EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Efficient almost wait-free parallel accesible dynamic
hashtables

Citation for published version (APA):
Gao, H., Groote, J. F., & Hesselink, W. H. (2003). Efficient almost wait-free parallel accesible dynamic
hashtables. (Computer science reports; Vol. 0303). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2003

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/5324fef2-ed74-4819-8544-f20f0b9aadce

Efficient Almost Wait-free
Parallel Accessible Dynamic Hashtables

Gao, H.', Groote, J.F.2, Hesselink, W.H.!
! Department of Mathematics and Computing Science, University of Groningen, P.O. Box 800, 9700 AV
Groningen, The Netherlands(Email: {hui,wim}@cs.rug.nl)
2 Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box
513, 5600 MB Eindhoven, The Netherlands and CWI, P.O. Box 94079, 1090 GB Amsterdam, The
Netherlands (Email: jfg@win.tue.nl)

Abstract

In multiprogrammed systems, synchronization often turns out to be a performance bottleneck
and the source of poor fault-tolerance. Wait-free and lock-free algorithms can do without
locking mechanisms, and therefore do not suffer from these problems. We present an efficient
almost wait-free algorithm for parallel accessible hashtables, which promises more robust
performance and reliability than conventional lock-based implementations. Our solution is as
efficient as sequential hashtables. It can easily be implemented using C-like languages and
requires on average only constant time for insertion, deletion or accessing of elements. Apart
from that, our new algorithm allows the hashtables to grow and shrink dynamically when
needed.

A true problem of lock-free algorithms is that they are hard to design correctly, even when
apparently straightforward. Ensuring the correctness of the design at the earliest possible
stage is a major challenge in any responsible system development. Our algorithm contains
81 atomic statements. In view of the complexity of the algorithm and its correctness prop-
erties, we turned to the interactive theorem prover PVS for mechanical support. We employ
standard deductive verification techniques to prove around 200 invariance properties of our
almost wait-free algorithm, and describe how this is achieved using the theorem prover PVS.

CR Subject Classification (1991): D.1 Programming techniques

AMS Subject Classification (1991): 68Q22 Distributed algorithms, 68P20 Information storage
and retrieval

Keywords € Phrases: Hashtables, Distributed algorithms, Lock-free, Wait-free

1 Introduction

We are interested in efficient, reliable, parallel algorithms. The classical synchronization paradigms
are not most suited for this, because synchronization often turns out a performance bottleneck,
and failure of a single process can force all other processes to come to a halt. Therefore, wait-free,
lock-free, or synchronization-free algorithms are of interest [11, 19, 13].

An algorithm is wait-free when each process can accomplish its task in a finite number of
steps, independently of the activity and speed of other processes. An algorithm is lock-free when
it guarantees that within a finite number of steps always some process will complete its tasks, even
if other processes halt. An algorithm is synchronization-free when it does not contain synchroniza-
tion primitives. The difference between wait-free and lock-free is that a lock-free process can be
arbitrarily delayed by other processes that repeatedly start and accomplish tasks. The difference
between synchronization-free and lock-free is that in a synchronization-free algorithm processes
may delay each other arbitrarily, without getting closer to accomplishing their respective tasks.
As we present a lock-free algorithm, we only speak about lock-freedom below, but most applies to
wait-freedom or synchronization-freedom as well.

Since the processes in a lock-free algorithm run rather independently of each other, lock-free
algorithms scale up well when there are more processes. Processors can finish their tasks on their
own, without being blocked, and generally even without being delayed by other processes. So,
there is no need to wait for slow or overloaded processors. In fact, when there are processors of

differing speeds, or under different loads, a lock-free algorithm will generally distribute common
tasks over all processors, such that it is finished as quickly as possible.

As argued in [13], another strong argument for lock-free algorithms is reliability. A lock-free
algorithm will carry out its task even when all but one processor stops working. Without problem
it can stand any pattern of processors being switched off and on again. The only noticeable effect
of failing processors is that common tasks will be carried out somewhat slower, and the failing
processor may have claimed resources, such as memory, that it can not relinquish anymore.

For many algorithms the penalty to be paid is minor; setting some extra control variables, or us-
ing a few extra pointer indirections suffices. Sometimes, however, the time and space complexities
of a lock-free algorithm is substantially higher than its sequential, or ‘synchronized’ counterpart
[7]. Furthermore, some machine architectures are not very capable of handling shared variables,
and do not offer compare-and-swap or test-and-set instructions necessary to implement lock-free
algorithms.

Hashtables are very commonly in use to efficiently store huge but sparsely filled tables. As
far as we know, no wait- or lock-free algorithm for hashtables has ever been proposed. There are
very general solutions for wait-free addresses in general [1, 2, 6, 9, 10], but these are not efficient.
Furthermore, there exist wait-free algorithms for different domains, such as linked lists [19], queues
[20] and memory management [8, 11]. In this paper we present an almost wait-free algorithm for
hashtables. Strictly speaking, the algorithm is only lock-free, but wait-freedom is only violated
when a hashtable is resized, which is a relatively rare operation. We allow fully parallel insertion,
deletion and finding of elements. As a correctness notion, we take that the operations behave
the same as for ‘ordinary’ hashtables, under some arbitrary serialization of these operations. So,
if a find is carried out strictly after an insert, the inserted element is found. If insert and find
are carried out at the same time, it may be that find takes place before insertion, and it is not
determined whether an element will be returned.

An important feature of our hashtable is that it can dynamically grow and shrink when needed.
This requires subtle provisions, which can be best understood by considering the following scenar-
ios. Suppose that process A is about to (slowly) insert an element in a hashtable H;. Before this
happens, however, a fast process B has resized the hashtable by making a new hashtable Hs, and
has copied the content from H; to Hs. If (and only if) process B did not copy the insertion of A,
A must be informed to move to the new hashtable, and carry out the insertion there. Suppose a
process C' comes into play also copying the content from H; to Hs. This must be possible, since
otherwise B can stop copying, blocking all operations of other processes on the hashtable, and
thus violating the lock-free nature of the algorithm. Now the value inserted by A can but need not
be copied by both B and/or C. This can be made more complex by a process D that attempts
to replace Ho by Hj. Still, the value inserted by A should show up exactly once in the hashtable,
and it is clear that processes should carefully keep each other informed about their activities on
the tables.

A true problem of lock-free algorithms is that they are hard to design correctly, which even
holds for apparently straightforward algorithms. Whereas human imagination generally suffices to
deal with all possibilities of sequential processes or synchronized parallel processes, this appears
impossible (at least to us) for lock-free algorithms. The only technique that we see fit for any but
the simplest lock-free algorithms is to prove the correctness of the algorithm very precisely, and
to double check this using a proof checker or theorem prover.

Our algorithm contains 81 atomic statements. The structure of our algorithm and its correct-
ness properties, as well as the complexity of reasoning about them, makes neither automatic nor
manual verification feasible. We have therefore chosen the higher-order interactive theorem prover
PVS [3, 18] for mechanical support. PVS has a convenient specification language and contains a
proof checker which allows users to construct proofs interactively, to automatically execute trivial
proofs, and to check these proofs mechanically.

Our solution is as efficient as sequential hashtables. It requires on average only constant time
for insertion, deletion or accessing of elements.

Overview of the paper

Section 2 contains the description of the hashtable interface offered to the users. The algorithm
is presented in Section 3. Section 4 contains a description of the proof of the safety properties of
the algorithm: functional correctness, atomicity, and absence of memory loss. This proof is based
on a list of around 200 invariants, presented in Appendix A, while the relationships between the
invariants are given by a dependency graph in Appendix B. Progress of the algorithm is proved
informally in Section 5. Conclusions are drawn in Section 6.

2 The interface

The aim is to construct a hashtable that can be accessed simultaneously by different processes in
such a way that no process can passively block another process’ access to the table.

A hashtable is an implementation of (partial) functions between two domains, here called
Address and Value. The hashtable thus implements a modifiable shared variable X € Address —
Value. The domains Address and Value both contain special default elements 0 € Address and
null € Value. An equality X(a) = null means that no value is currently associated with the
address a. In particular, since we never store a value for the address 0, we impose the invariant

X(0) = null .

We use open addressing to keep all elements within the table. For the implementation of the
hashtables we require that from every value the address it corresponds to is derivable. We therefore
assume that some function ADR € Value — Address is given with the property that

Axl: v=null = ADR(v) =0

Indeed, we need null as the value corresponding to the undefined addresses and use address 0 as
the (only) address associated with the value null. We thus require the hashtable to satisfy the
invariant

X(a) #null = ADR(X(a))=a .

Note that the existence of ADR is not a real restriction since one can choose to store the pair (a, v)
instead of v. When a can be derived from v, it is preferable to store v, since that saves memory.

There are four principle operations: find, delete, insert and assign. The first one is to find the
value currently associated with a given address. This operation yields null if the address has no
associated value. The second operation is to delete the value currently associated with a given
address. It fails if the address was empty, i.e. X(a) = null. The third operation is to insert a new
value for a given address, provided the address was empty. So, note that at least one out of two
consecutive inserts for address a must fail, except when there is a delete for address a in between
them. The operation assign does the same as insert, except that it rewrites the value even if the
associated address is not empty. Moreover, assign never fails.

We assume that there is a bounded number of processes that may need to interact with the
hashtable. Each process is characterized by the sequence of operations

(getAccess ; (find + delete + insert + assign)* ; releaseAccess)®

A process that needs to access the table, first calls the procedure getAccess to get the current
hashtable pointer. It may then invoke the procedures find, delete, insert, and assign repeatedly,
in an arbitrary, serial manner. A process that has access to the table can call releaseAccess to
log out. The processes may call these procedures concurrently. The only restriction is that every
process can do at most one invocation at a time.

The basic correctness conditions for concurrent systems are functional correctness and atom-
icity, say in the sense of [16], Chapter 13. Functional correctness is expressed by prescribing how
the procedures find, insert, delete, assign affect the value of the abstract mapping X. Atomicity is
expressed by the condition that the modification of X is executed atomically at some time between

the invocation of the routine and its response. Each of these procedures has the precondition that
the calling process has access to the table. In this specification, we use auxiliary private variables
declared locally in the usual way. We give them the suffix S to indicate that the routines below are
the specifications of the procedures. We use angular brackets (and) to indicate atomic execution
of the enclosed command.

proc findg(a : Address \ {0}) : Value =
local rS' : Value;
(1) (78 = X(a))

return rS.

proc deleteg(a : Address \ {0}) : Bool =
local sucS : Bool,
(dS) (sucS := (X[a] # null) ;
if sucS then X[a] :=null end) ;
return sucS.

proc insertg(v : Value \ {null}) : Bool =
local sucS : Bool ; a : Address := ADR(v) ;
(iS) (sucS := (X[a] = null) ;
if sucS then X[a]:=v end) ;
return sucS.

proc assigng(v : Value \ {null}) =
local a : Address := ADR(v) ;
(aS) (X[a] :==wv);

end.

Note that, in all cases, we require that the body of the procedure is executed atomically at some
moment between the beginning and the end of the call, but that this moment need not coincide
with the beginning or end of the call. This is the reason that we do not (e.g.) specify find by the
single line return X(a).

Due to the parallel nature of our system we cannot use pre and postconditions to specify it.
For example, it may happen that insert(v) returns true while X(ADR(v)) = null since another
process deletes ADR(v) between the execution of (iS) and the response of insert.

We prove partial correctness by extending the implementation with the auxiliary variables and
commands used in the specification. So, we regard X as a shared auxiliary variable and S and
sucS as private auxiliary variables; we augment the implementations of find, delete, insert, assign
with the atomic commands (fS), (dS), (iS), (aS), respectively. We prove that the implementation
of the procedure below executes its atomic specification command always precisely once and that
the resulting value r or suc of the implementation equals the resulting value 7S or sucS in the
specification above. It follows that, by removing the implementation variables from the combined
program, we obtain the specification. This removal may eliminate many atomic steps of the
implementation. This is known as removal of stutterings in TLA [14] or abstraction from 7 steps
in process algebras.

3 The algorithm

An implementation consists of P processes along with a set of variables, for P > 1. Each process,
numbered from 1 up to P, is a sequential program comprised of atomic statements. Actions on
private variables can be added to an atomic statement, but all actions on shared variables must
be separated into atomic accesses. Since auxiliary variables are only used to facilitate the proof of
correctness, they can be assumed to be touched instantaneously without violation of the atomicity
restriction.

3.1 Hashing

We implement function X via hashing with open addressing, cf. [15, 21]. We do not use direct
chaining, where colliding entries are stored in a secondary list, because maintaining these lists
in a lock-free manner is tedious [19], and expensive when done wait-free. A disadvantage of
open addressing with deletion of elements is that the contents of the hashtable must regularly be
refreshed by copying the non-deleted elements to a new hashtable. As we wanted to be able to
resize the hashtables anyhow, we consider this less of a burden.

In principle, hashing is a way to store address-value pairs in an array (hashtable) with a length
much smaller than the number of potential addresses. The indices of the array are determined
by a hash function. In case the hash function maps two addresses to the same index in the array
there must be some method to determine an alternative index. The question how to choose a
good hash function and how to find alternative locations in the case of open addressing is treated
extensively elsewhere, e.g. [15].

For our purposes it is convenient to combine these two roles in one abstract function key given
by:

key(a : Address, 1 : Nat, n : Nat) : Nat ,
where [is the length of the array (hashtable), that satisfies
Ax2: 0 < key(a,l,n) <1

for all a, [, and n. The number n serves to obtain alternative locations in case of collisions: when
there is a collision, we re-hash until an empty “slot” (i.e. null) or the same address in the table
is found. The approach with a third argument n is unusual but very general. It is more usual to
have a function Key dependent on a and [, and use a second function Inc, which may depend on
a and [, to use in case of collisions. Then our function key is obtained recursively by

key(a,l,0) = Key(a,l) and key(a,l,n+ 1) = Inc(a,l, key(a,l,n)) .

We require that, for any address a and any number [, the first [keys are all different, as expressed
in

Ax3: 0<k<m<l = key(a,l k)+#key(a,l,m) .

3.2 Tagging of values

In hashtables with open addressing a deleted value cannot be replaced by null since null signals
the end of the search. Therefore, such a replacement would invalidate searches for other values.
Instead, we introduce an additional “value” del to replace deleted values.

Since we want the values in the hashtable to migrate to a bigger table when the first table
becomes full, we need to tag values that are being migrated. We cannot simply remove such a
value from the old table, since the migrating process may stop functioning during the migration.
Therefore, a value being copied must be tagged in such a way that it is still recognizable. This is
done by the function old. We thus introduce an extended domain of values to be called EValue,
which is defined as follows:

EValue = {del} U Value U {old(v) | v € Value}

We furthermore assume the existence of functions val : EValue — Value and oldp : EValue — Bool
that satisfy, for all v € Value:

val(v) = v

val(del) = null
val(old(v)) = v
oldp(v) = false
oldp(del) = false
oldp(old(v)) = true

Note that the old tag can easily be implemented by designating one special bit in the representation
of Value. In the sequel we write done for old(null). Moreover, we extend the function ADR to
domain EValue by ADR(v) = ADR(val(v)).

3.3 Data structure

A Hashtable is either 1, indicating the absence of a hashtable, or it has the following structure:

size : Nat;

occ : Nat;

dels : Nat;

bound : Nat;

table : array 0 .. size-1 of EValue.

The field size indicates the size of the hashtable, bound the maximal number of places that can
be occupied before refreshing the table. Both are set when creating the table and remain constant.
The variable occ gives the number of occupied positions in the table, while the variable dels gives
the number of deleted positions. If h is a pointer to a hashtable, we write h.size, h.occ, h.dels
and h.bound to access these fields of the hashtable. We write h.table[i] to access the i*® EValue
in the table.

Apart from the current hashtable, which is the main representative of the variable X, we have
to deal with old hashtables, which were in use before the current one, and new hashtables, which
can be created after the current one.

We now introduce data structures that are used by the processes to find and operate on the
hashtable and allow to delete hashtables that are not used anymore. The basic idea is to count
the number of processes that are using a hashtable, by means of a counter busy. The hashtable
can be thrown away when busy is set to 0. An important observation is that busy cannot be
stored as part of the hashtable, in the same way as the variables size, occ and bound above. The
reason for this is that a process can attempt to access the current hashtable by increasing its busy
counter. However, just before it wants to write the new value for busy it falls asleep. When the
process wakes up the hashtable might have been deleted and the process would be writing at a
random place in memory.

This forces us to use separate arrays H and busy to store the pointers to hashtables and the
busy counters. There can be 2P hashtables around, because each process can simultaneously be
accessing one hashtable and attempting to create a second one. The arrays below are shared
variables.

H:array 1..2P of pointer to Hashtable ;
busy : array 1..2P of Nat ;

prot : array 1 .. 2P of Nat ;

next: array 1..2P of 0..2P .

As indicated, we also need arrays prot and next. The variable next[i] points to the next hashtable
to which the contents of hashtable H[¢] is being copied. If next[i] equals 0, this means that there
is no next hashtable. The variable prot[i] is used to guard the variables busyl[i|, next[i] and H[¢]
against being reused for a new table, before all processes have discarded these.

We use a shared variable currInd to hold the index of the currently valid hashtable:

currlnd:1..2P .

Note however that after a process copies currInd to its local memory, other processes may create
a new hashtable and change currInd to point to that one.

3.4 Primary procedures

We first provide the code for the primary procedures, which match directly with the procedures
in the interface. Every process has a private variable

index : 1 .. 2P;

containing what it regards as the currently active hashtable. At entry of each primary procedure,
it must be the case that the variable H[index| contains valid information. In section 3.5, we provide
procedure getAccess with the main purpose to guarantee this property. When getAccess has been
called, the system is obliged to keep the hashtable at index stored in memory, even if there are
no accesses to the hashtable using any of the primary procedures. A procedure releaseAccess is
provided to release resources, and it should be called whenever the process will not access the
hashtable for some time.

3.4.1 Syntax

We use a syntax analogous to Modula-3 [5]. We use := for the assignment. We use the C-
operations ++ and -- for atomic increments and decrements. The semicolon is a separator, not a
terminator. The basic control mechanisms are

loop .. end is an infinite loop, terminated by exit or return

while .. do .. end and repeat .. until .. are ordinary repetitions
if .. then .. {elsif ..} [else ..] end is the conditional

case .. end is a case statement.

Types are slanted and start with a capital. Shared variables and shared data elements are in
typewriter font. Private variables are slanted or in math italic.
3.4.2 The main loop

We model the clients of the hashtable in the following loop. Note that this is not an essential part
of the algorithm, but it is needed in the PVS description, and therefore provided here.

loop
0: getAccess() ;
loop
1: choose call; case call of
(f,a) with a # 0 — find(a)
(d,a) with a # 0 — delete(a)
(i,v) with v # null — insert(v)
(a,v) with v # null — assign(v)
(r) — releaseAccess(index); exit
end
end
end

The main loop shows that each process repeatedly invokes its four principle operations with correct
arguments in an arbitrary, serial manner. Procedure getAccess has to provide the client with a
protected value for index. Procedure releaseAccess releases this value and its protection. Note
that exit means a jump out of the inner loop.

3.4.3 Find

Finding an address in a hashtable with open addressing requires a linear search over the possible
hash keys until the address or an empty slot is found. The kernel of procedure find is therefore:

n:=0;
repeat r:= h.table[key(a,l,n)]; n++;
until 7 =null Va = ADR(r) ;

The main complication is that the process has to join the migration activity by calling refresh
when it encounters an entry done (i.e. old(null)).

Apart from a number of special commands, we group statements such that at most one shared
variable is accessed and label these ‘atomic’ statements with a number. The labels are chosen
identical to the labels in the PVS code, and therefore not completely consecutive.

In every execution step, one of the processes proceeds from one label to a next one. The steps
are thus treated as atomic. The atomicity of steps that refer to shared variables more than once
is emphasized by enclosing them in angular brackets. Since procedure calls only modify private
control data, procedure headers are not always numbered themselves, but their bodies usually
have numbered atomic statements.

proc find(a : Address \ {0}) : Value =
local r : EValue ; n,l: Nat ; h: pointer to Hashtable ;

5: h :=H[index] ; n:=0; {cnt := 0} ;
6: l:= h.size ;
repeat
T (r:= h.table[key(a,l,n)] ;
{if r=nullVa = ADR(r) then cnt++; (fS) end }) ;
8: if r = done then
refresh() ;

10: h :=H[index] ; n:=0;
11: l:= h.size ;

else n++ end ;
13: until » = null V a = ADR(7) ;
14: return val(r) .

In order to prove correctness, we add between braces instructions that only modify auxiliary
variables, like the specification variables X and 7S and other auxiliary variables to be introduced
later. The part between braces is comment for the implementation, it only serves in the proof
of correctness. The private auxiliary variable cnt of type Nat counts the number of times (fS) is
executed and serves to prove that (fS) is executed precisely once in every call of find.

This procedure matches the code of an ordinary find in a hashtable with open addressing,
except for the code at the condition 7 = done. This code is needed for the case that the value r
is being copied, in which case the new table must be located. Locating the new table is carried
out by the procedure refresh, which is discussed in Section 3.5. In line 7, the accessed hashtable
should be valid (see invariants fi4 and He4 in Appendix A). After refresh the local variables n,
h and [must be reset, to restart the search in the new hashtable. If the procedure terminates,
the specifying atomic command (fS) has been executed precisely once (see invariant Cnl) and the
return values of the specification and the implementation are equal (see invariant Col). If the
operation succeeds, the return value must be a valid entry currently associated with the given
address in the current hashtable. It is not evident but it has been proved that the linear search of
the process executing find cannot be violated by other processes, i.e. no other process can delete,
insert, or rewrite an entry associated with the same address (as what the process is looking for)
in the region where the process has already searched.

We require that there exist at least one null entry or done entry in any valid hashtable,
hence the local variable n in the procedure find will never go beyond the size of the hashtable
(see invariants Cul, fi4, fi5 and axiom Ax2). When the bound of the new hashtable is tuned
properly before use (see invariants Ne7, Ne8), the hashtable will not be updated too frequently,
and termination of the procedure find can be guaranteed.

3.4.4 Delete

Deletion is similar to finding. Since r is a local variable to the procedure delete, we regard 18a
and 18b as two parts of atomic instruction 18. If the entry is found in the table, then at line 18b
this entry is overwritten with the designated element del.

proc delete(a : Address \ {0}) : Bool =
local r : EValue ; k,l,n : Nat ; h: pointer to Hashtable ; suc : Bool ;

15: h :=H[index] ; suc := false ; {cnt := 0} ;
16: l:=h.size; n:=0;

repeat
17: k:=key(a,l,n) ;

(r:= h.table[k] ;
{if r = null then cnt++; (dS) end }) ;

18a: if oldp(r) then
refresh() ;
20: h := H[index] ;
21: l:=h.size; n:=0;
elsif a = ADR(r) then
18b: (if r = h.table[k] then

suc := true ; h.table[k] := del ;
{ ent++; (dS) ; Y[k] :=del }
end) ;
else n++ end ;
until suc V r = null ;
25: if suc then h.dels++ end ;
26: return suc .

In this procedure, there are two possibilities if r is not outdated in each loop: either deletion
fails with » = null in 17 or deletion succeeds with = h.table[k] in 18b. In the latter case, we
have in one atomic statement a double access of the shared variable h.table[k]. This is a so-called
compare&swap instruction. Atomicity is needed here to preclude interference. The specifying
command (dS) is executed either in 17 or in 18, and it is executed precisely once (see invariant
Cn2), since in 18 the guard a = ADR(r) implies r # null (see invariant del and axiom Ax1I).

In order to remember the address from the value rewritten to done after the value is being
copied in the procedure moveContents, in 18, we introduce a new auxiliary shared variable Y of
type array of EValue, whose contents equals the corresponding contents of the current hashtable
almost everywhere except that the values it contains are not tagged to be old or rewritten to be
done (see invariants Cu9, Cul0).

Since we postpone the increment of h.dels until line 25, the field dels is a lower bound of the
number of positions deleted in the hashtable (see invariant Cu4).

3.4.5 Insert

The procedure for insertion in the table is given below. Basically, it is the standard algorithm for
insertion in a hashtable with open addressing. Notable is line 28 where the current process finds the
current hashtable too full, and orders a new table to be made. We assume that h.bound is a number
less than h.size (see invariant Cu3), which is tuned for optimal performance. Furthermore, in
line 35, it can be detected that values in the hashtable have been marked old, which is a sign that
hashtable h is outdated, and the new hashtable must be located to perform the insertion.

proc insert(v : Value \ {null}) : Bool =
local r : EValue ; k,l,n: Nat ; h: pointer to Hashtable ;
suc : Bool ; a : Address :== ADR(v) ;
27: h := H[index] ; {cnt := 0} ;
28: if h.occ > h.bound then

10

newTable() ;
30: h :=H[index] end ;
31: n:=0; [:= h.size ; suc := false ;
repeat
32: k:= key(a,l,n) ;
33: (r:= h.table[k] ;
{if a=ADR(r) then cnt++; (iS) end }) ;
3ba: if oldp(r) then
refresh() ;
36: h := H[index] ;
37: n:=0;1:= h.size;
elseif r = null then
35b: (if h.tablelk] = null then
suc := true ; h.table[k] :=v ;
{ ent++; (iS); Y[k] :=v }
end) ;

else n++ end ;
until suc Va= ADR(r) ;
41: if suc then h.occ++ end ;

42: return suc .

Instruction 35b is a test&set instruction, a simpler version of compare&swap. Procedure insert
terminates successfully when the insertion to an empty slot is completed, or it fails when there
already exists an entry with the given address currently in the hashtable (see invariant Co3 and
the specification of insert).

3.4.6 Assign

Procedure assign is almost the same as insert except that it rewrites an entry with a give value
even when the associated address is not empty. We provide it without further comments.

proc assign(v : Value \ {null}) =
local r : EValue ; k,I,n : Nat ; h: pointer to Hashtable ;
suc : Bool ; a : Address := ADR(v) ;

43: h := H[index] ; cnt := 0;
44: if h.occ > h.bound then

newTable() ;
46: h := H[index] end ;
47: n:=0; [:= h.size ; suc := false ;

repeat
48: k:= key(a,l,n) ;
49: r:= h.table[k] ;
50a: if oldp(r) then
refresh() ;

51: h := H[index] ;
52: n:=0; 1 :=h.size;

elsif r =null Va= ADR(r) then
50b: (if h.table[k] =r then

suc := true ; h.tablelk] :=v;
{ cut++; (aS); Y[k]:==v }
end)
else n++ end ;
until suc ;

57: if » =null then h.occ++ end ;

end.

11

3.5 Memory management and concurrent migration

In this section, we provide the public procedures getAccess and releaseAccess and the auxiliary
procedures refresh and newTable. Since newTable and releaseAccess have the responsibilities for
allocations and deallocations, we begin with the treatment of memory by providing a model of the
heap.

3.5.1 The model of the heap

We model the Heap as an infinite array of hashtables, declared and initialized in the following way:

Heap : array Nat of Hashtable := ([Nat]Ll) ;
H_index : Nat:=1.

So, initially, Heap[i] = L for all indices ¢. The indices of array Heap are the pointers to hashta-
bles. We thus simply regard pointer to Hashtable as a synonym of Nat. Therefore, the nota-
tion h.table used elsewhere in the paper stands for Heap[h].table. Since we reserve 0 (to be
distinguished from the absent hashtable L and the absent value null) for the null pointer (i.e.
Heap[0] = L, see invariant Hel), we initialize H_index, which is the index of the next hashtable,
to be 1 instead of 0. Allocation of memory is modeled in

proc allocate(s,b : Nat) : Nat =
(Heap[H_index| := blank hashtable with size = s,bound = b,occ = dels =0 ;
H_index++) ;
return H_index ;

We assume that allocate sets all values in the hashtable Heap[H_ index] to null, and also sets its
fields size, bound, occ and dels appropriately. Deallocation of hashtables is modeled by

proc deAlloc(h : Nat) =
(assert Heap[h] # L ; Heap[h]:= 1)
end .

The assert in deAlloc indicates the obligation to prove that deAlloc is called only for allocated
memory.

3.5.2 GetAccess
The procedure getAccess is defined as follows.

proc getAccess() =

loop
59: index := currlnd,;
60: prot[index|++ ;
61: if index = currInd then
62: busy[index|++ ;
63: if index = currInd then return ;

else releaseAccess(index) end ;

65: else protfindex]-- end ;

end

end.

This procedure is a bit tricky. When the process reaches line 62, the index has been protected not
to be used for creating a new hashtable in the procedure newTable (see invariants pr2, pr3 and
nT12).

The hashtable pointer H[index] must contain the valid contents after the procedure getAccess
returns (see invariants Ot3, He4). So, in line 62, busy is increased, guaranteeing that the hashtable
will not inadvertently be destroyed (see invariant bul and line 69). Line 63 needs to check the

12

index again in case that instruction 62 has the precondition that the hashtable is not valid. Once
some process gets hold of one hashtable after calling getAccess, no process can throw it away until
the process releases it (see invariant rA7). Note that this is using releaseAccess implicitly done in
refresh.

3.5.3 ReleaseAccess
The procedure releaseAccess is given by

proc releaseAccess(i: 1 ..2P) =
local h : pointer to Hashtable ;

67: h:= H[i];
68: busy[i]-- ;
69: if h#0 A busy[i] =0 then
70: (if H[i]] = h then H[i]:=0;)
71: deAlloc(h) ;

end ;

end ;
72: prot[i]--;
end.

Since deAlloc in line 71 accesses a shared variable, we have separated its call from 70. The counter
busyli] is used to protect the hashtable from premature deallocation. Only if busy[i]=0, H[i] can
be released. The main problem of the design at this point is that it can happen that several
processes concurrently execute releaseAccess for the same value of i, with interleaving just after
the decrement of busy[i]. Then they all may find busy[i] = 0. Therefore, a bigger atomic command
is needed to ensure that precisely one of them sets H[é] to 0 (line 70) and calls deAlloc. Indeed, in
line 71, deAlloc is called only for allocated memory (see invariant rA3). The counter prot[i] can
be decreased since position ¢ is no longer used by this process.

3.5.4 NewTable

When the current hashtable has been used for some time, some actions of the processes may
require replacement of this hashtable. Procedure newTable is called when the number of occupied
positions in the current hashtable exceeds the bound (see lines 28, 44). Procedure newTable tries
to allocate a new hashtable as the successor of the current one (i.e. the next current hashtable).
If several processes call newTable concurrently, they need to reach consensus on the choice of an
index for the next hashtable (line 78). A newly allocated hashtable that will not be used must be
deallocated again.

proc newTable() =
locali:1..2P; b,bb: Bool ;
T while next[index] =0 do
78: choose 1 €1..2P;
(b:= (protli] =0) ;
if b then prot[i]:=1 end) ;

if b then
81: busy[i] :==1;
82: choose bound > H[index|.bound — H[index].dels + 2P ;
choose size > bound + 2P ;
H[i] := allocate(size, bound) ;
83: next[i] :==0;
84: (bb := (next[index] = 0) ;

if bb then next[index]:=1i end) ;
if —bb then releaseAccess(i) end ;

13

end end ;
refresh() ;
end .

In command 82, we allocate a new blank hashtable (see invariant nT8), of which the bound is set
greater than H[index].bound — H[index].dels + 2P in order to avoid creating a too small hashtable
(see invariants nT6, nT7). The variables occ and dels are initially 0 because the hashtable is
completely filled with the value null at this moment.

We require the size of a hashtable to be more than bound+2P because of the following scenario:
P processes find “h.occ > h.bound” at line 28 and call newtable, refresh, migrate, moveContents
and moveElement one after the other. After moving some elements, all processes but process p
sleep at line 126 with b,z = true (b, is the local variable b of procedure moveElement). Process
p continues the migration and updates the new current index when the migration completes. Then,
process p does several insertions to let the occ of the current hashtable reach one more than its
bound. Just at that moment, P — 1 processes wake up, increase the occ of the current hashtable to
be P —1 more, and return to line 30. Since P — 1 processes insert different values in the hashtable,
after P — 1 processes finish their insertions, the occ of the current hashtable reaches 2P — 1 more
than its bound.

It may be useful to make size larger than bound+ 2P to avoid too many collisions, e.g. with a
constraint size > « - bound for some o > 1. If we did not introduce dels, every migration would
force the sizes to grow, so that our hashtable would require unbounded space for unbounded life
time. We introduced dels to avoid this.

Strictly speaking, instruction 82 inspects one shared variable, H[index], and modifies three
other shared variables, viz. H[i], Heap[H_index], and H_index. In general, we split such multiple
shared variable accesses in separate atomic commands. Here the accumulation is harmless, since
the only possible interferences are with other allocations at line 82 and deallocations at line 71.
In view of the invariant Ha2, all deallocations are at pointers h < H_index. Allocations do not
interfere because they contain the increment H_index++ (see procedure allocate).

The procedure newTable first searches for a free index ¢, say by round robin. We use a
nondeterministic choice. Once a free index has been found, a hashtable is allocated and the index
gets an indirection to the allocated address. Then the current index gets a next pointer to the
new index, unless this pointer has been set already.

The variables prot[i] are used primarily as counters with atomic increments and decrements.
In 78, however, we use an atomic test-and-set instruction. Indeed, separation of this instruction in
two atomic instructions is incorrect, since that would allow two processes to grab the same index
1 concurrently.

3.5.5 Migrate

After the choice of the next current hashtable, the procedure migrate has the task to trans-
fer the contents in the current hashtable to the next current hashtable by calling a procedure
moveContents and update the current hashtable pointer afterwards. Migration is complete when
at least one of the (parallel) calls to migrate has terminated.

proc migrate() =
local ¢:0..2P; h: pointer to Hashtable ; b: Bool ;

94: i := next[index];
95: prot[i]++ ;
97: if index # currInd then
98: prot[i]--;
else
99: busyl[i]++ ;
100: h :=H[{] ;
101: if index = currInd then

moveContents(H[index], h) ;

14

103: (b:= (currInd = index) ;
if b then currInd:=7;
{Y :=H[i].table }
end) ;
if b then
104: busy[index]-- ;
105: prot[index]-- ;
end ;
end ;
releaseAccess(i) ;
end end .

According to invariants mi4 and mi5, it is an invariant that ¢ = next(index) # 0 holds after
instruction 94.

Line 103 contains a compare&swap instruction to update the current hashtable pointer when
some process finds that the migration is finished while currInd is still identical to its index, which
means that ¢ is still used for the next current hashtable (see invariant mi5). The increments of
prot[i] and busy[i] here are needed to protect the next hashtable. The decrements serve to avoid
memory loss.

3.5.6 Refresh

In order to avoid that a process starts migration of an old hashtable, we encapsulate migrate in
refresh in the following way.

proc refresh() =
90: if index # currInd then
releaseAccess(index) ;
getAccess() ;
else migrate() end ;
end.

When index is outdated, the process needs to call releaseAccess to abandon its hashtable and
getAccess to acquire the present pointer to the current hashtable. Otherwise, the process can join
the migration.

3.5.7 MoveContents

Procedure moveContents has to move the contents of the current table to the next current table.
All processes that have access to the table, may also participate in this migration. Indeed, they
cannot yet use the new table (see invariants Nel and Ne3). We have to take care that delayed
actions on the current table and the new table are carried out or aborted correctly (see invariants
Cul and mEI10). Migration requires that every value in the current table be moved to a unique
position in the new table (see invariant Nel9).

Procedure moveContents uses a private variable toBeMoved that ranges over sets of locations.
The procedure is given by

proc moveContents(from, to : pointer to Hashtable) =
local i : Nat ; b: Bool ; v: EValue} ; toBeMoved : set of Nat ;
toBeMoved := {0, ..., from.size — 1} ;
110: while currInd = index A toBeMoved # §) do
111: choose i € toBeMoved ;
v := from.table[i] ;
if from.table[i] = done then
118: toBeMoved := toBeMoved — {i} ;
else

15

114: (b:= (v=from.table[i]) ;
if b then from.tableli] := old(val(v)) end) ;
if b then

116: if val(v) # null then moveElement(val(v),to) end ;
117: from.table[i] := done ;
118: toBeMoved := toBeMoved — {i} ;

end end end ;

end .

Note that the value is tagged as outdated before being duplicated (see invariant mC11). After
tagging, the value cannot be deleted or assigned until the migration has been completed. Tagging
must be done atomically, since otherwise an interleaving deletion may be lost. When indeed the
value has been copied to the new hashtable, in line 117 that value becomes done in the hashtable.
This has the effect that other processes need not wait for this process to complete procedure
moveElement, but can help with the migration of this value if needed.

Since the address is lost after being rewritten to done, we had to introduce the shared auxiliary
hashtable Y to remember its value for the proof of correctness. This could have been avoided by
introducing a second tagging bit, say for “very old”.

The processes involved in the same migration should not use the same strategy for choosing ¢
in line 111, since it is advantageous that moveElement is called often with different values. They
may exchange information: any of them may replace its set toBeMoved by the intersection of that
set with the set toBeMoved of another one. We do not give a preferred strategy here, one can
refer to algorithms for the write-all problem [4, 13].

3.5.8 MoveElement

The procedure moveElement moves a value to the new hashtable. Note that the value is tagged
as outdated in moveContents before moveElement is called.

proc moveElement(v : Value \ {null}, to : pointer to Hashtable) =
local a : Address ; k,m,n : Nat ; w: EValue ; b: Bool ;

120: n:=0; b:=false ; a := ADR(v) ; m := to.size ;
repeat
121: k:= key(a,m,n); w:= to.table[k] ;
if w = null then
123: (b:= (to.tablelk] = null);

if b then to.table[k]:=v end) ;
else n++ end ;

125: until bV a = ADR(w) V currInd # index ;
126: if b then to.occt+ end
end .

The value is only allowed to be inserted once in the new hashtable (see invariant Nel9),
otherwise it will violate the main property of open addressing. In total, four situations can occur
in the procedure moveElement:

e the current location k contains a value with an other address, the process will increase n
and inspect the next location.

e the current location k contains a value with the same address, which means the value has
been copied to the new hashtable already. The process therefore terminates.

e the current location k is an empty slot. The process inserts v and returns. If insertion fails,
as an other process did fill the empty slot, the search is continued.

e when index happens to differ from currInd, the whole migration has been completed.

16

While the current hashtable pointer is not updated yet, there exists at least one null entry in
the new hashtable (see invariants Ne8, Ne22 and Ne23), hence the local variable n in the procedure
moveElement never goes beyond the size of the hashtable (see invariants mE3 and mES), and the
termination is thus guaranteed.

4 Correctness (Safety)

In this section, we describe the proof of safety of the algorithm. The main aspects of safety are
functional correctness, atomicity, and absence of memory loss. These aspects are formalized in
eight invariants described in section 4.1. To prove these invariants, we need many other invariants.
These are listed in Appendix A. In section 4.2, we sketch the verification of some of the invariants
by informal means. In section 4.3, we describe how the theorem prover PVS is used in the
verification. As exemplified in 4.2, Appendix B gives the dependencies between the invariants.

Notational Conventions. Recall that there are at most P processes with process identifiers
ranging from 1 up to P. We use p, ¢, r to range over process identifiers, with a preference for
p. Since the same program is executed by all processes, every private variable name of a process
p is extended with the suffix “.” + “process identifier”. We do not do this for process p. So,
e.g., the value of a private variable x of process ¢ is denoted by x.q, but the value of x of process
p is just denoted by z. In particular, pc.q is the program location of process g. It ranges over all
integer labels used in the implementation.

When local variables in different procedures have the same names, we add an abbreviation of
the procedure name as a subscript to the name. We use the following abbreviations: fi for find, del
for delete, ins for insert, ass for assign, gA for getAccess, rA for releaseAccess, n'T for newTable,
mig for migrate, ref for refresh, mC for moveContents, mE for moveElement.

In the implementation, there are several places where the same procedure is called, say
getAccess, releaseAccess, etc. We introduce auxiliary private variables return, local to such a
procedure, to hold the return location. We add a procedure subscript to distinguish these vari-
ables according to the above convention.

If V is a set, §V denotes the number of elements of V. If b is a boolean, then 6 = 0 when
b is false, and #§b = 1 when b is true. Unless explicitly defined otherwise, we always (implicitly)
universally quantify over addresses a, values v, non-negative integer numbers &, m, and n, natural
number [, processes p, ¢ and r. Indices ¢ and j range over [1,2P]. We abbreviate H(currInd).size
as curSize.

In order to avoid using too many parentheses, we use the usual binding order for the operators.
We give “A” higher priority than “V”. We use parentheses whenever necessary.

4.1 Main properties

We have proved the following three safety properties of the algorithm. Firstly, the access proce-
dures find, delete, insert, assign, are functionally correct. Secondly they are executed atomically.
The third safety property is absence of memory loss.

Functional correctness of find, delete, insert is the condition that the result of the implementa-
tion is the same as the result of the specification (fS), (dS), (iS). This is expressed by the required
invariants:

Col: pc =14 = val(rs) =rSp
Co2: pe € {25,26} = sucge; = sucSge
Co3: pe € {41,42} = sucins = sucSins

Note that functional correctness of assign holds trivially since it does not return a result.

According to the definition of atomicity in chapter 13 of [16], atomicity means that each
execution of one of the access procedures contains precisely one execution of the corresponding
specifying action (fS), (dS), (iS), (aS). We introduced the private auxiliary variables cnt to count

17

the number of times the specifying action is executed. Therefore, atomicity is expressed by the
invariants:

Cnl: pc =14 = cntg =1

Cn2: pc € {25,26} = cntge =1
Cn3: pc € {41,42} = cntyps = 1
Cn4: pc =57= cnt,es =1

We interpret absence of memory loss to mean that the number of valid hashtables is bounded.
More precisely, we prove that this number is bounded by 2P. This is formalized in the invariant:

Nol: #{k | k <H_index A Heap(k)# L} <2P

4.2 Intuitive proof

The eight correctness properties (invariants) mentioned above have been completely proved with
the interactive proof checker of PVS. The use of PVS did not only take care of the delicate
bookkeeping involved in the proof, it could also deal with many trivial cases automatically. At
several occasions where PVS refused to let a proof be finished, we actually found a mistake and
had to correct previous versions of this algorithm.

In order to give some feeling for the proof, we describe some proofs. For the complete mechan-
ical proof, we refer the reader to [12]. Note that, for simplicity, we assume that all non-specific
private variables in the proposed assertions belong to the general process p, and general process g
is an active process that tries to threaten some assertion (p may equal g).

Proof of invariant Col (as claimed in 4.1). According to Appendix B, the stability of Col follows
from the invariants Ot3, fil, fil0, which are given in Appendix A. Indeed, Ot3 implies that no
procedure returns to location 14. Therefore all return statements falsify the antecedent of Col and
thus preserve Col. Since 75 and 7Sp are private variables to process p, Col can only be violated
by process p itself (establishing pc at 14) when p executes 13 with r5; = null V ag = ADR(rf).
This condition is abbreviated as Find(rs,ap). Invariant fil0 then implies that action 13 has the
precondition val(rg) = rSg, so then it does not violate Col. In PVS, we used a slightly different
definition of Find, and we applied invariant fil to exclude that rg is done or del, though invariant
fil is superfluous in this intuitive proof. o

Proof of invariant Ot3. Since the procedures getAccess, releaseAccess, refresh, newTable are
called only at specific locations in the algorithm, it is easy to list the potential return addresses.
Since the variables return are private to process p, they are not modified by other processes. Sta-
bility of Ot3 follows from this. As we saw in the previous proof, Ot3 is used to guarantee that no
unexpected jumps occur. U

Proof of invariant fi10. According to Appendix B, we only need to use fi9 and Ot3. Let us use
the abbreviation k = key(ap,ln,np). Since rgs and 7Sy are both private variables, they can only
be modified by process p when p is executing statement 7. We split this situation into two cases

1. with precondition Find(hs.tablelk], af)
After execution of statement 7, r; becomes hg.table[k], and rSi becomes X(ag). By fi9,
we get val(rg) = rSg. Therefore the validity of fi10 is preserved.

2. otherwise.
After execution of statement 7, 75 becomes hy.table[k], which then falsifies the antecedent
of fil0. O

Proof of invariant fi9. According to Appendix B, we proved that fi9 follows from Ax2, fil, fi3,
fid, fi5, fi8, Had, He4, Cul, Cu9, Cul0, and Cull. We abbreviate key(ap,ls,np) as k. We

18

deduce hy = H(index) from fi4, H(index) is not L from Hed4, and k is below H(index).size from
Ax2, fi4 and fi3. We split the proof into two cases:

1. index # currInd: By Had4, it follows that H(index) # H(currInd). Hence from Cul, we
obtain hg.table[k] = done, which falsifies the antecedent of fi9.

2. index = currInd: By premise Find(hs.table[k],ap), we know that hg.table[k] # done
because of fil. By Cu9 and Cul0, we obtain val(hg.table[k]) = val(Y[k]). Hence it follows
that Find(Y[k],as). Using fi8, we obtain

Vm < ng : —Find(Y[key (ap, curSize, m)], as)
We get ng is below curSize because of fi5. By Cull, we conclude

X(ag) = val(hg.table[k])

4.3 The model in PVS

Our proof architecture (for one property) can be described as a dynamically growing tree in which
each node is associated with an assertion. We start from a tree containing only one node, the
proof goal, which characterizes some property of the system. We expand the tree by adding some
new children via proper analysis of an unproved node (top-down approach, which requires a good
understanding of the system). The validity of that unproved node is then reduced to the validity
of its children and the validity of some less or equally deep nodes.

Normally, simple properties of the system are proved with appropriate precedence, and then
used to help establish more complex ones. It is not a bad thing that some property that was taken
for granted turns out to be not valid. Indeed, it may uncover a defect of the algorithm, but in any
case it leads to new insights in it.

We model the algorithm as a transition system [17], which is described in the language of PVS
in the following way. As usual in PVS, states are represented by a record with a number of fields:

State : TYPE = [#
% global variables

busy : [range(2*P) — nat |,
prot : [range(2*P) — nat |,

% private variables:
index : [range(P) — range(2*P) |,

pc : [range(P) — nat], % private program counters

% local variables of procedures, also private to each process:
% find

a_find : [range(P) — Address |,
r_find : [range(P) — EValue |,

% getAccess
return_getAccess : [range(P) — nat |,

o

where range(P) stands for the range of integers from 1 to P.
Note that private variables are given with as argument a process identifier. Local variables are
distinguished by adding their procedure’s names as suffixes.

19

An action is a binary relation on states: it relates the state prior to the action to the state
following the action. The system performed by a particular process is then specified by defining
the precondition of each action as a predicate on the state and also the effect of each action in
terms of a state transition. For example, line 5 of the algorithm is described in PVS as follows:

% corresponding to statement find5: h := H[index]; n := 0;
find5(i,s1,s2) : bool =
pe(sl)(i)=5 AND
s2 = s1 WITH [(pc)(i) := 6,
(n_find)(i) := 0,
(h—_find)(i) := H(sl)(index(s1)(i))
]

where i is a process identifier, sl is a pre-state, s2 is a post-state.
Since our algorithm is concurrent, the global transition relation is defined as the disjunction
of all atomic actions.

% transition steps

step(i,s1,s2) : bool =
find5(i,s1,s2) or find6(i,s1,s2) or ...
deletel5(i,s1,s2) or deletel6(i,s1,s2) or ...

Stability for each invariant has been proved by a Theorem in PVS of the form:

% Theorem about the stability of invariant fi10
IV_fi10: THEOREM
forall (u,v : state, q : range(P)) :
step(q,u,v) AND fi10(u) AND fi9(u) AND ot3(u)
=> fi10(v)

To ensure that all proposed invariants are stable, there is a global invariant INV, which is the
conjunction of all proposed invariants.

% global invariant
INV(s:state) : bool =
He3(s) and He4(s) and Cul(s) and ...

% Theorem about the stability of the global invariant INV
IV_INV: THEOREM
forall (u,v : state, q : range(P)) :
step(q,u,v) AND INV(u) => INV(v)

We define Init as all possible initial states, for which all invariants must be valid.

% initial state
Init: { s : state |
(forall (p: range(P)):
pe(s)(p)=0 and ...
...) and
(forall (a: Address):
X(s)(a)=null) and

% The initial condition can be satisfied by the global invariant INV
IV_Init: THEOREM
INV(Init)

20

The PVS code contains preconditions to imply well-definedness: e.g. in find7, the hashtable
must be non-NIL and ¢ must be its size.

% corresponding to statement find7

find7(i,s1,82) : bool =
i?(Heap(sl)(h-find(s1)(i))) and
1_find(s1)(i)=size(i— (Heap(sl)(h_find(s1)(i)))) and
pe(s1)(i)=7 and

All preconditions are allowed, since we can prove lock-freedom in the following form. In every
state s1 that satisfies the global invariant, every process ¢ can perform a step, i.e., there is a state
s2 with (s1, s2) € step and pc(sl, q) # pc(s2,q). This is expressed in PVS by

% theorem for lock-freedom
IV_prog: THEOREM
forall (u: state, q: range(P)) :
INV(u) => exists (v: state): pc(u)(q) /= pc(v)(q) and step(q,u,v)

5 Correctness (Progress)

In this section, we prove that our algorithm is lock-free and almost wait-free. Recall that an
algorithm is called lock-free if some non-faulty process will finish its task in a finite number of
steps, regardless of delays or failures by other processes. This means that no process can block the
applications of further operations to the data structure, although any particular operation need
not terminate since a slow process can be passed infinitely often by faster processes. An algorithm
is called wait-free if every process is guaranteed to complete any operation in a finite number of
its own steps, regardless of the schedule.

5.1 The easy part of progress

It is clear that releaseAccess is wait-free. It follows that the wait-freedom of migrate depends
on wait-freedom of moveContents. If we assume that the choice of 7 in line 111 is fair, say by
round robin, the loop of moveContents is bounded. So, wait-freedom of moveContents depends on
wait-freedom of moveElement. It has been proved that n is bounded by m in moveElement (see
invariants mE3 and mES). Since, moreover, to.table[k] # null is stable, the loop of moveElement
is also bounded. This concludes the sketch that migrate is wait-free.

5.2 Progress of newTable

The main part of procedure newTable is wait-free. This can be shown informally, as follows. Since
we can prove the condition next(index) # 0 is stable while process p stays in the region [77,84],
once the condition next(index) # 0 holds, process p will exit newTable in a few rounds.

Otherwise, we may assume that p has precondition next(index) = 0 before executing line 78.
By the invariant

Neb: pc € [1,58] V pc > 62 A pc# 65 A next(index) =0 = index = currInd

we get that index = currInd holds and next(currInd) = 0 from the precondition. We define two
sets of integers:

prSetl(i) = {r|index.r =1 A pecr ¢ {0,59,60}}
prSet2(i) = {r|index.r =1 A pec.r € {104,105}
Vipa.r =1 A index.r #i A pcr € [67,72]
Vipr.r =1 A per € [81,84]
V lmig.m =1 A per > 97 }

21

and consider the sum fol(ﬂ(prSetl(i)) + #(prSet2(i))). While process p is at line 78, the sum
cannot exceed 2P — 1 because there are only P processes around and process p contributes only
once to the sum. It then follows from the pigeon hole principle that there exists j € [1,2P] such
that §(prSetl(j)) + #(prSet2(j)) =0 and j # index.p. By the invariant

prl: prot[j] = #(prSet1(j)) + #(prSet2(j)) + #(currInd = j) + f(next(currInd) = j)

we can get that prot[j] = 0 because of j # index.p = currInd.

While currInd is constant, no process can modify prot[j] for j # currInd infinitely often.
Therefore, if process p acts infinitely often and chooses its value ¢ in 78 by round robin, process p
exits the loop of newTable eventually. This shows that the main part of newTable is wait-free.

5.3 The failure of wait-freedom

Procedure getAccess is not wait-free. When the active clients keep changing the current index
faster than the new client can observe it, the accessing client is doomed to starvation.

It may be possible to make a queue for the accessing clients which is emptied by a process in
newTable. The accessing clients must however also be able to enter autonomously. This would at
least add another layer of complications. We therefore prefer to treat this failure of wait-freedom
as a performance issue that can be dealt with in practice by tuning the sizes of the hashtables.

Of course, if the other processes are inactive, getAccess only requires constant time. Therefore,
getAccess is lock-free. It follows that refresh and newTable are lock-free.

According to the invariants fi5, de8, in8 and as6, the primary procedures find, delete, insert,
assign are loops bounded by n < h.size, so they are wait-free unless n is infinitely often reset to
0. This reset only occurs during migration.

Therefore, if we assume that occ is not increased too often beyond bound in insert and assign,
the primary procedures are wait-free. Under these circumstances, getAccess is also wait-free, and
then everything is wait-free.

6 Conclusions

Wait-free shared data objects are implemented without any unbounded busy-waiting loops or
idle-waiting primitives. They are inherently resilient to halting failures and permit maximum par-
allelism. We have presented a new practical algorithm, which is almost wait-free, for concurrently
accessible hashtables, which promises more robust performance and reliability than a conventional
lock-based implementation. Moreover, the new algorithm is dynamic in the sense that it allows
the hashtable to grow and shrink as needed.

The algorithm scales up linearly with the number of processes, provided the function key
and the selection of ¢ in line 111 are defined well. This is confirmed by some experiments where
random values were stored, retrieved and deleted from the hashtable. These experiments indicated
that 10° insertions, deletions and finds per second and per processor are possible on an SGI
powerchallenge with 250Mhz R12000 processors. This figure should be taken as a rough indicator,
as the performance of parallel processing is very much influenced by the machine architecture, the
relative sizes of data structures compared to sizes of caches, and even the scheduling of processes
ON Processors.

The correctness proof for our algorithm is noteworthy because of the extreme effort it took to
finish it. Formal deduction by human-guided theorem proving can, in principle, verify any correct
design, but doing so may require unreasonable amounts of effort, time, or skill. Though PVS
provided great help for managing and reusing the proofs, we have to admit that the verification for
our algorithm was very complicated due to the complexity of our algorithm. The total verification
effort can roughly be estimated to consist of two man year excluding the effort in determining the
algorithm and writing the documentation. The whole proof contains around 200 invariants. It
takes an 1Ghz Pentium IV computer around two days to re-run an individual proof for one of the

22

biggest invariants. Without suitable tool support like PVS, we even doubt if it would be possible
to complete a reliable proof of such size and complexity.

Probably, it is possible to simplify the proof and reduce the number of invariants a little bit,
but we did not work on this. The complete version of the PVS specifications and the whole proof
scripts can be found at [12]. Note that we simplified some definitions in the paper for the sake of
presentation.

A Invariants

We present here all invariants whose validity has been verified by the theorem prover PVS.

Conventions. We abbreviate

Find(r,a) = r=null Va= ADR(r)
LeastFind(a,n) = (Vm < n: —Find(Y[key(a, curSize,m)], a))
A Find(Y[key(a, curSize,n)], a))
LeastFind(h,a,n) = (Ym < n: —Find(h.table[key(a, h.size,m)],a))
A Find(h.table[key(a, h.size,n)],a))

Axioms on functions key and ADR

Ax1: v=null = ADR(v)=0
Ax2: 0 < key(a,l, k) <l
Ax3: 0<k<m<l = key(a,l k)+#key(a,l,m)

Main correctness properties

Col: pc =14 = val(rz) =rSs

Co2: pe € {25,26} = sucge; = sucSge
Co3: pe € {41,42} = sucips = sucSins
Cnl: pc=14 = cnty =1

Cn2: pe € {25,26} = cntge =1

Cn3: pe € {41,42} = entps =1

Cn4: pc =57 = cntyss = 1

The absence of memory loss is shown by

Nol: g(nbSetl) <2x P
No2: g(nbSetl) = f(nbSet2)

where nbSetl and nbSet2 are sets of integers, characterized by

nbSetl = {k|k <H_index A Heap(k)# L}
nbSet2 = {i|H(i)#0V 3r:pcr=T1Niar=1)}

Further, we have the following definitions of sets of integers:

deSetl = {k|k < curSize N Y[k] = del}
deSet2 = {r|index.r = currInd A pc.r =25 A sucge.T}
deSet3 = {k|k < H(next(currInd)).size A H(next(currInd)).tablelk] = del}

23

ocSetl = {r|index.r # currInd
V per € [30,41] V pe.r € [46, 57
V per € [59,65] A returnga.r > 30
V per € [67,72]
A (returnpa.r =59 A returnga.r > 30
Vreturnga.r =90 A returnges.r > 30)
V (pe.r =90 V per € [104,105]) A returnger.r > 30}

ocSet2 = {r|pcr>125 A bpgp.r A toor =H(currInd)}
ocSet3 = {r|index.r = currInd A pcr =41 A SucCips.r

V index.r = currInd A per =57 A 74557 = null}
ocSetd = {k|k < curSize A val(Y[k]) # null}
ocSet5 = {k|k < H(next(currInd)).size

A val(H(next(currInd)).tablelk]) # null}
ocSet6 = {k|k < H(next(currInd)).size

A H(next(currInd)).table[k] # null}
ocSet7 = {r|per>125 A bpg.r A toor =H(next(currInd))}
prSetl(i) = {r|index.r =1 A pecr ¢ {0,59,60}}
prSet2(i) = {r|index.r =14 A pec.r € {104,105}

Vipar =1 A index.r #i A pcr € [67,72]
Viipr.r =1 A per € [81,84]
Viimig.r =1 N per > 97}
prSet3(i) = {r|index.r =i A per € [61,65] U [104, 105]
Vipa.r =1 N pcr =72
Vipr.r =1 A per € [81,82]
V lmig.m =1 A per € [97,98]}
prSet4(i) = {r|index.r =i A pecr € [61,65]
Viimig.r =1 A per € [97,98]}

buSetl(i) = {r|index.r =i
A (per € [1,58] U (62,68] A pe.r # 65
V per € [69,72] A returnpa.r > 59
V per > 72)}
buSet2(i) = {r|index.r=1i A pc.r =104
Vipa.r =1 A index.r #i A pcr € [67,68]
Vipr.r =1 A per € [82,84]
V lmig.m =1 A per > 100}

We have the following invariants concerning the Heap

Hel: Heap(0) = L

He2: H(i) # 0 = Heap(H(7)) # L

Hes: Heap(H(currInd)) # L

He4: pe € [1,58] V pe > 65 A —(pe € [67,72] A i.4 = index)
= Heap(H(index)) # L

He5: Heap(H(:)) # L = H(i).size > P

He6: next(currInd) # 0 = Heap(H(next(currInd))) # L

Invariants concerning hashtable pointers

Hal: H_index >0
Ha2: H(i) < H_index
Ha3: i#j A Heap(H()) # L = H(:) # H(j)

24

Had4: index # currInd = H(index) # H(currInd)

Invariants about counters for calling the specification.

Cnb: pc € [6,7] = entg =0
Cn6: pe € [8,13]
V pc € [59, 65] A returngs = 10
V pc € [67,72] A (returnpg = 59 A returngs = 10
V return,g = 90 A return.; = 10
Vpc>90 A returnge = 10
= cnts = f(rg = null V ag = ADR(rg))

Cn7: pe € [16,21] A pe # 18
V pe € [59, 65] A returnga = 20
V pe € [67,72] A (return,a = 59 A returngs = 20
V returnya = 90 A return,.; = 20
Vpc>90 A returnge = 20
= cntge =0
Cn8: pc=18 = cntge = §(rge; = null)

Cn9: pe € [28,33]
V pe € [59, 65] A returnga = 30
V pe € [67,72] A (returnya = 59 A returngs = 30
V returnya = 77 A return, = 30
V return,g = 90 A return.; = 30
V pe € [77,84] A return,r = 30
Vpc>90 A returnge = 30
= cntipns =0
Cnlo0: pe € [35,37]
V pe € [59,65]) A returnga = 36
V pe € [67,72] A (returnya = 59 A returnga = 36
V returnyg = 90 A return,es = 36
Vpc>90 A returnge = 36
= cntins = $(ains = ADR(7ins) V SUCins)

Cnll: pe € [44,52]
V pc € [59,65] A returnga € {46,51}
V pe € [67,72) A (returnya = 59 A returnga € {46, 51}
V return,4 = 77 N\ return, = 46
V returngg = 90 A return,es € {46,51}
V pe € [77,84] A return,r = 46
V pe>90 A return, € {46,51}
= cntgssstgn =0

Invariants about old hashtables, current hashtable and the auxiliary hashtable Y. Here, we
universally quantify over all non-negative integers n < curSize.

Cul: H(index) # H(currInd) A k < H(index).size
A (pc € [1,58] Vpc>65 N —(pc€[67,72] A ipa = index)
= H(index).table[k] = done

Cu2:
Cu3:
Cu4:
Cub:

Cub6:
Cur:

Cus8:

Cu9:

Cul0:
Cull:
Cul2:
Cul3:
Cul4:
Culb:

Culé:

#({k | k < curSize A Y[k] # null}) < curSize

H(currInd).bound + 2 x P < curSize

H(currInd).dels + fi(deSet2) = fi(deSetl)

Cub has been eliminated. The numbering has been kept, so as not to endanger
the consistency with Appendix B and the PVS script.

H(currInd).occ + f(ocSetl) 4 f(ocSet2) < H(currInd).bound + 2 x P

#({k | k < curSize A Y[k] # null} = H(currInd).occ + f(ocSet2) + f(ocSet3)

next(currInd) =0 = - oldp(H(currInd).table[n])

—(oldp(H(currInd).table[n])) = H(currInd).table[n] = Y[n]

oldp(H(currInd).table[n]) A val(H(currInd).table[n]) # null

= val(H(currInd).table[n]) = val(Y[n])

LeastFind(a,n) = X(a) = val(Y[key(a, curSize,n)])

X(a) = val(Y[key (a, curSize,n)]) # null = LeastFind(a,n)

X(a) = val(Y[key(a, curSize,n)]) # null A n # m < curSize

= ADR(Y[key(a, curSize,m)]) # a

X(a) =null A val(Y[key(a, curSize,n)]) # null

= ADR(Y[key(a, curSize,n)|) # a

X(a) # null

= Im < curSize : X(a) = val(Y[key (a, curSize, m)])

A(f : [{m : 0 < m < curSize) A val(Y[m]) # null} —
{v:v#null A (Fk < curSize : v = val(Y[k]))}]) :

f is bijective

Invariants about next and next(currInd):

Nel:
Ne2:
Ne3:
Ne4:
Neb:
Neb:

NeT:

NeS8:

Ne9:

Ne9a:

NelO:

Nell:

Nel2:

Nel3:

Nel4:

currInd # next(currInd)

next(currInd) # 0 = next(next(currInd)) =0

pe € [1,59] V pec > 62 A pc # 65 = index # next(currInd)

pc € [1,58] V pc > 62 A pc # 65 = index # next(index)

pc € [1,58] V pc > 62 A pc#65 A next(index) =0 = index = currInd
next(currInd) # 0

= f(ocSet6) < #({k | k < curSize A Y[k] # null} — H(currInd).dels — #(deSet2)
next(currInd) # 0

= H(currInd).bound — H(currInd).dels + 2 * P < H(next(currInd)).bound
next(currInd) # 0

= H(next(currInd)).bound + 2 *x P < H(next(currInd)).size
next(currInd) # 0 = H(next(currInd)).dels = f(deSet3)

next(currInd) # 0 = H(next(currInd)).dels =0

next(currInd) 20 A k < h.size = h.table[k] ¢ {del,done},
where h = H(next(currInd))

next(currInd) # 0 A k < H(next(currInd)).size

= -—oldp(H(next(currInd)).table[k])

k < curSize A H(currlnd).table[k] = done A m < h.size A LeastFind(h,a, m)
= X(a) = val(h.tablelkey(a, h.size, m)]),

where a = ADR(Y[k]) and h = H(next(currInd)))

k < curSize A H(currInd).table[k] = done A m < h.size

A X(a) = val(h.table[key(a, h.size,m)]) # null

= LeastFind(h,a,m),

where a = ADR(Y[k]) and h = H(next(currInd))

next(currInd) #0 A a#0 A k < h.size

25

Nelb:

Nel6:

Nel7:

NelS:

Nel9:

Ne20:

Ne21:
Ne22:
Ne23:
Ne24:
Ne25:

Ne26:

Ne27:

A X(a) = val(h.table[key(a, h.size, k)]) # null
= LeastFind(h,a, k),
where h = H(next(currInd))
k < curSize A H(currlnd).table[k] = done A X(a) #null A m < h.size
A X(a) = val(h.table[key(a, h.size,m)]) A n < h.size A m#n
= ADR(h.table.[key(a, h.size,n)]) # a,
where a = ADR(Y[k]) and h = H(next(currInd))
k < curSize A H(currInd).table[k] =done A X(a) =null A m < h.size
= val(h.tablelkey(a, h.size,m)]) = null
V ADR(h.table[key(a, h.size,m)]) # a,
where a = ADR(Y[k]) and h = H(next(currInd))
next(currInd) #0 A m < h.size A a = ADR(h.table[m]) # 0
= X(a) = val(h.table[m]) # null,
where h = H(next(currInd))
next(currInd) #0 A m < h.size A a = ADR(h.table[m]) # 0
= dn < curSize : val(Y[n]) = val(h.table[m]) A oldp(H(currInd).table[n]),
where h = H(next(currInd))
next(currInd) #0 A m < h.size A a = ADR(h.table[key(a,h.size,m)]) # 0
Am#n < h.size
= ADR(h.table[key(a, h.size,n)]) # a,
where h = H(next(currInd))
k < curSize A H(currlnd).table[k] = done A X(a) # null
= Im < h.size : X(a) = val(h.table[key(a, h.size,m)]),
where a = ADR(Y[k]) and h = H(next(currInd))
Ne21 has been eliminated.
next(currInd) # 0 = f(ocSet6) = H(next(currInd)).occ + #(ocSetT)
next(currInd) # 0 = H(next(currInd)).occ < H(next(currInd)).bound
next(currInd) # 0 = f(ocSet5) < #(ocSet4)
next(currInd) # 0
= 3(f: [{m:0<m < h.size A val(h.table[m]) # null} —
{v:v#null A (Fk < h.size : v = val(h.table[k]))}]) :
f is bijective,
where h = H(next(currInd))
next(currInd) # 0
= 3(f:{v:v#null A (Im < h.size : v = val(h.table[m]))} —
{v:v#null A (3k :< curSize : v = val(Y[k]))}]) :
f is injective,
where h = H(next(currInd))
next(currInd) #0 A (3n < h.size: val(h.table[n]) # null)
= 3(f : {m:0 <m < h.size A val(h.table[m]) # null} —
{k :0 <k < curSize A val(Y[k]) # null}))
f is injective,
where h = H(next(currInd))

Invariants concerning procedure find (5...14)

fil:
fi2:
fi3:
fi4:
fi5:
fi6:

fi7:

afn 75 0

pce{6,11} = nz =0

pc € {7,8,13} =l = hp.size

pc € [6,13] A pc # 10 = hi = H(index)

pc="T A hgs =H(currInd) = ng < curSize

pc=8 A hgf =H(currInd) A —Find(rs,ap) A rgs # done
= - Find(Y[key(af, curSize, ng)], ag)

pc=13 A hgi =H(currInd) A —Find(rgs,ap) A m <ng

26

= ~Find(Y[key(ags, curSize,m)], az)

fi8: pc € {7,8} AN hji =H(currInd) A m < ng
= - Find(Y[key(as, curSize,m)], as)

fi9: pc=T7 A Find(t,as) = X(ap) = val(t),
where ¢t = hg.table[key(ag, s, nf)]

fi10: pe¢ (1,7 A Find(rs,ap) = val(rg) = rSg

fill: pc=28 A oldp(rg) A index = currInd

= next(currInd) # 0

Invariants concerning procedure delete (15...26)

del: agel 0

de2: pc € {17, 18} = lgei = hge.size

de3: pe € [16,25] A pc # 20 = hge = H(index)

ded: pc=18 = kg = key(ager, lder, Ndel)

deb: pc € {16,17} V Deleting = —Sucgel

de6: Deleting A sucSgey = T4e # null

de7: pc =18 A = oldp(hge-tablelkge]) = hge; = H(currInd)
de8: pc € {17,18} A hge = H(currInd) = mnge < curSize
de9: pc =18 A hge = H(currInd)

A (val(rger) # null V rge = del)
=r#null A (r=delV ADR(r) = ADR(74e1)),
where r = Y[key (agel, Rdel-S12€, N ger)]

delO: pc € {17,18} A hge = H(currInd) A m < ngep)
= - Find(Y[key(agel, curSize, m)), age)

dell: pe € {17,18} A Find(t,a4e;) = X(age) = val(t),
where t = hdel.table[key(adel, ldel, ndel)]

del2: pc =18 A oldp(rge) A index = currInd
= next(currInd) # 0

del3: pc=18 = kg < H(index).size

where Deleting is characterized by

Deleting =
pe € [18,21] V pc € [59,65] A returnga = 20
V pc € [67,72] A (returnya = 59 A returngs = 20
V returngg = 90 A return,e; = 20)
Vpc>90 A returnge = 20

Invariants concerning procedure insert (27...52)

inl: @ins = ADR(Vipns) A Vips # null

in2: pe € [32,35] = lins = hips.size

in3: pe € [28,41] A pe ¢ {30,36} = hins = H(index)

in4: pe € {33,35} = kins = key(ains, lins, Mins)

ind: pc € [32,33] V Inserting = —18UCipns

in6: Inserting A sucSins = ADR(rins) # Gins

in7: pc =35 A = oldp(hns.table[kins]) = hins = H(currInd)
in8: pe € {33,35} A hjns = H(currInd) = ng,s < curSize
in9: pc =35 A hiys = H(currInd)

A (val(rins) # null V r;,s = del)
= r#null A (r=delV ADR(r) = ADR(rs)),
where r = Y[key (@ins, Rins-Si2€, Nins)]

inl0:

inll:

inl2:

inl3:

28

pe € {32,33,35} A hips = H(currInd) A m < Nps
= = Find(Y[key(a;ns, curSize, m)|, ains)

pe € {33,35} A Find(t,aims) = X(ams) = val(t),
where t = hj,s.table[key(ains, Lins, Nins)]

pc =35 A oldp(rins) A index = currInd

= next(currInd) # 0

pc = 35 = kips < H(index).size

where Inserting is characterized by

Inserting

pe € [35,37] V pe € [59,65] A returngs = 36
V pc € [67,72] A (returnpa = 59 A returnga = 36

V returnyg = 90 A return,.s = 36)
Vpc>90 N return,e = 36

Invariants concerning procedure assign (43...57)

asl:
as2:
as3:
as4:
asd:
asb:
as7:

ass:

as9:

as10:

asll:

aass = ADR(Vgss) N Vgass 7 null

pe € [48,50] = lyss = hgss-Size

pe € [44,57] A pe ¢ {46,51} = h,ss = H(index)

pc € {497 50} = kass = keLV(aassv la537 nass)

pc =50 A = oldp(hgss-tablelkyss]) = hass = H(currInd)
pec =50 A hgss = H(currInd) = ngss < curSize

pc =50 A hgss = H(currInd)

A (val(rqss) £ null V rqe = del)

=r#null A (r=delV ADR(r) = ADR(ryss)),
where r = Y[key (@ ass, Rass-512€, Ngss)]

pe € {48,49,50} A hgss = H(currInd) A m < nggs
= - Find(Y[key(aqss, curSize,m)], agss)

pc =50 A Find(t,a.ss) = X(aqss) = val(t),

where t = hggs.table[key (aass, lasss Mass)]

pc =50 A oldp(rasssign) A index = currInd

= next(currInd) # 0

pe =50 = ks < H(index).size

Invariants concerning procedure releaseAccess (67...72)

rAl:
rA2:
rA3:
rAd4:
rAb:
rA6:
rA7:

rA8:
rA9:

rA10:
rAll:
rAl2:

h,.4 < H_index

pe € [70,71] = hya #0

pc =71 = Heap(h,4) # L

pc="T1=H(i,a) =0

pe="T1= h,4g # H(i)

pc =70 = H(ira) # H(currInd)

pc="T0

A (per € [1,58] V per > 65 A —(pe.r € [67,72] Adpa.r = index.r))
= H(ira) # H(index.r)

pc = T0 = 4,4 # next(currInd)

JURAS [68, 72] N (hrA =0V hpa # H(irAD

= H(i,.A) =0

pe € [67,72] A return,a € {0,59}= i,4 = index
pe € [67,72] N return,a € {77,90}= 4,4 # index
pc € [67,72] A return,s = 77 = next(index) # 0

rAl13:
rAl4:

pc=T71 AN pcr=TL N p#7r = hpa # hpa.r
pc=T71 A pcr=TL N pF#T = ipa F# ira.r

Invariants concerning procedure newTable (77...84)

nTi:
nT?2:
nT3:
nT4:
nT5:
nT6:
nT7:

nT8§:
nT9:

nT10:

nT11:
nT12:
nT13:

nT14:
nT15:
nT16:
nT17:

nT18:

pe € [81,82] = Heap(H(i,7)) = L

pe € [83,84] = Heap(H(inr)) # L

pc = 84 = next(i,r) =0

pec € [83,84] = H(i,r).dels =0

pe € [83,84] = H(ipT).0cc =0

pc € [83,84] = H(i,r).bound + 2 * P < H(iy,1).size

pc € [83,84] A index = currInd

= H(currInd).bound — H(currInd).dels + 2 *x P < H(i,).bound
pc € [83,84] A k <H(ipr).size = H(i,r).table[k] = null
pc € [81,84] = inr # currlnd

pc € [81,84] A (per € [1,58] V per > 62 A pear # 65)

= ipr # index.r

pc € [81,84] = i,r # next(currInd)

pe € [81,84] = H(i,r) # H(currInd)

pe € [81, 84]

A (pe.r € [1,58] V pe.r > 65 A —(pe.r € [67,72] A ipa.r = index.r))
= H(inr) # H(index.r)

pc € [81,84] A per € [67,72] = dipr Fipa.r
pc € [83,84] A per €[67,72] = H(inr) # H(ipa.1)
pc € [81,84] A per €[81,84] A p£r = dpy Finr.r
pc € [81,84] A per €[95,99] A index.r = currInd

= Z.nT 7é Z.'mig-r

pc € [81,84] A pcr>99 = inr F lmig.T

Invariants concerning procedure migrate (94...105)

mil:
mi2:
mi3:
mi4:
mib:
mib6:
mi7:
mi8:

mi9:

mil0:

mill:

mil2:

mil3:

pc =98 V pc € {104,105} = index # currInd
pc > 95 = iy # Index
pc = 94 = next(index) > 0
pC > 95 = Qg 7 0
pc > 95 = ip;y = next(index)
pe.r =170
A (pc € [95,102) A index = currInd V pc € [102,103] V pc > 110)
= AT 7é imig
pc € [95,97] A index = currInd V pc > 99
= lmig 7 NeXt(img)
(pc € 195,97] V pc € [99,103] V pc > 110) A index = currInd
= next(imy) =0
(pc € [95,103] V pc > 110) A index = currInd
= H(imig) # H(currInd)
(pc € [95,103] V pc > 110) A index = currInd
A (per € [1,58] V pe.r > 62 A pe.r # 65)
= H(imiy) # H(index.r)
pc =101 A index = currInd V pc = 102
= himig = H(imig)
pc > 95 A index = currInd V pc € {102,103} V pe > 110
= Heap(H(imigD 7& 1

pc =103 A index = currInd A k < curSize = H(index).table[k] = done

29

mil4:

mild:

mil6:

mil7:

mil8:

mil9:

mi20:

30

pc =103 A index = currInd A n < H(ip,).size
A LeastFind(H(img), a,n)
= X(a) = val(H(imig) [key (@, H(imsq).size, n)])
pc =103 A index = currInd A n < H(iyg).size
A X(a) = val(H(imig). table[key (a, H(imig).size,n)] # null
= LeastFind(H(img), a,n)
pc =103 A index = currInd A k < H(ing).s1ize
= —oldp(H(imig).-tablelk])
pc =103 A index = currInd A X(a) #null A k < h.size
A X(a) = val(h.table[key(a, h.size, k)]) A k#n < h.size
= ADR(h.table.[key(a, h.size,n)]) # a,
where h = H(im,g)
pc =103 A index = currInd A X(a) =null A k < h.size
= val(h.tablelkey(a, h.size, k)]) = null

V ADR(h.tablelkey(a, h.size, k)]) # a,
where h = H(imig)
pc =103 A index = currInd A X(a) # null
= 3Jm < h.size : X(a) = val(h.table[key(a, h.size, m)],
where h = H(img)
pc =117 A X(a) # null A val(H(index).table[i,,c]) # null
V pc>126 A X(a) #null A index = currInd
V pc=125 A X(a) # null A index = currInd

A (bmg V val(wpyg) # null

N amp = ADR(’LUmE))

= 3Im < h.size : X(a) = val(h.table[key(a, h.size, m)]),
where a = ADR(Y[i;nc]) and h = H(next(currInd))

Invariants concerning procedure moveContents (110...118):

mCl1:
mC2:
mC3:
mC4:
mC5:
mCe6:
mC7:
mC8:

mC9:

mC10:

mC11:

mC12:

pe =103 V pc > 110 = to = H(imag)
pe > 110 = from = H(index)
pc > 102 A m € toBeMoved = m < H(index).size
pc =111 = 3Im < from.size : m € toBeMoved
pc>114 A pe # 118 = v # done
pc > 114 = iy o < H(index).size
pc = 118 = H(index).table[i,,¢| = done
pc > 110 A k < H(index).size A k ¢ toBeMoved
= H(index).table[k] = done
pc > 110 A index = currInd A toBeMoved = A k < H(index).size
= H(index).table[k] = done
pc> 116 A val(vy,e) # null
A H(index).table[i,c] = done
= H(imiq)-table[key(a, H(im;g).size, 0)] # null,
where a = ADR(vpc)
pc > 116 A H(index).table[i,,c| # done
= val(vmeo) = val(H(index).table[inc])

A oldp(H(index).table[i;c])
pc > 116 A index = currInd A val(v,c) # null
= val(vmc) = val(Y[imc])

Invariants concerning procedure moveElement (120...126):

mE]1:

pe > 120 = val(ve) = UmE

mE2:
mE3:
mE4:
mE5:
mEG6:
mET7:
mES:
mE9:

mFE10:

mFE11:

mFE12:

mE13:

mE14:

mE15:

mE16:

31

pc > 120 = v,,p # null
pe > 120 = to = H(img)
pc > 121 = a;p = ADR(vpno)
pc > 121 = my,g = to.size
pe € {121,123} = —b,,z
pc =123 = kg = key(amg, to.size, ny,p)
pe > 123 = kyp < H(ipgg).size
pc =120
A to.table[key (ADR(vmE), to.size, 0)] = null
= index = currInd
pe € {121,123}
A to.table[key(amp,to.size, nyp)] = null
= index = currInd
pe € {121,123} A pe.r =103
A to.table[key(am,p,to.size, nyE)] = null
= index.r # currInd
pe € {121,123} A next(currInd) #0 A to = H(next(currInd))
= nme < H(next(currInd)).size
pe € {123,125} A wy,p # null
= ADR(wpng) = ADR(to.table[k,z])
V to.tablelk,,g] € {del, done}

pc>123 N wpyg # null
= H(imiq) table[k,,z| # null
pc =117 A val(vy,c) # null
V pe € {121,123} A nmp > 0
V pc =125
= h.table[key(ADR(vpc), h.size,0)] # null,
where h = H(im,g)
pe € {121,123}
V (pe =125 A —byg

A (val(wpp) = null V anmp # ADR(wimE)))
= Vm < ng,g:

—Find(to.tablelkey(amp, to.size, m)|, amg)

Invariants about the integer array prot.

prl:
pr2:
pr3:
pr4:
pro:
prob:
prr:
pr8:
pro:
prl0:

prot[i| = #(prSet1(i)) + #(prSet2(i)) + f(currInd = i) + f(next(currInd) = 7)
prot[currlnd] > 0

pe € [1,58] V pc > 62 A pc # 65 = prot|index] > 0

next(currInd) # 0 = prot[next(currInd)] > 0

prot[i] = 0 = Heap(H[i]) = L

prot[i] < #(prSet3(i)) A busy[i]| =0 = Heap(H[i]) =

pe € [67,72] = prot[iya] > 0

pc € [81,84] = protfi,r] >0

pc > 97 = protimg| > 0

pc € [81,82] = protli,r] = f(prSetd(inr)) + 1

Invariants about the integer array busy.

bul:
bu2:
bu3:

busy[i] = #(buSetl(:)) + #(buSet2(i)) + f(currInd = i) + f(next(currInd) = 7)
busy[currInd] > 0

pe € [1, 58]

V pc>65 A —(ipga =index A pc € [67,72])

32

= busy[index] > 0

bu4: next(currInd) # 0 = busy[next(currInd)] > 0
bub: pc = 81 = busy[i,r] =0
bu6: pc > 100 = busy[imig] > 0

Some other invariants we have postulated:

Ot1: X(0) = null
Ot2: X(a) # null = ADR(X(a)) =a

The motivation of invariant (Otl) is we never store a value for the address 0. The motivation of
invariant (Ot2) is that the address in the hashtable is unique.

0Ot3: returngs = {1, 10, 20, 30, 36,46,51} A return,s = {0,59,77,90}
A returngs = {10,20,30,36,46,51} A return,r = {30,46}

Ot4: pce {0, 1, 5, 6, 7,8, 10, 11, 13, 14, 15, 16, 17, 18, 20,
21, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 41,
42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 57, 59, 60,
61, 62, 63, 65, 67, 68, 69, 70, 71, 72, 77, 78, 81,
82, 83, 84, 90, 94, 95, 97, 98, 99, 100, 101, 102,
103, 104, 105, 110, 111, 114, 116, 117, 118, 120,
121, 123, 125, 126}

B Dependencies between invariants

Let us write “@ from 1,---,1,” to denote that ¢ can be proved to be an invariant using
Y1, -, ¥, hold. We write “p < 1, --,1,” to denote that ¢ can be directly derived from
Y1, -+, Pn. We have verified the following “from” and “<” relations mechanically:

Col from fil0, Ot3, fil

Co2 from deb, Ot3, deb, del, dell
Co3 from inb, Ot3, in6, inl, inll
Cnl from Cn6, Ot3

Cn2 from Cn8, Ot3, del

Cn3 from Cnl0, Ot3, inl, in5

Cn4 from Cnll, Ot3

Nol < No2

No2 from nT1, He2, rA2, Ot3, Ha2, Hal, rAl, rA14, rA3, nT14, rA4
Hel from Hal

He2 from Ha3, rA5, Hal, Hel, rA2
He3, He4 from Ot3, rA6, rA7, mil2, rAll, rA5
Heb from Hel

He6 from rA8, Ha3, mi8, nT2, rA5
Hal from true

Ha2 from Hal

Ha3 from Ha2, Hal, He2, Hel

Ha4 < Ha3, He3, He4d

Cn5 from Cn6, Ot3

Cn6 from Cnb, Ot3

Cn7 from Cn8, Ot3, del

Cn8 from Cn7, Ot3

Cn9 from Cnl0, Ot3, inl, inb

Cnl0 from Cn9, Ot3, inb

Cnll from Cnll, Ot3

Cul from Ot3, Ha4, rA6, rA7, nT13, nT12, Ha2, He3, He4, rA11, nT9, nT10, mil3, rA5

Cu2 < Cub, cu7, Cu3, He3, He4

Cu3 from rA6, rA7, nT13, nT12, mi5, mi4, Ne8, rA5

Cu4 from del, inl, asl, rA6, rA7, Ha2, nT13, nT12, Ne9, Cu9, Cul0, de7, in7, asb, He3,
Hed4, mi5, mi4, Ot3, Ha4, de3, mi9,mil0, deb, rA5

Cub6 from Ot3, rA6, rA7, Ha2, nT13, nT12, Ha3, in3, as3, Ne23, mi5, mE6, mE7, mE10,
mE3, Ne3, mil, mi4, rA5

Cu7 from Ot3, rA6, rA7, Ha2, nT13, nT12, Ha3, in3, as3, in5, mi5, mE6, mE7, mE10, mE3,
Ne3, mi4, de7, in7, asb, Ne22, mi9,mil0, rA5, He3, mil2, mil, Cu9, del inl, asl

Cu8 from Cu8, FT, Ha2, nT9, nT10, rA6, rA7, mi5, mi4 , mC2, mC5, He3, He4, Cul, Ha4,
mC6, mil6, rA5

Cu9,Cul0 from rA6, rA7, nT13, nT12, Ha2, He3, He4, Cul, Ha4, de3, in3, as3, mE3, mi9,
mil0, mE10, mE7, rA5

Cull, Cul2 from Cu9, Cul0, Cul3, Cul4, del, inl, asl, rA6, rA7, Ha2, nT13, nT12, He3,
He4, Cul, Ha4, in3, as3, mil4, milb, de3, inl10, as8, mil2, Ot2, fi5, de8, in8, as6, Culb,
dell, inll, rA5

Cul3, Cul4 from He3, He4, Ot2, del, inl, asl, Otl, rA6, rA7, nT13, nT12, Ha2, Cu9, Cul0,
Cul, Ha4, de3, in3, as3, Cull, Cul2, inl0, as8, fi5, de8, in8, as6, Culb, mil7, mil8,
mil2, mi4, dell, rA5

Culb from He3, He4, rA6, rA7, n'T13, nT12, Ha2, Cul, Ha4, del, inl, asl, de3, in3, as3, fi5,
de8, in8, as6, mil2, mil9, mi4, Ot2, Cu9, Cul0, Cull, Cul2, Cul3, Cul4, rA5

Cul6 < Cul3, Cul4, Culb, He3, He4, Otl

Nel from nT9, nT10, mi7

Ne2 from Neb, nT3, mi8, nT9, nT10

Ne3 from Nel, nT9, nT10, mi8

Ne4 from Nel, nT9, nT10

Ne5 from Ot3, nT9, nT10, mib

Ne6 < NelO, Ne24, He6, He3, Hed, Cud

Ne7 from Ha3, rA6, rA7, rA8, nT13, nT12, nT11, He3, He4, mi8, nT7, Ne5, Ha2, He6, rA5

Ne8 from Ha3, rA8, nT11, T, mi8, nT6, Neb, rA5

Ne9 from Ha3, Ha2, Ne3, Neb, de3, as3, rA8, rA6, rA7, nT8, nT11, mC2, nT4, mi8, rA5

Ne9a from Ha3, Ne3, rA5, de3, rA8, nT4, mi8

NelO from Ha3, Ha2, de3, rA8, nT11, Ne3, He6, mi8, nT8, mC2, nT2, Neb, rA5

Nell from Ha3, Ha2, He6, T, nT2, nT8, rA8, nT11, mi8, Ne3, mC2, rA5

Nel2, Nel3 from Ha3, Ha2, Cu8, He6, He3, He4, Cul, de3, in3, as3, rA8, rA6, rA7, nT11,
nT13, nT12, mil2, mil6, mi5, mi4, de7, in7, ash, Ot2, del,inl, asl, Cu9, Cul0, Culs,
Cul4, Culb, as9, fi5, de8, in8, as6, mC2, Ne3, Otl, Nel4, Ne20, mE16, mE7, mE4, mE1,
mE12, mE2, Nel5, Nel6, Nel7, Nel8, mi20, dell, inll, rA5

Nel4 from Ha3, Ha2, He6, He3, Hed, T, nT2, nT8, de3, in3, as3, rA8, nT11, Ot2, del, inl,
asl, Cu9, Cul0, mi8, Ne3, mC2, mE7, mE16, mE1, mE4, mE12, Nel7, Nel8, Cul, rA5

Nelb, Nel6 from Ha3, Ha2, Cu8, He6, He3, He4, Cul, de3, in3, as3, rA8, rA6, rA7, nT11,
nT13, nT12, mil2, mil6, mi5, mi4, de7, in7, ash, Ot2, del, inl, asl, Cu9, Cul0, Cul3,

33

Culd4, Culb, as9, fi5, de8, in8, as6, mC2, Ne3, Otl, Nel9, Ne20, Nel2, Nel3, mE16, mE7,

mE4, mE1, mE12, mE10, mE2, inl1, dell, rA5

Nel7, Nel8 from Ha3, Ha2, mi8, He6, He3, He4, Cul, nT2, de3, in3, as3, rAS8, rA6, rA7,
nT11, nT13, nT12, de7, in7, asb, Ot2, del, inl, asl, Cu9, Cul0, T, nT8, mE2, fi5, de8,
in8, as6, mC2, Ne3, mC11, mC6, mC12, mE7, mE10, mE1, Cu8, Cul5, Cul3, Cul4,
Cull, Cul2, as8, dell, rA5

Nel9 from Ha3, Ha2, He6, nT2, nT8, de3, in3, as3, rA8, nT11, mi8, Ne3, mE7, Nel4, mE16,
Otl, mE1, mE4, mE12, Nel7, Nel8, rAb

Ne20 from Ha3, Ha2, Cu8, He6, He3, Hed, Cul, Ha4, de3, in3, as3, rA8, rA6, rA7, nT11,
nT13, nT12, mil2, mil6, mi5, mi4, Nel, de7, in7, asb, del, inl, asl, Cu9, Cul0, Culs,

Cul4, Culb, as9, fi5, de8, in8, as6, mC2, Ne3, Otl, mi20, inll, rA5
Ne22 from Ot3, rA8, Ha2, nT11, Ha3, de3, in3, as3, mi5, mi4, Ne3, nT18, mE3, mi8, mE10,
mE7, mE6, Neb, nT5, nT2, rA5, nT8, nT12, mC2, mE2
Ne23 <= Cub, cu7, Ne6, Ne7, He3, Hed, Ne22, He6
Ne24 <= Ne27, Heb
Ne25 <= Nel9, Nel7, Nel8, He6
Ne26 < Nel7, Nel8, He6
Ne27 < Cul6, Ne25, Ne26, Nel7, Nel8, He6
fil, del, inl, asl from
fi2 from fi2, Ot3
i3 from fi4, Ot3, rA6, rA7, Ha2, rA5
fi4 from Ot3, rA6, rA7, nT13, nT12
fi5, de8, in8, as6 « Cu2, del0, inl0, as8, fi8, He3, Hed
fi6 from Ot3, fil, del, inl, asl, rA6, rA7, Ha2, nT13, nT12, mi9,mil0, Cu9, Cul0, He3,
He4, Cul, Ha4, fi4, in3, as3, rA5
fi7 from fi8, i6, fi2, Ot3, fil, del, inl, asl, rA6, rA7, Ha2, nT13, nT12, mi9,mil0, Cu9,
Cul0, He3, He4, Cul, Ha4, fi4, in3, as3, rA5
fi8 from fi4, fi7, fi2, Ot3, fil, del, inl, asl, rA6, rA7, Ha2, n'T13, nT12, mi9,mil10, Cu9,
Cul0, He3, He4, Cul, Ha4, in3, as3, rA5
fi9 <= Cul, Ha4, Cu9, Cul0, Cull, Cul2, fi8, fi3, fi4, fi5, de8, in8, as6, He3,
He4
fil0 from fi9, Ot3
fill, del2, in12, as10 from Ot3, nT9, nT10, mi9,mil0, Cus, fi4, de3, in3, as3, fi3, de2,
in2, as2
de2 from de3, Ot3, rA6, rA7, Ha2, rA5
de3 from Ot3, rA6, rA7, nT13, nT12
de4, in4, as4d from Ot3
deb from Ot3
de6 from Ot3, del, dell
de7, in7, ash < de3, in3, as3, Cul, Ha4, del3, inl13, asll
de9 from Ot3, del, inl, asl, rA6, rA7, Ha2, nT13, nT12, mi9,mil0, Cu9, Cul0, de3, de7,
in7, asb, rA5
del0 from de3, de9, Ot3, del, inl, asl, rA6, rA7, Ha2, nT13, nT12, mi9,mil0, Cu9, Culo,
de7, in7, asb, He3, Hed, rA5
dell < del0, de2, de3, He3, He4, Cul, Ha4, Cu9, Cul0, Cull, Cul2, fi5, de8, in8, as6
del3, inl13, asll < Ax2, de2, de3, de4, in2, in3, in4, as2, as3, as4
in2 from in3, Ot3, rA6, rA7, Ha2, rAb
in3 from Ot3, rA6, rA7, nT13, nT12
in5 from Ot3
in6 from Ot3, inl, inll
in9 from Ot3, del, inl, asl, rA6, rA7, Ha2, nT13, nT12, mi9,mil0, Cu9, Cul0, He3, He4,
in3, de7, in7, ash, rAb5
in10 from in9, fi2, Ot3, del, inl, asl, rA6, rA7, Ha2, nT13, nT12, mi9,mil0, Cu9, CulO,
He3, He4, in3, de7, in7, asb, rAb
inll < inl0, in2, in3, Cul, Ha4, Cu9, Cul0, Cull, Cul2, fi5, de8, in&, as6
as2 from as3, He3, He4, Ot3, rA6, rA7, Ha2, rA5
as3 from Ot3, rA6, rA7, nT13, nT12
as? from Ot3, del, inl, asl, rA6, rA7, Ha2, nT13, nT12, mi9,mil0, Cu9, Cul0, as3, de7,
in7, ash, rAH
as8 from as7, Ot3, del, inl, asl, rA6, rA7, Ha2, n'T13, nT12, mi9,mil0, Cu9, Cul0, He3,
Hed, as3, de7, in7, ash, rA5
as9 < as8, as2, as3, He3, He4, Cul, Ha4, Cu9, Cul0, Cull, Cul2, fi5, de8, in8, as6
rAl from Ha2
rA2 from Ot3

34

rA3 from Ot3, rA9, He2, Hel, rA2, rA13
rA4 from Ot3, nT14
rA5 from Ot3, rAl, rA2, Ha3, He2
rA6, rA7 from Ot3, nT13, nT12, nT14, rAl1l, mi4, bu2, bu3, Ha3, mi6, Ha2, He3, He4,
He2, rA2
rA8 from Ot3, bu4, nT14, mi6, Ne2, mib
rA9 from Ot3, Ha2, nT14, Hel, He2
rA10 from Ot3
rAll from Ot3, nT13, nT12, mi2
rA12 from Ot3, nT9, nT10
rA13 from Ot3, rA5
rAl4 from Ot3, rA4, Hel, rA2
nT1 from Ot3, pr5, Ha3, nT14, nT16, Ha2
nT2 from Ot3, nT14, Ha3, rA5
nT3 from Ot3, nT9, nT10
nT4 from Ot3, Ha3, de3, nT13, nT12, nT15, rA5
nT5 from Ot3, Ha3, in3, as3, nT13, nT12, nT15, nT18, mE3, mi4, rA5
nT6 from Ot3, nT13, nT12, nT14, Ha3, rA5
nT7 from Ot3, nT13, nT12, nT15, rA6, rA7, Ha2, mi9,mil0, nT14, Ha3, nT16, rA5
nT8 from Ot3, de3, in3, as3, nT13, nT12, nT15, nT18, mE3, mi4, Ha3, mC2, nT16, nT2,
Ha2, rA5
nT9, nT10 from Ot3, pr2, pr3, nT18
nT11 from Ot3, pr4, nT16, mi8
nT13, nT12 <= nT9, nT10, Ha3, He3, He4
nT14 from Ot3, nT9, nT10, nT18, nT16, pr7
nT15 <= nT14, Ha3, nT2
nT16 from Ot3, pr8
nT17 from Ot3, mi5, pr4, nT11, mil0
nT18 from Ot3, pr9, mi5, nT11
mil from Ot3, mi9,mil0, mil0
mi2 from Ot3, Ne4
mi3 from Ot3, fill, del2, in12, as10, nT9, nT10, Neb
mi4 from Ot3, mi9,mil0, mi3
mi5 from Ot3, nT9, nT10, Ne5, mil0, mi4
mi6 from Ot3, mi5, bu6, rA8, mi9, mil0, bu4, mi4
mi7 from Ot3, mi2, mi7, mi4, nT18, Ne2, mil0, nT17, mi3
mi8 from Ot3, mil0, Ne2, mi3
mi9, mil0 from Ot3, He3, He4, nT9, nT10, nT18, Ne3, Ha3, mi3, nT17, mil0, He2, mi4,
mil2, mi6, He6
mill from Ot3, nT18, mi9, mi6, mi6
mil2 from Ot3, rA8, nT2, He6, mi9, mi5, mi3, Ha3, mi4, rA5
mil2 from Ot3, mil2, nT18, mi6, Ha3, mi4, rA5
mil3 from Ot3, rA6, rA7, Ha2, nT13, nT12, He3, He4, mi9,mil0, mC9, rA5
mil4, mil5 < Nel2, Nel3, mi5, Culb, mil3, Ot2, He3, Hed, Nel7, Nel8, Cu8, He6, He5,
mi4, Otl
mil6 < Nell, mib, mi4
mil7, mil8 < Nel5, Nel6, mi5, Culb, mil3, Ot2, He3, He4, Nel7, Nel8, Cu8, He6, Heb, mi4
mil9 < Ne20, mib, Culb, mil3, Ot2, He3, He4
mi20 from Ha3, Ha2, Cu8, He6, He3, He4, Cul, Had, de3, in3, as3, rA8, rA6, rA7, nT11,
nT13, nT12, mi5, mi4, de7, in7, ash, Ot2, del, inl, asl, Cu9, Cul0, Cul3, Cul4, Cul5,
as9, fi5, de8, in8, as6, mC6, Ne3, Ot3, mC11, mil3, mi9,mil0, mC2, mE3, mE10, mE7,
mC12, mE1l, mE13, Nel7, Nel8, mE2, mE4, Otl, mE6, Nel0, inl1, rA5
mCl1 from Ot3, mi6, mill, nT18
mC2 from Ot3, rA6, rA7, n'T13, nT12, mC2

35

36

mC3 from Ot3, mC3, nT13, nT12, rA6, rA7, Ha2, rA5

mC4 from Ot3, mC4, mC2, mC3, He3, He4, rA6, rA7, Ha2, rA5

mC5 from Ot3

mC6 from Ot3, rA6, rA7, Ha2, nT13, nT12, mC2, rA5

mC7 from Ot3, rA6, rA7, Ha2, nT13, nT12, mC2, rA5

mC8 from Ot3, rA6, rA7, Ha2, nT13, nT12, He3, He4, mC7, rAb

mC9 from Ot3, rA6, rA7, Ha2, nT13, nT12, He3, He4, mi9,mil0, He5, mC7, mC8, rA5

mC10 from Ot3, rA6, rA7, Ha2, nT13, nT12, mC2, del, inl, asl, mi6, Ha3, mi4, nT18, mE15,
mC11, mi5, rA5

mC11 from Ot3, rA6, rA7, Ha2, nT13, nT12, mC2, rA5

mC12 from Ot3, rA6, rA7, mC2, mC11, Cu9, Cul0, de7, in7, as5, mi9, mC6

mE1l from Ot3

mE2 from Ot3

mE3 from mC1, Ot3, mi6, nT18

mE4 from Ot3, mE1

mE5 from Ot3, mE3, Ha3, mi6, mi4, nT18, Ha2, rA5

mE6 from Ot3

mE7 from Ot3, Ha2, Ha3, mi6, mi4, mE3, rA5

mES8 from Ot3, Ha3, mi6, mi4, nT18, Ha2, mE3, rA5

mE9 from Cul, Ha4, Ot3, Ha2, Ha3, mi6, mi4, mE3, mC2, mC10, mE1, mCl1, del, inl, asl,
mil3, mil2, mC6, mE2, rA5

mKE10 from del, inl, asl, mE3, mi6, Ot3, Ha2, Ha3, mi4, mE11, mE9, mE7, rA5

mE11 <= mE10, mil3, mE16, mil6, mi5, mE3 | Nel2, Nel3, mC12, mE2, mE1, mE4, mC6,
mE12, mil2, Cul3, Cul4, He3, He4, mi4

mE12 < Ne23, Ne22, mE16, He6, Ne8

mE13 from Ot3, Ha2, mE14, del, inl, asl, Ha3, mi6, mi4, mE3, rA5

mE14 from Ot3, Ha2, del, inl, asl, Ha3, mi6, mi4, nT18, mE3, mE2, rA5

mE15 from Ot3, mE1, Ha2, del, inl, asl, Ha3, mi6, mi4, nT18, mE3, mE2, mE7, mE14,
mE4, rA5

mE16 from Ha3, Ha2, mE3, del, inl, asl, mi6, mE2, mE4, mE1, mE7, mi4, Ot3, mE14,
mE13, rA5

prl from Ot3, rAll, rA10, nT9, nT10, Ne5, mi2, mi4, mi8, mib

pr2, pr3 from prl, Ot3, rAll, mil

prd < prl

prb < pr6, prl, bul

pr6 from Ot3, Ha2, nT9, nT10, nT14, nT16, He2, rA2, prl, bul, prl0, rA9, Hel, rA4

pr7, pr8, pr9 < prl, mid

prl0 from Ot3, prl, nT9, nT10, nT14, nT17

bul from Ot3, rA1l, rA10, nT9, nT10, Ne5, mi2, mi8, mi5, bub

bu2, bu3 < bul, Ot3, rA10

bud < bul

bub from Ot3, nT9, nT10, nT16, nT18, prl, bul

bu6 <= bul, mi4

Otl from del, inl, asl

0Ot2 from del, inl, asl

0Ot3 from true

Ot4 from Ot3

References

[1] Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D. Reischuk, R.: Renaming in an asynchronous
environment. J. ACM 37 (1990) 524-548

[20]

[21]

37

Bar-Noy, A., Dolev, D.: Shared-memory vs. message-passing in an asynchronous distributed
environment. In Proc. 8h ACM Symp. on principles of distributed computing, pp. 307-318,
1989

Cassez, F., Jard, C., Rozoy, B., Dermot, M. (Eds.): Modeling and Verification of Parallel
Processes. 4th Summer School, MOVEP 2000, Nantes, France, June 19-23, 2000.

Groote, J.F., Hesselink, W.H., Mauw, S., Vermeulen, R.: An algorithm for the asynchronous
write-all problem based on process collision. Distributed Computing 14 (2001) 75-81

Harbison, S.P.: Modula-3, Prentice Hall 1992

Herlihy, M.P.: Wait—free synchronization. ACM Trans. on Program. Languages and Systems
13 (1991) 124-149

Herlihy, M.: A methodology for implementing highly concurrent data objects. ACM Trans.
on Programming Languages and Systems bf 15 (1993), 5

Herlihy, M.P. and Moss, J.E.B.: Lock-free garbage collection for multiprocessors. IEEE Trans-
actions on Parallel and Distributed Systems 3 304-311, 1992

Hesselink, W.H.: Wait—free linearization with a mechanical proof. Distrib Comput 9 (1995)
21-36

Hesselink, W.H.: Bounded Delay for a Free Address. Acta Informatica 33 (1996) 233-254

Hesselink, W.H., Groote, J.F.: Wait-free concurrent memory management by Create, and
Read until Deletion (CaRuD). Distributed Computing 14 (2001) 31-39

http://www.cs.rug.nl/ "wim/mechver/hashtable

Kanellakis, P.C. and Shvartsman, A.A.: Fault-tolerant parallel computation. Kluwer Academic
Publishers, 1997

Lamport, L.: The temporal logic of actions. ACM Trans. on Programming Languages and
Systems 16 (1994) 872-923.

Knuth, D.E.: The Art of Computer Programming. Part 3, Sorting and searching. Addison-
Wesley, 1973.

Lynch, N.A.: Distributed Algorithms. Morgan Kaufman, San Francisco, 1996.

Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specifica-
tion. Springer-Verlag, 1992.

Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Version 2.4 (2001).
System Guide, Prover Guide, PVS Language Reference. http://pvs.csl.sri.com

Valois, J.D.: Lock-free linked lists using compare-and-swap. Proceedings of the 14th Annual
Principles of Distributed Computing, pages 214-222, 1995. See also J.D. Valois. ERRATA.
Lock-free linked lists using compare-and-swap. Unpublished manuscript, 1995

Valois, J.D.: Implementing Lock-Free Queues, Proceedings of the Seventh International Con-
ference on Parallel and Distributed Computing Systems, pages. 64-69, Las Vegas, October
1994

Wirth, N.: Algorithms + Data Structures = Programs. Prentice Hall, 1976.

	1. Introduction
	2. The interface
	3. The algorithm
	4. Correctness (safety)
	5. Correctness (progress)
	6. Conclusions
	A. Invariants
	B. Dependencies between invariants
	References

