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Samenvatting

In de huidige industrie heerst een tendens naar hogere resolutie en nauwkeurig-
heid in mechanische metrologie. Samen met de miniaturisering wordt hierdoor
de vraag naar subnanometer onzekerheden in de dimensionele metrologie
steeds groter. Verplaatsingsinterferometers worden wereldwijd gebruikt als
precisie verplaatsingsmeetsystemen. Deze dissertatie beschrijft de afwijking-
enbronnen welke in ogenschouw moeten worden genomen als men met deze
systemen met (sub-)nanometer onzekerheid wil meten, samen met mogelijke
methoden om deze afwijkingen te voorkomen of te compenseren.

In interferometrische verplaatsingsmetingen met nanometer onzekerheid
over kleine afstanden (beneden 1 mm) worden de metingen beı̈nvloedt door
periodieke afwijkingen afkomstig van polarisatiemenging. In metingen met
nanometer onzekerheid over grotere afstanden worden deze afwijkingen over-
schaduwd door afwijkingen geı̈ntroduceerd door brekingsindexvariaties van
het medium waarin gemeten wordt.

Om de effecten van periodieke afwijkingen te onderzoeken zijn modellen
ontwikkeld en getest. Een model gebasseerd op Jones-matrices maakt het
mogelijk om periodieke afwijkingen te voorspellen welke afkomstig zijn van
afwijkingen in de optische uitlijning en van polarisatie afwijkingen in de com-
ponenten van de interferometer. Om de polarisatie afwijkingen van optische
componenten mee te nemen in de modelvorming zijn verscheidene meetmeth-
oden ontwikkeld en gebruikt. Ten einde de polarisatie afwijkingen van een
heterodyne laserhead te meten wordt een tweetal nieuwe meetopstellingen
geı̈ntroduceerd. Verder is een meetmethode, gebaseerd op ellipsometrie, ont-
wikkeld om de optische componenten te karakteriseren.

Met behulp van metingen welke met deze opstellingen worden uitgevoerd
in combinatie met het ontwikkelde model kan worden geconcludeerd dat pe-
riodieke afwijkingen, afkomstig van verschillende afwijkingenbronnen, niet
kunnen worden opgeteld. Het superpositiebeginsel kan niet zomaar worden
gebruikt daar er een wisselwerking bestaat tussen de verschillende bronnen
van afwijkingen welke een inherente compensatie kan veroorzaken.

Om de voorspelde periodieke afwijkingen te controleren op juistheid is
een compleet interferometer systeem geplaatst op een kalibratie opstelling
welke gebaseerd is op een Fabry-Pérot interferometer. Met dit systeem kan
een herleidbare kalibratie worden uitgevoerd met een totale slag van 300 µm
en een onzekerheid van 0,94 nm. Voorafgaand aan deze meting zijn de po-
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larisatie eigenschappen van de afzonderlijke componenten van de interfero-
meter doorgemeten om een goede voorspelling van de periodieke afwijkingen
mogelijk te maken. The metingen werden vergeleken met het model en de
standaardafwijking hiervan was 0,14 nm voor periodieke afwijkingen met een
kleine amplitude en 0,30 nm voor periodieke afwijkingen met een amplitude
van enkele nanometers.

Uit de kalibraties en metingen kan geconcludeerd worden dat het Jones
model, in combinatie met de genoemde meetmethoden ter karakterisatie van
de interferometer componenten, een goed en praktisch gereedschap vormt voor
ontwerpers van interferometer systemen of componenten hiervan. Dit gereed-
schap maakt het de ontwerper mogelijk de juiste componenten en uitlijntole-
ranties te kiezen voor een praktische opstelling met (sub-)nanometer onzeker-
heid specificaties.

Een tweede herleidbare kalibratie opstelling, gebaseerd op een Fabry-Pérot
interferometer, is ontworpen en gebouwd. Ten opzichte van de bestaande
opstelling heeft dit systeem een verbeterde gevoeligheid, een kleinere slag en
verbeterde onzekerheid van 0,24 nm over een slag van 1 µm, en 0,40 nm over
een slag van 6 µm.

Om de onzekerheid van bestaande laser interferometer systemen te ver-
beteren is een nieuwe compensatiemethode bedacht voor heterodyne laser
interferometer systemen. Deze methode is gebaseerd op een fase kwadratuur
meting in combinatie met een compensatie algoritme, gebaseerd op Heyde-
mann’s compensatiemethode welke veel gebruikt wordt in homodyne inter-
ferometrie. Deze methode maakt het mogelijk om periodieke afwijkingen met
een amplitude van 8 nm te reduceren tot een meting met een onzekerheid van
0,2 nm. Uit de metingen uitgevoerd met deze methode lijkt voort te komen dat
periodieke afwijkingen afkomstig van ghost-reflecties in het optische systeem
niet kunnen worden gecompenseerd.

Aangaande de brekingsindex van lucht zijn drie meetmethoden vergeleken.
De drie empirische vergelijkingen welke in de literatuur kunnen worden gevon-
den zijn vergeleken met een absolute refractometer gebaseerd op een com-
merciële interferometer en met een tracker systeem gebaseerd op een Fabry-
Pérot cavity. De tracker is getest om de bruikbaarheid van deze methode in
een absolute brekingsindexmetin met verbeterde onzekerheid te onderzoeken.
De ontwikkelde tracker heeft een relatieve onzekerheid van 8 · 10−10. Uit de
vergelijking van de drie meetmethoden kwam naar voren dat er temperatuur
effecten waren, die de onzekerheid van de tracker beı̈nvloeden, welke nog
niet verklaard kunnen worden. Desondanks kan uit de vergelijkingsmetingen
geconcludeerd worden dat een absolute refractometer, gebaseerd op een Fabry-
Pérot trilholte, de brekingsindex van een gas kan meten met een onzekerheid
welke kleiner zal zijn dan die van de huidige methoden.



Abstract

Development in industry is asking for improved resolution and higher accu-
racy in mechanical measurement. Together with miniaturization the demand
for sub nanometer uncertainty on dimensional metrology is increasing rapidly.
Displacement laser interferometers are used widely as precision displacement
measuring systems. This thesis describes the error sources which should be
considered when measuring with these systems with (sub-)nanometer uncer-
tainty, along with possible methods to overcome these errors.

When considering interferometric displacement measurements with nanome-
ter uncertainty over small distances (below 1 mm) the measurements are influ-
enced by periodic deviations originating from polarization mixing. In measure-
ments with nanometer uncertainty over larger distances this error may become
negligible compared to errors introduced by the refractive index changes of the
medium in which the measurement takes place.

In order to investigate the effect of periodic deviations, models were de-
veloped and tested. A model based on Jones matrices enables the prediction
of periodic deviations originating from errors in optical alignment and polar-
ization errors of the components of the interferometer. In order to enable the
incorporation of polarization properties of components used in interferometers,
different measurement setups are discussed. Novel measurement setups are
introduced to measure the polarization properties of a heterodyne laser head
used in the interferometer system. Based on ellipsometry a setup is realized
to measure the polarization properties of the optical components of the laser
interferometer.

With use of measurements carried out with these setups and the model
it can be concluded that periodic deviations originating from different error
sources can not be superimposed, as interaction exists which may cause partial
compensation.

To examine the correctness of the predicted periodic deviations an entire
interferometer system was placed on a traceable calibration setup based on
a Fabry-Pérot interferometer. This system enables a calibration with an un-
certainty of 0,94 nm over a range of 300 µm. Prior to this measurement the
polarization properties of the separate components were measured to enable
a good prediction of periodic deviations with the model. The measurements
compared to the model revealed a standard deviation of 0,14 nm for small
periodic deviations and a standard deviation of 0,3 nm for periodic deviations
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with amplitudes of several nanometers.
As a result the Jones model combined with the setups for measurement

of the polarization properties form a practical tool for designers of interfer-
ometer systems and optical components. This tool enables the designer to
choose the right components and alignment tolerances for a practical setup
with (sub-)nanometer uncertainty specifications.

A second traceable calibration setup based on a Fabry-Pérot cavity was
developed and built. Compared to the existing setup it has a higher sensitivity,
smaller range and improved uncertainty of 0,24 nm over a range of 1 µm, and
0,40 nm over a range of 6 µm.

To improve the uncertainty of existing laser interferometer systems a new
compensation method for heterodyne laser interferometers was proposed. It is
based on phase quadrature measurement in combination with a compensation
algorithm based on Heydemann’s compensation which is used frequently in
homodyne interferometry. The system enables a compensation of periodic
deviations with an amplitude of 8 nm down to an uncertainty of 0,2 nm. From
measurements it appears that ghost reflections occurring in the optical system
of the interferometer cannot be compensated by this method.

Regarding the refractive index of air three measurement methods were
compared. The three empirical equations which can be found in literature,
an absolute refractometer based on a commercial interferometer and a newly
developed tracker system based on a Fabry-Pérot cavity. The tracker was
tested to investigate the feasibility of the method for absolute refractometry
with improved uncertainty. The developed tracker had a relative uncertainty
of 8 ·10−10. The comparison revealed some temperature effects which cannot be
explained yet. However the results of the comparison indicate that an absolute
refractometer based on a Fabry-Pérot cavity will improve the uncertainty of
refractive index measurement compared to existing methods.
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Chapter 1

Introduction

Development in industry is asking for improved resolution and higher accuracy
in mechanical metrology. Together with miniaturization the demand for sub
nanometer accuracy in dimensional metrology is increasing rapidly. In dimen-
sional metrology the laser interferometer is a common used metrology system
for the micrometer region, where in the nanometer region the use is spreading.
Producers of CD-masters and DVD-masters as well as integrated circuit man-
ufacturers are using laser interferometers in the nanometer region. In national
metrology institutes laser interferometers are popular in use as calibration aids
to calibrate other sensors, or to develop new traceable measurement devices,
such as Atomic Force Microscopes [1, 2]. In such institutes laser interferome-
ters are also used as high precision scales in coordinate measuring machines
(CMM’s) [3].

Integrated circuits are manufactured by means of lithography. Lithogra-
phy is the process in which patterns, specific for a particular chip design,
are projected onto resist on silicon wafers. This is done in a waferstepper or
-scanner. A semiconductor device is built up from several layers, which need
to be positioned onto each other. After each layer the wafer is extracted from
the waferscanner and etched. For the next illumination the wafer has to be
repositioned and in order to form a connection of the lines in two different
layers a certain overlay has to be guaranteed. The position information for
this is gathered with use of laser interferometer systems. By miniaturization
of integrated circuits the energy consumption can be reduced and the speed
of chips can be increased. At this moment line widths of 80 nm are in use for
volume production of 256MB DRAMs and other advanced memory devices
such as Flash and very fast SRAMs. The overlay error should typically be 30%
of the linewidth. Since the laser interferometer is only one component in the
entire system the uncertainty of this system has to decrease below the nanome-
ter region. Current demands on the laser interferometer system are already in
the nanometer region.

The requirements for future lithography technology are presented by the
ITRS-roadmap (International technology roadmap for semiconductors) [4]. In



2 1. INTRODUCTION

table 1.1 the requirements for future line widths are presented according to
ITRS, as well as the required metrology uncertainty with 3σ interval. As one
of the difficult challenges the metrology and defect inspection of line widths
≥45 nm is mentioned through 2009. Beyond 2009 the challenge becomes even
bigger for measuring critical dimensions down to 7,2 nm in 2018. This seems
relatively far away, however the years mentioned are the years of first product
shipment of integrated circuits from a manufacturing site with volume exceed-
ing 10 000 units. Development capability must be available 2-3 years earlier
[4].

Year DRAM line width overlay metrology uncertainty
2003 100 nm 35 nm 3,5 nm
2005 80 nm 28 nm 2,8 nm
2007 65 nm 23 nm 2,3 nm
2010 45 nm 18 nm 1,8 nm
2013 32 nm 12,8 nm 1,3 nm
2016 22 nm 8,8 nm 0,9 nm
2018 18 nm 7,2 nm 0,7 nm

Table 1.1: Lithography technology requirements

To improve the accuracy of displacement laser interferometer systems to-
ward the sub-nanometer level research has to be conducted in order to inves-
tigate the error sources at the nanometer level. This thesis describes the error
sources which should be considered when measuring with nanometer uncer-
tainty along with possible methods to overcome these errors. Note that this
thesis deals with displacement interferometry, therefore wherever interferom-
etry is mentioned displacement interferometry is meant.

1.1 Laser interferometry, the principles

The length interferometer, first introduced by Albert Michelson in 1881, has
been developed into a measurement instrument with high accuracy. Since
interferometry is based on the interference of light it is a non-contact measure-
ment method of which the accuracy is influenced by the wavelength of the
source and the medium in which the measurement takes place. Michelson’s
interferometer is schematically shown in figure 1.1.

Monochromatic light is directed at a semi-transparent mirror that acts as
an amplitude dividing beam splitter. Part of the light is transmitted toward
a movable mirror and reflected by this mirror. The other part of the light
is reflected at 90◦ towards a fixed mirror, reflected and recombined at the
beam splitter where their interference is observed. The electromagnetic waves
propagating in reference and measurement arm can be represented as:
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Monochromatic
light source

Reference mirror

Beam splitter
Movable mirror

rr

rm

Displacement ∆z

To observer/detector

~Ere f

~Emeas

Figure 1.1: Schematic representation of Michelson’s interferometer.

~Ere f = Ere
i(ωt+~k~rr−φr)~e1 (1.1)

~Emeas = Emei(ωt+~k~rm−φm)~e2 (1.2)

with Er and Em the amplitude of the respective E-fields,ω the angular frequency,

t the time,~k the propagation vector,~r the position vector,φr andφm the phase in
reference and measurement arm. After recombination in the beam splitter the
electromagnetic field is the linear superposition of these waves. Assuming the
propagation of the field in only one dimension, the irradiance at the detector
becomes:

I = ∈0 c
〈

~E2
〉

(1.3)

= ∈0 c
(

E2
r + E2

m + 2ErEm cos
(

k(rm − rr) − (φm − φr)
))

(1.4)

where ∈0 is the vacuum permittivity, c the speed of light, k is the propagation
constant (k = 2π

λ ) and rm is the traveled optical distance in the measurement arm
and rr is the traveled optical distance in the reference arm. The constant ∈0 c is
omitted in further calculations for convenience. If the waves were initially in
phase (φr = φm) the cosine term depends on the difference in optical path length
between reference and measurement arm. This is the case for a monochromatic
light source. If further the two beams are of equal amplitude the irradiance is:

I = 2I0

(

1 + cos
(

2π

λ
(rm − rr)

))

(1.5)
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When now the measurement mirror is displaced over a distance ∆z while the
reference mirror remains fixed, the optical path length changes 2n∆z, with n
the refractive index of the medium through which the light travels. The factor
2 is due to the fact that this distance is traveled twice by the light. If a detector
is used the measurement signal will change as follows:

I = 2I0

(

1 + cos
(

2π

λ
(2n∆z)

))

(1.6)

If the wavelength of the light source is known the displacement can be cal-
culated from the change in intensity on the detector. From this it can also be
seen that it is a relative measurement, only displacement can be measured, not
distance.

From Michelson’s original length interferometer numerous different ver-
sions were derived, all working on the principle of measuring displacement
with use of interference. Modern displacement interferometers use a HeNe-
laser as a light source, due to the long coherence length and relatively short
visible wavelength resulting in comfortable alignment and a smaller resolu-
tion. Laser interferometers can be divided in two kinds of interferometers:
heterodyne and homodyne interferometers.

1.1.1 Homodyne interferometers

Most commercial homodyne laser interferometers consist of a stabilized single
frequency laser source, polarization optics, photo detector(s) and measurement
electronics. A homodyne laser source is typically a HeNe-laser with a single
frequency beam as output consisting of either a single polarization under 45◦ or
a circularly polarized beam. The beam is split into the reference arm and mea-
surement arm of the interferometer by a beam splitter. Following a reflection
off their respective targets, the beams recombine in the beam splitter. In order
to observe interference the two beams must have equal polarizations. This is
accomplished using a linear polarizer oriented at 45◦ to the beam splitter. The
photo detector signal is run through electronics which count the fringes of the
interference signal. A fringe is a full cycle of light intensity variation, going
from light to dark to light. Every fringe corresponds to a path difference of half
a wavelength corresponding to equation 1.6. Since there is no intrinsic time-
dependency in the measurement signal this is also called a DC interferometer.
Depending on the detector configuration, direction sensing and insensitivity
to power changes can be derived as well as a compensation for periodic devia-
tions such as developed by Heydemann [5]. In figure 1.2 the principle of such a
homodyne interferometer is shown. Signal I0 is used to normalize the intensity.
Signals IS0 and IS90 are used for phase quadrature measurement. Signal IS0 is the
normal signal of a homodyne interferometer (1.6) with signal 2I0 subtracted:

IS0 = 2I0 cos(
4πn∆z

λ
) (1.7)
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Part of the measurement signal is split off and receives a phase shift of 90◦, this
measurement signal is called IS90 :

IS90 = 2I0 sin(
4πn∆z

λ
) (1.8)

From these equations the displacement is calculated as follows:

∆z =
λ

4πn
arctan(

IS90

IS0

) (1.9)

When both signals are plotted against each other ideally a circle is described. If
polarization mixing occurs periodic deviations are present in the measurement
signals which results in an ellipse. Also different gains in both detector signals
will result in an ellipse. Heydemann [5] presented a method to transform this
ellipse into a circle and hence compensate for periodic deviations. Manufactur-
ers of homodyne interferometers are Renishaw, Heidenhain, Sios and recently
Interferomet.

Laser

Polarizing
beam splitter

Reference

Measurement

Displacement

I0IS0

λ/4

Polarizer

IS90

Partial splitters

Figure 1.2: Schematic representation of the principle of a homodyne laser in-
terferometer with power compensation and direction sensing. I0 is
used to eliminate effects of power changes, IS0

and IS90
are used for

phase quadrature measurement, enabling compensation of periodic
deviations.

1.1.2 Heterodyne interferometers

The basic setup of a heterodyne interferometer is shown in figure 1.3. The
light source of a heterodyne laser interferometer is a stabilized HeNe laser
whose output beam contains two frequency components ( f1 and f2), each with
a unique linear polarization. Their electromagnetic field is represented by:

~E1 = E01ei(2π f1t+φ01) ~e1 (1.10a)
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ReferenceReference signal
∆ fR = f2 − f1

Polarizer

Laser

4%

Measurement signal

∆ fM = f2 − f1 + ∆ f2

Polarizing beam splitter

f2 + ∆ f2

f2

f1 Measurement

Retro reflector

∆L

Retro reflector

Figure 1.3: Schematic representation of the principle of a heterodyne laser in-
terferometer. The reference retro reflector is in a steady position,
while the measurement retro reflector is attached to the object of
which the displacement should be measured.

~E2 = E02ei(2π f2t+φ02) ~e2 (1.10b)

where E01 and E02 represent the amplitude and φ01 and φ02 represent the initial
phase of the electromagnetic field. The frequency shift can be generated by a
Zeeman laser. The Zeeman technique produces two frequencies by applying
an axial magnetic field to the laser tube. Another way to generate a frequency
shift is by an acousto optic modulator, for example a Bragg cell driven by a
quartz oscillator. With the Zeeman technique the frequency split is limited to a
maximum of ±4 MHz. The acousto optic modulator enables a frequency split
of 20 MHz or more. In a heterodyne interferometer the two polarizations are
orthogonal to each other.

Part of the light emitted by the laser source is split off, passes a combining
polarizer and falls onto a detector with a band-pass filter. The resulting signal
is an alternating signal with a beat frequency equal to the split frequency in the
laser head. This signal forms the reference measurement Ir, given by:

Ir = 2E01E02 cos(2π( f2 − f1)t + (φ02 − φ01)) (1.11)

As can be seen from this equation the heterodyne interferometer works with a
carrier frequency ( f2 − f1), therefore it is called an AC interferometer. The rest
of the light emerges from the laser head and enters the interferometer optics, in
figure 1.3 consisting of a polarizing beam splitter and two retro reflectors. In the
polarizing beam splitter the two frequencies are split by means of polarization
splitting. Frequency f1 is reflected by the polarizing beam splitter and enters
the reference arm, is reflected by the fixed retro reflector and is again reflected
by the polarizing beam splitter. Frequency f2 is transmitted by the polarizing
beam splitter and enters the measurement arm, is reflected by the moving retro
reflector and is again transmitted by the beam splitter. Ideally, both frequencies
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emerge from the polarizing beam splitter in their own unique polarization
orthogonal to each other. To enable interference the beams are transmitted
through a polarizer under 45◦ with their polarization axes. After the polarizer
the light falls onto a second detector with band-pass filter resulting in the
measurement signal:

Im = 2E01E02 cos(2π( f2 − f1)t + (φ02 − φ01) + (φmeas − φre f )) (1.12)

where φmeas −φre f is the difference in phase between the signal in the measure-
ment arm and the reference arm. It consists of a constant term in the reference
arm φ0r and a phase in the measurement arm consisting of a constant term φ0m

combined with a changing term as a result of the moving retro reflector:

φmeas − φre f = ∆φ + φ0m − φ0r (1.13)

In a practical application the measurement retro reflector is attached to the
object of which the displacement should be measured. As the retro reflector
moves in the measurement arm with velocity v, a Doppler shift is generated
for frequency f2:

∆ f =
2v f2

vl
=

2vn f2

c
(1.14)

with vl the velocity of light, n the refractive index of air and c the speed of light
in vacuum. From this equation it follows that the maximum traveling speed of
the retro reflector is limited due to the finite frequency shift between the two
frequencies in the laser source. The phase change in the interference pattern
resulting from the Doppler shift equals:

∆φ =

∫

t1

t2

2π∆ f dt =

∫

t1

t2

2π
2vn f2

c
dt = 4π

n f2

c

∫

t1

t2

vdt = 4πn
f2

c
∆l (1.15)

where n is the refractive index of the medium through which the light travels
(usually air) and ∆l is the displacement of the retro reflector. So by mea-
suring the phase change between the measurement (1.11) and the reference
signal (1.12) the displacement of the retro reflector can be determined by using
the inverse of equation (1.15) with vacuum wavelength λ2:

∆l =
∆φλ2

4πn
(1.16)

1.2 Error sources

In section 1.1 ideal interferometers were described and it was shown that for
a heterodyne interferometer the displacement of a retro reflector could be de-
termined by measuring the phase change between measurement and reference
signal and by using equation (1.16). From this formula it can be seen that the
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accuracy of the calculated displacement depends on the accuracy of the de-
termination of the phase change ∆φ, the wavelength of light used λ2 and the
refractive index of the medium n. Apart from these inherent error sources there
are numerous other error sources depending on the setup used. The errors in
the laser interferometer can be divided into three categories: Setup dependent,
instrument dependent and environment dependent.

In the category ”Setup dependent” errors are found depending on the mea-
surement setup. Typically these can be minimized or even eliminated by using
a correct setup and alignment procedures. Examples of these errors are Abbe-
error [6], cosine error, mechanical stability and deadpath error. The deadpath is
the difference in distance in air between the reference and measurement paths
of an interferometer configuration (lm − lr in figure 1.4). Further the target
uniformity (right side of figure 1.4) can influence the accuracy of the interfer-
ometer. Optics used in basic interferometers usually have a surface figure of
λ/10, contributing to an error of up to 63 nm. Therefore, to achieve accuracies
below the nanometer region high end optics have to be used.

lm

lr

Flatness

Mirror

Movement

Figure 1.4: Schematic representation of the deadpath error lm − lr and target
uniformity.

In the category ”Instrument dependent” the frequency of the laser source
is found (relative stability between 2·10−9 and 5·10−8). Further the effect of
electronics like counting errors and electronics nonlinearities (usually around
0,5 nm). The error resulting from the delay from interferometer optics to
the measurement sample, also known as data aging was investigated by De-
marest [7] and the limitations in phase measurement were investigated by
Oldham [8]. Both data age uncertainty and phase measurement errors depend
on the electronic system used. Ghost reflections, originating from plane sur-
faces of the optics, were modeled by Wu [9, 10] and can be minimized by using
good anti-reflection coatings; since mica and calcite are poor substrates for
surface coatings these should be avoided [9]. Periodic deviations are a result
of polarization mixing and can result from all sources introducing non-ideal
polarizations. They will be investigated in detail in this thesis and previous
research in this field will be discussed in section 1.2.1.

In the category ”Environment dependent” the thermal influence on the
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interferometer is found, like linear expansion of the optics setup, or the ther-
mal effects of optics itself. Also the refractive index of the medium through
which the light travels (mostly air) belongs to this category. Usually this effect
is compensated for, using Edlén’s [11, 12] updated equation and measuring
temperature, pressure, humidity and carbon dioxide component. The relative
uncertainty is usually limited to 2·10−8, resulting in an error of 20 nm per meter,
or 1 nm in 50 mm. Further the influence of (air) turbulence as described by
Bobroff [13] must be considered since this is a movement of thermal gradients
in the air through the beam path. They can be minimized by enclosing the
beam paths in protective tubes.

In conclusion the influences on accuracy of a laser interferometer are:

• Setup dependent

– Cosine error

– Abbe error

– Deadpath error

– Mirror uniformity

– Mechanical stability

• Instrument dependent

– Frequency stability laser source

– Electronics

– Periodic deviations

– Ghost reflections

– Data age uncertainty

• Environment dependent

– Refractive index

– Thermal influence

– Turbulence

From the error sources mentioned above the principal limitations of the
interferometer lie in the photonic noise (frequency stability) and periodic de-
viations inherent in the interferometer. For measurements over large displace-
ments in air this error is overshadowed by the effect of the refractive index of
air. These are the subjects of investigation in this thesis.

1.2.1 Periodic deviations in laser interferometers

When the measured displacement with a real interferometer is plotted against
the actual displacement of the moving retro reflector an oscillation around the
ideal straight line may be observed, as can be seen from figure 1.5. This effect is
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known as a periodic deviation of the laser interferometer. As already mentioned
in the previous section the periodic deviations are a result of polarization leak-
age in the interferometer. Periodic deviations manifest themselves as periodic
deviations in the measurement. In 1983 Quenelle first mentioned the existence
of periodic deviations as a result of alignment errors between laser and optics
[14]. In 1987 Bobroff [13] showed the existence of periodic deviations as a result
of the alignment of the polarizing beam splitter along with the quality of the
coating. This periodic deviation had a frequency of one cycle per one wave-
length optical path change. In the same year Sutton [15] proved the existence of
periodic deviations with a frequency of two cycles per one wavelength optical
path change. He did this by pressure scanning of the interferometer. From this
time results the definition of first and second order periodic deviations: First
order periodic deviations have a frequency of one cycle per one wavelength
optical path change, and second order periodic deviations have a frequency
of two cycles per one wavelength optical path change. In literature periodic
deviations in laser interferometers are often called non-linearities.
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Figure 1.5: Schematic representation of measurement results with a periodic
deviation. The magnitude of the periodic deviation is exaggerated
for clarity.

In 1990 Rosenbluth and Bobroff modeled the individual influences of mis-
alignment and ellipticity of the laser axes, differential transmission between the
two arms of the interferometer, rotation of polarization by retro reflectors, leak-
age through the beam splitter and wave plate errors [16]. They concluded that
frequency mixing is not a major cause of periodic deviations unless the mix-
ing is asymmetric between the two arms of the interferometer. Regrettably this
conclusion was not stated with numbers. In 1992 Hou and Wilkening presented
an analytical model describing the individual influence of non-orthogonality
and ellipticity of the laser beams as well as the limited extinction capability
of the beam splitter [17]. De Freitas and Player showed that in contrast with
earlier modeling a second order harmonic could result from rotational beam
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alignment [18]. In 1995 they published a fairly complete model based on co-
herency matrix calculation [19]. The drift of periodic deviations in a heterodyne
interferometer was investigated by Hou and Zhao in 1994 [20]. De Freitas [21]
addressed the problem of how laser source birefringence and dichroism affect
the linearity in heterodyne interferometry.

Along with the modeling several ways of observing periodic deviations
are discussed in literature. Stone and Howard provided a simple technique to
observe periodic deviations as a result of a rotated beam splitter by rotating
the beam splitter around the yaw axis [22, 23]. However with the presented
model they were not able to explain the measured amplitude of the existing
third harmonic. Further measurements were made of interferometers against
other sensors with nanometer resolution such as capacitive sensors by Hait-
jema [24, 25]. Wetzels [26] presented traceable measurements by measuring
against a Fabry-Perot cavity, later this was also done by Howard [27]. Badami
and Patterson [28] presented a frequency domain method for the measurement
of periodic deviations in heterodyne interferometry which can also be used for
in situ optimization of the interferometer. Patterson and Beckwith proposed a
method for direct measurement of periodic deviations using a constant-speed
moving system and a spectrum analyzer [29]. They experimentally demon-
strated the compensation of periodic deviations by electrically subtracting the
first-order periodic deviation signal from the measurement beat signal.

To prevent periodic deviations in laser interferometers a new interferometer
design was presented by Tanaka et al. [30] and later another by Wu et al. [31].
Dubovitsky eliminated the effect of leakage by phase modulating the laser light
[32]. All these designs require a special setup of the interferometer. Recently
Eom and Choi [33] provided a simple method of compensating the periodic
deviations by means of phase quadrature measurements in a heterodyne inter-
ferometer with a split frequency of 160 kHz. This method is widely used for
homodyne interferometers and was originally developed by Heydemann [5].

From the summary above it can be concluded that a lot of research has
been done already in order to model periodic deviations as well as to prevent
or eliminate periodic deviations. The modeling often concentrates on single
error sources or a small combination of influences. Further some conclusions
contradict each other. In order to get some clarity a model has to be presented
including all mentioned possible causes of periodic deviations and possibly
more. Also the model should become a tool for designers of interferometers to
make design choices in order to limit periodic deviations. Further this model
should be verified unambiguously using traceable measurement techniques.
Industry demands the elimination of periodic deviations in commercial het-
erodyne interferometers.

1.2.2 Refractometry

As already mentioned for measurements over large displacements in air the pe-
riodic deviations in a laser interferometer becomes overshadowed by the effect
of the refractive index of air. In 1966 Edlén empirically derived an equation to
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determine the refractive index of air from dispersion and measurements of the
temperature, pressure, humidity and carbon dioxide content [11]. As starting
point he defined standard air, meaning dry air with a temperature of 15 ◦C, a
total pressure of 760 Torr (101,325 kPa) and 300 ppm carbon dioxide content.

The relative uncertainty of this equation was determined at
u(n)

n = 5 · 10−8 [34].
Since then the ITS-90 temperature scale was accepted [35] and new data

were available for the density of air and the refractivity of water vapour. Birch
and Downs [36, 12] took into account SI-units, updated the equation with use of
these data and increased the carbon dioxide content of normal laboratory air to
450 ppm and included it as a constant. The 3σuncertainty associated with these

equations is u(n)
n = 3 · 10−8. Later Ciddor [37] derived a formula intended for a

broader range of wavelengths and extreme environmental conditions (−40◦C
to 100◦C, 80 to 120 kPa and 0 to 100% relative humidity). For this entire range

he derived an overall uncertainty of
u(n)

n = 2 to 5 · 10−8. Bönsch and Potulski
[38] revised Edlén’s formula again, however no improvement of the accuracy
was gained compared to Birch and Downs [12] and the results showed an
agreement between the values calculated by both formula’s within the stated
uncertainties. However Bönsch and Potulski reintroduced a correction factor
for the carbon dioxide content (standard 400 ppm), which Birch and Downs
omitted. For all derived equations the total uncertainty associated with the

calculated refractive index of air could easily be increased up to u(n)
n = 1 · 10−7

due to the additional individual accuracy of each atmospheric sensor used.
Up until today the effect of the refractive index of air is mostly determined

with the use of Edlén’s equation or one of the revised versions. To achieve
nanometer uncertainty this is not enough. To improve the uncertainty of mea-
surements, or to monitor the changes in refractive index directly, a refractometer
can be used. Refractometers are based on measuring optical path differences
while keeping an equal mechanical distance. Due to this principle also the
refractive indices of other gases can be determined.

In the group Precision Engineering at the Eindhoven University of Tech-
nology a long tradition in refractometry exists. Already in 1986 the group was
involved in the comparison between interference refractometers built in dif-
ferent countries [39]. Most of these refractometers were based on measuring
a certain mechanical stable path in vacuum with a commercial interferometer,
next the measurement path is filled with air while the reference path remains
in vacuum. As a result the interferometer will measure an optical path change
as a result of a changing refractive index. When the mechanical path length is
known the change in refractive index can be determined. Limiting factor in this
measurement is measuring the mechanical path length with a small uncertainty
and keeping the mechanical path stable during measurement. At that time the

relative uncertainty of the refractometers varied between
u(n)

n = 1 · 10−8 and
u(n)

n = 6 · 10−8 (2σ). Hou and Thalmann [40] also experimented with an equal

setup, also with an uncertainty of
u(n)

n = 5 · 10−8 (3σ). In the group Precision
Engineering a second refractometer was built based on a permanent vacuum
chamber [41] of which the length was varied within the measurement arm. The
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uncertainty of this system was u(n)
n = 1 · 10−7. In 1997 Eickhoff and Hall [42]

took a new approach by using a Fabry-Perot cavity and frequency measure-
ment enabling a resolution much higher than commercial interferometers. The
agreement with the revised Edlén equation was 5 · 10−8 over several hours, the
relative uncertainty however was not stated.

1.3 Project description and goals of this project

Most interferometer systems use polarizing optics. As a result of alignment
errors of the optics and polarization errors in the optics polarization mixing will
occur. The latter will result in contrast errors when homodyne interferometers
are used, or frequency mixing when heterodyne interferometers are used. Both
result in periodic deviations in the measurement. In industrial environments
this can lead to production errors in the case of new generation waferscanners
or to position errors in systems which use interferometers in their control
loop. In order to bring the accuracy of laser interferometer systems to the
(sub-)nanometer level the origin of periodic deviations should be known. In
order to achieve this in this project the periodic deviations will be analyzed and
described. Since the periodic deviation errors in homodyne interferometers
can be compensated for [5] the main focus in this thesis will be on heterodyne
interferometers. The model should enable a designer of laser interferometer
systems to make design choices, minimizing the periodic deviations. Since
the polarization quality of the components used in the interferometer will
also influence the periodic deviations they should be included in the model.
Further to use the quality as input parameters of the model measurement
methods should be developed to measure the polarization deviations in the
optics used as well as the polarization deviations in the laser source. To test
the model unambiguously verification measurements should be done using a
traceable calibration setup with nanometer accuracy developed in an earlier
PhD-program [26]. To improve the calibration uncertainty a new setup has to
be designed based on this calibration setup with a maximum uncertainty of
0,5 nm.

Due to the high costs of vacuum equipment air is mostly preferred as the
medium through which the light is transported. In order to improve the ac-
curacy of laser interferometer systems working in air the absolute refractive
index of air has to be measured with an uncertainty better than 2·10−8. To test
the feasibility of a new absolute refractometer based on a Fabry-Pérot cavity
a tracker has to be built, which measures the change of refractive index with
an uncertainty below 5·10−9. To test the system a comparison should be made
between the refractive index determined with the three versions of the mod-
ified Edlén’s equation and an absolute refractometer based on a commercial
interferometer.
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1.4 Thesis outline

First in chapter 2 two models will be presented to calculate the periodic devia-
tions. One is based on analytical modeling and the second is based on Jones [43]
modeling. Also some modeling results will be shown for basic interferometers.
Further a simple method will be presented to test part of the models. In chap-
ter 3 the polarization measurements of interferometer components such as the
laser head and optics will be presented. In chapter 4 the traceable calibration
setup will be explained and the calibration of different complete interferometer
setups is discussed. Further the design of a new traceable calibration setup
is discussed and the stability is tested. Of both systems an uncertainty calcu-
lation is described. A possible method to compensate periodic deviations in
heterodyne interferometers will be discussed in chapter 5. The influences of the
refractive index of air will be explained in chapter 6 together with the design of
the tracker system. A comparison between three versions of Edlén’s equation,
an absolute refractometer and a tracker with improved accuracy is also pre-
sented in chapter 6. Finally conclusions and recommendations are presented
in chapter 7.



Chapter 2

Periodic deviations in laser
interferometers

The field of interferometry tends toward more accurate measurements with
increasing resolution. The principal limitations of laser interferometer systems
are in the photonic noise and the residual periodic deviations which are inherent
in periodic signals. Periodic deviations are present in the phase measurement
system itself, but they can also result from the optics used: beam splitters,
retardation plates used with plane mirrors and retro reflectors can influence
the polarization state in interferometers using polarizing optics, or influence
the contrast of interferometers with non-polarizing optics. The modeling of
periodic deviations is important to understand the influence of different sources
on the periodic deviations and in any future compensation for these errors.
Until now research done on the influence of sources of periodic deviations
[17, 18] was based on the calculation of different influences separately or a
combination of influences from the beam splitter [22]. In this chapter the origin
of periodic deviations will be discussed and a general model is presented to
calculate the periodic deviations resulting from a combination of deviations in
the polarization state of the light emitted by the laser and optics.

2.1 The origin of periodic deviations

The laser head shown in figure 2.1 consists of a laser source which emits two
orthogonally polarized beams with a different frequency ( f1 and f2). These two
beams can be represented as:

~E1 = E0 sin(2π f1t + φ01) ~e1 (2.1)

~E2 = E0 sin(2π f2t + φ02) ~e2 (2.2)

A non-polarizing beam splitter divides the beam in two parts: one reference
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Figure 2.1: Schematical representation of the principle of a heterodyne laser
interferometer.

part and one measurement part. The reference part passes a combining polar-
izer and falls on a detector resulting in an interference signal of which only the
alternating current is measured due to the use of a band-pass filter, eliminating
both the DC component and optical frequencies. This signal can be represented
by:

Ire f =
1

2
E0

2
[

cos
(

2π( f2 − f1)t + (φ02 − φ01)
)]

(2.3)

The measurement part is divided by a polarizing beam splitter in a reference
arm and in a measurement arm. The signal in the measurement arm receives a
Doppler shift as a result of the moving retro reflector, resulting in a phase shift
of the measurement signal compared to the reference signal [44]:

∆φ2 = 2π∆ f2t =
4πn∆l

λ2
(2.4)

with λ2 representing the vacuum wavelength of the light reflected by the mirror
and n the refractive index of air in the measurement path. With a polarizer the
signal from the reference arm and the signal from the measurement arm are
combined and result in an interference signal. From this interference signal
the measurement signal is constructed containing the phase information and
therefore containing the displacement of the retro reflector. In an ideal laser

interferometer ~E1 enters the reference arm and ~E2 enters the measurement arm
and the detected signal can be represented by:

Imeas =
1

2
E0

2
[

cos
(

2π( f2 − f1)t + (φ02 − φ01) + ∆φ2

)]

(2.5)

where f1 and f2 are the frequency of measurement and reference arm, φ01 and
φ02 are the initial phase of both frequencies and ∆φ2 is the phase difference as a
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result of the target movement. The measurement with a laser interferometer is
based on measuring the phase difference between the measurement signal (2.5)
and the reference signal (2.3). In a common laser interferometer the separation
between both arms and therefore both polarization states is not ideal, part of
the measurement frequency enters the reference arm and part of the reference
frequency enters the measurement arm and gets a Doppler shift also. This
results in an extra phase term in the measurement signal which now can be
represented as:

Imeasnl =
1

2
E0

2
[

cos(2π( f2 − f1)t + (φ02 − φ01) + ∆φ2 + ∆φpd)
]

(2.6)

The calculation in the interferometer however uses only one frequency result-
ing in periodic deviations in the measurement results. The extra phase term
therefore represents the periodic deviations of the system.

2.2 Modeling of periodic deviations

Most commercial interferometers are based on polarization splitting, in these
systems all deviations in polarization will cause periodic deviations. Earlier
studies (see section 1.2.1) have proved that a number of different influences on
periodic deviations in laser interferometers exist. These possible influences can
be summarized as:

• Elliptically polarized laser beams

• Non-orthogonally polarized laser beams

• Rotational error in the alignment of laser and beam splitter

• Rotational error in the alignment of the mixing polarizer

• Different transmission coefficients in the beam splitter

All polarization errors in the optics also cause polarization mixing, which in
heterodyne laser interferometry results in frequency mixing. Therefore apart
from the influences mentioned above also the polarization errors in the optics
should be considered in the model. The model should be able to calculate
periodic deviations resulting from all these errors separately as well as from
a combination. Unequal intensities of the two frequencies emitted by the
laser head of a heterodyne interferometer results in a deteriorated contrast.
In combination with ideal phase measuring this would not result in periodic
deviations. The phase measuring electronics are not considered in this thesis.

2.3 Analytical modeling

The errors mentioned above can be represented schematically as in figure 2.2.
The ellipticity of the laser beams is defined as dε1 and dε2, the non-orthogonality
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and rotation of the laser referred to the beam splitter are both represented by α
and β, i.e. for a rotational error of orthogonally polarized light β = −α and for
non-orthogonality β , −α. The transmission coefficients of the beam splitter
are represented as χ and ξ. Finally the rotation angle of the polarizer compared
to π

4 is referred to as θ.

Laser head

Beam splitter

χ

ξ
α

β

~E1

~E2

~E1

~E2

dε1

dε2

Ellipticity

Ex

Ey

Polarizer

θ
45◦

Figure 2.2: Schematical representation of the parameters influencing the peri-
odic deviations in a laser interferometer.

Orthogonal elliptically polarized light with equal amplitudes emitted by the
laser head can be represented as:

E1 = E0

[

cos(dε1) sin(2π f1t + φ01) − sin(dε2) cos(2π f2t + φ02)
]

(2.7)

E2 = E0

[

sin(dε1) cos(2π f1t + φ01) + cos(dε2) sin(2π f2t + φ02)
]

(2.8)

where dε1 and dε2 represent the ellipticity as shown in figure 2.2. For the
simplicity of further formulas this can be represented as:

E1(x1, x2) = E0 [cos(dε1) sin(x1) − sin(dε2) cos(x2)] (2.9)

E2(x1, x2) = E0 [sin(dε1) cos(x1) + cos(dε2) sin(x2)] (2.10)

The transmission through the beam splitter can be described as a projection of
the two beams on the polarization axes of the beam splitter. Each polarization
axis of the beam splitter has its own attenuation and both arms receive a phase
shift of which the difference contains a term representing the displacement. In
mathematical form this can be represented as:

Ex = ξ
[

cos βE1(x1 + φ1, x2 + φ1) + sinαE2(x1 + φ1, x2 + φ1)
]

(2.11)

Ey = χ
[

sin βE1(x1 + φ2, x2 + φ2) + cosαE2(x1 + φ2, x2 + φ2)
]

(2.12)

where ξ and χ are the transmission coefficients in respectively x and y direction
of the beam splitter and α and β represent the non-orthogonality and rotational
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alignment error. The phase retardance of the two beams emerging from the
polarizing beam splitter are indicated as φ1 and φ2 respectively. In the inter-
ferometer one of these beams receives a phase shift (∆φ) due to the moving
retroreflector. In this representation this phase shift is ∆φ = φ1 − φ2.
The intensity transmitted through a rotated polarizer can be represented as:

I =
[

Ex cos(
π

4
− θ) + Ey sin(

π

4
− θ)

]2

(2.13)

where θ represents the angle of the polarizer compared to π
4 referred to the

beam splitter axes.
After substitution of formulas (2.7-2.13) into each other and simplifying it using
the knowledge of the use of a bandpass filter, eliminating DC components and
optical frequencies, an equation follows of the form:

Imeas = M cos
(

2π( f2 − f1)t + (φ02 − φ01) + ∆φ
)

+ N sin
(

2π( f2 − f1)t + (φ02 − φ01) + ∆φ
)

(2.14)

This can be rewritten into one cosine term:

Imeas =
√

M2 +N2 cos
(

2π( f2 − f1)t + (φ02 − φ01) + ∆φ − arctan
(

N

M

))

(2.15)

This gives the formula for the intensity on the detector in the form of formula
(2.6) but with a different amplitude. However as mentioned before the mea-
surement of the interferometer is based on a phase measurement. The phase of
the resulting formula therefore includes the periodic deviations. By calculation
of N and M the periodic deviations are represented by arctan(N/M). The result
is presented in the next paragraph.

2.3.1 Integral equation for an interferometer with linear optics

The periodic deviations of a linear interferometer resulting from a non-orthogonally,
elliptically polarized laser light source passing a rotational misaligned beam
splitter with different transmission coefficients and a rotated polarizer can be
calculated with the use of equation (2.16):
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∆φpd = − arctan
(B +D) + (B −D) sin(2θ) + F cos(2θ)

(A + C) + (A − C) sin(2θ) + E cos(2θ)
(2.16)

With

A = χ2

























cos β sinα cos(dε1) cos(dε2) cos∆φ
+ sin β cosα sin(dε1) sin(dε2) cos∆φ
− cos β cosα cos(dε1) sin(dε2) sin∆φ
+ sin β sinα sin(dε1) cos(dε2) sin∆φ
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Simplifying this formula with α = β = θ = dε2 = 0 and ξ = χ = 1, which means
an ideal interferometer except for one elliptically polarized laser beam, gives
the following equation:

∆φpd = − arctan

( − sin(dε1) cos(∆φ)

sin(dε1) sin(∆φ) + cos(dε1)

)

(2.17)

This is equal to equation 13 of Hou and Wilkening [17] where they use ρ = dε1.
Another simplification follows from substituting β = −α and dε1 = dε2 = θ = 0
and ξ = χ = 1 which means a rotational misalignment of the beam splitter
gives:
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∆φpd = − arctan

( − sin2 α sin(2∆φ)

cos2 α − sin2 α cos(2∆φ)

)

(2.18)

Rewriting of this formula results in equation 11 found by Player and De Fre-
itas [18]. So the mentioned different cases modeled by Hou and Wilkening [17]
and Player and De Freitas [18] follow exactly from a simplification of the full
formula 2.16.

2.4 Verification of the model using a Babinet-Soleil

compensator

The model presented in section 2.2 combined different theories of causes of
periodic deviations resulting from previous publications of various authors. To
verify the theory in practice a Babinet-Soleil compensator was used, replacing
the beam splitter-retro reflector optics of the modeled interferometer (see figure
2.3).

Laser
+ receiver

Laser Receiver

Polarizing
beam splitter

Pitch

Roll

Yaw

Retro reflector

Babinet Soleil
compensator

Figure 2.3: Schematical representation of the simulation of the interferometer
optics with a Babinet-Soleil compensator.

The Babinet-Soleil compensator provides a common path for both polarization
components, and therefore cancels out any influence of the refractive index of
air. It also provides a convenient way to apply an optical path difference of
a fraction of a wavelength. This optical path difference is produced due to a
difference in refractive index for two orthogonal polarization states. The phase
difference introduced between both polarization axes can be represented as
[45]:

∆φBS = 2π

∣

∣

∣

∣

∣

n⊥
λ⊥0
−

n‖
λ‖0

∣

∣

∣

∣

∣

∆d (2.19)
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where λ⊥0 and λ‖0 are the vacuum wavelengths of both polarization states, n⊥
and n‖ are the refractive indices for both polarization arms and ∆d represents
the thickness difference of the two materials in the Babinet-Soleil compensator
(see also appendix B). By varying the thickness of the compensator (through
movement of the wedges compared to each other, see figure 2.3) the optical
path difference between both polarization states can be varied.

The test setup consists of a heterodyne laser source [83, 84] placed firmly on
an optical bench, a Babinet-Soleil compensator which can be rotated around its
roll-axis and a receiver [85] which can be rotated around its roll-axis also. The
receiver was read out with a PC-card [86] with help of self written software
which reads the card at maximum resolution and integrates over 10 measure-
ments.

An important aspect for the verification of the model with use of a Babinet-
Soleil compensator is the repeatability of the measurements. This repeatability
was tested in three sessions done at different times during one day. The results
are shown in figure 2.4. It shows a standard deviation of 0,1 nm which is
sufficient for the tests to be done.
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Figure 2.4: Result of the repeatability test for the Babinet-Soleil compensator.

To ensure a correct measurement of periodic deviations the scale of the
Babinet-Soleil compensator was calibrated using a second Babinet-Soleil com-
pensator as shown in figure 2.5. Initially for both Babinet-Soleil compensators
the optical displacement was calibrated against the mechanical displacement
at 0, λ/2 and λ, see appendix B. Then four measurements of the periodic devi-
ations of a laser-Babinet Soleil-receiver configuration were done, like in figure
2.7, with the first Babinet-Soleil compensator at a phase shift representing
0, λ/4, λ/2 and 3λ/4. At these four initial phase shifts the second Babinet-Soleil
compensator, used for further measurements, was displaced within the same
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range as during the measurements (0−λ). Averaging these four measurements
results in the calibration as shown in figure 2.6 and was used to correct the
measurements of periodic deviations.

d11d21 d12 d22

Babinet-Soleil 1 Babinet-Soleil 2

Laser head Receiver

Babinet-Soleil 1 Babinet-Soleil 2

0

λ/4

λ/2

3λ/4

0 − λ

0 − λ

0 − λ

0 − λ

Figure 2.5: Schematic representation of the calibration of the Babinet-Soleil
compensator.
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Figure 2.6: Calibration result for the Babinet-Soleil compensator.

In the measurement setup there are two controlled variables: the rotation
angle of the Babinet-Soleil compensator (representingα and−β) and the rotation
angle of the receiving polarizer (representing θ) which can both be set with
a resolution of 0,01◦. All other parameters are kept constant. To be able
to model the interferometer correctly the non-orthogonality and ellipticity of
the laser polarizations and the transmission coefficients of the Babinet-Soleil
compensator were measured with use of a polarizer and a spectrum analyzer.
The ellipticity for the laser polarizations appeared to be 0,38◦ for E1 and −0,36◦

for E2. The non-orthogonality was 0,2◦. The transmission coefficients of the
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Babinet-Soleil compensator were 0,72 for horizontal component and 0,71 for the
vertical component. These values were used for further simulations comparing
the model with the measurements with the Babinet-Soleil compensator.

In figure 2.7 two results are presented of the measurement with use of a
Babinet-Soleil compensator together with the result of the analytical model.
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(a) Receiver polarizer aligned to laser beam
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(b) Receiver polarizer aligned to beam splitter
(θ = 0,4◦)

Figure 2.7: Theoretical and experimental results of the measurement of the pe-
riodic deviations in an interferometer with a rotated beam splitter
(α = 8,6◦, β = −8,8◦) and a rotated polarizer. Further variables
used in the model were: the transmission coefficients ξ = 0,72 and
χ = 0,71, the ellipticity dε1 = 0,38◦ and dε2 = −0,36◦ as defined in
figure 2.2.

Both figures show an excellent correspondence between the theory and the
measurements resulting in a standard deviation of the model compared to the
measurements of only 0,3 nm for the left figure and 0,2 nm for the right figure.
Which will be partially caused by the reproducibility of the operators hand and
the micrometer screw to set the Babinet Soleil.

2.5 Modular modeling of periodic deviations

To calculate the above mentioned analytical model of a linear interferometer
is a time consuming task. In order to have a flexible model Jones matrix
calculation can be used [23, 19]. Jones matrix calculation enables one to change
the optical setup easily to calculate the effects of different optical setups on the
periodic deviation. Further it enables the input of polarization properties of
optical components. The axes definition used for the Jones matrix calculation
is shown in figure 2.8. Here the angle of rotation of the beam splitter and the
non-orthogonality angle are defined separately, in contrast to the definition for
the analytical model (see figure 2.2). The angles are related to each other as
follows:
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α + β = η2 − η1 (2.20a)

α = αPBS (2.20b)

In the following subsection the Jones matrices of non-ideal interferometer com-
ponents are described.

X

Y

X

Y

X

Y

η1

dε1
dε2

η2

~E1

~E2

APBSx

APBSy

αPBS

αPBS 45◦

αP

Laser head

Beam splitter

Polarizer

Figure 2.8: Schematical representation of the axes definition used in the Jones
model of the heterodyne laser interferometer

2.5.1 The Jones matrices of the components

Elliptically, non-orthogonally polarized light emitted by a heterodyne laser
head of one frequency can be represented with a Jones vector as follows:

~E1 = R(η1) ∗
[

cos(dε1)
−i ∗ sin(dε1)

]

∗ ei(2π f1t+φ01) (2.21a)

for frequency f1 and

~E2 = R(η2) ∗
[

i ∗ sin(dε2)
cos(dε2)

]

∗ ei(2π f2t+φ02) (2.21b)

for frequency f2, where dε1 and dε2 represent the ellipticity of the light as shown
in figure 2.8 and η1 − η2 represents the angle of non-orthogonality. In the ideal
case (dε1 = dε2 = 0, η1 = η2 = 0) both plane waves become orthogonally linearly
polarized. R(α) is the rotation matrix with angle α:
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R(α) =

[

cos(α) − sin(α)
sin(α) cos(α)

]

(2.22)

The beam splitter can be represented by two matrices, one for transmission and
one for reflection.

PBSt = R(αPBS) ∗
[

APBSx
eiδPBSx 0

0 1

]

∗ R(−αPBS) (2.23a)

PBSr = R(αPBS) ∗
[

1 0

0 APBSy
eiδPBSy

]

∗ R(−αPBS) (2.23b)

Where αPBS is defined as the angle of rotation around the roll axis. If ideally the
P polarization is transmitted and S polarization is reflected then APBSx

is defined
as the leakage coefficient of the S polarization direction into the P polarization
direction of the transmitted light. δPBSx

is the phase change between the main
axes of the transmitted light. APBSy

is defined as the leakage coefficient of the
P polarization direction into the S polarization direction of the reflected light,
δPBSy

is the phase change between the main axes of the reflected light.
In a plane mirror interferometer quarter wave plates are used. A non-ideal

wave plate is described by:

WP = R
(

π

4
+ αWP

)













AWPx
e−i(

φWP+dφWP
2 ) 0

0 AWPy
ei(

φWP+dφWP
2 )













R
(

−π
4
− αWP

)

(2.24)

here αWP is the rotational misalignment of the wave plate compared to an angle
of π

4 , φWP represents the order of the wave plate (φ = π
2 represents a quarter

wave plate) and dφWP is the phase error of the wave plate. AWPx
and AWPy

represent the transmission coefficients of the main axes of the wave plate.
A polarizer can be described as follows:

P = Tp

[

cos2(π4 + αP) sin(π4 + αP) cos(π4 + αP)
sin(π4 + αP) cos(π4 + αP) sin2(π4 + αP)

]

(2.25)

Where TP represents the transmission coefficient of the polarizer and αp repre-
sents an extra phase shift introduced by the polarizer. According to Liu and
Azzam [46] the retro reflectors always have two linear eigenstates. A moving
retro reflector is then described as follows:

MRRF =

[

AxM
ei(αx+3π+dφ) 0

0 AyM
ei(αy+3π+dφ)

]

(2.26)

where AxM
and AyM

are the reflection coefficients of the retro reflector in x and
y direction. αx and αy are the phase changes occurring in x and y direction due
to the retro reflector. dφ is the phase change due to the movement of the retro
reflector, for a steady retro reflector dφ = 0. For a certain frequency f this phase
change equals:



2.5. MODULAR MODELING OF PERIODIC DEVIATIONS 27

dφ =
4πn∆l f

c
(2.27)

where ∆l represents the displacement of the retro reflector, and c is the velocity
of light in vacuum. For a static (reference) retro reflector dφ would equal zero.
For a single mirror the static phase shift would equal π in stead of 3π.

2.5.2 Modeling example

In a heterodyne interferometer the phase change is measured by counting
the zero-passings of the interference signal. To facilitate modeling the time
dependency is replaced by a phase shift varying from 0 to 2π of one frequency
compared to the other emerging from the laser head. This means for every
position of the target, the phase shift of light emerging from the interferometer
is calculated while frequency 1 is shifted up to 2π. From the output the phase
of the first harmonic is calculated representing the periodic deviations.

Since Jones matrices only represent phase changes due to optical compo-
nents both frequencies are modeled separately as well as the reference and
measurement path. For the first frequency traveling through linear interferom-
eter optics we would get:

~Er f1 = PBSr ∗ RRF ∗ PBSr ∗ ~E1 (2.28)

~Em f1 = PBSt ∗MRRF ∗ PBSt ∗ ~E1 (2.29)

~E f1 = ~Er f1 +
~Em f1 (2.30)

For the second frequency this would hold the same formula, except ~E1 has to

be replaced by ~E2:

~Er f2 = PBSr ∗ RRF ∗ PBSr ∗ ~E2 (2.31)

~Em f2 = PBSt ∗MRRF ∗ PBSt ∗ ~E2 (2.32)

~E f2 = ~Er f2 +
~Em f2 (2.33)

The returning E-field emerging from the beam splitter is the complex sum

of both E-fields: ~EBS = ~E f1 +
~E f2 . From the beam splitter the beam passes a

polarizer to create an interference signal: ~EP = P ∗ ~EBS. The total intensity on
the measurement detector is:

Im = ~E
†
P
~EP = EPx

∗EPx
+ EPy

∗EPy
(2.34)

The electromagnetic field on the reference receiver can be described as:

~EPr
= P ∗ ~Er = P ∗ (~E1 + ~E2) (2.35)
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The total intensity on the reference detector is:

Ir = ~E
†
Pr

~EPr
= EPrx

∗EPrx + EPr y
∗EPry (2.36)

The phase difference between measurement signal and reference signal now
contains the phase shift as the result of the displacement as well as an extra
term representing the periodic deviations. The phase shift as the result of the
displacement is the input of the model. The periodic deviation is the calculated
phase change (∆φmeas) minus this phase change put in the system (∆φ):

∆φpd = ∆φmeas − ∆φ (2.37)

As an example and to verify the model mathematically the cases modeled by
Hou and Wilkening (equation 2.17) and Player and De Freitas (equation 2.18)
were also modeled using the Jones model (see appendix C). In this appendix it
is shown that these cases are again a simplification of the total model.

2.6 Interaction of periodic deviations

With use of the Jones matrix model combinations of different sources of periodic
deviations on an interferometer with linear optics as shown in figure 2.1 were
modeled. In this section some results are shown. From the model also the
Fourier spectrum of the periodic deviations are calculated. With use of the
amplitude spectrum the dependence of first order and second order periodic
deviations can be studied separately.

2.6.1 The influence of laser head radiation ellipticity

Since the principal limitations of the laser interferometer are in the polarization
state of the laser head itself, the non-orthogonality and ellipticity are modeled
first. If a Zeeman split laser source is used, the frequencies emerging from the
laser source are circularly polarized. One left-handed and one right handed.
With use of extra polarizing optics (e.g. a quarter wave plate) ideally two
beams with orthogonal polarizations are created. However these optics will
not be ideal and therefore the two frequencies emerging from the laser head
will be slightly elliptically polarized, one left-handed and one right-handed.
The periodic deviations resulting from an increasing elliptic polarization when
using further ideal interferometer optics is shown in figure 2.9.

In the case where a laser emits two equal rotating elliptical polarizations the
resulting periodic deviations are shown in figure 2.10. We now can compare
figure 2.9 to figure 2.10 to see clearly the effect of contra-rotating or equal rotat-
ing ellipticity. The periodic deviations resulting from equal rotating elliptically
polarized frequencies consists of a large first order periodic deviation (period
λ/2 in linear interferometer), see figure 2.10 with a small second order peri-
odic deviation. While the periodic deviations resulting from contra-rotating
elliptical polarizations is a pure second order periodic deviation, see figure
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Figure 2.9: The periodic deviations as a result of increasing contra-rotating el-
lipticity (dε1 = −dε2 = dε) of the laser head.
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Figure 2.10: The periodic deviations as a result of increasing equal-rotating
ellipticity (dε1 = dε2 = dε) of the light emitted by the laser head.
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2.9. Further it can be shown that the amplitudes of the second order periodic
deviation in both figures are equal. From this it can be concluded that an
inherent compensation for the first order periodic deviation is gathered from
contra-rotating ellipticity.

2.6.2 The influence of laser head radiation non-orthogonality

Another error source resulting from the laser head is the non-orthogonality
between both emitted frequencies. The periodic deviations resulting from
this is presented in figure 2.11. As can be seen from this figure the resulting
periodic deviation is a nearly pure first order periodic deviation with a linear
dependence on the angle of non-orthogonality.
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Figure 2.11: The periodic deviations as a result of increasing non-orthogonality
(dη) of the light emitted by the laser head.

2.6.3 Combined error sources: Superposition principle

As shown in subsection 2.6.1 a contra-rotating ellipticity results in a pure sec-
ond order periodic deviation. In subsection 2.6.2 it was shown that non-
orthogonality of the frequencies resulted in a first order periodic deviation
with a negligible second order. The question arises whether the periodic devi-
ations resulting from elliptically non-orthogonally polarized beams equals the
summation of periodic deviations resulting from both influences separately.
In figure 2.12 the result is shown. From this figure it can be concluded that
with a further ideal interferometer the effect of separate non-orthogonality and
ellipticity can be added.

To investigate the possibility of superposition further a modeling example
is given with a slightly rotated beam splitter (αPBS = 0,5◦). The influence of
increasing (contra-rotating) ellipticity is presented in figure 2.13. Here it can
be seen that the first-order periodic deviation introduced by the beam splitter
rotation is increased by the increasing of the laser ellipticity as well as the
second order. While with ideal optics only a second order periodic deviation
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Figure 2.12: The periodic deviations as a result of increasing non-orthogonality
(dη) and ellipticity (dε) of the light emitted by the laser head.

existed (see figure 2.9). The influence of an increasing non-orthogonality is
presented in figure 2.14. From this figure it can be seen that the second order
periodic deviation introduced by the rotation of the beam splitter is decreased
(minor influence) by the increasing of non-orthogonality while the first order
remains increasing nearly equal to the case with ideal interferometer optics.
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Figure 2.13: The periodic deviations as a result of a fixed rotated beam splitter
(αPBS = 0,5◦) and increasing ellipticity (dε1 = −dε2 = dε) of the light
emitted by the laser head.

If the superposition principle would hold, the periodic deviations result-
ing from a rotated beam splitter with increasing laser ellipticity and non-
orthogonality should be the sum of figures 2.13 and 2.14 minus one time the
effect of rotating the beam splitter, since in both simulations this effect is present
(0,02 nm in first order). The modeling output of the periodic deviations result-
ing from a rotated beam splitter in combination with an increasing laser ellip-
ticity and non-orthogonality is shown in figure 2.15. Comparing figures 2.13,
2.14 and 2.15 it can be concluded that the superposition principle does not hold
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Figure 2.14: The periodic deviations as a result of a fixed rotated beam splitter
(αPBS = 0,5◦) and increasing non-orthogonality (dη) of the light
emitted by the laser head.
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Figure 2.15: The periodic deviations as a result of a rotated beam splitter (αPBS =

0,5◦) and increasing non-orthogonality (dη) and ellipticity (dε1 =

−dε2 = dε) of the light emitted by the laser head.
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for non-ideal interferometer optics. This is best seen comparing all maximum
amplitudes for the first harmonic: in figure 2.13 0,07 nm in figure 2.14 0,36 nm
and in figure 2.15 0,37 nm, 0,36 nm + 0,07 nm − 0,02 nm , 0,37 nm. It seems
that a rotation of the beam splitter can partially compensate for the increasing
non-orthogonality and ellipticity. The influence of each optical component has
to be considered together with other error sources to enable a good prediction
of periodic deviations in an interferometer.

2.6.4 Interaction between polarizing beam splitter and polar-
izer

To investigate rotational alignment effects of commonly used optics two cases
are interesting to discuss. First the effect of a rotated beam splitter is simulated.
Second the additional effect of a rotated polarizer was simulated. In figure 2.16
the periodic deviations are shown resulting from different angles of rotational
misalignment of the beam splitter. In figure 2.17 the result is shown for different
angles of the polarizer in front of the measurement detector, combined with a
constant rotational angle of the beam splitter. All other parameters are assumed
ideal.

P
er

io
d

ic
d

ev
ia

ti
o

n
in

n
m

Displacement in nm

0 100 200 300 400 500 600 700
−0,5
−0,4
−0,3
−0,2
−0,1

0

0,1

0,2
0,3

0,4
0,5

αPBS = 0,0◦
αPBS = 0,5◦
αPBS = 1,0◦
αPBS = 1,5◦
αPBS = 2,0◦
αPBS = 2,5◦

A
m

p
li

tu
d

e
in

n
m

Harmonic number
0 1 2 3 4 5 6 7

0

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

Amplitude spectrum of periodic deviation

αPBS = 0,0◦
αPBS = 0,5◦
αPBS = 1,0◦
αPBS = 1,5◦
αPBS = 2,0◦
αPBS = 2,5◦

Figure 2.16: The periodic deviations as a result of increasing rotation of the
polarizing beamsplitter angle (αPBS) around the roll-axis as defined
in figure 2.3.

From these figures it can be concluded that the rotation of the polarizer de-
termines the period of the periodic deviations as mentioned by Stone [22]. A
rotation of the polarizer equal to the angle of the rotated beam splitter results
in a period of λ/4 and a polarizer aligned ideal to the orientation of the laser
results in a period of λ/2. Both periods were observed earlier by Sutton [15].
This solves the discrepancy between authors which mention a period ofλ/4 [18]
and those who observed a period of λ/2 [16]. Further modeling showed that
the effect was a result of bringing the projected amplitudes of the measurement
arm on the polarizer into line with the projected amplitude of the reference
arm on the polarizer. If in fact the transmission amplitudes are Ax = 0,5 for one
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Figure 2.17: The periodic deviations as a result of increasing rotation of the
receiver polarizer angle (αP) when the beam splitter is rotated 2,5◦

around the roll-axis as defined in figure 2.3.

arm and Ay = 1 for the other arm, the measurement polarizer should have an
angle of 18,4◦ with the 45◦ axis to reduce the effect of the first-order periodic
deviation, which equals (45◦ − arctan(0,5)).

2.7 Conclusions

In this chapter two models were presented enabling the prediction of periodic
deviations resulting from alignment errors and polarization errors of the light
emitted by the laser head. The Jones model further enables the input of Jones
matrices representing the optics present in an interferometer. Both models can
be simplified to equations derived by other authors in literature for individual
sources of periodic deviations in interferometers. It was shown that interaction
of periodic deviations exists and therefore the superposition principle does
not hold for periodic deviations: all possible causes of periodic deviations
must be considered at once to enable an accurate prediction of the periodic
deviations present in the interferometer. The influence of non-orthogonality of
light emitted by the laser head was described quantitative and the difference in
effect on periodic deviations of contra-rotating and equal rotating elliptically
polarized light emitted by the laser head was shown.



Chapter 3

Polarization properties of
interferometer components

In the previous chapter a model was presented to calculate the periodic de-
viations resulting from various errors in the interferometer. The principal
uncertainty limitations are the polarization quality of the laser system and op-
tics used in the interferometer. Therefore, in order to predict the total periodic
deviations resulting from the interferometer, the polarization state of the laser
system and optics must be measured. In this chapter two methods will be pre-
sented to measure the polarization state of the laser system and a comparison
of the methods will be made, based on measurement results. Further, a method
to measure the polarization state of interferometer optics will be discussed and
some measurements are presented. Finally the effect of the components will be
analyzed using the Jones model of the previous chapter.

3.1 Laser system

In a commercial laser interferometer the laser system is defined as a combina-
tion of the laser source and optics used for stabilization control and reference
measurement, normally called the laser head. A schematic representation of
a heterodyne laser head is shown in figure 3.1. The heterodyne laser head
consists of a laser tube filled with Helium and Neon gas. Around the laser tube
a magnetic field is applied with its main axis in the direction of the laser light.
Due to the Zeeman effect, light with two frequencies is emitted by the laser
source (Zeeman laser [47]). The electromagnetic field with one frequency is left
handed circularly polarized and the other frequency right handed circularly
polarized. In order to distinguish the two polarizations in the interferometer,
a wave plate is used to create orthogonally linear polarized beams. Part of the
beam is split off to stabilize the laser frequency. Further a part is split off to
provide the reference measurement. Sometimes acousto optical modulators are
used to enlarge the frequency split of the laser source (see bottom figure 3.1).
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Figure 3.1: Schematic representation of two heterodyne laser heads. One with
Zeeman split frequency and one with enlarged split frequency.
NPBS: non polarizing beam splitter, PBS: polarizing beam split-
ter, P: polarizer, QWP: quarter wave plate, BM: bending mirror,
AOM: acousto optic modulator, LC: Liquid crystal.

In that case both frequencies are split by means of polarization splitting; the
first frequency enters an acousto optical modulator with frequency ∆ fA and
the second frequency enters an acousto optical modulator with frequency ∆ fB.
Both frequencies are then recombined and the splitting of the frequencies now
equals ∆ fA − ∆ fB + f1 − f2, where f1 and f2 are the original laser frequencies.
With an ideal laser source and ideal optics which are ideally aligned, the out-
put of the laser head would be orthogonally linearly polarized. However in
practical situations this is not the case and nonorthogonal elliptically polarized
modes are emitted. The polarization errors of the laser system originate from
inhomogeneities in the laser source, together with anisotropy of the cavity
[48, 49, 50]. The optics used in the laser head to split off parts of the beam,
which are used as stabilization and reference measurements, also contribute to
the total polarization state of the E-field emerging from the laser head. In a
homodyne interferometer the polarization state can be measured easily using
a polarizer and a power meter. However, in a heterodyne laser source both
frequencies are detected and therefore this method is not possible, so another
method has to be found. An extra complication is the small ratio of ellipticity
which has to be measured in addition to the low power emerging from a HeNe
laser source which is approximately 300 µW. One way is to use a spectrum
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analyzer as a power meter for different frequencies along with a circularly
polarized homodyne laser source which functions as a carrier frequency to in-
crease the measured power and enables the measurement of the frequencies on
the spectrum analyzer. This method is called the ”carrier frequency method”.
Another method is to measure a beat signal directly after the laser head with
a frequency detector in combination with a lock-in amplifier. This is called the
”beat measurement method”. Both methods are explained in more detail in
the next sections.

3.1.1 Carrier frequency method

In figure 3.2 the measurement setup for the carrier frequency method is pre-
sented schematically. The light emerging from the heterodyne interferometer
is mixed with circularly polarized light emerging from a second laser source in
a non-polarizing plate beam splitter. The light then passes through a polarizer
onto an avalanche photodiode. A beam reductor is used along with a lens to
focus the light on the detector. Further, to reduce the translation of the beam on
the detector resulting from the rotation of the polarizer, the polarizer is placed
close to the detector. With use of a spectrum analyzer the intensities of two
different beat frequencies can be measured: I( f1, f3) and I( f2, f3); where f1 and
f2 are the frequencies emerging from the heterodyne laser head and f3 is the
frequency emerging from the circular polarized laser source.

Heterodyne laser head

Circularly polarized
homodyne laser

Non-polarizing
beam splitter

Beam reductor
Polarizer

Lens Avalanche
photo detector

Spectrum
analyzer

f3
f1

f2

( f1, f3)( f2, f3)

Figure 3.2: Schematic representation of the Carrier Frequency measurement
setup.

The E-fields present in this carrier frequency measurement setup are de-
picted schematically in figure 3.3 along with the schematic representation of
the measurements on the spectrum analyzer. The polarization states emerging

from the heterodyne interferometer are represented as Jones vectors ~E1 and
~E2 with respective ellipticities dε1 and dε2 as also defined in section 2.5. The
intensities of the two beat frequencies as function of the rotation angle of the
polarizer are shown in the right hand side of figure 3.3. Here EM1 and EM2
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represent the amplitude of the major axes of E-fields ~E1 and ~E2, Em1 and Em2

represent the amplitude of the minor axes of E-fields ~E1 and ~E2. Ep1 and Ep2 are
arbitrary amplitudes of the respective E-fields.
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(b) Carrier freuqency measurement output

Figure 3.3: Schematic representation of the E-fields present in the carrier fre-
quency method as well as the schematic representation of the output

of this measurement setup. ~E1, ~E2 are the E-fields emerging from the
heterodyne laser of which the ellipticity is dε1 and dε2 respectively,
~E3 emerges from the circular reference source and αp represents the
angle of the polarizer. EM1 and EM2 represent the amplitude of the

major axes of E-fields ~E1 and ~E2, Em1 and Em2 represent the ampli-

tude of the minor axes of E-fields ~E1 and ~E2. Ep1 and Ep2 are arbitrary
amplitudes of the respective E-fields.

The intensities of the beat frequencies measured on the spectrum analyzer as a
function of the polarizer angle αp are derived in Appendix D:

Ia( f1, f3)αp = 2E01E03

√

cos2(αp) cos2(dε1) + sin2(αp) sin2(dε1) (3.1)

Ia( f2, f3)αp = 2E02E03

√

cos2(αp − η) sin2(dε2) + sin2(αp − η) cos2(dε2) (3.2)

From this equation it follows that the intensity of both beat frequency signals
vary as a function of the polarizer angle αp. The maximum and minimum
intensities for the beat signal between f1 and f3 can be found at angles αp = 0
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and αp = π/2:

Ia( f1, f3)αp=0
= 2E01E03 cos(dε1) (3.3)

Ia( f1, f3)αp=π/2 = 2E01E03 sin(dε1) (3.4)

The angles for the minimum and maximum intensity of the beat signal between
f2 and f3 are αp = η and αp = π/2 + η:

Ia( f2, f3)αp=η = 2E02E03 sin(dε2) (3.5)

Ia( f2, f3)αp=π/2+η = 2E02E03 cos(dε2) (3.6)

From these four measurements the non-orthogonality follows directly as the
deviation in the angle between the minimum of E1E3 and the minimum of
E2E3 and 90◦. The ellipticity of the two output frequencies can be calculated
from these measurements. As defined in figure 2.8 the ellipticity is defined as
an angle dε. For simplicity the inverse tangent of this angle is represented,
indicating the ratio of amplitudes of the major and minor axes of the ellipse:

P1 =
EM1

Em1
=

cos(dε1)

sin(dε1)
=

Ia( f1, f3)αp=0

Ia( f1, f3)αp=π/2
(3.7a)

P2 =
EM2

Em2
=

cos(dε2)

sin(dε2)
=

Ia( f2, f3)αp=π/2+η

Ia( f2, f3)αp=η (3.7b)

From the equations derived above it follows that the ellipticity and nonorthogo-
nality of the laser head can be derived directly from the measurements without
approximations. However to draw conclusions about the quality of the laser
head the effects of the measurement system should be considered carefully.
This is done in the next section.

Measurement considerations

In the setup a non-polarizing beam splitter is used to mix the beams of the
heterodyne laser head with the beam of the homodyne laser head, further also
a beam reductor is used. Since any kind of optics may influence the polar-
ization of the laser beams the setup was calibrated. This was done removing
the heterodyne laser source and replacing the AC detector with a DC power
detector. The intensity of light of the circularly polarized reference source pass-
ing through the non-polarizing beam splitter, the beam reductor and through
the polarizer is measured as a function of the polarizer angle. These results
are used to correct the measurement data before calculating the ellipticity and
non-orthogonality.

After calibration the heterodyne laser is aligned and the beat frequency
intensity on the spectrum analyzer is maximized. For the measurement of
the minimum several polarizer angles around the minimum are measured in
order to find the correct minimum. The same angles are measured 90◦ shifted.
This is done for both frequencies. In figure 3.4 the results are shown for the
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Figure 3.4: Results of the Carrier Frequency measurement on an Agilent 5519A
laser head.

measurement on a commercial laser head [84]. In the figure the amplitude of
the beat frequencies is plotted against the angle of the polarizer. On the left
hand side the results are shown for frequency f1 and on the right hand side
the results are shown for frequency f2. In this figure it can be seen that the
minimum of f1 (bottom left) and the minimum of f2 (upper right) are shifted
89,7◦, which represents a non-orthogonality of 0,3◦ of the polarizations of this
laser head. What can also be seen is that the distribution on the amplitude is
relatively large. This is partly caused by the noise of the measuring system,
but most of it is the result of the frequency modulation of both lasers used.
In order to stabilize these laser heads a frequency modulation is applied on
the laser source. Since the laser under investigation is a Zeeman laser the
gain curves of both frequencies lie on the slope of the atomic gain curve.
Therefore a frequency modulation results in an amplitude modulation. In
the carrier frequency method the intensities of beat frequencies are measured.
The ellipticity of the E-field is defined as the maximum intensity divided by the
minimum intensity, however the maximum and minimum can not be measured
at the same time, and a modulating amplitude could influence the calculated
values. To eliminate this effect the intensities were measured also as a function
of the frequencies: amplitudes belonging to the same frequencies are divided to
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calculate the ellipticity. This eliminates the amplitude modulation of the laser
head under investigation from the ellipticity calculations. Here the assumption
is made that the intensity modulation as a function of frequency modulation
is constant. The homodyne laser used is an amplitude stabilized laser and as
a result may drift in frequency resulting in a measurement error. This effect
shows as a shift in the frequency distribution. In the measurements to be
considered this shift was negligible. The necessity of dividing amplitudes per
frequency makes this method very time consuming. Another disadvantage
of this method is the possible non-linearity of the detector-spectrum analyzer
system. A wide range of amplitudes is measured and the gain of the detector
nor the gain of the spectrum analyzer (both commercial systems) is known and
probably not constant over the entire working range. However some tests with
reduced intensities did not indicate large effects. With this method it is also
possible to test the polarization effect of optics on the two frequencies e.g. for
a laser-polarizing beam splitter combination.

3.1.2 Beat measurement method

A second method to measure the ellipticity and non-orthogonality of the E-
fields emerging from a heterodyne laser head is a beat frequency measurement.
Here the beat frequency of the two emerging frequencies is directly measured
with a dedicated AC-detector as a function of the polarizer angle. No carrier
frequency is used. The amplitude of this beat frequency is measured with use
of a lock-in amplifier [87]. This lock-in amplifier enables the measurement of
intensity of a signal with equal (carrier) frequency as a reference signal. The
setup for this measurement is represented schematically in figure 3.5.
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(a) Definition of variables
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(b) Measurement setup

Figure 3.5: Schematic representation of the electromagnetic fields involved in the beat
frequency measurement setup and the beat frequency measurement setup.

The reference frequency is taken directly from the laser head with use of dedi-
cated hardware. The measurement signal is the beat signal after the polarizer
at angle αp. Both signals have the same frequency. With aid of the lock-in
amplifier the intensity of the measurement signal at equal frequency as the
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reference signal is measured. As a result electronic noise is filtered. The ampli-
tude of the measurement signal as a function of angle αp is recorded using a pc
with GPIB interface. For each angle of the polarizer 50 measurements are taken
and averaged. The intensity of the beat frequency measured with the lock-in
amplifier is derived in Appendix D:

Ia( f1, f2)αp = 2E01E02

√

√













(

cos2(αp) cos2(dε1) + sin2(αp) sin2(dε1)
)

∗
(

cos2(αp − η) cos2(dε2) + sin2(αp − η) sin2(dε2)
)













(3.8)
This intensity signal varies as a function of the polarizer angle. The minimum
and maximum signals can be derived assuming η << 1 and sin(dε1), sin(dε2) <<
cos(dε1), cos(dε2):

Ia( f1, f2)αp=0 ≈ 2E01E02 cos(dε1) sin(dε2) (3.9)

Ia( f1, f2)αp=π/4+η/2 ≈ E01E02 cos(dε1) cos(dε2) (3.10)

Ia( f1, f2)αp=π/2+η ≈ 2E01E02 sin(dε1) cos(dε2) (3.11)

From these three measurements the non-orthogonality follows directly from
the location of the minima and maximum. Here again the inverse tangent of
the ellipticity angle is represented, indicating the ratio of amplitudes of the
major and minor axes of the ellipse:

P1 =
EM1

Em1
=

cos(dε1)

sin(dε1)
≈

2Ia( f1, f2)αp=
π
4 +

η
2

Ia( f1, f2)αp=0
(3.12a)

P2 =
EM2

Em2
=

cos(dε2)

sin(dε2)
≈

2Ia( f1, f2)αp=
π
4 +

η
2

Ia( f1, f2)αp=
π
2 +η

(3.12b)

With this method the effect of the measurement system should be considered
also before drawing conclusions about the quality of the laser head. These
considerations are presented in the next section.

Measurement considerations

Before measuring the signal of the beat frequency detector has to be tuned
so that the minimum signal still is a nice sinusoid and the maximum signal
does not result in an overload of the lock-in amplifier. The lock-in amplifier
was calibrated for drift, linearity and phase angle between S0 and S90 signal.
The calibration for linearity was conducted using an external wave generator
with amplitude attenuation. The wave generator supplied a sine function with
frequency equal to the reference frequency of the heterodyne laser. This func-
tion was used both as reference and measurement input. The lock-in amplifier
matches the frequency of an internal oscillator with constant amplitude to the
external reference signal, which is used internally in the lock-in amplifier (in
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the mixing signal). Therefore attenuation of the reference signal will not in-
fluence the measured amplitude of the measurement signal. The amplitude of
the lock-in amplifier was registered using the same averaging period as used
in the measurements and showed a maximum deviation in linearity compared
to the amplitude of the wave generator of 0,3%. The phasedifference between
S0 and S90 was tested using the internal oscilator as a reference and applying a
phase difference varying from −180◦ to 180◦ on the reference signal and using
this as an external measurement input. The output of the S0 and S90 signal is
registered using the same averaging and settings as during measurement. The
inherent phase difference between S0 and S90 was 0,6 µrad. This deviation is
a constant and will therefore not influence these measurements. The drift of
the lock-in amplifier was measured for 2 hours. Only digital noise of 0,015 mV
could be registered. In a measurement this noise could influence the proportion
result up to a noise of 1:4.

To conduct a measurement the angle of the polarizer was varied from −5◦

to 185◦ in steps of 2,5◦. With use of a least square method, equation (3.8) was
fitted to these measurements. In the fitting the ellipticity depends largely on
the non-orthogonality derived. Therefore near the minima steps of 0,1◦ were
made and the non-orthogonality was determined by hand. This in turn was
used as an input in the fitting procedure. An example is shown in figure 3.6.
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Figure 3.6: Output of the beat frequency measurement on a commercial laser
head.

The advantage of this method is that it can be used everywhere in the
optical system. After every optical component the polarization state can be
measured in this way. The method is less time consuming compared to the
carrier frequency method. Disadvantages of the method are that dedicated
hardware is necessary to make the reference signal available. Further also for
this method the linearity of the total detection system is not known a priori.
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3.1.3 Measurement results of commercial laser systems

With both methods the ellipticity and nonorthogonality of three available het-
erodyne lasers were measured. Also the variation in time was measured. All
lasers were measured just after turning on as well as after four hours or more.
All lasers exhibited better polarization properties after a few hours. Even after
a warm up period of 4 hours the laser polarization still changes. Depending on
the initial quality of the polarization this may vary up to 1:200 (e.g. the ration
of the 3403A00296 varied from 1:160 to 1:360). This also shows that the polar-
ization state changes in time. The results of the measurements are presented in
table 3.1. The values in the table are averages of 3 or more measurements with
their standard deviations.

Laser Ratio η Ratio η
CF BFM

3403A00296
Em1 : EM1 1 : (241 ± 50) 0,30◦ ± 0,05◦ 1 : (170 ± 14) 0,30◦ ± 0,05◦

Em2 : EM2 1 : (241 ± 50) 1 : (172 ± 23)
US41111187

Em1 : EM1 1 : (61 ± 3) 0,30◦ ± 0,05◦ 1 : (69 ± 6) 0,35◦ ± 0,05◦

Em2 : EM2 1 : (62 ± 3) 1 : (69 ± 6)
US40091151

Em1 : EM1 1 : 500∗ 0,15◦ ± 0,05◦ 1 : 700∗ 0,20◦ ± 0,05◦

Em2 : EM2 1 : 500∗ 1 : 700∗

Table 3.1: Measured laser polarization state and standard deviation of three
commercial laser heads. η: non-orthogonality, CF: carrier frequency
measurement, BFM: beat frequency measurement, ∗ least ratio.

From the table it can be seen that the measured non-orthogonality (η),
which can be measured with an uncertainty of 0,05◦, shows consistency for
both methods. The values for ellipticity sometimes differ significantly for both
measurements. This may be a result of unknown effects in the amplification of
the signals in both methods as mentioned in the previous sections. However it
could also be a remaining effect of the plate beam splitter and beam reductor
introduced in the carrier frequency method. As mentioned the effect on the
circular polarized beam was calibrated out. However polarization effects on
the linear polarized beams of the heterodyne laser cannot be calibrated out
entirely. This is due to the fact that the alignment of the heterodyne laser is
not necessarily equal to the alignment of the homodyne laser used to calibrate
the effect. The latter was examined using the beat frequency method in the
carrier frequency setup. The homodyne laser was blocked and the receiver and
spectrum analyser of the carrier frequency measurement setup were replaced
with the receiver and lock-in amplifier of the beat measurement setup. In
the measurements with this system the ratios of polarization were less stable
compared to measurements without the plate beam splitter. Additionally the
ratios were higher and with these measurements both methods agreed within
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noise. From this it may be concluded that the plate beam splitter and beam
reductor influence the polarization and therefore the measurements on separate
lasers do not overlap for both methods. Further it may be concluded from
the comparison of both methods in one setup that the assumptions made in
equations (3.9)-(3.11) are justified and that the beat frequency method produces
correct results for the laser interferometer.

As described in section 2.6.1 the predicted periodic deviations are differ-
ent for contra-rotating ellipticities (see figure 2.9) compared to equal rotating
ellipticities (see figure 2.10). With the beat frequency measurement setup it
is possible to test the direction of elliptical polarization. If initially the polar-
izer is aligned with the main amplitude of one frequency the relative phase
difference is reset on the lock-in amplifier. Then the polarizer is rotated 90◦

and the relative phase is measured. If this measured phase is 180◦ the polar-
izations are contra rotating. If the phase remains equal the polarizations are
equally rotating. The measurement was conducted on all three laser heads and
a contra-rotating ellipticity was measured, as expected. The system was also
used to test an AOM-laser head and here also the contra-rotating ellipticity was
measured, also as expected.

In order to test whether the change in polarization affects the periodic
deviations during measurement the periodic deviations resulting from the po-
larization properties of the measured laser heads were modeled. The results
are presented in figure 3.7.
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Figure 3.7: Model output of the periodic deviations resulting from laser head
polarization deviations.

From this figure it may be concluded that the polarization as measured with
both methods does not influence the periodic deviations within 0,015 nm. As
already mentioned the changes during measurements depend on the initial
quality of the laser. These changes affect the periodic deviations with a max-
imum of 0,02 nm. The effect of the measured non-orthogonality was already
modeled in section 2.6.2. From figure 2.11 it can be seen that a non-orthogonality
of 0,15◦ produces a periodic deviation of 0,13 nm, and a non-orthogonality of
0,35◦ produces a periodic deviation of 0,30 nm.

Concluding: both methods enable the measurement of the coarse category
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of the laser head ellipticity, further the non-orthogonality can be measured
with an uncertainty of 0,05◦ with both methods. The beat frequency measure-
ment setup provides a convenient measurement system, provided dedicated
hardware is available to take the reference signal from the laser head. Further
the assumptions of a small ellipticity and non-orthogonality, made to derive
equations for the maximum and minimum signal, are justified. For the lasers
measured, the effect of laser head ellipticity is negligible. Further it was con-
cluded that the direction of ellipticity was contra-rotating for all lasers.

3.2 Optical components: Ellipsometry

After the light is emitted from the laser head it enters the interferometer optics.
Polarization mixing can occur in all polarizing and non-polarizing components,
and therefore it can result in extra periodic deviations. In chapter 2 it was
already shown that every polarization error has to be considered to predict the
total periodic deviation. Therefore it is essential to characterize the polarization
mixing of each component. The effect of depolarized light depends on the
electronics used. However these are not considered in the model and therefore
the depolarization does not have to be included in the measurements. Further
the assumption is made that the Jones representation of each component can
be written as a diagonal matrix with linear basis of the form

Mos = A0 ∗
[

1 0
0 T0eiδ0

]

(3.13)

with A0 the amplitude attenuation of the entire optical system, T0 the amplitude
difference between the ordinary and extraordinary polarization and δ0 the
phase retardation between the two polarization components.

3.2.1 Ellipsometry

The characterization of optical components present in laser interferometer sys-
tems is done by an ellipsometric setup as shown in figure 3.8.

From a homodyne laser source circular polarized light emerges through
a polarizer with azimuth angle P, a compensator of the Babinet Soleil type
enabling a phase difference of δC at an azimuth angle C, both in front of the
optical system and a polarizer with azimuth angle A behind the optical system.
By finding a set of azimuth angles for polarizer, compensator and analyzer
(P,C and A) such that the light flux falling on the detector is extinguished, the
Jones matrix of the optical system can be resolved. This results in the following
equation [45]:

T0eiδ0 = tan(Ψ)ei∆ = − tan(A)

[

tan(C) + TCeiδC tan(P − C)

1 − TCeiδC tan(C) tan(P − C)

]

(3.14)
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Figure 3.8: Schematical representation of the ellipsometer setup.

where TC is the amplitude attenuation of the two polarization directions of the
compensator. Ψ and ∆ are the so-called ellipsometric angles. Ψ is the angle
whose tangent gives the ratio of the amplitude attenuation upon transmission
of the ordinary and extraordinary polarizations. ∆ gives the difference between
the phase shifts experienced upon transmission by the ordinary and extraordi-
nary polarizations. The process of finding the azimuth angles where extinction
occurs is called null-ellipsometry. It is also possible to adjust the relative phase
retardation (δC) of the compensator. Since the resolution to which this parame-
ter can be measured compared to the azimuth angles is magnitudes poorer this
is not done. In stead we apply a method called four zone averaging. The com-
pensator is fixed to an azimuth of ±π4 relative to the optical component and the
relative phase retardation is given a fixed value of δC =

π
2 . With TC = 1, it fol-

lows from equation 3.14 that for each fixed azimuth of the compensator (C) two
combinations of P and A result in extinction. The four solutions are tabulated
in table 3.2. Averaging over these four solutions results in accurate estimates of

Polarizer Compensator Analyzer ∆

P1 −45◦ Ψ 2(P1 + 45◦)
P2 45◦ Ψ 2(135◦ − P2)
P3 −45◦ −Ψ 2(P3 + 135◦)
P4 45◦ −Ψ 2(45◦ − P4)

Table 3.2: Four zone averaging angles.

the two ellipsometric anglesΨ and∆. The advantage of this method is that any
imperfection of the ellipsometer other than entrance and exit window birefrin-
gence are canceled out [45]. Since the optics to be tested don’t have entrance
and exit windows, in our setup all ellipsometer imperfections are canceled out.
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3.2.2 Repeatability measurement

To test the feasibility, of the method the repeatability was tested using a polar-
izing beam splitter. Since the method assumes a compensator azimuth angle
of ±45◦ with the axis of the optical component under testing the optical system
was aligned before measurement. The extinction ratio of the Glan-Thompson
type polarizer and analyzer combination was better than 1 : 100 000. The
results of the repeatability measurements on the polarizing beam splitter are
shown in figure 3.9. The standard deviation forΨwas 0,02◦, and the standard
deviation for ∆ was 0,25◦. The same repeatability was obtained for a quarter
wave plate.
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Figure 3.9: Repeatability of an ellipsometer measurement of a polarizing beam
splitter.

The standard deviations of this repeatability measurement were used in
the Jones model to calculate the resulting periodic deviation of a flat mirror
interferometer. This resulted in a periodic deviation with an amplitude of
0,15 pm. From this it can be concluded that the repeatability of the ellipsometer
measurements is sufficient to measure the polarization properties of optics
which in turn are to be used in the Jones model.

3.2.3 Measurement results of optical components

With the knowledge mentioned above some measurements were done for a
polarizing beam splitter and a quarter wave plate under different angles around
the pitch axis (see figure 3.8). The different angles were chosen to investigate the
influence of on axis rotational alignment, meaning that the main polarization
axes of the optical components remain in the same orientation compared to the
polarization of the light emitted from the laser head (rotation around the pitch
axis in figure 3.8). The measurement results are shown in figure 3.10.

The figure of the polarizing beam splitter shows a minimal angleΨ of 1,84◦,
representing an amplitude leakage of 3% in the beam splitter for the transmitted
polarization component. The phase shift of the beam splitter depends on the
pitch angle of the beam splitter. For the yaw angle the same result would hold
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Figure 3.10: Pitch angle dependence of a polarizing beam splitter (a) and a
quarter wave plate (b).

since this is also an on axis rotational alignment. Therefore also the resulting
polarization state after the beam splitter depends on the alignment around
pitch and yaw angle. The figure on the quarter waveplate shows an angle
Ψ with a value of 45,05◦, representing an amplitude leakage of less than 0,2%
(1−1/ tan(45,05◦)), however the phase difference between the fast and slow axis
is in a normal alignment −97,85◦, in stead of the expected −90◦. Further, from
these figures it can be concluded that not only the rotational alignment around
the optical axis is of importance, but also the alignment in both other directions
(pitch and yaw, see figure 3.8). This should be taken into account when using
the method of Stone and Howard [22] to measure periodic deviations in laser
interferometers. They use a rotation around the pitch axis to introduce an
optical path difference between the two arms of a linear interferometer. Since
they only make a rotation of 0,5◦ to measure a periodic deviation of a beam
splitter rotated 10,3◦ around the roll-axis this consideration is not yet necessary.
However when dealing with systems with smaller non-linearities the effect
of rotation around the pitch axis may well introduce an enlarged periodic
deviation itself.

From different kind of interferometer optics the ellipsometric angles were
measured. To reduce the influence of pitch and yaw angle the beam splitter
optics were aligned so that the reference beam was perpendicular to the entering
ellipsometer beam and remained at the same height. The quarter wave plates
were placed perpendicular into the beam. The results are shown in table 3.3.
The subscripts ’old’ and ’new’ represent optics made in an old manufacturing
process and in a newly designed process of a manufacturer. With this it is clearly
shown that in the new manufacturing process the polarization properties of the
optics improved enormous. In the beam splitter the leakage is reduced from 3%
to better than 0,1%. Depending on the manufacturing process used by optics
suppliers the polarization state may vary widely.

As a result of the measurement principle where the compensator is aligned
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Component direction tan(Ψ)exp tan(Ψ) ∆exp ∆

NPBS transmission 1 1,094 arb 1,69◦

NPBS reflection 1 0,857 arb 8,11◦

PBSold transmission 0 −0,0318 arb −61,70◦

PBSold reflection 0 0,0232 arb 63,28◦

QWPold transmission 1 0,9987 90◦ −97,85◦

PBSnew transmission 0 0,0003 arb −66,42◦

PBSnew reflection 0 0,0004 arb −20,67◦

QWPnew transmission 1 0,9977 90◦ 90,91◦

Table 3.3: Measured amplitude ratios and phase retardations for different kind
of interferometer optics. The subscript exp stands for the expected
value in the case ideal optics are used, arb means arbitrary: in this
case no specific values were estimated from theory.

at 45◦ with the main axes of the optical component under investigation only
single parts of interferometer optics can be measured. Combinations of optical
components, like a polarizing beam splitter in combination with a wave plate
with it’s main axes rotated 45◦ compared to the beam splitter, can not be
measured using this type of ellipsometry. A possible solution is to measure
the polarization after the optics using the beat measurement setup from the
previous section.

3.3 Resulting periodic deviations

In the previous sections the methods were described to measure the polarization
properties of the laser head and the optics used. In order to know the effect
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Figure 3.11: Calculated periodic deviation resulting from an ideal laser head
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of these polarization properties the periodic deviations of a complete system
with flat mirror optics (components with subscription ’old’) was modeled with
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the Jones model. The results of this together with an additional increasing
misalignment of the polarizing beam splitter are shown in figure 3.11. In
this figure it can be clearly seen that in the case of these real optics an ideal
alignment no longer produces the smallest periodic deviations. In this specific
case a misalignment of the main polarization axes of the optics of αBS = 2◦

compared to the main polarization axes of the laser head will result in the
smallest periodic deviation.

3.4 Conclusions

In this chapter two measurement methods were discussed to measure the po-
larization properties of commercial heterodyne laser heads. It appears that the
ellipticity of the E-fields emerging from the laser head changes in time. Both
methods discussed enable a categorization of the ellipticity of the lasers. The
non-orthogonality can be determined with both methods with an uncertainty
of 0,05◦. Provided dedicated hardware is available to take the reference signal
from the heterodyne laser head, the beat measurement setup provides a con-
venient and relatively easy method to measure the quality of a laser head. If
the reference signal can not be taken from the laser head the carrier frequency
method still provides a possibility for categorization of the quality of the laser
head. However care must be taken to calibrate all influences of the optics used
in the measurement system.

In this chapter also a measurement method was presented to measure the
polarization properties of optics used in interferometers, based on ellipsometry.
With this method only separate components with main optical axes can be
measured. So a combination of interferometer optics, like a polarizing beam
splitter in combination with a quarter wave plate can not be usefully measured
with four zone ellipsometry.

With use of these measurement setups in combination with the Jones model
derived in the previous chapter it is now possible to choose the optical compo-
nents of an interferometer necessary to meet the periodic deviation specifica-
tions.

The measurement results of the polarization properties of commercial in-
terferometer components were discussed in terms of predicted periodic devia-
tions. It was concluded that a misalignment of interferometer optics can reduce
the periodic deviations resulting from polarization errors in the hardware used
in the interferometer.
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Chapter 4

The integral calibration setup

In the previous chapter the measurement results of polarization effects of indi-
vidual components were presented. Using these results and the model derived
in chapter 2 the periodic deviations in an entire interferometer can be predicted.
In order to investigate the behavior of the total interferometer system, being
the laser, the phase measurement electronics and the optics, in a traceable way
a setup is used based on a Fabry-Pérot cavity [26]. In this chapter the working
principle of the system is explained and the results of some measurements are
described and discussed. The model of chapter 2 is verified using the Fabry-
Pérot system. Finally a new calibration setup was designed, built and some
stability measurements were conducted.

4.1 Traceability

In order to determine the periodic deviations unambiguously a calibration
setup must be used which is traceable to the standard of length. According
to VIM (Vocabulaire international des termes fondamentaux et généraux de
métrologie) the definition of traceability is given by [51]:

Definition 4.1 Traceability is the property of the result of a measurement or the value
of a standard whereby it can be related to stated references, usually national or in-
ternational standards, through an unbroken chain of comparisons all having stated
uncertainties.
In this thesis laser interferometers are investigated which measure a displace-
ment. So in order to calibrate a laser interferometer in a traceable way it has to
be compared to the standard of length: the metre. The definition of the metre
as accepted by CCGM (Comité consultatif pour la définition du mètre) is given
by Quinn [52].

Definition 4.2 The metre is the length of the path travelled by light in vacuum during
a time interval of 1/299 792 458 of a second.
The practical realization of this definition [53] can be realized in three ways:
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1. By means of the length l of the path that a plane electromagnetic wave
travels in vacuum in a time t. The length is then obtained from the
measured time t, using the relation l =ct and the value of the speed of
light in vacuum c = 299 792 458 m s−1.

2. By means of the wavelength in vacuum λ of a plane electromagnetic
wave of frequency f . The wavelength λ is obtained from the measured
frequency f using the relation λ =c/ f and the value of the speed of light
in vacuum c = 299 792 458 m s−1.

3. By means of the wavelength in vacuum λ of radiations which are recom-
mended by the CIPM.

For modern applications, the reference wavelengths are mostly provided by
frequency-stabilized lasers (method 3), which is the method we are using also.
The frequency stabilized laser used in our laboratory is an iodine stabilized
HeNe-laser. Where the absolute frequency is based on the transition R(127)11-5
component i of iodine 127, with a value of 473 612 214,705 MHz (u=12 kHz)
[54].

Instruments that are capable of traceable calibrations with nanometer un-
certainties are rare. As mentioned in chapter 1 laser interferometers are used
themselves, mostly with a remaining uncertainty due to the periodic deviations.
Some new configurations are designed in principle free of periodic deviations
as by Wu [31] who still measures a periodic deviation of 20 pm. For calibration
of linear scales PTB developed a comparator [55] based on an interferometer
with spatially separated frequencies based on Tanaka’s setup [30]. A second
principle is an X-ray interferometer as described by Basile [56] and Peggs [57].
It is based on the interference pattern originating from diffraction of an X-ray
beam through three slices of silicon. When one of the slices is displaced the
pattern changes periodically. The period is determined by the lattice spacing of
silicon (220) planes: 0.192 nm. In order to provide sufficient range the system is
coupled to a laser interferometer which is read out every half wavelength, and
as a result eliminates the influence of periodic deviations. The measurement
range of the system is 1 mm and the uncertainty depends on the range. For a
range of 10 µm the uncertainty is stated as 15 pm, and rises to 85 pm over the
total range. In this estimation uncertainties due to Abbe errors or cosine errors,
occurring when calibrating a transducer, are omitted. Practical limitations are
the slow detection system and the complex and unusual instruments necessary
to operate the system. The third possibility is to use a Fabry-Pérot cavity (active
or passive). This is the measurement system used in our laboratory and will
be explained in more detail in the next section.

4.2 Fabry-Pérot interferometer

To verify the modeling of the entire interferometer (laser output + optics +
detection system) a traceable measurement is carried out on a Fabry-Pérot
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setup (figure 4.1). This system was originally developed to provide a traceable
calibration for displacement measuring systems (capacitive, inductive, atomic
force microscopes, laser interferometers, etc.) with nanometer uncertainty [58].
The measurement principle is based on a Fabry-Pérot interferometer cavity to
which a tunable diode laser system is servo-locked via a locking technique
based on frequency modulation. When one of the mirrors of the Fabry-Pérot
interferometer is displaced, the slave laser tracks the change in resonance fre-
quency of the cavity. At the same time the displacement of the upper cavity
mirror is measured by a commercial displacement measuring system, e.g. a
laser interferometer system with an optical configuration as modeled in chap-
ter 2. A comparison of the probe (in this case a commercially available laser
interferometer system [88]) readout with the displacement derived from the
frequency change of the slave laser gives the calibration data. The frequency
of the slave laser (order 473 THz) exceeds the possible frequency range which
can be measured directly. In stead the beat frequency between the slave laser
and a stabilized laser is measured. As a stabilized laser, an iodine stabilized
HeNe-laser is used, of which the absolute frequency has been verified by inter-
comparison and is known with an uncertainty of 12 kHz. The combination of
a measurement against the standard of length and an uncertainty analysis of
the calibration system results in a traceable calibration.

 

 

 

 

 

 

 

 

 

 Iodine stabilized HeNe-laser

Avalanche photo diode

Slave laser Faraday
isolator

Bending
prism

Control loop

Photo diode
Piezo controller

dL

Fabry-Pérot
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Figure 4.1: Schematic representation of the Fabry-Pérot calibration setup.

The Fabry-Pérot cavity consists of two mirrors spaced 140 mm from each
other. The resonance frequency of the cavity is given by:

f =
kc

2nLmech
(4.1)

where k is the mode number, c the velocity of light, n the refractive index of
the medium inside the cavity and Lmech the mechanical length of the cavity. In
order to reduce the influence of the refractive index of air a vacuum tube with
Brewster window is placed inside the cavity, leaving approximately 10 mm of
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air in the entire cavity. During measurements the change in optical path length
due to this 10 mm of air is compensated for and the uncertainty is taken into
account in the uncertainty analysis. If one mirror is displaced over a distance
∆Lmech, the frequency will change by ∆ f according to:

∆ f

f
= −∆Lmech

Lmech
(4.2)

As the resonance frequency changes, the control loop will keep the slave-laser
frequency locked to this resonance frequency. The feedback for the control
loop comes from modulating the diode-laser over 15 MHz in combination
with phase sensitive detection of the first harmonic of the transmitted signal
from the Fabry-Pérot cavity. Calculation of the displacement is done using
equation 4.2 in combination with the measurement of the Free Spectral Range
(FSR), which is the distance between two successive longitudinal modes and
equals c/2nLmech. From this measurement the effective mechanical length can be
derived, provided that the refractive index change during the FSR measurement
is small. This was achieved by measuring the FSR within the shortest possible
time (approximately 1 minute).

SL

TD

FI

VP

PD

AP

Figure 4.2: The used Fabry-Pérot calibration setup with SL: Stabilized HeNe-
laser, TD: tunable diode laser, FI: Faraday Isolator, PD: Photo diode,
VP: Vacuum pump, AP: Avalanche photo diode.

Compared to the setup developed by Wetzels [26] a commercial diode laser
[89] replaced the HeNe-laser, and the lock-in amplifier used in the control loop
was replaced by a commercial lock-in amplifier [90]. The relatively large mod-
ulation of the diode laser (15 MHz) compared to the gas laser could influence
the uncertainty on the beat measurement. Experiments conducted by Wetzels
[26] on different modulation widths with the gas laser showed no significant
influence. Further a gate time of 1 second was used to measure the beat fre-
quency. To prevent backscattering from disturbing the diode laser output a
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Faraday isolator was added in the beam path. The system used for calibration
is shown in figure 4.2.

4.2.1 Uncertainty of the traceable calibration setup

The calibrations can be affected by drift of the system. The mechanical con-
struction of the Fabry-Pérot in combination with the interferometer optics is
shown in figure 4.3.

Moving mirror
Top platform
Tilt mechanism
Leaf spring
Base cylinder
Lever
Piezo actuator

Piezo screw

Zerodur rod
Vacuum tube
Fixed mirror
Leaf springs
Bottom platform

Cavity mirror

Beam splitter
Moving retro-reflector
Invar adapter

Retro-reflector
Polarizing

beam splitter

Laser beam emerging
from laser head

Invar ring

Figure 4.3: Cross-section of the Fabry-Pérot cavity.

As can be seen from this figure the top platform is the reference of the interfer-
ometer optics and the bottom mirror is the reference of the Fabry-Pérot system.
The top platform is connected with the bottom mirror through the bottom plat-
form and three zerodur rods. All other parts shown between top platform and
bottom mirror are thermally compensated. A drift of the upper cavity mirror
itself is measured by both the commercial interferometer and the Fabry-Pérot
system, and is canceled out of the calibration results. Thermal expansion of
the system between the moving retro reflector and the reflecting part of the
upper cavity mirror however are measured as a displacement by the commer-
cial interferometer, but not by the Fabry-Pérot and will affect the measurement
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results. From the figure it can also be seen that the vacuum tube has a Brewster
angle, leaving approximately 10 mm of air in the cavity. This is influenced
by refractive index changes in the system. Uncorrected this could result in an
optical path length change of 2 nm under normal laboratory conditions. There-
fore it is corrected for during measurements and the uncertainty resulting from
this is taken into account in the uncertainty analysis. In Appendix E all the
influences on uncertainty are discussed in detail. The results of the uncertainty
analysis are summarized in table 4.1.

Parameter Uncertainty Uncertainty
over 1 µm over 300 µm

Axial mode effect 0,14 nm 0,14 nm
Transversal mode effect 0,00 nm 0,07 nm

Brewster window 16,5 nm K−1 16,5 nm K−1

Mirror tilt 0,4 nm 0,4 nm
Background slope 0 0

Thermal expansion 51,5 nm K−1 51,5 nm K−1

Gradient upper platform 0,4 nm 0,4 nm
Gradient lower platform 0,4 nm 0,4 nm
Gradient probe adapter 0,01 nm 0,01 nm
Cosine error (1,5 mrad) 0,001 nm 0,3 nm

Total (∆T=0,01 K) 0,89 nm 0,94 nm

Table 4.1: Results of the uncertainty analysis of the metrological Fabry-Pérot
interferometer. The total uncertainty is based on a measurement
with a maximum temperature change of 0,01 K.

From this table it can be concluded that the major influence of uncertainty lies
in the thermal stability of the system and the mirror tilt. The latter depends
on the radii of the mirrors used and the length of the cavity. Thermal effects
can be divided into linear expansion and gradients. A possibility would be
to measure the temperatures of all components and compensate for linear
thermal expansion. However space is limited and no extra forces should be
applied on the system. Further the measurement of temperature of the Zerodur
rods is very difficult since the thermal conduction of Zerodur is very small.
A third possibility is to measure the surrounding temperature close to the
components and assume an equilibrium. Another problem are the thermal
time constants of the components, complicating compensation. Therefore it
was chosen to isolate the system from the surroundings using an insulator box
and conducting a drift measurement before any real measurement. Further
the temperature of different components during measurement is monitored.
During measurements discussed the temperature changes remained limited to
0,01 K.
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4.3 Short range calibration of an entire laser inter-

ferometer

In order to place the laser interferometer optics on the Fabry-Pérot cavity an
adapter was made consisting of three legs of invar screwed on an invar platform
(as shown in figure 4.3). Invar was used to prevent thermal expansion as much
as possible and the design was kept simple to provide a possibility of thermal
compensation. The optics are placed on top of the adapter and depending on
the optical configuration the plane mirror or retro-reflector is placed on the top
mirror of the Fabry-Pérot. Since a beam bender is glued on the top mirror to
reflect the locking signal (see figure 4.3) the mirror/retro-reflector can not be
placed directly on the mirror. Therefore an invar ring is placed over the top
mirror on which the interferometer mirror or retro reflector is placed.

4.3.1 Linear optics

The single pass interferometer optics are investigated first. Linear optics consist
of a polarizing beam splitter in combination with two retro reflectors as shown
in figure 4.3.

Drift measurement

Before measuring periodic deviations the stability of the setup was investigated.
In order to do this a drift measurement was conducted. In the Fabry-Pérot
thermistors are used to measure the temperature and gradients of the setup.
Also the temperature of the invar holder,beam splitter holder and retro reflector
are monitored during the entire measurement. Since there is still approximately
10 mm of air in the cavity also the pressure and temperature of the air inside the
cavity are monitored and compensated. The drift measurement was conducted
after assembly of the entire system and alignment of the optics. Both lasers and
vacuum pump had been running for one hour. The results are shown in figure
4.4.

From this figure it can be seen that the Fabry-Pérot cavity stabilizes within
9 hours. In figure 4.4(b) the upper figure shows the temperature stabilization
in 7 different places in the Fabry-Pérot cavity, the bottom figure shows the
temperature stabilization of the optics holder and the optics, measured on the
outside. It can be seen that the optics stabilize after 5 hours and the Fabry-Pérot
after 9. From other measurements it appears this effect is mainly caused by the
initiation of the vacuum pump. Further it can be seen that the drift of the laser
interferometer does not stabilize. The initial drift resulting from temperature
stabilization stabilizes after 5 hours. However after 5 hours a linear drift of
4,65 nm/hour remains. From measurements this effect seems to be caused by
a drift of the optics in the holders. The optics are glued in steel holders, the
construction does not inhibit a thermally stable point from which expansion
can occur, therefore the expansion is not defined in any direction and hence can
not be compensated for, it can only be measured as a drift. From figure 4.4(a)
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(b) Temperature drift of the Fabry-Pérot (upper) and the optics holder (lower)

Time in hours

P
re

ss
u

re
in

h
P

a

0 5 10 15 20 25
1010

1012

1014

1016

1018
Time in hours

T
em

p
er

at
u

re
in
◦ C

0 5 10 15 20 25
19,84

19,85

19,86

19,87

19,88

(c) Cavity temperature and pressure drift

Figure 4.4: Drift measurement with the Fabry-Pérot setup and laser interfer-
ometer with linear optics. T1= elastic guiding mechanism, T2= air
in the cavity, T3=upper side bottom plate, T4= bottom side bot-
tom plate, T5= top of elastic guiding mechanism, T6= bottom side
upper plate, T7= upper side upper plate, T8= retro reflector, T9=
polarizing beam splitter, T10= Invar holder
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it can also be seen that after 8 hours something happens which is measured
by the laser interferometer and the Fabry-Pérot cavity, however in opposite
direction. This could be caused by a refractive index change which manifests
itself opposite for both measurements since the direction of measurement of the
laser interferometer is opposite to the direction of measurement of the Fabry-
Pérot cavity. However temperature and pressure measurements indicate no
changes at the same time. Also carbon dioxide and humidity measurements
(not shown here) indicate no large changes at that time.

Rotation of linear optics

After the drift measurement a calibration was carried out of the commercial
laser interferometer for different rotation angles of the interferometer optics.
This was done to test the predictions of the model as described in section 2.6.4.
Some earlier measurements were conducted by rotating the optics. However
manipulation by hand for realignment introduces heat and since the optics are
in steel holders the stabilization took a long time. Therefore these measure-
ments were conducted by rotation of the laser head and aligning the optics on
the invar holder once. The absolute angle of alignment (roll) of the optics was
measured on the housing of the optics using an electronic level [91]. The angle
of the laser head was measured on the housing also and the difference was used
as rotation angle in the calculation. The pitch and yaw angle were guaranteed
by optical alignment of the beam reflected by the end surface of the polarizing
beam splitter on the emitted beam by the laser over a distance of 1 meter. This
results in an alignment of ±1 mrad. This was done for the first measurement.
At each subsequent measurement all angles except the roll angle were kept
constant using the electronic level. The results of the measurements are shown
in figure 4.5. In this figure the lines are the periodic deviations predicted by
the model and the dots are the measured values. From this measurement it can
be seen that the amplitude of the periodic deviation predicted by the model
resembles the amplitude of the periodic deviation measured on the calibration
setup. The measurement was conducted in two directions to test for hysteresis.
For reasons of clarity only one direction (movement of the mirror down) is
shown. From the figure it can be seen that parts of the measurement region are
missing (e.g. between 400 and 450 nm). This is due to the limited measuring
range of the beat frequency measurement. For the measurement of the beat
frequency a frequency counter [92] and a spectrum analyzer [93] were used.
For beat frequencies above 1000 MHz the frequency counter deviated from the
spectrum analyzer and measurements were not reliable. This was caused by
the use of a beat frequency detector with a constant gain until 1000 MHz and
a deteriorating gain above this frequency. The spectrum analyzer still enabled
a beat frequency measurement which could be used in the control loop. How-
ever the resolution of the spectrum analyzer was limited to 5 MHz resembling
a resolution of 1,48 nm, which is too large to enable a calibration. Therefore the
spectrum analyzer’s frequency was used in the control loop and the frequency
counter was used for calibration data up to 1000 MHz.
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Figure 4.5: Periodic deviation measurement results of rotated linear optics on
the Fabry-Pérot setup for different angles of rotation. The solid lines
represent the predicted periodic deviations by the model of chapter
2.

4.3.2 Plane mirror optics

Next the plane mirror optics of which the polarization properties were mea-
sured earlier as described in chapter 3 were tested. First a drift measurement
was conducted which showed a much more stable setup, with a maximum of
4 nm in the first hour. In this setup a plane mirror is placed on the invar ring
on the Fabry-Pérot. In figure 4.6 two measurement results are shown. Here
also the measurement was conducted in two directions as can be seen from
figure 4.6(a). In figure 4.6(a) a measurement is shown with a rotated laser
head compared to the optics. At this time no electronic level was available
and the rotation of the optics was estimated with use of a least squares fitting
algorithm of the model to the measurements. This resulted in a rotation of
3◦. From this figure it can also be seen that there is a slight anti-symmetry in
the periodic deviation above and below zero, this was predicted by the model
and is a result of the optics used (combination of laser head and optics devia-
tion). The standard deviation of the model compared to the measurements was
0,3 nm. To show the relevance of polarization errors in the optics the system
was aligned as good as possible. Since only a very small periodic deviation
was expected the influence of drift was minimized by measuring only over a
distance slightly overλ/4: 180 nm. This measurement is shown in figure 4.6(b).
From this figure it can be seen that the noise band is approximately 0,4 nm,
which roughly equals the electronic noise of the interferometer stated by the
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Figure 4.6: Measurements of a plane mirror interferometer with the Fabry-Pérot
setup compared to the predicted periodic deviation by the model.

engineers of the system [59]. From this figure it can also be seen that a small
periodic deviation still exists. This is mostly the result of the limited quality of
the optics as described in section 3.3. Again fitting with a least squares method
of the model to the measurement data revealed a small rotation error of 0,3◦.
The standard deviation of the model compared to the measurement data was
0,14 nm.

4.4 Calibration of a homodyne interferometer

As already mentioned in section 1.1.1 homodyne interferometers also inhibit
periodic deviations. However commercial homodyne interferometers exist
with a compensation for periodic deviations. In order to investigate the effect
of the Heydemann compensation of such a system a commercially available
homodyne system was placed on the Fabry-Pérot cavity [94]. A drift measure-
ment was conducted over 19 hours, of which the result is shown in figure 4.7(a).
From this can be seen that after 8 hours the system stabilizes from temperature
drift resulting of initiating the Fabry-Pérot system. From this it can also be
seen that both Fabry-Pérot and laser interferometer register a relatively wild
movement of the piezo. Most probably this was due to an electrical disturbance
in the system. This will not affect calibration results since the difference of both
measurements gives a more stable representation. Initially a measurement was
conducted over a range of 600 nm, but no periodic deviations were measured.
This is due to the effect of the Heydemann compensation (see chapter 5). The
initial periodic deviations were compensated by the system. In this case the
Heydemann constants are changed real time in the system [60] which tunes the
constants each half wavelength of displacement. As a result after a displace-
ment of 30 half wavelength the periodic deviations are minimized. In order to
introduce periodic deviations the system was rotated approximately 8◦ and the
system was scanned through several wavelengths. After this the optics were
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Figure 4.7: Measurements of a commercially available homodyne interferom-
eter on the Fabry-Pérot setup. In figure (a) the result of a drift
measurement is presented, in (b) the periodic deviations with a
deliberately initiated periodic deviation are shown without Heyde-
mann compensation. In (c) the periodic deviation is shown with
Heydemann compensation.
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aligned the best way possible and the measurement was conducted. What
happens is that the correction factors, tuned in the system while the optics
were rotated, still compensate while the actual system is already aligned. As
a result the compensation can be monitored during the scanning of several
wavelengths. The measurement was conducted over a range of 1500 nm, and
the result is shown in figure 4.7(b). The high frequency noise results from the
mechanical setup of the homodyne interferometer on the Fabry-Pérot system.
Since the mechanical lay out of the optics differs from regular optics the adapter
was not ideal for the system, introducing vibrations. What can be seen from the
figure is that the compensation reduces the amplitude of periodic deviation.

After the measurement the upper cavity mirror was displaced over several
half wavelengths back and forth and a second measurement was conducted
over a range of 600 nm. The result is shown in figure 4.7(c). In this figure it
can be seen that the Heydemann compensation has successfully eliminated the
periodic deviations.

4.5 New designed Fabry-Pérot interferometer

The uncertainty of the Fabry-Pérot interferometer was 0,89 nm, of which a main
part is as a result of temperature drift and gradients. The influence of thermal
expansion (51,5 nm K−1) and gradients of the upper and lower platform (0,8 nm)
in the uncertainty analysis was relatively large. This was due to the relatively
large length of the cavity and diameter of the sensor platform. Further the
thermal expansion of the sensor holder was relatively large. In order to reduce
the influence of thermal expansion and gradients a new Fabry-Pérot cavity
was developed with smaller diameter and cavity length. Further the sensor
platform was integrated in the design.

4.5.1 Cavity length

The choice of cavity length depends on three factors: free spectral range, range
of the beat frequency measurement system and the total scanning range of the
calibration measurement. All three factors will be discussed next.

The free spectral range of the slave laser needs to be larger than the free
spectral range of the cavity in order to enable a measurement. In the original
Fabry-Pérot cavity setup a HeNe-laser was used with a free spectral range of
1150 MHz. This limited the length of the original passive cavity to a minimum
of 130 mm. During this research the original HeNe-laser was replaced by a
diode laser with a tuning range of 70 GHz. As a result the free spectral range
of the passive cavity can be increased, and the length decreased.

As mentioned also the beat frequency measurement range needs to be taken
into account. PIN-diodes for frequency measurements up to 60 GHz are avail-
able, however the surface of the diodes decreases and intensity sensitivity
deteriorates with increasing measurement range. With a larger detector sur-
face the alignment of the beat frequency setup becomes less sensitive, reducing
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the influence of pointing stability of the diode laser. The beat frequency is
produced by mixing an Iodine stabilized HeNe-laser of 125 µW with the diode
laser. Therefore a sensitive diode is necessary with preferably a larger surface
for a practical setup.

The scan range of the calibration system depends on the actuator chosen. A
piezo actuator is chosen to supply a smooth and continuous range. Since piezo
ceramic materials expand a relatively small part of their volume mostly piezo
stacks are built to provide sufficient range. The range depends on the number
of piezo stacks, hence the size of the piezo depends on the range needed.

From the demands described above it can be concluded that the length of
the cavity should be between 20 and 30 mm. To apply a displacement on the
upper mirror and to reduce costs of the setup a commercially available piezo
actuator was preferred. To reduce cost further the guiding mechanism is pre-
ferred in the actuator principle. In order to place two mirrors opposite to each
other the piezo needs a clear aperture. There are commercially available piezo
positioners consisting of three piezo linear actuators electrically connected in
parallel providing parallel movement [95]. The range of this system is 6 µm.
To test the suitability of this system the tilt angle was measured using an auto-
collimator. The measured tilt was 20 µrad resulting in a cavity length change of
0,05 nm [61] which will be taken into account in the uncertainty analysis. The
length of the system is 24 mm, resulting in a free spectral range of 6,25 GHz.

4.5.2 Refractive index change

As a result of a smaller cavity the influence of refractive index changes is
reduced. Under normal conditions in the laboratory a change in refractive
index of 2 · 10−7 can be expected as will be shown in chapter 6, resulting in an
optical path change of 4,8 nm in the cavity of 24 mm. One option would be
placing the entire cavity in a vacuum. Since most sensors behave differently
in vacuum than in air these would have to remain in air. In that case the
upper mirror would form the barrier between air and vacuum. This in turn
would result in mechanical forces acting on the cavity, introducing disturbances
during measurement. Another option would be to place a vacuum tube within
this cavity as in the original cavity. However the cavity would become very
narrow and a small part would still have to be in air.

The uncertainty with which the refractive index change can be compensated
using Edlén’s modified equation is 1 ·10−9, resulting in an uncertainty in optical
path length change of 0,02 nm. Therefore the cavity will be in air and changes
in refractive index will be compensated. The uncertainty in this compensation
will be taken into account in the uncertainty analysis.

4.5.3 Mechanical construction

The mechanical construction was based on the setup of the existing cavity.
Thermal compensation was applied where possible. As a result of a smaller
setup, the thermal time constants decrease resulting in a faster temperature
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change of all components. Invar was chosen as a construction material in
stead of aluminum to decrease the effect of gradients. Care was taken to
prevent small diameters as occurring in elastic hinges, resulting in a small
thermal capacity and high thermal resistance and as a result a fast response to
temperature changes. In earlier research [62] an adapter was built to calibrate
linear measurement systems on the Fabry-Pérot cavity with a parallel guiding
mechanism. To align the adapter in the direction of calibration sprouts were
used to support the parallel guiding mechanism and allow three degrees of
freedom to be adjusted. During measurement a thermal compensation had to
be applied to compensate for changing calibration forces as a result of thermal
expansion of the sprouts in turn as a result of their small thermal capacity. To
increase temperature stability a large thermal capacity is favorable, hence a
base cylinder was used to increase this capacity.

To increase the stability of the sensor holder not the top platform was ther-
mally compensated to the bottom mirror but the sensor holder. One demand
was a stable calibration of laser interferometer systems and care was taken to
enable the placement of retroreflectors and plane mirrors on the cavity. The
result of the design is shown in figure 4.8.

Probe adapter
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Zerodur rod

Base cilinder

Holder

Moving mirror
with prism

Mirror clamp

Mirror holder
Piezo actuator
Leaf spring

Paw
Bottom plate

Pretensioning frame
Mirror
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Figure 4.8: Small Fabry-Pérot cavity, with Lcav = 24 mm.

As the top mirror can not be placed directly onto the piezo actuator a
mirror holder and a mirror clamp were designed to clamp the mirror on to the
actuator and to provide a stable support to the retro reflector or plane mirror of
the interferometer. In order to enable a calibration of different sensors a probe
adapter can be made. The constraints for probe adapters are the maximum
probe diameter of 46 mm (size of the space under the adapter), the height
below the adapter (36 mm) and the thickness of the adapter (5 mm). The top
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of the 5 mm thick adapter is thermally compensated to the bottom mirror. The
thermal loop is explained in appendix E.

4.5.4 Uncertainty

The uncertainty of the small Fabry-Pérot cavity is derived in Appendix E and
is summarized in table 4.2. From this table it can be seen that the major
contribution on uncertainty still comes from the linear thermal expansion.
This is mainly caused by the thermal expansion of the invar clamp of top
mirror and prism. If further improvements in uncertainty should be made
this could be done by decreasing the mirror height (now 11 mm). Mirrors are
available to a height of 5 mm. Since these mirrors tend to be expensive in
single production another possibility would be to omit the prism and switch to
a different control system. There are two possibilities: The Pound-Drever-Hall
technique based on phase modulation with an electro-optic phase modulator
[63], or the Hansch-Couillaud technique based on polarization spectroscopy of
a reflecting anisotropic cavity [64]. The latter can be used easily in the original
Fabry-Pérot cavity since a Brewster window is in the cavity providing the
anisotropy. The Pound-Drever-Hall technique can be used for both cavities.
The advantage of this technique is that the prism on the top mirror can be
omitted. The disadvantage is they work in reflection mode, so some extra
optics should be placed in the entrance beam and as a result the intensity of
the incident light in the cavity will reduce. If the prism would be omitted and
a different mirror with a height of 5 mm is used the uncertainty as a result of
thermal expansion would reduce to 7,5 nm K−1.

Parameter Uncertainty Uncertainty
over 1µm over 6µm

Axial mode effect 0,024 nm 0,024 nm
Transversal mode effect 0,001 nm 0,003 nm

Mirror tilt 0,05 nm 0,05 nm
Background slope 0 0

Thermal expansion 24,8 nm K−1 24,8 nm K−1

Gradient upper platform 0,03 nm 0,03 nm
Gradient lower platform 0,04 nm 0,04 nm
Cosine error (1,5 mrad) 0,05 nm 0,3 nm

Total (∆T=0,01 K) 0,26 nm 0,40 nm

Table 4.2: Results of the uncertainty analysis of the small Fabry-Pérot interfer-
ometer.

4.5.5 Stability measurement

In order to test the stability of the small Fabry-Pérot cavity a drift measurement
was conducted during 16 hours after setup. At this point the lasers of inter-
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ferometer, slave laser and Iodine stabilized HeNe-laser had been running for
more than 1 day. The interferometer optics were reinstalled on the Fabry-Pérot
and the laserhead was aligned to the optics. The diode laser was aligned on
the Fary-Pérot just before measurement. A photograph of part of the setup is
shown in figure 4.9.

Detector Retroreflector Beam splitter Cavity Laser head

Figure 4.9: Setup of a commercial interferometer system on the small Fabry-
Pérot cavity.

The results of the drift measurement are shown in figure 4.10. In this figure
the air conditions in the laboratory and cavity are shown (a) as well as the
drift without (b) and with (c) compensation of the change in refractive index
of air according to Bönsch and Potulski (see chapter 6). At start both laser
interferometer and Fabry-Pérot system show a rather large drift. This drift is
a result of refractive index change as well as thermal expansion and changing
temperature gradients but also from drift of the piezo, which was adjusted just
before the measurement in order to lock the system. After 5 hours a drift of
1,5 nm/hour remained. Comparing the drift of the Fabry-Pérot in figures (b)
and (c) it can be concluded that the drift of the system was opposite from the
drift of the refractive index, resulting in a total zero drift of the Fabry-Pérot
cavity in figure (b). The drift of both laser interferometer and Fabry-Pérot in
figure (c) is therefore mainly due to drift of the commercial piezo.
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Figure 4.10: Drift measurement of the Small Fabry-Pérot cavity. In (a) the
change in air conditions are shown which are used to compen-
sate for refractive index changes, in (b) the uncorrected drifts are
shown and in (c) the drift is shown, corrected for changes in re-
fractive index.
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4.6 Conclusion

In this chapter a traceable measurement setup was shown to calibrate displace-
ment transducers with an uncertainty of 0,89 nm over a range of 1 µm and an
uncertainty of 0,94 nm over a range of 300 µm. The drift of the system was an-
alyzed and it was concluded that the drift of linear optics was more than twice
the drift of plane mirror optics, most probably due to the optics holders and
the construction of the optical components in their holder. Three calibrations
of laser interferometers were presented. A calibration of a heterodyne inter-
ferometer with linear optics under different angles of rotation was performed.
Of the plane mirror optics discussed in chapter 3 two calibrations were shown.
One was over a range of a wavelength and one was over a range of a quarter
wavelength. From these measurements the effect of the polarization properties
from the optics could clearly be seen. The standard deviation of the predicted
periodic deviation compared to the measured periodic deviation was 0,3 nm.
This implies that the model described in chapter 2 is sufficient to predict pe-
riodic deviations with sub-nanometer uncertainty. Also a measurement was
conducted with a commercial homodyne laser interferometer system inhibiting
a real time Heydemann compensation. This measurement showed the effect
of this compensation. Further a new calibration setup was developed with a
reduced uncertainty of 0,26 nm over 1 µm. The stability was tested and showed
a reduced drift of 1,5 nm per hour compared to 4 nm per hour of the original
cavity. The major contribution of uncertainty is still the thermal expansion of
the setup. This can be reduced further if another stabilization technique is used.
Therefore it is recommended to investigate and imply the Pound-Drever-Hall
technique.
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Chapter 5

Compensation of periodic
deviations

In the previous chapter it was shown that with the measurements discussed in
chapter 3 combined with the Jones model of chapter 2 it is possible to predict the
periodic deviations present in a heterodyne interferometer system. With this
knowledge it should be possible to minimize periodic deviations in a new setup
by choosing the correct laser head, optics and alignment. However it would be
more convenient to compensate existing periodic deviations in commercially
available systems. Hou and Wilkening suggested two measurement receivers
with orthogonally aligned polarizers to compensate for periodic deviations re-
sulting from laser head non-orthogonality and ellipticity. In this chapter this
method is investigated using the model described in chapter 2, further it is
tested in a measurement setup. In homodyne interferometry the Heydemann
compensation [5] is a widely used compensation method for periodic devia-
tions resulting from polarization mixing. As mentioned in section 1.1.1 it is
based on compensating the phase quadrature measurement. In this chapter a
new compensation method for heterodyne laser interferometers, based on Hey-
demann’s compensation, will be described and the influence is investigated.

5.1 Compensation with two measurement receivers

Hou and Wilkening described a method for compensation of periodic devia-
tions, resulting from laser head ellipticity and non-orthogonality, based on the
use of two measurement receivers [17]. The laser beam is split before entering
the measurement receiver and fed also to a second measurement receiver. The
direction of the polarizer in one measurement receiver is oriented orthogonally
compared to the polarizer in the second measurement receiver. The signals of
both measurement receivers are compared to the reference measurement and
the outputs are averaged. To test this compensation method a measurement
setup was built, which is shown schematically in figure 5.1.
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Heterodyne

laser light

Reference receiver

Babinet Soleil
Compensator

Polarizer 1

Polarizer 2

Receiver 2

Receiver 1

Non-polarizing

beam splitter

Micrometer

screw

Figure 5.1: Schematic representation of the setup used to test the compensa-
tion method with two measurement receivers with orthogonally
oriented polarizers.

Light emerging from a heterodyne laser head passes a non-polarizing beam
splitter. Part is reflected, travels through a polarizer oriented under 45◦ with
the lasers main polarization axes and forms a reference beat measurement. The
part transmitted travels through a Babinet-Soleil compensator, where a relative
optical phase shift is added to one of the polarization directions creating a
virtual optical path difference. After passing the Babinet-Soleil compensator
the light travels to a second non-polarizing beam splitter. There part of the
light is transmitted by the second non-polarizing beam splitter, travels through
a polarizer oriented under 45◦with the lasers main polarization axes and enters
the first measurement receiver. The other part is reflected by the second non-
polarizing beam splitter, travels through a polarizer oriented under −45◦ with
the lasers main polarization axes and enters the second measurement receiver.

From measurements with commercial heterodyne laser interferometers this
compensation method appeared not to work. As mentioned in chapter 3 the
periodic deviation is expected to be below 1 nm. Even with increased ellip-
ticity, introduced by a rotated quarter wave plate between laser head and first
non-polarizing beam splitter, both measurement receivers produced the same
measurement results. Some simulations made with use of the Jones model
described in chapter 2 revealed the cause: the direction of the elliptical po-
larization. As derived in chapter 3 in commercial heterodyne interferometer
systems the polarization directions of both frequencies are contra-rotating and
therefore produce an inherent compensation as could be seen in figure 2.9.
In figure 5.2 the results of the Jones model for the compensation method are
shown. In this figure the periodic deviations of the two measurement signals
are shown as well as the averaged result. Here it can be clearly seen that only
with equal rotating elliptical polarizations the periodic deviations are com-
pensated by this method. With the measurement discussed in chapter 3 the
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(b) Equal-rotating ellipticity

Figure 5.2: Simulated effect of averaging the result of two measurement re-
ceivers with orthogonally oriented polarizers. R1: Result of re-
ceiver 1, R2: Result of receiver 2, Av: averaged results.

polarization directions of two frequencies emerging from a fiber fed hetero-
dyne interferometer were measured and were equally rotating. Therefore the
compensation method was tested on such a system also. The fiber fed system
was developed by Knarren [65] during his PhD-study and uses a commercial
laser head [96]. The three measurement receivers were read out using a VME
board [97] with a resolution of 1,23 nm (for linear optics). As a result of this
limited resolution the effect of a well aligned fiber was negligible. Therefore
the ellipticity of the fiber output was increased by rotation of the fibers main
polarization axis in front of the heterodyne laser. The measurement result is
shown in figure 5.3(a).
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(b) Rotated Babinet Soleil compensator

Figure 5.3: Measurement results of the effect of averaging the result of two
measurement receivers with orthogonally oriented polarizers.

From this figure it can be seen that indeed the periodic deviation caused
by the increased equal rotating elliptical polarized light is compensated. Due
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to the limited resolution however the compensation is not ideal. Further the
alignment of both measurement receiver polarizers is very difficult in practice.

In figure 5.3(b) the results are shown of the compensation method with an
ideally aligned fiber, but with a rotated Babinet-Soleil compensator. Here both
measurement receivers detect equal periodic deviations. From this it can be
concluded that this compensation method will not work for periodic deviations
resulting from rotated optics.

Strangely Hou and Thalmann report measurements with an interferometer
where this compensation is used also [40]. They use a plane mirror interferom-
eter of Agilent [98] with a measured periodic deviation before compensation
of 8◦, resembling a periodic deviation with an amplitude of 3,5 nm. Both the
prediction of Hou and Wilkening [17] as well as the discussed measurements
above indicate that only deviations originating from the laser head can be
compensated. However to create a periodic deviation of 3,5 nm in a plane
mirror interferometer only from laser head polarization errors is in practice
impossible for a contra rotating elliptical polarized laser head. For example
a non-orthogonality not smaller than 8◦ could explain such an amplitude, or
equal rotating ellipticities with a ratio of 1 : 16. However in chapter 3 it was
already derived that Zeeman lasers exhibit contra-rotating ellipticities. From
measurements no non-orthogonalities larger than 0,35◦ were measured. It is
therefore not likely that the laser head produced these deviations. Most prob-
ably the influence of another source of periodic deviations is compensated.

From the measurement results, in combination with the knowledge that
laser ellipticity and non-orthogonality is limited, it is concluded that this
method would in practice not result in an improved interferometer. There-
fore a different method has to be found.

5.2 Quadrature detection with a lock-in amplifier

Since the method with two measurement receivers is not suitable for the com-
pensation of all periodic deviations another method was investigated. This
method is based on a phase quadrature measurement using a lock-in ampli-
fier. The method was proposed by Eom [33], only they use phase quadrature
measurement in combination with a self developed heterodyne interferometer
with low split frequency (160 kHz). A lock-in amplifier enables the phase de-
tection between two signals with the same carrier frequency, due to a method
called Phase Sensitive Detection. This method enables the filtering of a certain
frequency. All noise signals with a different frequency are filtered out. For this
method a reference frequency and phase is needed. In the ideal heterodyne
laser interferometer 2 signals are generated (see equations (2.3) and (2.5)):

Ire f = A cos(2π( f1 − f2)t + φre f ) (5.1)

Imeas = B cos(2π( f1 − f2)t + φre f + ∆φ), (5.2)
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where Ire f is the reference signal, Imeas stands for the measurement signal and∆φ
is the phase shift resulting from the mirror displacement in the interferometer.
These signals can well be analysed using a lock-in amplifier. The reference
signal of the laser interferometer provides the reference frequency and phase
for the lock-in amplifier. With use of a mixer the reference and measurement
signals are multiplied and passed through a band pass filter:

S0 =

∫

A cos(2π( f1 − f2)t + φre f ) × B cos(2π( f1 − f2)t + φre f + ∆φ)dt

=
1

2
AB cos(∆φ), (5.3)

To enable a phase measurement a second reference signal, retarded π
2 in

phase, is multiplied with the measurement signal and also integrated in the
band pass filter, resulting in a sine function:

S90 =

∫

A sin(2π( f1 − f2)t + φre f ) × B cos(2π( f1 − f2)t + φre f + ∆φ)dt

= −1

2
AB sin(∆φ), (5.4)

which indicates that both signals are in phase quadrature for an ideal inter-
ferometer. From these signals the phase to determine the displacement of the
interferometer mirror can be calculated using the inverse equation:

∆φ = arctan
(

S90

S0

)

(5.5)

From equations (2.14) and (2.16) it can be derived that, if the measurement
signal contains periodic deviations, the equation for the measurement signal
becomes of the form (see appendix F):

Imeas =
[

t1 + (t3 + t4) cos(∆φ) + (t5 + t6) sin(∆φ)
]

cos
(

∆ωt + φre f

)

+
[

−t2 + (t4 − t3) sin(∆φ) + (t6 − t5) cos(∆φ)
]

sin
(

∆ωt + φre f

)

(5.6)

If this signal is mixed with the reference signal and passed through a bandpass
filter, the phase quadrature signals can be rewritten as (see appendixF):

S0
nl = x0 + R cos(∆φ) (5.7)

S90
nl = y0 + R(

1

r
) sin(∆φ − αl), (5.8)

Where the offset x0 and y0 represents a first order periodic deviation and the
ellipticity characterized by r and αl represents the second order periodic de-
viation, R represents the amplitude of the signals. Both signals now form the
equation of an ellipse in stead of a circle, occurring for signals without peri-
odic deviations. Using equation (5.5) would result in measurements containing
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periodic deviations of the first and second order. Using a least square fitting
algorithm to the inverse functions as derived by Heydemann [5](see appendix
F) the parameters of the ellipse (x0,y0,R,1/r,αl) can be determined and used to
compensate the signals back to an ideal phase quadrature signal, resulting in
the compensation of first and second order periodic deviations.

5.3 Practical application

The phase quadrature measurement is carried out with use of a commercial
lock-in amplifier [87]. After an initiating measurement the ellipse parameters
are calculated using a least square fit on the parameters of (5.7) and (5.8) using
the method by Heydemann [5]. These parameters are used to compensate the
interferometer system. The schematic setup is shown in figure 5.4. Note that
Picotto [66] and Sacconi [67] used a similar setup, just there a phase detector is
used instead of a lock-in amplifier.

S0 S90

Output

Lock-in amplifier 2,7 MHz

Reference signal
Input

Measurement signal

Detector
Heterodyne

laser

Displacement

Non-polarizing
splitter

Figure 5.4: Schematic representation of the setup.

The reference signal is taken from the laser head [84] using dedicated hard-
ware. The measurement signal is taken from an external fiber receiver (Agi-
lent E10706B Remote dynamic receiver) using a probe providing the sinusoid
shaped measurement signal. As a result of a mirror displacement the phase

∆φ will change and the signals S0
nl and S90

nl will change accordingly. These
signals are recorded on a pc using GPIB interface and averaged over 20 mea-
surements for each mirror position. Recording the signals over a phase change
of 2π is sufficient to derive the parameters of the ellipse, providing a possibility
to compensate the measurements.

The lock-in amplifier is the same as described in chapter 3. The calibra-
tion described there about linearity (0,3%), drift (0,015 mV) and phase angle
(0,6 µrad) is used to determine the usability of the lock-in amplifier. Assuming
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that noise in the recorded intensities can be phase noise as well as amplitude
noise, the deviations in amplitude can be considered as a possible phase error
[31]:

∆φ =
∆R

R
(5.9)

With this equation also an uncertainty estimation can be derived from the phase
quadrature measurements:

u(∆φ) =
s(R)

R̄
(5.10)

where s stands for the standard deviation and the bar in the denominator
represents the mean value. Note that this is a worst-case estimation: if the
laser intensity fluctuates this will also give an amplitude variation but not a
phase variation. The noise emerging from the lock-in amplifier was 0,015 mV.
The smallest amplitude measured using this system is 20 mV, resulting in a
maximum error of 0,75 µrad. For a linear interferometer this would result in
an error of 0,04 nm. This indicates that the quality of the lock-in amplifier is
sufficient to be used in a setup for compensation of periodic deviations to an
amplitude below one nanometer.

5.4 Measurement results

The compensation method was tested on several setups. First a common path
verification is carried out to test the compensation of periodic deviations re-
sulting from rotational misalignments. Second the system is tested for two
common interferometer setups, which will include periodic deviations of the
optics. The system is also tested on a probe calibration setup used in the labora-
tory of Precision Engineering to calibrate high accuracy probes for coordinate
measuring machines. Finally the setup was tested on the traceable verification
setup which was already described in chapter 4. The measurement results of
all these setups are shown and discussed in the next sections.

5.4.1 Common path verification

The compensation was tested first with use of the Babinet-Soleil compensator
described in section 2.4. Measurements were carried out as follows: in the
experimental setup the interferometer optics are replaced by the Babinet-Soleil
compensator (as shown in figure 2.3). The Babinet-Soleil compensator is shifted
in small steps over a bit more than two wavelength path-difference using a

micrometer screw. Both signals S0
nl and S90

nl are recorded and a least-squares
fit to equations 5.7 and 5.8 is made [68, 5] and the ellipse parameters are
used to compensate the measurement results. Both the uncorrected phase

φ = arctan( S90
nl

S0
nl ) and corrected phase φ = arctan( S90

S0
) are compared to the phase

induced by the Babinet-Soleil compensator. This phase was induced linearly
by the micrometer screw and a linear fit was made between the calibration
points as determined in appendix B to form a linear reference.
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(a) Rotated Babinet-Soleil compensator.
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(b) Rotated Babinet-Soleil compensator and receiver polarizer.

Figure 5.5: Results of a measurement with a rotated Babinet-Soleil compensator
of 10◦ (a) and a combination of a rotated Babinet-Soleil compensator
and receiver polarizer (b). On the left hand side the periodic devi-
ation with and without compensation and on the right hand side
the S0, S90 signal with Least square fit (A), Measurements (B), Cor-
rected fit(C), Corrected measurements (D), Original offset (E) and
the Corrected offset (F).

A measurement was taken with a rotation around the roll-axis of 10◦ of
the Babinet-Soleil compensator. Figure 5.5 gives the corrected and uncorrected
results where on the right the S90 signal is plotted against the S0 signal and on
the left the periodic deviation is shown compared to the linear displacement
of the Babinet-Soleil compensator. The deviations in the corrected displace-
ment indicate the remaining deviations of the system after correction. The
periodic deviation, as it is measured in figure 5.5(a) without correction, can
be characterized by an uncertainty of 5,3 nm; after correction this is reduced
to an uncertainty of 0,2 nm. This is probably mainly caused by a nonlinear
generated displacement by the micrometer screw and the operators hand. The
uncertainty derived with equation (5.10) is 0,15 nm, almost covering the re-
maining uncertainty after correction as derived by the comparison with the
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Babinet-Soleil compensator scale. From model calculations as presented in sec-
tion 2.6.4 and by Cosijns [69] this type of deviation is known; the amplitude of
the periodic deviation equals the amplitude predicted by the Jones model.

It is also known that the deviation turns into a second-order deviation once
the receiver is given the same rotation as the optics (in this case the Babinet-
Soleil compensator), as was shown in figure 2.17. The results of this experiment
are given in figure 5.5(b). Comparing the right hand figures 5.5(a) and 5.5(b) one
can observe that in figure 5.5(a) the measured circle is shifted right and down
relative to the undisturbed corrected circle and becomes somewhat elliptical.
In figure 5.5(b) the center point is shifted back and only the ellipticity remains.
This is reflected in the fitted parameters: r and α are similar in both figures,
but in figure 5.5(b) the bias in x-direction is almost vanished. This is shown
in a vanished first order periodic deviation and a remaining smaller periodic
deviation with double periodicity, for the uncorrected case at the left-hand of
figure 5.5(b). In this case the uncertainty of the measurements is 1,4 nm for the
uncompensated measurement which reduces to an uncertainty of 0,2 nm for
the corrected measurement, referred to the Babinet-Soleil compensator scale.
The uncertainty derived by equation (5.10) is 0,11 nm in this case.

5.4.2 Verification of basic interferometer setups

To verify the compensation of periodic deviations resulting from optics as
predicted in chapter 3 also two setups were built with interferometer optics.
One with linear optics and a second one with plane mirror optics. To generate a
stable but slowly varying displacement an aluminum distance tube was placed
between the polarizing beam splitter and the measurement optics, see figure
5.6(a) and 5.6(b). The displacement was generated by warming up the tube
by hand and then letting it cool down slowly to room temperature. The result
for the linear optics is given in figure 5.6(c). This figure shows that already
without compensation the non-linearity is within 1 nm. In this method the
actual displacement is unknown and the compensation method can only be
tested against the ideal circle. As a result the remaining uncertainty of the
compensated measurement contains the noise of calculation: 0,0012 nm. With
the assumption that noise in the recorded amplitude can be amplitude noise
as well as phase noise, equation (5.10) was used to derive an uncertainty of the
compensation. The derived uncertainty was: 5,7 mrad which equals 0,29 nm.

The plane mirror optics give a more peculiar behavior, as depicted in figure
5.6(d). The same kind of behavior was noticed by C̆ı́p [70]. By modeling the
optics and laser head polarization errors it was tried to explain the deviation.
This can be done if the assumption is made that the optics were misaligned
counter clockwise by 4,5◦, further the quarter wave plate was misaligned 3,2◦.
The right hand side of figure 5.6(d) gives the result of the model calculation.
For the measurement the optics were rotated on the table compared to the
laser head, however the angle was unknown. The polarization errors of the
optics were measured by ellipsometry (see section 3.2)[71] and the polarization
error of the laser head was measured as explained in section 3.1 [72]. The
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Figure 5.6: Results of a measurement with linear and plane mirror optics. Com-
pared are Measurement (A), Fit(B) and compensated (C). In (a) the
schematic setup is shown used to measure the effect of a linear in-
terferometer, in (b) the schematic setup is shown used to measure
the effect of a plane mirror interferometer. In (c) the measurement
results are shown for the linear interferometer. On the left side the
calculated original and compensated periodic deviation are shown,
on the right the S0

nl,S90
nl signal is plotted along with the compen-

sated circle (solid gray line). In (d) the results of the plane mirror
interferometer are shown (left), along with the predicted periodic
deviation (right).
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ellipticity of the laser head was 1 : 170 for f1 and 1 : 171 for f2 in E-field one left
hand elliptically polarized and one right hand elliptically polarized. The non-
orthogonality between both laser polarizations was 0,3◦. The compensation
reduces the uncertainty of the non-linearity theoretically from 0,35 nm down
to 0,23 nm derived from equation 5.10.

5.4.3 Comparison probe and plane mirror optics

In the laboratory of Precision Engineering a calibration system for probes of
Coordinate Measuring Machines was developed based on a plane mirror in-
terferometer [73], see figure 5.7. The system was developed to have an overall
uncertainty of 5 nm. In earlier probe calibrations it appeared to show periodic
deviations [73]. Therefore the compensation was tested on this system also.
The system is based on a commercial interferometer system and with plane
mirror optics.

Retro reflector

Polarizing
beam splitter

Bending mirror(2)

Bending
mirror(1)

Measurement
mirror

Reference
mirror

Piezo

Probe

λ
4

Figure 5.7: Principle of the calibration system based on a plane mirror interfer-
ometer.

The light emitted by a commercial laser head enters a polarizing beam
splitter. There the light is split into a reference part and a measurement part.
The measurement part is transmitted, passes a first quarter wave plate for the
first time, is reflected by a bending mirror(1), reflected by the measurement
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mirror, again reflected by the bending mirror(1), passes the first quarter wave
plate for the second time and enters the polarizing beam splitter. As a result of
the double passing of the quarter wave plate in combination with a reflection
on the reference mirror the polarization is rotated 90◦ and the light is reflected
by the polarizing beam splitter, passes a second quarter wave plate for the first
time, is reflected by a retro reflector and passes the second quarter wave plate
a second time. As a result of the double passing of the second quarter wave
plate in combination with the reflection in the retro reflector the polarization
is again rotated 90◦ and is transmitted by the polarizing beam splitter. Via a
reflection by the bending mirror(2), transmission for the third time through the
first quarter wave plate, reflection by the bending mirror(1), the measurement
mirror for a second time, bending mirror(1), a fourth transmission through the
first quarter wave plate, a reflection by the bending mirror(2), it enters the beam
splitter. The polarization is again rotated 90◦ and the light is therefore reflected
by the polarizing beam splitter out of the system back to the measurement
receiver.

The reference part is reflected by the polarizing beam splitter, the bending
mirror(2), passes the first quarter wave plate for the first time, is reflected
by the bending mirror(1), the reference mirror, again the bending mirror(1),
transmitted a second time through the first quarter wave plate, reflected by
the bending mirror(2) and enters the polarizing beam splitter. Here it is now
transmitted as a result of a rotated polarization as a result of double passing
of the first quarter wave plate. After passing the polarizing beam splitter it
passes the second quarter wave plate, is reflected by the retro reflector, passes
the second quarter wave plate a second time (is therefore again rotated 90◦ in
polarization) and reflected by the polarizing beam splitter. After reflection by
the polarizing beam splitter the light passes the first quarter wave plate a third
time, is reflected by the bending mirror(1), the reference mirror a second time,
the bending mirror(1), passes the quarter wave plate a fourth time and is finally
transmitted by the polarizing beam splitter and exits the system back to the
measurement receiver.

The reference and measurement mirrors are placed concentric. By means
of a piezo the center mirror is displaced in steps of approximately 8 nm. As
a result of the reflection twice by the reference and measurement mirror the
resolution of the interferometer is increased, and the periodic deviations double
in frequency if measured against the actual displacement of the mirror. As a
result the first order periodic deviation will have a period of λ/4 and the second
order will have a period of λ/8 (expressed in mechanical displacement of the
mirror).

To test the compensation method, the displacement of the measurement
mirror is measured against a probe displacement of an inductive probe [99], see
the photograph of figure 5.8. This probe was calibrated earlier on the traceable
Fabry-Perot calibration system [26] and showed no periodic deviations with a
periodicity of λ/8 or λ/4, enabling a comparison of periodic deviations of the
laser interferometer with the inductive probe. The results of the measurement
are shown in figure 5.9(a). From this figure it can be seen that the phase
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Figure 5.8: Photograph of the setup used to test the compensation method on
a probe calibration setup.

compensation does not reduce the periodic deviation although it is a first order
periodic deviation. In fact the uncertainty of the measurement compared to
the probe reference equals 0,89 nm, while the uncertainty of the compensated
measurements compared to the probe reference equals 0,94 nm. Since this
is a plane mirror interferometer with double pass properties, the first order
periodic deviation exhibits four periods in a displacement of the mirror from
one wavelength. In the right hand side of the picture it can be seen that the fit
of the circle is rather good. The uncertainty derived from these measurements
using equation 5.10 equals 0,15 nm. The system was tested several times,
where the periodic deviation changed in amplitude, however the effect of
compensation remained equal. After careful examination of the system it
appeared to exhibit rather large ghost reflections. These are reflections of
the measurement and reference beams on the end faces of the optics. These
reflections can pass the measurement path also and end up in the detector
as a higher order harmonic resulting in periodic deviations [10]. Wu [10]
described the time varying property of these periodic deviations. Therefore
it was decided to test whether this failure of compensation could be caused
by ghost reflections. By introducing a glass plate (reflection of approximately
4% on end surfaces) into both the measurement and reference beams under an
angle of 15 degrees the ghost reflections passing twice the measuring path were
reduced in amplitude. The effect is shown in figure 5.9(b). The uncertainty
of the uncompensated measurement compared to the probe is now 1,27 nm,
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Figure 5.9: Results of the comparison of an inductive probe and a commercial
heterodyne interferometer with and without phase compensation.
On the left hand side the periodic deviation with and without com-
pensation and on the right hand side the S0, S90 signal with Least
square fit (A), Measurements (B), Corrected fit(C), Corrected mea-
surements (D), Original offset (E) and the Corrected offset (F).
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while the uncertainty of the compensated measurement compared to the probe
is 0,59 nm. The uncertainty to be expected from the amplitude variation, as
derived by equation (5.10) is 0,10 nm. As a second test the plate was placed
orthogonal in the measurement and reference path and aligned so that as many
as possible ghost reflections entered the detector. The result of this is shown
in figure 5.9(c). Here the uncertainty of the uncompensated measurement
compared to the probe is 1,63 nm, where the uncertainty of the compensated
measurement compared to the probe is 2,18 nm. The uncertainty derived
by equation 5.10 is 3,56 nm. For sake of clarity the uncertainties for each
measurement are summarized in table 5.1.

Setup umeas ucorr ueq

Original 0,89 nm 0,94 nm 0,15 nm
Oblique glass plate 1,27 nm 0,59 nm 0,10 nm

Perpendicular glass plate 1,63 nm 2,18 nm 3,56 nm

Table 5.1: The uncertainties of the different measurements with the compensa-
tion method. umeas and ucorr refer to the uncertainty of the uncom-
pensated respectively the compensated measurement compared to
the reference probe, ueq refers to the uncertainty derived with equa-
tion (5.10).

When examining these results it can be seen that the oblique glass plate in-
troduces an enlarged periodic deviation, which is partially compensated by
the phase compensation. However a periodic deviation with an uncertainty of
0,59 nm remains. This remaining part is smaller than the original remaining
part of figure 5.9(a) (σcorr = 0,94 nm), but not convincing. The uncertainty
derived by equation (5.10) still indicates a small periodic deviation. Looking
at figure 5.9(c), the result of the increased ghost reflections, it is obvious that
the periodic deviation is also increased. This increased periodic deviation is
enlarged even by the phase compensation, implicating that the amount of ghost
reflection in the setup influences the phase compensation. At the right hand
side of figure 5.9(c) the S0 S90-signal exhibits large amplitude deviations, most
probably also caused by ghost reflections. This is also reflected in the increased
uncertainty derived by equation 5.10. From these examinations it is concluded
that the uncompensated part in figure 5.9 is most probably introduced by ghost
reflections and that phase quadrature compensation of Heydemann is unable
to compensate for ghost reflections. One way to explain this would be that
ghost reflections manifest themselves as a non-uniform distribution on the cor-
rected circle when a uniform motion is applied on the interferometer mirror.
This indeed is not corrected by the quadrature phase compensation.

5.4.4 Traceable verification

The compensation method was tested also on the Fabry-Pérot setup described
in chapter 4. The compensation was applied to measurements with a linear



88 5. COMPENSATION OF PERIODIC DEVIATIONS

interferometer, as presented in figure 4.3. To test the stability of the setup a drift
measurement was conducted. From this resulted that the Fabry-Pérot still drifts
4 nm/hour after 14 hours. At that time the measurements were made and the
drift was subtracted from the measurement signal. Two measurements were
done to test the compensation method. First a measurement was conducted
where the laser head was rotated 9,96◦ compared to the opics. The angle be-
tween optics and laser head was measured using an electronic level. Since
the laser head includes the measurement receiver the result is the same as if
only the optics were rotated. The result of this measurement is shown in figure
5.10(a). In this figure the uncompensated measurement is shown along with the
compensated measurement and the periodic deviation predicted by the Jones
model. In order to calculate the periodic deviation, the polarization properties
of laser head and optics were measured and their Jones matrices used as input
in the model. From this figure it can be seen that the model predicts the ampli-
tude of the periodic deviations very well, however the slope of the predicted
deviation differs from the slope of the measurements. This is probably caused
by the linearization of the drift in the system, of which the cause could not.
The uncertainty of the uncompensated measurement compared to the Fabry-
Pérot reference is 3,99 nm, the uncertainty of the compensated measurement
compared to the Fabry-Pérot reference is 0,45 nm. The predicted uncertainty
by equation (5.10) is 0,42 nm.

A second measurement was conducted with a rotated laser head (again
9,96◦) in combination with an external fiber optic receiver. In the alignment
an attempt was made to align the receiver in 45◦ with the main axes of the
optics. However the orientation of the polarizer in the fiber optic receiver
is not known a priori. Therefore it was assumed that the polarizer of the
external receiver was aligned in an angle of 45◦ with the base attached to
it. This was aligned at the same absolute angle as the optics with aid of an
electronic level. The measurement results of this measurement are shown in
figure 5.10(b). In this figure the uncompensated periodic deviation is shown
along with the compensated periodic deviation. Further here also the periodic
deviation predicted by the Jones model is shown. From the figure it can be seen
that the model prediction deviates from the measured periodic deviation. This
may be caused by the alignment of the polarizer, however modeling revealed
that such a deviation can not be the result of a misaligned polarizer. It could
also be an effect of the lock-in amplifier, although the calibration showed no
deviations large enough to explain these deviations it could however be the
result of an unknown effect.

In both figures 5.10(a) and 5.10(b) it can be seen that the compensated mea-
surements show a remaining first order deviation. Since this behavior has not
been registered before it is unlikely to be an effect of the Fabry-Pérot cavity.
A possible explanation would be the effect of ghost reflections. However the
deviations appear to be stable in time, which differs from the effect measured
in section 5.4.3.To be able to draw conclusions about ghost reflections modifica-
tions should be made to the setup in order to test the effect of reduced and extra
induced ghost reflections. A second possibility is that it could be the result of
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Figure 5.10: Measurement results of a linear interferometer system calibrated
on the Fabry-Pérot calibration setup. In (a) the uncompensated
results as well as the compensated results are shown of the mea-
surements with a system with optics rotated 9,96◦. The dashed line
is the predicted periodic deviation by the Jones model. In (b) the
uncompensated and compensated result are shown of the measure-
ment with rotated optics (again 9,96◦) and the receiver polarizer
rotated approximately the same amount. Here also the predicted
periodic deviation by the Jones model is shown as a dashed line.

an unknown effect in the lock-in amplifier. These deviations are within the
measurement uncertainty of the Fabry-Pérot interferometer, which illustrates
the need for a calibration system with reduced uncertainty, such as the small
Fabry-Pérot cavity.

Comparing the uncertainties derived from equation (5.10) (0,42 nm and
0,30 nm) and the uncertainties of the compensated measurements (0,45 nm and
0,37 nm) it seems that the uncertainties derived by the measurement of am-
plitude variation predict the uncertainties of the compensated measurements
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very well.

5.5 Conclusions

In this chapter methods were discussed to compensate periodic deviations in
laser interferometers. The method described by Hou and Wilkening using two
measurement receivers with orthogonal oriented polarizers was investigated
and tested. It was concluded that this method only reduces periodic devi-
ations originating from polarization errors in the laser head (ellipticity and
non-orthogonality). Further periodic deviations caused by ellipticity of the
laser head are only compensated if the laser head emits equal rotating elliptical
polarizations, as is the case if using a heterodyne laser equipped with one fiber
for both polarizations. A second method for compensation of periodic devi-
ations based on quadrature detection was explained and tested on different
setups. This method enables compensation of periodic deviations introduced
by polarization mixing as raised by misalignment or polarization errors in
the components. However periodic deviations introduced by ghost reflections
seem impossible to correct. This could be explained if the ghost reflections
manifest themselves as a virtual displacement by a non-uniform distribution
on the quadrature circle. Since only the amplitude and origin of the ellipse is
corrected, this method can not correct errors on the ellipse. Further research
should be conducted to examine the effects of ghost reflections. It appears the
effect of ghost reflections should be included in the Jones model also if standard
optical setups are used to measure with nanometer uncertainty.

System setup umeas ucorr ueq

Common path BS 10◦ P 0◦ 5,3 nm 0,2 nm 0,2 nm
BS 10◦ P 10◦ 1,4 nm 0,2 nm 0,1 nm

Basic setups Linear optics - - 0,3 nm
Flat mirror optics - - 0,2 nm

Probe calibration normal 0,9 nm 0,9 nm 0,2 nm
reduced ghost 1,3 nm 0,6 nm 0,1 nm

increased ghost 1,6 nm 2,2 nm 3,6 nm
Traceable setup PBS 10◦ P 0◦ 4,0 nm 0,5 nm 0,4 nm

PBS 10◦ P 10◦ 2,2 nm 0,4 nm 0,3 nm

Table 5.2: The uncertainties of the different measurements with the compen-
sation method. ueq refers to the uncertainty derived with equation
5.10, umeas ucorr refer to the uncertainty of the uncorrected and cor-
rected measurement compared to the reference used in the measure-
ment setup (micrometer screw, probe, Fabry-Pérot) BS: Babinet-Soleil
compensator, P: polarizer, PBS: polarizing beam splitter.
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In table 5.2 the different setups used to test the compensation method with
lock-in amplifier are summarized with the uncertainties of the uncompensated
and compensated measurements compared to the reference used in the mea-
surement setup (σmeas and σcorr). Further the uncertainties derived from the
amplitude variations of the quadrature signal are presented (σeq). From the
comparison of the uncompensated and compensated uncertainties it can be
concluded that the compensation method reduces the uncertainty due to peri-
odic deviations, except for measurements where ghost reflections are present.
From the comparison of the uncertainties from the corrected measurements
(σcorr) and derived from the amplitude variations (σeq) it may be concluded that
with absence of ghost reflections equation (5.10) gives a good estimation of the
remaining uncertainty.



92 5. COMPENSATION OF PERIODIC DEVIATIONS



Chapter 6

The refractive index of air

While fundamental limitations for small displacement measurements are in
the photonic noise and periodic deviations in the interferometer, for large dis-
placement measurements the limitation lies within the refractive index of the
medium used. Since vacuum applications are costly and require special skills,
determination of the refractive index of air with improved accuracy is rec-
ommended. Most commonly the revised equation of Edlén is used. This
is an empirically derived formula which expresses the refractive index as a
function of the wavelength of the light and of the temperature, pressure, hu-
midity and carbon dioxide content of the air surrounding the interferometer
system. Another method is to measure the refractive index of air directly with
a measurement instrument called a refractometer. A refractometer derives the
change in refractive index by measuring an optical path difference while the
mechanical distance remains constant. If this measurement is done compared
to a vacuum chamber this is an absolute measurement while otherwise it is a
relative measurement.

In this chapter first the three empirically derived equations are presented
along with their uncertainties. Later an absolute refractometer is discussed
which has been in use for several years. In order to improve the measure-
ment of the refractive index of air a relative measurement system (tracker) was
developed to test the feasibility of such a system for absolute measurements.
This tracker enables a relative refractive index of air measurement with im-
proved uncertainty and will be described later in this chapter along with the
uncertainty calculation. Further this tracker will be compared to the earlier de-
scribed absolute refractometer and the mostly used revised equations of Edlén.
Since there are three versions, which are in use in laboratories over the world
a comparison will be made with all three empirical equations.
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6.1 Empirical equations

As already mentioned in chapter 1, the displacement measured with an in-
terferometer depends on the wavelength of the light used. The wavelength
depends on the refractivity of the medium through which it passes according
to the next relationship:

λ =
λvac

n
(6.1)

where λvac is the wavelength in vacuum and n is the refractive index of the
medium. Generally the vacuum wavelength is known from a frequency mea-
surement and the vacuum velocity of light (299792458 ms−1). As already men-
tioned air is most frequently used as medium. The refractivity (n-1) of a dry
gas, without any polution depends on the dispersion Kλ and density of the gas
DT,p:

(n − 1)T,p = Kλ ∗DT,p (6.2)

Edlén published the dispersion equation based on the work of other authors’
investigations [11]. He also presented a derivation for the density factor based
on the Lorentz-Lorentz equation and the gaseous equation of state [74]. Fur-
ther corrections were presented for humidity and carbon dioxide content. As
starting point he defined standard air, meaning dry air with a temperature of
15◦C, a total pressure of 760 Torr (101,325 kPa) and 300 ppm carbon dioxide
content. Since then the ITS-90 temperature scale was accepted [35] and new
data were available for the density of air and the refractivity of water vapour.
Birch and Downs [36, 12] updated the equation with use of these data and
increased the carbon dioxide content of normal laboratory air to a constant
of 450 ppm. Schellekens [39] investigated the influence of different kinds of
gases and concluded the influence of carbon dioxide in most cases cannot be
neglected. Later Ciddor [37] derived a formula intended for a broader range
of wavelengths and extreme environmental conditions (−40◦C to 100◦C, 80 to
120 kPa and 0 to 100% relative humidity). Bönsch and Potulski [38] revised
Edlén’s equation again, however no improvement of the accuracy was gained
compared to Birch and Downs [12] and the results showed an agreement be-
tween the values calculated by both formula’s within the stated uncertainties.
However Bönsch and Potulski reintroduced a correction factor for the carbon
dioxide content (standard 400 ppm), which Birch and Downs omitted. The
exact equations of Birch and Downs, Bönsch and Potulski and the equation of
Ciddor can be found in appendix G. These days all three equations are used
in laboratories around the world. All three equations have slightly different
sensitivities for the air parameters. In table 6.1 the sensitivities as summarized.

In order to calculate the refractive index of air using the equations of Birch,
Bönsch or Ciddor the four parameters have to be measured as accurate as
possible. The measurement of temperature, pressure, humidity and carbon
dioxide content will be discussed next.
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Birch (1994) Bönsch (1998) Ciddor (1996) unit
∂n
∂T −9,296 · 10−7 −9,296 · 10−7 −9,285 · 10−7 K−1

∂n
∂p 2,684 · 10−9 2,683 · 10−9 2,683 · 10−9 Pa−1

∂n
∂ fw

−3,63 · 10−10 −3,706 · 10−10 −3,642 · 10−10 Pa−1

∂n
∂CO2

0 1,447 · 10−10 1,438 · 10−10 ppm−1

Table 6.1: Sensitivity of refractive index of air depending on a certain parame-
ter, for standard conditions: T=20◦C, p=101325 Pa, f=926,8 Pa (40%
relative humidity), and CO2=450 ppm. All three equations result in
a refractive index of 1,00027146 for these standard conditions.

6.1.1 Parameter measurement

Since all empirical equations are based on the measurement of air parameters
the uncertainty of this method depends on the measurement systems used to
measure these air parameters. The daily variation of those parameters and
their influence on the refractive index of air are summarized in table 6.2. From
this table it may be concluded that for daily use in metrology laboratories the
pressure measurement is most important, followed by temperature, humidity
and carbon dioxide content.

Parameter Increment Effect n TDV Effect n
Temperature 1 ◦C −9,30 · 10−7 0,1 ◦C −9,30 · 10−8

Pressure 1 hPa 2,68 · 10−7 20 hPa 5,36 · 10−6

Humidity 1 hPa −3,7 · 10−8 1 hPa −3,7 · 10−8

CO2 content 100 ppm 1,45 · 10−8 100 ppm 1,45 · 10−8

Table 6.2: Effect of air temperature, pressure, humidity and carbon dioxide
content on refractive index of air (according to Bönsch). Here TDV
stands for typical daily variation.

Temperature

The temperature is measured using thermistors and a four wire bridge mea-
surement to exclude the resistance of lead wires. Thermistors are chosen for
their high sensitivity compared to resistance temperature detectors. For the
choice of thermistors a number of factors are important as stability (to prevent
the need of quick recalibration) and self heating. The thermistors are used to
measure the temperature of air, which is a good insulator. Further the air will
be nearly still as it will be measured in an isolation box. Hence self heating
may become an important aspect. For self heating the important factors are:

• Resistance of the thermistor

• Current of the measurement device
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• Dissipation constant

• Thermal constant

A large resistance reduces the influence of wire resistance, and reduces the
necessary measurement current. The heat dissipated by the thermistor is cal-
culated using the following equation:

Psupply = Plost + Psel f heating (6.3a)

I2R = δ(T − Tsurrounding) + τδ
dT

dt
(6.3b)

where Psupply is the power supplied to the thermistor by an electrical circuit,
Plost is the energy lost to the surroundings and Psel f heating is the thermal energy
absorbed by the thermistor. Further I is the measurement current, R the resis-
tance of the thermistor, δ the dissipation constant of the thermistor in mW ◦C−1,
T the temperature of the thermistor, Tsurrounding the temperature of ambient air
(in our laboratory 20±0,5 ◦C) and τ the thermal time constant of the thermistor.

An epoxy coated disc NTC-thermistor was chosen [100] with a resistance of
5 kΩ at 25◦C, a dissipation constant of 1 mW ◦C−1 (as given by the manufacturer)
and a thermal time constant of 10 s, both in still air. A commercial data
acquisition unit was chosen [101] with a measurement current of 100µA, lasting
1 ms each second. From calibration the resistance of the thermistor at 20 ◦C was
found to be 6250 Ω. Further measurements are taken each 60 s. Using these
constants and solving equation 6.3b results in a self heating of 1,55 ·10−8 ◦C after
60 seconds. After 20 hours this would result in a self heating of 1,86 · 10−5 ◦C,
smaller than the resolution of the measurement system which is 8,5 · 10−5 ◦C.

The thermistors were calibrated against two calibrated platinum RTD re-
sistors which have a traceable uncertainty of 0,01 ◦C. Both thermistors and
platinum resistors were placed on an aluminum beam of which the tempera-
ture is controlled by circulation of water through the aluminum beam using a
refrigerated circulator with a stability of 0,01 ◦C. The beam and thermistors are
placed in an isolation box. In order to reduce the effect of gradients in the alu-
minum beam all sensors are placed close to each other. Further the thermistors
are placed between the RTD sensors and a linear gradient is assumed for which
is compensated. After a stabilization period of several hours, to cancel out the
effect of different time-constants of RTD’s and thermistors, the resistance of the
thermistors is measured simultaneously with the resistance of the RTD. The
temperature of the sensors is calculated using equation 6.4a for the RTD sen-
sor of which the constants were determined through calibration at the Dutch
national metrology institute (NMi) and the Steinhart-Hart equation 6.4b [75]
for the thermistor of which the constants are determined through calibration
against the RTD sensors.

TRTD = AR + BR · RRTD + CR · RRTD
2 +DR · RRTD

3 + ER · RRTD
4 (6.4a)

1

T
= AT + BT · ln(Rtherm) + CT · ln(Rtherm)2

+DT · ln(Rtherm)3 (6.4b)
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After calibration the expanded uncertainty of the thermistors is 0,01 ◦C [76].
The resistance of the thermistors is read out by computer using GPIB protocol.

Pressure

During a refractive index measurement the pressure is measured using a cali-
brated commercial digital barometer [102], consisting of a resonator with thin
quartz chrystal: a Piezoelectric Force Transducer. The resolution of the system
is 1 Pa, provided that it is read out through RS232. The calibrated uncertainty
of the calibrated instrument is 6 Pa.

Humidity

For high accuracy humidity measurements most commonly a chilled mirror
hygrometer is used. This technique involves illuminating a cooled surface with
a light source and measuring the intensity of the reflected light. Condensation
on the surface scatters the light which manifests as a change in reflectance.

Recently a new type of dewpoint hygrometer was introduced which works
on the principle of Surface Acoustic Waves (SAW). SAW in this case integrates
the cooled surface and detection mechanism in one element. The element
consists of a transmitting and a receiving antenna photo lithographically pat-
terned on a single crystal quartz chip. A radio frequency (RF) signal fed to the
transmitting antenna converts to a mechanical wave. The mechanical wave
propagates along the sensor surface to the receiving antenna, where the me-
chanical wave converts back to a RF signal. The schematic principle of this
measurement system in shown in figure 6.1 [103].

air in air out
Without condensate

RF-signal
in

RF-signal
out

Peltier
cooler

Temperature
sensor

Sensor output

air in air out

With condensate

RF-signal
in

RF-signal
out

Peltier
cooler

Temperature
sensor

Sensor output

Figure 6.1: Schematic representation of the surface acoustic wave(SAW) Dew-
point hygrometer setup.

The stated uncertainty by the manufacturer in the dewpoint measurement
is 0,2 ◦C. The system was calibrated at the Dutch national metrology institute
(NMi) were extensive tests were performed. Due to the construction of the
calibration facility, the first calibration indicated some problems with the inter-
nal pump of the dewpoint hygrometer. The calibration facility inhibits also an
internal pump to control the air flow. Neither of the pumps could be shut down
and as a result at some dewpoints the measured values oscillated. In spite of
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this problem the uncertainty of the calibration was 0,12 ◦C. Later the sensor
had to be replaced as a result of a construction error in the system and also the
pump was removed. The system was recalibrated and had an uncertainty of
0,1 ◦C. From this time an external pump was used to pump the air through the
system.

The calculation of the dewpoint temperature into the partial water vapour
pressure ( fw) is done using the density equation reported by Giacomo [77](known
as the BIPM 1981/91 density equation) and revised by Davis [78]:

fw = 1Pa × exp
(

Ad ∗ Td
2 + Bd ∗ Td + Cd +

Dd

Td

)

(6.5)

where Ad = 1,2378847 · 10−5 K−2 (6.6)

Bd = −1,9121316 · 10−2 K−1 (6.7)

Cd = 33,93711047 (6.8)

Dd = −6,3431645 · 103 K (6.9)

with Td the dewpoint temperature in Kelvin. The uncertainty of the dewpoint
measurement can be converted into the uncertainty of partial water vapour
pressure which becomes 6 Pa. The dewpoint is read out by computer using
RS232 protocol.

Carbon dioxide

The carbon dioxide level is monitored using a commercial infrared gas analyser
[104]. The working principle is based on the absorption of infrared light with
a wavelength of 4,26 µm by carbon dioxide molecules. The content of carbon
dioxide in air is measured while pumping air through a sample cell. The
intensity of light with this wavelength transmitted through a sample cell is
measured and compared against the intensity of transmitted light through a
reference cell. This reference cell is free of carbon dioxide by the use of soda-
lime granules. The system is calibrated against a CO2 analyser of the Dutch
national metrology institute (NMi) and the expanded uncertainty is estimated
to be 60 ppm. The system is read out using a Keithley multimeter which is
connected to the computer through GPIB.

6.1.2 Uncertainty analysis of empirical equations

Previously the uncertainty of each measurement instrument used to measure
the four parameters of air (temperature, pressure, humidity and Carbon dioxide
content) was given. Together with the uncertainty of each equation itself,
stated by the authors, these are used to determine the expanded uncertainty of
each equation. This is done for the standard air conditions in our laboratory:
T=20 ◦C, P=101325 Pa, fw=926,8 Pa (40% relative humidity) and 450 ppm carbon
dioxide content. The combined uncertainty for the three empirical formulas is
presented in tabel 6.3.



6.2. THE ABSOLUTE REFRACTOMETER 99

Parameter SC u Birch Bönsch Ciddor
(1994) (1998) (1996)

T 20◦C 0,01 9,296 · 10−9 9,296 · 10−9 9,285 · 10−9

P 101325 Pa 6 1,610 · 10−8 1,610 · 10−8 1,610 · 10−8

fw 926,8 Pa 6 2,326 · 10−9 2,372 · 10−9 2,331 · 10−9

CO2 450 ppm 60 0 8,685 · 10−9 8,627 · 10−9

Eq 3 · 10−8 1 · 10−8 5 · 10−8

Total (k=2) 3,5 · 10−8 2,3 · 10−8 5,4 · 10−8

Table 6.3: Uncertainty analysis of the three empirical equations used. Here u
stands for expanded uncertainty, SC stands for standard conditions, T
for Temperature, P for pressure, fw for partial water vapour pressure
and Eq represents the uncertainty of the revised equation stated by
the authors.

6.2 The absolute refractometer

The absolute refractometer developed previously in the Precision Engineering
group is an interference refractometer. Interference refractometers are based
on the measurement of optical path length changes using Michelson type laser
interferometers [39]. The optical path length depends on the mechanical path
length along with the refractive index of the medium used through which is
measured (Lop = n · Lmech). Therefore the change in optical path length depends
on changes in the refractive index and changes in the mechanical path length:

∆Lop = n · ∆Lmech + Lmech · ∆n (6.10)

with ∆Lop the change in optical path length, n the refractive index of air, ∆Lmech

the change in mechanical path length and ∆n the change in refractive index.
From this equation follows that if the mechanical length is kept constant the
first term reduces to zero. Then the refractive index change can be calculated
when the mechanical length is known. By measurement against a reference
optical path in vacuum the absolute refractive index of air can be measured:

∆Lop = Lmech · (n − 1) (6.11)

The principle of the used refractometer is presented in figure 6.2. Light emitted
from a commercial laser head is split by a polarizing beam splitter into a
reference and measurement beam (see also chapter 1). The measurement beam
passes through the measuring channel (solid lines in figure 6.2). The reference
beam passes through the reference channel (dashed lines in figure 6.2). Finally
both beams emerge from the polarizing beam splitter and are mixed by the
polarizer inside the detector, which measures the phase of the interference
signal.

At the start of a measurement both reference and measurement channels
are evacuated down to 3 Pa using a vacuum pomp. The interferometer is reset
to zero and next air is flown slowly into the measuring channel. After the
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measuring channel is at environmental pressure, air is pumped through the
measurement chamber constantly with a smooth flow of 0,6 l min−1 enabling
the constant measurement of the environmental refractive index.

Measuring channel

Reference channel

Entrance window

λ/4

Retroreflector

Bending mirror

Polarizing
beam splitter

Detector

Laser head

O-ring

Mirror

Figure 6.2: Schematic representation of the refractometer setup.

From equation 6.11 it can be seen that the mechanical length of the refrac-
tometer has to be known to calculate the refractive index of air. This length
was measured using a Coordinate Measuring Machine with an uncertainty of
u = (2 ± 2,86 · 10−6 · L) µm (with L the length of the measured object in m).
The uncertainty of the measurement of the block (L ≈ 400 mm) is therefore
3,1 µm. During calibration temperature corrections were applied which adds
an uncertainty in length of 0,1 µm . To prevent gradients the refractometer
block is built from aluminum. Further, from equation 6.10 it can be seen that
the slightest change of mechanical length during measurement influences the
measurement of the refractive index directly. Therefore the temperature of
the block is monitored during measurement and the mechanical path length is
corrected for linear expansion of the block at each measurement point.

To create a sufficient vacuum (3 Pa) the block is sealed with rubber O-rings
between the block and the entrance window and between the block and the
mirror surface. During the creation of the vacuum a difference in pressure
between environment and block channels occurs, influencing the mechanical
path length inside the refractometer. This effect was measured also using the
coordinate measuring machine. This was done placing the block refractometer
on the coordinate measuring machine and acclimatize it for 1 day. Then the
length was measured in three different stages: Fully evacuated, partially evac-
uated (measurement channel filled with air and reference channel evacuated)
and filled with air. This measurement was repeated 6 times and the averaged
length change between vacuum and partially filled with air was (0,58±0,07)µm.
The resulting deviation in the determination of the refractive index in air that
follows from this increase of effective length during filling was calculated to be
4,2 · 10−10.
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6.2.1 Uncertainty analysis of the absolute refractometer

As explained in chapter 1 the optical displacement measured by the laser
interferometer is:

∆L = ∆(nLmech) =
∆φλv

4π
(6.12)

In practice the electronics of the interferometer measure a number of digitized
pulses and interpolate. As a result the formula can be written as:

∆L = ∆(nLmech) =
kλv

2R
(6.13)

where k is the number of measured counts, R is the resolution (64) of the
electronics board and the measurement is divided by a factor 2 since flat mirror
optics are used. For a changing refractive index this results in:

∆n = nair − nvac = n − 1 =
kλv

2RLmech
(6.14)

From this equation it can be seen that the uncertainty of the refractive index
of air measurement depends on the quality of the vacuum in the reference
chamber, the uncertainty of the interferometer electronics, the vacuum wave-
length of the interferometer and the mechanical path length of the block:

u(n − 1) =

√

√

∑

i

(

∂(∆n)

∂i

)2

u2(i), i = k, λv, Lmech (6.15)

The resolution of the laser interferometer system used is 5 nm (k/2R), as a result
the periodic deviations will be below the resolution. With a block length of
400 mm this results in a resolution of 1,23 ·10−8 in refractive index. Cuijpers [79]
estimated the uncertainty in counts due to drift, rest pressure in the reference
channel and temperature changes in the glass window of the refractometer to
be 2,4 counts. With a resolution R of 64 this results in an uncertainty of 2,97 ·10−8

in refractive index.
The wavelength stability of the laser is 2·10−8, on a wavelength of 632,991 nm

this results in an uncertainty of 1,27 ·10−14. This in turn results in an uncertainty
of refractive index of 5,7 · 10−12.

The mechanical path length of the block was measured using a coordinate
measuring machine with an uncertainty of 3,1 µm. The length during measure-
ment is influenced by mechanical expansion due to the forces applied on the
mirrors when applying a vacuum in the chambers and by thermal expansion of
the system. As already mentioned the effect of the forces is limited to an effect
of 4,2 · 10−10 in refractive index. The thermal expansion is compensated for us-
ing a thermistor measuring the temperature of the aluminum block, assuming
a homogeneous temperature. This thermistor was calibrated using the same
procedure as for the thermistors used for measurement of the air temperature
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for the empirical equations and had an uncertainty of 0,01 ◦C. The change in
mechanical length due to thermal expansion is calculated as follows:

Lmech = L20(1 + α(T − 20)) (6.16)

where L20 is the mechanical length at 20 ◦C, and α is the expansion coefficient
of the material. The uncertainty in thermal expansion is calculated as follows:

u(Lmech) =

√

(

∂Lmech

∂L20

)2

u2(L20) +

(

∂Lmech

∂T

)2

u2(T) (6.17a)

From this it follows that the uncertainty in compensation of thermal expansion
is 92 nm. So the uncertainty in expansion compensation and length change as
a result of pressure variations is magnitudes smaller than the uncertainty with
which the length is determined. The uncertainty of the effective block length
is 3,1 µm, resulting in an uncertainty in refractive index of 2,17 · 10−9. The total
expanded uncertainty of the absolute refractometer can now be calculated. The
result is shown in table 6.4.

Parameter Nominal value Uncertainty Uncertainty in n-1
Counts 23000 2,4 2,97 · 10−8

Vacuum wavelength 632,991 nm 1,27 · 10−14 5,7 · 10−12

Block length 0,400197 m 3,2 · 10−6 2,27 · 10−9

Total (k=2) 2,98 · 10−8

Table 6.4: Uncertainty of the block refractometer.

6.3 Tracker with improved uncertainty

The empirical equations are all based on the measurement of the refractive
index of air. Currently more applications of interferometers are running on
different surroundings. In order to measure the refractive index of the medium
in these systems a refractometer as described in the previous section can be
used. In this section a different kind of interferometer will be discussed of which
the theoretical uncertainty is smaller than the uncertainty of the refractometer
mentioned.

In chapter 4 a calibration setup was described enabling the measurement of
the optical path change in a cavity by means of frequency measurement:

∆ f

f
=
∆L

L
=
∆Lmech

Lmech
+
∆n

n
(6.18)

As already mentioned the optical path is the product of mechanical path length
and refractive index of the medium inside the cavity: L = n · Lmech. In the setup
described in chapter 4 a vacuum tube was placed to exclude the refractive index



6.3. TRACKER WITH IMPROVED UNCERTAINTY 103

of air and to measure a mechanical length change. If now the mechanical length
is kept constant the refractive index change can be measured as a frequency
change:

∆n

n
=
∆ f

f
(Lmech = constant) (6.19)

For this simplification the mechanical path length must be constant during
measurement. The mechanical path length is influenced by forces on the cavity
along with the thermal expansion of the cavity. In order to reduce the thermal
expansion a spacer was designed made of a material with a low expansion
coefficient. For this Zerodur was chosen, which is an amorphous material
exhibiting length change in time. An aged block was used of 10 years old so
that the slow length shrinking effect usually continuing over years is expected
to play a minor role [80].

The distance holder is a monolith made out of zerodur. The end faces are
parallel within 3,9 µrad, measured with the coordinate measuring machine.
The orientation of the cavity is chosen vertical, so the symmetry axis of the
thermal pattern and the mechanical construction will coincide, resulting in
better thermal behavior. A length of 130 mm was chosen to enable the use
with the current beat frequency measurement system. To attach the mirrors
of the cavity on the zerodur a mirror holder was designed. Since the length
of the cavity should remain stable during measurements of several hours it
was chosen to clamp the mirrors directly onto the zerodur. The mirror is
placed in the holder and pressed directly against the zerodur by pretensioning
with a rubber O-ring in vertical direction. In horizontal direction the mirror
is unconstrained. The zerodur rod is placed kinematically on a tilt adjustment
plate which can be aligned around two horizontal axes to provide the correct
alignment of the cavity around the beam. The design is shown in figure 6.3(a).

The mirrors are clamped to the zerodur and therefore can not be adjusted
in angle. To enable a standing wave inside the cavity a flat-concave mirror
configuration was chosen. Mirrors available from earlier experiments were
used (R=99,8%, radius 500 mm and R=99,8%, radius∞). To match the diode-
laser to the cavity a mode matching lens was used. The stabilization scheme of
the diode laser onto the cavity equals the scheme of the Fabry-Pérot as shown
in figure 4.1. Frequency modulated light of the diode laser enters the cavity
through the bottom. The light transmitted by the cavity falls onto a detector
of which the signal is analysed by a digital lock-in amplifier that uses the first
harmonic to create an error signal to stabilize the diode laser. The frequency of
the diode laser is beated against an iodine stabilized HeNe-laser and measured
using a frequency counter.

6.3.1 Uncertainty analysis of the tracker

The measured refractive index change (∆n) follows from the next equation:

∆n = n

(

∆Lmech

Lmech
−
∆ f

f

)

(6.20)
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Figure 6.3: Design and photograph of the Fabry Pérot tracker.

The uncertainty of the measured refractive index change can be calculated
using:

u(∆n) =

√

√

∑

i

(

∂(∆n)

∂i

)2

u2(i), i = n, L, f ,∆L,∆ f (6.21)

The uncertainty in the refractive index equals the uncertainty of the empiri-
cal equations (≈ 5 ·10−8). The absolute frequency uncertainty is the uncertainty
in the frequency of the iodine stabilized HeNe-laser (12 kHz). The beat fre-
quency can be measured with an uncertainty of 50 kHz. The cavity length is
determined using a coordinate measuring machine with uncertainty 2,4 µm for
a length of 131 mm. The length variations of the cavity during measurement
depend on the thermal expansion of the Zerodur and confocal mirror and ther-
mal gradients in the cavity. The uncertainty derived from this is 1 · 10−10. For
more information about the uncertainty analysis see Palmen [76]. The total un-
certainty of a relative measurement with the Fabry-Pérot tracker is summarized
in the table 6.5.

6.3.2 Frequency measurement

During measurements it became clear that the beat frequency which can be
measured continuously with the frequency counter is 1000 MHz. While the free
spectral range of the tracker was 1150 MHz. With use of a spectrum analyzer
a larger beat frequency could be measured enabling the tracking of the system
over several modes. However the resolution of the spectrum analyzer was
limited to 5 MHz resulting in a resolution of the tracker of 1 · 10−8. This is
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Parameter Nominal value Relative uncertainty Uncertainty in ∆n
n 1,000273 5 · 10−8 1 · 10−22

f 473,6 THz 12 · 103 Hz 1 · 10−16

L 131,197 mm 2,4 · 10−6 m 1 · 10−10

∆ f 240 MHz 50 · 103 Hz 8 · 10−10

∆L 2 · 10−10 m 1 · 10−10 m 3 · 10−14

Total 8 · 10−10

Table 6.5: Expanded uncertainty of a relative measurement with the Fabry-
Pérot tracker. n: absolute refractive index, f : frequency of the diode
laser, L: length of the cavity, ∆ f the frequency change, ∆L mechanical
length change of the cavity.

unacceptable for comparison measurements. Therefore the control loop was
based on measurements with the spectrum analyzer while the comparison was
carried out using the measurements of the frequency counter.

6.4 Comparison of refractometers

In order to compare the measurements of the three systems (empirical equa-
tions, absolute refractometer and tracker) the three systems were placed as
closely together as possible. The schematic diagram is shown in figure 6.4. All
three systems have to measure the same air in order to enable a comparison.
Therefore the tracker is placed in an isolating box. Two holes are in the box to
allow air flow and to allow the laser light to enter the tracker and exit towards
the detector necessary for stabilization.

The air is pumped through a tube towards the absolute refractometer after
which it exits to the laboratory space. In order to compare all three measure-
ment systems the air parameters, necessary for the empirical relations, are mea-
sured inside the system. The temperature is measured inside the isolation box,
to be compared with measurements of the tracker (T). Also the temperature
inside the absolute refractometer is measured at the inlet and outlet (Tr1 and
Tr3). A fourth thermistor is used to measure the temperature of the aluminum
refractometer block to compensate for linear expansion (Tr2). The pressure can
only be measured at a single place, so a trade off should be made. Since the
tracker system is the new system to be tested, the pressure is measured at the
isolation box (P). The humidity and carbon dioxide content are measured at the
end of the system because the pump is inside the carbon dioxide measurement
system and the flow meter is inside the humidity measurement system. If flow
is constricted it is reasonably to believe that the carbon dioxide content and
humidity of the total system are constant. Where possible large diameter tubes
are used and during measurement the valves in the circulation area are totally
opened.
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Figure 6.4: Schematic representation of the comparison setup. The measure-
ment instruments for Edlén’s comparison are schematically repre-
sented as T for temperature, p for pressure, f for humidity and CO2

for carbon dioxide. The thermistors used to monitor temperature
at the absolute refractometer are represented as Tr1 and Tr3 for air
temperature and Tr2 for the temperature of the aluminium block.

6.5 Measurement results

In this section some measurements conducted with the three measurement
systems are presented and discussed. First the effect of pumping is investigated,
followed by two comparison measurements over a time of 18 and 14 hours.
Finally the measurement results are discussed in detail.

6.5.1 Absolute refractometer versus Empirical equations

Measuring the same air by three systems is not trivial. Pumping of air intro-
duces pressure difference and therefore also refractive index differences. No
pumping would imply that different samples of air are measured. Experiments
conducted earlier by Schellekens [34, 39] showed the influence of pumping.
Some new testing revealed that after initiating a measurement (filling the mea-
surement path with air) an offset remained between the absolute refractometer
and the three empirical formula (see K in figure 6.5). The offset was 2 · 10−7 and
had a repeatability of 1 · 10−9 for five measurements. After applying a flow to
the air the change of the airflow results in a changing offset (see L in figure 6.5).
The pressure change in a cylindrical tube for a laminar flow (Re < 2300) can be
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Figure 6.5: Absolute refractive index change as a result of changes in air flow.
A: Absolute refractometer, B: Birch, C: Bönsch, D: Ciddor. A’: Abso-
lute refractometer-Birch, B’: Absolute refractometer-Bönsch, C’: Ab-
solute refractometer-Ciddor. K: Initialization, L: Flow connected,
M: Change of air flow, N: Change of air flow.

calculated using the Darcy-Weisbach equation [81]:

∆p = λd
l

d

1

2
ρ 〈v〉2 (6.22)

where λ =
64

Re

and Re =
dρ 〈v〉
ηair

(6.23)

here λd is the resistance factor, L is the length of the channel, d is the diameter of
the channel, ρ is the air density (1,29 kg m−3), 〈v〉 is the average velocity, Re is the
Reynoldsnumber and ηair is the dynamic viscosity of air (17·10−6 Pa s). The effect
of introduced flow changes and offset changes in measurements was clearly
visible (see M and N in figure 6.5). The air flow measured by the dewpoint
meter was 0,68 slpm (standard liter per minute). Since the diameter of the
measurement chamber of the dewpoint meter is unknown it was estimated that
the diameter equals the inlet diameter (4 mm). The length of the tube between
isolating box and absolute refractometer used also later in the comparison was
4 m with a diameter of 4 mm. The pressure drop resulting from this is 123 Pa
resembling an offset in refractive index of −3,3 · 10−7. Combined with the offset
of 2 · 10−7 before the air flow was applied, this would result in an offset of
−1,3 · 10−7, resembling the offset at point L in figure 6.5. The pressure changes
at points M and N in figure 6.5 were calculated to be 14 Pa, resembling an
offset in refractive index of 3 · 10−8. This is smaller than the measured offset.
However the offsets remaining are within the measurement uncertainties of
both systems.

The same test was conducted using a tube of 1 m length. In this measure-
ment the drop due to applying a flow of 0,69 slpm was 1,9 · 10−7 resulting in an
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eliminated offset. The calculated pressure drop is 31 Pa, resembling an offset
in refractive index of −8,3 · 10−8. Together with the initiation offset of 2 · 10−7

this results in a theoretical offset of 1,3 · 10−7. From the measurements it can be
concluded that the length and diameter of the tube are of influence on the offset.
However the theoretically calculated pressure drop alone cannot explain the
offset.

A second effect influencing the offset of the refractometer is correlation: if
pressure changes occur, also temperature and humidity will change which also
influence the refractive index. A better way to make a comparison would be
to measure the pressure inside the measurement chamber of the absolute re-
fractometer. For future comparisons of absolute refractive index this would be
necessary. Further an external pump with more constant flow would improve
the stability of measurements.

From the discussion above it may be concluded that the use of an absolute
refractometer is always a trade off. If the refractive index should be measured
with such a system a flow should be applied. However a flow introduces
a changed refractive index. Therefore if a remote system should be used to
measure absolute refractive index, for instance if no heat source can be applied
to the system in which measurement should take place, the flow of air should be
examined in more detail. To examine the uncertainty of the empirical functions
relative measurements can be used to compare the system with a refractometer.
If the uncertainty of the absolute determination of refractive index of air should
be examined a refractometer without air flow is to be preferred. In this case
we want to examine the feasibility of an absolute refractometer based on a
Fabry-Pérot cavity, therefore first a relative measurement system based on
the same principle; the tracker was examined. The results are shown and
discussed in the next section. Since the tracker is a relative measurement system
relative measurements of the empirical equations and absolute refractometer
are compared also.

6.5.2 Refractive index measurements

The results presented here were derived from measurements with the spec-
trum analyzer. This results in larger noise figures, but enables continuous
measurements. The standard deviations of the comparison were derived us-
ing the measurement results of the frequency counter with a limited range
(225 MHz-1000 MHz).

Comparison measurement over 18 hours

First a comparison measurement over 18 hours is presented. The air parameter
measurements are presented in figure 6.6. From this figure it can be seen that
the change in temperature inside the isolation box is limited, while the pressure
is changing. The resulting measurements of the absolute refractive index are
shown in figure 6.7(a). In this figure the offset of the absolute refractometer
becomes very clear. Further the trend of pressure change can be seen in the
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Figure 6.6: Air conditions during refractive index measurement (7-8 february).

refractive index variation. The tracker results are presented in this figure also,
even though the tracker only measures relative changes. The mean value of the
empirical equations of the first measurement was calculated and used to add
as an offset to the tracker results. It can be seen in this figure that, apart from
the offset of the absolute refractometer, the changes measured with all systems
coincide very well. To enlarge the differences between all four measurement
systems the relative measurements of the tracker were compared to the relative
measurements with the empirical equations and the relative measurements of
the absolute refractometer. In figure 6.7(b) the differences in measured relative
refractive index change are depicted.

In this figure all three empirical equations and the tracker measurements
coincide. The absolute refractometer differs slightly from these measurements.
The mentioned comparison of tracker, absolute refractometer and empirical
equations is carried out using the temperature measurement inside the isolation
box. The mean values of the offsets and the standard deviations are presented
in table 6.6.

In figure 6.8 the comparison of the absolute refractometer and empirical
equations is made using temperatures measured inside the absolute refractome-
ter (Tr1 and Tr3). Here the relative measurements of the absolute refractometer
and empirical equations do coincide (see figure 6.8(a)). From the comparison
of figures 6.7(b) and 6.8(a) it can be seen that even the relative measurements of
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Figure 6.7: Refractive index variation (7-8 february 2004).

Comparison Mean offset standard deviation
Tracker-Birch −4,0 · 10−9 1,1 · 10−8

Tracker-Bönsch −3,6 · 10−9 1,1 · 10−8

Tracker-Ciddor −3,4 · 10−9 1,2 · 10−8

Tracker-Absolute 1,43 · 10−8 1,2 · 10−8

Table 6.6: Mean offset and standard deviation of the relative measurements of
all four systems (7-8 february).

the absolute refractometer differ from those measured by the empirical equa-
tions in the isolating box. In figure 6.8(b) the temperature measurements of
the absolute refractometer are shown. In this figure it is clearly visible that
the temperature change of the outlet is smooth compared to the temperature
change in the inlet. This could be caused by some turbulence introduced when
air enters the measurement chamber. Based on the comparison discussed be-
fore it is concluded that the air is also conditioned by the aluminum tubes used
to connect the absolute refractometer with the manual valve. The offset in
absolute refractive index expected from the temperature difference between air
in the isolating box and in the refractometer (−0,05◦) is 5 · 10−8. The calculated
offset in refractive index, resulting from a pressure drop over a tube of 4 meters
length and a diameter of 4 mm, is 3,3 · 10−7 for an air flow of 0,68 slpm. From
the measurements shown in figure 6.5 and discussed in section 6.5.1 it is known
that without flow the refractive index offset is 2 · 10−7, resulting in a refractive
index offset of −1,3 · 10−7 with flow. With a refractive index offset of 5 · 10−8 as
a result of temperature difference between isolating box and absolute refrac-
tometer this would result in a refractive index offset of −0,8 · 10−7, while the
measured refractive index offset is −2,2 · 10−7. This indicates that not only the
pressure difference and temperature difference influence the offset. The noise
in the difference of the relative measurements is partly caused by the resolution
of the spectrum analyzer. Part of the noise also results from time differences in
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Figure 6.8: Difference in relative refractive index variation in absolute refrac-
tometer (7-8 february).

the measurements. Effort was made to read out all systems together as close as
possible.

Comparison measurement over 14 hours

A second measurement was carried out over 14 hours of which the results will
be discussed now. In figure 6.9 the air parameter measurements are shown.
From these measurements it can be seen that pressure change is limited, and
temperature change is larger compared to the measurement over 18 hours.

In figure 6.10(a) the measured absolute refractive index is presented. Due to
the small changes in air parameters also the measured absolute refractive index
change is limited during this measurement. Again the offset of the absolute
refractometer compared to the other measurement systems is clearly visible.
But also after 1 hour a difference between empirical equations and tracker
becomes visible. Since the absolute refractive index can not be measured using
the tracker the relative difference is presented in figure 6.10(b). Comparing this
figure with the temperature measurement inside the isolation box (see figure
6.9) the trend is equal. However the cause of the difference in measurement
between tracker and four other methods cannot be found from this figure.
Comparing the measurement of the absolute refractometer with the tracker (to
which the initial absolute refractive index is added) and empirical equations in
figure 6.10(a) it can be seen that the temperature dip at 6,5 hours is clearly visible
as a refractive index peak in the measurements of the absolute refractometer
and empirical equations (region B in figure 6.10(a)). However the peak is absent
in the tracker measurement. While in the first half hour the tracker registers a
large variation compared to the absolute refractometer and empirical equations
(region A in figure 6.10(a)).

In figure 6.11 the difference between the refractive index changes measured
by the absolute refractometer and derived with the empirical equations are
shown. In this figure the comparisons of the absolute refractometer with Bönsch
and Ciddor coincide, while the comparison of the absolute refractometer with
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Figure 6.9: Air conditions during refractive index measurement (17-18 febru-
ary).

the values of Birch are different, however closer to zero. From table 6.1 it follows
that the major difference between these equations is the compensation for
carbon dioxide which is not included by the equation of Birch. Further a small
difference in the sensitivities for humidity exists. Examination of the difference
between the comparison with Birch and the comparisons with Bönsch and
Ciddor reveals exactly the shape of the carbon dioxide measurement. This
indicates that the difference in humidity factor is negligible, and carbon dioxide
compensation by Ciddor and Bönsch increases the difference.

In table 6.7 the mean offsets and standard deviations of this measurement
are presented.

Comparison Mean offset standard deviation
Tracker-Birch −6,3 · 10−8 2,1 · 10−8

Tracker-Bönsch −4,9 · 10−8 1,8 · 10−8

Tracker-Ciddor −4,9 · 10−8 1,8 · 10−8

Tracker-Absolute −4,2 · 10−8 2,1 · 10−8

Table 6.7: Mean offset and standard deviation of the relative measurements of
all four systems (17-18 february).

In figure 6.11(b) the temperature registration of the absolute refractometer
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∆nTracker − ∆nCiddor
∆nTracker − ∆nabsolute

(b) Relative

Figure 6.10: Refractive index variation (17-18 february). A and B are regions of
special interest which are discussed in detail.

is presented. From this figure it can be seen that the temperature of the outlet
is higher than the temperature of the inlet. Also here the outlet temperature
is more smooth than the inlet temperature. Further the temperature of the
aluminum block is higher than the temperature of the air. The averaged tem-
perature difference of air inside the absolute refractometer compared with air
in the isolation box is 0,01◦, producing a refractive index offset of 1 · 10−8. The
refractive index offset resulting from the pressure drop due to the tube resis-
tance as indicated before is −1,3 · 10−7, resulting in a total refractive index offset
of −1,2 · 10−7 while the measured refractive index offset is −1,6 · 10−7.
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Figure 6.11: Relative refractive index variation in absolute refractometer (17-18
february).

6.5.3 Discussion

From the first comparison measurement it can be concluded that the tracker
registers pressure changes accurately. In the second measurement the temper-
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ature changes seem to have an extra effect on the tracker. This is also seen in
the increased offset and standard deviation shown in tables 6.6 and 6.7. The
same effect was found by Eickhoff and Hall [42]. They ascribe this to adsorp-
tion of water in the mirrors which were not dielectrically coated. However we
use mirrors which are dielectrically coated, and the effect should therefore be
minimized. Another possibility is that the effect is caused by relaxation of the
Zerodur material after temperature changes of the surrounding. In order to
investigate this, three temperature sensors were mounted on the Zerodur rod
in different places, at the top, the middle and at the bottom. Even though the
sensors were shielded from the air and effort was made to minimize influence
of air temperature on the lead wires (as described by Ruijl [3]) the influence
of the environment remained visible in the temperature measurements. Fur-
ther the exact expansion coefficient was unknown. To improve measurements
it would therefore be wise to conduct some measurements on the expansion
coefficient and time constant of the Zerodur used. Further the temperature
measurement of Zerodur should be improved. This could be done by drilling
a hole in the Zerodur and inserting the temperature sensors in the hole, using
thermally conductive paste.

It was tried to explain the offset of the absolute refractometer and the empiri-
cal equations by a temperature difference and a pressure difference due to the
tubes used to connect the measurement chamber of the empirical equations
and the absolute refractometer. The results are summarized in table 6.8. From

7-8 Feb 17-18 Feb 4 m tube 1 m tube
Offset without flow 2 · 10−7 2 · 10−7 2 · 10−7 2 · 10−7

Calculated (T) 5 · 10−8 1 · 10−8 0 0
Calculated (P) −3,3 · 10−7 −3,3 · 10−7 −3,3 · 10−7 −8,3 · 10−8

Total calculated −0,8 · 10−7 −1,2 · 10−7 −1,3 · 10−7 1,2 · 10−7

Measurement −2,2 · 10−7 −1,6 · 10−7 −1,6 · 10−7 2 · 10−8

Table 6.8: Calculated and measured offset of absolute refractometer and em-
pirical equations due to tubes used. In the measurement with the
4 m tube and the 1 m tube the temperature was measured inside the
absolute refractometer and no offset was present.

this table it can be seen that the measurements with different tube lengths (4 m
tube and 1 m tube) indicate a dependency of the offset on pressure drop. From
the Darcy-Weisbach equation 6.22 it is known that the calculated offset depends
to the fourth order on the tube diameter. Unfortunately with this setup it was
not possible to test the difference in tube diameter and a tube diameter of 4 mm
was used. From the 4 m tube comparison together with the comparison of
17-18 February the calculation is in reasonable agreement with the measure-
ments. Especially when taking into account that the measurement consists of
the difference between the refractometer measurement with an uncertainty of
3·10−8 and the empirical equation measurement with an uncertainty of 3,6·10−8.
However the comparisons of the calculated and measured offsets of the ”1 m
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tube” and of ”7-8 February” measurements indicate a very large difference.
Therefore it is concluded that the offset depends partially on a pressure drop
due to friction in the tubes used, and the temperature offsets. If the use of an
absolute refractometer is desired it is best used at the place of interest. If this is
not possible and tubes have to be used, preferably large diameter tubes should
be used and additional research is necessary to understand the influence of a
flow in these kind of measurements exactly.

6.6 Conclusions

In this chapter three measurement setups were discussed and compared. One
setup was based on empirical relations together with measurements of the
four important parameters of air (temperature, pressure, humidity and CO2

content). Another setup was based on the absolute refractive index of air mea-
surement using a commercial heterodyne interferometer. Finally a new system
was developed to measure the changes of refractive index with an improved
uncertainty. A comparison, made between all three most used empirical equa-
tions with the absolute refractometer, revealed the influence of an air flow in
the system. As a result the refractive index of air measured with such an abso-
lute system will always have an offset compared to the air to be measured in a
stable system. The offset can be tuned using the empirical equations, however
no improved measurements of absolute refractive index will result from this.
The advantage of such an absolute refractometer system is that it will measure
changes of refractive index also if a medium different than air is used.

Theoretically a system based on a Fabry-Pérot cavity would result in a
smaller measurement uncertainty and improved resolution. Such a system
was developed for relative measurements where an uncertainty of 8 ·10−10 was
calculated. Since no other system is available with such a small uncertainty it
could only be compared to the previously mentioned systems. This revealed
some unexpected measurements resulting from temperature changes which
cannot be explained yet. However the expectation is that such a system, when
adapted for absolute measurements, would improve the absolute measurement
of the refractive index.

Some extra research is recommended to improve understanding of refrac-
tometry. First the effect of a flow on the measured refractive index with the
absolute refractometer should be examined in more detail. From measurements
conducted on the absolute refractometer and the empirical equations with dif-
ferent tube length clearly the influence of the tube was found. A tube of 1 meter
length reduced the offset between absolute refractometer and empirical equa-
tions, however from theory of temperature difference and pressure drop this
could not be calculated. Since an absolute refractometer enables the measure-
ment of influences of other gases than carbon dioxide it is unwanted to tune
an absolute refractometer to the offset of the empirical equations. Therefore it
is recommended to study the influence of flow on refractive index measure-
ment separately. Further the effect of temperature changes on a zerodur cavity
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should be examined in detail. Also the measurement of temperature of zero-
dur material should be investigated in more detail to enable a compensation of
thermal expansion.



Chapter 7

Conclusions and
recommendations

Displacement laser interferometers are used widely as precision displacement
measuring systems. Most interferometer systems use polarizing optics and
as a result of alignment errors of the optics and polarization errors in the op-
tics polarization mixing will occur. Polarization mixing will result in contrast
errors when homodyne interferometers are used, or frequency mixing when
heterodyne interferometers are used. Both result in periodic deviations in the
measurement. In industrial environments this can lead to production errors
in the case of new generation waferscanners or to positioning errors in sys-
tems which use interferometers in their control loop. In this thesis the origin
of periodic deviations was investigated in more detail in order to bring the
accuracy of laser interferometer systems to the (sub-)nanometer level. Due
to the high costs of vacuum technique mostly air is preferred as the medium
through which the light is transported. In order to improve the accuracy of
laser interferometer systems working in air the refractive index of air has to be
measured with an uncertainty less than 2·10−8. Therefore in this thesis also the
measurement of the refractive index of air was investigated and systems for
accuracy improvements were developed.

7.1 Periodic deviations

In order to investigate the effect of periodic deviations two models were devel-
oped. First an analytical model was made enabling the prediction of periodic
deviations resulting from alignment errors and polarization errors of the light
emitted by the laser head. This model was compared to literature where partial
error sources were investigated and modeled. From this model it followed that
interaction of periodic deviations exists and a simplification of the system by
means of superposition is not alowed.

The number of different optical configurations used with interferometers is
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enormous. Since the derivation of an analytical equation is time consuming
a Jones model was presented also. The Jones model enables the prediction of
periodic deviations resulting from a combination of sources in a heterodyne
interferometer. The advantage is that this model is modular, therefore it enables
a quick change of optical setup. Further it enables the input of Jones matrices
representing the polarization properties of the optics used in the interferometer.

With use of the Jones model it was shown that interaction of periodic de-
viations exists and therefore the superposition principle does not hold: all
possible causes of periodic deviations should be considered at once to enable
an accurate prediction of the periodic deviations present in the interferometer.

Further the effect of contra-rotating ellipticity compared to equal rotating
ellipticity of light emerging from the laser head was shown with use of the Jones
model. From this it was concluded that a contra-rotating ellipticity exhibits an
inherent compensation of periodic deviations.

In order to enable the incorporation of polarization properties of compo-
nents used in interferometers, different measurement setups were discussed to
measure such properties for heterodyne interferometers. In order to measure
the polarization properties of the laser head two new methods were discussed
to measure non-orthogonality and ellipticity of a heterodyne laser head. Both
methods were compared to each other. From measurements it was appeared
that the ellipticity varied over time and was different for different laser heads.
However since the ellipticity proved to be contra-rotating the effect remained
below 0,02 nm for all three laser heads measured. From the measurements it
was also concluded that the non-orthogonality could be determined with an
uncertainty of 0,05◦. These measurements in combination with the Jones model
revealed that the influence of the non-orthogonality on periodic deviations was
significant within the nanometer region.

To measure the polarization properties of optical components null ellip-
sometry was used. A drawback of the method is that only optics with defined
main optical axis can be measured. So a combination of interferometer optics,
like a polarizing beam splitter in combination with a quarter wave plate can
not be usefully measured with null ellipsometry. From measurements with
this method the quality difference between old and new optics could clearly be
distinguished.

From the measurements in combination with the Jones model it was con-
cluded that a misalignment of non-ideal interferometer optics can reduce the
periodic deviations present in the system.

With use of the measurements of polarization properties of optics and laser
head in combination with the Jones model the periodic deviations resulting in
a complete laser interferometer can now be predicted. To examine the correct-
ness of the predicted periodic deviations, for two different systems they were
compared to a measurement with a traceable measurement system based on a
Fabry-Pérot cavity. The calculated uncertainty of this system was 0,89 nm over
a range of 1 µm, and 0,94 nm over the maximum range of 300µm, mainly due to
temperature effects. The standard deviations of the measurements compared
to the predictions of the model were below 0,14 nm for small periodic devia-
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tions and 0,3 nm for large periodic deviations. From this it can be concluded
that the model predicts the periodic deviations rather well. Therefore it is
concluded that the Jones model in combination with the measurement results
of the polarization property measurements is a practical tool for designers of
interferometer systems and optical components. This tool enables the designer
to choose right components and alignment tolerances for a practical setup with
certain specifications about periodic deviations.

The uncertainty of the traceable calibration system is rather large compared
to the amplitude of the periodic deviations measured with the system. In order
to reduce the uncertainty of the calibration system a new system was designed
and built. The calculated uncertainty of this system is 0,26 nm over a range
of 1 µm, and 0,40 nm over the maximum range of 6 µm. Drift measurements
showed an improvement of the system compared to the earlier developed
system.

Sometimes in applications no new components can be used, or from cost
perspective it is undesired to spend more effort on alignment. In these cases it is
more efficient to compensate the periodic deviations of the system. In this thesis
one compensation method based on two measurement receivers mentioned
earlier in literature was tested. This compensation method appeared only
to work with heterodyne interferometers which emit equal rotating elliptical
polarized light.

In homodyne interferometry the Heydemann compensation is frequently
used to compensate for periodic deviations. Therefore a new method was
tested based on phase sensitive detection of a heterodyne interferometer in
combination with the Heydemann algorithm. It was tested on several setups,
of which one was the traceable calibration setup. In setups where only minor
ghost reflections were present, or absent at all, the method could compensate
periodic deviations with an uncertainty of 5,3 nm to a measurement signal
with a standard deviation of 0,2 nm. This clearly indicates the potential of this
compensation method. Due to the current electronics the compensation can be
done only in a quasi-static environment.

7.2 Refractive index of air

For large displacements in air the periodic errors become overshadowed by the
effect of refractive index. In this thesis three methods of measuring the refrac-
tive index of air were compared. One method was based on the measurement
of air temperature, pressure, humidity and carbon dioxide content in combina-
tion with empirically derived equations as presented in literature. The second
method was based on a refractometer in combination with a commercial laser
interferometer. From comparison between these systems the influence of air
flow became visible. It was concluded that in systems where refractometry
was necessary, the refractive index should be determined at the same location
as where interferometric measurements are taken. The third method to mea-
sure the refractive index of air was to measure with a Fabry-Pérot cavity the
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change of optical path length while keeping the mechanical path length con-
stant. Such a system was designed and built in the form of a relative refractive
index measurement system. Changes of refractive index can be measured with
a calculated uncertainty of 8 · 10−10. From comparisons with this system it
was concluded that the realization of an absolute refractometer based on this
principle can improve measurement uncertainty.

7.3 Recommendations

Based on the measurements and analysis described in this thesis also some
recommendations can be made. From the measurements conducted on the
polarization of light emitted by commercial laser heads it appears that the
ellipticity changes in time. Three systems were measured which indicated a
large difference in ellipticity and non-orthogonality for these lasers. Further
measurements are recommended to investigate the upper and lower limits of
ellipticity and non-orthogonality in commercial lasers.

Further the newly developed Fabry-Pérot cavity should be tested more
extensively. In order to do this a beat frequency detector with a range of 8 GHz
should be bought. Further it would be interesting to investigate and imply the
Pound-Drever-Hall technique to reduce measurement uncertainty even further.

Based on the analysis of the phase quadrature compensation method and
the resulting potential of the method it is recommended that the method should
be developed further to enable a real-time compensation in the system.

From measurements with the compensation method on a probe calibration
setup, based on a flat mirror interferometer, it appeared that periodic deviations
resulting from ghost reflections could not be compensated. This could be
explained if ghost reflections manifest themselves as a non-uniform distribution
on the S0 − S90 circle. It is recommended to investigate the influence of ghost
reflections further. Of course ghost reflections should be avoided as much
as possible in high-accuracy measurements, for example by the use of anti-
reflection coatings. However some optical setups inhibit ghost reflections as a
result of the use of plate optics resulting in small extra cavities in the optical
configuration. Therefore it is recommended to include the existence of ghost
reflections into the Jones model also.

Regarding the refractive index of air, the influence of air flow effects on the
refractive index should be investigated in more detail. In the case a refractome-
ter should be used to measure the effect of the environmental refractive index
a gas flow is unavoidable. In order to compensate the effect correctly it must
be known in great detail.

Also regarding the refractive index of air the influence of temperature
changes on the Zerodur cavity should be investigated in more detail. Therefore
the measurement uncertainty of the material temperature of Zerodur should
be improved. From the measurements it appeared that there was some relax-
ation effect of the Zerodur. Since a diode laser is used nowadays, this could
be investigated with a smaller cavity of the same design. For the large cavity
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the expansion coefficient of the Zerodur cavity should be measured to improve
measurement uncertainty. Finally to enable an absolute measurement of re-
fractive index with improved uncertainty the cavity should be changed into an
absolute refractive index measurement setup. This can be done by placing the
tracker in a vacuum, or by moving in a vacuum tube during measurement.
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Appendix A

List of symbols

Terminology

Laser head System consisting of the laser source, conditioning optics and ref-
erence receiver.

Receiver AC-detector combined with a polarizer and electronics specially de-
signed for measurements with a laser interferometer.

Abbreviations and Acronyms

AOM Acousto optic modulator
BFM Beat frequency measurement
BM Bending mirror
BS Babinet-Soleil compensator
CCGM Comité consultatif pour la définition du mètre
CF Carrier frequency method
CO2 Carbon dioxide
FSR Free spectral range
GPIB General purpose interface bus
LC Liquid crystal
NMi Dutch national metrology institute
NPBS Non-polarizing beam splitter
PBS Polarizing beam splitter
PTB Physikalisch-Technischen Bundesanstalt
QWP Quarter wave plate
RF Radio frequency
RRF Retro reflector
RTD Resistance temperature detector
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slpm Standard liter per minute
SAW Surface acoustic waves
VIM Vocabulaire International des termes fondamentaux et généraux

de métrologie

Symbols

Latin symbols:

symbol description unit

A Azimuth angle of analyzer rad
A0 Amplitude attenuation of the entire optical system -
Ad Constant from the equation of Giacomo and Davis K−2

APBSx Leakage of the polarizing beam splitter in transmission
direction -

APBSy Leakage of the polarizing beam splitter in reference direction -
AR Calibration constant of an RTD sensor ◦C
AT Calibration constant of a thermistor K−1

Av Averaged output m
AWPx Transmission coefficient of a wave plate in x-direction -
AWPy Transmission coefficient of a wave plate in y-direction -
AxM

Reflection coefficient of the retro reflector in x-direction -
AyM

Reflection coefficient of the retro reflector in y-direction -
Bd Constant from the equation of Giacomo and Davis K−1

BR Calibration constant of an RTD sensor ◦C Ω−1

BT Calibration constant of a thermistor K−1

c Speed of light m s−1

C Azimuth angle of compensator rad
Cd Constant from the equation of Giacomo and Davis -
CR Calibration constant of an RTD sensor ◦C Ω−2

CT Calibration constant of a thermistor K−1

d Diameter of the tube m
Dd Constant from the equation of Giacomo and Davis K
DT,p Density of the gas kg m−3

DR Calibration constant of an RTD sensor ◦C Ω−3

DT Calibration constant of a thermistor K−1

~e1 Unit vector -
~e2 Unit vector -
~E1 E-field vector emerging from laser head with frequency f1 -
~E2 E-field vector emerging from laser head with frequency f2 -
E01 Amplitude of E-field emerged from laser with frequency f1 kg m s−3 A−1

E02 Amplitude of E-field emerged from laser with frequency f2 kg m s−3 A−1

E03 Amplitude of E-field emerged from laser with frequency f3 kg m s−3 A−1

EM1 Amplitude of major axis E-field emerged from laser
with frequency f1 kg m s−3 A−1
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symbol description unit

EM2 Amplitude of major axis E-field emerged from laser
with frequency f2 kg m s−3 A−1

Em1 Amplitude of minor axis E-field emerged from laser
with frequency f1 kg m s−3 A−1

Em2 Amplitude of minor axis E-field emerged from laser
with frequency f2 kg m s−3 A−1

Ep1 Arbitrary amplitude E-field emerged from laser
with frequency f1 kg m s−3 A−1

Ep2 Arbitrary amplitude E-field emerged from laser
with frequency f2 kg m s−3 A−1

~E f 1 Resulting E-field of frequency 1 passing
through the interferometer -

Er Amplitude of E-field in reference arm kg m s−3 A−1

ER Calibration constant of an RTD sensor ◦C Ω−4

~Ere f Electric field vector in the reference arm -
~Er f 1 Resulting E-field of frequency 1 after passing

through reference arm -
~Er f 2 Resulting E-field of frequency 2 after passing

through reference arm -
Em Amplitude of E-field in measurement arm kg m s−3 A−1

~Emeas Electric field vector in the measurement arm -
Ex E-field emerging from beam splitter in x-direction

after passing of interferometer optics kg m s−3 A−1

Ey E-field emerging from beam splitter in y-direction
after passing of interferometer optics kg m s−3 A−1

f Resonator frequency Hz
fw Partial water vapour pressure Pa
f1 Frequency emerging from the laser Hz
f2 Frequency emerging from the laser Hz
f3 Frequency emerging from the laser Hz
I Irradiance W m−2

I0 Intensity W m−2

Ir Reference signal V
Ire f Reference signal V
Im Measurement signal V
Imeas Measurement signal V
~k Propagation vector -
k Propagation constant m−1

k Mode number -
Kλ Dispersion of the gas -
l Length of the tube m
L Optical path length m
L20 Mechanical length at 20◦ m
Lcav Cavity length, small Fabry-Prot cavity m
Lmech Mechanical length m
∆L Change in optical path length m
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symbol description unit

∆Lmech Change in mechanical length m
Mos Jones matrix of optical system -
n Refractive index -
nair Refractive index of air -
n⊥ Refractive index Babinet-Soleil compensator -
n‖ Refractive index Babinet-Soleil compensator -
nvac Refractive index of vacuum -
P Azimuth angle of polarizer rad
Psupply Power supplied to thermistor by an electrical circuit W
Plost Energy lost to surroundings W
Psel f heating Thermal energy absorbed by the thermistor W
P1 Amplitude ratio of amplitudes of major and minor axis

of the ellipse of polarization of frequency f1 -
P2 Amplitude ratio of amplitudes of major and minor axis

of the ellipse of polarization of frequency f2 -
P1 Polarizer angle in first ellipsometric zone rad
P2 Polarizer angle in second ellipsometric zone rad
P3 Polarizer angle in third ellipsometric zone rad
P4 Polarizer angle in fourth ellipsometric zone rad
PBSr Jones matrix for the reference arm of the

polarizing beam splitter -
PBSt Jones matrix for the transmission arm of the

polarizing beam splitter -
r Ellipticity of phase quadrature signals -
rr Coordinate along the propagation axis in reference arm m
rm Coordinate along the propagation axis in measurement arm m
R(α) Rotation matrix around angle α -
R Amplitude of phase quadrature signals V
R Resolution of the electronics board -
Re Reynodsnumber -
R1 Measurement output with receiver 1 m
R2 Measurement output with receiver 2 m
R̄ Mean value of amplitudes m
RRTD Measured resistance of a RTD sensor at a certain temperatureΩ
Rtherm Measured resistance of a thermistor at a certain temperature Ω
s(R) Standard deviation of the amplitude V
S0 Ideal phase quadrature signal V
S90 Ideal phase quadrature signal V

S0
nl Phase quadrature signal of signal with periodic deviations V

S90
nl Phase quadrature signal of signal with periodic deviations V

t Time s
T Temperature of the surrounding environment ◦C
T0 Amplitude difference between the ordinary and

extraordinary polarization -
TC Amplitude attenuations of the two polarization directions

of the compensator -
Td Dewpoint temperature K
TRTD Temperature of an RTD sensor ◦C
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symbol description unit

∆T Temperature change during measurement ◦C
u Uncertainty
u(∆φ) Uncertainty of phase quadrature measurements derived

from amplitude variation m
ucorr Uncertainty of the compensated measurements m
umeas Uncertainty of the uncompensated measurements m
ueq Uncertainty derived from amplitude variation m
〈v〉 Average velocity of air m s−1

v Movement velocity of measurement mirror m s−1

vl Speed of light in air m s−1

x0 Offset of phase quadrature signal V
x1 Abbreviation of 2ω f1t + φ01 -
x2 Abbreviation of 2ω f2t + φ02 -
y0 Offset of phase quadrature signal V

Greek symbols:

symbol description unit

α Rotation angle of E-field with frequency f2 emitted by laser
referred to beam splitter y-axis rad

αl Phase deviation from phase quadrature rad
αPBS Rotation angle of the beam splitter rad
αP Rotation angle between fast axis polarizer and π

4
rad

αp Rotation angle fast axis polarizer compared to major axis E1 rad
β Rotation angle of E-field with frequency f1 emitted by laser

referred to beam splitter x-axis rad
φ01 Initial phase of E-field emerged by laser with frequency f1 rad
φ1 Phase retardance resulting from passing in reference arm rad
φ02 Initial phase of E-field emerged by laser with frequency f2 rad
φ2 Phase retardance resulting from passing measurement arm rad
φBS Phase shift introduced by Babinet Soleil Compensator rad
φr Phase in the reference arm rad
φre f Phase in the reference arm rad
φm Phase in the measurement arm rad
φmeas Phase in the measurement arm rad
dε1 Ellipticity of E-field with frequency f1 rad
dε2 Ellipticity of E-field with frequency f2 rad
ηair Dynamic viscosity of air Pa s
dη1 Non-orthogonality angle of E-field with frequency 1 rad
dη2 Non-orthogonality angle of E-field with frequency 2 rad
δ0 Phase retardation between the ordinary and extraordinary

polarization rad
∆ Ellipsometric angle rad
∆φ Phase shift due to a movement of the measurement mirror rad
∆φpd Portion of the measured phase representing the

periodic deviation rad
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symbol description unit

∆C Relative phase retardation between two polarization
directions of the compensator rad

∆d Effective optical thickness of the Babinet-Soleil compensator m
∆ f Frequency shift Hz
∆z Displacement of measurement mirror m
λ Wavelength of light m
λd Resistance factor -
λvac Vacuum wavelength of light m
λ⊥0 Vacuum wavelength of light trough BS m
λ‖0 Vacuum wavelength of light trough BS m
Ψ Ellipsometric angle rad
θ Rotation angle between fast axis polarizer and π

4

relative to beam splitter rad
ω Angular frequency s−1

ρ Air density kg m−3

ξ Transmission coefficient of interferometer in y-direction -
χ Transmission coefficient of interferometer in x-direction -
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Babinet-Soleil compensator

In this appendix the principle of the Babinet-Soleil compensator is explained.
The Babinet-Soleil compensator consists of two sections of quartz: a section
with variable thickness and a section with fixed thickness as shown in figure
B.1. One section consists of two wedges that slide with respect to each other
with parallel optical axes. The second section consists of a single slab with its
optic axis orthogonal to that of the wedges. For the Babinet-Soleil compensator
the phase retardation becomes [45]:

∆φBS = 2π

∣

∣

∣

∣

∣

n⊥
λ⊥0
−

n‖
λ‖0

∣

∣

∣

∣

∣

∆d (B.1)

where λ⊥0 and λ‖0 are the vacuum wavelengths of both polarization states, n⊥
and n‖ are the refractive indices for both polarization arms and ∆d = d1 − d2

represents the thickness difference between both quartz sections.

d1 d2 d1 d2

Figure B.1: Schematical representation of the principle of a Babinet-Soleil com-
pensator.

This Babinet-Soleil compensator can be used as a variable retarder when placed
in an angle of 45◦ with respect to the polarization axes of light. When placed
at an angle of 0◦ in front of a laser interferometer it can be used to produce a
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phase shift between two orthogonal polarized beams. This results in a virtual
interferometer where measurement arm and reference arm coincide. As a result
of this common path the changes in refractive index of air are canceled out and
the noise is reduced also.

B.1 Calibration of the Babinet Soleil compensator

In order to align the Babinet Soleil Compensator to the heterodyne interferom-
eter two polarizers are used as shown in figure B.2.

1. First the orientation of polarizer 1 has to be aligned to one of the laser
frequencies. This is done omitting the Babinet-Soleil compensator and
polarizer 2 and using an AC-detector. The polarizer is tuned by minimiz-
ing the beat frequency.

2. Next polarizer 2 is placed in the setup and the AC-detector replaced by
a DC power detector. By rotating polarizer 2 the intensity signal on the
power detector is minimized. At this time both polarizers are under 90◦.

3. For the next step the Babinet-Soleil compensator is placed between the
two polarizers. The retardance of the compensator is set to a certain
value (not being 0). If the angle of the compensator differs from the
angle of polarizer 1 the light behind the Babinet-Soleil compensator will
be elliptically polarized and hence some light will be transmitted by
polarizer 2. With this information the rotation angle of the Babinet-Soleil
compensator can be calibrated.

4. The retardance of the Babinet-Soleil compensator can be calibrated at
discrete steps of λ

2 . For the steps of kλ (k = 0, 1, 2,...) polarizer 2 is set
orthogonal to polarizer 1, and the rotation angle of the Babinet Soleil
compensator is set to 45◦. Every minimum in DC intensity stands for a
retardation of λ. For the steps of (k + 1

2 )λ (k = 0, 1, 2,...) polarizer 2 is set
parallel to polarizer 1. Every minimum corresponds to a retardation of
λ
2 .
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Figure B.2: Schematical representation of the setup for the alignment of the
Babinet Soleil compensator with the laser interferometer. In gray
the laser polarization directions are shown. The arrows in black
on top of the components define the orientation of the components
around the optical axis.
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Appendix C

Verification of the Jones
model

In this appendix two cases are described in the Jones model to verify it mathe-
matically. First the non-linearity is calculated resulting of an elliptical polarized
beam in combination with a further ideal interferometer. This is the case de-
scribed by Hou and Wilkening [17], also used to verify the analytical model
(equation 2.17). The second case is the non-linearity resulting from a rotated
beam splitter in combination with a further ideal interferometer. This case
was described by Player and De Freitas [18] and was also used to verify the
analytical formula (equation 2.18).

C.1 Effect of an elliptical polarized beam

In this section the non-linearity as a result of an ideal interferometer with one
elliptical polarized beam will be modeled using the modular model. It will be
shown that with this model also formula 2.17 can be derived. The Jones vectors
representing the elliptical polarized laser beam E1 and ideal polarized beam E2

are:

~E1 =

[

cos(dε1)
−i ∗ sin(dε1)

]

ei(2π f1t+φ01) (C.1a)

~E2 =

[

0
1

]

ei(2π f2t+φ02) (C.1b)

The reference and measurement matrices for the ideal polarizing beam splitter
are:

PBSt =

[

0 0
0 1

]

(C.2a)
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PBSr =

[

1 0
0 0

]

(C.2b)

The reference retroreflector (RRF) and measurement retroreflector (MRRF) are
represented by:

RRF =

[

−1 0
0 −1

]

(C.3a)

MRRF =

[

−ei∗∆φ 0
0 −ei∗∆φ

]

(C.3b)

The electromagnetic field of the beam with frequency f1 traveling through the
reference arm is calculated as follows:

~Er f1 = PBSr ∗ RRF ∗ PBSr ∗ ~E1

=

[

1 0
0 0

]

∗
[

−1 0
0 −1

]

∗
[

1 0
0 0

]

∗
[

cos(dε1)
−i ∗ sin(dε1)

]

ei(2π f1t+φ01)

=

[

− cos(dε1)
0

]

ei(2π f1t+φ01) (C.4)

The electromagnetic field of the beam with frequency f1 traveling through the
measurement arm is calculated as follows:

~Em f1 = PBSt ∗MRRF ∗ PBSt ∗ ~E1

=

[

0 0
0 1

]

∗
[

−ei∆φ 0
0 −ei∆φ

]

∗
[

0 0
0 1

]

∗
[

cos(dε1)
−i ∗ sin(dε1) ∗ ei∆φ

]

ei(2π f1t+φ01)

=

[

0
i ∗ sin(dε1) ∗ ei∆φ

]

ei(2π f1t+φ01) (C.5)

So the total electromagnetic field with frequency f1 coming out of the beam
splitter is represented as:

~EBS1 = ~Er f1 +
~Em f1

=

[

− cos(dε1)
i ∗ sin(dε1) ∗ ei∆φ

]

ei(2π f1t+φ01) (C.6)

The electromagnetic field of the beam with frequency f2 traveling through the
reference arm is calculated as follows:

~Er f2 = PBSr ∗ RRF ∗ PBSr ∗ ~E2

=

[

1 0
0 0

]

∗
[

−1 0
0 −1

]

∗
[

1 0
0 0

]

∗
[

0
1

]

ei(2π f2t+φ02)

=

[

0
0

]

ei(2π f2t+φ02) (C.7)



C.1. EFFECT OF AN ELLIPTICAL POLARIZED BEAM 143

The electromagnetic field of the beam with frequency f2 traveling through the
measurement arm is calculated as follows:

~Em f2 = PBSt ∗MRRF ∗ PBSt ∗ ~E2

=

[

0 0
0 1

]

∗
[

−ei∆φ 0
0 −ei∆φ

]

∗
[

0 0
0 1

]

∗
[

0
1

]

ei(2π f2t+φ02)

=

[

0
−ei∆φ

]

ei(2π f2t+φ02) (C.8)

So the total electromagnetic field with frequency f2 emerging from the beam
splitter is represented as:

~EBS2 = ~Er f2 +
~Em f2

=

[

0
−ei∆φ

]

ei(2π f2t+φ02) (C.9)

The total electromagnetic field emerging from the beam splitter is now:

~EBS = ~EBS1 +
~EBS2

=

[

− cos(dε1)eix1

i ∗ sin(dε1)ei(x1+∆φ) − ei(x2+∆φ)

]

(C.10)

with

x j = 2π f jt + φ0 j, j = 1, 2 (C.11)

The electromagnetic field transmitted by the receiver polarizer under 45◦ is:

~EP = P ∗ ~EBS

=
1

2

[

1 1
1 1

]

∗
[

− cos(dε1)eix1

i ∗ sin(dε1)ei(x1+∆φ) − ei(x2+∆φ)

]

=
1

2

[

− cos(dε1)eix1 + i ∗ sin(dε1)ei(x1+∆φ) − ei(x2+∆φ)

− cos(dε1)eix1 + i ∗ sin(dε1)ei(x1+∆φ) − ei(x2+∆φ)

]

(C.12)

Since the x- and y-component of this vector are equal, the intensity on the
detector is:
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Im = EP
†EP = EPx

∗EPx
+ EPy

∗EPy
= 2 ∗ EPx

∗EPx
(C.13)

=
1

2

[

− cos(dε1)eix1 + i ∗ sin(dε1)ei(x1+∆φ) − ei(x2+∆φ)
]

∗
[

− cos(dε1)e−ix1 − i ∗ sin(dε1)e−i(x1+∆φ) − e−i(x2+∆φ)
]

=
1

2





















1 + cos(dε1)2 + sin(dε1)2

+ cos(dε1) ∗
(

ei(x2−x1+∆φ) + e−i(x2−x1+∆φ)
)

+i sin(dε1) ∗
(

ei(x2−x1) − e−i(x2−x1)
)





















=
1

2

[

2 + 2 cos(dε1) cos(x2 − x1 + ∆φ) − 2 sin(dε1) sin(x2 − x1)
]

(C.14)

Knowing:

sin(α − β) = sin(α) cos(β) − cos(α) sin(β) (C.15)

Equation C.14 can be rewritten as:

Im =
(

cos(dε1) + sin(dε1) sin(∆φ)
)

cos(x2 − x1 + ∆φ)

− sin(dε1) cos(∆φ) sin(x2 − x1 + ∆φ) (C.16)

Further:

A cos(α) + B sin(α) =
√

A2 + B2 cos
(

α − arctan
(

B

A

))

(C.17)

Rewriting formula C.16

Im = Z cos

(

x2 − x1 + ∆φ − arctan

( − sin(dε1) cos(dφ)

cos(dε1) + sin(dε1) sin(∆φ)

))

(C.18)

with amplitude Z:

Z =
√

1 + 2 sin(dε1) cos(dε1) sin(∆φ) (C.19)

The electromagnetic field on the reference detector can be calculated as:

~EPr
= P ∗ ~E = P ∗ ( ~E1 + ~E2)

=
1

2

[

1 1
1 1

]

∗
[

cos(dε1) eix1

−i sin(dε1) eix1 + eix2

]

=
1

2

[

(cos(dε1) − i sin(dε1)) eix1 + eix2

(cos(dε1) − i sin(dε1)) eix1 + eix2

]

(C.20)
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The intensity of the reference signal therefore becomes:

Ir = ~E†Pr

~EPr
= ~E∗Prx

~EPrx +
~E∗Pry

~EPr y = 2 ∗ ~E∗Prx
~EPrx

=
1

2

(

2 + cos(dε1)
(

ei(x2−x1) + e−i(x2−x1)
)

− i sin(dε2)
(

ei(x2−x1) − e−i(x2−x1)
))

= 1 + cos(dε1) cos(x2 − x1) + sin(dε1) sin(x2 − x1)

= 1 + cos(x2 − x1 − dε1) (C.21)

The phase difference between reference and measurement signal is now:

∆φm − φr = dε1 + ∆φ − arctan

( − sin(dε1) cos(dφ)

cos(dε1) + sin(dε1) sin(∆φ)

)

(C.22)

The first term is a constant phase term. Since the interferometer measures
displacement this term is not in the measurement itself. From this it can be
concluded that the non-linearity resulting from an ideal interferometer with an
elliptical polarized beam derived by the modular model equals equation 2.17.

C.2 Effect of a rotated beam splitter

In this section the non-linearity as a result of an ideal interferometer with a
rotated beam splitter will be modeled using the modular model. It will be
shown that with this model also formula 2.18 can be derived. The Jones vectors
representing the linear polarized laser beams E1 and E2 are:

~E1 =

[

1
0

]

ei(2π f1t+φ01) (C.23a)

~E2 =

[

0
1

]

ei(2π f2t+φ02) (C.23b)

The reference and measurement matrices for the rotated polarizing beam split-
ter over angle α are:

PBSt =

[

cos(α) − sin(α)
sin(α) cos(α)

]

∗
[

0 0
0 1

]

∗
[

cos(α) sin(α)
− sin(α) cos(α)

]

=

[

sin2(α) − sin(α) cos(α)
− sin(α) cos(α) cos2(α)

]

(C.24)

PBSr =

[

cos(α) − sin(α)
sin(α) cos(α)

]

∗
[

1 0
0 0

]

∗
[

cos(α) sin(α)
− sin(α) cos(α)

]

=

[

cos2(α) sin(α) cos(α)
sin(α) cos(α) sin2(α)

]

(C.25)
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Player and De Freitas assumed an orientation of the receiver polarizer under
45◦ with the beam splitter axes. Therefore in the modular model, the Jones
matrix representing the polarizer is represented by:

P =

[

cos2(π4 + α) sin(π4 + α) cos(π4 + α)
sin(π4 + α) cos(π4 + α) sin2(π4 + α)

]

=
1

2

[

1 − 2 sinα cosα cos2 α − sin2 α
cos2 α − sin2 α 1 + 2 sinα cosα

]

(C.26)

The electromagnetic field of the beam with frequency f1 traveling through the
reference arm is calculated as follows:

~Er f1 = PBSr ∗ RRF ∗ PBSr ∗ ~E1 (C.27)

=

[

cos2(α) sin(α) cos(α)
sin(α) cos(α) sin2(α)

]

∗
[

−1 0
0 −1

]

∗
[

cos2(α) sin(α) cos(α)
sin(α) cos(α) sin2(α)

]

∗
[

1
0

]

ei(2π f1t+φ01)

=

[

− cos2 α
− sinα cosα

]

ei(2π f1t+φ01) (C.28)

The electromagnetic field of the beam with frequency f1 traveling through the
measurement arm is calculated as follows:

~Em f1 = PBSt ∗MRRF ∗ PBSt ∗ ~E1 (C.29)

=

[

sin2(α) − sin(α) cos(α)
− sin(α) cos(α) cos2(α)

]

∗
[

−ei∆φ 0
0 −ei∆φ

]

∗
[

sin2(α) − sin(α) cos(α)
− sin(α) cos(α) cos2(α)

]

∗
[

1
0

]

ei(2π f1t+φ01)

=

[

− sin2 α ei∆φ

sinα cosα ei∆φ

]

ei(2π f1t+φ01) (C.30)

So the total electromagnetic field with frequency f1 coming out of the beam
splitter is represented as:

~EBS1 = ~Er f1 +
~Em f1 (C.31)

=

[− cos2 α − sin2 α ei∆φ

sinα cosα
(

ei∆φ − 1
)

]

ei(2π f1t+φ01) (C.32)

The electromagnetic field of the beam with frequency f2 traveling through the
reference arm is calculated as follows:
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~Er f2 = PBSr ∗ RRF ∗ PBSr ∗ ~E2 (C.33)

=

[

cos2(α) sin(α) cos(α)
sin(α) cos(α) sin2(α)

]

∗
[

−1 0
0 −1

]

∗
[

cos2(α) sin(α) cos(α)
sin(α) cos(α) sin2(α)

]

∗
[

0
1

]

ei(2π f2t+φ02)

=

[

− sinα cosα
− sin2 α

]

ei(2π f2t+φ02) (C.34)

The electromagnetic field of the beam with frequency f2 traveling through the
measurement arm is calculated as follows:

~Em f2 = PBSt ∗MRRF ∗ PBSt ∗ ~E2 (C.35)

=

[

sin2(α) − sin(α) cos(α)
− sin(α) cos(α) cos2(α)

]

∗
[

−ei∆φ 0
0 −ei∆φ

]

∗
[

sin2(α) − sin(α) cos(α)
− sin(α) cos(α) cos2(α)

]

∗
[

0
1

]

ei(2π f2t+φ02)

=

[

sinα cosα ei∆φ

− cos2 α ei∗∆φ

]

ei(2π f2t+φ02) (C.36)

So the total electromagnetic field with frequency f2 emerging from the beam
splitter is represented as:

~EBS2 = ~Er f2 +
~Em f2 (C.37)

=

[

sinα cosα
(

−1 + ei∆φ
)

sin2 α − cos2 α ei∆φ

]

ei(2π f2t+φ02) (C.38)

The total electromagnetic field emerging from the beam splitter is now:

~EBS = ~EBS1 +
~EBS2 (C.39)

=

[

− cos2 eix1 − sinα cosα eix2 − sin2 α ei(x1+∆φ) + sinα cosα ei(x2+∆φ)

− sinα cosα eix1 − sin2 α eix2 + sinα cosα ei(x1+∆φ) − cos2 α ei(x2+∆φ)

]

with

x j = 2π f jt + φ0 j, j = 1, 2 (C.40)

The electromagnetic field transmitted by the receiver polarizer under 45◦

with the beam splitter is:
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~EP = P ∗ ~EBS = P ∗
[

A′

B′

]

=
1

2

[

1 − 2 sinα cosα cos2 α − sin2 α
cos2 α − sin2 α 1 + 2 sinα cosα

]

∗
[

A′

B′

]

=
1

2

[

(1 − 2 sinα cosα) A′ + (cos2 α − sin2 α) B′

(cos2 α − sin2 α) A′ + (1 + 2 sinα cosα) B′

]

(C.41)

After some calculation it follows:

EPx
=

1

2

(

− cos2 α + sinα cos3 α + sin3 α cosα
)

eix1

+
1

2

(

− sinα cosα + sin2 α cos2 α + sin4 α
)

eix2

+
1

2

(

− sin2 α + sin3 α cosα + sinα cos3 α
)

ei(x1+∆φ)

+
1

2

(

sinα cosα − sin2 α cos2 α − cos4 α
)

ei(x2+∆φ)

=
1

2

(

A eix1 + B eix2 + C ei(x1+∆φ) +D ei(x2+∆φ)
)

(C.42)

EPy
=

1

2

(

− cos4 α − sin2 α cos2 α − sinα cosα
)

eix1

+
1

2

(

− sinα cos3 α − sin3 α cosα − sin2 α
)

eix2

+
1

2

(

sin2 α cos2 α + sin4 α + sinα cosα
)

ei(x1+∆φ)

+
1

2

(

− sinα cos3 α − sin3 α cosα − cos2 α
)

ei(x2+∆φ)

=
1

2

(

E eix1 + F eix2 + G ei(x1+∆φ) +H ei(x2+∆φ)
)

(C.43)

The intensity on the detector is:

Im = ~E†P
~EP = EPx

∗EPx
+ EPy

∗EPy
(C.44)
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E∗Px
EPx

=
1

2

(

A eix1 + B eix2 + C ei(x1+∆φ) +D ei(x2+∆φ)
)

∗1
2

(

A e−ix1 + B e−ix2 + C e−i(x1+∆φ) +D e−i(x2+∆φ)
)

=
1

4

















A2 + B2 + C2 +D2 + (AC + BD) cos(∆φ)
+(AB + CD) cos(x2 − x1) + AD cos(x2 − x1 + ∆φ)
+BC cos(x2 − x1 − ∆φ)

















(C.45)

E∗Py
EPy

=
1

2

(

E eix1 + F eix2 + G ei(x1+∆φ) +H ei(x2+∆φ)
)

∗1
2

(

E e−ix1 + F e−ix2 + G e−i(x1+∆φ) +H e−i(x2+∆φ)
)

=
1

4

















E2 + F2 + G2 +H2 + (EG + FH) cos(∆φ)
+(EF + GH) cos(x2 − x1) + EH cos(x2 − x1 + ∆φ)
+FG cos(x2 − x1 − ∆φ)

















Due to the use of a band-pass filter in the detector the DC components are not
in the measurement, eliminating the first five components of equations C.45
and C.46. The measurement signal on the detector becomes:

Im = EPx

∗EPx
+ EPy

∗EPy

=
1

2
(AD + EH) cos(x2 − x1 + ∆φ) +

1

2
(BC + FG) cos(x2 − x1 − ∆φ)

+
1

2
(AB + CD + EF + GH) cos(x2 − x1)

=
1

2
(AD + EH) cos(x2 − x1 + ∆φ) +

1

2
(BC + FG) cos(x2 − x1 + ∆φ − 2∆φ)

+
1

2
(AB + CD + EF + GH) cos(x2 − x1 + ∆φ − ∆φ) (C.46)

Knowing:

cos(α − β) = cos(α) cos(β) + sin(α) sin(β) (C.47)

Equation C.46 can be rewritten as:

Im =
1

2

(

(AD + EH) + (BC + FG) cos(2∆φ)
+(AB + CD + EF + GH) sin(∆φ)

)

cos(x2 − x1 + ∆φ)

+
1

2

(

(BC + FG) sin(2∆φ)
+(AB + CD + EF + GH) cos(∆φ)

)

sin(x2 − x1 + ∆φ) (C.48)
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AD =
(

− cos2 α + sinα cos3 α + sin3 α cosα
)

∗
(

sinα cosα − sin2 α cos2 α − cos4 α
)

= − sinα cos3 α + 2 sin2 α cos4 α + cos6 α − 2 sin3 α cos5 α

− sinα cos7 α + sin4 α cos2 α − sin5 α cos3 α (C.49)

EH =
(

− cos4 α − sin2 α cos2 α − sinα cosα
)

∗
(

− sinα cos3 α − sin3 α cosα − cos2 α
)

= sinα cos7 α + 2 sin3 α cos5 α + cos6 α + sin5 α cos3 α

+2 sin2 α cos4 α + sin4 α cos2 α + sinα cos3 α (C.50)

AD + EH = 2 cos6 α + 4 sin2 α cos4 α + 2 sin4 α cos2 α

= 2 cos2 α (C.51)

BC =
(

− sinα cosα + sin2 α cos2 α + sin4 α
)

∗
(

− sin2 α + sin3 α cosα + sinα cos3 α
)

= sin3 α cosα − 2 sin4 α cos2 α − sin2 α cos4 α + 2 sin5 α cos3 α

+ sin3 α cos5 α − sin6 α + sin7 α cosα (C.52)

FG =
(

− sinα cos3 α − sin3 α cosα − sin2 α
)

∗
(

sin2 α cos2 α + sin4 α + sinα cosα
)

= − sin3 α cos5 α − 2 sin5 α cos3 α − sin2 α cos4 α − sin7 α cosα

−2 sin4 α cos2 α − sin6 α − sin3 α cosα (C.53)

BC + FG = −4 sin4 α cos2 α − 2 sin2 α cos4 α − 2 sin6 α

= −2 sin2 α (C.54)
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AB =
(

− cos2 α + sinα cos3 α + sin3 α cosα
)

∗
(

− sinα cosα + sin2 α cos2 α + sin4 α
)

= sin7 α cosα + 2 sin5 α cos3 α + sin3 α cos5 α

−2 sin2 α cos2 α + sinα cos3 α (C.55)

CD =
(

− sin2 α + sin3 α cosα + sinα cos3 α
)

∗
(

sinα cosα − sin2 α cos2 α − cos4 α
)

= − sin5 α cos3 α − 2 sin3 α cos5 α − sin3 α cosα

+2 sin2 α cos2 α − sinα cos7 α (C.56)

EF =
(

− cos4 α − sin2 α cos2 α − sinα cosα
)

∗
(

− sinα cos3 α − sin3 α cosα − sin2 α
)

= sin5 α cos3 α + 2 sin3 α cos5 α + sin3 α cosα

+2 sin2 α cos2 α + sinα cos7 α (C.57)

GH =
(

sin2 α cos2 α + sin4 α + sinα cosα
)

∗
(

− sinα cos3 α − sin3 α cosα − cos2 α
)

= − sin7 α cosα − 2 sin5 α cos3 α − sin3 α cos5 α

−2 sin2 α cos2 α − sinα cos3 α (C.58)

AB + CD + EF + GH = 0 (C.59)

Substitution of equations C.51, C.54 and C.59 in equation C.48 gives:

Im =
(

cos2 α − sin2 α cos(2∆φ)
)

cos(x2 − x1 + ∆φ)

+
(

− sin2 α sin(2∆φ)
)

sin(x2 − x1 + ∆φ) (C.60)

Further:

A cos(α) + B sin(α) =
√

A2 + B2 cos
(

α − arctan
(

B

A

))

(C.61)

Rewriting formula C.60 with use of this equation:

Im = Z′ cos

(

x2 − x1 + ∆φ − arctan

( − sin2 α sin(2∆φ)

cos2 α − cos2 α cos(2∆φ)

))

(C.62)

Since the amplitude Z’ does not influence the phase measurement it is not
calculated further.
In this case the reference intensity signal equals an ideal interferometer:

Ir = 1 + cos(x2 − x1) (C.63)
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The phase difference between reference and measurement signal is now:

∆φm − φr = ∆φ − arctan

( − sin2 α sin(2∆φ)

cos2 α − cos2 α cos(2∆φ)

)

(C.64)

From this it can be concluded that the non-linearity resulting from a rotated
beam splitter derived with the modular model equals equation 2.18.



Appendix D

Calculation of laser head
polarization state
measurements

In chapter 3 two methods are presented to measure the polarization state of
a heterodyne laser head. In this appendix the theoretical intensity signals for
both methods are derived.

D.1 Carrier frequency measurement

In the carrier frequency measurement the beam of the heterodyne laser (con-
taining two frequencies) is mixed with the beam emerging from a homodyne
interferometer.

With the laser properties defined as in figure D.1, the Jones vectors of all
frequencies can be described as:

~E1 = R(0)E01

[

cos(dε1)
−i ∗ sin(dε1)

]

ei(2π f1t+φ01) =

[

EM1

Em1

]

ei(2π f1t+φ01) (D.1a)

~E2 = R(η)E02

[

i ∗ sin(dε2)
cos(dε2)

]

ei(2π f2t+φ02) =

[

Em2 cos(η) − EM2 sin(η)
Em2 sin(η) + EM2 cos(η)

]

ei(2π f2t+φ02)

(D.1b)

~E3 = E03

[

1
i

]

ei(2π f1t+φ01) =

[

EM3

Em3

]

ei(2π f1t+φ01) (D.1c)

Here Emk, k=1,2,3 stands for the minor component of the E-field and EMk, k=1,2,3
stands for the major component in the E-field. The total electromagnetic field
entering the polarizer is now described as:

~Ein =

[

EM1eiω1t + (cos(η)Em2 − sin(η)EM2)eiω2t + EM3eiω3t

Em1eiω1t + (sin(η)Em2 + cos(η)EM2)eiω2t + Em3eiω3t

]

(D.2)
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x

y

~E3

αp

dε1

dε2

η

~E1

~E2

Figure D.1: Schematic representation of the E-fields present in the carrier fre-
quency method as well as the schematic representation of the out-

put of this measurement setup. ~E1, ~E2 are the E-fields emerging
from the heterodyne laser of which the ellipticity is dε1 and dε2

respectively, ~E3 emerges from the circular reference source and αp

represents the angle of the polarizer.

where ω f = 2π f f t + φ0 f and f = 1, 2, 3. A polarizer under angle αp can be
presented with the following Jones matrix:

~Pαp
=

[

cos2 αp sinαp cosαp

sinαp cosαp sin2 αp

]

(D.3)

The electromagnetic field entering the detector is calculated by multiplying the
Jones matrix, representing the polarizer, and the Jones vector, representing the
E-field entering the polarizer:

Ep = P(αp)Ein =

[

Epx

Epy

]

(D.4)

From calculation it follows:

Epx = cos(αp)































(

cos(αp)EM1 + sin(αp)Em1)
)

eiω1t

+

(

(cos(αp) cos(η) + sin(αp) sin(η))Em2

−(cos(αp) sin(η) − sin(αp) cos(η))eM2

)

eiω2t

+
(

cos(αp)EM3 + sin(αp)Em3

)

eiω3t































(D.5)

= cos(αp)























(

cos(αp)EM1 + sin(αp)Em1

)

eiω1t

+
(

cos(αp − η)Em2 + sin(αp − η)EM2

)

eiω2t

+
(

cos(αp)EM3 + sin(αp)Em3

)

eiω3t























(D.6)
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and

Epy = sin(αp)































(

cos(αp)EM1 + sin(αp)Em1)
)

eiω1t

+

(

(cos(αp) cos(η) + sin(αp) sin(η))Em2

−(cos(αp) sin(η) − sin(αp) cos(η))eM2

)

eiω2t

+
(

cos(αp)EM3 + sin(αp)Em3

)

eiω3t































(D.7)

= cos(αp)























(

cos(αp)EM1 + sin(αp)Em1

)

eiω1t

+
(

cos(αp − η)Em2 + sin(αp − η)EM2

)

eiω2t

+
(

cos(αp)EM3 + sin(αp)Em3

)

eiω3t























(D.8)

The intensity signal resulting from this E-field is calculated using:

Ip
αp = Epx

∗Epx + Epy
∗Epy (D.9)

Since Epx = cos(αp) ∗ Esub and Epy = sin(αp) ∗ Esub it follows that Ip = Esub
∗Esub.

Where

Esub =
(

cos(αp)EM1 + sin(αp)Em1

)

eiω1t

+
(

cos(αp − η)Em2 + sin(αp − η)EM2

)

eiω2t

+
(

cos(αp)EM3 + sin(αp)Em3

)

eiω3t (D.10)

Knowing Em1, Em2 and Em3 are complex numbers this can be written as:

Esub = (A + iB)eiω1t + (C + iD)eiω2t + (E + iF)eiω3t (D.11)

where A = cos(αp)E01cos(dε1)

B = − sin(αp)E01 sin(dε1)

C = cos(αp − η)E02 sin(dε2)

D = sin(αp − η)E02 cos(dε2)

E = cos(αp)E03

F = sin(αp)E03 (D.12)

From this the intensity Ip can be calculated:

Ip = (A + iB)eiω1t + (C + iD)eiω2t + (E + iF)eiω3t

∗
[

(A − iB)e−iω1t + (C − iD)e−iω2t + (E − iF)e−iω3t
]

(D.13)

= A2 + B2 + C2 +D2 + E2 + F2

+ 2(AC + BD) cos((ω2 − ω1)t) + 2(AD − BC) sin((ω2 − ω1)t)

+ 2(AE + BF) cos((ω3 − ω1)t) + 2(AF − BE) sin((ω3 − ω1)t)

+ 2(CE +DF) cos((ω3 − ω2)t) + 2(CF −DE) sin((ω3 − ω2)t) (D.14)
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With use of a spectrum analyser only the beat frequencies f3 with f1 and f3 with
f1 are measured:

I( f1, f3)αp = 2(AE + BF) cos((ω3 − ω1)t) + 2(AF − BE) sin((ω3 − ω1)t)

= 2
√

(AE + BF)2 + (AF − BE)2 cos((ω3 − ω1)t

− arctan
(

AF − BE

AE + BF

)

) (D.15)

I( f2, f3)αp = 2(CE +DF) cos((ω3 − ω2)t) + 2(CF −DE) sin((ω3 − ω2)t)

= 2
√

(CE +DF)2 + (CF −DE)2 cos((ω3 − ω2)t

− arctan
(

CF −DE

CE +DF

)

) (D.16)

Of this intensity signal only the amplitude is measured, not the phase. There-
fore only the amplitude will be calculated here.

Ia( f1, f3)αp = 2
√

(AE + BF)2 + (AF − BE)2

= 2
√

(AE)2 + (BF)2 + (AF)2 + (BE)2 (D.17)

Ia( f2, f3)αp = 2
√

(CE +DF)2 + (CF −DE)2

= 2
√

(CE)2 + (DF)2 + (CF)2 + (DE)2 (D.18)

Filling in A − F from equation D.12 results in:

Ia( f1, f3)αp = 2E01E03

√

cos2(αp) cos2(dε1) + sin2(αp) sin2(dε1) (D.19)

Ia( f2, f3)αp = 2E02E03

√

cos2(αp − η) sin2(dε2) + sin2(αp − η) cos2(dε2) (D.20)

Representing the intensities measured by the carrier frequency measurement
as a function of the polarizer angle (αp).

D.2 Beat frequency measurement

For the beat frequency measurement a polarizer is rotated directly in front of
the heterodyne laser head. In this case the intensity of the beat frequency signal
consists of frequencies f1 and f2. From equation D.14 this beat frequency is:

I( f1, f2)αp = 2(AC + BD) cos((ω2 − ω1)t) + 2(AD − BC) sin((ω2 − ω1)t)

= 2
√

(AC + BD)2 + (AD − BC)2 cos((ω3 − ω1)t

− arctan
(

AD − BC

AC + BD

)

) (D.21)
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Of this intensity signal also only the amplitude is measured, not the phase.
Therefore only the amplitude will be calculated here.

Ia( f1, f2)αp = 2
√

(AC + BD)2 + (AD − BC)2

= 2
√

(AC)2 + (BD)2 + (AD)2 + (BC)2 (D.22)

Filling in A −D from equation D.12 results in:

Ia( f1, f2)αp = 2E01E02

√

√

√

√

√

√

√

√

√

√

√



























cos2(αp) sin2(αp − η) cos2(dε1) cos2(dε2)
+ sin2(αp) cos2(αp − η) sin2(dε1) sin2(dε2)
+ cos2(αp) cos2(αp − η) cos2(dε1) sin2(dε2)
+ sin2(αp) sin2(αp − η) sin2(dε1) cos2(dε2)



























= 2E01E02

√

√













(

cos2(αp) cos2(dε1) + sin2(αp) sin2(dε1)
)

∗
(

cos2(αp − η) sin2(dε2) + sin2(αp − η) cos2(dε2)
)













Representing the intensity measured by the beat frequency measurement as a
function of the polarizer angle (αp).
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Appendix E

Uncertainty analysis of the
Fabry-Pérot cavities

In this appendix the uncertainty analysis of the existing and the new Fabry-
Pérot cavity are derived. Part of the analysis is based on the work of Wetzels
[82].

E.1 Existing Fabry-Pérot cavity

The uncertainty of the Fabry-Pérot cavity depends on the uncertainty with
which the measurement system works and on all subsystems such as the fre-
quency counter. Further some fundamental principles influence the uncer-
tainty of the system. Finally the uncertainty resulting from the calibration
procedure should be mentioned. All these are discussed in detail next.

E.1.1 Axial mode effect

In order to derive a calibration displacement equation 4.1 is used to derive:

∆L = −L

(

∆ f

f
+
∆n

n

)

(E.1)

Here L is the mechanical length of the cavity, f is the frequency (473 THz), ∆ f
is the measured frequency change, n is the refractive index in the system and
∆n is the refractive index change during measurement inside the system.

The length of the cavity is determined by measuring the Free Spectral Range
(FSR: frequency difference between two longitunal modes) of the system:

L =
c

2n FSR (E.2)

The uncertainty of this length can be calculated as follows:
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u(L) =

√

√

z
∑

i=1

(

∂L

∂xi
u(xi)

)2

(E.3)

Parameter Nominal value Uncertainty Uncertainty in L
c 299792458 m s−1 0 m s−1 0
n 1,000273 2,3 · 10−8 −3,3 · 10−9 m
FSR 1050 · 106 Hz 51,4 · 103 Hz −7,0 · 10−6 m
Total 7 · 10−6 m

Table E.1: Uncertainty of the length derived by the Free Spectral range mea-
surement. c: speed of light, n: absolute refractive index, FSR: Free
spectral range.

The uncertainty of the measured length change with the Fabry-Pérot cavity
can now be derived from equation E.1 combined with the uncertainties of the
measurement systems and the nominal values of the parameters:

Parameter Nominal value Uncertainty Uncertainty in ∆L
L 140 · 10−3 m 7 · 10−6 m 0,01 nm
∆f 700 · 106 Hz 50 · 103 Hz 0,02 nm
f 473 · 1012 Hz 12 · 103 Hz 0,00 nm
∆n 2 · 10−7 1 · 10−9 0,14 nm
n 1,000273 2,3 · 10−8 0,00 nm

Total 0,14 nm

Table E.2: Uncertainty of the displacement derived by the frequency measure-
ment. L: Length of the cavity, ∆f: measured frequency difference, f:
absolute frequency, ∆n: refractive index change, n: absolute refrac-
tive index.

E.1.2 Transversal mode effect

The working principle of the Fabry-Pérot cavity is based on the measurement
of the resonance frequency of the cavity as described in equation 4.1:

f =
kc

2nL
(E.4)

This equation is based on the assumption that no transversal modes exist in
the cavity. The resonance frequency of the axial-plus-transverse modes in the
cavity is given by [47]:

f =
c

2nL

[

k +
ψnm

2π
−
∆βmpm

2π

]

(E.5)
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The first term equals equation E.4 and represents the plane wave resonance
frequency, the second term represents the influence of transversal modes on
the frequency and the third term represents an additional atomic frequency
pulling effect resulting from an active medium inside the cavity. Since there is
no active medium inside the cavity this term reduces to zero. The effect of the
transversal modes can be calculated using equation:

ψnm = 2(n +m + 1) arccos













±
√

(

1 − L

R1

) (

1 − L

R2

)













(E.6)

In the existing cavity the length of the cavity (L) is 140 mm, the radius of both
mirrors (R1 and R2) is 600 mm. The normal working mode of the laser is TEM00

resulting in a frequency effect of 238 MHz. For a displacement of 1 µm the
effect on frequency is 813 Hz and for a displacement of 300 µm the extra effect
is 245 kHz. With a sensitivity of 3,3802 MHz nm−1 of the system, this results in
an error of 0,00 nm for a displacement of 1 µm and 0,07 nm for a displacement
of 300 µm.

E.1.3 Linear thermal expansion

In order to calibrate sensors, a sensor platform is constructed on the Fabry-Pérot
cavity. This platform is called the top platform. Effort was made to place this
platform thermally on the bottom mirror, using thermal compensation in the
construction loop in combination with low expansion materials. The thermal
structure is shown in figure E.1.

From this figure it can be seen that there are some uncompensated parts in
the construction which are: Zerodur rods (LZerodur=140 mm, α = 5 · 10−8 K−1),
aluminum clamp (Lalu=4,5 mm, α = 23 · 10−6 K−1) of the upper mirror, the invar
ring (LInvar=5 mm, α = 1,5 · 10−6 K−1) to support the moving retroreflector and
the invar adapter (LInvar=35 mm, α = 1,5 ·10−6 K−1). These result in a calibration
error of:

∆L∆T =
(

αalu · Lalu + αInvar · LInvarring − αZerodur · LZerodur − αInvar · LInvaradapter

)

∆T

(E.7)
This results in a linear expansion of 51,5 nm K−1.

E.1.4 Thermal gradients

Upper and lower mirror are in the middle of the Fabry-Pérot setup. The
zerodur rods to connect upper and lower platform are placed on a radius of
70 mm from the center to provide a large platform. As a result thermal gradients
will influence the position of the probe and mirror resulting in uncertainties.
Gradients are calculated using the next equation:

∆z = α
T1 − T2

h

R2

2
(E.8)
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αAluminumLClamp

αInvarLProbeadapter

αInvarLRing
αSteelLBall=αSteelLHolder

αZerodurLRod

Figure E.1: Fabry-Pérot cavity with a schematical representation of the thermal
loop in the construction. Here α represents the linear expansion
coefficient of the material named by the subscription, L represents
the length of the component named by the subscription.
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where ∆z represents the displacement in measurement direction of the center
compared to the connection points of the zerodur rods, α represents the linear
expansion coefficient, T1−T2 represents the temperature difference of upper and
lower part of the platform, h represents the height of the platform, R represents
the distance between connection points and center of the platform. For top and
bottom platform (α = 24 · 10−6, h=15 mm, R=70 mm, and T1 − T2 = 0,1 mK)
this results in a displacement of 0,4 nm. For the invar adapter (α = 1,5 · 10−6,
h=9 mm, R=37 mm, T1−T2 = 0,1 mK) this results in a displacement of 0,01 nm.

E.1.5 Mirror tilt

The parallel guiding mechanism was tested for tilt by Wetzels. The maximum
tilt was 2,5µrad. As a result the orientation of the optical axis may change while
the probe still measures the same mirror position. Wetzels [61] also derived an
equation to determine the effect of this, resulting in an error of 0,4 nm over the
range of 300 µm and 0,00 nm over a range of 1 µm.

E.1.6 Background slope

In the original Fabry-Pérot a HeNe-laser was used with a non-constant back-
ground slope. As a result the locking point of the slave laser is shifted from the
left of the resonance curve toward the right of the resonance curve while scan-
ning through the active area of the laser. This effect was already negligible with
the gas laser. The diode laser used now has a gain curve with a constant slope
in the used working area, resulting in a constant shift of the frequency. Since the
measurement consists of a frequency change this will not affect measurement
uncertainty.

E.1.7 Cosine error

Due to alignment errors the translation axis of the moving mirror and the probe
under calibration will not be exactly in line. It is estimated that in practice the
alignment error can be reduced to 1,5 mrad. Based on the equation derived by
Wetzels [61] this results in an error of 0,3 nm for the entire range of 300 µm and
an error of 0,001 nm for the range of 1 µm.

E.1.8 Total uncertainty of the Fabry-Pérot cavity

In the previous sections different parts of the Fabry-Pérot cavity were discussed
along with the resulting uncertainties. In table E.3 the total uncertainty of a
measurement with the Fabry-Pérot cavity is calculated. From the table it can be
seen that the major part of uncertainty originates from thermal effects. Further
the mirror tilt is an important aspect. The effect of mirror tilt depends on the
radii of the mirrors used and the length of the cavity. The gradients depend on
the homogeneity of the system, the size and the expansion coefficient.
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Parameter Uncertainty Uncertainty
over 1 µm over 300 µm

Axial mode effect 0,14 nm 0,14 nm
Transversal mode effect 0,00 nm 0,07 nm

Brewster window 16,5 nm K−1 16,5 nm K−1

Mirror tilt 0,4 nm 0,4 nm
Background slope 0 0

Thermal expansion 51,5 nm K−1 51,5 nm K−1

Gradient upper platform 0,4 nm 0,4 nm
Gradient lower platform 0,4 nm 0,4 nm
Gradient probe adapter 0,01 nm 0,01 nm
Cosine error (1,5 mrad) 0,001 nm 0,3 nm

Total (∆T=0,01 K) 0,89 nm 0,94 nm

Table E.3: Results of the uncertainty analysis of the metrological Fabry-Pérot
interferometer. The total uncertainty is based on a measurement with
a maximum temperature change of 0,01 K.

E.2 New designed cavity

The uncertainty analysis of the newly designed cavity is based on the analysis
of the existing cavity .

E.2.1 Axial mode effect

The uncertainty at the displacement measurement is calculated based on the
same arguments as in section E.1.1. As a result of different cavity length
and free spectral range the uncertainties are also different. Further a different
detector has to be used in combination with a different frequency counter. The
uncertainty of this frequency counting system is estimated to equal the former
system. The uncertainty in the cavity length for the small cavity is shown in
table E.4.

Parameter Nominal value Uncertainty Uncertainty in L
c 299792458 m s−1 0 m s−1 0
n 1,000273 2,3 · 10−8 −0,55 · 10−9 m
FSR 6,25 · 109 Hz 51,4 · 103 Hz −1,97 · 10−7 m
Total 1,97 · 10−7 m

Table E.4: Uncertainty of the length derived by the Free Spectral range mea-
surement. c: speed of light, n: absolute refractive index, FSR: Free
spectral range.

The uncertainty of the measured length change with the Fabry-Pérot cavity
can now be derived from equation E.1 combined with the uncertainties of the
measurement systems and the nominal values of the parameters:
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Parameter Nominal value Uncertainty Uncertainty in ∆L
L 24 · 10−3 m 1,97 · 10−7 m 0,001 nm
∆f 3,15 · 109 Hz 50 · 103 Hz 0,002 nm
f 473 · 1012 Hz 12 · 103 Hz 0,000 nm
∆n 2 · 10−7 1 · 10−9 0,024 nm
n 1,000273 2,3 · 10−8 0,000 nm

Total 0,024 nm

Table E.5: Uncertainty of the displacement derived by the frequency measure-
ment for the small Fabry-Pérot. L: Length of the cavity,∆f: measured
frequency difference, f : absolute frequency, ∆n: refractive index
change, n: absolute refractive index.

E.2.2 Transversal mode effect

The frequency effect according to equations E.5 and E.6 now becomes 619 MHz.
The total stroke of the actuator is 6 µm which results in a frequency change of
55,2 kHz which in turn results in an error of 0,003 nm. For a stroke of 1 µm the
frequency change equals 12,8 kHz resulting in an error of 0,001 nm.

E.2.3 Mirror tilt

The tilt of the actuator was measured using an autocollimator. The maximum
tilt was 20 µrad. Based on the equation derived by Wetzels [61] this will result
in a cavity length change of 0,05 nm. A second effect of mirror tilt will manifest
itself in this setup also. As a result of the tilt a cosine effect will result. The
distance between the probe and the point where top mirror and optical axis
cross is 16,5 mm. This is a result of a relatively thick mirror (11 mm) and a
bending prism on top of it (5 mm), in order not to put load on the mirror 0,5 mm
is left between prism and calibration object. As a result an extra cosine error of
3 pm exists.

E.2.4 background slope

The background slope of the diode laser is in one direction and is relatively
constant over the used range. Hence the effect is negligible.

E.2.5 cosine error

It was estimated that the alignment can be done within 10 mrad, resulting in
an error of 0,3 nm over the range of 6 µm, and 0,05 nm over the range of 1 µm.

E.2.6 Linear thermal expansion

In figure E.2 the schematical representation of the thermal loop of the small
Fabry-Pérot cavity is given.
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αInvarLClamp

αInvarLProbeadapterαInvarLBasecylinder

αSteelLHolderαSteelLBall

αZerodurLRod

αSteelLBall αSteelLHolder

αInvarLBottomplate

Figure E.2: Small Fabry-Pérot cavity with a schematical representation of the
thermal loop in the construction.
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From this figure it can be seen that the thermal expansion of the balls is compen-
sated by a thermal expansion of their holders. Further the thermal expansion of
the adapter equals the thermal expansion of the part on the base cylinder. The
thermal expansion of the bottom plate (α = 1,5 · 10−6, L=2,5 mm) and zerodur
rod (α = 5 · 10−8, L=76 mm) compensate to 0,05 nm K−1. Finally the remaining
uncompensated part is formed by the upper mirror holder and clamp. Since
the mirror is relatively thick (11 mm) and a prism (height 5 mm) is necessary
for the control loop the length is relatively large (α = 1,5 · 10−6, L=16,5 mm).
The thermal expansion remaining (including the difference of zerodur rod and
invar bottom plate) is 24,8 nm K−1.

E.2.7 Thermal gradients

As a result of vertical thermal gradients the structural components will bend.
The effect of vertical gradients will come from the probe adapter and the bottom
plate. The vertical displacement of the center of the plates is calculated using
equation E.9:

∆z = α
T1 − T2

h

R2

2
(E.9)

where T1 is the temperature on top of the plate, T2 the temperature at the bottom
of the plate, h is the thickness of the plate, R the radius of the plate to the zerodur
connection points. The radius (R) on which the plates are supported by the
zerodur rods is 43 mm. The thickness of the probe adapter is 5 mm, and the
thickness of the bottom plate is 8 mm. Assuming a temperature difference
of 10−4 K over the plate, equal as in the original Fabry-Pérot this results in a
gradient of 0,029 nm for the probe adapter and 0,035 nm of the bottom plate.

E.2.8 Total uncertainty

Based on the subjects discussed above the total uncertainty of the small Fabry-
Pérot cavit can be calculated. The results are shown in table E.6. From this
table it can be seen that the major part of uncertainty again emerges from linear
expansion of the mirror and prism clamp.
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Parameter Uncertainty Uncertainty
over 1µm over 6µm

Axial mode effect 0,024 nm 0,024 nm
Transversal mode effect 0,001 nm 0,003 nm

Mirror tilt 0,05 nm 0,05 nm
Background slope 0 0

Thermal expansion 24,8 nm K−1 24,8 nm K−1

Gradient upper platform 0,03 nm 0,03 nm
Gradient lower platform 0,04 nm 0,04 nm
Cosine error (1,5 mrad) 0,05 nm 0,3 nm

Total (∆T=0,01 K) 0,26 nm 0,40 nm

Table E.6: Results of the uncertainty analysis of the small Fabry-Pérot inter-
ferometer. The total uncertainty is based on a measurement with a
maximum temperature change of 0,01 K.



Appendix F

Lock-in amplifier signals

In chapter 2 an equation was derived for the periodic deviations resulting from
a linear interferometer. The entire measurement signal was given by equation
2.14:

Imeas = M cos
(

2π( f2 − f1)t + φre f + ∆φ
)

+ N sin
(

2π( f2 − f1)t + φre f + ∆φ
)

(F.1)

In combination with equation 2.16, it can be derived that:

M = (A + C) + (A − C) sin(2θ) + E cos(2θ) (F.2)

N = (B +D) + (B −D) sin(2θ) + F cos(2θ) (F.3)

where A,B,C,D,E and F are equal as in equation 2.16. These can also be rewritten
into a form representing first and second order periodic-deviations:

A = χ2
[

a1 cos∆φ + a2 sin∆φ
]

(F.4)

B = χ2
[

−a2 cos∆φ + a1 sin∆φ
]

(F.5)

C = ξ2
[

c1 cos∆φ + c2 sin∆φ
]

(F.6)

D = ξ2
[

−c2 cos∆φ + c1 sin∆φ
]

(F.7)

E = χξ
[

e1 + e2 cos 2∆φ + e3 sin 2∆φ
]

(F.8)

F = χξ
[

e4 − e3 cos 2∆φ + e2 sin 2∆φ
]

(F.9)

where
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a1 = cos β sinα cos(dε1) cos(dε2) + sin β cosα sin(dε1) sin(dε2) (F.10)

a2 = − cos β cosα cos(dε1) sin(dε2) + sin β sinα sin(dε1) cos(dε2) (F.11)

c1 = sin β cosα cos(dε1) cos(dε2) + cos β sinα sin(dε1) sin(dε2) (F.12)

c2 = − cos β cosα sin(dε1) cos(dε2) + sin β sinα cos(dε1) sin(dε2) (F.13)

e1 = cos β cosα cos(dε1) cos(dε2) − sin β sinα sin(dε1) sin(dε2) (F.14)

e2 = sin β sinα cos(dε1) cos(dε2) − cos β cosα sin(dε1) sin(dε2) (F.15)

e3 = − cos β sinα sin(dε1) cos(dε2) − sin β cosα cos(dε1) sin(dε2) (F.16)

e4 = − cos β sinα cos(dε1) sin(dε2) − sin β cosα sin(dε1) cos(dε2) (F.17)

The measurement signal can be rewritten as follows:

Imeas =
(

M cos(∆φ) +N sin(∆φ)
)

cos
(

2π( f2 − f1)t + φre f

)

+
(

−M sin(∆φ) +N cos(∆φ)
)

sin
(

2π( f2 − f1)t + φre f

)

(F.18)

where

M = (A + C) + (A − C) sin(2θ) + E cos(2θ)

= (a1 + c1) cos(∆φ) + (a2 + c2) sin(∆φ)

+(a1 − c1) sin(2θ) cos(∆φ) + (a2 − c2) sin(2θ) sin(∆φ)

+e1 cos(2θ) + e2 cos(2θ) cos(2∆φ) + e3 cos(2θ) sin(2∆φ)

= (a1 + c1 + (a1 − c1) sin(2θ)) cos(∆φ)

+ (a2 + c2 + (a2 − c2) sin(2θ)) sin(∆φ)

+e1 cos(2θ) + e2 cos(2θ) cos(2∆φ) + e3 cos(2θ) sin(2∆φ)

= t1 cos(∆φ) + t2 sin(∆φ) + t3 + t4 cos(2∆φ) + t5 sin(2∆φ) (F.19)

and

N = (B +D) + (B −D) sin(2θ) + F cos(2θ)

= (−a2 − c2) cos(∆φ) + (a1 + c1) sin(∆φ)

+(c2 − a2) sin(2θ) cos(∆φ) + (a1 − c1) sin(2θ) sin(δφ)

+e4 cos(2θ) − e3 cos(2θ) cos(2∆φ) + e2 cos(2θ) sin(2∆φ)

= − (a2 + c2 + (a2 − c2) sin(2θ)) cos(∆φ)

+ (a1 + c1 + (a1 − c1) sin(2θ)) sin(∆φ)

+e4 cos(2θ) − e3 cos(2θ) cos(2∆φ) + e2 cos(2θ) sin(2∆φ)

= t1 sin(∆φ) − t2 cos(∆φ) + t6 + t4 sin(2∆φ) − t5 cos(2∆φ) (F.20)

Filling in equations F.19 and F.20 in F.18 results in:

Imeas =
[

t1 + (t3 + t4) cos(∆φ) + (t5 + t6) sin(∆φ)
]

cos
(

∆ωt + φre f

)

+
[

−t2 + (t4 − t3) sin(∆φ) + (t6 − t5) cos(∆φ)
]

sin
(

∆ωt + φre f

)

(F.21)
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where ti(i=1,2,3,4,5,6) are a function of a1, a2, c1, c2, e1, e2, e3, e4, sin(2θ), cos(2θ) as
can be seen from equations F.19 and F.20. The signals resulting from the lock-in
amplifier are:

S0
nl =

∫

Ire f (∆ωt + φre f ) × Imeas(∆ωt + φre f )dt

=
1

2

[

t1 + (t3 + t4) cos(∆φ) + (t5 + t6) sin(∆φ)
]

= t1
′ + t3

′ cos(∆φ − t4
′), (F.22)

S90
nl =

∫

Ire f (∆ωt + φre f +
π

2
) × Imeas(∆ωt + φre f )dt

=
1

2

[

−t2 + (t4 − t3) sin(∆φ) + (t6 − t5) cos(∆φ)
]

= t2
′ + t5

′ sin(∆φ − t6
′), (F.23)

Since in the phase quadrature measurement only the relative phase is measured
and in the compensation method only the relative amplitude is important these
signals may be rewritten into:

S0
nl = x0 + R cos(∆φ) (F.24)

S90
nl = y0 + R

1

r
sin(∆φ − αl), (F.25)

where x0 and y0 are offsets in the signal representing a first order periodic devi-
ation, R is the amplitude of both signals and 1

r and αl represent the amplitude
ratio of both signals and the deviation from phase quadrature. The ellipse
parameters expressed in the parameters of equations F.10-F.17:

x0 =
1

2
(a1 + c1 + (a1 − c1) sin(2θ)) (F.26)

y0 = −1

2
(a2 + c2 + (a2 − c2) sin(2θ)) (F.27)

R =
1

2
cos(2θ)

√

(e1 + e2)2 + (e3 + e4)2 (F.28)

r =

√

(e1 + e2)2 + (e3 + e4)2

√

(e2 − e1)2 + (e4 − e3)2
(F.29)

αl = arctan
(

e2 − e1

e4 − e3

)

− arctan
(

e3 + e4

e1 + e2

)

(F.30)

According to Heydemann [5] the equation of the distorted ellips:

[

S0
nl − x0

]2
+













(S90
nl − y0)r + (S0

nl − x0) sinαl

cos(αl)













2

= R2 (F.31)
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can be fitted in the following form:

A f

(

S0
nl
)2
+ B f

(

S90
nl
)2
+ C f S0

nlS90
nl +D f S0

nl + E f S90
nl = 1 (F.32)

where A f =
(

R2 cos2(αl) − x0
2 − r2y0

2 − 2rx0y0 sin(αl)
)−1

(F.33)

B f = Ar2 (F.34)

C f = 2Ar sin(αl) (F.35)

D f = −2A(x0 + ry0 sin(αl)) (F.36)

E f = −2Ar(ry0 + x0 sin(αl)) (F.37)

From this the parameters of the ellipse can be derived:

αl = arcsin













C f
√

4A f B f













(F.38)

r =

√

B f

A f
(F.39)

x0 =
2B f D f − E f C f

C f
2 − 4A f B f

(F.40)

y0 =
2A f E f −D f C f

C f
2 − 4A f B f

(F.41)

And the corrected signals are:

S0 = S0
nl − x0 (F.42)

S90 =
1

cos(αl)

[

(S0
nl − x0) sin(αl) + r(S90

nl − y0)
]

(F.43)



Appendix G

Refractive index equations

In this appendix the used equations to determine the refractive index of air are
presented. All derived for a wavelength of λ = 632,991 nm. The temperature
(T) should be filled in in K, the pressure (P) in Pa, the humidity (f) in Pa and
the CO2content (xCO2) in ppm.

G.1 Birch and Down’s equation

nTP f − 1 =
D · P

96095,43
· 1 + 10−8 (0,601− 0,00972(T − 273,15)) P

1 + 0,0036610(T− 273,15)

− f · 3,63442 · 10−10

with D = 2,7653 · 10−4 (G.1)

G.2 Bönsch and Potulski

nTP f x − 1 =
D · P

93214,60
· 1 + 10−8 (0,5953− 0,009876(T− 273,15)) P

1 + 0,0036610(T− 273,15)

− f · 3,70616 · 10−10

with D = 2,68227 · 10−4 · (1 + 0,5327 · (xCO2 − 400)
)

(G.2)
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G.3 Ciddor

nTP f x − 1 =
ρa

ρas
· nas−1

ρw

ρws
· nws−1 (G.3)

with
ρa

ρas
=

P

Pas

Z(Pas,Tas)

Z(P,T)

Tas

T
(1 − xw)

ρw

ρws
=

P

Pws

Z(Pws,Tws)

Z(P,T)

Tws

T
xw

nas−1 = 2,765303241 · 10−4 ·
(

1 + 0,534 · 10−6(xCO2 − 450)
)

nws−1 = 3,083274424 · 10−6

xw =
(

1,00062+ 3,14 · 10−8P + 5,6 · 10−7(T − 273,15)2
)

·
f

P

Z(P,T) = 1 − P

T
·
(

a0 + a1(T − 273,15)+ a2(T − 273,15)2

+(b0 + b1(T − 273,15)) · xw + (c0 + c1(T − 273,15)xw
2)

)

+

(

P

T

)2

· (d + e · xw
2)

where the standard conditions for dry air (subscript a) and wet air (subscribt w)
are Pas = 101325 Pa, Pws = 1333 Pa, Tas = 288,15 K and Tws = 293,15 K.

The constants used are:

R = 8,314510 J mol−1 K−1 (G.4)

Mw = 0,018015 kg mol−1 (G.5)

a0 = 1,58123 · 10−6 K Pa−1 (G.6)

a1 = −2,9331 · 10−8 Pa−1 (G.7)

a2 = 1,1043 · 10−10 K−1 Pa−1 (G.8)

b0 = 5,707 · 10−6 K Pa−1 (G.9)

b1 = −2,051 · 10−8 Pa−1 (G.10)

c0 = 1,9898 · 10−4 K Pa−1 (G.11)

c1 = −2,376 · 10−6 Pa−1 (G.12)

d = 1,83 · 10−11 K2 Pa−2 (G.13)

e = −0,765 · 10−8 K2 Pa−2 (G.14)
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