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Abstract 

This paper presents a taxonomy of sublinear keyword pattern matching algorithms related to 
the Boyer-Moore algorithm [BM77) and the Commentz-Walter algorithm [CW79a, CW79b). 
The taxonomy includes, amongst others, the multiple keyword generalization of the single 
keyword Boyer-Moore algorithm and an algorithm by Fan and Su [FS93, FS94). The corre
sponding precomputatioD algorithms are pre~ented as well. The taxonomy is based on the 
idea of ordering algorithms according to their essential problem and algorithm details, and 
deriving all algorithms from a common starting point by successively adding these details in a 
correctness preserving way. This way of prese~tation not only provides a complete correctness 
argument of each algorithm, but also makes very clear what algorithms have in common (the 
details of their nearest common ancestor) and where they differ (the details added after their 
nearest common ancestor). Introduction of the notion of safe shift distances proves to be 
essential in the derivation and classification of the algorithms. Moreover, the paper provides 
a common derivation for and a uniform presentation of the precomputation algorithms, not 
yet found in the literature. 



Contents 

1 Introduction 
1.1 Basic algorithm and derivation principles 
1.2 The taxonomy 
1.3 Overview . . . . . . . . . . . . . . . . . 

2 The problem and some naive solutions 

3 Sublinear pattern matching algorithms 
3.1 No lookahead at the unscanned part of the input string 
3.2 Restriction to one symbollookahead . . . . . . 
3.3 Lookahead symbol is mismatching ...... . 
3.4 The multiple keyword Boyer-Moore algorithm. 
3.5 The Commentz-Walter algorithm . . . . . . . . 
3.6 Complete decoupling of recognized suffix and lookahead symbol 
3.7 Discarding the lookahead symbol . . . . . . . . . . . . . . . . . 
3.8 One symbollookahead at the unscanned part of the input string 

4 Precomputation 
4.1 Precomputation of Tp ....•.•••••••• 

4.2 Precomputation of d-functions ........ . 
4.3 Precomputation of charCW1 charbml and Char'a 
4.4 Precomputation of msp . . . . . . . . . . . . . 

5 Conclusions 

6 Acknowledgements 

A Definitions and properties 

B Algorithm and problem details 

Contents 

1 
3 
4 
4 

5 

7 
8 
8 

10 
11 
12 
13 
13 
13 

14 
14 
15 
20 
21 

22 

23 

23 

25 



1 Introduction 1 

1 Introduction 

The keyword (or string) pattern matching problem can informally be described as the problem 
of finding all occurrences of keywords (strings) from a given set as substrings in a given (input) . 
string. This problem is encountered in many areas and in several forms. In computing science, for 
instance, it plays a role in text search/analysis, lexical analysis, and data processing. In biology 
it is encountered in the analysis of, amongst others, DNA sequences. The problem can also be 
generalized to the matching of regular expressions, tree patterns, and graph patterns, none of 
which is treated here. 

The keyword pattern matching problem has been extensively studied and a multitude of di
verse solutions/algorithms exists. Single keyword algorithms are for instance described by Knuth, 
Morris, and Pratt [KMP77] and Boyer and Moore [BM77); multiple keyword algorithms by Aho 
and Corasick [AC75], by Commentz-Walter [CW79a, CW79b], and by Fan and Su [FS93, FS94). 
An overview of keyword pattern matching algorithms can be found in [Ah090). 

Due to the diversity of the algorithms and their descriptions-that tend to be rather involved 
and verbal- it is hard to get a good overview and to make a sound comparison between algorithms. 
In order to fulfill these needs a taxonomy of keyword pattern matching algorithms was presented 
by Watson and Zwaan in [WZ92, WZ93). Here, we focus our attention on a part of that taxonomy 
containing a family of multiple keyword pattern matching algorithms that have a matching time 
that may be sublinear in the length of the input string (taking the number of symbol comparisons 
as a measure of matching time). Amongst others, it comprises the multiple keyword generalization 
of the single keyword Boyer-Moore algorithm [BM77], the Commentz-Walter algorithm [CW79a, 
CW79b], and the algorithm by Fan and Su [FS93, FS94) (only after deriving this algorithm we 
found its description by Fan and Su). Both the Boyer-Moore and Commentz-Walter algorithms 
provided the inspiration for our derivations and classifying principle. 

The main results of this paper are comprised in the taxonomy graph shown in figure 1 (a more 
detailed description of the graph is found further on in this section). This taxonomy graph can 
be viewed as an alternative table of contents to this paper. It was obtained in order to meet the 
following goals: 

the systematic and formal derivation of the algorithms from a common starting point through 
a series of refinements to either algorithm or problem 

to factor out common portions of (the derivations of) well-known algorithms in order to 
facilitate the understanding of these algorithms and their comparison 

the presentation of the algorithms in a common framework to permit an easier comprehension 
of and a better comparison between the algorithms 

It is the first concise and systematic presentation of and comparison between the algorithms from 
the family considered here. Another taxonomy of (single keyword) pattern matching algorithms 
by Hume and Sunday [HS91) does not meet the goals set in this paper since there any derivations 
and proofs of algorithms are missing. 

Moreover, we show that all functions that need to be precomputed for the pattern matching 
algorithms of this family can in a simple way be expressed in a small set of base functions. The 
definitions of the base functions can all be written in forms satisfying one general pattern. From 
this general pattern a precomputation algorithm scheme has been derived that can be instantiated 
for each base function to yield a precomputation algorithm for that function (sometimes, the 
resulting algorithm can be simplified and/or some trivial postprocessing has to be added to it). 
Hence, the precomputation algorithms can also be derived and presented in a uniform way. This' 
includes formal derivations of the precomputation algorithms for the Boyer-Moore algorithm, the 
Commentz-Walter algorithm and the algorithm presented by Fan and Su not yet found in the 
literature. 

The taxonomy given here differs from the corresponding part of the taxonomy in [WZ92, WZ93) 
in that we here present the correct multiple keyword generalization of the Boyer-Moore algorithm 
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Figure 1: Taxonomy graph of keyword pattern matching algorithms from the Boyer-Moore family. 
Each vertex corresponds to an algorithm. Vertices are labelled with either an algorithm number 
or a subsection number preceded by § referring to an algorithm or a subsection in this paper. 
Some vertices are additionally labelled with literature references. Each edge corresponds to the 
addition of either a problem or algorithm detail (see appendix B for a complete list of details 
and their descriptions). The sequence of edge labels that are encountered when going from the 
top vertex to another vertex forms a characterization of the algorithm corresponding to that 
vertex. For instance, the algorithm of the vertex labelled §3.5 (the Commentz-Walter algorithm) is 
characterized by (p +S+,RT,SSD,NLAU,OPT,BMCW,CW). The dashed edge leading to [KMP77, AC75] 
indicates the path to the rest of the taxonomy presented in [WZ92, WZ93] that contains the Knuth- . 
Morris-Pratt and the Aho-Corasick algorithms and is omitted in this paper. 
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and a common ancestor of this algorithm and the Commentz-Walter algorithm. Because of this the 
derivations and the structure of the taxonomy have changed. Moreover, we present a completely 
new derivation of the precomputation algorithms. 

An implementation as a C procedural library of almost all algorithms from [WZ92] (called 
"Eindhoven Pattern Kit") and an analysis of their performance is given in [Wat94] (the imple
mentation is in a somewhat rudimentary form being meant for the benchmarking only). Only the 
Commentz-Walter algorithm and a common descendant of both the Boyer-Moore and Commentz
Walter algorithm are implemented and discussed there. The performance results for these algo
rithms conform with the qualitative predictions made here. An implementation of all algorithms 
from this paper and from [WZ92] as a C++ class library is called "SPARE Parts: A C++ 
toolkit for String PAttern REcognition" and will be available at URL ftp://ftp.win.tue.nl 
/pub/techreports/pi/pattm/ spare/. This implementation is entirely based on the abstract al
gorithms described in this paper-in fact it is a systematic translation of them (this in contrast 
to for instance the implementations given in [HS91]). 

1.1 Basic algorithm and derivation principles 

The algorithms in this family traverse the input string in a direction that is opposite to the 
direction in which keyword symbols are matched to symbols in the input string. In this paper we 
choose to inspect suffixes of prefixes of the inp'!t string both in order of increasing length. This 
algorithm will be the starting point of all further derivations. Choosing such a basic algorithm we 
have the possibility to attain matching times that are sublinear in the length of the input string 
(i.e. not all symbols of the input string are inspected). It is achieved by taking steps through 
the input string of which the length is determined by a shift function based on the information 
of the last matching attempt and possibly on anditional information. The example in figure 2 
illustrates this principle. Notice that not all symbols of the input string are scanned, although it 
is possible that some symbols of the input string are scanned more than once. The most simple 

· .. aaabacdabef ... 
';=== 
baab 

J shift 3 

· . . aaabacdabef ... 
.; 

baab 

J shift 4 

· .. aaabacdabef ... ,. 
baab 

Figure 2: Example of larger shift distances 

shift function is the function that always yields 1. However, one can imagine larger shifts being 
possible. Ideally, such a shift would take us to the next occurrence of a match, but then calculating 
the value of the shift function is equivalent to the pattern matching problem itself. Therefore, 
we strive for shift functions that are easier to calculate and that do not exceed the ideal shift 
(called safe shift functions) i.e. we aim at approximations of the ideal shift from below. The ideal 
shift function is the minimum over a domain characterized by some predicate. We derive various 
approximations from below by systematically weakening this predicate and derived predicates, 
by applying rules for minimum and maximum over disjunctive or conjunctive domains, and by 
enlarging domains. Considerations that playa role in these derivations are, for instance, whether 
or not to look ahead at symbols of the unscanned part of the input string, what information to use 
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on the last scanned (non-matching) symbol, and the extent to which this information is coupled 
with the information on the recognized suffix. Thus, we obtain several shift functions that meet 
the aforementioned requirements leading to an equal number of algorithms amongst which are the 
well-known Boyer-Moore and Commentz-Walter algorithms. The most simple weakening of the 
predicate is the weakening to the predicate true yielding the shift function that is always equal 
to 1. The reason to derive ever smaller shift functions is that a smaller shift functions usually takes 
less precomputation time and less storage space (for instance, a one dimensional table instead of 
a two dimensional table). 

The techniques we use to systematically derive shift functions from the ideal shift function 
enable us to clearly delineate the relations between the resulting shift functions and algorithms. 
Furthermore, they may be used in the derivation of yet other members of this family. This truly 
systematic approach, especially the predicate weakening technique, is not known from literature. 
Among other things we derive that the Commentz-Walter algorithm [CW79a, CW79b] is not the 
multiple keyword generalization of the Boyer-Moore algorithm [BM77]. In fact, we show that the 
algorithms are incomparable (meaning that the shift distance in one algorithm is not always at 
least the shift distance in the other) and that they have a faster common ancestor that combines 
the properties of both. As it is, this common ancestor is derived first and subsequently the Boyer
Moore algorithm and the Commentz-Walter algorithm are derived from it. Both algorithms also 
have a common descendant (the algorithm that was incorrectly identified as the Boyer-Moore 
algorithm in [WZ92, WZ93]). Furthermore, it is shown that the algorithm described by Fan· 
and Su [FS93, FS94] is an even faster ancestor ·of the common ancestor of the Boyer-Moore and 
Commentz-Walter algorithms. 

1.2 The taxonomy 

The algorithms are derived from a common starting point by successively adding either algorithm 
or problem details (see appendix B for a complete list of details and their descriptions). The only 
problem detail considered here is the restriction to the one keyword case. Among the algorithm 
details considered are restriction of nondeterminacy, introduction of the reverse trie, introduction 
of a shift function, and choice of a particular shift function. Each addition of an algorithm 
detail gives a new algorithm satisfying the same specification as the original algorithm; thus, the 
correctness of the algorithms is preserved. The sequence of details introduced in the derivation 
of an algorithm can be used to identify its similarities and its differences with other algorithms. 
These ordered detail sequences are used to identify the algorithms and to give a taxonomy of 
the algorithms in this family. The taxonomy is depicted as a graph in figure 1. Our method 
of developing a taxonomy was inspired by the method described by Jonkers [Jon83]. There it is 
applied to develop a taxonomy of garbage collection algorithms. The method is also applied to 
attribute evaluation algorithms by Marcelis [Mar90]. Other examples of algorithm taxonomies are 
found in [Br083, Dar78]. 

All algorithms are presented in a somewhat extended version of the guarded command language 
of Dijkstra [Dij76] in order to avoid the peculiarities of any particular programming language. The 
algorithms use string type variables in order to abstract from any implementation detail like, for. 
instance, indexing. Derivation of the algorithms is done a calculational way following Dijkstra's 
style of program derivation. 

1.3 Overview 

In section 2 we give a formal definition of the pattern matching problem. From a trivial solution 
to this problem we derive, by addition of a numper of algorithm details, an algorithm that is the 
starting point for the derivation of the algorithms in section 3. In section 3 we start by adding the 
algorithm detail that states that shifts larger than one may be possible. Addition of this program 
detail accounts for the possible sublinear matching time of all of the algorithms to be derived in 
this section. Subsequently, we derive by systematic approximation from below of the maximal safe 
shift distance the various algorithms of this family (in order of decreasing matching speed). The 
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definitions of all functions introduced in section 3 are rewritten in forms according to a general 
pattern in section 4. From the general pattern a precomputation algorithm scheme is derived that 
can be instantiated for any of the functions. Section 5 contains the conclusions. Appendix A 
contains definitions and properties used throughout this paper. Appendix B contains a complete' 
list of all algorithm and problem details and their descriptions. 

2 The problem and some naive solutions 

The keyword pattern matching problem is to find all occurrences of keywords from a set as sub
strings in an input string. Formally, given an alphabet V (a non-empty finite set of symbols), an 
input string S E V', and a finite non-empty pattern set P ~ V', establish 

R: 0= (U I,v,r :lvr=S: {I} x ({v}np) x {r}). 

Throughout this paper we will adopt the convention that, unless stated otherwise, program vari
ables and bound variables with names from the beginning of the Latin alphabet (Le. a, b, c) will 
range over V, while variables with names from the end of the Latin alphabet (Le. I, q, r, u, v, w) 
will range over V'. A trivial (but unrealistic) solution to the problem is 

Algorithm 2.10 

o:=(u l,v,r:lvr=S:{I}x({v}nP)x{r}) 
{R} 

The sequence of details describing this algorithm is the empty sequence (sequences of details are 
introduced in subsection 1.2 and figure 1). 

There are two basic directions in which to proceed while developing naive algorithms to solve 
this problem. Informally, a substring of S can be considered a "suffix of a prefix of S" or a "prefix 
of a suffix of S". Only the first possibility is considered here, since the second possibility only leads 
to algorithms that are the mirror images of algorithms obtained by following the first possibility 
(basically, it amounts to reversing all strings in the problem). Moreover, this is the way that the 
Boyer-Moore, Commentz-Walter, and Fan and Su algorithms treat substrings of input string S. 

Formally, we can consider "suffixes of prefixes of S" as follows: 

(u l,v,r:lvr=S:{I}x({v}np)x{r}) 

= { introduce u : u = Iv } 

(U I, v, r, U : ur = S A Iv = u : {I} x ({v} n P) x {r}) 

= {I, v only occur in the latter range conjunct, so restrict their scope} 

(U u, r : ur = S : (U I, v : Iv = u : {I} x ({v} n P) x {r}) ) 

A simple non-deterministic algorithm is obtained by applying "examine prefixes of a given string 
in any order" (algorithm detail (p)) to input string S. In the following algorithm we use a for-rof 
statement in order to express its non-determinism. Statement for x : P -+ S rof amounts to 
executing statement list S once for each value of x that satisfies P initially, assuming only a finite 
number of such values exist. The order in which the values of x are chosen is arbitrary. It results in 

Algorithm 2.2(p) 

0:=.0; 
for (u,r): ur = S-> 

0:= 0 U (u I, v: Iv = u : {I} x ({v} n P) x {r}) 
rof{ R} 
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The update of 0 (with another quantifier) in the inner repetitions of algorithm (p) can be computed 
with another non-deterministic repetition. This inner repetition would consider suffixes of u. Thus 
by applying "examine suffixes of a given string in any order" (algorithm detail (s» to string u we 
obtain algorithm 

Algorithm 2.3(ps) 

0:= 0"; 
for (u,r) : ur = S--> 

for (l,v) : Iv = u--> 
0:= Ou {I} x ({v} np) x {r} 

rof 
rof{ R} 

Algorithm (ps) consists of two nested non-deterministic repetitions. In each case, the repetition 
can be made deterministic by considering prefixes (or suffixes as the case is) in increasing (called 
detail (+» or decreasing (detail (-» order of length. This gives two binary choices. Since 
the Boyer-Moore and Commentz-Walter algorithms examine string S from left to right and the 
patterns in P from right to left we focus our attention on (the operators 1. J, t, and l are defined 
in definition A.l; relation :O;p is defined in definition A.3): 

Algorithm 2.4(P+S+) 

u,r:=e:,S; 0:= {e:} x ({e:}np) x {S}; 
{invariant: 0 = (u X,Y,z: xyz = S 1\ xy:O;p u: {x} x ({y} np) x {z}) } 
dor#e--> 

u, r:= u(rl1), rjl; I, v:= u, e; 0:= 0 U {u} x ({e:} n P) x {r}; 
dol#e:--> 

I,v:= /ll,(ltl)v; 
0:= 0 U {I} x ({v} nP) x {r} 

od 
od{ R} 

This algorithm has running time 0(ISI2 ), assuming that intersection with P is a 0(1) operation. 
We will now improve the running time of this algorithm. Consider the set of suffixes of keywords 
suff(P) (the functions suff and pref are defined in definition A.2). A string w is an element of 
suff(P} if and only ifit can be extended on the left to a pattern in P, i.e. (3w' : w' E V' : w'w E pl. 
It follows that if w ~ suff(P} any extension of w on the left is not an element of suff(P) either. 
Consequently, the inner repetition in algorithm 2.4 can terminate as soon as (ltl}v ~ suff(P) 
holds, since then all suffixes of u that are equal to or longer than (ltl)v are not in suff(P) and 
hence not in P. The inner repetition guard is therefore strengthened to 

1# e cand (Itl}v E suff(P). 

Observe that v E suff(P} is an now invariant of the inner repetition. This invariant is initially 
established by the assignment v:= e: since P # 0" and thus e: E suff(P}. Direct evaluation of 
(ltl}v E suff(P) is expensive. Therefore, it is done using the transition function Tp of the reverse 
trie [Fre60] corresponding to P where Tp : suff(P) x V -> suff(P) U {.l} is defined by 

( ) _ {aw if aw E suff(P) 
Tp w, a - .1 if aw ~ suff(P) (w E suff(P), a E V). 

(algorithm detail (RT». Since we usually refer to the trie corresponding to P we will write T 

instead of Tp. Transition function T can be computed beforehand. Its precomputation is discussed 
in subsection 4.1. The guard becomes 1"# e: cand T(v,ltl) "#.l yielding algorithm 
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u,r:=o,S; 0:= {o} x ({o}np) x {S}; 
{invariant: 0= (U x,y,z :xyz=S Axy :5p u: {x} x ({y}np) x {z})} 
do r # 0--+ 

u,r:=u(rl1),rJl; 
I,v:=u,o; O:=OU{u} x ({o}np) x {r}; 
do I # 0 cand rev, /fl) # 1- --+ 

I, v:= Ill, (I [1)v; 
0:= 0 U {I} x ({v} n P) x {r} 

od 
{ ,,= Iv A v E suff(P) A (I = 0 cor (lf1)v ¢ suff(P») } 

od{ R} 

7 

This algorithm has O(ISI . (MAXp : pEP: Ipl)) running time. It will serve as a starting point 
for the derivation of all algorithms in the following section. 

3 Sublinear pattern matching algorithms 

In this section we derive sublinear pattern matching algorithms starting with algorithm 2.5 by 
exploring the possibility of safely (without missing matches) making shifts of more than one 
symbol, i.e. replacing assignment u,r:= u(rll),rJ1 by assignment u,r:= u(rlk),rJk for some k 
satisfying 

1:5 k:5 (MINn: 1:5 nAsuff(u(rln»np#.0 :n) 

(algorithm detail (sso) C~afe ~hift ~istance». The upperbound is the distance to the next match, 
the maximal safe shift distance. A number k satisfying this condition is called a safe shift distance. 
Since computing the upper bound on k is essentially the same as the problem we are trying to solve 
we aim at easier to compute approximations from below of the upperbound. These are derived 
by systematically weakening the predicate suff( u( rl n» n P # .0 in the range of the upperbound, 
weakening reSUlting predicates, applying rules for minimum and maximum over a disjunctive or 
conjunctive domain, and enlarging domains. Considerations that playa role in these derivations 
are, for instance, whether or not to look ahead at symbols of the unscanned part of the input 
string, whether to use or not to use information on the last scanned symbol (usually a non
matching symbol), and the extent to which this information is coupled with the information on 
the recognized suffix. Thus, several algorithms are obtained amongst which the generalized version 
of the Boyer-Moore algorithm [BM77], the Commentz-Walter algorithm [CW79a, CW79bJ, and 
the algorithm by Fan and Su [FS93, FS94j. We derive ever smaller shift functions since the smaller 
the shift function the less precomputation time and storage space for the functions constituting 
the shift function is usually needed. For instance, the algorithm by Fan and Su [FS93, FS94j is 
faster than the Commentz-Walter algorithm [CW79a, CW79b], but it needs a two dimensional 
table to store one of the functions constituting its shift function whereas the Commentz-Walter 
algorithm only needs one dimensional tables. 

In the derivations we use part of the postcondition of the inner repetition in algorithm 2.5 
(u = Iv A v E suff(P». Adding I, v := 0,0 to the initial assignments in algorithm 2.5 turns 
u = Iv A v E suff(P) into an invariant of the outer repetition. Due to the dependence of the. 
upperbound on I, v, and r we will aim at shift functions k that depend on I, v, and r and write 
k(I,v,r). Hence, we arrive at the following algorithm scheme for all algorithms to be derived in 
this section: 
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u,r:=e,S; 0:= {e} x ({e}nP) x {S}; I,v:=e,e; 
{invariant: 0 = (U x,Y,z: xyz = S II xy:5. u: {x} x ({y} np) x {z}) 

II u = Iv II v E suff(P) II (I = e cor (/fl)v ¢ suff(P)) } 
doroF e -+ 

u, r:= u(r1k(l,v,r)), r j k(l,v,r); 
I,v:= u,e; 0:= OU {u} x ({e} np) x {r}; 
do I oF e cand r(v, /tl) oF .1 -+ 

I, v:= Ill, (lfl)v; 
0:= 0 U {I} x ({v} n P) x {r} 

od 
od{ R} 

Particular algorithms are obtained by substituting their shift functions for k(l,v,r). Such a sub
stitution may not always yield an algorithm that exactly corresponds with its original description 
in the literature; sometimes an additional transformation of the resulting algorithm is needed (for 
instance, a phase shift of the repetition; see [WZ92] for a phase shifted version of the algorithm 
scheme). Conjunct I = e cor (lfl)v ¢ suff(P) is added to the invariant in order to stress that 
provided I is nonempty symbollfl is non-matching. 

3.1 No lookahead at the unscanned part of the input string 

In this subsection we derive an approximation from below of the upperbound on k that does not 
depend on r and that will be a starting point of most of our further derivations. In terms of 
algorithms this means that we refrain from looking ahead at the symbols of r, the yet unscanned 
part of the input string (algorithm detail (NLAU) (~o !pokahead at Qnscanned part of the input 
string)). This is in accordance with most of the algorithms we are aiming at. One symbollookahead 
at the unscanned part of the input string is discussed in subsection 3.8. We derive 

(MIN n : 1 :5 n II suff(u(r1n)) n P oF I2J : n) 

= {domain split, r1n = r if n ~ Irl} 

(MIN n : 1 :5 n :5 Irlll suff(u(r1n)) n P oF I2J : n) 
min (MIN n : Irl < n II suff(ur) n P oF I2J : n) 

~ {l :5 n :5lrl : r1n E V n, monotonicity of suff and n} 

(MIN n: l:5 n :5 Irl II suff(uvn) n P oF 12J: n) 
min (MIN n : Irl < n II suff(ur) n P oF I2J : n) 

= {r E vlrl, monotonicity of suff and n, suff(ur) n P oF I2J => suff(uvlrl) n P oF 12J} 

(MIN n : 1 :5 n :5 Irlll suff(uVn ) n P oF I2J : n) 

~ { enlarging domain} 

(MIN n : 1 :5 n II suff(uVn ) n P oF I2J : n) 

Since the last formula is to be the starting point of our further derivations we will from here on aim 
at shift functions k being dependent only on u, i.e. on I and v (remember u = Iv II v E suff(P)). 
We will write k(l,v) instead of k(l,v,r). 

3.2 Restriction to one symbol lookahead 

In all derivations in this subsection and the following subsections we assume 

u = Iv II v E suff(P). 
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Restriction to one symbollookahead (III, the last symbol of u scanned in the inner loop) leads 
to the algorithm by Fan and Su [FS93, FS94J .. It is obtained by weakening the predicate in the 
approximation of the upperbound in subsection 3.1 in the following way: 

suff{uVn) n P '" 0 

{ u = Iv} 

suff{lvVn) n P '" 0 

=? {I = (lll)(/fl), III E V', monotonicity ofsuff and n} 

suff(V'{lll)vvn) n P '" 0 

= { property AA } 

V'{lll)vvn n V· P '" 0 

= {I = £: property A.5.i; I '" £: property A.5.ii} 

V'{lll)vvn n P '" 0 V vvn n v· P '" 0 

Notice that we have obtained a weaker predicate solely by discarding any information on Ill. The 
only information on I that is still taken into account is I 11 being either empty or consisting of one 
symbol. In the latter case we say to have one symbollookahead. Observe that the symbol is the 
last symbol of u scanned in the inner loop and that it is a non-matching symbol. After substituting 
the weaker predicate we obtain shift distance kopt{l,v) where kopt E V· x suff{P) ..... N is defined 
for x E V' and y E suff(P) by 

kopt{x, y) = (MIN n : n ;::: 1 A (V'{xf1)yVn n P '" 0 V yVn n V· P '" 0) : n) . 

Function kopt can be expressed as follows 

k ( ) _ { dopt(xf1, y) mind,p(Y) 
opt x, Y - d,(y) mind.p(Y) 

where dopt E V x suff(P) ..... N is defined by 

dopt(a, y) = (MIN n : n ;::: 1 A V'ayVn n P '" 0 : n) 

d,p E suff{P) ..... N is defined by 

d,p(Y) = (MIN n : n ;::: 1 A Y vn n V· P '" 0 : n) 

(a E V, y E suff(P», 

(y E suff(P)), 

(function d2 in [CW79a, CW79bJ), and d, E suff(P) ..... N is defined by 

d,{y) = (MIN n : n ;::: 1 A V'yV n n P '" 0 : n) (y E suff(P», 

(function dl in [CW79a, CW79bJ). Functions dopt and d, account for occurrences of ay and y, 
respectively, within some keyword (Le. as infix of some keyword), whereas function d.p accounts 
for occurrences of ,1llflixes of y as proper prefixes of some keyword. Precomputation of dopt , d,p, 
and di is discussed in subsection 4.2. -

Calculating the shift distance in this way is referred to as algorithm detail (OPT) and results 
in algorithm (P+S+,RT,SSD,NLAU,OPT). We arrived at this algorithm not knowing it had already 
been described by Fan and Su in [FS93, FS94J. From their informal description it undoubtedly 
follows that they describe the same algorithm though their formal treatment of the algorithm and, 
especially, the precomputation is rather involved. Finally, notice that to store function dopt one 
needs a two dimensional table, whereas functions d, and d,p only need one dimensional tables. In 
the follOwing subsections we derive shift functions smaller than kopt that are expressed solely in 
functions needing one dimensional tables for storage. 
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3.3 Lookahead symbol is mismatching 

We derive an approximation from below of dopt that yields an algorithm that is the common 
ancestor of the multiple keyword generalization of the Boyer-Moore algorithm [BM77J and the 
Commentz-Walter algorithm [CW79a, CW79b]. Essentially, the resulting shift function is not 
based on the identity of the lookahead symbol I t1 but only uses the fact that the lookahead 
symbol is mismatching, as is done in the Boye~-Moore shift function. In this way one might say 
that the recognized suffix and the (mismatching) lookahead symbol have to some extent been 
decoupled. 

We start by weakening the predicate from dopt . Assume I ¥ < and (/t1)v '/ suff{P). We derive 

V'(/t1)vvn n P ¥ 121 

= { v E Vlvl, monotonicity of n } 
V'{/f1)Vlvl+n n P ¥ 121/\ V'{/f1)vVn n P ¥ 121 

=? {(lt1)v ,/suff{P), so It 1 E {al aE V /\av ,/suff{P)}, definition MS} 

V'(/fl)vlvl+n n P ¥ 121/\ V* (V \ MS{v))vvn n P ¥ 121 

where M S E suff{P) -> V is defined by 

MS{y) = {a I a E V /\ ay E suff{P)} (y E suff{P)). 

The first conjunct will lead to a shift component based on the identity of the lookahead symbol 
that is identical to a component of the Commentz-Walter shift function. The second conjunct will 
lead to a shift component-based on the recognized suffix and the fact that the lookahead symbol 
is mismatching-that is identical to a component of the Boyer-Moore shift function. Replacing 
the range predicate of dopt by the last predicate of the preceding derivation we proceed 

(MIN n : n ~ 1 /\ V*{lt1)Vlv l+n n P ¥ 121/\ V* (V \ MS{v))vVn n P ¥ 121 : n) 

~ { MIN with conjunctive range} 

(MIN n : n ~ 1/\ V*(lt1)Vlvl+n n P "# Ii> : n) 
max (MINn :n ~ 1/\ V'(v\MS{v))vvn np¥12I :n) 

= { change of bound variable: m = Ivl + n; definition dv' (after derivation) } 

(MIN m : m ~ Ivl + 1/\ V*{Ifl)Vm n P "# 121 : m -Ivl) max dv'{v) 

~ { enlarging domain} 

(MIN m : m ~ 1 /\ V*(/t1)Vm n P ¥ Ii> : m -Ivl) maxdv'{v) 

{I ¥ <, definition of char,w (after derivation)} 

char,w{l t1, Ivl) maxdv'{v) 

where dv ' E suff{P) -> IN is defined by 

dv'{Y) = (MINn:n ~ 1/\ V*(V\MS{v))vVnnP¥ 121 :n) 
and char ,w E V x IN -> IN is defined by 

char,w{a, z) = (MIN n : n ~ 1 /\ V*avn n P ¥ 121 : n - z) 

(y E suff{P)) 

(aEV,zEIN). 

This results in shift distance kbm,w(/,v) where kbm,w E V* x suff{P) -> IN is defined by 

k ( ) _ { (char,w{xt1, Iyl) maxdv'{Y)) mind,p{Y) 
bm,wX,y - d,{y)mind,p{Y) 

(x E V+, y E suff{P)) 
(x = <, y E suff{P)). 

Precomputation of chaTcw is discussed in subsection 4.3 and of dVi, d6p , and di in subsection 4.2. 
Notice that we have 

(x E V*, Y E suff{P)). 
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Approximation from below of kopt by kbm,w is referred to as algorithm detail (BMCW). We chose 
this name to reflect that essential ideas from both the Boyer-Moore and Commentz-Walter a1go- . 
rithms are introduced. In the next two subsections these algorithms are derived from the algorithm 
presented in this subsection and characterized by detail sequence (P+S+,RT,SSD,NLAU,OPT,BMCW). 

3.4 The multiple keyword Boyer-Moore algorithm 

We proceed by deriving the multiple keyword generalization of the Boyer-Moore algorithm [BM77) 
from the algorithm in subsection 3.3. It only differs from the algorithm there in the way the 
lookahead symbol is taken into account. Assuming I # e we derive 

char,w(lrl,lvl) 

= { definition char ,w } 

(MINn: n 2: 1 A V'(lrl)vn n P # 0: n -Ivl) 
2: {V'(lfl)Vn n P # 0 => V'(lrl)Vn n V*P # 0} 

(MIN n : n 2: 1 A V'(lrl)Vn n V*P # 0 : n -Ivl) 

= {P # 0, V'(lrl)Vlpl+1 n V'p # 0 for all pEP, nonempty domain} 

(MINn: n 2: 1 A V'(lr1)vn n V'P # 0: n) -Ivl 

= {I # e, definition of charbm (after derivation)} 

charbm(I rl) -Ivl 

where charbm E V -+ N is defined by 

charbm(a) = (MIN n : n 2: 1 A V'aVn n v· P # 0 : n) (a E V). 

It results in shift distance kbm(l,v) where kbm E V· x suff(P) -+ IN is defined by 

k ( ) _ { «chaTbm(xrl) -Iyl) maxd.,(y)) mind,p(Y) 
bmX,Y - d,(y)mind,p(y) 

(x E V+, y E suff(P)) 
(x = e, y E suff(P)). 

Precomputation of charbm is discussed in subsection 4.3 and of dvi , dsp ! and d i is discussed in 
subsection 4.2. Approximating kbm,w from below by kbm is referred to as algorithm detail (BM). It 
results in the multiple keyword generalization of the regular Boyer-Moore algorithm [BM77). The 
algorithm is characterized by detail sequence (P+S+,RT,SSD,NLAU,OPT,BMCW,BM). The regular 
Boyer-Moore algorithm can be obtained by restricting P to one keyword (problem detail (OKW) 

(Qne Keyword)). Notice that we have 

(x E V', Y E suff(P)). 

Inequality can only occur if the lookahead symbol does not occur in any keyword except as the 
last symbol. 

The formula for the Boyer-Moore shift function given here differs from the ones given in [BM77) 
and [Ah090). We will show that all formulas are equivalent. First we define 

{
I ifeEP 

mp = (MIN p : pEP: Ipl) if e 'I- P. 

We now have for all a E V 

ChaTbm(a) ::; mp. 

Since for all y E suff(P) we have (\In: 1 ::; n < mp -Iyl : yvn n V· P = 0) it follows that 

mp -lyl ::; d,p(y) (y E suff(P)). 
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Finally, we derive for x E V+ and V E suff(P) 

kbm{X,V) 

= { definition kbm } 

((charbm{xtl) -lyl)maxdvi{Y)) mind,p{y) 

= {d,p{y) ?: mp -Ivl ?: charbm{xtl) -Iyl} 

((charbm{xtl) - Iyl) max dvi{y)) min({charbm{xtl) - Iyl) maxd,p{V)) 

= { distributivity} 

(charbm{X tl) -lvl) max(dv'{y) min d,p{V)). 

The last formula in the preceding derivation coincides with the ones in [BM77J and [Ah090J. 

3.5 The Commentz-Walter algorithm 

Instead of approximating char cw in kbmcw from below by charbm we now approximate dvi in kbmcw 

from below by d,. This results in the Commentz-Walter algorithm [CW79a, CW79bJ. We derive 

d.,(v) 

= { definition dv ' } 

(MINn:n?: 1/\ V'(V\MS(v))vVnnP# f21: n) 

?: {V'(V\MS(v))vVnnp# f2I '* v'vvnnP# f21} 

(MIN n : n ?: 1 /\ V'vvn n P # f2I : n) 

= { definition d, } 

d,(v). 

This results in shift distance kow(l,v) where kow E V' x suff(P) -+ til is defined by 

k ( )
_{ (charow(xtl,lyl)maxd,(y))mind,p(Y) (XEV+,yEsuff(P)) 

ow x, y - d () • d ( ) (ff(P)) ,ymm,py x=e,vEsu. 

Precomputation of charcw is discussed in subsection 4.3 and of d, and d,p in subsection 4.2. 
Approximating kbmcw from below by kcw is referred to as algorithm detail (cw). It results. 
in the Commentz-Walter algorithm [CW79a, CW79bJ that is characterized by detail sequence 
(P+S+,RT,SSD,NLAU,OPT,BMCW,CW). Notice that we have 

kbmcw(X, y) ?: kcw(x, V) (x E V', Y E suff(P)). 

Such a comparison can not be made between kbm and kcw as the following example shows. 

Example 3.1 Let V E {a,b,c,d}, P = {cababa}, and x E V'. Shift functions kbm and kcw are 
incomparable since 

and 

kopt(xd, a) 
kbmcw (xd, a) = 

kbm(xd, a) 
kcw(xd,a) = 

kopt(xa,a) 
kbmcw(xa, a) = 

kbm(xa,a) = 
kcw(xa, a) = 

+oomin6 
(+oomax4)min6 

(6 -1)max4) min 6 
(+oomax2)min6 

+oomin6 

= 6 
6 

= 5 
= 6 

= 6 
4 
4 

1
(2 -1) max 4) min6 
(2 -1) max 4) min6 
(2 -1)max2) min6 = 2. 

It also follows that in some cases kbmcw is smaller than kopt and that in some cases kbm and kcw 
are smaller than kbmcw . 0 
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It is not possible that both kbmcw(X,y) > kbm(X,y) and kbmcw(X,y) > kcw(x,y) hold for some. 
x E V+ and y E suff(P) since the first inequality implies charcw(xtI, Iyl) = +00 and this in its 
turn implies kbmcw(x, y) = d,p(y) = kcw(x, y). 

3.6 Complete decoupling of recognized suffix and lookahead symbol 

The derivations in the previous subsections effect an ever stronger decoupling of the recognized 
suffix v and the lookahead symbol If 1 in the subsequent shift functions. By approximating dv ' 

in kbm from below by d, or char cw in kcw by charbm (or both in kbmcw) we obtain a complete 
decoupling. It results in shift distance kd.,(I,v) where kd" E V' x suff(P) -+ IN is defined by 

k ( ) _ { «charbm(xtI) -Iyl) maxd;(y)) mind.p(y) 
d.1 x,y - d,(y) mind.p(Y) 

(x E V+, Y E suff(P)) 
(x = e,y E suff(P)). 

Precomputation of charbm is discussed in subsection 4.3 and of d, and d,p in subsection 4.2. The 
algorithm can be characterized by detail sequences (P+S+,RT,SSD,NLAU,OPT,BMCW,BM,CW) and 
(P+S+,RT,SSD,NLAU,OPT,BMCW,CW,BM). 

3.7 Discarding the lookahead symbol 

We weaken the predicate in the range of kop' by weakening its first disjunct to V'vv n n P # 13 

due to V'(ltI) ~ V' and the monotonicity of n. This weakening step is referred to as discarding 
the lookabead symbol Itl. The shift distance corresponding to this weakening is knl.(V) where 
knl. E suff(P) -+ N is defined by 

knl.(y) = d,(y) mind,p(y) (y E suff(P)). 

Notice that this shift function can also be viewed as an approximation from below of kd". Pre
computation of d, and d,p is discussed in subsection 4.2. Approximating kop' from below by knla 
is referred to as algorithm detail (NLA) (NO LookAhead at mismatching symbol) and results in 
algorithm (p +S+,RT,SSD,NLAU,OPT,NLA). 

3.8 One symbol lookahead at the unscanned part of the input string 

In this subsection we consider looking ahead at the first symbol of the unscanned part r of the 
input string. The first symbol of r will be taken into account independently of the other available 
information. In this way we obtain stronger variants of all of the shift functions derived thus far. 
Assuming r # e we derive 

(MIN n : 1 ~ n "suff(u(rln)) n P # 13 : n) 

= {domain split, 1 ~ n ~ Irl: rln = (rl1)«rJl)1(n -1)), Irl < n: rln = r} 

(MINn: 1 ~ n ~ Irl" suff(u(rll)«rJI)1(n -1))) nP # 13: n) 
min (MIN n : ITI < n " suff(ur) n P # 13 : n) 

~ {l ~ n ~ Irl: (rJI)1(n -1) E V n- 1
, monotonicity ofsuffand cap} 

(MIN n : 1 ~ n ~ Irl " suff(u(rll)Vn-l) n P # 13 : n) 
min (MIN n : Irl < n" suff(ur) n P # 13 : n) 

= {r # e, r E (rll)Vlrl-1, suff(ur) n P # 13 =? suff(u(rlI)Vlrl-l) n P # 13} 

(MIN n : 1 ~ n ~ Irl " suff(u(rll)Vn-l) n P # 13 : n) 

~ { u E V', monotonicity of suff and n} 

(MIN n : 1 ~ n ~ Irl " suff(V'(rlI)Vn-l) n P # 13 : n) 

~ { enlarging domain, changing bound variable: m = n - 1 } 
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(MIN m : 0 :5 m 1\ suff(V'(rl1)Vm) n P '" 0 : m + 1) 

= {property A.4, P", 0, V*(rl1)Vl p l n V*p '" 0 for all pEP, nonempty domain} 

(MINm: 0:5 m 1\ V*(r11)Vm n V'P '" 0: m) + 1 

= {definition charI. (sfter derivation)} 

charl.(rl1) + 1 

where charI. E V ---> !II is defined by 

charl.(a) = (MIN n : 0 :5 n 1\ V'aVn n V* P '" 0 : n) (a E V). 

Precomputation of charI. is discussed in subsection 4.3. 
Let M(u, r) denote the first expression in the preceding derivation as well as the the first 

expression in the derivation in subsection 3.1, and let N(u) denote the last expression in the' 
derivation in subsection 3.1. We then have 

M(u,r) 

= { property max} 

M(u, r) max M(u, r) 

;::: {derivation in subsection 3.1, preceding derivation} 

N(u) max(charl.(r11) + 1) 

Since all shift functions derived in the previous subsections are approximations from below of 
N(u) the preceding derivation shows that they all may be extended with max(charl.(r11) + 1) to 
form a class of stronger shift functions of signature k(l,v,r) (algorithm detail (OLAU) (one symbol 
LookAhead at unscanned part of the input string)). The first derivation in this subsection shows 
that it is also possible to couple the information on r11 with the information on I and v (u = Iv). 
We will not pursue that direction any further i,! this paper. 

4 Precomputation 

In this section we derive algorithms for the precomputation of the functions used in the pattern 
matching algorithms in sections 2 and 3. The algorithms are correct due to their formal deriva
tion. This can not always be said about the algorithms found in the literature, mostly due to the 
absence of any formal derivation (see for instance the single keyword Boyer-Moore precomputation . 
algorithms given in [BM77], [KMP77], and [Ryt80], where each article shows the preceding article 
to give an incorrect precomputation algorithm). Moreover, we give the first formal derivation of 
the precomputation algorithms for the Boyer-Moore family of algorithms. They can, amongst 
others, be specialized to a correct precomputation algorithm for the single keyword Boyer-Moore 
algorithm. In fact, we show that the definition of all d-functions introduced in section 3 can be 
rewritten into a form in accordance with one general pattern. Subsequently, a general precom
putation algorithm scheme for this general pattern is derived that can be instantiated for every 
d-function. 

4.1 Precomputation of Tp 

The transition function Tp E suff(P) x V ---> (suff(P) U {.l}) of the reverse trie corresponding to 
P is defined by 

{
au 

Tp(U, a) = .1 
if au E suff(P) 
if au </. suff(P) 

(u E suff(P),a E V). 

Since 8uffis idempotent and the definition of Tp only depends on suff(P), we have Tp = Touff(p), 

Set P being nonempty we have suff(P) = {e} U suff(P) and Touff(p) = T{£}uouff(P)' These 
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observations lead to the following algorithm (d. [AC75J, section 3, algorithm 2) to compute Tp 
in which variable tau is used to calculate and store Tp thereby viewing tau as a set of ordered 
pairs (the usual notion of a function) and abbreviate statements like tau:= tau + {((x, a), y)} to 
tau(x,a):= y: 

tau:= 0'j 

{tau = T", } 
for a : a E V -+ taut', a) := .L roC; 
{tau=T{,j} 
Pd,Pr := 0,Pj 

{ invariant: Pd U Pr = P /\ Pd n Pr = f2J /\ tau = T{,juouff(Pdj } 

do Pr '" f2J-+ 
pope Pr ; 
U,V:=p,t:'j 

{ invariant: uv = p /\ tau = T{,juouff(Pd)Uouff(V) } 

dou",,-+ 
if tau(v,ufl) =.L -+ tau(v,ufl):= (ufl)v; 

for a: a E V -+ tau((ufl)v,a):=.L rof 
I tau(v,ufl) ",.L -+ skip 
fij 
u, v:= u[l, (ufl)v 

odj 
Pd,Pr := Pd + {p},Pr - {p} 

od{ tau = Tp } 

In the algorithms we use + for the union of disjoint sets and - for the difference of a set and a 
subset of it. Notice that the algorithm does a depth first traversal of the reverse trie. Also notice 
that variable Pd is only needed to formulate an invariant for tau, so it may safely be removed from 
the algorithm. Furthermore, the states of the reverse trie are represented by strings. In practice, 
one can resort to a more suitable representation, for instance a representation by natural numbers. 
We will not elaborate this here. 

4.2 Precomputation of d-functions 

In this subsection we show that all d-functions introduced in section 3 can be written according 
to a general pattern. For this general pattern a general precomputation algorithm is derived. In 
order to obtain a precomputation algorithm for a particular d-function one only has to instantiate 
the general precomputation algorithm and possibly simplify the resulting algorithm. 

The general pattern we strive for is a function d E V x suff(P) -+ N defined for a E V and 
y E suff(P) by 

d(a,y) = (MINt: t E suff(P) \ {<} /\ Q(a,t) /\ R(a,y,t) /\ y <p t: Itl-Iy]) 

where Q is a predicate on V x V' and R a predicate on V x V' x V'. Why both Q and Rare 
introduced will become clear when we derive an algorithm scheme for the computation of d. We 
will now show that all d-functions introduced in section 3 can be expressed in this pattern. In the 
following derivations let a E V and y E suff(P) . 

• We derive 

dop,(a, y) 

= { definition dop' } 

(MINn:n:::: 1 /\ V'ayVn nP",f2J on) 

= { property AA} 
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(MIN n : n ~ 1 /\ ayvn n suff(P) #- 0 : n) 

= {change of bound variable: n = lsi} 

(MIN s : s E V+ /\ ays E sulf(P) : lsI) 

= { change of bound variable: t = ys } 

(MINt: t E suff(P) \ {e} /\ at E suff(P) /\ y <. t: Itl-Iyl) 

Hence, we have expressed do., according to the general pattern with Q(a, t) = at E sulf(P) . 
and R(a, y, t) = true. Notice that at E sulf(P) ;: r(t, a) #- .1. 

• Assuming y = e we derive 

d •• (e) 

= { definition d,.} 

(MIN n : n ~ 1 /\ vn n V' P #- 0 : n) 

= { calculus} 

(MINt: t E P: (MINn: n ~ 1 /\ vn n V't #- 0: n)) 

= {domain split: P = P\{e} U (P n {ell} 

(MINt: t E P \ {e} : It I) min (MIN t : t E P n {e} : 1) 

= { rewriting in order to obtain general pattern } 

(MINt: t E suff(P) \ {e} /\ t E P /\ e <. t: Itl-Iel) min (MINt: t E pn {e}: 1) 

Assuming y #- e we derive 

d,.(y) 

= {definition d,. } 
(MIN n : n ~ 1 /\ yvn n V' P #- 0 : n) 

= { property AA} 

(MINn: n ~ 1/\ sulf(yvn) n P #- 0: n) 

{y #- e, hence suff(yvn) = yVn U sulf(yJ l)Vn), set calculus} 

(MINn: n ~ 1 /\ yVn n P #- 0: n) 
min (MINn:n ~ 1 /\sulf(yJl)Vn) nP#- 0 on) 

= {change of bound variable: n = lsi, property A.4} 

(MIN s : s E V+ /\ ys E P : lsI) min (MIN n : n ~ 1 /\ (yJl)Vn n V' P #- 0 : n) 

= { change of bound variable: t = ys, y E sulf(P), yJ 1 E sulf(P), definition d •• } 

(MINt: t E P /\ Y <. t: Itl-Iyl) min d,.(yJ 1) 

= { rewriting in order to obtain general pattern } 

(MINt: t E suff(P) \ {e} /\ t E P /\ Y <. t: Itl-lyJ} mind,.(yJl) 

Although the derived definition of d,. is recursive and d,. does not have an argument a E V 
one can still discern the general pattern with Q(a, t) = t E P and R(a, y, t) = true. Pre
computation of d,. can be done according to the general precomputation algorithm without 
an iteration over V, followed by a breadth first traversal of the reverse trie. 
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• We derive 

d,(y) 

= { definition d, } 

(MINn: n;:-: 1/\ V'yVnnP # 0: n) 

= {property A.4} 

(MINn: n;:-: 1/\ yvn nsulf(P) # 0: n) 

= { change of bound variable: n = lsi} 
(MIN s : s E V+ /I ys E sulf(P) : lsI) 

= { change of bound variable: t = ys } 

(MIN t : t E suff{P) \ {I'} /I Y <p t: It I - Iyl) 

Although d; does not have an argument a E V its definition still matches the general pattern 
with Q(a, t) = true and R(a, y, t) = true . 

• We derive 

d.,(y) 

= { definition d., } 
(MINn: n;:-: 1/\ V,(V \ MS(y))yvn nP # 0: n) 

= { property A.4 } 

(MINn: n;:-: 1/\ (V \ MS(y))yvn nsulf{p) # 0: n) 

= {change of bound variable: n = lsi} 
(MIN s: s E V+ /I (V \ MS{y))ys n sulf(P) # 0: lsI) 

{ change of bound variable: t = ys } 

(MINt: t E sulf{P) \ {I'} /I (V \ MS{y))t nsulf{p) # 0/\ Y <p t: Itl-Iyl) 
= {definition M S } 

(MINt: t E sulf(P) \ {I'} /I MS{t) n (V \ MS{y)) # 0 /I Y <p t: Itl-Iyl) 

Apart from the fact that d., does not haye an argument a E V its definition matches the 
general pattern with Q(a, t) = true and R(a, y, t) = MS(t) n (V \ MS(y)) # 0. 

Having expressed all d-functions from section 3 in the general pattern we proceed by giving a 
rather straightforward and nondeterministic algorithm to compute d which will serve as a starting 
point for further algorithm derivations (notice that program variable dee is used to compute and 
finally store function d): 
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for y : y E suff(P) --+ 
for a : a E V --+ dee(a, y) := +inf rof 

rof; 
for t: t E suff(P) \ {o}--+ 

fora:aEV--+ 
if Q(a, t) --+ for y : y E suff(P) "y <. t --+ 

4 Precomputation 

if R(a, y, t) --+ dee(a,y):= dee(a,y) min(ltl-lyl) 
I ~R(a,y,t) --+ skip 

rof 

fi 
rof 

I ~Q(a, t) --+ skip 
fi 

rof{ dee = d } . 

For d, and d •• the loop iterating over V can be omitted. For d,. the following additional breadth 
first traversal of the reverse trie (suff(P» is needed to complete the computation: 

n:= 1; 
do suff(P) n vn # f2I --+ 

for t : t E suff(P) n vn --+ deesp(t):= deesp(t) mindeesp(tJ 1) rof 
od{ deesp = d •• } . 

First, we concentrate on making the innermost repetition deterministic. Define sp E suff(P) --+ 
P(suff(P» by 

sp(t) = {y lyE suff(P) " y <p t} (t E suff(P)), 

the set of all suffixes of keywords that are a proper prefix of t. Notice that for all t E suff(P) \ {o} 
sp(t) is finite, nonempty, and linearly ordered with respect to $p. Therefore, we can define 
msp E suff(P) \ {o} --+ suff(P) by 

msp(t) = (MAX,;. y: y E suff(P)" y <p t: y) (t E suff(P) \ {oJ) 

being the maximal element of sp(t). In literature [AC75, BM77, CW79a, KMP77] function msp 
is known as the failure function corresponding to the reverse trie. For t E suff(P) \ {o} we derive 
a recursive definition of sp(t) in terms of function msp: 

sp(t) 

= { definition sp} 

{y lyE suff(P) " y <p t} 

= {t E suff(P) \ {oJ, property A.6} 

{y lYE suff(P)" (y = msp(t) V y <p msp(t»)} 

= { definition sp and msp} 

{msp(t)} U sp(msp(t» 

Provided msp is already computed (precomputation of msp is discussed in subsection 4.4) the in
nermost repetition traversing the set sp(t) can be replaced by the following deterministic repetition 
(variable v is a ghost variable needed to express the invariant): 



4 Precomputation 

v:= t; {v:= 121; } 
{invariant: v E sp{t) U {t}" sp{t) = vU sp{v) " vn sp{v) = 121 } 
do v # e --> { sp{v) = {msp{v)} U sp{msp{v)) } 

v:= msp{v); {v:= v + {v}; } 
if R{a, v, t) --> dee{a, v) := dee{a, v) min{ltl- Ivl) 
I ...,R{a, v, t) --> skip 
fi 

od{ v = e, so sp{v) = 121 and sp{t) = v} 
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The invariant expresses that we have a bipartition of sp{t) in v (elements of sp{t) that have already 
contributed to the computation of d) and sp{v) (the other elements of sp{t)). 

In case R{a, y, t) = true for all a, y, and t the inner repetition can be made more efficient. 
Notice that this can be done for all presented d-functions except duo. In the following assume that 
R{a,y,t) = true for all a, y, and t. Suppose that for some v E sp{t) in the above repetition we 
have Itl-Ivl ~ dee{a,v). From the structure of the algorithms we infer that dee{a,v) = Itol-Ivl 
for some to E suff{P) \ {e} with Itol :S It I that has already contributed to the computation of d. 
Therefore, for alls E sp{v) we have dee{a,s):S Itol-Islleading to 

dee{a, s) 

:S {} 

Itol-Isl 

= {dee(a, v) = Itol-Ivl} 

dee{a, v) + lvi-lsi 

:S {dee(a, v) :S Itl-Ivl } 

Itl-Isl 

Hence, the contribution of t will not change the already computed value of dee{ a, s) for s E sp{ v) 
and the inner repetition can be terminated. This yields the following repetition using an additional 
boolean variable contributes (notice that ghost variable v is omitted): 

v:= t; contributes:= true; 
do v # e " contributes --> 

v:= msp{v); 

od. 

if Itl-Ivl < dee{a, v) --> dee{a, v):= Itl-Ivl 
I Itl-Ivl ~ dee{a, v) --> contributes :=dalse 
fi 

Variable contributes can be removed resulting in the following repetition 

v:= tj 
do v # e--> 

v:= msp{v); 

od. 

if Itl-Ivl < dee{a, v) --> dee {a, v):= Itl-Ivl 
I Itl-Ivl ~ dee{a, v) --> v:= e 
fi 

In order to further exploit this phenomenon the elements of suff{P) , {e} are dealt with in order 
of increasing length, Le. the outermost repetition of the general precomputation algorithm does a 
breadth first traversal of the reverse trie. This results in the following algorithm: 
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for y : y E sulf( P) --+ 

for a : a E V --+ dee(a, y):= Hnf rof 
rof; 
n:= 1; 
do sulf(P) n vn # 121 --+ 

for t : t E suff(P) n vn --+ 

fora:aEV-+ 

rof 
roC; 

if Q(a, t) --+ v:= t; 
dov#e--+ 

v:= msp(v); 

od 

if Itl-Ivl < dee(a, v) --+ dee(a, v):= Itl-Ivl 
I Itl-Ivl ~ dee(a, v) --+ v:= e 
fi 

I ,Q(a, t) --+ skip 
fi 

n:= n+ 1 
od. 

4 Precomputation 

In this optimized breadth first precomputation algorithm for each node v in the reverse trie 
and each symbol from V the step from v to msp( v) is done at most two times. Therefore, the 
precomputation time is O(lsulf(P)I·IVI). If the traversal of V can be omitted (as is the case for 
the precomputation of d, and d,.) it is O(lsulf(P)I). 

The breadth first precomputation algorithm for d, can be simplified further by observing that· 
since Q(a, t) = true the steps taken from t are always preceded by the steps taken from msp(t) 
(provided msp(t) # e) since Imsp(t)1 < Itl. So, only the contribution of t to d,(msp(t)) has to be 
considered. This results in the following precomputation algorithm for d, (program variable deei 
is used to compute and finally store di ): 

for y : y E suff(P) --+ deei(y):= +inf rof; 
n:= 1; 
do sulf(P) n vn # 121 --+ 

for t : t E sulf(P) n vn --+ 

deei(msp(t)):= deei(msp(t)) min(ltl-Imsp(t)l) 
rof; 
n:= n+ 1 

od. 

Notice that the breadth first traversal in this algorithm may be replaced by an arbitrary traversal 
of the reverse trie. 

4.3 Precomputation of charcw • char/nn. and Charla 

Function char cw can be expressed as 

{ 
+inf 

charcw(a, z) = -h () carcwa-z 
if charcw(a) = +inf 
if charcw(a) # +inf 

where function char cw E V --+ IN is defined by 

(aEV,zEIN) 

charcw(a) = (MIN n : n ~ 1 " V'aVn n P # 121 : n) (a E V). 

From the definition charcw it immediately follows that that its computation can be interwoven 
with the precomputation of the reverse trie r. 
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Next, we derive far a E V 

char&m{a) 

= { definition char&m } 

(MINn: n ~ 1 A V'avn n V'P"# 121: n) 

= {property A.5.iii} 

(MIN n : n ~ 1 A (V'avn n P "# 121 V avn n V+ P "# 121) : n) 

= { disjunctive range, definition char ,w } 

char,w{a) min (MIN n : n ~ 1 A aVn n V+ P "# 121 : n) 

= { a vn n V+ P "# 121 == vn n v· P "# 121 } 

char,w{a) min (MIN n : n ~ 1 A vn n V' P"# 121 : n) 

= {definition mp (subsection 3.4) } 

char,w(a) minmp. 

Finally, we derive for a E V 

Charla(a) 

= { definition Charla} 

(MIN n : 0 :5 n A V'aV" n V' P"# 121 : n) 

= { domain split: n ~ 1 V n = 0, definition char&m } 

char&m(a) min (MIN n : n = 0 A V'a n v· P"# 121 : 0) 

= { property A.5.ii} 

char&m(a) min (MIN n : n = 0 A (a E .ulf(P) VEE P) : 0) 

We conclude that chaTcw , charbm, and chana can be computed from charcw . 

4.4 Precomputation of msp 
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We conclude this section with the derivation of an algorithm computing msp. We start by deriving 

• for a E .uff(P) n V 

msp(a) 

= { definition msp} 

(MAX:>. y : y E suff(P) A y <p a : y) 

= {y <p a == y = E, E E sulf(P)} 

• and for ax E suff(P), a E V, and x E suff(P) \ {E} 

msp(ax) 

= { definition msp} 

(MAX:>. y : y E sulf(P) A y <p ax : y) 

= {domain split, E <p ax, E E suff(P)} 
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(MAXS. y : y E suft'(P) /I y <p ax /I y '" 0 : y) maxs. 0 

= { change of bound variable: y = ay' } 

(MAXS• y' : ay' E suff(P) /I y' <p x : ay') maxS. 0 

= {ay' E suff(P):} y' E suft'(P), x E suft'(P) \ {oJ, definition sp} 

(MAXs • y' : ay' E suft'(P) /I y' E sp(x) : ay') maxs. 0 

From this it follows that msp( ax) can be computed by a linear searcb in downward order over 
sp(x) (remember that sp(x) is linearly ordered with respect to ~p) starting with msp(x). Provided 
the computation of msp is done using a breadth first traversal of the reverse trie (suft'(P)) the 
value of msp is already computed for all all elements of sp(x) u {x} and can therefore be used to 
implement the linear search over sp(x). This results in the following algorithm (variable emsp is 
used to compute and finally store msp): 

for a : a E suff(P) n V -+ emsp(a):= 0 rof; 
n:= 1; 
{ invariant: 1 ~ n ~ (MAXp: pEP: Ipl) + 1 

/I (Vy: y E suff(P) \ {o} /lIYI ~ n: emsp(y) = msp(y)) } 
do suff(P) n vn '" flJ -+ 

for t : t E suft'(P) n vn -+ 

fora:aEV-+ 
if at E suff(P) -+ v:= emsp(t); 

{ linear search } 
do av rt suff(P) /I v '" e -+ v:= emsp(v) od; 
if av E suft'(P) -+ emsp(at):= av 
I av rt suff(P) /I v = e -+ emsp(at):= e 
fi 

at rt suff(P) -+ skip 
fi 

rof 
rof; 
n:= n+ 1 

od. 

This breadth first algorithm computing msp can be combined with the breadth first algorithm 
computing the d-functions. The precomputation time now is O(lsuff(P)12 . IVI). This can be 
reduced to O(lsuff(P)I'1V1) at the expense of O(lsuff(P)I'1V1) additional storage space by also 
computing and storing the transition function ,r of the reverse trie where ,r E V x suft'(P) -+ 

suff(P) is defined by 

,r(a,x) = (MAXS• y: y E suft'(P) /I Y:<>p ax: y) (a E V,X E suff(P)). 

The details of this approacb can be found in [WZ92[. 

5 Conclusions 

In this paper we derived and presented a taxonomy of sublinear keyword pattern matching al
gorithms closely related to the Boyer-Moore algorithm [BM77] and the Commentz-Walter algo
rithm [CW79a, CW79b]. It includes, amongst others, the multiple keyword generalization of the 
single keyword Boyer-Moore algorithm and the algorithm presented by Fan and Su [FS93, FS94]. 
We presented the algorithms within a common framework permitting an easier comprehension of 
and a better comparison between the algorithms. This was achieved by the systematic and for
mal derivation of the algorithms from a common starting point and by factoring out of common 
portions of the derivations. The derivations were done through series of refinements to either 
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algorithm or problem. A refinement to the algorithm/problem is referred to as the introduction 
of an algorithm/problem detail. The sequence of details that are subsequently introduced in a 
derivation characterizes the algorithm obtained by that derivation. Detail sequences can therefore 
be used to classify the algorithms in the taxonomy. Algorithms can now be compared by look
ing at their detail sequences. The taxonomy graph in figure 1 constitutes a concise presentation 
and classification of the pattern matching algorithms discussed, vertices representing algorithms 
and edges representing the addition of an algorithm or problem detail. It can be viewed as an 
alternative table of contents to this paper. Our results show how fruitful the applied method of 
developing a taxonomy is (it was inspired by the method described by Jonkers [Jon83]). 

Introduction of the notion of safe shift distances proved to be essential for the derivation of . 
the various algorithms. All algorithms are characterized by a-systematically derived and more or 
less easy to compute-approximation from below of the maximal safe shift distance, computation 
of the latter being equivalent to the keyword pattern matching problem itself. The systematic 
derivation provided a means to compare the algorithms and their matching speeds, and to get a 
better understanding of the algorithms and their interrelations. Perhaps this better understanding 
will help further the use of the algorithms from this family. Our derivations show the Commentz
Walter algorithm not to be the multiple keyword generalization of the Boyer-Moore algorithm 
(as was the original intention of Commentz-Walter) and that such a generalization can indeed be 
obtained. Of the algorithms presented the algorithm by Fan and Su [FS93, FS94j is the fastest (at 
the expense of additional precomputation time and additional storage requirements), followed by 
the common ancestor of the Boyer-Moore and Commentz-Walter algorithms, and then by both the 
multiple keyword generalization of the Boyer-Moore algorithm [BM77j and the Commentz-Walter 
algorithm [CW79a, CW79bj. The latter two are incomparable in matching speed. It is clear 
that we have not derived and presented all algorithms of the Boyer-Moore family. Our derivation 
method, however, clearly indicates how yet other members of this family of algorithms may be 
derived. 

Apart from giving a taxonomy of pattern matching algorithms from the Boyer-Moore family we 
presented the first formally derived and therefore correct precomputation algorithms (this can not 
always be said about the algorithms found in the literature, mostly due to the absence of any formal 
derivation; see for instance the many solutions for the Boyer-Moore precomputation that have 
been published, corrected and republished). In fact, we showed that most of the precomputation 
algorithms can be obtained as instantiations of a general precomputation algorithm scheme derived 
for a general function pattern in which most components of the various shift functions can be . 
expressed. Thus, we provided a common framework for the precomputation algorithms as well. 
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A Definitions and properties 

This section provides a series of definitions and properties which are used throughout this paper. 
In the following let V be an alphabet. 

For a string w E V· w R denotes the reversal of w. For any language L c:;; V· we define 
LR = {w R I w E L} (the reversal oflanguage L). 
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Definition A.I The infix operators 1, J, t, l : V' x N -> V' are defined by 

v10 = 0 (v E V') 
E1(k + 1) = 0 (k ~ 0) 

(aw)1(k + 1) = a(w1k) (k ~ O,a E V,W E V') 
vjO = v (v E V') 

oj(k + 1) = 0 (k ~ 0) 
(aw)j(k + 1) = wjk (k ~ O,a E W,w E V') 

Define t as vtk = (vR1k)R and l as vlk = (vRjk)R. The operators 1,J, t, and l are called "left 
take," "left drop," "right take," and "right drop" respective/yo 0 

Definition A.2 JiUnctions pref: P(V') -> P(V') and suff: P(V') -> P(V') are defined by 

pref(L) = {w I w E V'/\ (3x:xE V' :wx E L)} 

and 

suff(L) = (pref(LR))R = {w I w E V' /I (3x: x E V' : xw E L)}. 

o 
For w E V' we will write pref(w) (suff(w)) instead of pref( {w}) (suff( {w} )). 

Definition A.3 The relations ~p and ~, over V' x V' are defined by u ~p v = u E pref( v) and· 
u ~, v = U E suff(v). 0 

The following two properties are used in the derivation of the Commentz-Walter precomputation 
algorithm. 

Property A.4 Let A, B ~ V'. Then pref(A) n B # 121 = An BV' # 121 and suff(A) n B # 121 = 
AnV'B#I2I.D 

Property A.S Let A, B ~ V' and a E V. Then 

o 

i. V' A n V' B # 121 = V' A n B # 121 V A n V' B '" 121 

ii. V' aA n V' B '" 121 = V' aA n B '" 121 V A n V' B '" 121 

iii. V' A n V' B '" 121 = V' A n B # 121 V An V+ B # 121 

Property A.6 For x, y E suff(P) and y '" 0 we have 

x <p y = x ~p msp(y). 

Proof 
Let x, y E suff(P) and y '" E. We derive 

x <Py 

= { definition of <p and pref, x E suff(P) } 

x E pref(y) \ {V} n suff(P) 

~ {pref(y) \ {V} n suff(P) is nonempty (y '" 0), finite and linearly ordered w.r.t. ~p} 

x ~p (MAX::;. w: w E pref(y) \ {V} n suff(P): w) 

= { y '" 0, definition of msp } 

x ~p msp(y) 

~ {y '" 0, msp(y) <p y (by definition of msp), transitivity of <p} 

x <Py 

o 
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B Algorithm and problem details 

In this appendix we list the algorithm and problem details introduced in this paper with a short 
description. 

P Examine prefixes of a given string in any order. 

s Examine suffixes of a given string in any order. 

+ Examine the strings from a given set in order of increasing length (this program detail can 
only be applied after, for instance, program details P and s). 

RT Usage of the transition function of the reverse trie corresponding to the set of keywords to 
check whether a string, that is a suffix of some keyword, preceded by a symbol is again a 
suffix of some keyword. 

SSD Allow any shift distance at least one that is safe, i.e. that does not cause the omission of any 
matches. 

NLAU No lookahead at the symbols of the unscanned part of the input string when computing a 
safe shift distance. 

OLAU One symbol lookahead at the unscanned part of the input string when computing a safe 
shift distance. 

OPT When computing a safe shift distance use the recognized suffix and only the immediately 
preceding (mismatching) symbol, strictly coupled. 

NLA When computing a safe shift distance do not look at the symbols preceding the recognized 
suffix. 

BMCW When computing a safe shift distance on the one hand use the recognized suffix and the fact 
that the symbol preceding it is mismatching, and on the other hand, but strictly independent, 
the identity of that symbol. 

BM Lessen the contribution of the symbol preceding the recognized suffix to the shift distance 
in case it does not occur in any keyword. 

CW When computing a safe shift distance do not use the fact that the symbol preceding the 
recognized suffix is mismatching (use the recognized suffix and the symbol preceding it 
independently). 

OKW The set of keywords contains only one keyword (in contrast to the preceding program details 
this is a problem detail). 
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