=b, (iJ:=C), ... , bm (iJ:=C), C) 

In this calculus one can imitate the counterexample to PSN of A<T (of [Mellies 95]). In fact, 
even the calculus Ax extended with the rule 

a(x:=b)(y:=c) ----; a(x:=b(y:=c)) if y rt FV(a) 

(no simultaneous substitutions needed) doesn't have PSN. We give an infinite derivation starting 
from the term (Ay.(Ay' .x)«Ay.a)b))«Ay.a)b). Note that this term is even simpler than the term 
used in [Mellies 95]. 

First we define substitutions Cfi for m E IN by 

"0 = (y:=(Ay.a)b) 

"m+' (y:=b"m) 

Now consider the following three reductions. (For simplicity we forget about the variable conven
tion during this counterexample; furthermore, we freely change bound variables if convenient.) 

(Ay.(Ay'.X )«Ay.a)b ))«Ay.a)b) --» x(y' :=(Ay.a )b)(y:=(Ay.a)b) 

--> x(y' :=«Ay.a)b )(y:=(Ay.a)b)) 

--» x(y' :=(Ay.a(y:=(Ay.a)b) )(b(y:=(Ay.a)b))) 

x(y' :=( Ay.a"o)( b"o)) 

--> x(y' :=a"o (y:=b"o)) 

x(y' :=a"o"') 
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a(y' :=(Ay.a)b) (y:=bam) 
a(y' :=(Ay.a(y:=bam) )(b(y:=bam») 
a(y' :=aam+1 (y:=b"m+I» 

a(y' :=(Ay.a)b )(y:=b"m» 
a(y' :=( Ay.aam+I)( bfrm+I» 
a(y' :=afrm+1 frm+2) 

a(y' :=b"m) (y:=b"n) --+ a(y' :=b"m (y:=b"n» = 

These combine into an infinite derivation in the following way. 
(Ay.( Ay' .X)( (Ay.a)b»)( (Ay.a)b)--» 

. . . aQ'ocq ... --» ... aal 0:2 ... 

--» . . . a0:'20'3 ... --» ... aO'l 0'3 ... 

-;, ... aO:'OO'm+l ... --» . . . aam +l (Ym+2 ... 

--» . .• aO'OO'Z ... 

--» . . . aa00:'3··· 

--» ... aO'OO'm+2 ... 

Recall that we proved PSN by showing that every term of which the x-normal form of any of its 
subterms is in SNpl is also SN for ----1-Beta U ---+x. With the extra composition reduction defined 
above, there is an easy counterexample to that: the term x(y:=zZ)(Z:=AW.WW) has x-normalform 
x (and is also SN for Ax-reduction), but it has n as a sub term of a reduct if composition is allowed. 

This example also shows why our method fails for the system extended with the extra com
position rule, and hence also for AO": T(x(y:=zZ)(Z:=AW.WW» == *(*'0 *)O(A(*'o *»0 whereas 
after composition of the two substitutions, the label of the innermost substitution does not exist: 
T(x(y:=(zZ)(Z:=AW. ww») == *(( * '0 * )(A( * '0 * »00)0. So reduction in AO" does not always decrease 
T-images. 

One can try to give a rule for composition of substitutions such that reduction still decreases 
T-images, the following rule seems best fit for this purpose: 

a(x:=b)(y:=c) --+x' a(x:=b(y:=c» if y!/:: FV(a), x E FV(x(a» 

The idea behind this rule is that, if x E FV(x(a», then b(y:=c) will occur as a subterm of some 
--+.\x-reduct. Hence allowing to create b(y:=c) at this point will not spoil PSN. We strongly believe 
that adding this reduction rule does not spoil SN (i.e. Ax extended with the rule --+x' has PSN), 
but we have not been able to prove it. 

7 Proof of PSN using labelled trees 

In this section we outline a proof of the Preservation of Strong Normalization property, again using 
the RPO technique, but now in the way it has been presented in [Klop 92]. One then looks at 
the collection of commutative finite labelled trees Tree (i.e. trees are identified upto permutation 
of branches; there is no order from left to right in the subtrees). The labels are taken from 
N. Furthermore, one looks at the set Tree\ where some nodes in a tree may have a marker *. 
It is convenient to denote the tree with root node n and subtrees t l , ... , tp by n(t l , ... , tp), and 
similarly, if the root node has a marker, by n*( i l , ... , i p). In the following, we abbreviate i 1 , ... , ip 
to f. On these commutative labelled trees with markers (the set Tree*), a reduction relation ~ 
is defined. 

Definition 7.1 The relation ~ on Tree* is defined as follows. 

n(i) ~ n*(i) , 
n*(t) ~ m(n*(i), ... , n*(i), 

if m < n, zero or more copies of n*(i), 

n*(s, t) ~ n(s*, ... ,s*,0, 

zero or more copies of s, 

n*(i) ~ ii, 

l:C;i:C;p. 

11 



Furthermore, the relation ~ is compatible with the tree-forming operations, that is, ifti ~ til 
then n(t" ... ,t;, ... ,tp) =t> n(t" ... ,t;, ... ,tp). 

As usual, the relation ~+ denotes the transitive closure of ~ and ~* denotes the transitive 
reflexive closure of ~. 

For examples on the use of these rules we refer to [Klop 92]. we just mention the main result, 
which will be applied here to the issue of PSN for explicit substituion. 

Theorem 7.2 ([Klop 92],[Dershowitz 79]) The relation =t>+ is well-founded on Tree (the set 
of trees without markers). 

To prove PSN for the calculus Ax, we now proceed by defining a reduction preserving mapping 
T from AX<oo to Tree: if M ---*x N, then M =c>* N and if M ---*Beta N, then M ~+ N. Hence, 
using the fact that ---*x is strongly normalizing, we can again conclude that every M E AX<oo is 
strongly normalizing and so that AX has the PSN property. 

For notational convenience, we abbreviate the sequence of definitions (Xl:=P1)", (xn:=Pn ) to 
(x:=P). 

Definition 7.3 For M E AX<=, we define the tree T(M) by induction on the length of M as 
follows. 

T(x) = 0, 

~(QN) 

T(QN) / ~ 
T(Q) T(N) 

T(Ay.N) T(N) 

0 

/ ~ T(y(x:-P}) = 

"" T(P,) T(Pn ) 

'fy rt {x" ... ,xn } 

T(x;(x:-P}) = 

T(P') ... T(Pi_') 

T((QN)(x:-P}) = IN){'~,-;--= 
T(Q(x:=P}) T(N(x:=P}) 

T((Ay.N)(x:_P} ) T(N(x:-P}) 
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The following Lemmas show that T preserves reductions (in the right sense as announced 
above). The proofs of these Lemmas are not difficult, the main complication being to find out the 
right induction loadings (and the right order on which the induction should be done). We just 
outline the proofs. 

Lemma 7.4 For ME h<=, if M -->x N, then T(M)~' T(N). 

Proof: By induction on the length of M, distinguishing sub cases according to the structure 
of M. Note that we need Lemma 5.3 to make sure that N E AX<= and hence that T(N) is 
well-defined. 0 

The following two Lemmas are sub lemmas necessary for the proof of preservation of ~Beta
reduction by T. 

Lemma 7.5 For N(x:=P) E h<=, T(N(x:=P))~' T(N). 

Proof: By induction on the length of N. o 

Lemma 7.6 For ((Ay.N)Q)(x:-P) E AX<=, T(((Ay.N)Q)(x:=P)) ~+ T(N(y:=Q)(x:=P)). 

Proof: By induction on the length of N, using Lemma 7.5. First write N as R(y:-Q), with 
R not a term that ends with a substitution item. (So, the sequence (y:-Q) should be taken as 
long as possible.) Then distinguish cases according to the structure of R. 0 

Corrollary 7.7 The calculus AX has the PSN property. 

8 Conclusions 

We have introduced a new method for proving PSN of lambda calculi with explicit substitution. 
The method involves four steps: 

• determine a suitable set contained in the set of strongly normalising terms in the explicit 
substitution calculus, containing the pure jJ-SN terms and closed under explicit substitution 
reduction, 

• give a translation from this set into a first order term rewrite system, 

• define a strongly normalising reduction relation on this TRS by giving a well-founded prece
dence, 

• show that the translation preserves infinite reduction paths. 

For named calculi, the translation identifies all variables; for calculi using de Bruijn indices the 
translation identifies all indices and erases update functions, giving evidence for the statement 
'update functions do not matter for termination issues'. Kruskal's theorem ensures that a well
founded precedence yields a strongly normalizing term rewrite system. 

Further applications of this method that are under investigation: 

• give a maximal strategy for Ax-reduction and an inductive characterization of the set Ax<oo. 

• give a general PSN proof for combinator reduction systems with explicit substitution 
(cf. [Rose 95], [Bloo & Rose 96]) 

• give a (first order) calculus with explicit substitution which has PSN as well as confluence 
on open terms. 
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