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Chapter 0 

Introduction 

Functional programming is a style of programming where, possibly recursive def
initions of functions are derived to satisfy a priori given specifications. Examples 
of this programming style can be found in [3, 6, 8J. In this study we provide a 
mathematical justification for the rules of this game. So, this study is not about 
(functional) programming but about its mathematical foundations. 

Recursive function definitions can be considered as equations of which the func
tions thus defined are solutions. This raises two questions: does such an equation 
always have a solution, and if so, which of the possibly very many solutions is 
intended? One of the reasons for undertaking this study is the observation that 
these two questions are entirely different and that each of them can be answered in 
isolation. 

A second, more important, reason is that, nowadays, it is taken very much for 

granted that to answer these questions one should study domains that are based on 
complete lattices or complete partial orders [l1J. Although this approach is viable 
and although it permits the formulation of stronger theorems, it certainly is not 
the simplest possible. Moreover, some of the arguments to motivate this approach 
simply are wrong. To give an example, we quote from [11, p.73J: 

An even more fundamental difficulty, however, is highlighted by the fact 
that our definition [ ... J involves the application of x to itself. The pos
sibility of self-application can lead to paradoxes. For example, suppose 
we define 

u = >.y. if y(y) = a then b else a . 

Then an attempt to evaluate u( u) gives 

u( u) = if u( u) = a then b else a 

which is a contradiction. 

1 
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The alleged contradiction in this example, however, is not due to the occurrence of 
self-application, as the author suggests, but by his failing to be explicit about the 
rules of his game. As is often the case with paradoxes, the contradiction disappears 
when these rules are made explicit. In this example, the symbol = in the expression 
y(y) = a is the culprit: the contradiction follows from the author's tacid assumption 
that = denotes equality; as we shall show in Chapter 8, in the A-calculus = does 
not exist. 

To show that the above mentioned equations have solutions we use the (type 
free) A-calculus: in Chapter 5 we prove that in the A-calculus every (so-called) 
"admissible equation" has a solution. The use of the A-calculus seems to pose a few 
additional problems, though. First, in the A-calculus equations such as x: x =.x 
and x: x = 1 +x have solutions as well, and this seems paradoxical. Second, as 
folklore has it, in the A-calculus functions can be applied to themselves, which seems 
to make it difficult to attribute meaningful types to such functions. Fortunately, 
these aspects can be discussed in isolation, that is, without reference to the A
calculus at all. In this respect, this study also is an exercise in disentanglement. 

* * * 
This study is about the foundations of functional programming, not about the 

foundations of mathematics in general. Therefore, we may (and shall) use without 
justification whatever well-understood mathematical concepts we need. Their justi
fication is a legitimate concern, but it is a different one and it is not ours, for the 
simple reason that it is not specific for functional programming. Moreover, whatever 
mathematical game one wishes to play, one must take some of the rules for granted, 
lest there be no game. 

I make this point with so much emphasis because the A-calculus plays a possibly 
confusing role here. The A-calculus was designed to be used for the formalisation of 
mathematics and logic, which is a much more ambitious purpose than ours: we only 
use the A-calculus as a prototype functional- programming language. Therefore, this 
is just an ordinary mathematical study, not a meta-mathematical one. 

Via the notion of reduction the A-calculus also provides a prototype implemen
tation of a functional-programming language: the A-calculus is to functional pro
gramming what the Turing machine is to sequential programming. Hence, contrary 
to common belief, we need not construct mode/sO for the A-calculus in order to un
derstand functional programming: rather we would say that the A-calculus itself is 
the (computational) model underlying many functional languages. 

* * * 
As may be clear from the above, the nature of this study is more technical than 

mathematical. Most if not all of its mathematical contents are well-known and can, 

°Ever heard of models for a Turing machine? 



rh190 3 

for example, be found in Barendregt's textbook [1]. Therefore, we shall not elaborate 
in all details those parts of the story that are well-understood but technically tedious 
and boring, such as dummy renaming and substitution. 

The main purpose of this study is to show how simple the rules of the functional 
programming game are -which does not imply that playing that game is equally 
simple-. Strangely enough, this is not so trivial a matter as might be expected: 
authors of works like [10, 11, 12] succeed very well in making their lives more difficult 
than necessary. In this respect I must stress that the reader of this study who finds 
himself left with a feeling of dissatisfaction because this study seems to offer nothing 
new, has missed my point: this study is a strong plea against undue complexity. 

Wherever the following presentation is (too) tutorial, this should not be inter
preted as pedantry but as the result of a conscious attempt to be as explicit as 
possible and to make this study self-contained. 



Chapter 1 

Mathematical preliminaries 

We use well-known mathematical concepts such as sets,. relations, functions, predi
cate calculus -in the sense of [5]-, and some elementary algebra. 

1.0 Notational issues 

For function application we use the binary infix operator· ("dot"): we write f·x 
instead of f( x). The dot binds stronger than all other operators and it is left
binding: f·x·y must be read as (J·x)·y. Function composition is denoted by 0, 

with: 

(If x :: (Jog)·x = f·(g·x» 

For any binary operator 0 we use (0), (x0) , and (0Y) as denotations of func
tions, defined as follows: 

(lfx,y:: (0)'x,y = x0y) 
(lfy:: (x0)'y = x0y) 
(If x :: (0Y)'x = x0Y) 

examples: (+1) is the function that adds 1 to its argument, (+) is the (cur
ried) addition function, and (= b) is the point predicate that is true when 
its argument equals b and false otherwise. Also, (·b) is the (higher-order) 
function that applies its (function) argument to b: (·b)·f = f·b. Thelatter 
example shows that it really helps to have an explicit operator for function 
application. 

o 

4 
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1.1 Functions, equality, and congruences 

In the set-theoretical interpretation a function of type X ---> V is a subset of the 
cartesian product X X V with certain properties. As a result, a function of type 
X ---> V is also a function of type X --+ W , for all W with V ~W. This is quite 
practical: every integer is a real as well, so it stands to reason that every integer
valued function is also a real-valued function. On the other hand, the set-theoretical 
interpretation does not allow the equally convenient conclusion that every function 
of type X ---> V is a function of type Y --+ V as well, whenever Y ~X. In the set
theoretical interpretation we can only formulate this by stating that fTY has type 
Y ---> V, where fTY denotes "f restricted to Y". For practical purposes, though, it 
is more convenient to omit TY; this is harmless as long as we are explicit about the 
domains on which the function is used. 

This is reflected in the following definition of function type, which is based on 
the observation that the only thing we can do with a function is apply it to an 
argument. For sets X and V we say that function f has type X --+ V whenever: 

(Vx : x EX: f·x E V) 

We write f E (X ---> V) to denote "f has type X --+ V". Thus defined, the operator 
---> has the following (anti)monotonicity properties: 

Y~X =;. fE(X ---> V) =;. fE(Y ---> V) 
V~W =;. fE(X--->V) =;. fE(X--->W) 

examples: Every function that has type X --+ Nat also has type X ---> Int and 
every function that has type Int --+ V also has type Nat ---> V . 

o 

For function composition we have, of course: 

f E (X ---> Y) /I g E (Y ---> Z) =;. gof E (X ---> Z) 

A fundamental property, connecting functions with equality, is Leibniz's rule of 
substitution of equals for equals. In its simplest form the rule is: 

(Vx,y:: x=y =;. (Vf::f·x=f·y)) 

Moreover, it is convenient to consider function application as a function itself, to 
which Leibniz's rule can be applied, so we also have: 

(Vf,g:: f=g =;. (Vx:: f·x=g·x)) 

By contraposition these rules can be transformed into the following ones, which are 
useful for proving differences: 
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(Vx,y:: x,py <= (3f::f·x,pf·y)) 
(Vf,g:: f,pg <= (3x:: f·x,pg·x)) 

We shall document applications of any of these rules with the hint "Leibniz". 
As a matter of fact, there is not much more to equality than that it satisfies 

Leibniz's rule and that it is an equivalence relation. Every equivalence relation '" 
that, for a given collection of functions, satisfies: 

(Vx,y:: x"'y => (Vf::f·x=f·y)) , 

may be considered as an equality relation with respect to that collection of functions. 
In such a case '" is called congruent with these functions; conversely, we call the 
functions compatible with "'. (Notice the difference in emphasis between the two 
notions.) To all intents and purposes, an equivalence relation may be treated as 
equality, provided that every function in our universe of discourse is compatible 
with that relation. 

For example, within a collection of functions on the same domain we may define 
by: 

(Vf,g:: f"'g = (Vx::f·x=g·x)) 

Then '" is an equivalence relation and function application is, by definition, com
patible with "'. Because function application is the only (primitive) operation 
applicable to functions, '" may be treated as function equality: functions related 
by '" can not be distinguished. So, we may safely write f = g instead of J '" g. As 
a matter offact, we now have justified what is known as the axiom of extensionality: 

(Vf,g:: J=g <= (Vx::J·x=g·x)) 

In this formula the range of dummy x is the (Le.: largest possible) domain of 
J and g. Very often, though, we are only interested in properties of functions on a 
smaller domain than the largest possible; whether or not we consider two functions 
as equal then depends on the domain of our interest: functions can be equal on some 
domain but different on a larger one. 

example: We consider the following equation (with unknown fl: 

o 

f: f·0=3" ('v'i:iENat: f·(i+l)=f·i+2) 

In Int -+ Int this equation has infinitely many solutions; in Nat -+ Int, how
ever, all these solutions are equal. 



rh190 7 

Finally, I wish to point out that, strictly speaking, there is no such thing as a 
recursive function: recursiveness is a property of a function's definition, not of the 
function itself. 

example: Consider the following definitions of functions / and g: 

o 

/·0=3" (Vi:iENat: /·(i+l)=/·i+2) ,and: 
(Vi: iENat: g·i = 2,i +3) 

The definition of / is recursive whereas g's definition is not, and within 
Nat-dnt we have /=g. 

1.2 On representations 

In thls study we use the terms represent and representation in a strictly technical 
meaning, which we define here. For sets U and V and a surjective function F of 
type U -+ V , we say that the elements of U represent the elements of V; we also 
say that set U represents set V . Function F, called the abstraction function, maps 
representations to values represented. Because F is surjective every element of V 
is represented by at least one element in U. Conversely, it is not precluded that 
different elements of U represent the same value in V: F need not be injective. 

The situation becomes slightly more complicated when we also wish to represent 
functions from or to V by similar functions from or to U. For example, for a 
fixed set X, function g, 9 E (X -+ V), is represented by function /, / E eX -+ U), 
provided that / and 9 satisfy: 

(VX:XEX:g·X = F·(j·x)) ('Le. onX: g=Fo/) 

In this way, every function in X -+ U represents a function in X -+ V . 
Not every function in U -+ X represents a function in V -+ X, though. In this 

case / only represents 9 provided that: 

(Vu:: g·(F-u) = /·u) (, Le.: goF=f) 

From this it follows immediately that / must satisfy a kind of consistency condition, 
stating that / is invariant under changes 0/ representation: 

(1.0) (Vu, u' :: F·u = F·u' => /·u = / ·u') 

Conversely, every / that satisfies (1.0) represents a unique function in V -+ X 

(namely /0 F). 
DIn common parlance, a function is called recursive if it admits a recursive definition. 
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Every function F on U induces an equivalence relation on U, namely the 
relation "" defined by: 

(1.1) (Vu,u':: u""u' == F.u=F.u') 

In terms of "" consistency condition (1.0) can now be rephrased as 

(Vu,u':: u""u' =} f·u=f·u') , 

which is the proposition that f is compatible with "". Apparently, the functions 
on U that represent functions on V are exactly those functions that are compatible 
with "". This is not so surprising: the relation "" (on U) represents = (on V). 

This is well-known and so is the fact that for every equivalence relation "" on a 
set U, a set V and an abstraction function F in U -+ V exist such that "" is the 
equivalence relation defined by (1.1). (Just take for V the set U / "" of the equiv
alence classes of "" .) Thus, abstraction functions -also called homomorphisms
and congruence relations are two faces of the same coin. 

1.3 On semantics 

A formal language is a collection of objects called "sentences" or "terms". Such a 
collection is not amorphous but exhibits a certain algebraic structure, because terms 
in it can be composed, by means of "constructors", to form larger terms. Usually, a 
formal language and its algebraic structure are defined by means of a (context-free 
or context-sensitive) grammar, but for discussions on semantics the algebraic point 
of view is more adequate. The semantics of a formal language can be defined in two 
ways, which are mathematically equivalent but technically different. 

In the denotational approach to semantics, a domain of "values" is defined; the 
terms of the language are supposed to represent values in this domain and the term 
constructors are supposed to represent operators on this domain. This is formalised 
by defining an abstraction function mapping terms to their values. This function is 
required to be such that the value of a composite term depends on the values of its 
constituent terms only. This is called compositionality; algebraically speaking, this 
is the requirement that the abstraction function be a homomorphism. An example 
of a successful application of the denotational approach is the predicate-transformer 
semantics for sequential programs [5J, where the "value" of a statement is a pair of 
predicate transformers. 

Alternatively, the semantics of the formal language can be defined by means of 
an equivalence relation on the set of terms; the only requirement now is that this 
relation is congruent with the term constructors. The technical advantage of this 
approach is that both the domain of values and the abstraction function can remain 
anonymous. This approach is particularly useful when the language will be used for 
equational reasoning, as is the case in functional programming. 
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The requirements of compositionality and of congruence serve the same purpose, 
namely to validate the rule of Leibniz: a sub term of a composite term may then be 
replaced by any equivalent term without affecting the value of the composite term. 

summary: The discussion in the last two sections shows that the following 
phrases all refer to the same mathematical concept: 

o 

Leibniz's rule of equals for equals 
substitutivity 
congruence relations 
homomorphisms 
compositionality 
referential transparency 



Chapter 2 

Self application 

One of the alleged problems with the A-calculus pertains to expressions of the form 
f· f: if f is a function then what is its type? The obvious answer is that if f has 
type X -+ Y then f· f is meaningful if f is also an element of X. This is certainly 
so when X and Y satisfy 

X-+Y ~ X 

For nontrivial sets X, Y this is impossible, because then X -+ Y has greater cardi
nality than X . Hence, the obvious answer will not do. 

The only other simple possibility ~apart from rejecting self application alto
gether~ is to require that X and Y satisfy 

X ~ X-+Y 

This does not make f· f meaningful for every f in X -+ Y , but it does so for all f 
in X. As we shall show this is more than sufficient and, by the discrepancy between 
the cardinalities of X -+ Y and X, this is about the best we may expect. 

Nevertheless, X is a strange set. Its elements are also elements of X -+ Y and 
so they are functions, but they are also the arguments to which these functions 
can be applied. Do such sets exist? (In the set-theoretical model the answer is: 
no! [2].) Instead of answering this question, we avoid it by taking the inclusion in 
X ~ X -+ Y with a grain of salt, that is, modulo a change of representation. We 
devote the remainder of this chapter to elaborating this. 

2.0 Representation of functions 

We consider a set fI and a binary operator 0 of type fI X fI -+ fl. In what follows 
all variables range over fl. With every f in fI we associate a function (10), of 
type fI-+fI, which satisfies ~according to the conventions from Section 1.0~: 

(If x :: (10 ).x = f0x) 

10 
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In this way, I, which is not a function, represents the function (J0) in n ---> n . 
The corresponding abstraction function, mapping n onto a subset of n ---> n, is 
(0), with: 

('1/::(0),1 = (J0)) 

In this arrangement 0 represents function application: we have 10X = (J0)'x, 
so 10X is the value of the function (represented by) I applied to x, for all I and 
x in n. In particular, 101 and x0x can be considered as function applications as 
well. The crux is that the left operand of 0 is interpreted differently from the right 
operand: self application does not apply a function to itself but to its representation, 
because we have 101 = (J0)' I. 

When it is the operator 0's sole purpose to represent function application we 
may safely use . instead of 0, thus (deliberately) ignoring the distinction between 
functions and their representations. Such an abuse of notation is quite common, it 
is harmless, and it simplifies the formulae -I'x is simpler than (J0)'x-; yet, the 
distinction is crucial to a proper understanding of self application. 

The reader who is tempted to consider the above as cheating should bear in 
mind two things. First, all that we, as human symbol manipulators, or computers, 
as mechanical symbol manipulators, can do is manipulate representations of the ob
jects of our interest. The expressions in a (functional) programming language are 
not functions but representations of functions, that is, they are function definitions. 
We can, for example, say that a certain definition is recursive, or we can discuss 
the efficiency of a definition, but recursiveness and efficiency are not properties of 
the function thus represented; one and the same function usually admits several 
definitions, with different properties such as efficiency. Second, the above repre
sentation trick is also used in the domain-theoretic models, so in this respect these 
models offer no help. For example, in the graph model Pw by Plotkin and Scott 
the corresponding abstraction function is called lun [1, 11]. 

The above game can be played with any set n and any binary operator 0 . As 
we have seen, the mapping (0), which embeds n into n ---> n, is not surjective. 
Hence, not every function in n ---> n is representable in n. This raises the question 
whether nand 0 can be chosen in such a way that n represents a "sufficiently 
interesting" subset of n ---> n . 

examples: Let n be Int and let 0 be +. Then we have (m+)·n = m+n, 
so m represents the function adding m to its argument; in particular, 0 
represents the identity function on Int, we have (( m+n)+) = (m+ )o( n+), 
and (( -m)+) = (m+)-l, so the subset of representable functions forms a 
group (, namely the group of translations). In this setup function application 
and composition even coincide: both are represented by +. 

A less trivial example is the matrix calculus, where matrices represent 
linear mappings on vector spaces of finite dimension. Vectors themselves can 
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be represented by matrices, and if we do so both function application and 
function composition are represented by matrix multiplication. (By the way, 
matrix multiplication itself is a linear mapping.) 

2.1 Concluding remarks 

Every formal language is a set of finite-length sequences over an at most count ably 
infinite alphabet. Hence, every formal language is at most count ably infinite, so 
in it at most count ably many objects -functions included- can be represented. 
Similarly, the state space of a computer is at most countably infinite, so in a com
puter at most count ably many values -programs included- can be represented. 
Therefore, we need not be worried at all about the fact that, when we choose n to 
be countable, only a countable subset of n --> n is representable in n. 

In this chapter the A-calculus plays no role whatsoever. The A-calculus only 
enters the picture when we wish to make the representable subset of n --> n "suffi
ciently interesting"; that is the subject of the next chapters. 

The game we have played here yields a free bonus. For "function" f and "argu
ment" x, f0x is an element of fI that itself represents a function in n --> fl. That 
is, in an expression like (f0x )0Y we may consider f as a two-argument function 
and as a higher-order function at the same time. Thus, n not only represents a 
subset of fI->n, but also of n->(fI->n), and so on. Hence, by playing the game 
in this way we obtain multi-argument and higher-order functions for free. 



Chapter 3 

The A-calculus 

3.0 Introduction 

In functional programming, functions are the main components from which pro
grams are constructed. Essential ingredients of a functional-programming language 
are notations for function application and for function definitions. The A-calculus 
provides exactly these two ingredients, and nothing more. The A-calculus is a calcu
lus of functions, not the calculus of all functions. As we explained in Chapter 2, this 
should not worry us. On the contrary, that the A-calculus is a restricted calculus 
even has advantages; for example, in the A-calculus all functions have fixed-points. 

The A-calculus has very simple syntax and manipulation rules, but proofs of 
theorems about the calculus can be quite tedious and laborious, even when they are 
not difficult. In this respect the current presentation is a compromise between two 
conflicting desires: on the one hand, I wish to make this study self-contained; on 
the other hand, I wish to avoid redoing work done by others many times before. 

3.1 Syntax 

Syntactically, the ingredients of the A-calculus are a set Name of names, a set Exp of 
terms, a unary constructor - ("name"), and two binary constructors -j ("lambda") 
and 0 ("dotl"), with the following properties: 

- has type Name -> Exp 
-j has type Name X Exp -> Exp 
o has type Exp X Exp -> Exp 

Set Name is (count ably) infinite and Exp is the smallest set that is closed under 
-, -j, and 0; hence, properties of Exp may be proved by mathematical induction 
on the size of the terms, and by structural induction in particular. 

13 
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Terms of the form x are just called "names", terms of the form x-lE are called 
"abstractions", and terms of the form E0F are called "applications" _ In order to 
save parentheses we adopt the following binding conventions: 

o binds stronger than -l, 0 is left-binding, and -l is right-binding 

example: x-ly-lX0jj0Z = x-l(y-l((x0jj)0z)) 
o 
notes: Traditionally, x is written as x, x-lE as (Ax_E), and E0F is written 

as (EF) _ We have deliberately adopted a more explicit notation, to empha
size the algebraic view that the term constructors are operators_ Nevertheless, 
the usual syntactical connotations are implied as well: xl' jj if xl' y, the 
classes of names, abstractions, and applications are disjoint, et cetera_ 

o 

It is (still) amazing that a calculus with so simple a syntax turns out to 
be so effective: Church did a great job indeed_ 

Throughout this chapter, x, y, Z denote names and E, F, G denote terms_ Terms 
are finite, as they are formed by a finite number of applications of the constructors_ 
Hence, every term contains a finite number of names only_ Because Name is infinite 
we have for every term an unbounded supply of names not occurring in the term_ 
We call these names fresh with respect to that term_ 

In an abstraction x-l E the operator -l is said to bind all occurrences of name 
x in E _ Bound names are also called dummies, whereas we call names that are not 
bound free variables_ The same name can occur as a dummy and as a free variable 
in the same term, such as x in (x-lX)0X. Formally, we denote the free variables of 

term E by the predicate fv-E; fv is defined as follows: 

fv-x-y _ x=y 
fv-(x-lE)-y _ x#y 1\ fv-E-y 
fv-(E0F)-y _ fv-E-y V fv-F-y 

For term E and names y, Z the term E(Y<lz) is obtained from E by renaming 
y to z, that is, by systematically replacing all free occurrences of y in E by z_ 
Its formal definition is: 

jj(Y<lZ) Z 
x(Y<lz) = X , if x#y 
(y-lE)(Y<lz) y -l E 

(.) (x-lE)(Y<lz) x -l E(Y<lz) , if xl' Y 1\ xl' Z 
(E0F)(Y<lz) = E(Y<lz) 0 F(Y<lz) 

notes: The condition xl' Z in rule (.) is necessary to avoid a so-called name 
clash: if x = Z free variable Y would be replaced by bound variable x, which 
is generally not what we want_ 
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o 

Renaming does not change the (tree) structure of terms. So, proofs by 
induction on the structure of terms are insensitive to occasional renamings. 

15 

Terms that can be transformed into each other by renaming of dummies are 
equal: we consider the actual choice of dummies as an aspect of the textual rep
resentation of terms, not of the terms themselves. (See [1, app. C] for a formal 
justification.) So we have: 

y is fresh :} x-IE = y-lE(x<lY) 

Because E is finite and Name is infinite, dummy renamings are always possible. 

example: x-Ix = y-ly, although xi y. 
o 

3.2 Algebraic semantics 

We define the semantics of the A-calculus by defining an equivalence relation '" on 
Exp , with the interpretation that E '" F if and only if E and F have "the same 
value". As we explained in Section 1.3 this is a legitimate approach, provided that 
we see to it that '" is congruent with -I and 0. 

We proceed in a number of steps and define '" by a number of semantical rules. 
We require '" to be the strongest relation satisfying these rules, and this is essential: 
we do not want every term to be equivalent to every term, because that would make 
the calculus useless. We return to this in Chapter 4. 

The first semantical rule defines how abstractions can be interpreted as func
tions, by connecting -I and 0. For its formulation we need substitution, which is a 
generalisation of renaming, and which we shall define later: 

(f3) (x-IE)0F '" E(x<lF) , for all x, E, F 

This rule states that x-I E represents -see Chapter 2- the function mapping F 
to E( x<lF) , for all F. 

The second rule turns '" into a congruence relation; it consists of 3 parts: 

E '" E' :} 
E", E' :} 

F '" F' :} 

x-iE :::::: x-lE' ,for all x, E, E' 
E0F '" E'0F , for all E, E', F 
E0F '" E0F' , for all E, F, F' 

The third rule states that '" is an equivalence relation and, finally, the fourth 
rule completes the job: 

(6) '" is reflexive, symmetric, and transitive 
(c) '" is the strongest relation satisfying (f3) through (6) 
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note: The rules given here are slightly redundant: rule (")'1) can be derived 
from the other rules and the properties of substitution_ 

o 
Rules (")') and (6) imply that '" may be used as equality in calculations in

volving -I and 0 _ Hence, we may use equational reasoning to derive properties_ 
For example, for E and E' with E '" E' we derive: 

E(X<lF) 

'" { (11) } 
(x-IE)0F 

'" {E",E': (")'0) and (")'1)} 

(x-IE')0F 

'" { (11) } 
E'(x<lF) _ 

By a similar calculation we can derive F", P' =;. E( x<lF) '" E( x<lF') _ So, without 
even knowing how substitution is defined, we have proved: 

lemma 0: Substitution, as a function of type Exp X Name X Exp -; Exp, is 
compatible with "'_ 

o 

Substitution is a generalisation of renaming; it is defined as follows: 

Y(Y<lG) = G 
x(Y<lG) = x , if x-IY 

(*) (x-IE)(Y<lG) = z-l E(x<lz)(Y<lG) , for fresh Z 

(E0F)(Y<lG) = E(Y<lG) 0 F(Y<lG) 

The dummy renaming in rule (*) is necessary to avoid name clashes (, as was the 
case with renaming, in the previous section)_ Substitution has a number of well
known properties which we shall not prove here: 

properties of <l: For x, Y, x i Y , we have: 
E(x<lY) = E(x<lY) (renaming is a special case of substitution) 
E( X<lY )(Y<lF) E( x<lF) , if -.fv -E-y 
E(x<lF) = E , if -.fv-E-x 
E(x<lx) = E 
E( x<lF)( X<lG) E( x <l F( X<lG)) 
E(x<lF)(Y<lG) = E(Y<lG)(x<lF) , if -.fv-P-y A -.fv-G-x 

o 
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example: We derive rule (,,),1), by assuming E""E' and: 

o 

E0F 

{ let x be fresh, so .,fv-F-x: substitution properties (twice) } 

x(x«E) 0 F(x«E) 

= { substitution} 

(x0F)(x«E) 

"" { (f3) } 
(x -l x0F) 0 E 

"" { E "" E' : (")'2) } 
(x -l x0F) 0 E' 

"" { the above, in reverse order } 

E'0F _ 
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In the previous section we have identified terms that differ in the choice of dum
mies only_ Therefore, we must prove that the relation "" is insensitive to dummy 
renaming_ Because rules (")'), (6) , (£) define "" as a closure of the relation defined 
by rule (f3), it suffices to verify that rule (f3) is insensitive to dummy renaming: 

(y-lE( x<JY)) 0 F 

"" { (f3) } 
E( Ny )(y«F) 

= { y is fresh: property of substitution} 

E(x«F) 

"" { (f3) } 
(x-lE)0F 

3.3 Denotational semantics 

The relation "" is an equivalence relation_ We now define the value of a term as the 
equivalence class it belongs to; that is, denoting the value of E by [E] we have: 

[E] = (setF: E""F : F) 

Because "" is congruent with -, -l , 0, and «, well-defined operators - , -l , • , 
and <l exist satisfying: 
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X 
x-I[E] 
[E].[F] 
[E](x<I[F]) 

= [x] 
= [x-lE] 

[E0F] 
= [E(x<lF)] 
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That is, the abstraction function [ . ] is a homomorphism and all properties about 
can be reformulated in the value domain Exp / '" ; for example: 

[E]=[F] _ E",F 
(x-Ie).f = e(x<lf) 
x(X<lf) = f 
and so on. 

The value domain defined here is known as the term model; yet, it hardly deserves 
to be called a model because it is defined in terms of the calculus itself and because, 
as a model, it is trivial. 

* * * 
In conventional denotational semantics for expression languages, each term is 

interpreted within a so-called environment that provides values for the free variables 
of that term. That is, in this approach functions of type Name ->!! are used to 
represent environments. The value of a term E is then denoted by M·E·p, with 
p E Name -> !!. Function M, which maps terms onto their meanings, has type: 

Exp -> (Name -> !!) -> !! 

We deliberately distinguish values and meanings here: the (denotational) meaning 
of E is M·E, of type (Name-> !!)-> !!, whereas M·E·p is the value of E, of 
type !!, in environment p. The latter is the one usually referred to in calculations, 
but the former is the true "meaning" of the term. 

Two terms E and F are equivalent if and only if M· E = M· F , which amounts 
to 

('1p:: M·E·p = M·P-p) 

In the case of the 'x-calculus, function M must be compatible with "', because 
and particularly rule (;3) will be used in calculations. That is, M must satisfy: 

('1E,F:: E",F ~ M·E=M·F) 

We even can define !! and M in such a way that this implication is an equivalence. 
To start with we need an operator to modify environments. (This is standard 

in denotational semantics.) For p in Name ->!! and x in Name and e in !!, we 
define p(x:e) in Name -> !! by: 
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p(x:e)·x = e 
p(x:e)·y = p.y , if x # y 

Obviously, if x #Y then p(x:e)(y:f) = p(y:f)(x:e). We now define nand M as 
follows: 

n = Exp/~ 
M·Jj·p = p·x 
M·(x-lE)·p = Z -I M·E· p(x:z) (note) 
M·(E0F)·p M·E·p • M·F·p 

note: z must satisfy: 
(Vy, e : y # x IIfv.E·y : p,y(z<le) = p.y) 

o 

Thus defined, function M has the following properties. Because we mention 
these properties, and the following theorem, for the sake of illustration only, we 
omit their (somewhat laborious) proofs here: 

(3.0) (Vx:fv·E·x:p·x=q·x) => M·E·p=M·E·q 

(3.1) M·((x-lE)0F) = M·(E(X4F)) 

(3.2) (Vx::p·x=x) => M·E·p=[E] 

With these properties we can now prove: 

Theorem: (VE,F:: E~F == M·E=M·F) 
proof: 
"=>": Because its definition is compositional, function M is a homomor
phism with respect to the term constructors. So, the equivalence relation 
induced by M is congruent with the term constructors; that is, this equiv
alence relation satisfies rule (1'). Of course, it also satisfies rule (6). On 
account of the above property (3.1), this equivalence relation satisfies rule 
((3). From rule (E) we now conclude: 

(VE,F:: E~F => M·E=M·F) 

"¢c": Define p such that (Vx : : p·x = x), then we have: 

M·E=M·F 

=> { Leibniz } 

M·E·p = M·F·p 

= { property (3.2) } 
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o 

[ED = [FD 

{ definition of [ . D } 

E""F. 

* 
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* * 
The above comparison of the algebraic and denotational approaches shows that 

both can yield the same mathematical result. Indeed, an immediate corollary of the 
theorem is that Exp / "" and (set E : : M· E) are isomorphic. 

The above comparison also shows that the two approaches are different from a 
technical point of view: the algebraic approach is simpler, for two reasons. First, 
if the formalism will be used for equational reasoning then the rules ((3) through 
(€) are the ones that matter. In the denotational approach these rules must be 
proved as theorems -such as property (3.1), which justifies rule ((3)-; this is 
a roundabout way compared to the algebraic approach where the rules simply are 
definitions. Second, the introduction of environments to represent mappings of free 
variables to values is a technical complication that, after ali, is unnecessary. 

The reason that we can do without environments is that substitution is so well
behaved: as we have seen, it is compatible with "" and we have: 

[E(x<oF) D = [EHx <1 [FD) 

As a result, substitution can be considered as a semantical instead of a purely 
syntactical operation. Therefore, terms with free variables have well-defined values 
as well, such as x in: 
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Consistency of the A-calculus 

4.0 Introduction 

The A-calculus is an algebra with an equality relation. In no way could such a 
calculus be considered as "inconsistent": in this setting the term just does not make 
sense. Yet, the (type free) A-calculus has been called inconsistent for quite some time, 
wrongly so, but this was caused by how it was used: the A-calculus was invented 
to provide a basis for the formalisation of logic, and the (naive) formalisation of 
propositional logic in the A-calculus turns out to be inconsistent. This inconsistency, 
however, is not an inherent defect of the calculus itself: it only shows that this 
particular use of the calculus is incorrect. 

aside: This is known under the name Curry's paradox [4, 7]: Curry's paradox 
shows that the properties of logical implication are incompatible with the 
fact that every term has fixed points. 

o 

The equality relation ~ might be such that ('IE, F : : E ~ F) ; that is, all terms 
might have the same value. Although, logically, there would be nothing wrong about 
this, it would certainly make the calculus useless. 

In order to be useful as a programming language the A-calculus must "contain" 
at least the natural numbers. Hence, the A-calculus must contain infinitely many 
values -that is: equivalence classes-. Fortunately, this is true; to prove this we 
need the so-called Church-Rosser theorem. To start with, however, we investigate 
in more general terms how sets can be proved to be infinite. 

21 
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4.1 Intermezzo on infinite sets 

A set is infinite if every finite subset of it is not the whole set. A more specific, and 
therefore sometimes easier, definition is: a set is infinite if it contains an infinite 
sequence all whose elements are different. 

One way to construct such a sequence is as follows. With !1 for the set and with 
bE!1 and f E !1 -T!1 we define a sequence Xi (0 ~ i) by: 

Xo b 
Xi+l = f'Xi , O~i 

We now derive what properties band f should have in order that all elements of 
X be different; we do so by proving the latter by mathematical induction on I: 

(Vj: O<j: XO#Xj) 

{ dummy transformation j :=j+l ; definition of x } 

(Vj: 0 ~j: b#f,xj) 

<¢= { assumption (4.0) , see below} 

true , 

and: 

(Vj: i+l <j: Xi+! #Xj) 

{ dummy transformation j :=j+l ; definition of x } 

(Vj: i<j: f·x;#f,xj) 

<¢= { assumption (4.1) , see below} 

(Vj: i<j: Xi#Xj) . 

Here we have assumed that band f satisfy: 

(4.0) (Vy::b#f'Y) 

(4.1) (Vy,z:: f·y#f·z <¢= y#z) 

In words, the requirements are that f is injective but not surjective. Thus, we have 
derived the following lemma. 

infinity lemma: for b E !1 and f E !1 ...... !1 we have: 

(4.0) /I (4.1) => "!1 is infinite" 
o 
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4.2 The A-calculus is infinite 

In order to be able to apply the infinity lemma we must choose a value b and a 
function f that satisfy (4.0) and (4.1). With: 

K = x-ly-lx , we have 

(4.2) (lIg,h:: Kogoh = g) 

We now show that b, f := K, (K 0) does the job; first, we derive: 

K op Kog 

{ Leibniz, to prepare for application of (4.2) } 

(Olh:: Koh op Kogoh ) 

{ (4.2) } 

(Olh :: K oh op g ) 

{= { Leibniz, for the same reason} 

(Ole,h:: Kohoe op goe) 

= {( 4.2) } 

(Ole, h :: h op goe ) 

{= { instantiation e := g } 

(Olh : : h op gog) 

{= { generalisation } 

(lie:: (Olh:: hope) ) 

The formula (lie:: (Olh:: hope» expresses that n is not a singleton set; this 
follows from the existence of at least two different values in n. With, for example, 

I = x-l x , we have I op K , 

but to prove this we need the Church-Rosser theorem; this is the subject of the next 
section. 

Using IopK, we have proved condition (4.0) of the infinity lemma, where we 
have chosen b,f := K, (Ko). Now we prove (4.1): 

Kog op Koh 

{= { Leibniz, to prepare for application of (4.2) } 

(Ole:: Kogoe op Kohoe ) 

{ (4.2) } 
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(3e :: 9 '" h) 

{= {n",,p} 

g",h . 

By the lemma, this establishes the infinity of the A·calculus provided that 

(4.3) x;x '" x;y;x 

4.3 The Church-Rosser theorem 

In the previous section we have reduced the proof that the A-calculus is infinite to 
the obligation to prove (4.3), which (in more syntactical terms) amounts to: 

(4.4) -'(x-lx '" x-ly-lx) 

(In this section the distinction between syntax and semantics is crucial.) 
On Exp we define the relation "-' ("reduces to") by means of the following rules, 

which are very similar to the rules for "'; the only difference lies in rules (6) and 
(6'): '" is symmetric whereas "-> is not. 

((3') 
(-1"0) 
(1"1 ) 
(1"2) 
(6') 
(e') 

(x-lE)0F "-> E(x<lF) , for all x, E, F 
E,,-,E' '* x-lE "-' x-iE' , for all x,E,E' 
E,,-,E' '* E0F"-> E'0F , for all E,E',F 
F"" F' '* E0F,,-, E0F' , for all E, F, F' 
"" is reflexive and transitive 
"-' is the strongest relation satisfying ((3') through (8') 

The following theorem is known as the Church-Rosser theorem; for proofs we refer 
the reader to [1]. Although we have formulated the theorem as an equivalence, its 
"mathematical contents" is in the implication from left to right. 

Theorem: (VE,F:: E",F == (3G:: E,,-,G 1\ F,,-,G)) 
o 

Terms containing no subterms of the form (x-lE)0F are called normal forms. 
Normal forms are characterised by the predicate nf defined recursively by: 

nf-x 
nf-(x-lE) 
nf-(x0G) 
nf-((x-lE)0G) 
nf-((E0F)0G) 

_ true 
_ nf-E 
_ nf-G 

false 
nf-(E0F) 1\ nf-G 
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Normal forms are irreducible; that is, we have: 

(4.5) ("IE:: nf-E '* ("IF:: E"" F '" E=F)) 

exercise: prove (4.5) 
o 
remark: The converse to (4.5) is not true; that is, we do not have 

o 

nf- E <¢= ("IF:: E "" F '" E = F). As a counterexample, take E:= W0 W 
where W = x-lx0x. 
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We are now ready for the following lemma, which is an immediate corollary of the 
Church· Rosser theorem and of (4.5). 

lemma: For normal forms E,F: E""F", E=F . 

proof: 

o 

E""F 

{ Church-Rosser theorem} 

(3G : : E"" G II F"" G) 

{ E and F are normal forms: (4.5) } 

(3G:: E=G II F=G) 

= { predicate calculus } 

E=F. 

In words the lemma states that equivalent normal forms are (syntactically) iden
tical; so, (syntactically) different normal forms have different values. Now, the terms 
x-lx and x-ly-lx are normal forms and they are different; hence, by the lemma they 
have different values, which establishes (4.4) at the beginning of this section. 

4.4 Evaluation and normal-order reduction 

A different way to phrase the above lemma is: every equivalence class of "" contains 
at most 1 normal form. We can not do better than this, as the following exercise 
shows. 

exercise: show that .(3E:: W0W""EII nf-E),where W = x-lx0x. 
o 

The unique normal form in an equivalence class can be used as a canonical 
representation of (the value of) the terms in that class. An evaluator for the oX
calculus is a mechanism -machine, program, ... - that takes a term as input 
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and that produces the equivalent normal form as output, provided that such normal 
form exists. Formally, an evaluator can be modelled as a function eval of type 
Exp ..... Exp , as follows: 

specification: ("tiE:: NF-E =;. E "" eval·E 1\ nr( eval·E)) , 

where predicate NF is defined by: 

("tiE:: NF·E := (3F:: E"" F 1\ nrF)) 

o 

That some of the equivalence classes contain no normal form and, hence, that 
some terms have values that cannot be computed, is no reason for worry: the set of 
terms that do have computable values is rich enough to yield a useful programming 
language. Nevertheless, the terms without equivalent normal forms cannot simply 
be discarded: they are needed as sub terms in terms that do have normal forms. 

That functions eval satisfying the above specification exist follows from the 
following example; the definition given here is about the simplest possible, but its 
proof of correctness is far from trivial [lJ and, considered as a mechanism, it is very 
inefficient. The algorithm defined here is known as Normal-Order-Reduction. 

definition: 
eval·E = if nrE ..... E 

o ,nf·E ..... eval.(red.E) 
fi 

where function red is defined by: 

red· (x-lE) = x -I red·E 
red· « x-lE)0F) = E( x<3F) 
red· (E8F) = if nrE ..... E 0 red·F 

o ,nrE ..... red·E 0 F 
fi , for E not an abstraction 

o 
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Recursion 

In the previous sections we have defined the A-calculus and we have shown its con
sistency and implement ability. From this section onwards we study its use as a 
programming language; hence, the distinction between syntax and semantics be
comes less relevant: the values now are the objects of our interest and the terms are 
only textual representations of these values. We reflect this change of emphasis by 
adopting a simpler and more conventional notation for the A-calculus: 

instead of it we use x 
instead of x-iE we use Ax:E 
instead of E0F we use E·F 
instead of E(x<lF) we use E(x:=F) 
instead of E""F we use E=F 

remarks: The use of = for semantical equality is common mathematical prac
tice: usually 2+3 = 5 does not mean equality of the symbol strings "2+3" 
and "5" but of their values. The use of . instead of 0 reflects that the 
one and only purpose of 0 is to represent function application, in the way 
discussed in Chapter 2. 

o 

5.0 Function definitions 

In functional programming we use (function) definitions of the following shape: 

(5.0) x·y·z = E , 

in which x, y, z are names and E is an expression. In E names x, y, z, as well as 
other names, may occur as free variables. How can we interpret (5.0) as a definition, 
that is, what if anything at all does it define? 

27 
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The answer is that we consider formula (5.0) as an abbreviation of an equation 
in the unknown x, namely: 

x: ('<Iy,z:: x·y·z = E) 

This shows that x is the unknown and that y and z are only dummies; we call y 
and z the pammeters of x. In this particular case x has 2 parameters; generally, 
the unknown may have any number of parameters. We call equations of this shape 
"admissible equations". This equation contains universal quantification over y, Z; 
this may seem strange from a strictly formal point of view, because y, z are names 
in a A-calculus expression. Nevertheless, this is harmless, as long as we consider this 
equation as an abbreviation of the following (formally correct) equation: 

(5.1) x: ('<IF, G: ~fv·Yz : x·YG = E(y:= F)(z:= G) ) 

note: The restriction ~fv·Yz is necessary to prevent a name conflict with the 
substitution z:= G; for any particular F this restriction can be met by a 
suitable renaming of z, which is a dummy. 

o 

The answer to the above question now is that (5.0) defines x as a solution of 
equation (5.1). This answer, however, raises two new questions: do equations like 
(5.1) always have solutions, and what if they have many -more than 1- solutions? 
To answer the first question we use the A·calculus, whereas the second one can be 
answered in more general terms, without reference to the A-calculus. 

5.1 A solution to equation (5.1) 

In the A-calculus every admissible equation has at least one solution: we prove that 
equation (5.1) has a solution by constructing one. The pattern of reasoning is 
the same for any number of parameters. We proceed in a number of steps. First, 
assuming ~fv·Yz, we derive: 

E(y:= F)( z:= G) 

{ ({J) } 

(Az: E(y:= F))· G 

= { substitution, using ~fv·F·z } 

((h:E)(y:=F))· G 

{ ({J) } 

(Ay:Az:E)·F·G , 

hence: 
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x·F·G = E(y:=F)(z:=G) 

{ as above} 

x·F·G = (>.y:>.z:E)·F-G 

{ Leibniz } 

x = >.y:>.z:E . 

So, any solution of the following equation also solves (5.1): 

x: x = >.y:>.z:E 
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Because x may occur in E as a free variable, this equation is not entirely trivial. 
It is an instance of the more general equation: 

x: x = E , 

for any term E in which x (and other names) may occur as free variables. We now 
show that this equation has solutions by calculating first as follows: 

E 

{ substitution} 

E(x:=x) 

= { (.8) } 

(>.x:E) ·x 

The purpose of this calculation is to isolate the free occurrences of x: it shows that 
every term can be rewritten as F·x, where F is a term without free occurrences 
of x. Therefore, without loss of generality, we can safely confine our attention to 
equations of the following shape: 

(5.2) x: x = F·x , for term F with .fv·F-x 

Solutions of (5.2) are usually called fixed-points of F; hence, the question 
whether our original equation (5.0) has solutions boils down to the question whether 
the expressions in the language, when interpreted as functions, have fixed-points. In 
the >.-calculus the answer is "yes", as the following calculation shows: 

x = F-x 

{ choose x:= y.y (to obtain more manipulative freedom) } 

y.y = F·(y.y) 

{ substitution (z fresh) and (;3) } 
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y.y = (AZ: F·(z·z)) . y 

«= { Leibniz } 

y = Az:F·(z·z) 

corollary: (Az:F·(z·z))· (Az:F·(z·z)) is a solution of (5.2) 
o 
exercise: Solve x,y: x = F·x·y " y = G·x·y 
o 
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The A-calculus offers even more: the operation of mapping a function to one of 
its fixed-points itself is a function that can be represented in the A-calculus; calling 
that function Y, we have: 

Y = >.j: (AZ: f·(z·z))· (AZ: f·(z·z)) 

5.2 Which solution? 

In the previous section we have shown that in the A-calculus every "function" has at 
least one fixed-point; as a result, every admissible equation has at least one solution. 
In this section we study the question which solution is the intended one, whenever 
there are many. This question can be answered completely without reference to the 
A-calculus. 

The number of solutions of an equation depends, of course, on the universe in 
which the equation is considered. 

example: We consider the following equation (with unknown f): 

o 

f: f·0=3" ('v'i:iENat: f·(i+l)=f·i+2) 

In Jnt -t Jnt this equation has infinitely many solutions. In Nat -t Jnt, how
ever, the solution is unique. 

The question "which solution?" admits of two obvious answers. The first, most 
commonly used, answer is to impose a suitable partial order onto the set of all 
solutions and to pick the smallest one. Here, "suitable" means that the resulting 
ordered set is a complete lattice or a complete partial order. The second answer is to 
decide not to care and to pick an arbitmry solution. These two approaches are not so 
different as they may seem at first. Both are based on a kind of pessimistic view, and 
although the former allows stronger propositions to be proved -because Knaster
Tarski's theorem can be used- the latter has the charm of being simpler. Moreover, 
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the latter one perfectly fits into a style of programming that uses modularisation or 
refinement. 

The use of least solutions and, in the case of recursion, least fixed-points is 
well-known. Here, we investigate the "we·do-not-care"-interpretation in somewhat 
greater detail, by formulating proof rules for it. 

5.3 A general recursion theorem 

We study a generalised case first and then we specialise this for the case of recursive 
definitions. 

Let n be a set and let R be a predicate on n. Suppose we wish to construct a 
definition -program, expression, mechanism, ... - of a value X in n satisfying: 

R·X 

In such a case we call R·X the specification of X, to stress that it is a desired 
property of X. A specification is a coin with two faces. Whenever we use X the 
specification is all we (care to) know about X: from the viewpoint of its use a 
specification has the same status as a definition or an axiom. On the other hand, 
when we construct a definition for X the specification represents a proof obligation: 
from this point of view a specification has the same status as an equation to be solved 
or as a theorem to be proved. Thus, a specification forms the interface between the 
use of a mechanism and its implementation. 

This shows that, whenever a given specification admits many solutions, the user 
of a particular solution shall never complain about its particularities: the specifi
cation is supposed to capture all the user's wishes (and nothing more). So, that 
a specification admits many solutions means that the user did not care in the first 
place, nor should he start caring afterwards as well. 

Now suppose that we come up with a solution X that satisfies Q·X, for some 
predicate Q on n. What, then, must we prove in order that X meets its specifi
cation R-X? When we already know Q·X and when this is all we know about X, 
then the only thing we can do is prove: 

(5.3) (\Ix:: R·x ¢' Q·x) 

This rule can be considered as the basis of all proof obligations in (functional) 
programming: to prove that a proposed solution satisfies a specification, it suffices 
to show that its definition (viewed as a predicate) implies the specification. Of 
course, when Q is used to define X, we must also prove that such X exists, but 
that is a separate proof obligation, which can be rendered as follows: 

(3x :: Q·x) 

If, however, Q·X is an admissible equation, as discussed in Section 5.1, the existence 
of solutions is guaranteed. 
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We now use rule (5.3) to derive a few more specific proof rules, namely for the 
case of recursive definitions; that is, we consider predicates Q of the following form, 
where F is some function of type Q -> Q : 

Q·x ;: x=F-x 

Thus, rule (5.3) becomes: 

(5.4) ('<Ix:: R-x <= x =F·x) 

This rule can be considered as the prototype proof rule for recursive definitions. A 
few very trivial special instances of (5.4) are: 

('<Ix:: R-x) 
('<Ix:: R- (F-x)) 
('<Ix:: R-(F·(F·x))) 
et cetera. 

These trivial instances exhibit a pattern; indeed, by mathematical induction on the 
natural numbers we can derive the following strengthening of (5.4): 

(5.5) ('<Ix:: (3k:0::;k: R-(Fk.x)) 

In functional programmer's jargon this rule states that, whatever the initial value 
of x, a finite number of applications of F suffices to obtain a value that satisfies 
the specification. In a way, the elements of the sequence x, F·x , F- (F-x) , ... can 
be considered as successive approximations of F's fixed-points. Rule (5.5) then 
requires that every sequence of approximations contains an element satisfying R. 

Unfortunately, rule (5.5) is too strong to be of any practical use. Recursive def
initions are mainly used to define functions, or similar objects like infinite lists; usu
ally, the number of unjoldings required to obtain a value satisfying the specification 
depends on the argument of the function. Therefore, we need a more sophisticated 
rule that takes into account the properties of an additional domain. 

example: We consider the following function F: 

o 

F·j = Ai: if i=O -> 3 0 ie:1 -> j·(i-1)+2 fi 

Then we have: 

j=F·j => (Vi:iENat: j.i=2.i+3), 

but this cannot be proved by means of rule (5.5) ; yet, this proof is simple if 
only we use mathematical induction on i. 
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The following proof rule is only applicable to specifications of a certain shape, 
but it gives a weaker condition for F _ We assume that C is a set on which < is a 
binary relation that is well-founded, which means that properties about C may be 
proved by mathematical induction_ Furthermore, we assume that Q is a predicate 
on C X n, such that: 

(5_6) ('<Ix:: R-x == ('<Ie: eEC: Q-e-x)) 

In what follows dummies b, e range over C _ We now derive: 

('<Ix: x=F-x: R-x) 

= { (5_6) } 

('Ix: x=F-x: ('<Ie:: Q-e-x)) 

~ { (C, <) is well-founded: mathematical induction} 

('<Ix:x=F-x: ('<Ie:: Q-e-x ~ ('<Ib:b<e: Q-b-x))) 

= { Leibniz } 

('<Ix:x=F-x: ('<Ie:: Q-e-(F-x) ~ (Vb:b<e: Q-b-x))) 

~ { x = F-x has played its role: generalisation; unnesting dummies} 

('<Ix,e:: Q-e-(F-x) ~ (Vb: b<e: Q-b-x)) _ 

Thus, we have derived the following rule for specifications R satisfying (5_6) _ 

recursion theorem: Every fixed-point X of F satisfies ('<Ie:: Q-e-X) , for 
functions F satisfying: 

('<Ix,e:: Q-e-(F-x) ~ ('<Ib:b<e: Q-b-x)) 

o 

For the special case that C is the natural numbers, with the usual ordering, the 
premiss of this theorem can be reformulated as: 

(5_7) ('<Ix,i:: Q-O-(F-x) 1\ (Q-(i+l)-(F-x) ~ Q-i-x)) 

These proof rules are not very deep, but they provide a useful separation of con
cerns: these rules give proof obligations with respect to F for drawing conclusions 
about the fixed-points of F _ That these rules are only applicable to specifications 
of a particular shape is harmless, because specifications of functions almost always 
have that shape_ 

In practical situations it is not necessary to introduce a name like F when we 
wish to prove properties from a recursive definition_ In such a case, the recursive 
definition itself can be used to formulate the proof obligations_ 
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example: In practice the recursive definition from the previous example is cast 
in the following form; so, in this form J represents some fixed-point of func
tion F from the previous example: 

o 

(5.8) J·0=3" (Vi:iENat: J·(i+1)=J·i+2) 

Then we have: 

(IIi: iENat: J·i = 2.i+3) , 

and we prove this by mathematical induction on i, as follows: 

J·O 
= { definition (5.8) of J } 

3 

= { algebra} 

2.0+3 

and: 

J·(i+1) 

= { definition of J } 
J·i +2 

= { specification of /, by induction hypothesis} 

2.i+3+2 

= { algebra} 

2.(i+1)+3 

Notice how the "base" and the "step" in this proof correspond to the two 
conjuncts of rule (5.7). This kind of reasoning is correct because all we 
have used about J is (5.8), and (5.8) is (exactly) what all solutions to the 
equation have in common. 



Chapter 6 

On types 

6.0 Introduction 

The notion of type is particularly important in connection with functions: we say 
that a function F has type X ---> Y if and only if for all x of type X the application 
F·x has type Y. Because Y does not depend on x, the proposition that F-x has 
type Y is not the whole story about the value F·x: having type Y is a common 
property of all values of F on the domain X. Generally, a type is a common 
property of (the elements of) a collection of objects. 

In order that types be useful in mathematical discussions, we need rules for 
deriving the types of the objects under discussion -type introduction- and rules 
for using information about the types of objects -type elimination-. Together, 
rules for type introduction and elimination are known as type inference rules. 

In this chapter I wish to contrast two views on types, which I shall call the 
"syntactical view" and the "semantical view". In particular, I wish to shed some 
light on the limitations of the syntactical view and I wish to argue that, from the 
point of view of programming methodology, the semantical view is to be preferred. 
Thus, one may well wonder why the syntactical view is so popular nowadays. (One 
explanation might be found in the influence of the logicians on computing science, 
with their concern for syntax and decidability, and their fear of Russell's paradox.) 

Two remarks are in order here. First, it should be clear that in the above I am 
mainly referring to the use of types in programming and programming languages. 
Second, it should be clear that I am not challenging (the usefulness of) the type 
concept itself; I only want to discuss the forms in which the concept can be cast. 

6.1 The syntactical view 

In the syntactical view types are properties of expressions, as syntactical entities, 
independent of the values these expressions may assume. The type inference rules are 

35 
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syntactical rules; they are formulated in such a way that the type( s) of an expression 
can be derived in an entirely mechanical way from the (syntactical) structure of that 
expression and its context. (For example, it is mechanically decidable that x+2 has 
type Int if this expression occurs in a context where x has type Int.) This is known 
as strong typing. 

Expressions for which no type can be derived by means of the inference rules are 
considered as "meaningless" and are considered not to belong to the language. As 
a consequence, a great many (but not all) "meaningless" expressions are excluded 
from the language by syntactical means. (A trivial example of such an expression is 
true+2.) 

The syntactical approach has two advantages. First, it provides some protec
tion against programming errors, because the type inference mechanism can detect 
violations of the typing rules. One might argue that a careful and competent pro
grammer, who is well aware of the role types play in his programs, will not make such 
errors, but many clerical errors, like writing errors, manifest themselves as violations 
of the typing rules. Thus, any (not too elaborate) mechanism that contributes to 
the robustness of programs is welcome, even if it provides a partial protection only. 
Second, by exploiting the type information compilers (possibly) can generate more 
efficient code than without this information. 

These two advantages pertain to robustness and efficiency, which are engineering 
concerns; as such they are valuable, but they bear no relevance to the methodol
ogy of programming, where methods for designing correct and efficient programs 
are studied, not techniques for coping with clerical errors. Notice that I have not 
mentioned as an advantage that, as folklore has it, the syntactical notion of types is 
indispensible for a proper definition of the semantics of programming languages, for 
the simple reason that this is not true. And this is about the best I can say about 
the virtues of the syntactical view. 

* * * 
We now investigate some of the limitations of the syntactical view. It is well

known that for a general-purpose programming language, termination of computa
tions is undecidable. In particular, it is generally undecidable whether or not the 
value of an expression is an integer. Consequently, the syntactical notion "having 
type Int" cannot be the same as the semantical notion "having an integer value". 

For example, the value of x div y is an integer only if yolO, which is a semantical 
condition. As a more complicated example, for F of type Int --+ Int and for x a 
fixed-point of F we may not conclude that x is an integer. Take, for instance, 
F·y = l+y, then F has no integer fixed-points. Now take G·y = 2-y, then G 
does have a unique integer fixed-point, but the non-integer fixed-points of F may 
be fixed-points of G as well; as a matter of fact, models exist in which this is true 
indeed. 
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Thus, to save the syntactical view we have to admit a little bit of cheating: 
syntactical conclusions about the type of an expression give information about the 
value of that expression only modulo well-definedness, whereas well-definedness is 
not syntactically decidableo. 

A more fundamental disadvantage of the syntactical view is that it induces a 
rather artificial dichotomy between syntactically decidable and semantical proper
ties. For example, whereas "integer" is a type, "even integer" and "prime number" 
are not; whereas "list" is a type, "finite list" and "infinite list" cannot be distin
guished syntactically; whereas "integer list" is a type, "increasing integer list" is 
not. As a result, that an expression is an infinite integer list requires proof, but 
once this proof has been given the verification that the expression is an integer list 
is superfluous. 

Finally, a minor disadvantage is that the typing rules not only exclude mean
ingless expressions from the language, but also possibly meaningful ones. This is 
relevant when the language is also used for the implementation of data structuring 
constructs. For example, for boolean B and integer E the expression 

Ai: if i = 0 ..... B 0 i = 1 ..... E fi , 

is a perfectly defensible implementation of the pair consisting of boolean Band 
integer E. In most type inference systems this expression is untypable, whereas in 
the seman tical view it has type 

({O} ..... Baal) U ({I} ..... Int) 

6.2 The semantical view 

In the seman tical view types themselves can, of course, not be used for the definition 
of the semantics of the language, so we must assume that the semantics has been 
defined first. In this section we use n for the universe (or domain) of values for 
the expressions of the language. (For example, in the (type free) A-calculus n is 
the set of all equivalence classes of terms that are congruent modulo convertibility.) 
This universe will be rather amorphous and types can now be used to impose some 
structure onto it. In tills section we elaborate upon this view. 

Properties of elements of n can be specified by means of predicates on n. We 
now define a type to be a predicate on n. The idea is that a statement like "x 
has type T" is a (logical) proposition as good as any other; hence, by abstraction 
from x, "has type T" is a predicate as good as any other. Thus we obtain a nice 

°Strictly speaking there is a way out: when the program would be accompanied by a completely 
formalised specification and correctness proof, then all of its relevant properties would be mechan
ically verifiable; the type checker would then become a proof verifier. In that case, the distinction 
between types and other properties would disappear (as in the semantical view), but it remains to 
be seen whether this ultimate form of robustness is worth the price of complete formalisation. 
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homogeneous view in which there is no formal difference between types and other 
predicates or specifications. As a result, the type inference rules now are just special 
instances of the common proof rules; we shall illustrate this later. Moreover, the 
inherent dichotomy of the syntactical view is absent here. For example, when we 
have proved that an expression's value is an increasing integer list, then it also has 
type "integer list", for the simple reason that the increasing integer lists form a 
subset of the integer lists. Because of the (standard) one-ta-one correspondence 
between the predicates on n and the subsets of n, a type is also a subset of n, 
with the obvious interpretation: a type is the subset of all elements having that 
type. 

An immediately obvious advantage of this approach is that subtypes pose no 
problems whatsoever. Type T is a subtype of type U whenever [T:} UJ, or, in 
set notation, T <;; U. For example, Nat is a subtype of Int in the ordinary sense 
that every natural number also is an integer. A single value always has many types. 
For every value x the strongest type containing x is, of course, the point predicate 
-singleton set- (= x) . 

To illustrate the viability of the seman\ical view, we discuss a few common type 
constructors and we shall show that only a few modest additional assumptions about 
n are sufficient. Remember that types are predicates, so we denote "x has type T" 
by T·x. In this interpretation n -that is, the predicate (En)- represents the 
universal type of all values in our language: that a value has type n gives no 
information at all about that value. We exploit this when we discuss polymorphic 
data structures: a polymorphic list, for example, will be a list over n. 

Let 0 be some fixed, but as yet unspecified, binary operator in n X n -+ n. 
For types X, Y we define the function- type X -+ Y as follows, for every f in n: 

(6.0) (X-+Y)·f '" ("<Ix:: x.x :} Y·(l0x)) 

Thus, the binary operator 0 represents function application; the function involved 
is (10), although in common parlance we mostly refer to "function f" . Whether or 
not this yields an interesting game depends, of course, on the properties of 0 , but 
for understanding this definition these properties are irrelevant. Notice that (6.0) 
does not define X -+ Y as the set of all functions from X to Y: the type X -+ Y 
now denotes the subset of those elements in n that can be interpreted as functions 
from X to Y when 0 is interpreted as function application. (As I have argued in 
Chapter 2, this is the best possible for any programming language!. As a result, 
self applications like x0x present no problems, because the types X and X -+ Y 
need not be disjoint. It is all a matter of interpretation now.) 

For example, when 0 is A-calculus application we can derive, for terms E, F 
and dummy x: 

1 n is countable, whereas the set of all functions from X to Y is uncountable. 
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= 
(X --->Y)'(Ax:E) 

{ definition (6.0) of ---> } 

("IF:: X·F =;. y. «Ax: E) ·F) ) 

{ A-calculus} 

("IF:: X-F =;. Y·(E(x:=F))) 

{ dummy transformation x := F } 

("Ix:: X·x =;. Y·E) . 
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Thus we have derived, from our general definition of ---> , the following type inference 
rule for A-calculus abstractions: 

type inference for abstractions: 

(X--->Y)'(Ax:E) (Vx::X·x =;. Y·E) 
o 

Another elementary type constructor is the cartesian product operator X j in 
our approach it can be defined as follows, for types X, Y and for all z in 11: 

(XxY)·z,= (3x,y:: X·xl\Y·yl\z=pair·x·y), 

where pair is a function in n ---> n ---> 11 for which functions left and right in 11 ---> 11 
exist with: 

(Vx,y:: left·(pair·x·y) = x 1\ right·(pair·x·y) = y) . 

(In the A-calculus terms pair, left, and right exist that satisfy left·(pair·x·y) = x 
and right·(pair·x·y) = y. Thus, cartesian product can be implemented in the A
calculus. See Chapter 7.) 

From this definition of x (and the properties of pair, left, right) the following 
inference rules for product types can be derived: 

type inference for products: 

o 

(Vx,y:: X·x 1\ y.y =;. (Xxy}·(pair·x·y)) 
(Vz:: (Xxy)·z =;. X·(left·z)) 
(Vz:: (XxY)·z =;. Y·(right·z)) 

In this way the type X X Y contains precisely the values pair·x·y, for all x and y 
of type X and Y, and nothing else. As a result we have 

(Vz:: (XxY).z =;. pair·(left·z)·(right·z) = z) 
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Questions like whether or not pair·1-·1- = 1- are irrelevant here, for the simple 
reason that 1- plays no role in this approach. 

6.3 Polymorphism 

Polymorphism is possible without any problems. For example, the prototype of a 
polymorphic function is the identity function [; from our definition of -+ it follows 
immediately that [ has type X -+ X , for all types X. Furthermore, in Chapter 
7 we show how data structures with "elements", such as tuples, lists, trees, can be 
represented in a truly polymorphic way: when we wish to discuss their structure only, 
we consider them as structures over f!, which amounts to ignoring all information 
about (the types of) their elements. For example, every type is a subtype of f!, so 
the type of lists over any type is a subtype of the type of lists over f!. Hence, every 
function that is well-defined on the lists over f!, is also well-defined on the lists over 
any particular type. In this way, polymorphic properties of lists are properties of 
the lists over f!; such properties are inherited by lists over any type. As a matter 
of fact, in this approach it is not even necessary to require all elements of a list to 
have the same type. 

6.4 On the shape of inference rules 

In Section 6.2 we have derived the following inference rule for abstractions. 

type inference for abstractions: 

(X -+Y)·(Ax:E) ('Ix:: X·x => Y.E) 
o 

This rule establishes the equivalence of two predicates; by splitting the equivalence 
into two implications we can rewrite the left-to-right implication as follows: 

(X-+Y)·(Ax:E) => ('Ix:: X·x => Y·E) 

{ (P =» distributes over V } 

('Ix:: (X-+Y)·(Ax:E) => (X· x => Y·E)) 

= { trading} 

('Ix:: (X-+Y)·(Ax:E) " X·x => Y·E) 

= { dummy transformation x := F } 

('IF:: (X-+Y)·(Ax:E) A X-F => Y·(E(x:=F))) 
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In this shape this implication is known as the elimination rule for ->, whereas the 
reverse implication of the above equivalence, that is 

(X->Y)·(Ax:E) <:= ("'Ix:: X·x =} Y·E) 

is known as the introduction rule for ->. In the traditional natural-deduction style 
these rules take the following shape: 

r,x:x f- E:Y 
r f- (Ax.E): X_Y 

r f- (Ax.E):X->Y , r f- F:X 
r f- E(x:=F):Y 

Apart from the abundance of redundant -as I showed in [9]- r 's, the mere 
shape of these two rules obfuscates that they are actually the two halves of a simple 
equivalence. This illustrates for the n-th time, n~l, the clumsiness of natural 
deduction when it comes to effective reasoning. 



Chapter 7 

Towards a 
functional-programming 
language 

In this chapter we show how a functional-programming language can be based upon 
the A-calculus. For the interpretation of (recursive) definitions we adopt the views 
developed in Chapter 5, whereas for types we use the semantical view from Chap
ter 6. We shall discuss the representation of booleans, guarded expressions, product 
and sum types, naturals and integers, tuples, and finite and infinite lists. 

To what extent syntactic sugar is added to the language to support these con
cepts is mainly a matter of pragmatic considerations and, perhaps, of personal taste. 
Because here we are only interested in feasibility, we shall introduce as little addi
tional syntax as possible. 

This chapter is mainly included for the sake of completeness, and to demonstrate 
how utterly straightforward the application of the ideas from the previous chapters 
is. 

7.0 Function definitions 

In Chapter 5 we have already shown how recursive definitions can be interpreted in 
the A-calculus. Here we recall the main results from that chapter. 

In functional programming we use (function) definitions of the following shape: 

(7.0) x·y·z = E , 

in which x, y, z are names and E is an expression. In E names x, y, z, as well as 
other names, may occur as free variables. Such as a definition is an abbreviation of 
the equation 

(7.1) x: (Vy,z:: x·y·z = E) , 

42 
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and it defines x as some -otherwise unspecified- solution of this equation; we 
have shown that in the A-calculus this equation has solutions and we adopt the 
convention that any solution is as good as any other. Hence, all we know and all we 
shall use about x is (7.1). Dummies Y, z are called the parameters of x; generally, 
a function can have any number of parameters. (Functions with 0 parameters are 
usually called constants.) 

7.1 The type Bool 

For the implementation of the booleans and their operations it suffices to have 
available the following boolean primitives, in terms of which all boolean operations 
can be defined: 

constants true and false, and a 3-argument function if satisfying 
(Vx,y:: if·true·x·y = x) and (Vx,y:: if·false·x·y = y) 

By introducing these primitives we keep the interface between the datatype to be 
implemented and the A-calculus as thin as possible. Notice that we did not even 
require true and false to be different, as this is implied by the specification: 

true oj false 

«= { Leibniz (what else?) } 

(3x, y:: if·true·x·y oj if·false·x·y) 

{ specification of if } 

(3x,y:: x ojy) 

{ Q has at least two elements (Section 4.2) } 

true . 

Solutions to the above specification are easily calculated; for example: 

if·true·x·y 

= { specification of if } 

x 

= { A-calculus} 

(AY:x),y 

= { A-calculus} 

(h:AY:x),x,y . 

The driving force behind this calculation is the desire to bring the expression in the 
right-hand side of if's specification into a form similar to its left-hand side: now we 
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conclude that the first conjunct of if's specification is implied by: 

if-true = AX: AY: X 

In a similar way the second conjunct of the specification can be strengthened to: 

if-false = AX: AY: y 

Solutions to these two equations are easily obtained_ We choose: 

if = AZ:Z , 

in which case we have no choice but to define 

true = AX:AY:X 
false = AX:AY:y 

We now define the datatype Bool as the set {true, false} _ In terms of the prim
itives all boolean operations can be defined; for example: 

not-x = if-x-false-true 
and-x-y = if-x-y-false 
or-x-y if-x-true-y 
eqv-x-y = if-x-y-(not-y) 
and so on __ _ 

These operations are functions on Bool; that is, not has type Bool --> Bool, whereas 
and, or, eqv, ___ have type Bool --t Bool --t Bool; moreover, all the usual properties of 
these functions are derivable from these definitions_ As usual, we call an expression 
whose value is in Bool a boolean expression; what is unusual is that establishing 
such a fact requires proof going beyond a mere syntactical check_ 

Finally, we remark that the expressions for true and false have normal forms: 
they even are normal forms_ As a consequence, evaluation of any expression of type 
Bool terminates -see Section 4.4- _ This is a nice consequence of our decision 
to treat types semantically -see Section 6_2- _ Thus, in functional programming 
we never need to give separate termination proofs: termination of an expression's 
evaluation is always implicit in the expression's type_ This leaves us, of course, with 
the obligation to prove that the expression has the right type, but the latter has 
much less operational connotations than the notion of termination_ In this way, 
functional programming becomes an entirely non-operational gameO_ 

In the following sections we shall use the conventional notation for the boolean 
operations, such as ' for not, " for and, et cetera_ 

o as it should be, but not always is. 
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7.2 Guarded expressions 

In this section we introduce guarded expressions, mainly because we need them 
in the following sections. A guarded expression is an expression of the shape 
if B - E 0 C _ F fi, where Band C are boolean expressions called guards, and 
where E and F are expressions called alternatives. That Band C are boolean is 
a proof obligation that we leave implicit in the following discussions. For guarded 
expressions we use the following proof rule as their specification: 

first proof rule for guarded expressions: For every predicate R: 

o 

R·(if B - E 0 C - Ffi) 

follows from the conjunction of the following three conditions: 

B V C 
B :} R·E 
C :} R·F 

This rule does not require Band C to be disjoint and indeed expressions 
exist for which this rule does not give complete information about the values of 
these expressions. For example, the strongest conclusion that can be drawn about 
if true - 2 0 true _ 3 fi is that its value is either 2 or 3. This does not mean, 
however, that the language is nondeterministic. On the contrary, it is only the proof 
rule, as a specification, that gives incomplete information about the expression. By 
choosing the rule this way we avoid overspecification: in this form the rule captures 
all that is relevant for using guarded expressions, and nothing else. For example, 
now the expressions if B - E 0 C ---> F fi and if C ---> FOB - E fi are equivalent 
in the sense that all we can prove about the one can be proved about the other: by 
means of the proof rule they cannot be distinguished; nevertheless, they may have 
different values. 

To obtain complete information about the value of a guarded expression, one 
should prove in addition that all alternatives have the same value. This is represented 
by the following special case of the proof rule, obtained by substituting (= X) for 
R: 

second proof rule for guarded expressions: For all X: 

follows from the conjunction of the following three conditions: 
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B v C 
B => E=X 
C => P=X 
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For the implementation in the A-calculus we use the boolean primitives from 
the previous section. Actually, the above proof rule is a weakened version of the 
specification of the boolean primitive if; so, we simply define 

ifB ...... EDC ...... Pfi if·B·E·(if·C·P·?) , 

where ? represents a value that is left completely unspecified -a so-called don't 
care~. 

7.3 Product and sum types 

For the implementation of cartesian product we need functions pair, left, and right 
with the following specification: 

(Vx,y:: left· (pair·x·y) = x) and: (Vx,y:: right·(pair·x·y) = y) 

A simple and straightforward implementation is 

pa,,·x·y 
left·p 
right·p 

Ab: if b ...... x 0 ..,b ...... y fi 
= p·true 
= p·false 

As in Section 6.2 we denote the type of pairs with left element of type X and right 
element of type Y by X x Y. As a more readable alternative for pair·x·y we also 
use (x, y). In subsection 7.6 we shall define the more general notion of tuples in a 
homogeneous way. 

Disjoint sums can now be formed by pairing the elements with either true or 
false to encode the subtype they belong to. Thus, for types X and Y we define 
their disjoint sum X + Y by 

X +Y = {true}xX U {false}xY 

7.4 The types Nat and Int 

The natural numbers can be defined in terms of the following natural primitives: 

a constant zero and functions isz, succ , and pred satisfying, 
for all x in n: 
Isz·zero true 

= false isz·(succ·x) 
pred·(succ·x) = x 
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In terms of these primitives the type Nat is then defined as the strongest predicate 
on II -Le.: the smallest subset of II - satisfying: 

Nat·zero and ('Ix:: Nat·x =} Nat·(succ·x)) 

The first of these requirements states that zero has type Nat and the second one 
states that succ has type Nat --> Nat. 

Thus defined, the type Nat is infinite, which follows from the infinity lemma 
from Section 4.1 with b, f := zero,succ, because we have: 

zero" succ· x 

<= { Leibniz } 

and: 

isz·zero" isz·(succ·x) 

{ specification of isz } 

true" false 

{ } 

true , 

succ·x " succ·y 

<= { Leibniz } 

pred·(succ·x) " pred·(succ·y) 

{ specification of pred } 

x" y . 

The elements of type Nat now represent the natural numbers in the obvious way: 
succk ·zero represents k, for every natural k. Moreover, all arithmetic operators can 
be defined in terms of the primitives. For example, a recursive definition for addition 
is: 

plus·x·y = if isz·y --> x 0 -.isz·y --> succ·(plus·x·(pred·y)) fi 

Thus defined, plus satisfies: 

plus· x ·zero x 
plus·x·(succ·y) = succ·(plus·x·y) 

The natural primitives can be defined easily in the programming notation: 

zero (true, ?) 
succ·x (false, x) 
ISZ'X = left·x 
pred·x right.x 
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Actually, in this way the type Nat is defined as the recursive datatype given by: 

Nat = {?} + Nat 

The integers can be defined directly in terms of the naturals as follows. An integer 
is (represented by) a pair of naturals, in such a way that the pair (x, y) represents 
the integer x - y. This yields a non-unique representation for the integers, but the 
representation can be made unique by restricting the set to those pairs (x, y) that 
satisfy x = 0 V Y = O. In order to assure that the naturals are a true subtype of the 
integers we must, of course, embed them into the integers by redefining them. Thus 
we obtain: 

Nat' (set x: Nat·x : (x, 0)) 
Int = (set y : Nat·y: (0, y)) U Nat' 

As with the booleans, we shall use conventional notation for naturals and integers 
throughout the remainder of this study. 

7.5 Recursive datatypes 

The example of the natural numbers shows how recursive datatypes in general can 
be discussed: instead of imposing a complete partial order upon the value domain, 
we use that the collection of all predicates on the value domain -or: the powerset 
of the value domain- forms a complete lattice. The structure of this lattice is much 
richer than the complete partial orders used in domain theory; moreover, because 
for reasoning about programs and datastructures we need the predicate calculus 
anyhow, this gives rise to a nice, homogeneous system. A definite advantage of 
this modus operandi is that the need for the introduction of awkward elements like 
-L, with all their associated problems -e.g.: is or is not succ·-L = -L true? -, is 
avoided. 

The definition of the type Nat as the strongest predicate having a certain prop
erty, amounts to defining the type as the strongest fixed point of a monotonic pred
icate transformer [5]. In the case of Nat, the predicate transformer involved is 
X>-+ (=zero) V succ*X, where * ("map") denotes the operation of applying a 
function to all elements of a set. The monotonicity of this predicate transformer 
follows immediately from the fact that (F*) is universally disjunctive, for every F. 

Generally, every recursive datatype whose definition only involves the unit type, 
cartesian product, and disjoint sum can be dealt with in this way; these datatypes 
are also known as polynomial types [0]. 
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7.6 Tuples 

Having the integers at our disposal we are now able to define tuples as a generali
sation of pairs. This yields a homogeneous treatment in that the same (projection) 
functions for element selection can be used for tuples of any size. Moreover, it is 
possible to introduce a unary operator # ("size") mapping tuples to their sizes. For 
instance, we define 3-tuples as follows: 

(x,y,z) = Ai : if i=-l -t 3 

0 ,= 0 -tx 

[] ,= 1 -t Y 
[] ,= 2 -t Z 

fi 

With this definition we have that tp·-1 equals the number of elements of triple 
tp , so we can define # = (. -1). Similarly, for element selection we can use (·0), 
(-1), and so on. 

In many applications the sizes of the tuples used can take over the role of the 
boolean tags needed for the implementation of disjoint union. For example, the 
natural primitives could also be defined by 

zero = () 
succ·x = (x) 
ISZ'X = #·x = 0 
pred·x = x,O 

Similarly, the datatype of labelled binary trees can be defined by means of tuples as 
follows; the type Tree is the strongest predicate satisfying: 

Tree·() and ('Ix, s, t :: Tree·s /I Tree·t ~ Tree·(x, s, t) ) 

remark: This way of dealing with tuples resembles the concept of extensible 
records [13] that are used in object-oriented programming. 

o 

7.7 Finite and infinite lists 

Lists can be defined by means of the following list primitives. These primitives have 
been chosen so as to enable us to view lists in two complementary ways. On the 
one hand, lists are structured objects that can be composed and taken apart. On 
the other hand, lists can be considered as functions on natural intervals of the shape 
[O .. n), for O~n~oo; if n<oo the list is finite with length n and for n=oo the 
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list is infinite. We call the former the structural view, whereas we call the latter the 
functional view of lists. 

The list primitives are [], ; , ise, and tail and their specification is, for all x, y 
and natural i: 

ise· [] = true 
ise·(x;y) = false 
(x;y)·O = x 
(x;y)·(i+1) y.; 
tail·(x;y) y 

The (polymorphic) datatype L consists of two subtypes L. -the finite lists
and Loo -the infinite lists-. These subtypes are disjoint, so we have: 

L. U Loo = L , and 
L. n Loo = ¢ 

Moreover, L. is the strongest and L is the weakest of all predicates R satisfying: 

(7.2) R·[] A ('Ix,y:: R·y =? R·(x;y)) 

This definition is all we need for programming with lists. For reasoning about 
(recursive definitions of) infinite lists we need a kind of productivity theory, which 
is obtained by application of the recursion theorem from Section 5.3 to the case 
of infinite lists. According to this theory (so-called) list-productive functions have 
unique infinite lists as their fixed points; moreover, the theory provides a means for 
proving properties about these fixed points. As a very simple example, the following 
definition is productive and it yields the increasing infinite list containing the natural 
numbers. (An extensive discussion of productivity and more interesting examples 
can be found in [8].) In this example * denotes the "map" operator: 

X = 0 ; (1+)*x 

The list types thus defined comprise the lists over n, which means that the type 
of their elements is left unspecified. In order to obtain lists over some element type 
T, the range of dummy x in equation (7.2) must be strengthened to T·x. 

A correct implementation of the list primitives is: 

x;y = Ai : if i=-2 -+ false 

0 i=-1 -+ y 

0 1= 0 -+ X 

0 i> 0 -+ y.(i-l) 
fi 

[] = Ai: if i=-2 -+ true fi 
Ise·x x·-2 
tail·x = x·-1 



Chapter 8 

What paradoxes? 

In Chapter 7 we have defined the type Bool as the set {true, false}, where trueEn 
and false En, and we have defined boolean operations like not. Recall that not 
has type n -+ n, which means that not is total on n but that otherwise we know 
nothing about it, and that it has type Bool-+ Bool, which means that (within n) 
it maps booleans to booleans. Because not E n and because every value in n has a 
fixed-point we have: 

(8.0) (3x: xEn : x = not·x) , 

which seems contradictory, because we also know that: 

true # not ·true " false # not ·false , hence: 
(It x : xEBool : x # not·x) 

Nevertheless, there is no contradiction, for the range of x in (8.0) is n; the only 
conclusion we can draw is that, apparently, n contains more than just the booleans, 
which we already knew (because n is infinite). 

Similarly, we have: 

(3x : xEn : x = l+x) , but also: 
(ltx:xElnt:x#1+x) , 

but the only conclusion to be drawn from this is: 

(3x : xEn : ~(xElnt)) . 

In words: in whatever way we represent the integers in n, we shall always have 
Int # n. Again, this is not surprising, because (in the A-calculus) the integers have 
normal forms, whereas not all values have normal forms. 

A more interesting paradox is the one I quoted [11] in Chapter o. We repeat it here: 

51 
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An even more fundamental difficulty, however, is highlighted by the fact 
that our definition [ ... J involves the application of x to itself. The pos
sibility of self-application can lead to paradoxes. For example, suppose 
we define 

u = Ay. if y(y) =a then b else a . 

Then an attempt to evaluate u( u) gives 

u( u) = if u( u) = a then b else a 

which is a contradiction. 

The argument giving rise to the contradiction runs as follows: 

rh190 

The assumption u( u) = a leads to the conclusion u( u) = b, which implies a = b; 
hence, when a oF b has been givenO, we conclude u( u) oF a. From u( u) oF a (and the 
definition of u) we conclude u( u) = a, so we have a oF a , which is false. 

This paradox is not due to an inconsistency in the calculus: the above argument 
just is wrong. To expose the error we must be aware of the fact that u is a term 
in the A-calculus, in which if ... then ... else and = do not occur; so, these must be 
represented by terms in the A-calculus. That is, the A-calculus should contain terms 
true, false, if, and eq, with the following specifications: 

(Vx,y:: if·true·x·y = x) 
(Vx, y :: if·false·x·y = y) 
(Vx, y : x = y : eq·x·y = true) 
(Vx,y: XoFy: eq·x·y = false) 

In particular, this specification implies that eq has type n -> n -> Bool. In Chapter 
7 we have seen that if exists indeed. The contradiction in the above argument 
now arises from the assumption that eq exists as well, because in that argument 
we (tacidly) used that u( u) = a had a boolean value and that that boolean value 
represented equality of u(u) and a. (Notice that u(u)=a should be encoded 
as eq·(u·u)·a.) Apparently, this assumption is false, and the only conclusion we 
can draw from this "paradox" is that (a general purpose) equality test cannot be 
implemented in the A-calculus. 

Again, this conclusion is not that surprising: it only shows that mathematical 
equality -any two values in n are either equal or different- and computational 
equality are different notions; in this light the use of the symbol = for compu
tational equality is misleading. Fortunately, for terms having normal forms math
ematical equality is also computable, so for terms having normal forms the two 
notions coincide. That is, when restricted to normal forms, eq does exist!, with 
eq·x·y == x=y. 

"The author of [I1J has left this implicit. 
1 Although I do not know whether eq exists in n, but that is not too relevant here. 
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