

A taxonomy of sublinear multiple keyword pattern matching
algorithms
Citation for published version (APA):
Watson, B. W., & Zwaan, G. (1995). A taxonomy of sublinear multiple keyword pattern matching algorithms.
(Computing science reports; Vol. 9513). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/ec5fd5e6-108d-4fea-a4ef-7627e466af4d

ISSN 0926-4515

All rights reserved

Eindhoven University of Technology

Department of Mathematics and Computing Science

A taxonomy of
sublineair multiple keyword
pattern matching algorithms

95/13

editors: prof. dr. 1. C.M. Baeten
prof. dr. M. Rem

Computing Science Report 95/13
Eindhoven, April 1995

A taxonomy of
sublinear multiple keyword

pattern matching algorithms

B.W. Watson & G. Zwaan
Faculty of Mathematics and Computing Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB

Eindhoven, The Netherlands
email: watson\Dwin.tue.nlorwsinswan\Dwin.tue.nl

April 21, 1995

Abstract

This paper presents a taxonomy of sublinear keyword pattern matching algorithms related to
the Boyer-Moore algorithm [BM77) and the Commentz-Walter algorithm [CW79a, CW79b).
The taxonomy includes, amongst others, the multiple keyword generalization of the single
keyword Boyer-Moore algorithm and an algorithm by Fan and Su [FS93, FS94). The corre
sponding precomputatioD algorithms are pre~ented as well. The taxonomy is based on the
idea of ordering algorithms according to their essential problem and algorithm details, and
deriving all algorithms from a common starting point by successively adding these details in a
correctness preserving way. This way of prese~tation not only provides a complete correctness
argument of each algorithm, but also makes very clear what algorithms have in common (the
details of their nearest common ancestor) and where they differ (the details added after their
nearest common ancestor). Introduction of the notion of safe shift distances proves to be
essential in the derivation and classification of the algorithms. Moreover, the paper provides
a common derivation for and a uniform presentation of the precomputation algorithms, not
yet found in the literature.

Contents

1 Introduction
1.1 Basic algorithm and derivation principles
1.2 The taxonomy
1.3 Overview

2 The problem and some naive solutions

3 Sublinear pattern matching algorithms
3.1 No lookahead at the unscanned part of the input string
3.2 Restriction to one symbollookahead
3.3 Lookahead symbol is mismatching
3.4 The multiple keyword Boyer-Moore algorithm.
3.5 The Commentz-Walter algorithm
3.6 Complete decoupling of recognized suffix and lookahead symbol
3.7 Discarding the lookahead symbol
3.8 One symbollookahead at the unscanned part of the input string

4 Precomputation
4.1 Precomputation of Tp•.••••••••

4.2 Precomputation of d-functions
4.3 Precomputation of charCW1 charbml and Char'a
4.4 Precomputation of msp

5 Conclusions

6 Acknowledgements

A Definitions and properties

B Algorithm and problem details

Contents

1
3
4
4

5

7
8
8

10
11
12
13
13
13

14
14
15
20
21

22

23

23

25

1 Introduction 1

1 Introduction

The keyword (or string) pattern matching problem can informally be described as the problem
of finding all occurrences of keywords (strings) from a given set as substrings in a given (input) .
string. This problem is encountered in many areas and in several forms. In computing science, for
instance, it plays a role in text search/analysis, lexical analysis, and data processing. In biology
it is encountered in the analysis of, amongst others, DNA sequences. The problem can also be
generalized to the matching of regular expressions, tree patterns, and graph patterns, none of
which is treated here.

The keyword pattern matching problem has been extensively studied and a multitude of di
verse solutions/algorithms exists. Single keyword algorithms are for instance described by Knuth,
Morris, and Pratt [KMP77] and Boyer and Moore [BM77); multiple keyword algorithms by Aho
and Corasick [AC75], by Commentz-Walter [CW79a, CW79b], and by Fan and Su [FS93, FS94).
An overview of keyword pattern matching algorithms can be found in [Ah090).

Due to the diversity of the algorithms and their descriptions-that tend to be rather involved
and verbal- it is hard to get a good overview and to make a sound comparison between algorithms.
In order to fulfill these needs a taxonomy of keyword pattern matching algorithms was presented
by Watson and Zwaan in [WZ92, WZ93). Here, we focus our attention on a part of that taxonomy
containing a family of multiple keyword pattern matching algorithms that have a matching time
that may be sublinear in the length of the input string (taking the number of symbol comparisons
as a measure of matching time). Amongst others, it comprises the multiple keyword generalization
of the single keyword Boyer-Moore algorithm [BM77], the Commentz-Walter algorithm [CW79a,
CW79b], and the algorithm by Fan and Su [FS93, FS94) (only after deriving this algorithm we
found its description by Fan and Su). Both the Boyer-Moore and Commentz-Walter algorithms
provided the inspiration for our derivations and classifying principle.

The main results of this paper are comprised in the taxonomy graph shown in figure 1 (a more
detailed description of the graph is found further on in this section). This taxonomy graph can
be viewed as an alternative table of contents to this paper. It was obtained in order to meet the
following goals:

the systematic and formal derivation of the algorithms from a common starting point through
a series of refinements to either algorithm or problem

to factor out common portions of (the derivations of) well-known algorithms in order to
facilitate the understanding of these algorithms and their comparison

the presentation of the algorithms in a common framework to permit an easier comprehension
of and a better comparison between the algorithms

It is the first concise and systematic presentation of and comparison between the algorithms from
the family considered here. Another taxonomy of (single keyword) pattern matching algorithms
by Hume and Sunday [HS91) does not meet the goals set in this paper since there any derivations
and proofs of algorithms are missing.

Moreover, we show that all functions that need to be precomputed for the pattern matching
algorithms of this family can in a simple way be expressed in a small set of base functions. The
definitions of the base functions can all be written in forms satisfying one general pattern. From
this general pattern a precomputation algorithm scheme has been derived that can be instantiated
for each base function to yield a precomputation algorithm for that function (sometimes, the
resulting algorithm can be simplified and/or some trivial postprocessing has to be added to it).
Hence, the precomputation algorithms can also be derived and presented in a uniform way. This'
includes formal derivations of the precomputation algorithms for the Boyer-Moore algorithm, the
Commentz-Walter algorithm and the algorithm presented by Fan and Su not yet found in the
literature.

The taxonomy given here differs from the corresponding part of the taxonomy in [WZ92, WZ93)
in that we here present the correct multiple keyword generalization of the Boyer-Moore algorithm

2

OKW

§3.4
[SMTT)

§3.4

NLAU

§3.8

§3.6 §3.7

1 Introduction

2.1

p

2.2

+

,
[KMPT7, ACT!!)

Figure 1: Taxonomy graph of keyword pattern matching algorithms from the Boyer-Moore family.
Each vertex corresponds to an algorithm. Vertices are labelled with either an algorithm number
or a subsection number preceded by § referring to an algorithm or a subsection in this paper.
Some vertices are additionally labelled with literature references. Each edge corresponds to the
addition of either a problem or algorithm detail (see appendix B for a complete list of details
and their descriptions). The sequence of edge labels that are encountered when going from the
top vertex to another vertex forms a characterization of the algorithm corresponding to that
vertex. For instance, the algorithm of the vertex labelled §3.5 (the Commentz-Walter algorithm) is
characterized by (p +S+,RT,SSD,NLAU,OPT,BMCW,CW). The dashed edge leading to [KMP77, AC75]
indicates the path to the rest of the taxonomy presented in [WZ92, WZ93] that contains the Knuth- .
Morris-Pratt and the Aho-Corasick algorithms and is omitted in this paper.

1 Introduction 3

and a common ancestor of this algorithm and the Commentz-Walter algorithm. Because of this the
derivations and the structure of the taxonomy have changed. Moreover, we present a completely
new derivation of the precomputation algorithms.

An implementation as a C procedural library of almost all algorithms from [WZ92] (called
"Eindhoven Pattern Kit") and an analysis of their performance is given in [Wat94] (the imple
mentation is in a somewhat rudimentary form being meant for the benchmarking only). Only the
Commentz-Walter algorithm and a common descendant of both the Boyer-Moore and Commentz
Walter algorithm are implemented and discussed there. The performance results for these algo
rithms conform with the qualitative predictions made here. An implementation of all algorithms
from this paper and from [WZ92] as a C++ class library is called "SPARE Parts: A C++
toolkit for String PAttern REcognition" and will be available at URL ftp://ftp.win.tue.nl
/pub/techreports/pi/pattm/ spare/. This implementation is entirely based on the abstract al
gorithms described in this paper-in fact it is a systematic translation of them (this in contrast
to for instance the implementations given in [HS91]).

1.1 Basic algorithm and derivation principles

The algorithms in this family traverse the input string in a direction that is opposite to the
direction in which keyword symbols are matched to symbols in the input string. In this paper we
choose to inspect suffixes of prefixes of the inp'!t string both in order of increasing length. This
algorithm will be the starting point of all further derivations. Choosing such a basic algorithm we
have the possibility to attain matching times that are sublinear in the length of the input string
(i.e. not all symbols of the input string are inspected). It is achieved by taking steps through
the input string of which the length is determined by a shift function based on the information
of the last matching attempt and possibly on anditional information. The example in figure 2
illustrates this principle. Notice that not all symbols of the input string are scanned, although it
is possible that some symbols of the input string are scanned more than once. The most simple

· .. aaabacdabef ...
';===
baab

J shift 3

· . . aaabacdabef ...
.;

baab

J shift 4

· .. aaabacdabef ... ,.
baab

Figure 2: Example of larger shift distances

shift function is the function that always yields 1. However, one can imagine larger shifts being
possible. Ideally, such a shift would take us to the next occurrence of a match, but then calculating
the value of the shift function is equivalent to the pattern matching problem itself. Therefore,
we strive for shift functions that are easier to calculate and that do not exceed the ideal shift
(called safe shift functions) i.e. we aim at approximations of the ideal shift from below. The ideal
shift function is the minimum over a domain characterized by some predicate. We derive various
approximations from below by systematically weakening this predicate and derived predicates,
by applying rules for minimum and maximum over disjunctive or conjunctive domains, and by
enlarging domains. Considerations that playa role in these derivations are, for instance, whether
or not to look ahead at symbols of the unscanned part of the input string, what information to use

4 1 Introduction·

on the last scanned (non-matching) symbol, and the extent to which this information is coupled
with the information on the recognized suffix. Thus, we obtain several shift functions that meet
the aforementioned requirements leading to an equal number of algorithms amongst which are the
well-known Boyer-Moore and Commentz-Walter algorithms. The most simple weakening of the
predicate is the weakening to the predicate true yielding the shift function that is always equal
to 1. The reason to derive ever smaller shift functions is that a smaller shift functions usually takes
less precomputation time and less storage space (for instance, a one dimensional table instead of
a two dimensional table).

The techniques we use to systematically derive shift functions from the ideal shift function
enable us to clearly delineate the relations between the resulting shift functions and algorithms.
Furthermore, they may be used in the derivation of yet other members of this family. This truly
systematic approach, especially the predicate weakening technique, is not known from literature.
Among other things we derive that the Commentz-Walter algorithm [CW79a, CW79b] is not the
multiple keyword generalization of the Boyer-Moore algorithm [BM77]. In fact, we show that the
algorithms are incomparable (meaning that the shift distance in one algorithm is not always at
least the shift distance in the other) and that they have a faster common ancestor that combines
the properties of both. As it is, this common ancestor is derived first and subsequently the Boyer
Moore algorithm and the Commentz-Walter algorithm are derived from it. Both algorithms also
have a common descendant (the algorithm that was incorrectly identified as the Boyer-Moore
algorithm in [WZ92, WZ93]). Furthermore, it is shown that the algorithm described by Fan·
and Su [FS93, FS94] is an even faster ancestor ·of the common ancestor of the Boyer-Moore and
Commentz-Walter algorithms.

1.2 The taxonomy

The algorithms are derived from a common starting point by successively adding either algorithm
or problem details (see appendix B for a complete list of details and their descriptions). The only
problem detail considered here is the restriction to the one keyword case. Among the algorithm
details considered are restriction of nondeterminacy, introduction of the reverse trie, introduction
of a shift function, and choice of a particular shift function. Each addition of an algorithm
detail gives a new algorithm satisfying the same specification as the original algorithm; thus, the
correctness of the algorithms is preserved. The sequence of details introduced in the derivation
of an algorithm can be used to identify its similarities and its differences with other algorithms.
These ordered detail sequences are used to identify the algorithms and to give a taxonomy of
the algorithms in this family. The taxonomy is depicted as a graph in figure 1. Our method
of developing a taxonomy was inspired by the method described by Jonkers [Jon83]. There it is
applied to develop a taxonomy of garbage collection algorithms. The method is also applied to
attribute evaluation algorithms by Marcelis [Mar90]. Other examples of algorithm taxonomies are
found in [Br083, Dar78].

All algorithms are presented in a somewhat extended version of the guarded command language
of Dijkstra [Dij76] in order to avoid the peculiarities of any particular programming language. The
algorithms use string type variables in order to abstract from any implementation detail like, for.
instance, indexing. Derivation of the algorithms is done a calculational way following Dijkstra's
style of program derivation.

1.3 Overview

In section 2 we give a formal definition of the pattern matching problem. From a trivial solution
to this problem we derive, by addition of a numper of algorithm details, an algorithm that is the
starting point for the derivation of the algorithms in section 3. In section 3 we start by adding the
algorithm detail that states that shifts larger than one may be possible. Addition of this program
detail accounts for the possible sublinear matching time of all of the algorithms to be derived in
this section. Subsequently, we derive by systematic approximation from below of the maximal safe
shift distance the various algorithms of this family (in order of decreasing matching speed). The

2 The problem and some naive solutions 5

definitions of all functions introduced in section 3 are rewritten in forms according to a general
pattern in section 4. From the general pattern a precomputation algorithm scheme is derived that
can be instantiated for any of the functions. Section 5 contains the conclusions. Appendix A
contains definitions and properties used throughout this paper. Appendix B contains a complete'
list of all algorithm and problem details and their descriptions.

2 The problem and some naive solutions

The keyword pattern matching problem is to find all occurrences of keywords from a set as sub
strings in an input string. Formally, given an alphabet V (a non-empty finite set of symbols), an
input string S E V', and a finite non-empty pattern set P ~ V', establish

R: 0= (U I,v,r :lvr=S: {I} x ({v}np) x {r}).

Throughout this paper we will adopt the convention that, unless stated otherwise, program vari
ables and bound variables with names from the beginning of the Latin alphabet (Le. a, b, c) will
range over V, while variables with names from the end of the Latin alphabet (Le. I, q, r, u, v, w)
will range over V'. A trivial (but unrealistic) solution to the problem is

Algorithm 2.10

o:=(u l,v,r:lvr=S:{I}x({v}nP)x{r})
{R}

The sequence of details describing this algorithm is the empty sequence (sequences of details are
introduced in subsection 1.2 and figure 1).

There are two basic directions in which to proceed while developing naive algorithms to solve
this problem. Informally, a substring of S can be considered a "suffix of a prefix of S" or a "prefix
of a suffix of S". Only the first possibility is considered here, since the second possibility only leads
to algorithms that are the mirror images of algorithms obtained by following the first possibility
(basically, it amounts to reversing all strings in the problem). Moreover, this is the way that the
Boyer-Moore, Commentz-Walter, and Fan and Su algorithms treat substrings of input string S.

Formally, we can consider "suffixes of prefixes of S" as follows:

(u l,v,r:lvr=S:{I}x({v}np)x{r})

= { introduce u : u = Iv }

(U I, v, r, U : ur = S A Iv = u : {I} x ({v} n P) x {r})

= {I, v only occur in the latter range conjunct, so restrict their scope}

(U u, r : ur = S : (U I, v : Iv = u : {I} x ({v} n P) x {r}))

A simple non-deterministic algorithm is obtained by applying "examine prefixes of a given string
in any order" (algorithm detail (p)) to input string S. In the following algorithm we use a for-rof
statement in order to express its non-determinism. Statement for x : P -+ S rof amounts to
executing statement list S once for each value of x that satisfies P initially, assuming only a finite
number of such values exist. The order in which the values of x are chosen is arbitrary. It results in

Algorithm 2.2(p)

0:=.0;
for (u,r): ur = S->

0:= 0 U (u I, v: Iv = u : {I} x ({v} n P) x {r})
rof{ R}

6 2 The problem and some naive solutions

The update of 0 (with another quantifier) in the inner repetitions of algorithm (p) can be computed
with another non-deterministic repetition. This inner repetition would consider suffixes of u. Thus
by applying "examine suffixes of a given string in any order" (algorithm detail (s» to string u we
obtain algorithm

Algorithm 2.3(ps)

0:= 0";
for (u,r) : ur = S-->

for (l,v) : Iv = u-->
0:= Ou {I} x ({v} np) x {r}

rof
rof{ R}

Algorithm (ps) consists of two nested non-deterministic repetitions. In each case, the repetition
can be made deterministic by considering prefixes (or suffixes as the case is) in increasing (called
detail (+» or decreasing (detail (-» order of length. This gives two binary choices. Since
the Boyer-Moore and Commentz-Walter algorithms examine string S from left to right and the
patterns in P from right to left we focus our attention on (the operators 1. J, t, and l are defined
in definition A.l; relation :O;p is defined in definition A.3):

Algorithm 2.4(P+S+)

u,r:=e:,S; 0:= {e:} x ({e:}np) x {S};
{invariant: 0 = (u X,Y,z: xyz = S 1\ xy:O;p u: {x} x ({y} np) x {z}) }
dor#e-->

u, r:= u(rl1), rjl; I, v:= u, e; 0:= 0 U {u} x ({e:} n P) x {r};
dol#e:-->

I,v:= /ll,(ltl)v;
0:= 0 U {I} x ({v} nP) x {r}

od
od{ R}

This algorithm has running time 0(ISI2), assuming that intersection with P is a 0(1) operation.
We will now improve the running time of this algorithm. Consider the set of suffixes of keywords
suff(P) (the functions suff and pref are defined in definition A.2). A string w is an element of
suff(P} if and only ifit can be extended on the left to a pattern in P, i.e. (3w' : w' E V' : w'w E pl.
It follows that if w ~ suff(P} any extension of w on the left is not an element of suff(P) either.
Consequently, the inner repetition in algorithm 2.4 can terminate as soon as (ltl}v ~ suff(P)
holds, since then all suffixes of u that are equal to or longer than (ltl)v are not in suff(P) and
hence not in P. The inner repetition guard is therefore strengthened to

1# e cand (Itl}v E suff(P).

Observe that v E suff(P} is an now invariant of the inner repetition. This invariant is initially
established by the assignment v:= e: since P # 0" and thus e: E suff(P}. Direct evaluation of
(ltl}v E suff(P) is expensive. Therefore, it is done using the transition function Tp of the reverse
trie [Fre60] corresponding to P where Tp : suff(P) x V -> suff(P) U {.l} is defined by

() _ {aw if aw E suff(P)
Tp w, a - .1 if aw ~ suff(P) (w E suff(P), a E V).

(algorithm detail (RT». Since we usually refer to the trie corresponding to P we will write T

instead of Tp. Transition function T can be computed beforehand. Its precomputation is discussed
in subsection 4.1. The guard becomes 1"# e: cand T(v,ltl) "#.l yielding algorithm

3 Sublinear pattern matching algorithms

u,r:=o,S; 0:= {o} x ({o}np) x {S};
{invariant: 0= (U x,y,z :xyz=S Axy :5p u: {x} x ({y}np) x {z})}
do r # 0--+

u,r:=u(rl1),rJl;
I,v:=u,o; O:=OU{u} x ({o}np) x {r};
do I # 0 cand rev, /fl) # 1- --+

I, v:= Ill, (I [1)v;
0:= 0 U {I} x ({v} n P) x {r}

od
{ ,,= Iv A v E suff(P) A (I = 0 cor (lf1)v ¢ suff(P») }

od{ R}

7

This algorithm has O(ISI . (MAXp : pEP: Ipl)) running time. It will serve as a starting point
for the derivation of all algorithms in the following section.

3 Sublinear pattern matching algorithms

In this section we derive sublinear pattern matching algorithms starting with algorithm 2.5 by
exploring the possibility of safely (without missing matches) making shifts of more than one
symbol, i.e. replacing assignment u,r:= u(rll),rJ1 by assignment u,r:= u(rlk),rJk for some k
satisfying

1:5 k:5 (MINn: 1:5 nAsuff(u(rln»np#.0 :n)

(algorithm detail (sso) C~afe ~hift ~istance». The upperbound is the distance to the next match,
the maximal safe shift distance. A number k satisfying this condition is called a safe shift distance.
Since computing the upper bound on k is essentially the same as the problem we are trying to solve
we aim at easier to compute approximations from below of the upperbound. These are derived
by systematically weakening the predicate suff(u(rl n» n P # .0 in the range of the upperbound,
weakening reSUlting predicates, applying rules for minimum and maximum over a disjunctive or
conjunctive domain, and enlarging domains. Considerations that playa role in these derivations
are, for instance, whether or not to look ahead at symbols of the unscanned part of the input
string, whether to use or not to use information on the last scanned symbol (usually a non
matching symbol), and the extent to which this information is coupled with the information on
the recognized suffix. Thus, several algorithms are obtained amongst which the generalized version
of the Boyer-Moore algorithm [BM77], the Commentz-Walter algorithm [CW79a, CW79bJ, and
the algorithm by Fan and Su [FS93, FS94j. We derive ever smaller shift functions since the smaller
the shift function the less precomputation time and storage space for the functions constituting
the shift function is usually needed. For instance, the algorithm by Fan and Su [FS93, FS94j is
faster than the Commentz-Walter algorithm [CW79a, CW79b], but it needs a two dimensional
table to store one of the functions constituting its shift function whereas the Commentz-Walter
algorithm only needs one dimensional tables.

In the derivations we use part of the postcondition of the inner repetition in algorithm 2.5
(u = Iv A v E suff(P». Adding I, v := 0,0 to the initial assignments in algorithm 2.5 turns
u = Iv A v E suff(P) into an invariant of the outer repetition. Due to the dependence of the.
upperbound on I, v, and r we will aim at shift functions k that depend on I, v, and r and write
k(I,v,r). Hence, we arrive at the following algorithm scheme for all algorithms to be derived in
this section:

8 3 Sublinear pattern matching algorithms

u,r:=e,S; 0:= {e} x ({e}nP) x {S}; I,v:=e,e;
{invariant: 0 = (U x,Y,z: xyz = S II xy:5. u: {x} x ({y} np) x {z})

II u = Iv II v E suff(P) II (I = e cor (/fl)v ¢ suff(P)) }
doroF e -+

u, r:= u(r1k(l,v,r)), r j k(l,v,r);
I,v:= u,e; 0:= OU {u} x ({e} np) x {r};
do I oF e cand r(v, /tl) oF .1 -+

I, v:= Ill, (lfl)v;
0:= 0 U {I} x ({v} n P) x {r}

od
od{ R}

Particular algorithms are obtained by substituting their shift functions for k(l,v,r). Such a sub
stitution may not always yield an algorithm that exactly corresponds with its original description
in the literature; sometimes an additional transformation of the resulting algorithm is needed (for
instance, a phase shift of the repetition; see [WZ92] for a phase shifted version of the algorithm
scheme). Conjunct I = e cor (lfl)v ¢ suff(P) is added to the invariant in order to stress that
provided I is nonempty symbollfl is non-matching.

3.1 No lookahead at the unscanned part of the input string

In this subsection we derive an approximation from below of the upperbound on k that does not
depend on r and that will be a starting point of most of our further derivations. In terms of
algorithms this means that we refrain from looking ahead at the symbols of r, the yet unscanned
part of the input string (algorithm detail (NLAU) (~o !pokahead at Qnscanned part of the input
string)). This is in accordance with most of the algorithms we are aiming at. One symbollookahead
at the unscanned part of the input string is discussed in subsection 3.8. We derive

(MIN n : 1 :5 n II suff(u(r1n)) n P oF I2J : n)

= {domain split, r1n = r if n ~ Irl}

(MIN n : 1 :5 n :5 Irlll suff(u(r1n)) n P oF I2J : n)
min (MIN n : Irl < n II suff(ur) n P oF I2J : n)

~ {l :5 n :5lrl : r1n E V n, monotonicity of suff and n}

(MIN n: l:5 n :5 Irl II suff(uvn) n P oF 12J: n)
min (MIN n : Irl < n II suff(ur) n P oF I2J : n)

= {r E vlrl, monotonicity of suff and n, suff(ur) n P oF I2J => suff(uvlrl) n P oF 12J}

(MIN n : 1 :5 n :5 Irlll suff(uVn) n P oF I2J : n)

~ { enlarging domain}

(MIN n : 1 :5 n II suff(uVn) n P oF I2J : n)

Since the last formula is to be the starting point of our further derivations we will from here on aim
at shift functions k being dependent only on u, i.e. on I and v (remember u = Iv II v E suff(P)).
We will write k(l,v) instead of k(l,v,r).

3.2 Restriction to one symbol lookahead

In all derivations in this subsection and the following subsections we assume

u = Iv II v E suff(P).

3 Sublinear pattern matching algorithms 9

Restriction to one symbollookahead (III, the last symbol of u scanned in the inner loop) leads
to the algorithm by Fan and Su [FS93, FS94J .. It is obtained by weakening the predicate in the
approximation of the upperbound in subsection 3.1 in the following way:

suff{uVn) n P '" 0

{ u = Iv}

suff{lvVn) n P '" 0

=? {I = (lll)(/fl), III E V', monotonicity ofsuff and n}

suff(V'{lll)vvn) n P '" 0

= { property AA }

V'{lll)vvn n V· P '" 0

= {I = £: property A.5.i; I '" £: property A.5.ii}

V'{lll)vvn n P '" 0 V vvn n v· P '" 0

Notice that we have obtained a weaker predicate solely by discarding any information on Ill. The
only information on I that is still taken into account is I 11 being either empty or consisting of one
symbol. In the latter case we say to have one symbollookahead. Observe that the symbol is the
last symbol of u scanned in the inner loop and that it is a non-matching symbol. After substituting
the weaker predicate we obtain shift distance kopt{l,v) where kopt E V· x suff{P) N is defined
for x E V' and y E suff(P) by

kopt{x, y) = (MIN n : n ;::: 1 A (V'{xf1)yVn n P '" 0 V yVn n V· P '" 0) : n) .

Function kopt can be expressed as follows

k () _ { dopt(xf1, y) mind,p(Y)
opt x, Y - d,(y) mind.p(Y)

where dopt E V x suff(P) N is defined by

dopt(a, y) = (MIN n : n ;::: 1 A V'ayVn n P '" 0 : n)

d,p E suff{P) N is defined by

d,p(Y) = (MIN n : n ;::: 1 A Y vn n V· P '" 0 : n)

(a E V, y E suff(P»,

(y E suff(P)),

(function d2 in [CW79a, CW79bJ), and d, E suff(P) N is defined by

d,{y) = (MIN n : n ;::: 1 A V'yV n n P '" 0 : n) (y E suff(P»,

(function dl in [CW79a, CW79bJ). Functions dopt and d, account for occurrences of ay and y,
respectively, within some keyword (Le. as infix of some keyword), whereas function d.p accounts
for occurrences of ,1llflixes of y as proper prefixes of some keyword. Precomputation of dopt , d,p,
and di is discussed in subsection 4.2. -

Calculating the shift distance in this way is referred to as algorithm detail (OPT) and results
in algorithm (P+S+,RT,SSD,NLAU,OPT). We arrived at this algorithm not knowing it had already
been described by Fan and Su in [FS93, FS94J. From their informal description it undoubtedly
follows that they describe the same algorithm though their formal treatment of the algorithm and,
especially, the precomputation is rather involved. Finally, notice that to store function dopt one
needs a two dimensional table, whereas functions d, and d,p only need one dimensional tables. In
the follOwing subsections we derive shift functions smaller than kopt that are expressed solely in
functions needing one dimensional tables for storage.

10 3 Sublinear pattern matching algorithms

3.3 Lookahead symbol is mismatching

We derive an approximation from below of dopt that yields an algorithm that is the common
ancestor of the multiple keyword generalization of the Boyer-Moore algorithm [BM77J and the
Commentz-Walter algorithm [CW79a, CW79b]. Essentially, the resulting shift function is not
based on the identity of the lookahead symbol I t1 but only uses the fact that the lookahead
symbol is mismatching, as is done in the Boye~-Moore shift function. In this way one might say
that the recognized suffix and the (mismatching) lookahead symbol have to some extent been
decoupled.

We start by weakening the predicate from dopt . Assume I ¥ < and (/t1)v '/ suff{P). We derive

V'(/t1)vvn n P ¥ 121

= { v E Vlvl, monotonicity of n }
V'{/f1)Vlvl+n n P ¥ 121/\ V'{/f1)vVn n P ¥ 121

=? {(lt1)v ,/suff{P), so It 1 E {al aE V /\av ,/suff{P)}, definition MS}

V'(/fl)vlvl+n n P ¥ 121/\ V* (V \ MS{v))vvn n P ¥ 121

where M S E suff{P) -> V is defined by

MS{y) = {a I a E V /\ ay E suff{P)} (y E suff{P)).

The first conjunct will lead to a shift component based on the identity of the lookahead symbol
that is identical to a component of the Commentz-Walter shift function. The second conjunct will
lead to a shift component-based on the recognized suffix and the fact that the lookahead symbol
is mismatching-that is identical to a component of the Boyer-Moore shift function. Replacing
the range predicate of dopt by the last predicate of the preceding derivation we proceed

(MIN n : n ~ 1 /\ V*{lt1)Vlv l+n n P ¥ 121/\ V* (V \ MS{v))vVn n P ¥ 121 : n)

~ { MIN with conjunctive range}

(MIN n : n ~ 1/\ V*(lt1)Vlvl+n n P "# Ii> : n)
max (MINn :n ~ 1/\ V'(v\MS{v))vvn np¥12I :n)

= { change of bound variable: m = Ivl + n; definition dv' (after derivation) }

(MIN m : m ~ Ivl + 1/\ V*{Ifl)Vm n P "# 121 : m -Ivl) max dv'{v)

~ { enlarging domain}

(MIN m : m ~ 1 /\ V*(/t1)Vm n P ¥ Ii> : m -Ivl) maxdv'{v)

{I ¥ <, definition of char,w (after derivation)}

char,w{l t1, Ivl) maxdv'{v)

where dv ' E suff{P) -> IN is defined by

dv'{Y) = (MINn:n ~ 1/\ V*(V\MS{v))vVnnP¥ 121 :n)
and char ,w E V x IN -> IN is defined by

char,w{a, z) = (MIN n : n ~ 1 /\ V*avn n P ¥ 121 : n - z)

(y E suff{P))

(aEV,zEIN).

This results in shift distance kbm,w(/,v) where kbm,w E V* x suff{P) -> IN is defined by

k () _ { (char,w{xt1, Iyl) maxdv'{Y)) mind,p{Y)
bm,wX,y - d,{y)mind,p{Y)

(x E V+, y E suff{P))
(x = <, y E suff{P)).

Precomputation of chaTcw is discussed in subsection 4.3 and of dVi, d6p , and di in subsection 4.2.
Notice that we have

(x E V*, Y E suff{P)).

3 Sublinear pattern matching algorithms 11

Approximation from below of kopt by kbm,w is referred to as algorithm detail (BMCW). We chose
this name to reflect that essential ideas from both the Boyer-Moore and Commentz-Walter a1go- .
rithms are introduced. In the next two subsections these algorithms are derived from the algorithm
presented in this subsection and characterized by detail sequence (P+S+,RT,SSD,NLAU,OPT,BMCW).

3.4 The multiple keyword Boyer-Moore algorithm

We proceed by deriving the multiple keyword generalization of the Boyer-Moore algorithm [BM77)
from the algorithm in subsection 3.3. It only differs from the algorithm there in the way the
lookahead symbol is taken into account. Assuming I # e we derive

char,w(lrl,lvl)

= { definition char ,w }

(MINn: n 2: 1 A V'(lrl)vn n P # 0: n -Ivl)
2: {V'(lfl)Vn n P # 0 => V'(lrl)Vn n V*P # 0}

(MIN n : n 2: 1 A V'(lrl)Vn n V*P # 0 : n -Ivl)

= {P # 0, V'(lrl)Vlpl+1 n V'p # 0 for all pEP, nonempty domain}

(MINn: n 2: 1 A V'(lr1)vn n V'P # 0: n) -Ivl

= {I # e, definition of charbm (after derivation)}

charbm(I rl) -Ivl

where charbm E V -+ N is defined by

charbm(a) = (MIN n : n 2: 1 A V'aVn n v· P # 0 : n) (a E V).

It results in shift distance kbm(l,v) where kbm E V· x suff(P) -+ IN is defined by

k () _ { «chaTbm(xrl) -Iyl) maxd.,(y)) mind,p(Y)
bmX,Y - d,(y)mind,p(y)

(x E V+, y E suff(P))
(x = e, y E suff(P)).

Precomputation of charbm is discussed in subsection 4.3 and of dvi , dsp ! and d i is discussed in
subsection 4.2. Approximating kbm,w from below by kbm is referred to as algorithm detail (BM). It
results in the multiple keyword generalization of the regular Boyer-Moore algorithm [BM77). The
algorithm is characterized by detail sequence (P+S+,RT,SSD,NLAU,OPT,BMCW,BM). The regular
Boyer-Moore algorithm can be obtained by restricting P to one keyword (problem detail (OKW)

(Qne Keyword)). Notice that we have

(x E V', Y E suff(P)).

Inequality can only occur if the lookahead symbol does not occur in any keyword except as the
last symbol.

The formula for the Boyer-Moore shift function given here differs from the ones given in [BM77)
and [Ah090). We will show that all formulas are equivalent. First we define

{
I ifeEP

mp = (MIN p : pEP: Ipl) if e 'I- P.

We now have for all a E V

ChaTbm(a) ::; mp.

Since for all y E suff(P) we have (\In: 1 ::; n < mp -Iyl : yvn n V· P = 0) it follows that

mp -lyl ::; d,p(y) (y E suff(P)).

12 3 Sublinear pattern matching algorithms

Finally, we derive for x E V+ and V E suff(P)

kbm{X,V)

= { definition kbm }

((charbm{xtl) -lyl)maxdvi{Y)) mind,p{y)

= {d,p{y) ?: mp -Ivl ?: charbm{xtl) -Iyl}

((charbm{xtl) - Iyl) max dvi{y)) min({charbm{xtl) - Iyl) maxd,p{V))

= { distributivity}

(charbm{X tl) -lvl) max(dv'{y) min d,p{V)).

The last formula in the preceding derivation coincides with the ones in [BM77J and [Ah090J.

3.5 The Commentz-Walter algorithm

Instead of approximating char cw in kbmcw from below by charbm we now approximate dvi in kbmcw

from below by d,. This results in the Commentz-Walter algorithm [CW79a, CW79bJ. We derive

d.,(v)

= { definition dv ' }

(MINn:n?: 1/\ V'(V\MS(v))vVnnP# f21: n)

?: {V'(V\MS(v))vVnnp# f2I '* v'vvnnP# f21}

(MIN n : n ?: 1 /\ V'vvn n P # f2I : n)

= { definition d, }

d,(v).

This results in shift distance kow(l,v) where kow E V' x suff(P) -+ til is defined by

k ()
_{ (charow(xtl,lyl)maxd,(y))mind,p(Y) (XEV+,yEsuff(P))

ow x, y - d () • d () (ff(P)) ,ymm,py x=e,vEsu.

Precomputation of charcw is discussed in subsection 4.3 and of d, and d,p in subsection 4.2.
Approximating kbmcw from below by kcw is referred to as algorithm detail (cw). It results.
in the Commentz-Walter algorithm [CW79a, CW79bJ that is characterized by detail sequence
(P+S+,RT,SSD,NLAU,OPT,BMCW,CW). Notice that we have

kbmcw(X, y) ?: kcw(x, V) (x E V', Y E suff(P)).

Such a comparison can not be made between kbm and kcw as the following example shows.

Example 3.1 Let V E {a,b,c,d}, P = {cababa}, and x E V'. Shift functions kbm and kcw are
incomparable since

and

kopt(xd, a)
kbmcw (xd, a) =

kbm(xd, a)
kcw(xd,a) =

kopt(xa,a)
kbmcw(xa, a) =

kbm(xa,a) =
kcw(xa, a) =

+oomin6
(+oomax4)min6

(6 -1)max4) min 6
(+oomax2)min6

+oomin6

= 6
6

= 5
= 6

= 6
4
4

1
(2 -1) max 4) min6
(2 -1) max 4) min6
(2 -1)max2) min6 = 2.

It also follows that in some cases kbmcw is smaller than kopt and that in some cases kbm and kcw
are smaller than kbmcw . 0

3 Sublinear pattern matching algorithms 13

It is not possible that both kbmcw(X,y) > kbm(X,y) and kbmcw(X,y) > kcw(x,y) hold for some.
x E V+ and y E suff(P) since the first inequality implies charcw(xtI, Iyl) = +00 and this in its
turn implies kbmcw(x, y) = d,p(y) = kcw(x, y).

3.6 Complete decoupling of recognized suffix and lookahead symbol

The derivations in the previous subsections effect an ever stronger decoupling of the recognized
suffix v and the lookahead symbol If 1 in the subsequent shift functions. By approximating dv '

in kbm from below by d, or char cw in kcw by charbm (or both in kbmcw) we obtain a complete
decoupling. It results in shift distance kd.,(I,v) where kd" E V' x suff(P) -+ IN is defined by

k () _ { «charbm(xtI) -Iyl) maxd;(y)) mind.p(y)
d.1 x,y - d,(y) mind.p(Y)

(x E V+, Y E suff(P))
(x = e,y E suff(P)).

Precomputation of charbm is discussed in subsection 4.3 and of d, and d,p in subsection 4.2. The
algorithm can be characterized by detail sequences (P+S+,RT,SSD,NLAU,OPT,BMCW,BM,CW) and
(P+S+,RT,SSD,NLAU,OPT,BMCW,CW,BM).

3.7 Discarding the lookahead symbol

We weaken the predicate in the range of kop' by weakening its first disjunct to V'vv n n P # 13

due to V'(ltI) ~ V' and the monotonicity of n. This weakening step is referred to as discarding
the lookabead symbol Itl. The shift distance corresponding to this weakening is knl.(V) where
knl. E suff(P) -+ N is defined by

knl.(y) = d,(y) mind,p(y) (y E suff(P)).

Notice that this shift function can also be viewed as an approximation from below of kd". Pre
computation of d, and d,p is discussed in subsection 4.2. Approximating kop' from below by knla
is referred to as algorithm detail (NLA) (NO LookAhead at mismatching symbol) and results in
algorithm (p +S+,RT,SSD,NLAU,OPT,NLA).

3.8 One symbol lookahead at the unscanned part of the input string

In this subsection we consider looking ahead at the first symbol of the unscanned part r of the
input string. The first symbol of r will be taken into account independently of the other available
information. In this way we obtain stronger variants of all of the shift functions derived thus far.
Assuming r # e we derive

(MIN n : 1 ~ n "suff(u(rln)) n P # 13 : n)

= {domain split, 1 ~ n ~ Irl: rln = (rl1)«rJl)1(n -1)), Irl < n: rln = r}

(MINn: 1 ~ n ~ Irl" suff(u(rll)«rJI)1(n -1))) nP # 13: n)
min (MIN n : ITI < n " suff(ur) n P # 13 : n)

~ {l ~ n ~ Irl: (rJI)1(n -1) E V n- 1
, monotonicity ofsuffand cap}

(MIN n : 1 ~ n ~ Irl " suff(u(rll)Vn-l) n P # 13 : n)
min (MIN n : Irl < n" suff(ur) n P # 13 : n)

= {r # e, r E (rll)Vlrl-1, suff(ur) n P # 13 =? suff(u(rlI)Vlrl-l) n P # 13}

(MIN n : 1 ~ n ~ Irl " suff(u(rll)Vn-l) n P # 13 : n)

~ { u E V', monotonicity of suff and n}

(MIN n : 1 ~ n ~ Irl " suff(V'(rlI)Vn-l) n P # 13 : n)

~ { enlarging domain, changing bound variable: m = n - 1 }

14 4 Precomputation

(MIN m : 0 :5 m 1\ suff(V'(rl1)Vm) n P '" 0 : m + 1)

= {property A.4, P", 0, V*(rl1)Vl p l n V*p '" 0 for all pEP, nonempty domain}

(MINm: 0:5 m 1\ V*(r11)Vm n V'P '" 0: m) + 1

= {definition charI. (sfter derivation)}

charl.(rl1) + 1

where charI. E V ---> !II is defined by

charl.(a) = (MIN n : 0 :5 n 1\ V'aVn n V* P '" 0 : n) (a E V).

Precomputation of charI. is discussed in subsection 4.3.
Let M(u, r) denote the first expression in the preceding derivation as well as the the first

expression in the derivation in subsection 3.1, and let N(u) denote the last expression in the'
derivation in subsection 3.1. We then have

M(u,r)

= { property max}

M(u, r) max M(u, r)

;::: {derivation in subsection 3.1, preceding derivation}

N(u) max(charl.(r11) + 1)

Since all shift functions derived in the previous subsections are approximations from below of
N(u) the preceding derivation shows that they all may be extended with max(charl.(r11) + 1) to
form a class of stronger shift functions of signature k(l,v,r) (algorithm detail (OLAU) (one symbol
LookAhead at unscanned part of the input string)). The first derivation in this subsection shows
that it is also possible to couple the information on r11 with the information on I and v (u = Iv).
We will not pursue that direction any further i,! this paper.

4 Precomputation

In this section we derive algorithms for the precomputation of the functions used in the pattern
matching algorithms in sections 2 and 3. The algorithms are correct due to their formal deriva
tion. This can not always be said about the algorithms found in the literature, mostly due to the
absence of any formal derivation (see for instance the single keyword Boyer-Moore precomputation .
algorithms given in [BM77], [KMP77], and [Ryt80], where each article shows the preceding article
to give an incorrect precomputation algorithm). Moreover, we give the first formal derivation of
the precomputation algorithms for the Boyer-Moore family of algorithms. They can, amongst
others, be specialized to a correct precomputation algorithm for the single keyword Boyer-Moore
algorithm. In fact, we show that the definition of all d-functions introduced in section 3 can be
rewritten into a form in accordance with one general pattern. Subsequently, a general precom
putation algorithm scheme for this general pattern is derived that can be instantiated for every
d-function.

4.1 Precomputation of Tp

The transition function Tp E suff(P) x V ---> (suff(P) U {.l}) of the reverse trie corresponding to
P is defined by

{
au

Tp(U, a) = .1
if au E suff(P)
if au </. suff(P)

(u E suff(P),a E V).

Since 8uffis idempotent and the definition of Tp only depends on suff(P), we have Tp = Touff(p),

Set P being nonempty we have suff(P) = {e} U suff(P) and Touff(p) = T{£}uouff(P)' These

4 Precomputation 15

observations lead to the following algorithm (d. [AC75J, section 3, algorithm 2) to compute Tp
in which variable tau is used to calculate and store Tp thereby viewing tau as a set of ordered
pairs (the usual notion of a function) and abbreviate statements like tau:= tau + {((x, a), y)} to
tau(x,a):= y:

tau:= 0'j

{tau = T", }
for a : a E V -+ taut', a) := .L roC;
{tau=T{,j}
Pd,Pr := 0,Pj

{ invariant: Pd U Pr = P /\ Pd n Pr = f2J /\ tau = T{,juouff(Pdj }

do Pr '" f2J-+
pope Pr ;
U,V:=p,t:'j

{ invariant: uv = p /\ tau = T{,juouff(Pd)Uouff(V) }

dou",,-+
if tau(v,ufl) =.L -+ tau(v,ufl):= (ufl)v;

for a: a E V -+ tau((ufl)v,a):=.L rof
I tau(v,ufl) ",.L -+ skip
fij
u, v:= u[l, (ufl)v

odj
Pd,Pr := Pd + {p},Pr - {p}

od{ tau = Tp }

In the algorithms we use + for the union of disjoint sets and - for the difference of a set and a
subset of it. Notice that the algorithm does a depth first traversal of the reverse trie. Also notice
that variable Pd is only needed to formulate an invariant for tau, so it may safely be removed from
the algorithm. Furthermore, the states of the reverse trie are represented by strings. In practice,
one can resort to a more suitable representation, for instance a representation by natural numbers.
We will not elaborate this here.

4.2 Precomputation of d-functions

In this subsection we show that all d-functions introduced in section 3 can be written according
to a general pattern. For this general pattern a general precomputation algorithm is derived. In
order to obtain a precomputation algorithm for a particular d-function one only has to instantiate
the general precomputation algorithm and possibly simplify the resulting algorithm.

The general pattern we strive for is a function d E V x suff(P) -+ N defined for a E V and
y E suff(P) by

d(a,y) = (MINt: t E suff(P) \ {<} /\ Q(a,t) /\ R(a,y,t) /\ y <p t: Itl-Iy])

where Q is a predicate on V x V' and R a predicate on V x V' x V'. Why both Q and Rare
introduced will become clear when we derive an algorithm scheme for the computation of d. We
will now show that all d-functions introduced in section 3 can be expressed in this pattern. In the
following derivations let a E V and y E suff(P) .

• We derive

dop,(a, y)

= { definition dop' }

(MINn:n:::: 1 /\ V'ayVn nP",f2J on)

= { property AA}

16 4 Precomputation

(MIN n : n ~ 1 /\ ayvn n suff(P) #- 0 : n)

= {change of bound variable: n = lsi}

(MIN s : s E V+ /\ ays E sulf(P) : lsI)

= { change of bound variable: t = ys }

(MINt: t E suff(P) \ {e} /\ at E suff(P) /\ y <. t: Itl-Iyl)

Hence, we have expressed do., according to the general pattern with Q(a, t) = at E sulf(P) .
and R(a, y, t) = true. Notice that at E sulf(P) ;: r(t, a) #- .1.

• Assuming y = e we derive

d •• (e)

= { definition d,.}

(MIN n : n ~ 1 /\ vn n V' P #- 0 : n)

= { calculus}

(MINt: t E P: (MINn: n ~ 1 /\ vn n V't #- 0: n))

= {domain split: P = P\{e} U (P n {ell}

(MINt: t E P \ {e} : It I) min (MIN t : t E P n {e} : 1)

= { rewriting in order to obtain general pattern }

(MINt: t E suff(P) \ {e} /\ t E P /\ e <. t: Itl-Iel) min (MINt: t E pn {e}: 1)

Assuming y #- e we derive

d,.(y)

= {definition d,. }
(MIN n : n ~ 1 /\ yvn n V' P #- 0 : n)

= { property AA}

(MINn: n ~ 1/\ sulf(yvn) n P #- 0: n)

{y #- e, hence suff(yvn) = yVn U sulf(yJ l)Vn), set calculus}

(MINn: n ~ 1 /\ yVn n P #- 0: n)
min (MINn:n ~ 1 /\sulf(yJl)Vn) nP#- 0 on)

= {change of bound variable: n = lsi, property A.4}

(MIN s : s E V+ /\ ys E P : lsI) min (MIN n : n ~ 1 /\ (yJl)Vn n V' P #- 0 : n)

= { change of bound variable: t = ys, y E sulf(P), yJ 1 E sulf(P), definition d •• }

(MINt: t E P /\ Y <. t: Itl-Iyl) min d,.(yJ 1)

= { rewriting in order to obtain general pattern }

(MINt: t E suff(P) \ {e} /\ t E P /\ Y <. t: Itl-lyJ} mind,.(yJl)

Although the derived definition of d,. is recursive and d,. does not have an argument a E V
one can still discern the general pattern with Q(a, t) = t E P and R(a, y, t) = true. Pre
computation of d,. can be done according to the general precomputation algorithm without
an iteration over V, followed by a breadth first traversal of the reverse trie.

4 Precomputation 17

• We derive

d,(y)

= { definition d, }

(MINn: n;:-: 1/\ V'yVnnP # 0: n)

= {property A.4}

(MINn: n;:-: 1/\ yvn nsulf(P) # 0: n)

= { change of bound variable: n = lsi}
(MIN s : s E V+ /I ys E sulf(P) : lsI)

= { change of bound variable: t = ys }

(MIN t : t E suff{P) \ {I'} /I Y <p t: It I - Iyl)

Although d; does not have an argument a E V its definition still matches the general pattern
with Q(a, t) = true and R(a, y, t) = true .

• We derive

d.,(y)

= { definition d., }
(MINn: n;:-: 1/\ V,(V \ MS(y))yvn nP # 0: n)

= { property A.4 }

(MINn: n;:-: 1/\ (V \ MS(y))yvn nsulf{p) # 0: n)

= {change of bound variable: n = lsi}
(MIN s: s E V+ /I (V \ MS{y))ys n sulf(P) # 0: lsI)

{ change of bound variable: t = ys }

(MINt: t E sulf{P) \ {I'} /I (V \ MS{y))t nsulf{p) # 0/\ Y <p t: Itl-Iyl)
= {definition M S }

(MINt: t E sulf(P) \ {I'} /I MS{t) n (V \ MS{y)) # 0 /I Y <p t: Itl-Iyl)

Apart from the fact that d., does not haye an argument a E V its definition matches the
general pattern with Q(a, t) = true and R(a, y, t) = MS(t) n (V \ MS(y)) # 0.

Having expressed all d-functions from section 3 in the general pattern we proceed by giving a
rather straightforward and nondeterministic algorithm to compute d which will serve as a starting
point for further algorithm derivations (notice that program variable dee is used to compute and
finally store function d):

18

for y : y E suff(P) --+
for a : a E V --+ dee(a, y) := +inf rof

rof;
for t: t E suff(P) \ {o}--+

fora:aEV--+
if Q(a, t) --+ for y : y E suff(P) "y <. t --+

4 Precomputation

if R(a, y, t) --+ dee(a,y):= dee(a,y) min(ltl-lyl)
I ~R(a,y,t) --+ skip

rof

fi
rof

I ~Q(a, t) --+ skip
fi

rof{ dee = d } .

For d, and d •• the loop iterating over V can be omitted. For d,. the following additional breadth
first traversal of the reverse trie (suff(P» is needed to complete the computation:

n:= 1;
do suff(P) n vn # f2I --+

for t : t E suff(P) n vn --+ deesp(t):= deesp(t) mindeesp(tJ 1) rof
od{ deesp = d •• } .

First, we concentrate on making the innermost repetition deterministic. Define sp E suff(P) --+
P(suff(P» by

sp(t) = {y lyE suff(P) " y <p t} (t E suff(P)),

the set of all suffixes of keywords that are a proper prefix of t. Notice that for all t E suff(P) \ {o}
sp(t) is finite, nonempty, and linearly ordered with respect to $p. Therefore, we can define
msp E suff(P) \ {o} --+ suff(P) by

msp(t) = (MAX,;. y: y E suff(P)" y <p t: y) (t E suff(P) \ {oJ)

being the maximal element of sp(t). In literature [AC75, BM77, CW79a, KMP77] function msp
is known as the failure function corresponding to the reverse trie. For t E suff(P) \ {o} we derive
a recursive definition of sp(t) in terms of function msp:

sp(t)

= { definition sp}

{y lyE suff(P) " y <p t}

= {t E suff(P) \ {oJ, property A.6}

{y lYE suff(P)" (y = msp(t) V y <p msp(t»)}

= { definition sp and msp}

{msp(t)} U sp(msp(t»

Provided msp is already computed (precomputation of msp is discussed in subsection 4.4) the in
nermost repetition traversing the set sp(t) can be replaced by the following deterministic repetition
(variable v is a ghost variable needed to express the invariant):

4 Precomputation

v:= t; {v:= 121; }
{invariant: v E sp{t) U {t}" sp{t) = vU sp{v) " vn sp{v) = 121 }
do v # e --> { sp{v) = {msp{v)} U sp{msp{v)) }

v:= msp{v); {v:= v + {v}; }
if R{a, v, t) --> dee{a, v) := dee{a, v) min{ltl- Ivl)
I ...,R{a, v, t) --> skip
fi

od{ v = e, so sp{v) = 121 and sp{t) = v}

19

The invariant expresses that we have a bipartition of sp{t) in v (elements of sp{t) that have already
contributed to the computation of d) and sp{v) (the other elements of sp{t)).

In case R{a, y, t) = true for all a, y, and t the inner repetition can be made more efficient.
Notice that this can be done for all presented d-functions except duo. In the following assume that
R{a,y,t) = true for all a, y, and t. Suppose that for some v E sp{t) in the above repetition we
have Itl-Ivl ~ dee{a,v). From the structure of the algorithms we infer that dee{a,v) = Itol-Ivl
for some to E suff{P) \ {e} with Itol :S It I that has already contributed to the computation of d.
Therefore, for alls E sp{v) we have dee{a,s):S Itol-Islleading to

dee{a, s)

:S {}

Itol-Isl

= {dee(a, v) = Itol-Ivl}

dee{a, v) + lvi-lsi

:S {dee(a, v) :S Itl-Ivl }

Itl-Isl

Hence, the contribution of t will not change the already computed value of dee{ a, s) for s E sp{ v)
and the inner repetition can be terminated. This yields the following repetition using an additional
boolean variable contributes (notice that ghost variable v is omitted):

v:= t; contributes:= true;
do v # e " contributes -->

v:= msp{v);

od.

if Itl-Ivl < dee{a, v) --> dee{a, v):= Itl-Ivl
I Itl-Ivl ~ dee{a, v) --> contributes :=dalse
fi

Variable contributes can be removed resulting in the following repetition

v:= tj
do v # e-->

v:= msp{v);

od.

if Itl-Ivl < dee{a, v) --> dee {a, v):= Itl-Ivl
I Itl-Ivl ~ dee{a, v) --> v:= e
fi

In order to further exploit this phenomenon the elements of suff{P) , {e} are dealt with in order
of increasing length, Le. the outermost repetition of the general precomputation algorithm does a
breadth first traversal of the reverse trie. This results in the following algorithm:

20

for y : y E sulf(P) --+

for a : a E V --+ dee(a, y):= Hnf rof
rof;
n:= 1;
do sulf(P) n vn # 121 --+

for t : t E suff(P) n vn --+

fora:aEV-+

rof
roC;

if Q(a, t) --+ v:= t;
dov#e--+

v:= msp(v);

od

if Itl-Ivl < dee(a, v) --+ dee(a, v):= Itl-Ivl
I Itl-Ivl ~ dee(a, v) --+ v:= e
fi

I ,Q(a, t) --+ skip
fi

n:= n+ 1
od.

4 Precomputation

In this optimized breadth first precomputation algorithm for each node v in the reverse trie
and each symbol from V the step from v to msp(v) is done at most two times. Therefore, the
precomputation time is O(lsulf(P)I·IVI). If the traversal of V can be omitted (as is the case for
the precomputation of d, and d,.) it is O(lsulf(P)I).

The breadth first precomputation algorithm for d, can be simplified further by observing that·
since Q(a, t) = true the steps taken from t are always preceded by the steps taken from msp(t)
(provided msp(t) # e) since Imsp(t)1 < Itl. So, only the contribution of t to d,(msp(t)) has to be
considered. This results in the following precomputation algorithm for d, (program variable deei
is used to compute and finally store di):

for y : y E suff(P) --+ deei(y):= +inf rof;
n:= 1;
do sulf(P) n vn # 121 --+

for t : t E sulf(P) n vn --+

deei(msp(t)):= deei(msp(t)) min(ltl-Imsp(t)l)
rof;
n:= n+ 1

od.

Notice that the breadth first traversal in this algorithm may be replaced by an arbitrary traversal
of the reverse trie.

4.3 Precomputation of charcw • char/nn. and Charla

Function char cw can be expressed as

{
+inf

charcw(a, z) = -h () carcwa-z
if charcw(a) = +inf
if charcw(a) # +inf

where function char cw E V --+ IN is defined by

(aEV,zEIN)

charcw(a) = (MIN n : n ~ 1 " V'aVn n P # 121 : n) (a E V).

From the definition charcw it immediately follows that that its computation can be interwoven
with the precomputation of the reverse trie r.

4 Precamputatian

Next, we derive far a E V

char&m{a)

= { definition char&m }

(MINn: n ~ 1 A V'avn n V'P"# 121: n)

= {property A.5.iii}

(MIN n : n ~ 1 A (V'avn n P "# 121 V avn n V+ P "# 121) : n)

= { disjunctive range, definition char ,w }

char,w{a) min (MIN n : n ~ 1 A aVn n V+ P "# 121 : n)

= { a vn n V+ P "# 121 == vn n v· P "# 121 }

char,w{a) min (MIN n : n ~ 1 A vn n V' P"# 121 : n)

= {definition mp (subsection 3.4) }

char,w(a) minmp.

Finally, we derive for a E V

Charla(a)

= { definition Charla}

(MIN n : 0 :5 n A V'aV" n V' P"# 121 : n)

= { domain split: n ~ 1 V n = 0, definition char&m }

char&m(a) min (MIN n : n = 0 A V'a n v· P"# 121 : 0)

= { property A.5.ii}

char&m(a) min (MIN n : n = 0 A (a E .ulf(P) VEE P) : 0)

We conclude that chaTcw , charbm, and chana can be computed from charcw .

4.4 Precomputation of msp

21

We conclude this section with the derivation of an algorithm computing msp. We start by deriving

• for a E .uff(P) n V

msp(a)

= { definition msp}

(MAX:>. y : y E suff(P) A y <p a : y)

= {y <p a == y = E, E E sulf(P)}

• and for ax E suff(P), a E V, and x E suff(P) \ {E}

msp(ax)

= { definition msp}

(MAX:>. y : y E sulf(P) A y <p ax : y)

= {domain split, E <p ax, E E suff(P)}

22 5 Conclusions

(MAXS. y : y E suft'(P) /I y <p ax /I y '" 0 : y) maxs. 0

= { change of bound variable: y = ay' }

(MAXS• y' : ay' E suff(P) /I y' <p x : ay') maxS. 0

= {ay' E suff(P):} y' E suft'(P), x E suft'(P) \ {oJ, definition sp}

(MAXs • y' : ay' E suft'(P) /I y' E sp(x) : ay') maxs. 0

From this it follows that msp(ax) can be computed by a linear searcb in downward order over
sp(x) (remember that sp(x) is linearly ordered with respect to ~p) starting with msp(x). Provided
the computation of msp is done using a breadth first traversal of the reverse trie (suft'(P)) the
value of msp is already computed for all all elements of sp(x) u {x} and can therefore be used to
implement the linear search over sp(x). This results in the following algorithm (variable emsp is
used to compute and finally store msp):

for a : a E suff(P) n V -+ emsp(a):= 0 rof;
n:= 1;
{ invariant: 1 ~ n ~ (MAXp: pEP: Ipl) + 1

/I (Vy: y E suff(P) \ {o} /lIYI ~ n: emsp(y) = msp(y)) }
do suff(P) n vn '" flJ -+

for t : t E suft'(P) n vn -+

fora:aEV-+
if at E suff(P) -+ v:= emsp(t);

{ linear search }
do av rt suff(P) /I v '" e -+ v:= emsp(v) od;
if av E suft'(P) -+ emsp(at):= av
I av rt suff(P) /I v = e -+ emsp(at):= e
fi

at rt suff(P) -+ skip
fi

rof
rof;
n:= n+ 1

od.

This breadth first algorithm computing msp can be combined with the breadth first algorithm
computing the d-functions. The precomputation time now is O(lsuff(P)12 . IVI). This can be
reduced to O(lsuff(P)I'1V1) at the expense of O(lsuff(P)I'1V1) additional storage space by also
computing and storing the transition function ,r of the reverse trie where ,r E V x suft'(P) -+

suff(P) is defined by

,r(a,x) = (MAXS• y: y E suft'(P) /I Y:<>p ax: y) (a E V,X E suff(P)).

The details of this approacb can be found in [WZ92[.

5 Conclusions

In this paper we derived and presented a taxonomy of sublinear keyword pattern matching al
gorithms closely related to the Boyer-Moore algorithm [BM77] and the Commentz-Walter algo
rithm [CW79a, CW79b]. It includes, amongst others, the multiple keyword generalization of the
single keyword Boyer-Moore algorithm and the algorithm presented by Fan and Su [FS93, FS94].
We presented the algorithms within a common framework permitting an easier comprehension of
and a better comparison between the algorithms. This was achieved by the systematic and for
mal derivation of the algorithms from a common starting point and by factoring out of common
portions of the derivations. The derivations were done through series of refinements to either

A Definitions and properties 23

algorithm or problem. A refinement to the algorithm/problem is referred to as the introduction
of an algorithm/problem detail. The sequence of details that are subsequently introduced in a
derivation characterizes the algorithm obtained by that derivation. Detail sequences can therefore
be used to classify the algorithms in the taxonomy. Algorithms can now be compared by look
ing at their detail sequences. The taxonomy graph in figure 1 constitutes a concise presentation
and classification of the pattern matching algorithms discussed, vertices representing algorithms
and edges representing the addition of an algorithm or problem detail. It can be viewed as an
alternative table of contents to this paper. Our results show how fruitful the applied method of
developing a taxonomy is (it was inspired by the method described by Jonkers [Jon83]).

Introduction of the notion of safe shift distances proved to be essential for the derivation of .
the various algorithms. All algorithms are characterized by a-systematically derived and more or
less easy to compute-approximation from below of the maximal safe shift distance, computation
of the latter being equivalent to the keyword pattern matching problem itself. The systematic
derivation provided a means to compare the algorithms and their matching speeds, and to get a
better understanding of the algorithms and their interrelations. Perhaps this better understanding
will help further the use of the algorithms from this family. Our derivations show the Commentz
Walter algorithm not to be the multiple keyword generalization of the Boyer-Moore algorithm
(as was the original intention of Commentz-Walter) and that such a generalization can indeed be
obtained. Of the algorithms presented the algorithm by Fan and Su [FS93, FS94j is the fastest (at
the expense of additional precomputation time and additional storage requirements), followed by
the common ancestor of the Boyer-Moore and Commentz-Walter algorithms, and then by both the
multiple keyword generalization of the Boyer-Moore algorithm [BM77j and the Commentz-Walter
algorithm [CW79a, CW79bj. The latter two are incomparable in matching speed. It is clear
that we have not derived and presented all algorithms of the Boyer-Moore family. Our derivation
method, however, clearly indicates how yet other members of this family of algorithms may be
derived.

Apart from giving a taxonomy of pattern matching algorithms from the Boyer-Moore family we
presented the first formally derived and therefore correct precomputation algorithms (this can not
always be said about the algorithms found in the literature, mostly due to the absence of any formal
derivation; see for instance the many solutions for the Boyer-Moore precomputation that have
been published, corrected and republished). In fact, we showed that most of the precomputation
algorithms can be obtained as instantiations of a general precomputation algorithm scheme derived
for a general function pattern in which most components of the various shift functions can be .
expressed. Thus, we provided a common framework for the precomputation algorithms as well.

6 Acknowledgements

We thank Kees Hemerik and Frans Krnseman Aretz for their careful reading of earlier drafts of
this paper and their constructive criticisms. We also thank Anne Kaldewaij and Lex Bijlsma for
reading the final version.

A Definitions and properties

This section provides a series of definitions and properties which are used throughout this paper.
In the following let V be an alphabet.

For a string w E V· w R denotes the reversal of w. For any language L c:;; V· we define
LR = {w R I w E L} (the reversal oflanguage L).

24 A Definitions and properties.

Definition A.I The infix operators 1, J, t, l : V' x N -> V' are defined by

v10 = 0 (v E V')
E1(k + 1) = 0 (k ~ 0)

(aw)1(k + 1) = a(w1k) (k ~ O,a E V,W E V')
vjO = v (v E V')

oj(k + 1) = 0 (k ~ 0)
(aw)j(k + 1) = wjk (k ~ O,a E W,w E V')

Define t as vtk = (vR1k)R and l as vlk = (vRjk)R. The operators 1,J, t, and l are called "left
take," "left drop," "right take," and "right drop" respective/yo 0

Definition A.2 JiUnctions pref: P(V') -> P(V') and suff: P(V') -> P(V') are defined by

pref(L) = {w I w E V'/\ (3x:xE V' :wx E L)}

and

suff(L) = (pref(LR))R = {w I w E V' /I (3x: x E V' : xw E L)}.

o
For w E V' we will write pref(w) (suff(w)) instead of pref({w}) (suff({w})).

Definition A.3 The relations ~p and ~, over V' x V' are defined by u ~p v = u E pref(v) and·
u ~, v = U E suff(v). 0

The following two properties are used in the derivation of the Commentz-Walter precomputation
algorithm.

Property A.4 Let A, B ~ V'. Then pref(A) n B # 121 = An BV' # 121 and suff(A) n B # 121 =
AnV'B#I2I.D

Property A.S Let A, B ~ V' and a E V. Then

o

i. V' A n V' B # 121 = V' A n B # 121 V A n V' B '" 121

ii. V' aA n V' B '" 121 = V' aA n B '" 121 V A n V' B '" 121

iii. V' A n V' B '" 121 = V' A n B # 121 V An V+ B # 121

Property A.6 For x, y E suff(P) and y '" 0 we have

x <p y = x ~p msp(y).

Proof
Let x, y E suff(P) and y '" E. We derive

x <Py

= { definition of <p and pref, x E suff(P) }

x E pref(y) \ {V} n suff(P)

~ {pref(y) \ {V} n suff(P) is nonempty (y '" 0), finite and linearly ordered w.r.t. ~p}

x ~p (MAX::;. w: w E pref(y) \ {V} n suff(P): w)

= { y '" 0, definition of msp }

x ~p msp(y)

~ {y '" 0, msp(y) <p y (by definition of msp), transitivity of <p}

x <Py

o

References 25

B Algorithm and problem details

In this appendix we list the algorithm and problem details introduced in this paper with a short
description.

P Examine prefixes of a given string in any order.

s Examine suffixes of a given string in any order.

+ Examine the strings from a given set in order of increasing length (this program detail can
only be applied after, for instance, program details P and s).

RT Usage of the transition function of the reverse trie corresponding to the set of keywords to
check whether a string, that is a suffix of some keyword, preceded by a symbol is again a
suffix of some keyword.

SSD Allow any shift distance at least one that is safe, i.e. that does not cause the omission of any
matches.

NLAU No lookahead at the symbols of the unscanned part of the input string when computing a
safe shift distance.

OLAU One symbol lookahead at the unscanned part of the input string when computing a safe
shift distance.

OPT When computing a safe shift distance use the recognized suffix and only the immediately
preceding (mismatching) symbol, strictly coupled.

NLA When computing a safe shift distance do not look at the symbols preceding the recognized
suffix.

BMCW When computing a safe shift distance on the one hand use the recognized suffix and the fact
that the symbol preceding it is mismatching, and on the other hand, but strictly independent,
the identity of that symbol.

BM Lessen the contribution of the symbol preceding the recognized suffix to the shift distance
in case it does not occur in any keyword.

CW When computing a safe shift distance do not use the fact that the symbol preceding the
recognized suffix is mismatching (use the recognized suffix and the symbol preceding it
independently).

OKW The set of keywords contains only one keyword (in contrast to the preceding program details
this is a problem detail).

References

[AC75] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to biblio
graphic search. Communications of the ACM, 18(6):333-340, June 1975.

[Ah090] Alfred V. Aho. Algorithms for finding patterns in strings. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume A, chapter 5, pages 255-300. North
Holland, Amsterdam, 1990.

[BM77] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Communi
cations of the ACM, 20(10):762-772, October 1977.

26 References

[Br083] Manfred Broy. Program construction by transformations: a family tree of sorting pro
grams. In A. W. Biermann and G. Guiho, editors, Computer Program Synthesis Method
ologies, volume 95 of NATO Advanced Study Institutes Series, Series C: Mathematical·
and Physical Sciences, pages 1-49. Reidel, 1983.

[CW79a] Beate Commentz-Walter. A string matching algorithm fast on the average. In H.A.
Maurer, editor, Proceedings 6th International Colloquium on Automata, Languages and
Programming, volume 71 of Lecture Notes in Computer Science, pages 118-132. Springer,
July 1979.

[CW79b] Beate Commentz-Walter. A string matching algorithm fast on the average. Technical
Report TR 79.09.007, IBM-Germany, Scientific Center Heidelberg, September 1979.

[Dar78]

[Dij76]

[Fre60]

[FS93]

[FS94]

[HS91]

[Jon83]

J. Darlington. A synthesis of several sorting algorithms. Acta Informatica, 11:1-30,
1978.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

E. Fredkin. Trie memory. Communications of the ACM, 3(9):490-499, 1960.

Jang-Jong Fan and Key-Yih Suo An efficient algorithm for matching multiple patterns.
IEEE 7Tansactions on Knowledge and Data Engineering, 5(2):339-351, April 1993.

Jang-Jong Fan and Key-Yih Suo An efficient algorithm for matching multiple patterns.
In Jun-ichi Aoe, editor, Computer Algorithms: String Pattern Matching Strategies. IEEE
Computer Society Press, 1994.

Andrew Hume and Daniel M. Sunday. Fast string searching. Software-Practice and·
Experience, 21(11):1221-1248, November 1991.

H.B.M. Jonkers. Abstraction, specification and implementation techniques, with an ap
plication to garbage collection. Number 166 in Mathematical Centre Tracts. Mathema
tisch Centrum, Amsterdam, 1983.

[KMP77] Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt. Fast pattern matching
in strings. SIAM Journal on Computing, 6(2):323-350, June 1977.

[Mar90] A.J.J.M. Marcelis. On the classification of attribute evaluation algorithms. Science of
Computer Programming, 14:1-24, 1990.

[Ryt80] Wojciech Rytter. A correct preprocessing algorithm for Boyer-Moore string-searching.
SIAM Journal on Computing, 9(3):509-512, August 1980.

[Wat94] Bruce W. Watson. The performance of single-keyword and multiple-keyword pattern
matching algorithms. Computing Science Notes 94/19, Eindhoven University of Tech
nology, Eindhoven, the Netherlands, April 1994. The report and implementations are
available at URL ftp://ftp.win.tue.nl/pub/techreports/pi/pattm/bench/.

[WZ92] Bruce W. Watson and Gerard Zwaan. A taxonomy of keyword pattern match
ing algorithms. Computing Science Notes 92/27, Eindhoven University of Technol
ogy, Eindhoven, the Netherlands, December 1992. The report is available at URL
ftp://ftp.win.tu8.nl/pub/techreports/pi/pattm/taxonomy/lst.edition/pattm.ps.gz.

[WZ93] Bruce W. Watson and Gerard Zwaan. A taxonomy of keyword pattern matching algo
rithms. In H.A. Wijshoff, editor, Proceedings Computing Science in the Netherlands 99,
pages 25-39. SION, Stichting Mathematisch Centrum, November 1993.

Computing Science Reports

In this series appeared:

93/01

93/02

93/03

93/04

93/05

93106

93/07

93/08

93/09

93/10

93/11

93/12

93/13

93/14

93/15

93/16

93/17

93/18

93/19

93/20

93/21

93/22

93/23

93/24

93/25

93/26

93/27

93/28

93/29

93/30

R. van Geldrop

T. Verhoeff

T. Verhoeff

E.H.L Aans
I.H.M. Karst
P.I. Zwietering

I.C.M Baeten
C.Verhoef

l.P. Veltkamp

P.O. Moerland

I. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

J.C.M. Baeten
J.A. Bergstra

J.C.M. Baeten
J.A. Bergstra
R.N. 801

H. Schepers
J. Hooman

D. Alstein
P. van deT Stok

C. Verhoef

G-I. Houben

F.S. de Boer

M. Codish
D. Dams
G. File
M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Gerth

W.M.P. van der Aalst

T. Kloks and D. Kratsch

F. Kamareddine and
R. Nederpeh

R. Post and P. De Bra

J. Deogun
T. Kloks
D. Kratsch
H. MUller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy of program
ming methods, p. 36.

A continuous version of the Prisoner's Dilenuna, p. 17

Quicksort for linked lists, p. 8.

Detenninistic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics wilh predicates, p. 18.

On the unavoidability of metastable behaviour. p. 29

Exercises in Multiprogramming. p. 97

A Formal Deterministic Scheduling Model for Hard Real-Time Executions in
DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part ill: Modeling Methods, p. 10 1.

Systems Engineering: a Fonnal Approach
Part IV; Analysis Methods, p. 63.

Systems &gineering: a Fonnal Approach Part V: Specification Language, p. 89.

On Sequential ComJX'sition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems. p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p.19. .

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Programming, p. 15.

Freeness Analysis for Logic Programs - And Correctness, p. 24

A Typcchecker for Bijective Pure Type Systems. p. 28.

Relational Algebra and Equational Pr<x>fs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Time Distributed Systems,
p.31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine A -calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. 11.

93/31 W. KOrver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L Loyens and 1. Moonen

93/34 I.C.M. Baeten and
I.A. BergSlra

93/35 W. Ferrer and
P. Severi

93/36 I.C.M. Baeten and
I.A. Bergslra

93/31 I. Bnmekreef
J-P. Katoen
R. Koymans
S.Mauw

93/38 C. Verhoef

93/39 W.P.M. Nuijten
E.H.L Aart,
D.A.A. van Erp Taalman Kip
K.M. van Hee

93/40 P.O. V. van der Stolt
M.M.M.PJ. Claessen
D. Alstein

93/41 A. BiJlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.I. Luit
I.M.M. Martin

93/46 T. KIoks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalsl
P. De Bra
GJ. Houben
Y. Komatzky

93/48 R. Gerth

94/01 P. America
M. van der Kammen
R.P. Nederpelt
O.S. van Roosmalen
H.C.M. de Swan

94/02 F. Kamareddine
R.P. Nederpelt

94/03 L.B. Hartman
K.M. van Hee

94/04 I.C.M. Baeten
lA. Bergstra

94/05 P. Zhou
I. Hooman

94/06 T. Basten
T. KWlZ
I. Black
M. Coffm
D. Taylor

94107 K.R. Apt
R. Bol

94/08 O.S. van Roosmalen

94/09 I.C.M. Baeten
I.A. Bergstra

Derivation of delay insensitive and speed independent CMOS circuits, using
directed corrunands and production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

llJAS, a s!!quentiallanguage for parallel matrix computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conselVative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,

Automatic Verification of Regular Protocols in prr Nets, p. 23.

A taxomomy of finite automata construction algorithms, p. 87.

A taxonomy of finite automata minimization algorithms, p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
BOWlded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refmement, p. 20.

The object-oriented paradigm, p. 28.

Canonical typing and II-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

p. 11.

A Hierarchical Diagrammatic Representation of Class Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

94/10 T. verhoeff

94/11 J. Peleska
C. Huizing
C. Petersohn

94/12 T. lOoks
D. Kratsch
H. Muller

94/13 R. Selje.

94/14 W. Peremans

94/15 RJ.M Vaessens
E.H.L Aans
1.K. Lenstra

94/16 R.C. Backhouse
H. Doornbos

94/17 S.Mauw
M.A. Reniers

94/18 F. Kamareddine
R. Nederpelt

94/19 B.W. Watson

94120 R. Bloo
F. Kamareddine
R. Nederpelt

94at B.W. Watson

94122 8.W. Watsoo

94123 S. Mauw and M.A. Reniers

94124 D. Dams
O. Grumberg
R. Gerth

94125 T. Kloks

94126 R.R. Hoogerwoord

94127 S. Mauw and H. Mulder

94aB C.W.A.M. van Overveld
M. Verhoeven

94129 J. Hooman

94130 I.C.M Baeten
lA. Bergstra
Gh. ~fanescu

94131 B.W. Watson
R.E. Watson

94132 JJ. Vereijken

94/33 T. Laan

94134 R. Bloo
F. Kamareddine
R. Nede'l"'h

94135 I.C.M Baeten
S. Mauw

94136 F. Kamareddine
R. Nederpelt

94137 T. Basten
R. Bol
M. Voorhoeve

94138 A. Bijlsma
C.S. Schohen

The testing Paradigm Applied to Network Structure. p. 31.

A Comparison of Ward & Mellor's Transfonnation
Schema with Stalc- & Activitycharts. p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathernaticallnduction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refining Reduction in Ihe Lambda Calculus, p. 15.

The petfonnance of single-keyword and multiple-keyword pattern matching
algorithms, p. 46.

Beyond p-Reduction in Church's A-+, p. 22.

An introduction to the Fire engine: A C++ toolkit for Finite automata and Regular
Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressions.

An a1gebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving 'VCfL·, 3CfL· and CIL·, p. 28.

K\,l-free and W~-free graphs, p. 10.

On the foundations of functional programming: a programmer's point of view, p.
54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra wilh Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A fonna1ization of the Ramified Type Theory, pAO.

The Barendregt Cube wilh Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and II-conversion in the Barendregt
Cube, p. 19.

Simulating and Ana1yzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10.

94/39 A. Blokhuis
T. KIoks

94/40 D. Alstein

94/41 T. KIoks
D. Kratsch

94/42 1. Engelfriet
JJ. Vereijken

94/43 R.C. Backhouse
M. Bijsterveld

94/44 E. Brinksma J. Davies
R. Gerth S. GnU
W. Janssen B. Jonsson
S. Katz G.Lowe
M. Poel A. PoueH
C.Rump 1. Zwiers

94/45 GJ. Houben

94/46 R.81oo
F. Kamareddine
R. Nederpeit

94/47 R.8100
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Construction Group

94/49 I.C.M. Baeten
I.A. Bergstra

94/50 H. Geuvers

94/51 T. KIoks
D. Kratsch
H. Muller

94/52 W. Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

95/01 JJ. Lukkien

95/02 M. Bezem
R. Bol
J.F. Groote

95/03 J.C.M. Baeten
C. Verhoef

95/04 1. Hidders

95/05 P. Severi

95/06 T.W.M. Vossen
M.G.A. Verhoeven
H.M.M. ten Eikelder
E.H.L Aarts

95J()7 G.A.M. de Bruyn
O.S. van Roosmalen

95/08 R. Bloo

95J("!) J.C.M. Baeten
I.A. Bergstra

95/10 R.C. Backhouse
R. Verhoeven
O. Weber

On the equivalence covering number of splilgraphs, p. 4.

Distributed Consensus and Hard Real·Time Systems. p.34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice
Theory: An illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratieve LogiSliek", p. 43.

The A-cube with classes of tenns modulo conversion,
p. 16.

On II-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Nonnalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a small Communication Library, p.16.

Fonnalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra. p. 134.

An Isotopic Invariant for Planar Drawings of Connected Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Strong Nonnalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

MalWpad: A System for On-Line Prepararation of Mathematical
Documents, p. 15

95/11

95/12

R. Seljee

S. Mauw and M. Reniers

Deductive Database Systems and integrity constraint checking, p. 36.

Empty Interworkings and Refinement
Semantics of Interworkings Revised. p. 19.

	Abstract
	Contents
	1. Introduction
	1.1 Basic algorithm and derivation principles
	1.2 The taxonomy
	1.3 Overview
	2. The problem and some naive solutions
	3. Sublinear pattern matching algorithms
	3.1 No lookahead at the unscanned part of the input string
	3.2 Restriction to one symbol lookahead
	3.3 Lookahead symbol is mismatching
	3.4 The multiple keyword Boyer-Moore algorithm
	3.5 The Commentz-Walter algorithm
	3.6 Complete decoupling of recognized sufflix and lookahead symbol
	3.7 Discarding the lookahead symbol
	3.8 One symbol lookahead at the unscanned part of the input string
	4. Precomputation
	4.1 Precomputation of tau-rho
	4.2 Precomputation of d-functions
	4.3 Precomputation of char-cw1, char-bm1 and char1-alpha
	4.4 Precomputation of msp
	5. Conclusions
	6. Acknowledgements
	A: Definitions and properties
	B: Algorithm and problem details
	References

