

Techniques for designing efficient parallel programs

Citation for published version (APA):
Struik, P. (1991). Techniques for designing efficient parallel programs. (Computing science notes; Vol. 9132).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/b06dd68d-a216-441a-ba86-7d64a17cfedb

Eindhoven University of Technology

Department of Mathematics and Computing Science

Techniques for Designing Efficient
Parallel Programs

by

Pieter Struik

Computing Science Note 91/32
Eindhoven, December 1991

91/32

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Techniques for Designing Efficient Parallel
Programs

Pieter Struik
Department of Mathematics and Computing Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, the Netherlands

Abstract

In this paper we present techniques for designing parallel programs. These tech
niques are calculational, i.e. starting from a formal specification of the problem we
design a program by transforming the specification in a number of steps. The pro
grams that we obtain are correct by design. We demonstrate two techniques by
means of an example. First, we illustrate the derivation of a fine grained program.
Since the communication overhead of such a program is too large, it can not be
implemented on a processor network (e.g. transputer network) efficiently. We, sub
sequently, demonstrate two techniques for designing programs of a parameterized
grain size. For obtaining efficient execution, such programs offer the possibility of
tuning to the characteristics of the machine on which it is executed. Finally, we give
a complexity analysis of the techniques presented and compare the results from the
analysis to experimental results obtained from a transputer implementation.
keywords: design techniques, parallel programming, grain size

1 Introduction

In this paper we present techniques for deriving parallel programs of parameterized grain
size. We consider a parallel program to be a collection of processes that interact with each
other by exchanging messages. For efficient execution of parallel programs it is important
that the partitioning of programs into processes is done properly. In particular, the grain
size of processes is important. Processes that perform a lot of computations between
successive communications with other processes are said to have a large grain size.

When designing a parallel program it is a difficult to determine a grain size that yields
a good performance when the program is executed [1, 2J. It is therefore advantageous to

The work in this paper has been partly sponsored by Philips Research Laboratories Eindhoven, the
Netherlands

1

postpone this design decision by designing a parallel program that has a parameterized
grain size. Such a program offers the possibility of tuning it to the characteristics of the
machine on which it is executed.

Much research has been done on extracting parallelism from sequential programs [3].
In our technique, however, we follow the opposite direction. Starting from a fine grained
parallel program we construct programs of parameterized grain size.

This paper is organized as follows. In Section 2 we briefly discuss a technique for
deriving fine grained parallel programs. This technique is illustrated by means of a so
called window computation, viz. the Occurrence Count Last problem (OCL). We conclude
Section 2 by giving a short complexity analysis of the program. In Section 3 the basic
idea of this paper is presented. Based on the program derived in Section 2, we construct
parallel programs of parameterized grain size for the OCL problem. We demonstrate two
techniques. In Section 4, we present some experimental results obtained from a transputer
implementation of the problem. Experiments have been carried out on a 51-transputer
network!. The results will be related to the complexity analysis worked out in Section 3.
Finally, Section 5 gives some concluding remarks.

2 Design of a fine grained parallel program

In this section, we present the derivation of a fine grained program for the OCL problem.
Starting from a specification, we construct a linear array of processes that communicate
with each other by exchanging messages over channels. We derive a set of equations that
define the values communicated along output channels in terms of received values along in
put channels. Since inputs on which an output depends should be received before producing
that output, the set of defining equations gives rise to a partial order on communications
along channels. Given this partial order we construct a consistent communication behavior
that specifies in which order communications along the channels of a process take place.
Given the communication behavior and the set of equations, the program text of a process
can easily be written. We conclude this section with a short complexity analysis of the
constructed program. Since the topic of this paper is not on the design of fine grained
programs, we only briefly discuss the design method. For more examples of the design
method we refer to [4, 5, 6]. The derivation of a fine grained program for a particular
problem constitutes a basis that can be fruitfully exploited when designing a program of
parameterized grain size.

2.1 Specification of the OCL problem

For a fixed N (N::::l) and an input stream A of integers, the OeL problem is the compu
tation of output stream B satisfying

B(i) = (# j : i-N < j ::;: i : A(j) = A(i))

1 acquired through a grant from the European Community, Parallel Computing Action of ESPRIT,
PCA No. 4038

d d d _

o c 1 k c c _
N-1

b b b _

Figure 1: linear arrangement of processes for the OCL problem

for i~O, where (#j : R : B.j) denotes the number of jER satisfying boolean expression
B.j. Elements of streams are indexed from O.

The OCL problem is called a window computation since B(i) is determined by the
N elements of window A(i-NooiJ. Parameter N is called the window length. In this
computation, from each window of length N of the input stream A it is computed how
many times the last element of that window occurs in it. For i<N, the window contains
negatively indexed elements of input stream A. In the sequel, we assume A(- j)=O for
j>O. Each successive element of stream B is obtained by computing a function on the
previous window that is shifted over one position. As a result, the program can produce
one element of the output stream for each element of the input stream it receives.

2.2 A fine grained program for the DeL problem

We construct a fine grained program that consists of a linear network of N processes,
numbered from 0 (see Figure 1). Each process k (05,k<N) has an output channel bk
specified as follows

bk(i) = (#j: i-N+k < j 5, i: AU) = A(i))

The specification of channel bk is a generalization of the specification of output stream B.
Notice that process 0 produces output stream B, since bo(i) = B(i).

For process N -1 we have bN - 1 (i)=1 and for the other processes we derive

bk(i)

= { specification bk }

(#j: i-N+k < j 5, i: AU) = A(i))

{split off term j=i-N+k+1}

[A(i-N+k+l) = A(i)] + (# j : i-N+k+l < j 5, i: A(j) = A(i))

{ specification bk+1 }

[A(i-N+k+1) = A(i)] + bk+t(i)

where [true] = 1 and [false] = O.
From this derivation we infer that in order to compute bk (i) process k needs to have at

its disposal two elements of the global input stream A, viz. A(i-N+k+1) and A(i). The

indices of both elements are equal for process k=N -1. Hence, process N -1 should access
input stream A. We, therefore, decide that A(i-N+k+l) and A(i) are communicated to
process k by process k+ 1 and introduce two additional output channels for process k

ck(i) - A(i-N+k)

dk(i) = A(i)

For the first output along channel Ck we have ck(O)=A(-N+k). Since negatively indexed
element of A equal 0, we have Ck(O)=O. Furthermore, we have ck(i + 1)=ck+1(i) and
dk(i) = dk+1(i). Summarizing, we have the following equations for the output channels of
process k (k i= N -1)

bk(i) - [Ck+1(i) = dk+1(i)] + bk+I(i)
Ck(O) - 0

Ck(i+l) - ck+1(i)
dk(i) = dk+I (i)

A communication behavior of process k that is consistent with this set of equations and,
moreover, introduces minimal buffering - i.e. a minimal number of variables per process -
IS

In this communication behavior, a semi-colon ';' denotes sequential composition, the Kleene
star ,*, denotes repetition, and a comma',' between two communications denotes that we
do not assign any particulax order upon the execution (both actions may even be executed
in parallel). Since neighbor processes access shared channels in the same order, deadlock
is avoided.

Programs axe written in a CSP-like notation, where c?x (c!x) denotes the receipt (send
ing) of variable x along channel c. Translation of such a program into OCCAM is straight
forward. The program text of process k reads

VCC:= 0
(bHI ?vb, CHI ?VC, dk+1 ?vd
; vb, vc, vcc := vb + [vc = vd], vce, ve
; bk!vb, Ck!VC, dk!vd
)*

In this program we have four vaxiables of type integer (vb, ve, vec, and vd).
Although in an implementation on a processor network we are not that much interested

in the number of variables a program uses, we nevertheless mention this number, since our
programs can also be implemented as a VLSI circuit where chip area (heavily depending
on the number of variables used) is one of the main design restrictions [7].

2.3 A short complexity analysis

We conclude this section with a short complexity analysis of the fine grained parallel
program. We assume that each process is allocated to a separate processor. A so-called
sequence function 0" is used to analyse the time complexity of the program. 0"(e, i) denotes
the time on which the i-th communication along channel e can be scheduled. Computations,
denoted by T, are also taken into account. On account of symmetry between channels bk ,

Ck, and dk , the communication behavior of process k (including computations) can be
simplified to (dk+l; T; dk)*. As a complexity measure for a (concurrent) communication
statement and for the computation, T, we take a and ;3 time units, respectively. We obtain
the following sequence function

O"(dk , i) = a + (N-k)(a+;3) + i(2a+;3)

This sequence function is correct on account of 0"(dk , i)-O"(dk+I, i)=a+;3 and 0"(dk+I, i+l)-O"(d k , i)=
We are primarily interested in channel boo The time needed for the production of L outputs
along channel bo is denoted by tel). Hence, tel) = O"(do,L -1) giving

tel) = a(N+2L-l) + ;3(NH-l)

A sequential program takes approximately sell = LN;3 time units. For L ~ N, our
h d f ill-) - LN{3 - N(---L-) program as a spee up 0 tlL} - 2La+L{3 - 2a+Il'

The efficiency of the program is defined by the quotient of the speedup and the number
of processors used. In our example, N processors are used. We, therefore, obtain an
ffi . f ---L- 1 e clency 0 2a+1l = (2a/{3)+I'

Notice that the communication overhead 2; determines both speedup and efficiency.
The larger the communication overhead the lower the speedup of the parallel program. For
2; ;,; 0, i.e. the communication time can be neglected in comparison with the computation
time, we have an optimal efficiency of 1.

3 Design of coarse grained parallel programs

The complexity analysis of the previous section shows that the efficiency of a parallel pro
gram is determined by the communication overhead 2;. For the OCL problem a transputer
implementation would, by counting the number of cycles a computation and communica
tion take [8), typically give 2; ;,; 7, yielding only ~-th of the optimal efficiency. Although a
transputer has a relatively efficient means of communication, the communication overhead
of the fine grained program is too large for efficient execution (other processor networks
suffer from even larger communication overheads). We, therefore, need a technique to
reduce the communication overhead in order to design efficient parallel programs for pro
cessor networks. A VLSI implementation would typically give a communication overhead
of 2; ;,; t [7).

In the remainder of this paper we discuss two techniques for reducing the communication
overhead. By reducing the communication overhead we obtain parallel programs of a

coarser grain. One technique for enlarging the grain size of a parallel program is to compose
larger processes from a number of processes, say M, of the fine grained program. This
technique is called an [M,lJ-transformation. The computation time within such a process
increases by a factor M, giving a communication overhead of ~!J. A second technique
for enlarging the grain size is a combination of composing larger processes and composing
larger messages, i.e. messages that consist of a number of values that are communicated
as a single packet. Assuming that a communication takes a communication setup time
and a number of time units depending on the amount of data to be transferred, we are
able to save (K -1) times a communication setup time by transferring a single packet of K
values instead of K single values. In the sequel, we will always compose K processes of the
fine grained program when introducing packet size K, thereby expecting a communication
overhead of at most ~!J. We refer to this technique as a [K, KJ-transformation.

3.1 The [M, I]-transformation

In an [M, IJ-transformation the computation time within a process is increased by compos
ing a process from M processes of the fine grained program. The fine grained program for
the OCL problem consists of N processes. As a result, the program obtained by applying
an [M, IJ-transformation consists of Z processes (assume that M is a divisor of N). With
each process k (05k< ~) of the transformed program we associate an output channel Bk
that is specified as

Bk(i) = (#j: i-N+kM < j 5 i: A(j) = A(i))

Notice that process 0 produces output stream B, since B(i) - Ba(i). For process k
(hr'~-l) we derive

Bk(i)
{ specification Bk }

(#i : i-N+kM < j 5 i : AU) = A(i))
{split off j: i-N+kM < j 5 i-N+(k+l)M}

(#j: i-N+kM < j 5 i-N+(k+l)M: AU) = A(i))

+ (#j : i-N+(k+l)M < j :::; i : A(j) = A(i))

{ rewrite range of quantification; specification Bk+l }

(#j: 0 < j :::; M: A(kM+i-N+j) = A(i)) + Bw(i)

From this relation we infer that A(i) and A(kM+i-N .. (k+l)M+i-NJ are needed for the
computation of Bk(i). We decide that A«k+l)M+i-N) and A(i) are communicated to
process k by process k+l along channels Ck+1 and Dk+I. This gives rise to the following
two specifications

Ck(i) = A(i-N+kM)

Dk(i) - A(i)

Moreover, we introduce array V of dimension M local to process k satisfying

V(h) = A(i-N+kM+h)

for 0 :::; h < M. With these definitions we come to the following structure of the program
of process k in which only statement list S has to be determined

m:= 0; dom '" M --+ V(m):= O;m :=m + lad
;i:= 0;

(Bk+1 ?vb, Ck+! ?ve, Dk+1 ?vd

)*

{V(h) = A(i-N+kM+h) II vb = Bk+l(i) II ve = Ck+l(i) II vd = Dk+!(i)}
S

{V(h)=A(i+l-NHM+h) II vb=Bk(i) II ve=Ck(i) II vd=Dk(i)}
Bk!vb, Ck!ve, Dk!vd
i:= i + 1

For statement list S we find

ve, V(O) := V(O), ve
;m := 0; dam", M-l --+ V(m), V(m + 1) := V(m + 1), V(m); m:= m + Iod
;vb:=vb+(#j: O:::;j < M: V(m) =vd)

Array V can more efficiently be implemented as a cyclic array. Therefore, the execution
time of S is determined by the calculation of Bk(i), i.e. assignment of variable vb.

In the above program we have, apart from some auxiliary variables, M +3 variables,
viz. array V and variables vb, ve, and vd.

As expected, an [M, IJ-transformation where M=I yields a program that resembles the
fine grained solution of the OCL problem.

3.2 The [K, KJ-transformation

In a [K, KJ-transformation not only the computation time is increased by composing larger
processes out of processes of the fine grained solution, but also the communication time is
decreased by composing larger messages. Communication time of a messages containing
K values is modeled as 0'0+ J{ 0'1, where 0'0+0'1 is the time for communicating a single
value: 0'0+0'1 =0'. Since J{ fine grained processes are composed, the number of processes
in a [K, KJ-transformation is ~. Along output channel bh of process h arrays of values
are communicated. The p-th index of the array communicated in the i-th communication
along channel bh is denoted by bh(i)(PJ and specified as (O:::;h<Z)

bh(i)(PJ = (#j: iK+p-N+hK < j:::; iK+p: AU) = A(iK+p))

for i~O and O:::;p<K. Notice that bo(i)(PJ = B(iK+p). In the derivation of a program for
the [K, KJ-transformation two additional output channels, i\ and dh , for process h have to

'f

be introduced (cf. derivations of the fine grained program and the [M, I]-transformation).
The specification of both channels is

ch(i)(P] = A((i+h)K-N+p)

dh(i)(P] = A(iK+p)

Given these specifications we derive for h(i)(P] (O:Sh<Z-I)

bh(i)(P]

=

{ specification bh }

(#j : iK+p-N+hK < j:S iK+p: AU) = A(iI{+p))

{ split range of quantification; specification bh+1 }

(#j : iK+p-N+hK < j:S iK+p-N+(h+l)K: AU) = A(iK+p)) + bhH(i)(P]

{calculus}

(#j: 0 < j:S K II p+j < K: A((i-l+h+l)K-N+(p+j)) = A(iK + p))

+(#j: 0 < j:S KIIK:S p+j < 2K: A((i+h+l)K-N+(p+j-K)) = A(iI{+p))

+ bhH(i)(P]

{ specification ChH and dhH }

(#j: 0 < j:S K II p+j < K: chH(i-I)(P+j] = dh+1(i)(P])

+ (#j: 0 < j :S K II p+j ~ K: ChH(i)(P+j-K] = dh+1 (i)(P])

+ bh+1(i)(P]

The program text of process h for the [K, KJ-transformation now boils down to

p:= 0; do p ~ K -> Vee(p) := O;p:= p + Iod
(bh+1 ?V B, Ch+l ?Ve, dh+1?V D

)*

p:=O
dop~K

od

-> VB(P]:= VB(P] + (#j: 0 < j:S K II p+j < K: vee(p+j] = VD(P])
+ (#j: 0 < j:S K II p+j ~ K: Ve(p+j-K] = VD(P])

;p:=p+l

ve, vee := vee, ve
bhiV B, ChiVe, dhiV D

where variables VB, ve, vee, and VD are arrays of dimension K.

3.3 A complexity analysis

The programs of both the [M, I]-transformation and the [K, K]-transformation have the
same structure as the fine grained program of Section 2.3. For the communication time and

fI

computation time of the [M, I]-transformation we take a and M(3 time units, respectively.
Considering that the number of processes equals Z, we have

C7(Dbi) = a + (~-k)(a+M(3) + i(2a+M(3)

The time for producing L outputs along channel Eo, denoted by tM(L), then is

resulting in a speedup of 2L:::!!Mf3 = Z (2a':J.ft f3) and an efficiency of (2a/irf3)+I)' for L ~ N.
The communication overhead for an [M, I]-transformation is ~~, like we expected it to be.

For the communication time and computation time of the [K, K]-transformation we
take ao+ K a1 and K2 (3 time units, respectively. Here, the number of processors equals fiC.
We have

a(dh, i) = (ao+Kat) + (~-h)((ao+Kat)+K2(3) + i(2(aO+Ka1)+I{2(3)

If the time needed for the production of L outputs along channel 1,0 is denoted by tK(L),
we have

since i< messages contain L values. As a result, we obtain a speedup of 2(L/K)(a;:faIl+LKf3 =

~(2(ao+::~?)+K'f3) and an efficiency of (2(ao+K a~)/K'f3)+I)' As expected, the [K, K]-transformation
yields a communication overhead of 2(a';7,Ka') (:::; ~~ = k~).

Next, we consider the number of variagles needed in the programs. Auxiliary variables
are not considered. In the fine grained program, 4 variables have been declared for each
process, resulting in a total number of 4N variables. A process of the [M, I]-transformation
requires M +3 variables. This results in fj (M +3) = N + "J: variables, since a program
consists of fj processes. For the [K, K]-transformation, we obtain a total of 4N variables.
In VLSI, one of the main design restrictions, chip area, depends mostly on the number
of variables needed in the program and an [M, I]-transformation offers the possibility to
reduce that number.

4 Experimental results

In this section we present the experimental results obtained from an OCCAM implemen
tation of the OCL problem on a 51 TSOO-transputer network. Experimental results will be
related to the complexity analysis of the previous section.

In the implementation each processor executes at most one process. This choice re
sembles the assumptions made in the complexity analysis and, thereby, makes verification
of theoretical results by experiments possible. Allocating multiple processes at a single

o . ;

processor requires another theoretical complexity analysis that is beyond the scope of this
paper.

In the experiments, we do not measure the time for producing L output values, but
for consuming L input values (i.e. we consider throughput). The reason for that is not
fundamental, it only made the implementation simpler. When verifying the theoretical
results we should consider the sequence function of the input channel, instead of the output
channel.

4.1 Experimental Results for the [M,l]-transformation

We carried out experiments for two problem instances, viz. one problem of problem size
N=50 and one of problem size N=500. We measured the time for consuming L=100, 000
input values. The results are summarized is the following table (et = elapsed time in ms;
pr = number of processes involved in the computation)

N=50 N = 500
M et pr M et pr

1 2781 50 10 5301 50
2 3060 25 20 8267 25
5 3900 10 25 9707 20

10 5300 5 50 16899 10
25 9700 2 100 31299 5
50 16100 1 250 74499 2

500 149742 1

Experimental results for [M,IJ-transformation

Notice the scalability of the algorithm by comparing the results that have the same param
eter M. Notice, also, that the computation time increases, resulting is a smaller speedup.
The efficiency, however, increases. As usual, there is a trade-off between speedup and
efficiency.

For consumption of L input values, the theoretical complexity analysis gives

17(DN/M, L-l) = (2L-l)a + M(L-l),8

Given this formula and the experimental results, we obtain 13 equations from which a and
,8 can be deduced. We find

a = 12.33/ls

,8 - 2.88/ls

with an accuracy of more than 99%. As a result, the ratio 't equals 8.6 which comes

close to the estimated communication overhead of 2; ~ 7, considering the fact that a

to

recelvmg process may not always want to accept a communication immediately. The
sequential execution time, LN(3, is 14.4 sec. and 144 sec. for problem size N=50 and
N=500, respectively. As an example of the trade-off between speedup and efficiency, for
problem size N=500 we have: M=10 gives a speedup of 27.1 and an efficiency of 54%, and
M=100 gives a speedup of 4.6 and an efficiency of 92%.

4.2 Experimental results for the [K, Kj-transformation

For the [I<, I<j-transformation the same experiments have been carried out as for the [M, 1j
transformation. The results are summarized in the following table (L = 100,000)

N=50 N=500
I< et pr I< et pr
1 2883 50 10 4017 50
2 2559 25 20 6457 25
5 2938 10 25 7667 20

10 4012 5 50 13739 10
25 7663 2 100 25912 5
50 13136 1 250 62593 2

500 129550 1

Experimental results for [I<, I<j-transformation

For the consumption of L input values, the theoretical complexity analysis gives

- L L 2 L
a(dN / K , I<-1) = (2 I<-l)(ao+I<al) +I< (I<-1)(3

We have 13 equations for parameters aD, ai, and (3 and obtain

aD 5.77/1-8

al - 7.42/1-8

(3 = 2.45/1-8

with an accuracy of more than 99%. Given tK(L), the time for producing L outputs, we
infer that for large L the execution time is minimized for I< =J~. In this case, we find
I< =2.2 . The experimental results indeed show that the execution time for I< =2 is less
than the execution time for I< =1.

5 Concluding Remarks

In this paper we have presented two techniques for designing parallel programs of a pa
rameterized grain size. Such a program offers the attractive possibility of tuning it to the

characteristics of the machine on which it is executed. This fact is the more advantageous
since it often is a priori not clear what the grain size of a program should be in order to
obtain a good performance.

Both techniques started from a fine grained solution. In the [M, I)-transformation we
compose M cells of the fine grained solution resulting in a larger cell. In the [I<, I<)-solution
we not only compose I< cells of the fine grained program, but also compose larger messages
by combining I< communications into a single packet. In both techniques we are able to
control the communication overhead of an implementation by setting the parameter to an
appropriate value. In fact, both techniques are instances of a more general technique, the
[M, I<)-transformation, in which M cells are composed and in which I< communications
are composed into a single packet. It can be shown that given a fine grained program
(of a certain regular structure) it is always possible to apply an [M, I<J-transformation,
provided that I< is a divisor of M. Designing an application now boils down to two steps,
viz. designing a fine grained program and applying an [M, I<J-transformation [9). By this
approach we can benefit from the experience gained in the design of fine grained programs
[10, 5, 4).

It is possible to implement our programs in VLSI [7J. In VLSI, chip area is one of the
main design restrictions. We have seen that applying an [M, I)-transformation can reduce
the total number of variables of a program and thereby reduce the chip area needed.
Experiments with the DICY system at the Philips Research Laboratories have indeed
demonstrated this property of the transformation.

We have carried out a number of experiments on a 51 T800-transputer network. For
both the [M,lJ-transformation and the [I<, I<]-transformation the experimental results
are conform to the theoretical complexity analysis. In the experiments, each process is
allocated to a separate processor. The computation will be more efficient if a number of
processes share a processor, e.g. by a cyclic allocation scheme. In that case, however, the
theoretical results presented in this paper do not apply anymore.

[1 J B. Kruatrachue and T. Lewis, Grain size determination for parallel processing, IEEE
Software, Jan. 1988, pp. 23-32.

[2J C. McCreary and H. Gill, Automatic determination of grain size for efficient parallel
processing, Comm. of the ACM, Sept. 1989, Vol. 32, No.9, pp. 1073-1078.

[3) D.J. Kuck, R.H. Kuhn, B. Leasure, and M. Wolfe, The structure of an advanced
vectorizer for pipelined processors, Proc. 4th Int. Computer Software Appl. Conf. ,
Oct. 1980.

[4) M. Rem, Trace theory and systolic computations, in: J. W. de Bakker et aJ. , Eds. ,
PARLE Parallel Architectures and Languages Europe Vol. 1, Lecture Notes in Com
puter Science 258 (Springer-Verlag, Berlin, 1987) 14-33.

[5] A. Kaldewaij and M. Rem, The derivation of systolic computations, Science of Com
puter Programming 14 (1990), North-Holland, pp. 229-242.

[6] G. Zwaan, Parallel Computations, Ph. D. Thesis, Eindhoven University of Technology,
The Netherlands (1989).

[7] K. van Berkel, J. Kessels, M. Roncken, R.W.J.J. Saeijs, and F. Schalij, The VLSI
programming language Tangram and its translation into handshake circuits, in: Proc.
of the European Design Automation Conference, 1991.

[8] INMOS, Transputer instruction set: A compiler writer's guide, London, Prentice Hall,
1988.

[9] P. Struik, Designing parallel programs of parameterized grain size, POOMA docu
ment, no. 0111, Philips Research Laboratories Eindhoven, The Netherlands, Nov.,
1989.

[10] P. Struik, A systematic design of a parallel program for Dirichlet convolution, Science
of Computer Programming 15 (1990), special issue, North-Holland, pp. 185-200.

In this series appeared:

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T.Verhoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

89/13 A.T.M.Aerts
K.M. van Hee
M.W.H. Hesen

89/14 H.C.Haesen

89/15 J.S.c.P. van
der Woude

89/16 A.T.M.Aerts
K.M. van Hee

89/17 M.J. van Diepen
K.M. van Hee

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a parallel program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topolOgy.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

A concise formal framework for data modeling.

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

90/1 W.P.de Roever-
H.Barringer-
C.Courcoubetis-D.Gabbay
R.Gertb-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gertb

90/4 A. Peeters

90/5 lA. BlZOzowski
1. C. Ebergen

90/6 A.J.JM. Marcelis

90n A.J.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Fonnal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate netwo1Xs, p. 23.

Typed ioference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A fonnal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving tennination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls, p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance AnalYSis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.I.J.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

Eldorado: Architecture of a Functional Database
Management System. p. 19.

An example of proving attribute granunars correct:
the representation of arithmetical expressions by DAGs.
p.25.

Transforming Functional Database Schemes to Relational
Representations. p. 21.

Transformational Query Solving. p. 35.

Some categorical properties for a model for second order
lambda calculus with sUbtyping. p. 21.

Knowledge Base Systems. a Formal Model. p. 21.

Assertional Data Reification Proofs: Survey and
Perspective. p. 18.

Schedule Management: an Object Oriented Approach. p.
26.

Z and high level Petri nets. p. 16.

Formal semantics for BRM with examples. p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness. p. 52.

The GOOD based hypertext reference model. p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy. p. 17.

A compoSitional proof system for dynamic proces
creation. p. 24.

Correctness of Acceptor Schemes for Regular Languages.
p. 31.

An AJgebra for Process Creation. p. 29.

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

	Abstract
	1. Introduction
	2. Design of a fine grained parallel program
	2.1 Specification of the OCL problem
	2.2 A fine grained program for the OCL problem
	2.3 A short complexity analysis
	3. Design of coarse grained parallel programs
	3.1 The [M,1]-transformation
	3.2 The [K,K]-transformation
	3.3 A complexity analysis
	4. Experimental results
	4.1 Experimental results for the [M,1]-transformation
	4.2 Experimental results for the [K,K]-transformation
	5. Concluding remarks

