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Techniques for Designing Efficient Parallel 
Programs 

Pieter Struik 
Department of Mathematics and Computing Science 

Eindhoven University of Technology 
P.O. Box 513, 5600 MB Eindhoven, the Netherlands 

Abstract 

In this paper we present techniques for designing parallel programs. These tech
niques are calculational, i.e. starting from a formal specification of the problem we 
design a program by transforming the specification in a number of steps. The pro
grams that we obtain are correct by design. We demonstrate two techniques by 
means of an example. First, we illustrate the derivation of a fine grained program. 
Since the communication overhead of such a program is too large, it can not be 
implemented on a processor network (e.g. transputer network) efficiently. We, sub
sequently, demonstrate two techniques for designing programs of a parameterized 
grain size. For obtaining efficient execution, such programs offer the possibility of 
tuning to the characteristics of the machine on which it is executed. Finally, we give 
a complexity analysis of the techniques presented and compare the results from the 
analysis to experimental results obtained from a transputer implementation. 
keywords: design techniques, parallel programming, grain size 

1 Introduction 

In this paper we present techniques for deriving parallel programs of parameterized grain 
size. We consider a parallel program to be a collection of processes that interact with each 
other by exchanging messages. For efficient execution of parallel programs it is important 
that the partitioning of programs into processes is done properly. In particular, the grain 
size of processes is important. Processes that perform a lot of computations between 
successive communications with other processes are said to have a large grain size. 

When designing a parallel program it is a difficult to determine a grain size that yields 
a good performance when the program is executed [1, 2J. It is therefore advantageous to 
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postpone this design decision by designing a parallel program that has a parameterized 
grain size. Such a program offers the possibility of tuning it to the characteristics of the 
machine on which it is executed. 

Much research has been done on extracting parallelism from sequential programs [3]. 
In our technique, however, we follow the opposite direction. Starting from a fine grained 
parallel program we construct programs of parameterized grain size. 

This paper is organized as follows. In Section 2 we briefly discuss a technique for 
deriving fine grained parallel programs. This technique is illustrated by means of a so
called window computation, viz. the Occurrence Count Last problem (OCL). We conclude 
Section 2 by giving a short complexity analysis of the program. In Section 3 the basic 
idea of this paper is presented. Based on the program derived in Section 2, we construct 
parallel programs of parameterized grain size for the OCL problem. We demonstrate two 
techniques. In Section 4, we present some experimental results obtained from a transputer 
implementation of the problem. Experiments have been carried out on a 51-transputer 
network!. The results will be related to the complexity analysis worked out in Section 3. 
Finally, Section 5 gives some concluding remarks. 

2 Design of a fine grained parallel program 

In this section, we present the derivation of a fine grained program for the OCL problem. 
Starting from a specification, we construct a linear array of processes that communicate 
with each other by exchanging messages over channels. We derive a set of equations that 
define the values communicated along output channels in terms of received values along in
put channels. Since inputs on which an output depends should be received before producing 
that output, the set of defining equations gives rise to a partial order on communications 
along channels. Given this partial order we construct a consistent communication behavior 
that specifies in which order communications along the channels of a process take place. 
Given the communication behavior and the set of equations, the program text of a process 
can easily be written. We conclude this section with a short complexity analysis of the 
constructed program. Since the topic of this paper is not on the design of fine grained 
programs, we only briefly discuss the design method. For more examples of the design 
method we refer to [4, 5, 6]. The derivation of a fine grained program for a particular 
problem constitutes a basis that can be fruitfully exploited when designing a program of 
parameterized grain size. 

2.1 Specification of the OCL problem 

For a fixed N (N::::l) and an input stream A of integers, the OeL problem is the compu
tation of output stream B satisfying 

B(i) = (# j : i-N < j ::;: i : A(j) = A(i)) 

1 acquired through a grant from the European Community, Parallel Computing Action of ESPRIT, 
PCA No. 4038 
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Figure 1: linear arrangement of processes for the OCL problem 

for i~O, where (#j : R : B.j) denotes the number of jER satisfying boolean expression 
B.j. Elements of streams are indexed from O. 

The OCL problem is called a window computation since B(i) is determined by the 
N elements of window A(i-NooiJ. Parameter N is called the window length. In this 
computation, from each window of length N of the input stream A it is computed how 
many times the last element of that window occurs in it. For i<N, the window contains 
negatively indexed elements of input stream A. In the sequel, we assume A( - j)=O for 
j>O. Each successive element of stream B is obtained by computing a function on the 
previous window that is shifted over one position. As a result, the program can produce 
one element of the output stream for each element of the input stream it receives. 

2.2 A fine grained program for the DeL problem 

We construct a fine grained program that consists of a linear network of N processes, 
numbered from 0 (see Figure 1). Each process k (05,k<N) has an output channel bk 
specified as follows 

bk(i) = (#j: i-N+k < j 5, i: AU) = A(i)) 

The specification of channel bk is a generalization of the specification of output stream B. 
Notice that process 0 produces output stream B, since bo(i) = B(i). 

For process N -1 we have bN - 1 (i)=1 and for the other processes we derive 

bk(i) 

= { specification bk } 

(#j: i-N+k < j 5, i: AU) = A(i)) 

{split off term j=i-N+k+1} 

[A(i-N+k+l) = A(i)] + (# j : i-N+k+l < j 5, i: A(j) = A(i)) 

{ specification bk+1 } 

[A(i-N+k+1) = A(i)] + bk+t(i) 

where [true] = 1 and [false] = O. 
From this derivation we infer that in order to compute bk ( i) process k needs to have at 

its disposal two elements of the global input stream A, viz. A(i-N+k+1) and A(i). The 



indices of both elements are equal for process k=N -1. Hence, process N -1 should access 
input stream A. We, therefore, decide that A(i-N+k+l) and A(i) are communicated to 
process k by process k+ 1 and introduce two additional output channels for process k 

ck(i) - A(i-N+k) 

dk(i) = A(i) 

For the first output along channel Ck we have ck(O)=A( -N+k). Since negatively indexed 
element of A equal 0, we have Ck(O)=O. Furthermore, we have ck(i + 1)=ck+1(i) and 
dk(i) = dk+1(i). Summarizing, we have the following equations for the output channels of 
process k (k i= N -1) 

bk(i) - [Ck+1(i) = dk+1(i)] + bk+I(i) 
Ck(O) - 0 

Ck(i+l) - ck+1(i) 
dk( i) = dk+I (i) 

A communication behavior of process k that is consistent with this set of equations and, 
moreover, introduces minimal buffering - i.e. a minimal number of variables per process -
IS 

In this communication behavior, a semi-colon ';' denotes sequential composition, the Kleene 
star ,*, denotes repetition, and a comma',' between two communications denotes that we 
do not assign any particulax order upon the execution (both actions may even be executed 
in parallel). Since neighbor processes access shared channels in the same order, deadlock 
is avoided. 

Programs axe written in a CSP-like notation, where c?x (c!x) denotes the receipt (send
ing) of variable x along channel c. Translation of such a program into OCCAM is straight
forward. The program text of process k reads 

VCC:= 0 
( bHI ?vb, CHI ?VC, dk+1 ?vd 
; vb, vc, vcc := vb + [vc = vd], vce, ve 
; bk!vb, Ck!VC, dk!vd 
)* 

In this program we have four vaxiables of type integer (vb, ve, vec, and vd). 
Although in an implementation on a processor network we are not that much interested 

in the number of variables a program uses, we nevertheless mention this number, since our 
programs can also be implemented as a VLSI circuit where chip area (heavily depending 
on the number of variables used) is one of the main design restrictions [7]. 



2.3 A short complexity analysis 

We conclude this section with a short complexity analysis of the fine grained parallel 
program. We assume that each process is allocated to a separate processor. A so-called 
sequence function 0" is used to analyse the time complexity of the program. 0"( e, i) denotes 
the time on which the i-th communication along channel e can be scheduled. Computations, 
denoted by T, are also taken into account. On account of symmetry between channels bk , 

Ck, and dk , the communication behavior of process k (including computations) can be 
simplified to (dk+l; T; dk )*. As a complexity measure for a (concurrent) communication 
statement and for the computation, T, we take a and ;3 time units, respectively. We obtain 
the following sequence function 

O"(dk , i) = a + (N-k)(a+;3) + i(2a+;3) 

This sequence function is correct on account of 0"( dk , i)-O"( dk+I, i)=a+;3 and 0"( dk+I, i+l )-O"( d k , i)= 
We are primarily interested in channel boo The time needed for the production of L outputs 
along channel bo is denoted by tel). Hence, tel) = O"(do,L -1) giving 

tel) = a(N+2L-l) + ;3(NH-l) 

A sequential program takes approximately sell = LN;3 time units. For L ~ N, our 
h d f ill-) - LN{3 - N(---L-) program as a spee up 0 tlL} - 2La+L{3 - 2a+Il' 

The efficiency of the program is defined by the quotient of the speedup and the number 
of processors used. In our example, N processors are used. We, therefore, obtain an 
ffi . f ---L- 1 e clency 0 2a+1l = (2a/{3)+I' 

Notice that the communication overhead 2; determines both speedup and efficiency. 
The larger the communication overhead the lower the speedup of the parallel program. For 
2; ;,; 0, i.e. the communication time can be neglected in comparison with the computation 
time, we have an optimal efficiency of 1. 

3 Design of coarse grained parallel programs 

The complexity analysis of the previous section shows that the efficiency of a parallel pro
gram is determined by the communication overhead 2;. For the OCL problem a transputer 
implementation would, by counting the number of cycles a computation and communica
tion take [8), typically give 2; ;,; 7, yielding only ~-th of the optimal efficiency. Although a 
transputer has a relatively efficient means of communication, the communication overhead 
of the fine grained program is too large for efficient execution (other processor networks 
suffer from even larger communication overheads). We, therefore, need a technique to 
reduce the communication overhead in order to design efficient parallel programs for pro
cessor networks. A VLSI implementation would typically give a communication overhead 
of 2; ;,; t [7). 

In the remainder of this paper we discuss two techniques for reducing the communication 
overhead. By reducing the communication overhead we obtain parallel programs of a 



coarser grain. One technique for enlarging the grain size of a parallel program is to compose 
larger processes from a number of processes, say M, of the fine grained program. This 
technique is called an [M,lJ-transformation. The computation time within such a process 
increases by a factor M, giving a communication overhead of ~!J. A second technique 
for enlarging the grain size is a combination of composing larger processes and composing 
larger messages, i.e. messages that consist of a number of values that are communicated 
as a single packet. Assuming that a communication takes a communication setup time 
and a number of time units depending on the amount of data to be transferred, we are 
able to save (K -1) times a communication setup time by transferring a single packet of K 
values instead of K single values. In the sequel, we will always compose K processes of the 
fine grained program when introducing packet size K, thereby expecting a communication 
overhead of at most ~!J. We refer to this technique as a [K, KJ-transformation. 

3.1 The [M, I]-transformation 

In an [M, IJ-transformation the computation time within a process is increased by compos
ing a process from M processes of the fine grained program. The fine grained program for 
the OCL problem consists of N processes. As a result, the program obtained by applying 
an [M, IJ-transformation consists of Z processes (assume that M is a divisor of N). With 
each process k (05k< ~) of the transformed program we associate an output channel Bk 
that is specified as 

Bk(i) = (#j: i-N+kM < j 5 i: A(j) = A(i)) 

Notice that process 0 produces output stream B, since B( i) - Ba( i). For process k 
(hr'~-l) we derive 

Bk(i) 
{ specification Bk } 

(#i : i-N+kM < j 5 i : AU) = A(i)) 
{split off j: i-N+kM < j 5 i-N+(k+l)M} 

(#j: i-N+kM < j 5 i-N+(k+l)M: AU) = A(i)) 

+ (#j : i-N+(k+l)M < j :::; i : A(j) = A(i)) 

{ rewrite range of quantification; specification Bk+l } 

(#j: 0 < j :::; M: A(kM+i-N+j) = A(i)) + Bw(i) 

From this relation we infer that A(i) and A(kM+i-N .. (k+l)M+i-NJ are needed for the 
computation of Bk(i). We decide that A«k+l)M+i-N) and A(i) are communicated to 
process k by process k+l along channels Ck+1 and Dk+I. This gives rise to the following 
two specifications 

Ck(i) = A(i-N+kM) 

Dk(i) - A(i) 



Moreover, we introduce array V of dimension M local to process k satisfying 

V(h) = A(i-N+kM+h) 

for 0 :::; h < M. With these definitions we come to the following structure of the program 
of process k in which only statement list S has to be determined 

m:= 0; dom '" M --+ V(m):= O;m :=m + lad 
;i:= 0; 

( Bk+1 ?vb, Ck+! ?ve, Dk+1 ?vd 

)* 

{V(h) = A(i-N+kM+h) II vb = Bk+l(i) II ve = Ck+l(i) II vd = Dk+!(i)} 
S 

{V(h)=A(i+l-NHM+h) II vb=Bk(i) II ve=Ck(i) II vd=Dk(i)} 
Bk!vb, Ck!ve, Dk!vd 
i:= i + 1 

For statement list S we find 

ve, V(O) := V(O), ve 
;m := 0; dam", M-l --+ V(m), V(m + 1) := V(m + 1), V(m); m:= m + Iod 
;vb:=vb+(#j: O:::;j < M: V(m) =vd) 

Array V can more efficiently be implemented as a cyclic array. Therefore, the execution 
time of S is determined by the calculation of Bk(i), i.e. assignment of variable vb. 

In the above program we have, apart from some auxiliary variables, M +3 variables, 
viz. array V and variables vb, ve, and vd. 

As expected, an [M, IJ-transformation where M=I yields a program that resembles the 
fine grained solution of the OCL problem. 

3.2 The [K, KJ-transformation 

In a [K, KJ-transformation not only the computation time is increased by composing larger 
processes out of processes of the fine grained solution, but also the communication time is 
decreased by composing larger messages. Communication time of a messages containing 
K values is modeled as 0'0+ J{ 0'1, where 0'0+0'1 is the time for communicating a single 
value: 0'0+0'1 =0'. Since J{ fine grained processes are composed, the number of processes 
in a [K, KJ-transformation is ~. Along output channel bh of process h arrays of values 
are communicated. The p-th index of the array communicated in the i-th communication 
along channel bh is denoted by bh(i)(PJ and specified as (O:::;h<Z) 

bh(i)(PJ = (#j: iK+p-N+hK < j:::; iK+p: AU) = A(iK+p)) 

for i~O and O:::;p<K. Notice that bo(i)(PJ = B(iK+p). In the derivation of a program for 
the [K, KJ-transformation two additional output channels, i\ and dh , for process h have to 
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be introduced (cf. derivations of the fine grained program and the [M, I]-transformation). 
The specification of both channels is 

ch(i)(P] = A((i+h)K-N+p) 

dh(i)(P] = A(iK+p) 

Given these specifications we derive for h(i)(P] (O:Sh<Z-I) 

bh(i)(P] 

= 

{ specification bh } 

(#j : iK+p-N+hK < j:S iK+p: AU) = A(iI{+p)) 

{ split range of quantification; specification bh+1 } 

(#j : iK+p-N+hK < j:S iK+p-N+(h+l)K: AU) = A(iK+p)) + bhH(i)(P] 

{calculus} 

(#j: 0 < j:S K II p+j < K: A((i-l+h+l)K-N+(p+j)) = A(iK + p)) 

+(#j: 0 < j:S KIIK:S p+j < 2K: A((i+h+l)K-N+(p+j-K)) = A(iI{+p)) 

+ bhH(i)(P] 

{ specification ChH and dhH } 

(#j: 0 < j:S K II p+j < K: chH(i-I)(P+j] = dh+1(i)(P]) 

+ (#j: 0 < j :S K II p+j ~ K: ChH(i)(P+j-K] = dh+1 (i)(P]) 

+ bh+1(i)(P] 

The program text of process h for the [K, KJ-transformation now boils down to 

p:= 0; do p ~ K -> Vee(p) := O;p:= p + Iod 
( bh+1 ?V B, Ch+l ?Ve, dh+1?V D 

)* 

p:=O 
dop~K 

od 

-> VB(P]:= VB(P] + (#j: 0 < j:S K II p+j < K: vee(p+j] = VD(P]) 
+ (#j: 0 < j:S K II p+j ~ K: Ve(p+j-K] = VD(P]) 

;p:=p+l 

ve, vee := vee, ve 
bhiV B, ChiVe, dhiV D 

where variables VB, ve, vee, and VD are arrays of dimension K. 

3.3 A complexity analysis 

The programs of both the [M, I]-transformation and the [K, K]-transformation have the 
same structure as the fine grained program of Section 2.3. For the communication time and 
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computation time of the [M, I]-transformation we take a and M(3 time units, respectively. 
Considering that the number of processes equals Z, we have 

C7(Dbi) = a + (~-k)(a+M(3) + i(2a+M(3) 

The time for producing L outputs along channel Eo, denoted by tM(L), then is 

resulting in a speedup of 2L:::!!Mf3 = Z (2a':J.ft f3 ) and an efficiency of (2a/irf3 )+I)' for L ~ N. 
The communication overhead for an [M, I]-transformation is ~~, like we expected it to be. 

For the communication time and computation time of the [K, K]-transformation we 
take ao+ K a1 and K2 (3 time units, respectively. Here, the number of processors equals fiC. 
We have 

a(dh, i) = (ao+Kat) + (~-h)((ao+Kat)+K2(3) + i(2(aO+Ka1)+I{2(3) 

If the time needed for the production of L outputs along channel 1,0 is denoted by tK(L), 
we have 

since i< messages contain L values. As a result, we obtain a speedup of 2(L/K)(a;:faIl+LKf3 = 

~( 2(ao+::~?)+K'f3) and an efficiency of (2(ao+K a~)/K'f3)+I)' As expected, the [K, K]-transformation 
yields a communication overhead of 2(a';7,Ka') ( :::; ~~ = k~). 

Next, we consider the number of variagles needed in the programs. Auxiliary variables 
are not considered. In the fine grained program, 4 variables have been declared for each 
process, resulting in a total number of 4N variables. A process of the [M, I]-transformation 
requires M +3 variables. This results in fj (M +3) = N + "J: variables, since a program 
consists of fj processes. For the [K, K]-transformation, we obtain a total of 4N variables. 
In VLSI, one of the main design restrictions, chip area, depends mostly on the number 
of variables needed in the program and an [M, I]-transformation offers the possibility to 
reduce that number. 

4 Experimental results 

In this section we present the experimental results obtained from an OCCAM implemen
tation of the OCL problem on a 51 TSOO-transputer network. Experimental results will be 
related to the complexity analysis of the previous section. 

In the implementation each processor executes at most one process. This choice re
sembles the assumptions made in the complexity analysis and, thereby, makes verification 
of theoretical results by experiments possible. Allocating multiple processes at a single 
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processor requires another theoretical complexity analysis that is beyond the scope of this 
paper. 

In the experiments, we do not measure the time for producing L output values, but 
for consuming L input values (i.e. we consider throughput). The reason for that is not 
fundamental, it only made the implementation simpler. When verifying the theoretical 
results we should consider the sequence function of the input channel, instead of the output 
channel. 

4.1 Experimental Results for the [M,l]-transformation 

We carried out experiments for two problem instances, viz. one problem of problem size 
N=50 and one of problem size N=500. We measured the time for consuming L=100, 000 
input values. The results are summarized is the following table (et = elapsed time in ms; 
pr = number of processes involved in the computation) 

N=50 N = 500 
M et pr M et pr 

1 2781 50 10 5301 50 
2 3060 25 20 8267 25 
5 3900 10 25 9707 20 

10 5300 5 50 16899 10 
25 9700 2 100 31299 5 
50 16100 1 250 74499 2 

500 149742 1 

Experimental results for [M,IJ-transformation 

Notice the scalability of the algorithm by comparing the results that have the same param
eter M. Notice, also, that the computation time increases, resulting is a smaller speedup. 
The efficiency, however, increases. As usual, there is a trade-off between speedup and 
efficiency. 

For consumption of L input values, the theoretical complexity analysis gives 

17(DN/M, L-l) = (2L-l)a + M(L-l),8 

Given this formula and the experimental results, we obtain 13 equations from which a and 
,8 can be deduced. We find 

a = 12.33/ls 

,8 - 2.88/ls 

with an accuracy of more than 99%. As a result, the ratio 't equals 8.6 which comes 

close to the estimated communication overhead of 2; ~ 7, considering the fact that a 
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recelvmg process may not always want to accept a communication immediately. The 
sequential execution time, LN(3, is 14.4 sec. and 144 sec. for problem size N=50 and 
N=500, respectively. As an example of the trade-off between speedup and efficiency, for 
problem size N=500 we have: M=10 gives a speedup of 27.1 and an efficiency of 54%, and 
M=100 gives a speedup of 4.6 and an efficiency of 92%. 

4.2 Experimental results for the [K, Kj-transformation 

For the [I<, I<j-transformation the same experiments have been carried out as for the [M, 1j
transformation. The results are summarized in the following table (L = 100,000) 

N=50 N=500 
I< et pr I< et pr 
1 2883 50 10 4017 50 
2 2559 25 20 6457 25 
5 2938 10 25 7667 20 

10 4012 5 50 13739 10 
25 7663 2 100 25912 5 
50 13136 1 250 62593 2 

500 129550 1 

Experimental results for [I<, I<j-transformation 

For the consumption of L input values, the theoretical complexity analysis gives 

- L L 2 L 
a(dN / K , I<-1) = (2 I<-l)(ao+I<al) +I< (I<-1)(3 

We have 13 equations for parameters aD, ai, and (3 and obtain 

aD 5.77/1-8 

al - 7.42/1-8 

(3 = 2.45/1-8 

with an accuracy of more than 99%. Given tK(L), the time for producing L outputs, we 
infer that for large L the execution time is minimized for I< =J~. In this case, we find 
I< =2.2 . The experimental results indeed show that the execution time for I< =2 is less 
than the execution time for I< =1. 

5 Concluding Remarks 

In this paper we have presented two techniques for designing parallel programs of a pa
rameterized grain size. Such a program offers the attractive possibility of tuning it to the 



characteristics of the machine on which it is executed. This fact is the more advantageous 
since it often is a priori not clear what the grain size of a program should be in order to 
obtain a good performance. 

Both techniques started from a fine grained solution. In the [M, I)-transformation we 
compose M cells of the fine grained solution resulting in a larger cell. In the [I<, I<)-solution 
we not only compose I< cells of the fine grained program, but also compose larger messages 
by combining I< communications into a single packet. In both techniques we are able to 
control the communication overhead of an implementation by setting the parameter to an 
appropriate value. In fact, both techniques are instances of a more general technique, the 
[M, I<)-transformation, in which M cells are composed and in which I< communications 
are composed into a single packet. It can be shown that given a fine grained program 
(of a certain regular structure) it is always possible to apply an [M, I<J-transformation, 
provided that I< is a divisor of M. Designing an application now boils down to two steps, 
viz. designing a fine grained program and applying an [M, I<J-transformation [9). By this 
approach we can benefit from the experience gained in the design of fine grained programs 
[10, 5, 4). 

It is possible to implement our programs in VLSI [7J. In VLSI, chip area is one of the 
main design restrictions. We have seen that applying an [M, I)-transformation can reduce 
the total number of variables of a program and thereby reduce the chip area needed. 
Experiments with the DICY system at the Philips Research Laboratories have indeed 
demonstrated this property of the transformation. 

We have carried out a number of experiments on a 51 T800-transputer network. For 
both the [M,lJ-transformation and the [I<, I<]-transformation the experimental results 
are conform to the theoretical complexity analysis. In the experiments, each process is 
allocated to a separate processor. The computation will be more efficient if a number of 
processes share a processor, e.g. by a cyclic allocation scheme. In that case, however, the 
theoretical results presented in this paper do not apply anymore. 
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