EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Complexity results for scheduling tasks in fixed intervals on
two types of machines

Citation for published version (APA):
Nakajima, K., Hakimi, S. L., & Lenstra, J. K. (1982). Complexity results for scheduling tasks in fixed intervals on
two types of machines. SIAM Journal on Computing, 11(3), 512-520. https://doi.org/10.1137/0211040

DOI:
10.1137/0211040

Document status and date:
Published: 01/01/1982

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1137/0211040
https://doi.org/10.1137/0211040
https://research.tue.nl/en/publications/8e170695-4989-4522-9970-87196bed3f5e

SIAM J. COMPUT. © 1982 Society for Industrial and Applied Mathematics
Vol. 11, No. 3, August 1982 0097-5397/82/1103-0009 $01.00/0

COMPLEXITY RESULTS FOR SCHEDULING TASKS IN FIXED
INTERVALS ON TWO TYPES OF MACHINES*

K. NAKAJIMA,t S. L. HAKIML$ AND J. K. LENSTRA§

Abstract. Suppose that n independent tasks are to be scheduled without preemption on an unlimited
number of parallel machines of two types: inexpensive slow machines and expensive fast machines. Each
task requires a given processing time on a slow machine or a given smaller processing time on a fast
machine. We make two different feasibility assumptions: (a) each task has a specified processing interval,
the length of which is equal to the processing time on a slow machine; (b) each task has a specified starting
time. For either problem type, we wish to find a feasible schedule of minimum total machine cost. It is
shown that both problems are NP-hard in the strong sense. These results are complemented by polynomial
algorithms for some special cases.

Key words. parallel machines, tasks, release dates, deadlines, computational complexity, NP-hardness,
polynomial algorithm

1. Introduction. We begin by considering the following problem. Suppose there
are n tasks Ty, -+, T,, and an unlimited number of identical parallel machines. Each
task 7; requires a given processing time p; and is to be executed without interruption
between a given release date r; and a given deadline d; = r; + p;. The tasks are independent
in the sense that there are no precedence constraints between them. Each machine
can execute any task, but no more than one at a time. The problem is to find the
minimum number of machines needed to execute all tasks as well as a corresponding
schedule of the tasks on the machines.

This problem is known as the ““fixed job schedule problem” [6] and as the “‘channel
assignment problem”’ [8], [9], [10]. It has applications in such diverse areas as vehicle
scheduling [2], [15], machine scheduling [6], [8], and computer wiring [8], [9], [10].
As a special case of Dilworth’s chain decomposition problem, it is solvable in O(n %)
time by the staircase rule of Ford and Fulkerson [3, p. 65] and by the step-function
method of Gertsbakh and Stern [6]. Hashimoto and Stevens [9], [10] presented some
interesting graph theoretical approaches to the problem and proposed an O(n?)
algorithm, for which Kernighan, Schweikert and Persky [12] gave an O(n logn)
implementation. Recently, Gupta, Lee and Leung [8] independently developed a
different O(n log n) algorithm and also showed that any solution method for the
problem requires ()(n log n) time.

In this paper we will consider a natural generalization of this problem which has
potential applications in the scheduling areas mentioned above. Again, there are n
independent tasks T4, - -, T,, but there are two types of machines: slow machines
of cost C* and fast machines of cost C’ > C*. Each task T} requires a processing time
p; on a slow machine or ¢q;(<p;) on a fast machine and is to be executed without
interruption between its release date 7; and its deadline d; =r; +p;. It is assumed that
all numerical problem data are integers. In a feasible schedule, the tasks assigned

* Received by the editors July 30, 1979, and in final revised form September 9, 1981. This research
was supported in part by the National Science Foundation under grant ENG79-09724.

+ Computer Science Division, Department of Electrical Engineering, Texas Tech University, Lubbock,
Texas 79409. Formerly at Department of Electrical Engineering and Computer Science, Northwestern
University, Evanston, Illinois 60201.

i Department of Electrical Engineering and Computer Science, Northwestern University, Evanston,
Illinois 60201.

§ Mathematisch Centrum, Amsterdam, the Netherlands.

512

SCHEDULING TASKS IN FIXED INTERVALS 513
to slow machines have to start at their release dates in order to meet their dead-
lines. For the tasks 7; assigned to fast machines, we make two different feasibility
assumptions:
(a) VST (variable starting times): T; may start at any time in the inverval [r;, d; —g;];
(b) FST (fixed starting times): T; has to start at time 7;.
A schedule using m* slow machine and m’ fast machines has total cost m*C* +m’C”.
For either problem type, we wish to find a feasible schedule of minimum total cost.
In § 2 we show that the VST problem is NP-hard [1], [4], [5], [11], even if all
release dates are equal. In § 3 we extend our techniques to prove that the FST problem
is NP-hard in the case of arbitrary release dates; the case of equal release dates is
trivially solvable in O(n) time. The NP-hardness results are “strong” [4], [5] in the
sense that they hold even with respect to a unary encoding of the data; this implies
that there exists no pseudopolynomial algorithm for these problems unless ? = &P,
In §§ 4 and 5 we consider the special case that g;=1,j=1,-- -, n. We present
O(n log n) algorithms for the VST problem with equal release dates and for the FST
problem with arbitrary release dates, respectively.

TABLE 1
Summary of complexity results
VST FST
p; arbitrary
r; arbitrary r; equal r; arbitrary r; equal
q; arbitrary NP-hard (8§2)| NP-hard (§2)| NP-hard (§3)| O(n) §3)
qgi=1 Open O(nlogn) (8§4)| O(nlogn) (§5)| O(n) (83)

These results represent an almost complete complexity classification of the
problem class under consideration, as demonstrated by Table 1.

2. NP-hardness of the VST problem.

THEOREM 1. The VST problem is NP-hard in the strong sense, even if all release
dates are equal.

Our proof holds for the case that C//C*=3 and p;/q;=3,j=1, - - -, n. Theorem
1 dominates a previous result, stating that the VST problem is NP-hard in the strong
sense if the release dates are arbitrary, c’ /C* is an arbitrary constant between 1 and
7,and pj/q;=4,j=1,-+,n[17]

Proof of Theorem 1. We have to show that a problem which is known to be
NP-complete in the strong sense is (pseudopolynomially) reducible to the VST
problem. Our starting point will be the following problem [5, p. 224, [SP15]]:

3-PARTITION: Given a set S ={1, - -, 3¢} and positive integers a;, -+, ds, b
with b <a;<3b,j€ S, and ¥cs a; = tb, does there exist a partition of S into ¢ disjoint
3-element subsets Sy, -+, S; such that Y ;c5,a;,=b,i=1, -+, £?

Given any instance of 3-PARTITION, we construct, in (pseudo-) polynomial
time, a corresponding instance of the VST problem with equal release dates as follows:

1. The cost coefficients are defined by C* =1, C/ =3.

2. There are 4t tasks:

a-tasks T';,j € S,
b-tasks T2, ie{l, -, 1},

with r{ =0, p/ =64, q; =2a,

with 2 =0, p? =3b, q* = b.

514 K. NAKAJIMA, S. L. HAKIMI AND J. K. LENSTRA
We claim that 3-PARTITION has a solution if and only if there exists a feasible
schedule with total cost at most C* = 3.

Suppose that 3-PARTITION has a solution {S, - * + , S.}. It is possible to construct
a feasible schedule for all tasks on ¢ fast machines M7, - - -, M’ as follows (cf. Fig.
1): for each i€{1, - - -, f}, machine M’ processes the three tasks T}, jeS; in nonde-
creasing order of g; value in the interval [0, 2b), and the task T? in [2b,3b]; note
that the starting time of each task falls within the required interval. The total cost of
this schedule is equal to tC’ = C*.

Conversely, suppose that there exists a feasible schedule with total cost at most
C*=3t. No slow machine can process more than one task. No fast machine can
process more than four tasks, since the completion time of the fourth task will be
larger than 2b and the starting time of a fifth task should be no larger than 25. Let
there be m°® slow machines and m’ fast machines. We have, by the hypothesis,
m® +3m’ =3¢ and, by the above arguments, m* = 4¢—4m’. The first inequality implies
that m’ =t and the two together imply that m’ = 1. We conclude that m” = z. It follows
that there are no slow machines and ¢ fast machines, each processing four tasks.

Instance of 3-PARTITION:

£=3;b=25 4|1 2 3 456 7 89

aj-77788891011

Solution: {{1,2,9},{3,4,8},{5,6,7}}

Corresponding VST schedule on t fast machines:

0 14 28 50 75
4 . .] b,
M T‘1‘.14 1‘2‘.14 T‘;.zz T:25

0 14 30 50 75
$. . . b,
Mg T§.14 T‘;’.16 T‘g.zo T5:25

0 16 32 50 75
4 . . . b,
Mg T‘;As T‘é.16 7‘;.18 T3:25

Fi1G. 1. Illustration of the transformation in Theorem 1.

None of these fast machines can process more than one b-task, since otherwise
the completion time of the fourth task would be larger than 3b. It follows that the
ith fast machine processes exactly one b-task and three a-tasks T, j € S, with Y jcs,q7 =
2b. Since Y,cs qj =2th, we have Y,cs,q; =2b,i=1, - -, t. The collection {Sy, - - -, S;}
constitutes a solution to 3-PARTITION. 0O

3. NP-hardness of the FST problem.

THEOREM 2. The FST problem is NP-hard in the strong sense.

THEOREM 3. The FST problem is solvable in O(n) time if all release dates are equal.

Our NP-hardness proof holds for the case that C’/C*=(t+2)/(t+1) and pilq; =
z,j=1,-++,n, where t and z are input variables. Theorem 2 is still true if c’/ce
is an arbitrary constant between 2 and 3 and p;/q;=2,j =1, -, n [16]; the proof of
this further refinement is quite involved. Theorem 3 shows that the NP-hardness result
cannot be extended to the case of equal release dates, unless # = /P,

SCHEDULING TASKS IN FIXED INTERVALS 515

Proof of Theorem 2. We will start from the following strongly NP-complete
problem [5, p. 224, [SP17]]:

NUMERICALMATCHING WITH TARGET SUMS. GivenasetS ={1,:--,¢}
and pOSitiVe integers Ay, 0, 0y bla Ty bt, Ci,* "5 Ct with Zies (ai+bi)=ZieS Cis do
there exist permutations @ and B of S such that a,) +bgu =c¢;, i€S?

We may assume without loss of generality that a;<:--<a, b;<---<b, and
¢1< -+ <c. Further, we will assume that for any instance of this problem there exists
a positive integer z such that

z<a1< <, <2z2<b 1< <h<3z<1< < <5z

(If this does not hold, then define z =max{a,+1, b,+1} and set a; « a;+z, b; « b; +
2z,¢; « ¢;+3z,ieS.) We will use the notation $'={1,---,¢—1}.

Given any instance of NUMERICAL MATCHING WITH TARGET SUMS we
construct, in (pseudo-) polynomial time, a corresponding instance of the FST problem
as follows:

1. The cost coefficients are defined by C* =¢+1, Cl=t+2.

2. There are 2t +¢ tasks:

a-tasks T7,i €S, with r{ =0, pi=za, qi=a,
b-tasks Th, he S, icS, withry =a,, phi=1zby qbi=b,
c-tasks T%, i € S, with 7§ = ¢;, pi=32>, qf=32%

d-tasks T, heS',ieS, withriy=2z+zb, ph=2z°, qh=2"

We claim that NUMERICAL MATCHING WITH TARGET SUMS has a solution
if and only if there exists a feasible schedule with total cost at most C* = >+ P+t

Suppose that the matching problem has a solution (a, B8). It is possible to construct
a feasible schedule for all tasks on ¢ fast machines M, i € S, and 1> —¢ slow machines
M, heS', ieS, as follows (cf. Fig. 2): for each i € S, machine M f processes the tasks
TZ(,'), TZ:(:‘)B(;‘)’ T,C in the intervals [0, aa(i)], [aa(,'), aa(i)+b3(i)], [C,‘, Ci +3Z2] (note that
a.iy+ bew = ci), and each of the t—1 machines M},;, h € S’, processes one of the r—1
tasks To, h e S —{a(B7'(})}, in [an a, + zb;] and one of the t—1 tasks T, h e S, in
[2z +zb;, 2z + zb; + 2] (note that a;, <2z). The total cost of this schedule is equal to
1ICT+ (12 —1)C* = C*,

Conversely, suppose that there exists a feasible schedule with total cost at most
C*. We make the following propositions.

PropOSITION 1. Two a-tasks are not assigned to the same machine.

Proof. Each a-task is processed during the interval [0, z].

PROPOSITION 2. Two b-tasks are not assigned to the same machine.

Proof. Each b-task is processed during the interval [2z, 3z].

ProOPOSITION 3. Two c- or d-tasks are not assigned to the same machine.

Proof. Each c- or d-task is processed during the interval [3z°+z,32°+3z].

PROPOSITION 4. An a-task and a b-task are not assigned to the same slow machine.

Proof. On a slow machine, each a- or h-task is processed during the interval
[2z-1,z%+z].

PROPOSITION 5. A b-task and a c-task are not assigned to the same slow machine.

Proof. On a slow machine, each b- or c-task is processed during the interval
[Sz-1,2z%+2z +1].

All tasks are assigned to at most ¢*> machines, since (t>+1)C* > C*. Propositions
1, 2 and 3 imply that there are exactly t* machines, each processing at most one
a-task, exactly one b-task and exactly one c- or d-task. These machines include at

516 K. NAKAJIMA, S. L. HAKIMI AND J. K. LENSTRA

Instance of NUMERICAL MA‘TCHING WITH TARGET SUMS:

t=332z=4; 4 12 3
a;, |5 6 7
b, |910Mm
c; |141618
Solution: af4)] 1 2 3
B(4)| 1 2 3
Corresponding FST schedule on t fast machines and tz-i slow machines:
05 14 62
§[ra. b, c.
Mg 7‘1‘.5 T3q:9 T7:48
0 6 16 64
6| a. b . c.
S| T5:6 | 75,010 T,:48
0 7 18 66
§ . b, e,
M| T5:7 o511 T:48
6 42 44 _108
b . d
Mﬁ1 T54:36 T44:64 _
7 43 43 08
b .
" T31:36 51764 _]
5 45 48 - 112
b, .
M3, T;,:40 Tf2.64 _
, 7 47 48 - 112
b, .
M, 73,040 T§2.64 _
5 49 52 - 116
b . d .
.«4:3 T 4144 713.61
3 50 52 _ 116
b . .
", T5,:44 T§3.si

F1G. 2. Illustration of the transformation in Theorem 2.

most ¢ fast ones, since (> —7—1)C* +(t+1)C > C*. Propositions 4 and 5 imply that
there are exactly ¢ fast machines, each processing one a-task, one b-task and one
c-task; hence, there are exactly 1>~ ¢ slow machines, each processing one b-task and
one d-task.

We denote the ¢ fast machines by M7, i€ S, and the t*—¢ slow machines by
M, heS',ieS. It may be assumed that T is assigned to M}, ieS, and T§; to
M, heS',ieS. There exists a permutation @ of S such that T4, is assigned to
MlieS.

Let us define the size of T%; as b, its processing time on a fast machine. The size
of a b-task on M/ is at most ¢;— ., and the size of a b-task on M3, is at most
(22 +zb;—a1)/z] = b;. The sum of these upper bounds over all machines is equal to
Yies (€i— Aay) + Lhes, ics bi =1t Yics b, which is the total size of all b-tasks. It follows
that all these upper bounds are actually achieved. More explicitly, for each i € S, there
exists an index B(i) € S such that T4, is assigned to M, and there exists an index
y(i) € S such that the ¢ —1 tasks T, h € S —{y(i)}, are assigned to the —1 machines

SCHEDULING TASKS IN FIXED INTERVALS 517

M, heS', while TS, is assigned to a fast machine. This implies that the functions
B and vy are permutations of § with y(8(i)) =a/(i), i€ S.

Since Tosw leaves no idle time between T4y, and T: on M ! we have
Ay +bpiy = ¢, i € S. The pair (a, B) constitutes a solution to the matching problem. 0

Proof of Theorem 3. In the FST problem with equal release dates, each task has
to start at the same time and therefore each machine can process at most one task.
It follows that an optimal schedule uses n slow machines and has total cost nC". It
is constructed in O(n) time. 0O

4. A well-solvable case of the VST problem.

THEOREM 4. In the case that qj=1,j=1,++ -, n, the VST problem is solvable in
O(n log n) time if all release dates are equal.

The complexity of the VST problem with all g; =1 and arbitrary release dates
remains unresolved (cf. Table 1).

Proof of Theorem 4. In the VST problem with equal release dates, a slow machine
can process at most one task but a fast machine may be able to process more than one.

Let us assume that there are m fast machines, with 0 = m = n, and let X,,, denote
the maximum number out of the »n unit-time tasks that can be completed in time on
these machines. A schedule using m fast machines has to use n — X, slow machines;
its total cost is equal to C,, = mC’ +(n —X,,)C". It follows that an optimal schedule
has total cost minp<,m=n{Cn}.

For each given value of m, the number X,, and a corresponding schedule on m
fast machines can be found by an O(n log n) algorithm from Lawler [14], [7, p. 295].
Straightforward application of this algorithm for m =0, - - -, n would yield an overall
optimal schedule in O(n? log n) time.

However, all Xj, * * +, X, together can be determined by an O(n log n) algorithm,
which constructs a schedule on n fast machines with the property that, for any value
of m, the partial schedule on the first m machines is an optimal schedule on m machines
[13]. This algorithm considers the tasks in order of nondecreasing deadlines and
assigns each task to the machine with lowest index on which it can be completed in
time. A formal statement is as follows.

VST ALGORITHM (only fast machines, all q; =1, all r; = 0)

Initialize. Reorder the tasks in such a way that di =+ + - =d,,; set do <« —0. Intro-
duce an array x of size n and set x,, <0, m=1,-:-,n [x, tasks have
been assigned to machine M7,].

Introduce an array w of size n [T; will be assigned to M ﬁi]. Set m<« 1.

Iterate. for j<1ton do
begin

set m «if d;_, <d; then 1 else if x,, <d; then m else m +1;
Set i< M, Xpy € X+ 1
end.
Finalize. Set Xy« 0;for m<« 1ton doset X, «X,,—1+xnm.

It can be shown that X, is the maximum number of tasks that can be completed in
time on m fast machines, for m =0, - - -, n [13]. The algorithm requires O(n log n)
time to order the tasks, and O(n) time to construct the schedule and to determine
the values Xj, ‘-, X,. It follows that an overall optimal schedule is obtained in
O(nlogn) time. 0O

Note. Since X, ZxXm+1, m=1,:++,n—1,X, is a concave function of m, so that
C.. is convex. A similar observation will be exploited in the next section.

518 K. NAKAJIMA, S. L. HAKIMI AND J. K. LENSTRA

5. A well-solvable case of the FST problem.

THEOREM 5. In the case that q;=1,j=1, - -, n, the FST problem is solvable in
O(n log n) time.

The assumption that all g; = 1 is too strong: an analysis of the proof below shows
that our algorithm is applicable in the more general situation that the g; are bounded
from above by the minimum length of the interval between two different adjacent
release dates. Although this restriction still limits the practical value of our result, we
feel that the insight gained might be useful in the design of approximation algorithms
for the general FST problem.

Proof of Theorem 5. The development of our algorithm will proceed along the
same lines as in the previous section. First, we will assume that there are m fast
machines and we will determine an optimal set of tasks to be scheduled on these
machines. Next, we will compute the minimum number of slow machines needed to
execute the remaining tasks. Finally, we will describe an efficient method to find the
optimal value of m.

We start by representing the problem data in a convenient way. Suppose that
the release dates assume k different values 7y,::-, 7 with 7,<-:-:-<F7. For
j=1,-++, k, there are n; tasks Ty, - - -, T,; with release dates r;= -+ =r,; =7 and
deadlines di; =+ =d,;. We have n=Y;_1n; and define n'=max,<,=,{n;}. This
representation can be obtained by sorting the release dates and the deadlines in
O(n log n) time and applying a bucket sort [1] to order the tasks with the same release
date according to deadlines in O(n) time.

Let us now assume that there are m fast machines M4, -+, M/, withO=m =n'.
For j=1,---,k, each of these machines can process exactly one of the tasks
Ty, -+, T,; It is obviously optimal to assign 7Tj; to M/ for j=1,-++,k and i=
1, -, min{n;, m}, so that the remaining tasks will be as short as possible. Let 7,
denote the set of tasks that are not assigned to the m fast machines, where I, =
{Ty,:++,T,}and 7, = O, and let /,, denote the minimum number of slow machines
needed to execute these tasks. A schedule using m fast machines has total cost
Cn=mC’+1,C". It follows that an optimal schedule uses m* fast machines, where
Cm* = min0§m§n' {Cm}'

For each given value of m, the number /,, and a corresponding schedule of the
tasks in 7, on l,, slow machines can be found in O(n log n) time. This problem has
already been discussed in the first two paragraphs of § 1. The following algorithm is
a slight modification of the channel assignment algorithm of Gupta, Lee and Leung
[8]; for simplicity, it is stated for the case that m =0.

FST ALGORITHM (only slow machines)
Initialize. Reorder the tasks in such a way that r; = - - - =r,; determine a permuta-

tion 8 of {1, -+, n} such that ds1)= : * - =ds(). Introduce a stack S of
size n and push machine indices 1, -+ -, n onto S in such a way that m
isontopof m+1,m=1,:--,n—1. Introduce an array A of size n [T;

will be assigned to M3,]. Set j« 1,i< 1.
Iterate. while j=n do
if n< ds(i)
then begin set A; « top element of S; pop S;setj«j+1 end
else begin push A5, onto S; set i «i+1 end.
Finalize. Set ly<max;=j=n{A;}.

It can be shown that [, is the minimum number of slow machines needed to
execute all tasks. The algorithm requires O(n log n) time to order the tasks, and O(n)

SCHEDULING TASKS IN FIXED INTERVALS 519

time to construct the schedule and to compute the value /y. Since the release dates
and the deadlines have already been sorted, each application of this algorithm requires
only O(n) time. Straightforward computation of /,, for m =0, - - -, n’ would yield an
overall optimal schedule in O(n log n +n'n) = O(n?) time.

However, it will be shown below that C,, is a convex function of m, and this
property can be exploited to arrive at an O(n log n) algorithm. The convexity of C,,
implies that, if C,, < C,,+1,then m*€{0, -+, m},andelse m*e{m+1, - - -, n'}. Thus,
m* can be found by a bisection search as follows: for m = [3n'], compute C,, and
C,n+1, reduce the domain of m* by a factor of two by eliminating either [0, m] or
[m +1, n'], and repeat the procedure on the remaining interval. The optimal value of
m is found in at most [log, (r'+1)] iterations.

The entire algorithm requires O(n log n) time to sort the release dates and the
deadlines and, for each of O(log n') values of m, O(n) time to compute C,,. It follows
that an overall optimal schedule is obtained in O(n log n) time.

It remains to be shown that C,, is a convex function of m. Since C,, = mC’ +1,,C",
we have to prove that [, is convex, or equivalently that

(1) lm—l_lmglm_lm+1, m=1"",n!—1-

We define the degree of overlap of the set & at time ¢ as the number of tasks T; € &
such that t e[r;, d;). Let X,,(¢) denote the degree of overlap of 7, at ¢ and x,,,—1(¢) the
degree of overlap of F,,,—1 — T, at t,i.€., Xpn—1() = Xm—-1(£) — X,n (¢). It is known [9] that

(2) L, =max, {X,.(8)}, m=0,--+,n'.

Since the number of tasks T; € 7,,—-1— 7., and the lengths of their intervals [r;, d;) do
not increase as m increases, it is also true that

3) Im_1()=Zx,(t) allt, m=0,---,n'—1.

Defining ¢, such that X, (¢,.) = max, {X,.(¢)}, m =0, - - -, n’,and applying (2), we rewrite
(1) as

Xin—1(tm—1) = Xon (tm) Z X (t) = X 41 (b 1)
We have for the left-hand side that
Xin—1(tm—1) = Xin (tm) = Xon—1(tm—-1) = Xon-1(tm) + Xm—1(tm) Z Xpm—1(tm).
Similarly, we have for the right-hand side that
Xon (tm) = Xn1(tm+1) = X1 () + Xom (t) = Xin1(tm 1) = X (8.

Application of (3) for ¢ =t, now implies the validity of (1). This completes the proof
of Theorem 5. 0

Note. By means of ingenious counting techniques, the above algorithm for com-
puting a single value /,, can be extended to an O(n log n) algorithm for computing
all lo, * + +, I,, together [13]; when the data have already been sorted, it requires only
O(n) time, as before. A similar result has been used in the previous section.

Acknowledgment. The authors gratefully acknowledge constructive suggestions
by B. J. Lageweg.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

520 K. NAKAJIMA, S. L. HAKIMI AND J. K. LENSTRA

[2] G. B. DANTZIG AND D. R. FULKERSON, Minimizing the number of tankers to meet a fixed schedule,
Naval Res. Logist. Quart., 1 (1954), pp. 217-222.

[3] L. R. FORD, JR. AND D. R. FULKERSON, Flows in Networks, Princeton University Press, Princeton,
NJ, 1962

[4] M. R. GAREY AND D. S. JOHNSON, “Strong” NP-completeness results: motivation, examples and
implications, J. Assoc. Comput. Mach., 25 (1978), pp. 499-508.

, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San
Francisco, 1979.

[6] I. GERTSBAKH AND H. L. STERN, Minimal resources for fixed and variable job schedules, Oper. Res.,
26 (1978), pp. 68-85.

[7] R. L. GRAHAM, E. L. LAWLER, J. K. LENSTRA AND A. H. G. RinNoOY KAN, Optimization and
approximation in deterministic sequencing and scheduling: A survey, Ann. Discrete Math., 5 (1979),
287-326.

[8] U. I. GupTA, D. T. LEE AND J. Y.-T. LEUNG, An optimal solution for the channel-assignment
problem, IEEE Trans. Comput., C-28 (1979), pp. 807-810.

[9] A. HAsHIMOTO AND J. E. STEVENS, Path cover of acyclic graphs, ILLIAC 1V, Document 239,
University of Illinois, Urbana, IL, 1970.

, Wire routing by optimizing channel assignment within large apertures, in Proc. 8th Design

Automation Workshop (1971), pp. 155-169.

[11] R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.

[12] B. W. KERNIGHAN, D. G. SCHWEIKERT AND G. PERSKY, An optimum channel-routing algorithm
for polycell layouts of integrated circuits, in Proc. 10th Design Automation Workshop, 1973,
pp- 50-59.

[13] B.J. LAGEWEG, Personal communication, 1980.

[14] E. L. LAWLER, Sequencing to minimize the weighted number of tardy jobs, RAIRO Inform., 10 (1976),
5 Suppl., pp. 27-33.

[15] J. K. LENSTRA AND A. H. G. RINNOOY KAN, Complexity of vehicle routing and scheduling problems,
Networks, 11 (1981), pp. 221-227.

[16] K. NAKAJIMA, On nonpreemptive multiprocessor scheduling with discrete starting times, Ph.D. disserta-
tion, Department of Electrical Engineering qnd Computer Science, Northwestern University,
Evanston, IL, 1980.

[17] K. NAKAJIMA AND S. L. HAKIMI, On the NP-completeness of a real-time scheduling problem with
two types of machines, in Proc. 17th Allerton Conf. Communication, Control, and Computing,
University of Illinois, Urbana, IL, 1979, pp. 652-658.

(5]

(10]

