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Within a second virial theory, we study bulk phase diagrams as well as the free planar isotropic–
nematic interface of binary mixtures of nonadditive thin and thick hard rods. For species of the same
type, the excluded volume is determined only by the dimensions of the particles, whereas for
dissimilar ones it is taken to be larger or smaller than that, giving rise to a nonadditivity that can be
positive or negative. We argue that such a nonadditivity can result from modeling of soft interactions
as effective hard-core interactions. The nonadditivity enhances or reduces the fractionation at
isotropic–nematicsINd coexistence and may induce or suppress a demixing of the high-density
nematic phase into two nematic phases of different compositionsN1 andN2d, depending on whether
the nonadditivity is positive or negative. The interfacial tension between coexisting isotropic and
nematic phases shows an increase with increasing fractionation at theIN interface, and complete
wetting of theIN2 interface by theN1 phase upon approach of the triple-point coexistence. In all
explored cases bulk and interfacial properties of the nonadditive mixtures exhibit a striking and
quite unexpected similarity with the properties of additive mixtures of different diameter ratio.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1854627g

I. INTRODUCTION

In his paper about the isotropic–nematicsINd transition
in solutions of monodisperse, rod-like particles that interact
through a hard, steric repulsion, Onsager briefly discussed a
possible extension of his results to polydisperse systems.1

Since then, a tremendous amount of work has been devoted
to the study of the influence of polydispersity on the phase
behavior of such hard-rod fluids, both for the case where this
polydispersity is of the quenched type2–5 and for where it is
of the annealed type.6–9 Focusing on the former, even the
simplestsbinaryd mixtures consisting of long, hard rods that
differ only in length or diameter exhibit quite nontrivial
phase diagrams. In addition to the pure isotropic and nematic
phases of various composition and regions of their coexist-
ence, the high-density nematic phase can demixsand possi-
bly remixd into two nematic phases of different composition
sdenotedN1 andN2d. The reason for the existence of anIN
transition in binary mixtures is the same as that in monodis-
perse hard-rod fluids, being a competition between orienta-
tion entropy and entropy of packing.1,10 In contrast, the
nematic–nematic demixing does not involve changes in ex-
cluded volumesi.e., packing entropyd, but rather a competi-
tion between orientation entropy and entropy of mixing.11

Another interesting feature is that, for sufficiently large size
disparity, the two distinct nematic phases do not remix even
at arbitrary high pressure.12

Unfortunately, it is quite difficult to compare these the-

oretical findings with results obtained from actual experi-
ments. Although rod-like particles can be synthesized chemi-
cally in various ways,10 typically their size distribution is
mono- or bidisperse only to a first approximation. By con-
trast, suspensions of rod-like viruses such as tobacco mosaic
virus, M13, pf1, and fd are characterized by a high degree of
monodispersity, and are therefore attractive model systems,
despite the complicating factors associated with their fixed
physical dimensions, their charged nature, and the fact that
they are not actually infinitely rigid but exhibit some degree
of bending flexibility.

Recently, however, experimental procedures have been
developed that allow one to modify the length and the diam-
eter of these viruses,13 which opens the possibility to form
binary mixtures of a well-defined bidispersity. In particular,
one of the methods is based on altering the effective diameter
of the fd virus by coating it with the polymer polyethylene
glycol sPEGd. Studies of such binary mixtures of thin and
thick rods have revealed coexistence regions of the isotropic
and different nematic phasessIN2 and IN1d, as well as a
nematic–nematic coexistence regionsN1N2d and an IN1N2

triple point.14 Although some of the gross features of this
experimentally determined phase diagram are in agreement
with theoretical predictions based on an extension of Onsag-
er’s second virial theory to binary mixtures of hard rods,15,16

some of the experimental and theoretical findings turn out to
be in sharp contrast with each other.

According to the theory, mixtures of thin rodsswith a
diameterD1d and thick onessdiameterD2d of equal lengthL
should exhibit a spindle-likeIN coexistence without anyadElectronic mail: k.shundyak@phys.uu.nl
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nematic–nematic demixing for diameter ratiosd=D2/D1

,3.8. Experiments, however, point at a broadN1N2 coexist-
ence for a diameter ratio as small asd,2.0.14 Furthermore,
in the interval 3.8,d,4.29 the single nematic phase de-
mixes, according to the theory, into two nematic phasesN1

andN2 of different composition, whilst remixing takes place
at sufficiently high total densitysor osmotic pressured, that is,
above anupper critical sor consoluted point. Experiments,
however, reveal alower consolute point that closes the
N1–N2 coexistence,14 i.e., the N1–N2 demixing becomes
more pronounced with increasing osmotic pressure.

Possible explanations for these differences may well be
found in the idealizations incurred when modeling the virus
particles as infinitely elongated, infinitely rigid rods that in-
teract with each other only through additive hard-core poten-
tials. Indeed, the virus particles are semiflexible and charged,
as already alluded to. In addition, the grafted polymer coat-
ing is soft and hence compressible, and the length-to-
diameter ratio of the rods is at best, say, 50. It is important to
recall that the second virial theory is believed to be exact
only in the limit of infinite aspect ratios of the rods.10 The
impact of a finite length-to-diameter ratio was recently con-
sidered within an extension of the so-called Parsons–Lee
theory to mixtures of hard rods.17 This theory does reproduce
a lower consolute point for mixtures of thin and thick rods,
albeit only if their lengthspresumed equald is extremely
small. A lower consolute point has also been predicted for
binary mixtures of semiflexible, hard, thin rods of unequal
thickness, at least if their persistence lengths and their widths
do not differ by more than roughly the square root of either
persistence length over their contour length.18,19 However,
the predicted isotropic–isotropic demixing is not found in the
experiments involving the mixtures of naked and coated fd
virus particles.14 The theory18,19does not strictly apply to this
experimental system anyway, because of the tacit assumption
that the length of the rods greatly exceeds their persistence
length.

In an attempt to shed light on the issue, we focus on the
effects that any nonadditivity of the interactions between the
two kinds of rod might have on their phase behavior. Such a
nonadditivity emerges naturally if one replaces actual soft
rod–rod repulsions by effective hard-core repulsions, charac-
terized by effective hard-core diameters that in effect are
distances of closest approach. As is well known, the
screened-Coulomb interactions between charged virus par-
ticles in an electrolyte solution can be reasonably approxi-
mated by an effective steric interaction with a hard-core di-
ameter that is the sum of the bare, “physical” diameter of the
rod and an electrostatic contribution proportional to the De-
bye screening length of the suspending medium.20 For the
interaction between a pair of polymer-coated virus particles,
one would have an effective diameter of the order of the
radius of gyration of the tethered chains,21 at least if the
Debye length is much smaller than that.

It is not at all obvious that the effective interaction
length between a bare- and a polymer-coated charged rod
should be the linear average of the interaction lengths of the
two separate species, in other words, one would from the
outset expect the interaction within such an effective descrip-

tion to be nonadditive rather than additive. Indeed, as we
shall see below in Sec. II, even highly simplified model po-
tentials produce nonadditive effective hard-core interactions
in mixtures of rods. The level of nonadditivity may be ex-
pressed in a parametera defined such that the effective hard-
core diameter of an unlike pair of rods can written as1

2sD1

+D2ds1+ad, whereDs is the effective hard-core diameter of
the interaction between two like rods of speciess=1,2. For
an additive mixute,a=0. In this paper, we make plausible,
by explicitly considering the steric interactions between the
various types of rod, that, even within a simplified model,a
may attain values that can be positive or negative up to, say,
10%. Additional sources of nonadditivity may be found, say,
in electric polarization effects of the charges on the polymer
coating, but these will not be considered here.

Although the microscopic origin of nonadditivity is ulti-
mately based on the lesssa.0d or more sa,0d efficient
packing of the mixture compared to the pure species, we do
not attempt to calculatea from a realistic microscopic
theory. Having ascertained thata need indeed not be zero,
we treat it as a phenomenological parameter in a generalized
Onsager theory, and investigate its consequences for the
phase behavior of the mixture, and for the interfacial prop-
erties of coexisting isotropic and nematic phases. As we shall
see, both the predicted phase diagrams and interfacial prop-
erties of the isotropic–nematic interface are very sensitive to
values ofuau as small as a few percent. Of course, this does
not imply that all effects of electrostatic interactions, flexibil-
ity, etc., are accurately or even properly modeled. In fact, we
find that nonadditivity cannot explain the existence of the
lower consolute point found by Fraden and co-workers.14

The remainder of this paper is organized as follows. In
Sec. II we introduce a simple model for polymer-coated rods,
and provide an estimate for typical values of the nonadditiv-
ity parametera. In Sec. III we introduce the Onsager-type
free-energy functional, and derive from that the basic Euler–
Lagrange equations describing the orientational and density
distribution of the rods under conditions of thermodynamic
equilibrium. In Sec. IV we solve these equations for bulk
geometries, and analyze the structure of a few typical bulk
phase diagrams. In Sec. V we briefly describe a method to
solve the Euler–Lagrange equation for interface geometries
of binary mixtures, and studyIN1, N1N2, andIN2 interfaces,
the latter in particular in the vicinity of the bulkIN1N2 triple
point. A summary and discussion of the results are presented
in Sec. VI.

II. NONADDITIVITY OF INTERACTIONS

The physical origin of nonadditivity can be illustrated on
the basis of a simple model for a mixture of bare and PEG-
coated fd viruses.14 The bare rods are modeled as rigid hard
rods of lengthL and diameterD1 sL@D1d, and hence the
interaction potential between two bare rods,f11srd, is given
by bf11srd=` ,0 for r ,D1 andr .D1, respectively. Here,r
denotes the shortest distance between the main axes of the
two rods.

The PEG-coated rods are identical to the bare ones, ex-
cept that they bear an additional soft layer extending to a

094912-2 Shundyak, van Roij, and van der Schoot J. Chem. Phys. 122, 094912 ~2005!

Downloaded 24 Oct 2007 to 131.155.108.71. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



distanceD2/2 from the axis of the rod, i.e., to a distance
sD2−D1d /2 from their hard-core surface. We do not specify
the relation between the dimensions of the tethered PEGs
and D2 in any detail, but one expects thatsD2−D1d /2 is of
the order of the radius of gyration of the grafted PEGsso we
only considerD2.D1d. We expect that the soft, repulsive
interaction that occurs when the polymer coating of two rods
overlaps should be quite similar to that of overlapping star
polymers.22 In order to keep the model as simple as possible,
we represent the interaction of mean force resulting from the
presence of a polymer coating by a square-shoulder potential
that is a function ofr alone, and ignore any angle depen-
dence that might arise in reality. This angular dependence
should be significant only for configurations of rods inclined
at small angles, which bear only a tiny statistical weight in
the limit of large aspect ratios. Note that although our repre-
sentation of the soft potential is isotropic, the virials based on
it are anisotropic because the interaction volumes are a func-
tion of the relative orientations of the rods.

The interaction potential between a bare and a coated
rod, f12srd, should obviously be identical to the naked-rod
potentialf11srd if r ,D1 andr . sD2+D1d /2. Within our de-
scription,f12srd takes on a value different from that,e1.0,
if D1, r , sD1+D2d /2, i.e., when the hard core of the bare
rod perturbs the soft outer layer of the coated rod. It is to be
seen as an average of the actual interaction potential over its
range. Our effective interaction potential between two coated
rods,f22srd, is more complicated and consists of two shoul-
ders in between the range of the hard-core repulsion
sr ,D1d and the noninteracting long-distance regime
sr .D2d. The first shoulder, forD1, r , sD1+D2d /2, is such
that f22srd=2e1, and represents the overlap of the hard core
of the first rod with the polymer layer of the second one,
and vice versa by symmetry. The second shoulder, for
sD1+D2d /2, r ,D2, represents overlap of the two polymer
layers, and is such thatf22srd=e2.0.

The nature of the polymer chains is such that we expect
their entropy to be reduced more by a penetrating rigid rod
than by another polymer. Indeed, the cross virial of a rod and
a flexible chain is much larger than the geometric average of
the rod–rod and the chain–chain virials.23 For this reason we
only consider cases where 2e1.e2. The pair potentials
fss8srd between rods of speciess and s8 are illustrated
graphically in Fig. 1.

It is a straightforward exercise to calculate the second
virial coefficientsBss8 averaged over all angles, from the
pair interactionsfss8srd given above.1,10 In the Onsager limit
L@D2ùD1, where terms of orderLD2 can be ignored, one
finds

B11 = sp/4dL2D1, s1d

B12 = sp/4dL2SD1 +
D2 − D1

2
s1 − e−be1dD , s2d

B22 = sp/4dL2SD1 +
D2 − D1

2
s2 − e−2be1 − e−be2dD . s3d

These expressions can be used to map the model mixture of
bare and PEG-coated rods onto a mixture of hard rods with
effective hard-core diametersD1 andD2. We chooseD1 and
D2 to be such that the like–like second virial coefficients of
the effective hard-core system are identical toB11 and B22

given in Eq. s1d and s3d, respectively, i.e., we impose that
Bss=sp /4dL2Ds. This yields

D1 = D1,

s4d

D2 = D1 +
D2 − D1

2
s2 − exps− 2be1d − exps− be2dd.

One may verify thatD2=D2 in the limit that bei →`, as
expected. We now also impose that the cross-virial coeffi-
cient of the effective hard-core system equalsB12 given in
Eq. s2d. For arbitrarye1 ande2 this requires a nonadditivity
parametera such thatB12=sp /8dL2sD1+D2ds1+ad, which
yields

a =
1

d + 1
F2 +

2sd − 1ds1 − exps− be1dd
2 − exps− 2be1d − exps− be2dG − 1, s5d

with d=D2/D1 the effective diameter ratio of the rods. In
Fig. 2 we show the contour plot of the nonadditivity param-
eter a as a function of the energy scalese1 and e2 for the
effective diameter ratiod=3.5, which is the value that we
will use in our calculations below; other values ford produce
similar contour plots. The gray area in Fig. 2 is the regime
deemed unphysical, with 2e1,e2. As one can see, for physi-
cally reasonable values ofe1 ande2 of the order ofkBT both
positive and negative values fora are possible, even when
e1.e2. The crossover from positive to negative nonadditiv-
ity takes place, independently from the value ofd, when
exps−be2d=2 exps−be1d−exps−2be1d, i.e., when be2

,sbe1d2 if be1,1 andbe2,be1− ln 2 if be1.1. Presum-
ing that bothbe1 andbe2 are indeed of the order unity, we
expectuau to be in the range 10−2–10−1. Such small devia-
tions from additivity are sufficient to qualitatively alter the
phase behavior of the rods, as we shall see next. In our study,

FIG. 1. Interaction potentialsf11srd, f12srd, f22srd between bare-bare
ssolidd, bare-coatedsdashedd, coated-coatedsdotted lined rods, respectively,
as a function of thesshortestd distancer between the axes of the two rods.
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we from now on treata, D1 andD2 as independent param-
eters. We investigate both the bulk and the interfacial behav-
ior of the effectively purely hard-core system, in which the
soft interactions are incorporated through the degree of non-
additivity a.

III. DENSITY FUNCTIONAL AND METHOD

Consider a fluid of hard cylinders of two different spe-
ciess=1,2 ofdiameterDs and equal lengthL sDs /L→0d in
a macroscopic volumeV at temperatureT and chemical po-
tentialsms. Let r denote the center-of-mass coordinate of a
rod andv̂ the orientation of the long axis. The interactions
between thess8 pair of rods with coordinatesq=hr ,v̂j and
q8=hr 8 ,v̂8j are characterized by a hard-core potential, which
is the simple contact potential for rods of the same species
ss=s8d, whereas for unlike rodsssÞs8d it corresponds to
interactions between hard rods of diameters1+adD1 and
s1+adD2.

Within the second virial approximation and in the ab-
sence of external potentials, the grand potential functional
Vfhrsjg of the one-particle distribution functionsrssr ,v̂d
can be written1,10,16as

bVfhrsjg = o
s
E dqrssqdslnfrssqdL2Dsg − 1 −bmsd

− 1
2 o

ss8
E dqdq8fss8sq;q8drssqdrs8sq8d, s6d

with b=skBTd−1 the inverse temperature, andfss8sq,q8d the
Mayer function, which equals −1 if the rods overlap and
vanishes otherwise. Since we consider the limitDs /L→0 for
anys, the relative shape disparity of rods is characterized by
the ratio d=D2/D1 of the diameters and the value of the
nonadditivitya.

The minimum conditionsdVfhrsjg /drssqd=0 on the
functional lead to the set of nonlinear integral equations

lnfrssqdLs
2Dsg − o

s8
E dq8fss8sq;q8drs8sq8d = bms s7d

to be solved for the equilibrium distributionsrssqd. These
equations are identical to the Euler–Lagrange equations for
additive rods mixtures, and we can directly apply the method
developed earlier.15,16 The structure of the bulk phase dia-
gram depends now on the value of the nonadditivity param-
etera, and has to be determined first.

Since the bulk distribution functions of the isotropic and
nematic phase are translationally invariant, i.e.,rssr ,v̂d
=rssv̂d, we can reduce Eq.s7d to

lnfrssv̂dLs
2Dsg + o

s8
E dv̂8Ess8sv̂,v̂8drs8sv̂8d = bms,

s8d

with Ess8 the excluded volume of a pair of cylinders of
speciess ands8 given by

Ess8sv̂,v̂8d = −E dr 8fss8sr ,v̂;r 8,v̂8d

= L2sDs + Ds8ds1 + as1 − ds,s8ddusinwu, s9d

in terms of the anglew between v̂ and v̂8, i.e., w
=arccossv̂ ·v̂8d. Note that additionalOsLD2d terms are being
ignored in Eq.s9d, in line with the needle limitsDs /L→0d
of interest here. Given the linear dependence of the excluded
volume onDs, one can see that

E12sv̂,v̂8d = 1
2sE11sv̂,v̂8d + E22sv̂,v̂8dds1 + ad. s10d

In some sense,a plays a similar role in the present context as
the so-calledx parameter in the Flory theory of polymer
solutions on a lattice, where demixing is driven by direct
unfavorable nearest-neighbor interaction between unlike spe-
cies as compared to that between like species.

Details of the numerical schemes to solve Eq.s8d have
been discussed elsewhere.15,16Here, we use a nonequidistant
u grid of Nu=30 pointsui P f0,p /2g, where 1ø i øNu, in
order to find the bulk distributionsrssuid. Coexistence of
different phaseshI ,N1,N2j is determined by imposing condi-
tions of mechanical and chemical equilibrium.

IV. BULK PHASE DIAGRAMS

In Fig. 3 we show both pressure–compositionsad and
density–densitysbd representations of bulk phase diagrams
of thin–thick binary mixturessLs=L, D2.D1d for the diam-
eter ratiod=3.5 at various values of the nonadditivity param-
eter a. In Fig. 3sad the composition variablex=n2/ sn1+n2d
denotes the mole fraction of thick rods,ns=edv̂rssv̂d is the
number density of speciess, andp* =sp /4dbpL2D1 is a di-
mensionless bulk pressure. Note that theIN coexistence
pressurepthin andpthick of the pure thinsx=0d and pure thick
sx=1d system are given by sp /4dbpthinL

2D1

=sp /4dbpthickL
2D2=14.045, i.e.,pthick=pthin/d, and that the

tie lines connecting coexisting phases are horizontal in the
p–x representation of Fig. 3sad. This representation is con-
venient for theoretical analysis, whereas the densitiessvol-

FIG. 2. Contour plot of the nonadditivity parametera as a function of the
square-shoulder valuese1 ande2 for the effective diameter ratioD2/D1=d
=3.5. The gray area denotes the nonphysical regione2.2e1 ssee the textd.
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ume fractionsd of thin and thick rods are experimental con-
trol parameters.24 For this reason the same phase diagrams of
thin–thick binary mixtures are shown in Fig. 3sbd in the
density–density representation, withn1

* =n1L
2D1sp /4d and

n2
* =n1L

2D2sp /4d being the dimensionless bulk number den-
sities of thin and thick rods, respectively. In this representa-
tion the tie lines, indicated by the dotted lines, are no longer
horizontal.

The structures of the bulk phase diagrams for variousa
show a striking similarity with the bulk phase diagrams of
additive binary mixtures of thin and thick hard rods.16 At low
pressuressor low densitiesd the phase diagrams show an iso-
tropic sId phase, and at higher pressuressor densitiesd one
sa,0.07d or two saù0.07d nematic phasessN1 andN2d. For
a,0.07 the phase diagram is spindle-like, and the only fea-
ture is a strong fractionation at coexistence, such that the
nematic phase is relatively rich in thick rods and the isotro-
pic phase in thin ones. Although the nonadditivity modifies
the fractionation gap, the reason behind it remains the same:
the relatively large excluded volume in interactions of the

thick rods makes them more susceptible to orientational
ordering.15,25,26 As a general tendency, the fractionation at
isotropic–nematic coexistence becomes stronger for increas-
ing values ofa.

For a.0.06 the bulk phase diagram develops nematic–
nematicsN1N2d coexistence in a pressure regimep.pt, with
pt the triple-point pressure. Using the simple Gaussian ansatz
for one-particle distribution functions, one can demonstrate
that the packing entropy does not play a role in nematic
demixing in our system, similar to the case of additive
mixtures.11 Although it is known that the functional form of
rssv̂d is not Gaussian even at high densities, an analysis of
the exact high-density distribution functions confirmed such
a mechanism of nematic demixing.15 On this basis we as-
sume it to be valid at arbitrary high pressure in our system,
and expect the structure of the bulk phase diagrams to be
similar to those of additive mixtures. In particular, fora
=0.07 nematic remixing is observed at a sufficiently high
pressure, as illustrated in Fig. 3. The consolute point, at
which the density and composition difference between the
coexisting nematic phases vanishes, is indicated bys* d. For
a=0.1, limitations of the numerical scheme27 do not allow us
to determine whether or not remixing takes place at high
enough pressures. We note that in the limit of very high
pressures, where the rods increasingly align themselves, both
end corrections and higher order virials need to be taken into
account for an accurate description of the phase behavior. On
the other hand, in analogy with additive mixtures, one ex-
pects that critical values ofa andd, beyond which the nem-
atic demixing does not take place at arbitrary high densities,
exist.15

In order to characterize the amount of nonadditivity in
the excluded volume interactions which leads to significant
structural modification of the phase diagramsi.e., nematic
demixingd, we explore various thin–thick mixtures of differ-
ent values ofa and d, and determine the value ofa* for
which the pressure of the nematic–nematic consolute point
and the triple-point pressure coincide. Results of our studies
are presented in Fig. 4. Fora,a* sat fixed dd the N1N2

phase separation is not detected, and foraùa* there isN1N2

coexistence in the phase diagram. It is evident that in the

FIG. 3. sad Bulk phase diagrams of binary thin–thick mixturessdiameter
ratio d=3.5d for different nonadditivity parametera in the p–x representa-
tion, with p* =sp /4dbpL2D1 the dimensionless pressure, andx the mole
fraction of the thicker rods. We distinguish the fully symmetric isotropic
phasesId and orientationally ordered nematic phasessN1 and N2d. For the
nonadditivity parametera=0.07 the IN1N2 triple-phase coexistence is
marked bysnd, and theN1N2 critical point by spd. sbd The same phase
diagrams in density–density representation, wheren1

* =n1L
2D1sp /4d and

n2
* =n2L

2D2sp /4d are the dimensionless bulk number densities of thin and
thick rods, respectively. The tie lines connect coexisting state points.

FIG. 4. Nonadditivity parametera* at which the consolute point and triple
point coincide for various values of the diameter ratiod. For mixtures,
characterized byasdd,a*sdd, theN1N2 demixing is not detected.

094912-5 Nonadditive mixtures of Onsager rods J. Chem. Phys. 122, 094912 ~2005!

Downloaded 24 Oct 2007 to 131.155.108.71. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



interval dP f3.5,4.2g even a small nonadditivity uau
,0.05–0.07 may induce or suppress theN1N2 demixing
transition.

One might surmise that the linearity of the function
a*sdd within the explored range ofa reflects the linearity of
the excluded volumeE12sv̂ ,v̂8d in terms ofd anda, because
it drives the nematic–nematic phase separation. The mapping
of the nonadditive to the additive case is not trivial, however,
since the density distributionsrssv̂d depend ona implicitly.
Nonetheless, direct comparison of the bulk phase diagrams
of the nonadditive mixture withd=3.5 anda=0.07 and the
additive mixture with, for instance,d=4.0,16 shows close
values of the fractionation gap at theN1N2 coexistence. Fur-
ther evidence for similarity of these systems in the high-
density regime will be demonstrated in our analysis of their
interfacial properties presented next.

V. INTERFACES

Free planar interfaces between various coexisting bulk
phases can be studied similar to the interfaces of additive
mixtures.16,28,29We focus on the nonadditive thin–thick mix-
ture characterized byd=3.5 anda=0.07. The nematic direc-
tor n̂ of the asymptotic nematic bulk phasessd can, in general,
have a nontrivial tilt angleut=arccossn̂·ẑd with respect to the
interface normalẑ. In the present calculations we restrict
attention tout=p /2, i.e., n̂' ẑ. As we have verified, this
geometry is thermodynamically favorable because of its
minimal surface tension.

Similar to the studies of additive mixtures, we use the
planar symmetry of the interfaces and assume the distribu-
tion functions to be uniaxially symmetric with respect to the
director, i.e.,rssr ,v̂d=rssz,ud, which reduce Eqs.s7d to

bms = lnfrssz,udLs
2Dsg + o

s8
E dz8du8 sinu8

3Kss8sz− z8,u,u8drs8sz8,u8d, s11d

with Kss8sz−z8 ,u ,u8d=−s1/2pdedw dw8dx8dy8fss8sq,q8d.
We solve Eq.s11d in order to determine uniaxially symmetric
nonuniform distributionsrssz,uid using an equidistantz grid
of Nz=200 points in the intervalzP f−5L ,5Lg, and corre-
sponding bulk distributionsrssuid as boundary conditions.
Further details of the numerical calculations were discussed
elsewhere.16

The IN1 andN1N2 interfaces are found to be smooth and
monotonic, in the sense that the profiles of the nematic
uniaxial order parametersSsszd and the densitiesnsszd
change monotonically from the bulk values in theI sN1d
phase to those in theN1 sN2d phase. The correlation length
jN1

of the bulk N1 phase at the triple-phase coexistencesas
well asjI andjN2

for the I phase and theN2 phase, respec-
tivelyd can be extracted from the asymptotic decay of the
one-particle distributionsrssz,ud to their bulk valuesrs

N1sv̂d,
since the deviationdrssz,v̂d=rssz,v̂d−rs

N1sv̂d is of the
form16

drssz,v̂d = Assv̂dexps− z/jN1
d, z→ `. s12d

Interestingly, we find thatjN1
/L=0.49±0.02 is the same as

for the additive mixture withd=4.0,16 which has a virtually
identical phase diagram.

The properties of theIN2 interfaces depend strongly on
the pressure difference with the triple pointsIN1N2 phase
coexistenced. As it is demonstrated in Fig. 5, the surface
tension of theIN2 interface shows a nonmonotonic depen-
dence on the bulk pressurep, strongly correlated with the
fractionation at theIN2 coexistence. Upon increasing the
nonadditivity, the surface tensiongIN2

* spd grows, again indi-
cating thata plays a role similar to the diameter ratiod. For
comparison we have includedgIN2

* spd for an additive thin–
thick mixture withd=4.0, which is again quite close to the
results for the nonadditive mixtures withd=3.5 and a
=0.07 and 0.1.

The microscopic thicknesst of the interface is defined as
t= uz+−z−u, wherez± are solutions ofn1-szd=0, and a prime
denotes differentiation with respect toz. As this equation has
a set of solutions in every interfacial region, we choose forz±

the outermost ones, i.e., the ones nearest to the bulk phases.
The density of thin rods is a convenient representation of
structural changes within the interface, since they have a
smaller excluded volume and a nonvanishing concentration
in both coexisting phases. This criterion provides a single
measure for the thickness of both monotonic and nonmono-
tonic profiles, with and without a thick film in between the
asymptotic bulk phases atz→ ±`. The interfacial width for
the one-componentIN interface is, with the present defini-
tion, given byt /L=0.697.

The thickness of theIN2 interface was found to diverge
upon approach of the triple-point pressurept. This can be
seen in Fig. 6, wheret /L is plotted as a function of the
dimensionless undersaturatione=1−p/pt, which is a conve-
nient measure of the pressure difference with the triple point.
The nature of the film can be analyzed from the density
profiles n1szd of the IN2 interfacefor equivalentlySsszd, or

FIG. 5. Dimensionless surface tensiongIN2

* =bgIN2
LD1 of IN2 interfaces as a

function of dimensionless pressurep* =bpL2D1sp /4d for thin–thick mix-
tures with diameter ratiod=3.5 and different values of nonadditivitya
=0.0 sLd, 0.07ssd, and 0.1shd. The dashed line indicatesgIN2

* sp*d for the
additive thin–thick mixture of diameter ratiod=4.0.
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n2szdg. In Fig. 7 the profiles ofn1szd are shown at several
values of the undersaturatione. The asymptotic densities at
z→ ±` in Fig. 7 are those of the coexistingI and N2 bulk
phasessat the correspondinged. For e→0 the value ofn1szd
in the film approaches the density of thin rods of the bulk
triple-point N1 phase, indicated by the dashed line in Fig. 7.
However, the undersaturatione=10−4 is yet too large to be in
the asymptotic thick-film regime. The same identification can
be made forn2szd andSsszd, and on this basis we conclude
that the wetting phenomenon under consideration is com-
plete triple-point wetting of the freeIN2 interface by theN1

phase. The similarity with complete wetting of theIN2 inter-
face by theN1 phase in additive thin–thick mixture withd
=4.0 is again rather striking, as is clear from Fig. 6, where
the thickness of theIN2 interface for additive rods is indi-
cated bys+d.

Since one expects, for the short-range interactions of in-
terest here, that the thickness of the wettingN1 film in the

IN2 interface diverges ast,−jN1
ln e for e→0,30 the value

of the correlation length of the bulkN1 phase can be ex-
tracted,jN1

=0.49±0.02, which is consistent with the value
determined earlier from the decay ofrssz,ud into the bulkN1

phase.
The analysis of the structural properties of theIN2 inter-

face can be complemented by studies of the ratio of surface
tensions

Rsed =
gIN2

sed

limp↓pt
sgIN1

+ gN1N2
d
, s13d

as presented in the inset in Fig. 6. It is clear that upon ap-
proach of triple-point coexistence lime→0 Rsed=1, which im-
plies a vanishing contact angle. This provides the thermody-
namic proof of complete triple-point wetting. Thee
dependence ofR again reveals thate=10−4 is too large to be
in the asymptotic thick-film regime.

VI. SUMMARY AND DISCUSSION

In this paper we have explored the bulk phase diagrams
and the interfacial properties of the nonadditive mixtures of
thin and thick hard rods. The nonadditivity was introduced in
an attempt to effectively capture some of the effects of soft
interactions between them, having in mind mixtures of bare
and PEG-coated fd virus particles in aqueous suspension.14

We showed that the effective hard-core diameter of the un-
like interactions,12sD1+D2ds1+ad with D1 andD2 the effec-
tive diameter of the like interactions, can easily be smaller or
larger than the additive case,1

2sD1+D2d, by more than a few
percent.

As is illustrated in Fig. 3, a small amount of nonadditiv-
ity a.0 can stabilize the high-density nematic–nematic
phase coexistence, even if it is only metastable for an addi-
tive mixture with the same diameter ratio. However, the ex-
perimentally observed lower critical point of the nematic–
nematic demixing transition14 could not be reproduced by
incorporating nonadditivity into the theory. We suggest,
therefore, that further theoretical studies of this system
should consider in more detail the impact in particular of a
finite bending flexibility, beyond the ground-state
approximation.18 Another issue that needs to be resolved is
the selasticd response of the polymer coat to volume exclu-
sion between the rods, an aspect completely ignored in our
analysis.

We present results of bulk and interfacial calculations for
the specific diameter ratiod=3.5, motivated by the experi-
mental parameters.14 Other values ofd lead to similar con-
clusions. We find the bulk phase diagrams of nonadditive
binary mixtures to show a large similarity with those of the
additive mixtures of larger diameter ratio. This is most likely
related to the linear dependence of the rod–rod excluded vol-
ume on both the diameter ratiod and the nonadditivitya,
although it is not clear whether there is an exact mapping
linking nonadditive and additive hard-rod mixtures. We also
found that many, if not all, of the interfacial phenomena that
we studied are similar to those of additive mixtures with a
larger diameter ratio. Similar to the interfaces between dif-
ferent bulk phases in additive mixtures, theIN1 and N1N2

FIG. 6. Thicknesst /L as a function of the undersaturatione=1−p/pt from
the triple-point pressurept for thin–thick mixtures with diameter ratiod
=3.5 and nonadditivitya=0.07 spd. For comparison we show thickness of
the IN2 interface of the additive mixtures ford=4.0ssd. The inset shows the
surface tension ratioR fsee Eq.s13dg as a function of the triple-point under-
saturatione.

FIG. 7. Density profiles of the thin rodsn1
*szd in the IN2 interface for diam-

eter ratiod=3.5 and nonadditivitya=0.07 at triple-point undersaturations
e=1−p/pt=10−2,10−2.5,10−3,10−3.5,10−4 sfrom the bottom to the top
curved. The bulk I /N2 phase is atz→−` /`. The dashed linen1

* =3.977
represents the bulk density of thin rods in the triple-pointN1 phase. These
profiles indicate the formation of a wettingN1 film in the IN2 interface.
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interfaces are smooth and monotonic, whereas theIN2 inter-
face exhibits complete wetting by theN1 phase upon ap-
proach of the triple-phase coexistence. The complete triple-
point wetting scenario was confirmed bysid the logarithmic
divergence of the thickness of theN1 film with vanishing
undersaturation, andsii d the surface tension ratio lime→0 R
=1. Such a similarity between properties of additive and
nonadditive mixtures may represent a significant difficulty to
distinguish these in experiments.
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