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Chapter 1

Introduction

1.1 Introduction and historical context

The production of intense, high-brightness electron beams constitutes one of the
most challenging and interesting activities for particle accelerator physicists. The grow-
ing interest of the physics community in this kind of beams is justified by important
applications such as self-amplified spontaneous emission (SASE) free-electron-lasers
(FELs) operating in the x-ray region (see, amongst others, [1]).

FELs are laser devices which work by exchange of energy between an electron beam
and the (laser) radiation field. In order to obtain an effective exchange, the electron
beam must satisfy stringent requirements: as a rule, the higher the frequency at which
the laser is designed to operate, the more demanding are the constraints imposed on the
electron beam. To be specific, the proposed XFEL (X-ray FEL) at DESY (Deutsches
Elektronen-SYnchrotron), requires an electron bunch characterized by an energy of
about 30 GeV, a charge of 1 nC, a bunch rms length of the order of 80 fs, a normalized
transverse emittance of 1.6 mm mrad and a momentum spread of 0.01% in order to
operate at wavelengths below 0.1 nm (see [1]).

One of the challenges faced by physicists involved in the production of these bunches
is constituted by the presence of self-field induced collective effects, which may spoil
the brightness of the electron beam. When an electron bunch undergoes a motion
under the influence of external forces, its particles become sources of self-fields which
are different from the static case (when the usual space-charge forces occur) and which
obey a more general solution of Maxwell equations, derived using a retarded Green
function technique: the resulting fields are known as Liénard-Wiechert expressions
(see, for example, [2] or Section 2.2).

Although this subject has attained a considerable practical interest only in recent
years and is completely neglected in particle accelerator textbooks, its study is a long-
dated one: the first published paper we could find is due to Leonard Schiff in 1946 [3],
followed by the classical article by John Nodvick and David Saxon [4] in 1954, which
extends unpublished results obtained by Julian Schwinger in 1945.

These papers address the Coherent Synchrotron Radiation (CSR) emitted by an
electron bunch moving in a circle1, which is strictly related to the self-interaction

1According to the usual custom, the term ’CSR’ will be used in this dissertation to designate
coherent radiation from generic transversely-accelerated trajectories too, and not only from a circular
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problem. In fact, collective interactions in the direction of the particle motion induce
a net energy loss inside the bunch which can be detected, in the form of coherent
radiation, in the ’wave zone’ 2, i.e. sufficiently far away from the source so that the
electromagnetic field assumes the typical characteristics of radiation 3 .

To understand the significance of these effects it is sufficient to write down and
discuss the expression for the energy spectrum radiated by a system of N particles
undergoing an accelerated motion:(

dW

dω

)
=

(
dW

dω

)
sp

[N +N(N − 1) | F̄ (ω) |2] , (1.1)

where the subscript sp identifies quantities referring to a single particle4, while F̄ (ω)
indicates the Fourier transform of the bunch density function.

Eq. (1.1) constitutes the basis of CSR theory. In Section 2.1 we include a thorough
mathematical derivation of Eq. (1.1) adapted from [5]. The first term in N between
square brackets represents the ordinary incoherent synchrotron radiation, characterized
by a radiated energy proportional to the number of radiating particles. The second
term represents the coherent synchrotron radiation contribution. The actual coherent
radiation power spectrum depends on the particle distribution in the bunch. For photon
wavelengths equal to and longer than the bunch length, we expect all the particles
to radiate coherently and the intensity to be, roughly, proportional to the square of
the number of particles, N2, rather than linearly proportional to N as in the usual
incoherent case. On the other hand, for a reasonably smooth behavior of the form
factor F̄ (ω), the coherent radiation power falls off rapidly for wavelengths shorter than
the rms bunch length.

Any radiation emitted corresponds to a net bunch energy loss. The quadratic effect
can greatly enhance the radiation within the coherent region of the spectrum. Since
the bunch population can be from 108 to 1011 electrons, the magnitude of the effect
can be severe.

These observations constituted the driving reason, for both the FEL and the parti-
cle accelerator community, to undertake deep investigations of self-interactions within
electron beams. Self-interactions can be decomposed into longitudinal and transverse
components, with respect to the direction of the velocity of a given test (or observer)
particle. Studies on longitudinal self-fields (i.e. in the same direction of a specified test
particle motion) aim both at determining deterioration effects on the bunch energy
spread and longitudinal emittance as well as at investigating ways to use CSR as a ra-
diation source. The need for information about the bunch evolution in the transverse
direction (orthogonal to the particle motion) and estimations of transverse emittance
growth triggers detailed analysis of the self-interaction in the direction orthogonal to
the particles velocity. The latter is not sufficient, however, for fully characterizing the
particle evolution in the transverse direction. In fact, the energy spread induced by

motion.
2Also known as radiation zone, or far field zone.
3We will return to this point in Section 2.2 and in Chapter 6.
4Here we specialized our discussion, from the beginning, to the case of Synchrotron Radiation.

However, Eq. (1.1) is valid regardless the kind of radiating system we are dealing with. For example,
had we imagined to have a foil instead of a magnetic system, Eq. (1.1) would have been a valid
expression to describe Transition Radiation from a multi-particle system.
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longitudinal self-fields has its own impact on the transverse dynamics through a mag-
netic system, and only a combination of both the effects in the longitudinal and the
transverse direction can lead to a correct characterization of the particle behavior. As
we will see in the following Sections, the full evolution problem is a formidable one;
although, as we will explain in Section 1.6, in this thesis we chose to focus our attention
on a more restricted part of this issue, we should make clear that the long-term goals
of this kind of studies are, of course, a complete and satisfactory characterization of
the bunch evolution in view of applications involving high charge, very short, ultrarel-
ativistic bunches together with the utilization of this kind of phenomena for radiation
production.

CSR and its effects on ultrashort bunches have been, of course, experimentally
confirmed. The reader may refer, for example, to recent works [6] as regards beam
degradation studies and [7, 8], as concerns the use of CSR as a radiation source. It
is worth to mention, about beam degradation, that important effects driven by self-
consistent fields take place during the passage of electron beams through magnetic
chicanes, which are used for bunch compression in XFEL applications. In fact, although
several techniques are currently being investigated for producing ultrashort beams (see,
for example, [9]), the most reliable one, at present, consists of the following: first,
accelerate a long electron bunch up to ultrarelativistic energies. Second, induce a
correlated energy spread in the beam by using an RF cavity properly synchronized
with the beam, so that the tail of the bunch is more energetic than the head. Third,
send the beam through a magnetic chicane. The latter is a dispersive system composed
of several magnets and it is designed in such a way that the more energetic particles in
the tail move through a shorter path than the less energetic particles in the head, thus
allowing the tail of the bunch to catch up with the head, leading to an effective bunch
compression. The latest simulations for the XFEL project at DESY show significant
degradation of the bunch quality due to self-interaction effects, with an expected growth
of the projected transverse emittance from 0.8 mm mrad after the injector to the value
of 2.6 mm mrad after compression [1].

1.2 The self-consistent problem

The solution to the self-interaction problem is found when one is able to describe
the evolution of the electron bunch particles under the action of external fields, usually
induced by a magnetic system, and under the action of the fields produced by the
particles themselves as they evolve in the external field. From a mathematical viewpoint
this means that the equation of motion must be solved, for every particle, together with
Maxwell equations. There are two main reasons why the search for the solution of this
system of equations constitutes a formidable problem.

The first lies in the fact that Maxwell equations are coupled with the equation of
motion. The particles in the bunch start moving under the action of the external field
(for example, the magnetic field of a bending magnet) but, since they are accelerated,
they also become sources of a secondary electromagnetic field (the self-interaction field)
which enters, in its turn, as a driving term in the equation of motion. The problem
of finding a solution for this system of coupled equations is called a ”self-consistent
problem”.
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The second reason is constituted by the fact that the electromagnetic signal propa-
gates at finite speed, i.e. the speed of light. This means that, as an accelerated electron
produces an electromagnetic signal, its effect on a second particle (the test, or observer
electron) is retarded. From a practical viewpoint then, in order to include the self-field
produced by the i-th source particle in the bunch as a driving term for the motion
of a given test particle, one has to solve the following equation, known as retardation
condition: ∣∣r(t)− ir(it′)

∣∣ = c
(
t − it′

)
, (1.2)

where r(t) is the position of the test particle at the observation time t, while ir(it′)
is the position of the i-th particle at the time at which the electromagnetic signal was
emitted: as a matter of fact, to solve the self-consistent problem, one has to take into
account not only the present, but also the past history of the bunch.

In Section 2.2 we provide a full mathematical presentation of the self-consistent
problem making use of the covariant formalism, adapting to our purposes some of the
treatment in [10]. This helps to get an eyebrow description of the issue and we feel it
may be useful to report it. In our view, the choice of covariant formalism underlines
the beauty and, at the same time, the entanglements of the problem with extreme
elegance and compactness and it is well-suited for a general overview; moreover we will
make partial use of this formalism in Chapter 5.

At this point we have given an introductory overview of the situation so that one can
understand the difficulties involved in solving the self-consistent problem in toto: any
attempt at knowing the fields must provide, first, a way to characterize the evolution
of the sources but, in its turn, the evolution of the sources is only known when the
fields are known, while the finite propagation velocity of the electromagnetic signal
complicates the situation further. A possible solution to the problem is by means of
simulation techniques, which will be briefly addressed in Section 1.5.

1.3 Self-interactions and CSR

In the previous Section we described the self-consistent problem in a very generic
fashion. There we stressed the coupling between Maxwell equations and the equations
of motion, thus focusing on the self-interaction problem, more than on CSR itself.
Nevertheless, as it has been said in Section 1.1, CSR and self-interactions are deeply
related subjects. This relation can be made clear by means of the energy conservation
theorem. In fact, the energy associated with the CSR emitted by an electron bunch
must be accounted for: it obviously originates from an energy loss by the bunch which,
in its turn, is caused by self-interactions. Since the rate of energy exchange between
the electromagnetic field and an electron can be written as (eE ·v), v being the particle
velocity and E the electromagnetic (self-)field acting at the position of the particle,
it is obvious that the self-interaction component responsible for CSR, at least in the
lowest perturbation order of the equations of motion, is the longitudinal one.

It is important to realize how close CSR and longitudinal self-interactions are. It
is possible to prove, for example, (see [11, 12]) that in the case of an electron bunch
moving periodically in a circular trajectory, the rate of energy loss in the bunch equals
the rate of radiation energy passing through a far surface closed around the electrons.
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The situation is not so straightforward in the case of a more generic trajectory.
However, CSR and longitudinal self-interactions are still deeply related by the conser-
vation laws of electromagnetism. In this thesis we will be dealing both with longitudinal
self-interactions (see Chapter 3) and CSR (see Chapter 6). We feel that it is important
to develop some acquaintance with the relation between the two subjects: therefore we
study a particular but significant example in Section 2.3. There we begin from the con-
servation laws for electromagnetic fields interacting with charged particles in vacuum
and we specialize them to treat the situation of a bunch entering a circular trajectory
from an infinitely long straight path, pointing out the strict link which exists between
CSR and longitudinal self-interactions. Our conclusion eventually confirms the logical
viewpoint that the energy losses from the bunch are partly responsible for radiation
detected in the wave zone, and partly for the electromagnetic field stored in the space
surrounding the bunch (assuming that the bunch goes on moving indefinitely in the
circle, of course).

1.4 Shielding

In the previous Section we have described the link between self-interactions in the
longitudinal direction inside the bunch and CSR assuming that the bunch was moving
in free space. In this sense, conditions on the electromagnetic fields were implicitly
given, which specified the (absence of) surroundings of the electron bunch.

Although in this thesis we deal only with particles in free space, we spend here a few
words to introduce the general problem of coping with self-interactions in the presence
of surroundings other than free space. The surroundings which one has to consider are
mainly constituted by the vacuum pipe around the electron beam. The problem is of
course very complicated to deal with in a general situation, but a simplified analysis
of simple cases is anyway possible.

In general, the presence of a conductor like, for example, a vacuum pipe, suppresses
all the electromagnetic modes which do not fit the waveguide. This shielding effect is
present also as regards CSR fields, even though (see [13]) the cut-off frequency turns
out to be different from the usual wave-guide cutoff, depending non-linearly on the
pipe dimension and on the radius of curvature of the orbit. An alternative way of
thinking about this effect is to account for the formation of induced (positive) charges
on the conductor surface which will produce, in their turn, an electromagnetic field.
This field interacts with the primary field produced by the electrons weakening the
self-interaction and the CSR effect. This effect is referred to as shielding; it obviously
depends on the geometry under consideration and it becomes more and more important
as the surroundings get nearer to the electrons.

There are several methods of describing this phenomenon in a quantitative way.
One [13, 14] is based on the fact that, as is easily deduced from Eq. (1.1), the CSR
power spectrum is proportional to the squared modulus of the Fourier transform of the
current. This can be written in a more suggestive form as

PCSR(ω) = Zeff(ω)I
2(ω) , (1.3)

which constitutes a description of the radiating system including the surroundings by
means of an effective impedance Zeff : Eq. (1.3) solves, in principle, the problem of a
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quantitative description of the shielding phenomenon, but a generally valid expression
cannot be given, since it strongly depends on the geometry of the problem.

Another technique consists of using the image charge method [2]. Supposing the
material surrounding the beam is a perfect conductor, the full system constituted by
the electrons and the conductors can be proven [12] to be equivalent to another one
constituted by the same electron beam and charges displaced (and moving) ad hoc
so that the total field configuration remains the same. This method has the advan-
tage, from a theoretical viewpoint at least, that it gives the possibility to use the
same mathematical machinery used in the free space case. In the situation of an elec-
tron beam in circular motion through parallel plates separated by a distance h, it
is found [12] that the image charges which solve the problem are constituted by an
infinite array of image bunches identical to the original one, but with charges of al-
ternating signs, displaced perpendicularly to the plates and at the same longitudinal
position of the original bunch, separated by vertical displacements equal to h. In this
case, it can be found [15] that shielding effects become important when the factor
η = (2π3/3)1/2(R/h)3/2(σz/R) is greater than unity, where R is the circle radius and
σz the rms bunch length.

It is easily seen that, in many cases, shielding effects constitute an important limit
to coherent emission from microwave to far infrared in the situation of a bunch in a
ring. For example, one can see strong shielding effects taking place [12, 15] in the case
of σz = 1 mm, R = 1 m and h = 2 cm. These numbers correspond to a parameter
η � 1.6.

However, we should stress here that shielding is not always an effective mean to
suppress CSR effects. For example, in the very important case of bunch compression
chicanes, as the bunch gets shorter, the condition on the vacuum chamber height, h,
becomes unpractical; for example (see [16]), the last dipole at the second LCLS (the
Linac Coherent Light Source at Stanford, see [17]) chicane would require a chamber
height of h < 0.4 mm for an effective CSR shielding.

Moreover, the estimate given above holds only in the case of circular motion, while
the CSR interaction can lead to stronger power losses in case of transients between
magnetic elements. A generalization of these estimates which takes into account tra-
jectories different from the circular one can be found in [12].

We will not be dealing with shielding in this thesis since, although it is an important
effect, we feel it does not add much to the physics of the problem. Therefore we refer
the interested reader to specialized references given above.

1.5 Simulation approach

In Section 1.2 we introduced the self-consistent problem, while in Section 1.3 and 1.4
we described some of the issues related to it. In this Section we will proceed with our
introduction to the self-consistent issue giving the reader an overview about its possible
solutions. If one’s goal is to solve the full self-consistent problem, one has to make
choices about how to deal with the difficulties involved in its solution. One possibility
is to perform self-consistent simulations with the help of numerical techniques. Several
approaches may be followed, in principle, in order to fulfill this task.

A straightforward option (see [18]) would be to consider a model of the bunch
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based on a limited number of point-like particles, each representing many electrons
(in practice this consists of solving directly Eq. (2.20) and Eq. (2.21) coupled with
Eq. (2.22) for a value of N much smaller than the real one). The obvious advantage
of this approach lies in the fact that the exact solution for the fields generated by
a single particle is well-known. There are major drawbacks, though: first, the fields
are singular at the particle positions and second, the temporal field-structure from a
single particle scales with R/(cγ3), which is very short in the ultrarelativistic limit.
As a result, many particles are needed in order to obtain meaningful results from this
method: for example, a bunch characterized by rms length σ should be modelled out
of N = σγ3/R particles and the number of operations needed in order to calculate all
the interactions at a certain time will be of order N2, often resulting in exceedingly
long simulation times.

Another possible technique consists in considering distributed sources characterized
by a smooth four-current Jµ. The drawback here is constituted by the fact that this
current must be specified over all space-time and it would require a 3D integration over
space-like hypersurfaces to get the field at every observation event.

The approach which has produced, so far, the best results, consists of introducing a
limited number of simplified distributed sources, called macroparticles or sub-bunches,
each of which representing a large number of electrons. A macroparticle may have,
for example, a Gaussian distribution, thus being a source of non-singular fields, and
it may be superimposed to other macroparticles, since electrons, in general, do not
cluster together in isolated structures.

External

 

Fields
Present macroparticles at 

step n-1

Retarded Fields generated 
by the macroparticles

Bunch history 
for steps 1.. n-1

Present macroparticles at 
step n

n incremented to n+1

Act on

Act on

Recorded in

Used to calculate

Evolve to

Figure 1.1: Concept scheme of a self-consistent computation for the solution of the
bunch evolution problem.

The problem of tracking the bunch evolution under the action of self-forces and
starting from given initial conditions can be summarized, from a general viewpoint,
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as in Fig. 1.1. First a rule must be given to pass from a continuous time variable to
a collection of discrete time-steps. As shown in Fig. 1.1, at each time-step the fields
generated by the macroparticles at previous steps are calculated at the present position
of the bunch and used, together with the external ones, as the particles evolve till the
next time-step. At this point, the macroparticle states are recorded and the next
time-step is considered. At the limit for zero time-steps we would recover the exact
solution: it is obvious that the rule which defines the duration of the time intervals
must guarantee them to be short enough to allow the calculation of the bunch evolution
within a given precision and long enough to result in reasonable processing time. As
the precision increases, the time-step durations decrease, complicating the situation
from a numerical viewpoint, since all the macroparticle histories must be recorded and
used, at every step, to calculate the retarded fields.

Several simulation codes have been built worldwide, which are based on the latter
approach [19, 20, 21]. As a remarkable example we will specialize the discussion above
by describing, in the following, one of these codes, TraFiC4 [20]. This code has been
developed at DESY and it is currently being used worldwide in order to simulate self-
interaction effects in bunch dynamics, namely for XFEL purposes [1, 17]. The reason
to describe this code instead of others is in the fact that, during the development of this
work, we profited from a fruitful collaboration with DESY (see Chapter 4, 5 and 6),
and part of the results in this thesis (Chapter 4) are devoted to an analysis of results
obtained at DESY using TraFiC4.

TraFiC4 stands for Tracking particles in the Fields of Continuous Charges in
Cartesian Coordinates. First, the code divides the beamline in different slices. As the
name TraFiC4 itself suggests, a cartesian coordinate system is used in order to store
the information about the discretized bunch evolution.

While on the one hand the fields are generated by macroparticle source distribu-
tions, the field itself is calculated at certain sampling positions representing point-like
particles. This means that the code makes use of two kinds of beam models: a gener-
ating bunch made up of macroparticles is used as field source while a cloud of (non-
interacting) point-particles is used to test the field by the generating bunch, and it is
therefore called sampling bunch.

The code allows two operation modes. One can choose a perturbative or a self-
consistent tracking mode. If the perturbative tracking mode is selected, the (generat-
ing) bunch is first tracked along the entire beamline under the influence of the external
fields alone, and the bunch history is stored. Second, a cloud of point-particles (the
sampling bunch) is also tracked through the beamline but the fields from the generating
bunch are summed up to the external driving forces. In other words, self-interactions
are treated as a first-order perturbation to the zeroth-order motion induced by the ex-
ternal fields. Note that this approach basically results in considering the self-fields as
external fields (in the first order approximation) which are felt by the sampling bunch
but generated by an external system (the generating bunch).

If the bunch evolution is strongly coupled with the self-fields, the perturbative
approach will not give realistic results. In this case the self-consistent tracking mode
can be selected. When this is done, two identical bunches are created with the same
initial conditions and tracked, in turn, through a step of the beamline. At each step,
each bunch which is moved forward interacts with the external fields and the fields from
the other bunch. Again, through this scheme the self-fields are basically considered as
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external fields during a given time-step, but now the coupling with the dynamical
equations is taken care of at every time-step. The relative deviation between the
trajectories of the bunches gives, then, an estimate of the displacement from the self-
consistent solution, which can be made smaller by using shorter time-steps and a more
refined bunch population.

To end this section, it should be mentioned, for the sake of completeness, that
alternative methods have been proposed [22, 23] which have been borrowed from sta-
tistical mechanics, since the latter deals with systems composed of a large number of
constituents in a natural way. From our general viewpoint, we can consider an elec-
tron bunch as a fully ionized plasma composed by individuals of a single kind (the
electrons). This suggests that one can seek the solution of the evolution problem try-
ing to track directly the particle density distribution in phase space. Of course, since
the system is characterized by 6N dimensions with N ∼ 108 − 1010, one will have to
use all the mathematical machinery available from statistical mechanics in order to
analyze the situation in a reduced 6-dimensional space, where the system evolution
is governed by equations of the Vlasov-type. This kind of approach turns out to be
very useful when dealing with self-interaction phenomena characterized by a time-scale
which can be short with respect to the intrinsic scale associated with the macroparticle
dimensions [22], like CSR-driven bunch instabilities.

CSR-driven instability is a phenomenon discovered only recently [22], which can
take place also in the case self-interactions in the region from microwaves to far in-
frared are effectively shielded, and it can be qualitatively described in a few words. If
the electron beam density presents, initially, a certain fluctuation from the ensemble
expectation value and this fluctuation is characterized by a length much shorter than
the bunch length, then the short structures within the bunch will start to radiate co-
herently and the radiation will not be shielded by the presence of the vacuum pipe,
because its characteristic wavelength will be too short. This radiation can result in
an amplification of the initial fluctuation which can finally end up in a phase-space
fragmentation [22]. It has been pointed out that CSR instabilities constitute the first
case in which an instability has first been predicted theoretically and only afterwards
observed experimentally. For further information about this subject one may refer to
[22, 23].

However, since this kind of phenomena will not be analyzed here we will not further
investigate the Vlasov equation approach, neither from a simulation viewpoint nor from
an analytical viewpoint.

1.6 Analytical studies: this thesis goals

TraFiC4 and other codes are able to provide results for a number of evolution
problems, an example of the application of TraFiC4 being, as already mentioned, the
modelling of the expected bunch evolution in XFEL related setups (see [1, 17]).

Nevertheless, the solution of the problem, due to its self-consistent character, merges
purely electrodynamical issues with purely dynamical ones. This often results in a loss
of understanding of the physics involved and in a consequent difficulty in explaining the
achieved numerical results. Therefore the understanding of the electrodynamical issue,
i.e. the characterization of the electrodynamical interaction, is of great importance
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from the viewpoint of pure knowledge, per se. Nonetheless, such an understanding is
very valuable from a practical viewpoint too. In fact, benchmarks and cross-checks
of simulation results can be provided by theoretical study of the electrodynamical
problem. These cross-checks constitute critical milestones in building confidence in
simulations, which are being employed in the design of the before-mentioned large-
scale facilities around the world.

It sometimes happens, also, that this kind of theoretical analysis can be directly
applied in order to get good practical solutions for the problem, at least in a narrow
region of the parameters which specify the system setup. The results can, then, be
used for quick estimations of the magnitude of the effects under investigation and for
the development of new applications.

In this thesis we chose to investigate self-interaction problems from an electrody-
namical and fully analytical viewpoint, while ignoring the dynamical viewpoint. The
solution of the electrodynamical problem is then, in principle, ready to be used as an
input for the equations of motion to the first perturbation order in the fields. Note
that this line of action is, from a conceptual viewpoint, the same as that followed in
self-consistent simulations at each time-step, in that the code simply finds the elec-
tromagnetic fields from a given (calculated before) distribution of charges and then
includes the calculated fields into the equation of motion, tracking the system till the
next time-step.

In the present Chapter we gave a general overview of the problem, so that the
reader can easily fit the specialized discussions in the following Chapters into the more
general context.

The next Chapter 2 includes the treatment of a few selected topics which are either
at the basis of self-interaction theory or which we found useful to investigate in the
early stage of this study, as we were getting acquainted with the problem. We included
them in this thesis because we find them interesting and useful in view of the main
Chapters.

In Chapter 3 we treat the self-interaction in the longitudinal direction (parallel,
at any time, to the velocity vector by definition), which is responsible for the energy
exchange between the system and the electromagnetic field and for all CSR-related
phenomena.

The study of self-forces in the transverse direction is also important, as explained
in Section 1.1. At the time being, existing theoretical analysis of transverse self-forces
deals with the case of a circular orbit only, without considering transient collective
phenomena. We devote Chapter 4 to the study of this kind of interaction, always from
an analytical standpoint.

Very general methodological issues are often touched when dealing with practical
problems. We found that the study in Chapter 4 is actually related to the nature of
energy and momentum for an ultrarelativistic unstable system, which is a long-dated
issue. We dedicate Chapter 5 to the study of this relation.

Finally, as we have described in Section 1.3, self-interaction is deeply linked with
the CSR issue. In Chapter 6 we study subjects related to the application of CSR as
a radiation source or in a diagnostic method for monitoring the longitudinal structure
of very short, high-peak-current, ultrarelativistic bunches.
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Chapter 2

Some basic issues

In the following we treat a few selected topics which are either at the basis of self-
interaction theory or which we found useful to investigate in the early stage of this
study. In Section 2.1 we discuss some basic CSR physics, while in Section 2.2 we
present the self-consistent problem from a covariant viewpoint. Finally in Section 2.3
we study the entrance of an electron bunch in a circular trajectory from the viewpoint
of the relation between self-interactions and CSR.

2.1 Overview of basic CSR physics

One of the fundamental results in CSR theory (see [1, 2]) and historically the first, is
expressed by Eq. (1.1). We would find it incomplete to pass directly from Chapter 1 to
the main Chapters of this thesis without giving here a derivation of that fundamental
result. In this Section we give such a derivation adapted from [3].

Throughout this Section we will assume that the CSR-pulse energy is only a fraction
of the beam energy, so that the influence of CSR can be neglected, at the lowest
perturbative order, in the longitudinal equation of motion; this assumption is obviously
verified in the ultrarelativistic approximation. Moreover everywhere, the cross section
of the particle beam is assumed small compared to the distance to the observer detecting
the CSR pulse, so that the path length differences from any point of the beam cross
section to the observer are small compared to the shortest wavelength involved. The
latter assumption, often valid in practice, allows one to neglect the transverse structure
of the bunch, when treating CSR effects.

From a microscopic viewpoint, the electron beam current at the entrance of any
magnetic system, which will act as a radiator, is made up of moving electrons with
random arrival times characterized by a stochastic succession tk. A stochastic distri-
bution can be defined then, which describes the electron current at the entrance of the
magnetic system:

I(t) = e
N∑

k=1

δ(t− tk) , (2.1)

where δ(·) is the delta distribution, e is the (negative) electron charge and N is the
number of electrons in the bunch. A particular choice of one bunch history out of the
ensemble of all possible histories corresponds to the choice of a particular I(t) which,
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at this point, is just a (non-stochastic) distribution describing the behavior of a given
single bunch.

The beam profile is described by the profile function F (t), which is defined by the
average of the beam current over a large ensemble of bunches, that is:

〈I(t)〉 = eNF (t) . (2.2)

For example, the profile function for an electron beam with Gaussian current distribu-
tion is given by:

F (t) =
1√
2πσT

e−t2/(2σ2
T) , (2.3)

σT being the rms electron-pulse duration. Note that, according to the definition of F (t),
the probability of arrival of an electron during the time interval (t, t+ δt), δt being a
short time interval such that F ′(t)δt 
 F (t), is simply given by F (t)δt.

Since the electron beam current, I(t), and its Fourier transform, Ī(ω), are connected
by

Ī(ω) =
1√
2π

∞∫
−∞

I(t) e−iωtdt =
e√
2π

N∑
k=1

e−iωtk , (2.4)

I(t) =
1√
2π

∞∫
−∞

Ī(ω) eiωtdω = e
N∑

k=1

δ(t− tk) , (2.5)

the average value of | Ī(ω) |2 can be written as:

〈| Ī(ω) |2〉 = 〈Ī(ω)Ī∗(ω)〉 = e2N

2π
+

e2

2π

∑
k �=n

〈e−iωtk〉〈eiωtn〉. (2.6)

The expression 〈e−iωtk〉 is, essentially, the Fourier transform of the bunch profile func-
tion F (t), since:

〈e−iωtk〉 =
∞∫

−∞

F (tk)e
−iωtkdtk =

√
2πF̄ (ω) . (2.7)

Thus we can write:

〈| Ī(ω) |2〉 = e2N

2π
+ e2N(N − 1) | F̄ (ω) |2 , (2.8)

where the Fourier transform of the Gaussian profile function Eq. (2.3) has the form:

F̄ (ω) =
1√
2π

e−ω2σ2
T/2 . (2.9)

Up to now a characterization of the current at the entrance of the magnetic system
has been given both in time and frequency domain, which completely defines the input
signal of the electromagnetic device under consideration.
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The next step is the derivation of the energy spectrum, which is the output signal
of the device. For any given realization of the stochastic succession tk, the total field
experienced by the observer is given by the sum of N identical single-particle pulses
such that the k-th pulse is delayed by a time tk with respect to a previously set
zero-time. Without loss of generality, one can decompose the field along orthogonal
polarization components ξ and take care to sum up the energy spectra from different
polarizations at the end of the derivation.

Once the single particle field, Esp
ξ (t), is known, the total field, Etot

ξ (t), is given by:

Etot
ξ (t) =

1

e

∞∫
−∞

Esp
ξ (t− τ) I(τ)dτ . (2.10)

Let the Fourier transform of Esp
ξ (t) and Etot

ξ (t) be indicated according to the usual

notation as Ēsp
ξ (ω) and Ētot

ξ (ω). Because of Eq. (2.10) we have

Ētot
ξ (ω) =

√
2π

e
Ēsp

ξ (ω)Ī(ω) . (2.11)

It is easy to show (see for example [4, 5]), that the energy spectrum of the radiated
pulse for the polarization direction ξ is given by

dWξ

dω
=

2r20
µ0c

∫
dΩ | Ētot

ξ (ω) |2 , (2.12)

r0 being the distance to the observer, c the speed of light in vacuum and µ0 the vacuum
magnetic permeability. By using Eq. (2.11) it follows from Eq. (2.12) that the ensemble
average of the energy spectrum at frequency ω is related to the average of the square
modulus of the radiation field according to

〈
dWξ

dω

〉
=

〈
2r20
µ0c

∫
dΩ | Ētot

ξ (ω) |2
〉
=

4πr20
µ0ce2

∫
dΩĒsp 2

ξ (ω)〈| Ī(ω) |2〉 . (2.13)

The total energy spectrum
〈

dW
dω

〉
is given, then, by direct substitution of Eq. (2.8) in

Eq. (2.13) and summation over ξ, which reads:

〈
dW

dω

〉
=

〈
dW sp

dω

〉
[N + 2πN(N − 1) | F̄ (ω) |2] , (2.14)

where the superscript sp identifies, as usual, quantities referring to a single particle.
Note that Eq. (2.14) is slightly different with respect to Eq. (1.1): in fact, in Eq. (2.14)
we underlined explicitly the presence of ensemble averages with the brackets 〈...〉. More-
over the particular definition of the Fourier transform as in Eq. (2.4), which we prefer
because it is completely symmetric with respect to the anti-transform, leads to the
factor 2π in the second term.
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2.2 A covariant formulation of the

self-consistent problem

We described the self-consistent problem in Section 1.2. In that Section we did not
formulate it in its natural language, that is mathematics, since our aim, there, was
just to introduce it in the simplest possible way. However we feel that a more rigorous
formulation of the problem is important in order to get a more thorough view of the
challenges which it poses. Therefore, in this Section, we adapt some of the material
in [6] to the purpose of describing the self-consistent issue in a precise way. We find that
the use of the covariant formalism is very well suited for this purpose, both because of
its elegance and its compactness. Moreover, this formalism will be useful in Chapter 5,
where the geometrical nature of the energy-momentum pair will be discussed in the
case of an unstable system.

One can write the following system of coupled equations, which describes the evo-
lution of a system of N electrons, Eq. (2.15) and Eq. (2.16) being Maxwell equations,
while Eq. (2.17) being the equation of motion:

∂νF
µν =

Jµ

ε0
, (2.15)

∂ν(∗F )µν = 0 , (2.16)

e

c
F µν iUν = m

d(iUµ)

dτ
i = 1... N. (2.17)

Here Fµν are the components1 of the electromagnetic tensor in the usual coordinate
basis induced by the pseudo-cartesian coordinates {ct, x, y, z}:

Fµν =


0 −Ex −Ey −Ez

Ex 0 cBz −cBy

Ey −cBz 0 cBx

Ez cBy −cBx 0

 , (2.18)

and the process of raising and lowering indexes is controlled by the metric tensor of
components gµν :

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2.19)

Moreover, Jν is the total four-current density of components (ρ, J/c), ρ and J be-
ing the usual charge density and the current density respectively, while iUµ is the
four-velocity of the i-th particle, whose components are iγ(1,i v), iγ and iv being the
relativistic γ-factor and the velocity of the i-th particle respectively (note that iUµ is
linked to the four-momentum by iP µ = m iUµ). Finally, τ indicates the proper time

1In this dissertation, Greek tensor indices are understood to run from 0 to 3, while Latin tensor
indices from 1 to 3. The left superscript i does not indicate a tensor index, and runs from 1 to N .
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and m the electron rest mass, while ε0 is the vacuum dielectric constant and (∗F )µν

designates the Hodge dual of Fµν .
2

Eq. (2.15), Eq. (2.16) and Eq. (2.17) can be rewritten in a more specialized way
separating the self-interaction fields from the external fields. The Maxwell equations
for the external fields can be considered solved, i.e. the external fields are known, since
the elements of the beam line are supposed to be specified. Therefore we have, with
obvious notational meaning:

∂νF
µν
self =

Jµ
self

ε0
(2.20)

∂ν(∗Fself)µν = 0 (2.21)

e

c
(F µν

ext + F µν
self)

iUν = m
d(iUµ)

dτ
i = 1... N. (2.22)

Note that if F µν
self is neglected we recover the simpler problem of charged particles

evolving within a given external electromagnetic field, which can be pursued with
conventional beam dynamics techniques. In the more generic case in which F µν

self can
not be neglected, one has to solve Maxwell equations for the self-fields coupled with
the equations for the particles motion through the self-current density, since

Jµ
self(p) = e

N∑
i=1

∞∫
−∞

iUµ(τ) δ(p− iλ(τ))dτ, (2.23)

where iλ(τ) describes the world-line of the i-th particle and δ(·) is, here, the
4-dimensional δ-distribution.

In addition, of course, one has to know the initial state of every particle, which is
characterized by the collection of four-vectors3 pairs {(iλ̄µ, iŪµ) | i = 1... N} on a
given space-like surface σ; to be specific, σ may be the one characterized by t = 0 in
a fixed coordinate system {ct, x, y, z}. At last, specification of the surroundings of the
system must be given. For example, only normal electric fields and tangential magnetic
fields are expected at a boundary of a perfect conductor, and similar constraints have
to be expected at the position of the metallic pipe in which the electrons move. The
latter conditions translate into a set of constraints for F µν over a given space-like
hypersurface. One cannot be more specific, since the kind of boundary depends heavily
on the system setup.4.

The system of coupled equations Eq. (2.20), Eq. (2.21) and Eq. (2.22), together
with the knowledge of F µν

ext, {(iλ̄µ iŪµ) | i = 1... N} and suitable conditions on F µν

on σ constitute the most generic formulation of the self-consistent problem.
The situation is complicated by the fact that electromagnetic signals travel at finite

speed. This means that the field at any event p depends on the charges located on

2The Hodge dual on an n-dimensional manifold maps p-forms (completely antisymmetric covariant
tensors in p dimensions) into (n-p)-forms by (∗A)µ1...µn−p

= (1/p!) εν1...νp
µ1...µn−pAν1...νp

, where
εα1...αp

is the Ricci tensor.
3Note that, strictly speaking, iλ̄µ indicate the coordinates of a point in Minkowski space. However,

the affine structure of the Minkowski space (the affine group is simply the Poincaré group) gives us
the freedom of considering iλ̄µ as the components of a four-vector.

4The problem of conducting surrounding has been briefly addressed in Section 1.4.
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the past light-cone of p only. Viceversa, a given charge at position q in space-time
influences the fields at p if and only if p is on the future light-cone of q. This fact
defines the causal structure of Minkowski space, and the requirement

(p− q)2 = 0 with p0 > q0 (2.24)

is referred to as retardation condition.
In order to fully realize the difficulties involved in dealing with the self-consistent

problem, one has to be familiar with the solution of Maxwell equations Eq. (2.15) and
Eq. (2.16), which can be calculated once the field sources Jµ are given. For this reason
it is worth to present briefly, here, a derivation of such a solution, while more details
can be found in textbooks like [6, 7], stressing the fact that, in our case, this is by no
means an explicit solution for the fields, since it is coupled with the equations for the
particle motion: more precisely we can say it is an integro-differential presentation of
the self-consistent problem.

In order to simplify the mathematical problem it is temporarily convenient (and
customary) to pass from the equations for the fields to the equations for the electro-
magnetic potential. The electromagnetic potential can be introduced simply noting
that Eq. (2.16) can be considered as a statement about the closure of the two-form F
defined, in components, by Fµν , that is

dF = 0, (2.25)

where d indicates the Cartan differential5. It can be shown (see for example [8, 9]) that
the closure of F is, in this case, a condition necessary and sufficient for F to be exact
too so that one can write

F = dA, (2.26)

A being the one form of components Aµ we were looking for.
It can be readily seen that the theory is manifestly invariant upon gauge transfor-

mations

A −→ A+ dλ, (2.27)

λ being any zero-form (i.e. any scalar); this follows immediately from the fact that
d(dλ) = 0. One choice is characterized by the Lorentz condition

∂µA
µ = 0, (2.28)

which sets λ, and therefore the gauge, in such a way that

∂µ∂
µλ = 0. (2.29)

This choice is the well-known Lorentz gauge. Eq. (2.26) together with Eq. (2.15) can
be easily transformed, in the Lorentz gauge, in the following set of equations:

5The Cartan differential acts on p-forms (completely antisymmetric covariant tensors in p di-
mensions) Tµ1... µp

giving back a (p + 1)-form (dT )µ1... µp+1 = (p + 1) ∂[µ1Tµ2... µp+1], where the
square brackets indicate an alternating sum over indices permutations normalized to (1/p!), i.e.
T[µ1... µp] = (1/p!)(Tµ1... µp

+ alternating sum over permutation of indices µ1... µp).
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F µν = ∂µAν − ∂νAµ (2.30)

and

∂α∂
αAµ = −Jµ

ε0
, (2.31)

which are equivalent to Maxwell equation Eq. (2.15) and Eq. (2.16).
Solutions of Eq. (2.31) can be found by means of the Green function method. First,

solutions of the covariant equation

∂α∂
αD(x− x′) = −δ(x− x′) (2.32)

are sought, where the retardation condition is enforced by requiring that

D(x− x′) = 0 when x′0 > x0. (2.33)

Under this requirement, when Eq. (2.32) is solved, a solution for Aµ, which is called
retarded solution is also found and reads:

Aµ(x) =
1

ε0

∫
D(x− x′)Jµ(x′)d4x′. (2.34)

It is possible to show [6, 7] that the Green function we are looking for can be written
in covariant form as

D(x) =
1

2π
θ(x)δ(x2), (2.35)

where θ(p) = 0 if p0 < 0 and θ(p) = 1 when p0 > 0. Substitution in Eq. (2.34) gives
the final result:

Aµ(x) =
1

2πε0

∫
Jµ(x′)θ(x− x′)δ[(x− x′)2]d4x′, (2.36)

which is related to the fields F µν by means of Eq. (2.30). Since our specific investigation
deals with a system of N particles whose current density is given by Eq. (2.23), one
can simplify Eq. (2.36) to the following expression:

Aµ(x) =
e

4πε0

N∑
i=1

[
iUµ

iUα(x−i λ)α

]
τ=iτ0

, (2.37)

where

[x−i λ(iτ0)]
2 = 0 with x0 > iλ0(τ0) i = 1... N . (2.38)

Direct use of Eq. (2.30) gives back the expression for the retarded fields in covariant
form (see [6, 7]):

F µν =
e

4πε0c

N∑
i=1

[
1

iUα(x−i λ)α
d

dτ

(
iUµ(x−i λ)ν − iUν(x−i λ)µ

iUα(x−i λ)α

)]
τ=iτ0

(2.39)
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The latter equation can also be written in a different way. After definition of the
space-like unit four-vector iNµ orthogonal to iUµ for all choices of i = 1... N ,

(iN)µ(iN)µ = 1 , (iN)µ(iU)ν = 0 , (2.40)

one can express Eq. (2.39) as a sum of two terms:

F µν = F µν
V + F µν

A , (2.41)

where

F µν
V =

e

4πε0

N∑
i=1

[
(iU)µ(iN)ν − (iN)µ(iU)ν

[iUα(x−i λ)α]2

]
τ=iτ0

(2.42)

and

F µν
A =

e

4πε0c

N∑
i=1

{
1

iUα(x−i λ)α

[ (
iAµ iUν − iUµ iAν

)
/c

− iNµ
(

iUν iAα iNα/c+
iAν

)
+ iN ν

(
iUµ iAα iNα/c+

iAµ
) ]}

τ=iτ0

, (2.43)

iAµ = d iUµ/(dτ) being the four-acceleration relative to the i-th particle.
The importance of the presentation given by Eq. (2.41), Eq. (2.42) and Eq. (2.43)

lies in the recognition that F µν can be decomposed into a velocity-dependent part, F µν
V ,

and an acceleration-dependent part, F µν
A . These two behave in a very different way

as the observation point gets far away from the source (in the usual three dimensional
sense). In order to fully appreciate this fact, it is useful to write down the non-covariant
expressions for the electric and magnetic field (see again [6, 7]), following directly from
Eq. (2.41):

E(r0, t) = EV (r0, t) + EA(r0, t), (2.44)

with

EV (r0, t) =
e

4πε0

N∑
i=1

{
1

iγ2

in − iβ
iR2 (1− in · iβ)3

}
, (2.45)

EA(r0, t)
e

4πε0

N∑
i=1

1

c

in ×
[(

in − iβ
)× iβ̇

]
iR (1− in · iβ)3

 (2.46)

and

B(r0, t) = BV (r0, t) + BA(r0, t), (2.47)

with

BV (r0, t) =
1

c

N∑
i=1

in × iEV , (2.48)
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BA(r0, t) =
1

c

N∑
i=1

in × iEA . (2.49)

Here iβ and iβ̇ are, respectively, the dimensionless velocity and its time derivative
at the retarded time it′, all relative to the i-th particle, iR is the distance between
the retarded position of the i-th source particle and the observation point and in is a
unit vector along the line connecting those two points, while the retardation condition
linking i-th source particle with an observation point at position r0(t) reads:∣∣r0(t)− ir(it′)

∣∣ = c
(
t−i t′

)
. (2.50)

Eqs. (2.44) to (2.49) have been first derived by Liénard in 1898 and Wiechert in 1900
and, in the form for N = 1, they go under the name of Liénard-Wiechert fields. In
particular EV and BV are known as velocity fields, while EA and BA are referred to
as acceleration fields.

The main feature of the velocity and acceleration fields is that they depend, re-
spectively, on R−2 and R−1. As is well-known ([6, 7]), the dependence on R−1 allows
a net energy flow through a far surface, which is referred to as radiation, while the
dependence R−2 forbids it. This explains why the velocity and the acceleration fields
are also commonly named Coulomb and radiation fields.

At this point the reader has a general overview of the situation and can fully
understand the difficulties involved in solving the self-consistent problem in toto: any
attempt of knowing the fields must first provide a way to characterize the evolution
of the sources but in its turn, the evolution of the sources is only known when the
fields are known, while the finite propagation velocity of the electromagnetic signal
complicates the situation further.

2.3 Self-interactions and CSR, a specific

example

Studying CSR is a singular learning experience in that many results are not intuitive
at all if not, some times, counter intuitive. The best way to cope with this is to build
up understanding step by step, starting from simple situations first and to discuss more
complicated situations later. We have already mentioned in Chapter 1 that, in the case
of a circular motion, there is a direct correspondence between the rate of energy lost by
the bunch and the rate of energy passing through a far surface closed on the sources.
In this Section we provide a thorough analysis of the relation between CSR and self-
interaction in the longitudinal direction. After the introduction of general concepts
we specialize our discussion to a particular case, different from the circular situation,
which we found interesting and useful to build confidence with the subject.

Let us start discussing the link between the variation of the electromagnetic con-
tents of space and the charge motions; this is presented, from a general viewpoint, in
the conservation laws for electromagnetic fields interacting with charged particles in
vacuum [6, 7]:

∂µΘ
µν = −F νβJβ, (2.51)
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where Θ is the symmetric electromagnetic stress tensor:

Θµν = ε0

(
−gανF µβFαβ +

1

4
gµνFαβFαβ

)
. (2.52)

After substitution of Eq. (2.19) and Eq. (2.30) into Eq. (2.52), the time component of
Eq. (2.51) reads:

∂u

∂t
+ ∇ · S = −J · E, (2.53)

where u = Θ00 = (ε0/2)(E
2 + c2B2) is the electromagnetic energy density and

S = (1/µ0)(E × B) is the Poynting vector (note that Θ0i = Θi0 = Si/c). This
well-known result is referred to as the Poynting theorem.

Let us now consider a closed three-dimensional surface Σ including a volume V , for
example a sphere of radius R, in the laboratory frame where the electrons are set in
motion, in the limit for a large distance of Σ from the bunch (in space). If we integrate
Eq. (2.53) over V (note that V is nothing but a space-like hypersurface) we have:[∮

Σ

Sndσ

]
(t) = −

[∫
J · E dV

]
(t)−

[∫
∂u

∂t
dV

]
(t) , (2.54)

where Sn is the scalar product between the Poynting vector and a unit vector orthogonal
to Σ pointing outwards, while t refers to the time measured in the judgment of an
observer at rest with respect to Σ, i.e. with respect to the laboratory frame.

Here, as in Section 1.1, we will assume that the CSR-pulse energy is only a fraction
of the beam energy and that the path length differences from any point of the beam
cross section to the observer are small compared to the shortest wavelength involved.
The first term on the right hand side of Eq. (2.54) can be written as:[∫

J · E dV

]
(t) =

[
e

∫ +∞

−∞
(v · E)(s) F (s) ds

]
(t), (2.55)

where averages over a large ensemble of bunches will be systematically understood from
now on. E(s) is the total electric field at a certain position s along the bunch and it
should include the external field, which we will set to zero assuming a motion through
a magnetic system. The electric field due to interactions with the other particles is,
therefore, the only non-zero term.

Moreover, when the detectors collect information on a surface Σ and the sources
are located far away, the velocity contribution can be neglected. In this case Eq. (2.54)
can be written as:

[∮
Σ

Sndσ

]
A

(t) = −
[
e

∫ +∞

−∞
(v · E)(s) F (s) ds

]
(t)−

[∫
∂u

∂t
dV

]
(t) (2.56)

Eq. (2.56) connects the bunch energy losses to the radiation detected far away on
a surface (i.e. Σ) closed around the sources.

In stationary (or periodic) situations6 it is trivial to connect instantaneous energy
loss of a bunch and flux of the Poynting vector through a distant surface; in fact the

6Here the words stationary and periodic obviously refer to the temporal dependence of u.
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second term on the right hand side of Eq. (2.56) gives a zero contribution, and the
instantaneous energy loss of a bunch must equal the radiation energy detected on a far
surface, as has been verified in [10, 11]. This is, for example, the situation which one
encounters in the case of uniform circular motion.

The previous consideration ceases to hold in case of a non-stationary motion, where
the time derivative of the energy density in the volume surrounded by the distant
surface is neither zero nor periodic. In this case its integral, i.e. the second term on the
right hand side of Eq. (2.56), does not vanish anymore. Nevertheless, the conservation
laws of vacuum electrodynamics still hold and in particular, Eq. (2.56) holds.

t

x
y

R

a

(a)

(b)

Figure 2.1: (a) Space-time diagram of a single particle entering a circular trajectory
from an half-infinite straight path and of a large sphere containing the circle. (b) The
actual trajectory.

In order to get a feeling for what happens in the generic case of non-stationary
motion, one can consider a simple example of a bunch entering a circular motion after
an half-infinite straight path. To fix the ideas it might be useful to look at Fig. 2.1:
there a single particle trajectory and the corresponding single particle evolution in
space-time are plotted. Also, a sphere with a large radius R, which represents our
surface Σ, is plotted while evolving in space-time together with the particle. There
is clearly a ”transient” event which separates the stationary situation of the particle
moving in a straight line from the periodic situation of particle moving in a circle.
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Radiation is collected on the sphere of radius R, which is supposed to be centered at
the transient point between the straight line and the circle.

Let us consider now an entire bunch following the same evolution as the single
particle. Although the notion of transient event is well defined in space-time for every
particle, the idea of transient for the bunch and the detectors on the far sphere are
different.

A transient for the bunch can be reasonably defined as the situation which is oc-
curring when at least one particle interacts with retarded sources both in the straight
line and in the circle. On the other hand, for the detectors, the transient is defined as
the situation which occurs between the two extreme configurations in which, first, no
radiation at all is detected (all retarded sources are in the straight path) and, second,
a constant, non-zero radiation power is detected (all retarded sources are in the circle).

Since detectors and particles undergo different evolutions in space-time, the word
”transient” has different meanings, and, thus, defines different time intervals, for the
bunch and for the detectors on the far surface.

Suppose that the first particle of the bunch crosses the transient point between
straight and bend at time TN1, with respect to a clock in the laboratory frame (i.e. the
rest frame of the detectors).

Detector on 
a far sphere

TN1

TF2

X

time

TN1

TF1

  world line of
the bunch headtime

Detector on 
a far sphere

 world line of
the bunch tail

Figure 2.2: Space-time diagram indicating the critical times of the transient from
straight line for the bunch and for a detector far away. The event X indicates the
entrance of the bunch tail in the circle.

On the one hand, it is easy to see from Fig. 2.2 that the transient for the far sphere
starts at time TF1 = R/c+TN1 and finishes at time TF2 = R/c+TN1+σ/(βc), where σ
is the bunch length. Therefore, the duration of the transient in the far field is σ/(βc).

On the other hand, the transient situation for the bunch begins at time TN1 and
ends at a time TN2 = TN1 + σ/(βc) + aφ∗/(βc); here φ∗ is the angle specifying how far
the first particle runs along the circle before it is reached by an electromagnetic signal
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emitted by the last electron at the time of its entrance in the circle, a being the radius
of the circle itself. Altogether, the duration of the transient, as regards the bunch, is
σ/(βc) + aφ∗/(βc).

In order to visualize the situation we may assume that the bunch as has a length
such that TN1 < TN2 < TF1 < TF2 as depicted in Fig. 2.2.

Since time intervals referred to the bunch are different from the ones referred to the
detectors on the sphere, one must exercise a lot of care in telling what kind of transient
one is referring to.

Of course the situation is not ambiguous at all considering the full picture in space-
time, and it is easy to understand also in three-dimensional language when one com-
pares the energy lost by the bunch during its transient and the energy detected by
detectors during their transient. These quantities are different and the energy differ-
ence is simply stored in the electromagnetic field inside the sphere of radius R. This
is, basically, the difference between the electromagnetic energy in the sphere when all
the particles in the bunch are in the straight line and when they are in the circle.

A simple analogous situation is given by a bucket with some water in it situated
under a closed tap, which is connected to a reserve of water; during the transient the
tap is opened and some water flows from the reserve to the bucket, until the bucket is
full and the water spills out of the bucket at a constant rate.

It is possible to express Eq. (2.56) in a different way which we find suggestive. Let
us start integrating its right and left hand sides between times TN1 and TF2 to get:

∫ TF2

TN1

dt

[∮
Σ

Sndσ

]
A

= −
∫ TN2

TN1

dt

∫ ∞

−∞
e(v · E)(s) F (s) ds

−
∫ TF2

TN2

dt

∫ ∞

−∞
e(v · E)(s) F (s) ds−

∫ TF2

TN1

dt

[∫
∂u

∂t
dV

]
. (2.57)

Since
∫ TF1

TN1
dt
[∮
Σ
Sndσ

]
includes only velocity field terms, Eq. (2.57) can be written as:

∫ TF2

TF1

dt

[∮
Σ

Sndσ

]
A

+

∫ TN2

TN1

dt

∫ ∞

−∞
e(v · E)(s) F (s) ds

= −
∫ TF2

TN2

dt

∫ ∞

−∞
e(v · E)(s) F (s) ds−

∫ TF2

TN1

dt

[∫
∂u

∂t
dV

]
A

. (2.58)

It is easy to estimate
∫ TF2

TN2
dt
∫∞
−∞ e(v · E)(s) F (s) ds. In fact, since from time TN2 on

all the particles are interacting with retarded sources in the circle one has:

∫ TF2

TN2

dt

∫ ∞

−∞
e(v · E)(s) F (s) ds = −(TF2 − TN2)

∫ ∞

−∞
N2Psp(ω) | F̄ (ω)|2 dω , (2.59)

where Psp(ω) is the single-particle power spectrum and the right hand side of Eq. (2.59)
can be easily deduced from Eq. (1.1).

On the other hand one can easily estimate
∫ TF2

TN1
dt
[∫

∂u
∂t

dV
]
A
. In fact:
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(a) It is the integral of a perfect differential, therefore only the edge terms must be
studied in order to estimate the expression.

(b) At time TF2 the sphere of radius R reaches a state in which electromagnetic
energy is flowing in at the same rate at which it is flowing out (in other words, the
bucket of our analogy has been filled). Therefore the first edge term reads:

R/c ·
∫ ∞

−∞
N2Psp(ω) | F̄ (ω) |2 dω + E0 , (2.60)

where E0 is the (singular) electromagnetic energy associated to the bunch velocity field.
(c) At time TN1 only the (singular) velocity field contribution is present. Since,

during all the transient phenomena, we are understanding the sources to be very far
from the sphere, we can assume this contribution is simply equal to E0.

As a consequence, after obvious renormalization, Eq. (2.58) can be rewritten as

∫ TF2

TF1

dt

[∮
Σ

Sndσ

]
A

+

∫ TN2

TN1

dt

∫ ∞

−∞
e(v · E)(s) F (s) ds

= −φ∗a/(βc)
∫ ∞

−∞
N2Psp(ω) | F̄ (ω) |2 dω. (2.61)

This equation links the energy detected during the transient phenomenon for the de-
tectors with the energy lost by the electrons during the transient for the bunch. The
difference (note that the two terms on the left hand side of Eq. (2.61) are opposite in
sign) is the term on the right hand side, and it is given by the power radiated in the
steady state circular trajectory times a recovery time. The latter is the time that the
retarded sources employ to get into the circle from the moment in which the present
sources are all in the circle, i.e. φ∗a/(βc).
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Chapter 3

Longitudinal effects

In this Chapter we present analytical investigations about longitudinal self-interactions
within a bunch, i.e. self-interactions in the direction of motion of the observer particles.
In Section 3.1, the problem of the evaluation of radiative collective effects accompanying
the accelerated motion of a short ultrarelativistic (γ � 1) electron bunch in vacuum
is considered within the framework of a small-angle approximation; a second order
expansion in the transverse velocity of electrons is performed. This results in the finding
of a very flexible, new analytical presentation for the energy spread of the bunch, which
can be used in very generic situations. In Section 3.2 we use the findings in Section 3.1
to address longitudinal effects during the passage of a beam with Gaussian longitudinal
density distribution from a straight to a circular path. These have often been studied
in a regime in which they are energy independent. Nevertheless, the approximations
used in such a regime may fail in several practical situations, like in the case of low-
energy injectors or for small structures within the bunch distribution in CSR-related
instability problems. These situations demand a deeper investigation of longitudinal
transient effects: a strong γ-dependence is found, and described, in the rate of energy
change induced by CSR during the transient of a Gaussian bunch between a straight
and a circular path, which has been studied with the help of the results in Section 3.1.
Results show that the overall CSR longitudinal effects are reduced in the γ-dependent
region. One of the outcomes of previous work by Saldin et al. has been extended to
this situation and a very good agreement between the two studies has been found.

Section 3.1 is based, in part, on the article:
Gianluca Geloni et al., Phys. Rev. E, 64, 046504, 2001

Section 3.2 is based, in part, on the article:
Gianluca Geloni et al., Phys. Rev. E, 65, 066504, 2002
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3.1 Small-angle approximation in the

description of radiative collective effects

within an ultrarelativistic electron bunch

3.1.1 Introduction

As already discussed in Section 1.1, very short, high-charge bunches of electrons
are being produced by particle accelerators of the next generation. Bunch compression
chicanes are expected to be often used in order to provide very high peak-current
beams for X-ray SASE-FELs [1]. Electron bunches of this kind could also be interesting
for the development of high-brightness Cherenkov and transition radiation sources [2].
However, their production and utilization may prove difficult due to radiative collective
effects, as occurs in magnetic chicanes.

As we have seen in Chapter 1, an example of such a collective effect is the en-
hancement of low-frequency photon emission from a short relativistic electron bunch
moving along a circular trajectory (in the rest of this work, we will refer to it as the
steady state Coherent Synchrotron Radiation (CSR)): the number of photons per unit
frequency interval increases dramatically in the part of spectrum where the photon
wavelength becomes comparable with the size of the bunch. In this frequency range,
electromagnetic waves emitted by individual particles have small phase differences. As
a result, they add up coherently, thus leading to a quadratic dependence of the inten-
sity of radiation on the number of electrons in the bunch [3]. This number is typically
108-1010, which explains the high magnitude of the effect.

Similar effects are observed when an electron bunch passes bending magnets, mag-
netic chicanes, and other beam-optics elements. In all such cases, signal retardation is
the crucial feature. In addition to the above case of steady state CSR, in any beam-
optics system also transient collective phenomena take place. Their study has been a
matter of active theoretical, numerical and experimental research in the past few years.
The problem of a one-dimensional (1D) electron bunch entering a circular path from a
straight path in vacuum has been carefully studied in [4]. The total energy loss due to
collective effects, as well as the final energy spread have been examined in several lim-
iting cases that are of relevance for practical applications. The influence of shielding in
a similar situation has been addressed in [5] and [6]. The presence of conducting walls
has been shown to reduce the strength of radiative collective self-interactions in the
bunch. Extensive numerical simulations have been performed in [7, 8, 9]; a comparison
with experimental results can be found in [10]. Measurements and computations are
in reasonable agreement.

In this Section we consider the problem of radiative collective interactions within a
short electron bunch following its trajectory in vacuum without shielding. The main
feature of our consideration is that we consistently apply a small-angle approximation,
a natural technique for ultrarelativistic particles. This approach considerably reduces
the efforts necessary for the treatment of an arbitrary trajectory and results in the
finding of a very flexible, new analytical presentation for the energy spread of the
bunch, which can be used in very generic situations; on the other hand, it somewhat
restricts the class of allowed trajectories. Eventually, this route is expected to lead to
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Figure 3.1: Schematic of a particle trajectory in a small angle approximation.

an efficient computational tool for the design of magnetic systems for high-peak current
electron bunches.

In Section 3.1.2 the geometry of the problem is described and a small-angle ap-
proximation is introduced. Section 3.1.3 is devoted to the case of retarded interaction
between two individual electrons. In Section 3.1.4 our consideration is extended to the
case of a test particle interacting with the whole bunch, and the results are compared
with those by other authors. Finally, Section 3.1.5 contains conclusions.

3.1.2 The small-angle approximation

Following other authors [4, 6, 12, 13], we will consider the bunch as a ’rigid’, 1D,
charged object with a given linear charge density distribution. We define a carte-
sian reference frame (x, y, z) as shown in Fig. 3.1, where the z-axis coincides with the
direction of the initial velocity.

Our consideration makes use of a small-angle approximation. That is, we assume
that the bunch energy is high enough that a possible deflection of electrons from a
straight line during their passage through the magnetic system is relatively small. To
be specific, we will assume that, before and after the magnets (z < 0 or z > z), the
bunch moves along a rectilinear path with constant velocity, while inside the magnetic
system (0 < z < z) it follows a path subject to the only constraint that the angle θ
formed by the velocity vector with the z-axis is always small, i.e. θ 
 1. Note that θ
can still be small or large as compared to the other small parameter of the problem,
γ−1, where γ � 1 is the Lorentz factor: γ = (E/mc2 + 1), E being the kinetic energy
of the particles.

A natural assumption is lb(dvx,y/dz) 
 vx,y , where lb is the longitudinal extent of
the bunch and vx,y(z) are the components of the transverse velocity of bunch electrons;
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Figure 3.2: Different particle world-lines intersect the light-cone of the observation
event at different points in space-time.

in other words, we will consider a situation in which differences in transverse velocities
of electrons are negligible.

We will also assume zero initial energy spread in the bunch, and neglect any change
of particle energy during the passage of the bunch through the magnetic system. This
means that the trajectory of the bunch is pre-determined by its initial energy and by
the known configuration of external fields. The back influence of radiative effects on
the motion of particles is therefore assumed to be negligible; of course, this assumption
has to be verified a posteriori : in some cases of practical interest the energy change
appears to be rather significant.

The two main objects we are going to deal with in the following calculations are
the local particle velocity v and a unit vector n connecting two points lying on the
same trajectory. In the spirit of our small-angle approximation, one has to distinguish
explicitly between their longitudinal and transverse components, assuming the latter
to be small. Keeping first and second order terms and omitting all higher orders, one
gets the following well-known expressions for z-components of the above vectors:

nz � 1− 1

2
n⊥

2 , (3.1)

vz � c

(
1− 1

2γ2

)
− v⊥2

2c
. (3.2)

Once the bunch trajectory is fixed, the problem of radiative collective effects within
the bunch reduces to properly accounting for signal retardation in pairwise interactions
between individual electrons. Let us consider a test particle inside the bunch. Its
present velocity and its present position in the laboratory frame of reference will be
denoted as v0(t) and r0(t), respectively. We are interested in its interaction with some
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other bunch particle −the source particle− whose present position will be denoted as
r(t). Causality defines the well-known retardation condition between the two particles,
which we already discussed in general terms in Section 1.2:

|r0(t)− r(t′)| = c (t− t′) , (3.3)

where r(t′) denotes the retarded position of the source particle (t′ being the so called
retarded time), and (t− t′) is the time delay associated with signal propagation. Obvi-
ously, world-lines of different source particles are intersecting the lightcone of a certain
event at different space-time points, as illustrated in Fig. 3.2.

The small-angle approximation considerably simplifies the treatment of the above
retardation condition. Firstly, note that the knowledge of the transverse velocity v⊥
as a function of time fully determines the position of a particle. Indeed, using Eq. (3.2)
one gets, for the transverse (ρ = x x̂ + y ŷ) and longitudinal coordinates of a particle

ρ(t) =

∫ t

0

v⊥(τ)dτ , (3.4)

z(t) = z(0) +

∫ t

0

vz(τ)dτ � z(0) +

∫ t

0

[
c

(
1− 1

2γ2

)
− v⊥2(τ)

2c

]
dτ . (3.5)

The transverse velocity, in its turn, is easily found once the configuration of external
fields is defined, which makes this approach rather convenient.

Secondly, the positions of the test and of the source particle are related through

r0(t) = r(t+ δ) , (3.6)

because all particles in the bunch are assumed to follow the same trajectory. In the
small-angle approximation the time difference δ is easily translated into the difference
between z-coordinates of both particles:

∆z = z0 − z � cδ . (3.7)

It is worth mentioning that for δ > 0 the position of the source particle is always behind
that of the test particle. This is, in fact, the only case we are interested in. As has
been argued in [4], interactions with particles that are ahead of the test particle do
not contain a radiative part. Their contribution consists in trivial Coulomb repulsion,
which has to be subtracted from final expressions in order to get a non-singular result
(see the discussion of the Coulomb singularity in Section 3.1.3). For this reason, in the
following we will always assume ∆z > 0.

Thirdly, it is convenient to switch from time-retardation to a retardation condition
expressed in z, which is possible since, in the small-angle approximation, t and z are
uniquely mapped onto each other. The corresponding relation is easily found; namely,
up to second order terms in the transverse velocity one gets:

t− t′ � (z − z′)
c

(
1 +

1

2γ2

)
+

1

2c

∫ z

z′
dζβ⊥

2(ζ) , (3.8)

where β⊥ is the usual notation for dimensionless velocity, β⊥ ≡ v⊥/c. Upon this, the
retardation condition can be re-written as
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(z0 − z′)2 + (ρ0 − ρ′)2 �
[
(z − z′)

(
1 +

1

2γ2

)
+

1

2

∫ z

z′
dζβ⊥

2(ζ)

]2
. (3.9)

Rearranging terms, neglecting those of order ∆z/(z − z′) 
 1 and taking into
account Eq. (3.4), we find

[∫ z0

z′
dζβ⊥(ζ)

]2
� 2(z − z′)

[
(z − z′)
2γ2

−∆z +
1

2

∫ z

z′
dζβ⊥

2(ζ)

]
. (3.10)

Finally, we represent the retardation condition in the small-angle approximation as

(z0 − z′)
γ2

+

∫ z0

z′
dζβ⊥

2(ζ)− 1

(z0 − z′)

(∫ z0

z′
dζβ⊥(ζ)

)2
� 2∆z . (3.11)

3.1.3 Liénard-Wiechert fields and Coulomb singularity

From Eq. (2.44) and Eq. (2.47) one has that the fields generated by a source particle
at an observation point r0(t) are given by the following expressions:

E(r0, t) =
e

4πε0

{
1

γ2
n − β

R2 (1− n · β)3 +
1

c

n ×
[
(n − β)× β̇

]
R (1− n · β)3

}
(3.12)

and

B(r0, t) =
1

c
n × E , (3.13)

where β and β̇ are, respectively, the dimensionless velocity and its time derivative at
the retarded time t′, R is the distance between the retarded position of the source
particle and the observation point, and n is a unit vector along the line connecting
those two points.

Multiplying eE by the velocity of the test particle v0, one gets the change of the
energy of the test particle due to its interacton with the source particle:(

dE
dt

)
= eE(r0, t) · v0(t) , (3.14)

and hence

(
dE
dt

)
=

e2

4πε0

[
c

γ2
n · β0 − β · β0

R2(1− n · β)3 +
(n · β̇)(n · β0 − β · β0)− (β0 · β̇)(1− n · β)

R(1− n · β)3
]

.

(3.15)
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As one can see, the above expression still contains a term proportional to R−2 as well
as one proportional to R−1, signature of the velocity (or Coulomb) field and of the
acceleration (or radiation) field respectively.

As has been argued in [4], the Coulomb part is singular in the limit R → 0 (that is,
∆z → 0). On the other hand, this large contribution has nothing to do with radiative
effects, because it represents just trivial electrostatic repulsion of electrons. Its singular
behavior is connected with the infinitely small transverse size of the bunch that we use
in our model problem. Following [4], we will cure the situation by subtracting from
Eq.(3.15) its purely Coulomb counterpart corresponding to rectilinear motion of the
same two particles with constant velocity:(

dÊ
dt

)
=

(
dE
dt

)
− e2βc

4πε0γ2(∆z)2
. (3.16)

The resulting expression appears to be regular in the limit ∆z → 0. This regularized
formula will be used in all following calculations.

In the small-angle approximation, one has to expand the above expressions up to
second order terms in the transverse velocity. The following relations are quite helpful
at this stage:

(1− n · β) � 1

2

[
1

γ2
+ (β⊥ − n⊥)

2

]
, (3.17)

(n · β0 − β · β0) � 1

2

[
1

γ2
+ (β⊥0 − β⊥)

2 − (β⊥0 − n⊥)
2

]
, (3.18)

(β0 · β̇) � (β⊥0 − β⊥) · β̇⊥ , (3.19)

where n⊥ is given by

n⊥ =
1

(z0 − z′)

∫ z0

z′
dζβ⊥(ζ) . (3.20)

Using the above formulas and putting, with the same accuracy, R � (z0− z′), one gets(
dÊ
dt

)
� e2

4πε0

2γ2

1 + γ2(n⊥ − β⊥(z′))2
{[C] + [R]} , (3.21)

where [C] and [R] stand for the Coulomb and the Radiative part, respectively:

[C] ≡ 2c

(z0 − z′)2

{
1− γ2 (β⊥(z0)− n⊥)

2 + γ2 [β⊥(z0)− β⊥(z′)]
2[

1 + γ2 (n⊥ − β⊥(z′))
2]2

− 1 + γ2 [n⊥ − β⊥(z′)]
2[

1− γ2n⊥2 + γ2 (z0 − z′)−1
∫ z0

z′ β⊥
2(ζ)dζ

]2
}

, (3.22)
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[R] ≡ 2γ2
β̇⊥

(z0 − z′)
{
1 + γ2 [n⊥ − β⊥(z′)]

2}2
×
{
[n⊥ − β⊥(z

′)]
[
1 + γ2 (β⊥(z0)− β⊥(z

′))2

−γ2 (n⊥ − β⊥(z0))
2

]
− [β⊥(z0)− β⊥(z

′)]
[
1 + γ2

(
n⊥ − β⊥(z

′)
)2]}

.

(3.23)

A rather straightforward calculation shows that the obtained expression is, indeed,
regular in the limit ∆z → 0 or, equivalently, (z0 − z′) → 0. Namely, it is sufficient to
consider the case of constant transverse acceleration β̇⊥ = constant. Without loss of
generality, let us put β̇x = α, β̇y = 0. By shifting the origin and denoting z0 − z′ ≡ τ ,
one has βy(z0) = 0, βx(z0) = ατ . Upon this, the Coulomb part becomes

[C] =
1 + 3

4
γ2α2τ 2

τ 2
(
1 + 1

4
γ2α2τ 2

)2 − 1 + 1
4
γ2α2τ 2

τ 2
(
1 + 1

12
γ2α2τ 2

)2
� γ2α2

6

(
1− 1

3
γ2α2τ 2

)(
1 + 1

4
γ2α2τ 2

)2 (
1 + 1

12
γ2α2τ 2

)2 ,

(3.24)

which clearly has no pole as τ → 0. Similarly, one can check the absence of singularity
in the radiative part.

3.1.4 Energy loss for a test particle in a one-dimensional
bunch

The next step is to evaluate the energy change for a test particle interacting with
the whole bunch characterized by a given electron density distribution. This latter is,
in accordance with our assumptions, stationary in a co-moving frame of reference. It
is also worth mentioning that, in terms of the 1D model used here, it is essentially the
same (up to a numerical factor) as the longitudinal profile of the total current carried
by the bunch.

As has already been said, we are interested only in the contribution coming from
particles that are behind the test one; it is logical then to express the bunch density,
that we will call λ, in terms of the longitudinal distance from the test particle. The
corresponding variable, ∆z, has been already introduced in Eq. (3.7). Then the energy
change can be written as(

dE
dt

)
B

(z0) =

∫ ∞

0

(
dÊ
dt

)
(z0,∆z)λ(∆z)d(∆z) , (3.25)

where ′B′ stands for Bunch and λ is supposed to vanish as ∆z → +∞, so that the
integral converges at the upper limit. Note that the lower limit of integration is zero.
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Clearly, it is more convenient to perform integration over the retarded position z′

rather than over the distance between particles ∆z, since this eliminates the necessity
of solving Eq.(3.11) against z′. Upon this, Eq. (3.25) becomes(

dE
dt

)
B

(z0) =

∫ −∞

z0

(
dÊ
dt

)
(z0, z

′)λ(∆z)
d(∆z)

dz′
dz′ , (3.26)

where the limits of integration correspond to the retarded position of the source particle
for ∆z = 0 or, respectively, +∞. Note that λ(∆z) is to be considered as a shorthand

for λ (∆z(z, z′)). The expression for
(
dÊ/dt

)
(z0, z

′) has been obtained in the previous

section. As for d(∆z)/dz′, one can easily check that

d(∆z)

dz′
= − (1− n · β(z′)) . (3.27)

Finally, if we want to obtain the energy loss during the entire trajectory we have
to integrate over t (or, equivalently, over z0), which gives

∆E =

∫ +∞

−∞

(
dE
dt

)
B

dt

dz0
dz0 . (3.28)

Eq. (3.28) is a closed expression for the energy loss, in the sense that all we need
to know is just the transverse velocity of the bunch as function of the propagation
distance. This latter is fully defined by the (pre-designed) configuration of external
magnetic fields. As a results, we get for the total energy change

∆E � e2

4πε0c

∫ +∞

−∞
dz0

∫ z0

−∞
dz′{[C] + [R]}λ(∆z) , (3.29)

where [C] and [R] are defined by Eqs. (3.22) and (3.23), and ∆z by Eq. (3.11).
A useful, particular case of the above equation is the one of a rectangular current

profile: λ(∆z) is assumed to be constant, λ(∆z) = λ0, over the whole length of the
bunch lb. If the test particle is situated at a distance s0 from the head of the bunch,
then the expression for the energy loss becomes

∆E(s0) � e2λ0
4πε0c

∫ +∞

−∞
dz0

∫ z0

z′∗(lb−s0)

dz′{[C] + [R]} , (3.30)

where z′∗(lb − s0) stands for the solution of Eq. (3.11) corresponding to ∆z = lb − s0,
and s0 is understood positive for particles that lie behind the head of the bunch.

We have performed a comparison of the above expressions with some earlier results
obtained without the use of the small-angle approximation. Following [4], general
analysis of the problem of a bunch with rectangular density distribution passing through
a bending magnet can be considerably simplified in several limiting cases. Namely, the
authors of [4] call the magnet short (respectively, long) if it deflects electrons at an
angle much smaller (much larger) than 1/γ. On the other hand, an electron bunch is
considered short or long, when its linear dimension is, respectively, much shorter or
much longer than A/γ3, where A is the radius of curvature of the particle trajectory
in the magnet. Upon this, normalized expressions for the bunch length (l̂b = lbγ

3/A)
and for the angular dimension of the magnet (φ̂m = γφm) are given.
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Table 3.1: Energy change, in Joules, for an electron located at the head of a bunch
with rectangular density distribution. A comparison is made between an evaluation
with completely analytical formulas found by other authors and with our simuation. B
is the magnetic field, in Tesla, lb is the bunch length in meters, γ is the Lorentz factor,
z is the length of the interaction zone, in meters and N is the number of particles
considered in the bunch.

B(T ) lb(m) γ z(m) N/109 Analysis(J) Simulation(J)
1 0.043 1.0 · 10−6 25 1.2 · 10−2 6.0 8.7 · 10−15 8.3 · 10−15
2 0.085 1.0 · 10−7 50 8.0 · 10−3 10.0 1.54 · 10−13 1.50 · 10−13
3 0.17 0.45 50 9.9 · 10−2 10.0 3.7 · 10−17 3.4 · 10−17
4 0.85 0.2 500 0.02 10.0 8.4 · 10−17 9.3 · 10−17

In one of those limiting cases, the comparison is particularly simple: if the bunch
is short and the bending magnet is, in the normalized sense, much longer than the
bunch then, as has been argued in [4], the transient effects at the interface between
the straight path and the magnet can be neglected. This means that, in this particular
case, we can assume all the retarded positions of the sources to lie within the bending
magnet, and the situation becomes stationary.

For a rectangular bunch containing N particles, one finds upon a calculation similar
to that in Eq. (3.24)(

dE
dt

)
Bunch

= − 1

4πε0

4Ne2γc

Alb

γus (8 + γ2u2s)

(4 + u2sγ
2) (12 + γ2u2s)

, (3.31)

where

us � 2γ2(lb − s0)

A
. (3.32)

One can easily check that Eqs. (3.31) and (3.32) coincide with those found in [4].

In general, the expressions are rather complicated, and the corresponding compar-
ison can only be done numerically. A computer code has been developed and bench-
marked against several limiting cases given in [4]. The results are presented in table 1.
Cases 1 and 2 deal with a short bunch and a magnet longer than the bunch: here the
crucial factor is the energy of the beam. The difference by a factor of 2 in the Lorentz
factor is responsible for the increase by a factor of 16 in the energy change. In cases
3 and 4 the magnet is long and the bunch is much longer (again in the normalized
sense) than the magnet; these two cases have been computed, respectively, with low-
and high-energy bunches.

In all cases we observe a good agreement between our numerical computations and
the corresponding analytical estimates (a relatively large discrepancy of order 10%
in cases 3 and 4 is presumably a result of the logarithmic accuracy of the analytical
expressions in [4]). It is also worth mentioning that in all four cases the total energy
change is small as compared to the initial particle energy; specifically, the largest
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Figure 3.3: Normalized transient power loss for a bunch with rectangular density
distribution going into a bend.

relative energy change of about 4% is found in case 2. This confirms consistency of the
computational scheme, as has been discussed in Section 1.1.

As one more test, we have calculated the instantaneous power radiated by a particle
located at the head of a bunch that enters into bending magnet. This case demon-
strates pronounced transient collective effects. To be specific, we considered a 1 mm-
long, 40 MeV bunch with rectangular electron density distribution entering a circular
trajectory with a radius A = 1 m from a straight path. The dependence of the radiated
power on the angle of deflection θ is shown in Fig. 3.3. After the bunch enters the bend
the radiated power is seen to increase till it reaches a peak at θ � 12o. Upon this it
decreases to its steady state value, P0, which has been used as an overall normalization
factor in Fig. 3.3.

The observed dependence is in agreement with well-known results [5], [6]. Basi-
cally, the transient in the figure connects two steady state situations. The first one
corresponds to the bunch before the bend: clearly, no power is radiated in this case.
The second stationary regime is the steady state CSR − that is, when the retarded
positions of source particles interacting with the test particle are all in the bend. The
transient describes a ’mixed’ situation when the retarded positions of source particles
are partially in the bend and partially in the straight line preceeding the bend.

3.1.5 Conclusions

A new analytical approach to the problem of radiative collective effects within an
ultrarelativistic electron bunch has been developed. The systematical use of a small-
angle approximation results in a new expression for the energy exchange between a
test particle and the bunch. This expression is closed, in the sense that we only need
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to know the transverse velocity of the bunch as a function of the propagation distance,
which is directly determined by the external field configuration.

Analytical and numerical comparison of the obtained formulas with earlier results
by other authors has been performed and a good agreement has been demonstrated.
The technique is applicable to a wide class of trajectory: the condition of a small
deflection angle θ, still keeps open the possibility of comparison with 1/γ, so that one
can treat all important practical cases for θ 
 1/γ (undulator) and θ � 1/γ (wigglers,
compression chicanes).

3.2 Coherent Synchrotron Radiation

transient-effects in the energy-dependent

region

3.2.1 Introduction

In this Section we will apply the results obtained in the previous one to address
longitudinal effects during the passage of a beam with Gaussian longitudinal density
distribution from a straight to a circular path.

The problem of the characterization of self-interaction effects at the transient be-
tween a straight path and a region of constant bending radius has been a matter of
active theoretical research (see, for example, [4] and [6]) in the last few years, this sub-
ject being of fundamental importance for a proper understanding of CSR phenomena.
Other more general works, both numerical and theoretical (see, among others, [8] to
[20]) followed.

Some of these investigations (e.g. [15] to [20]) deal with ultra relativistic beams in
which the value of the Lorentz factor, γ, is always above a certain threshold, as the
fundamental result in [4], upon which they are based, is derived in that approximation.

Nevertheless, in several practical situations, like for example the case of low energy
injectors (see, for example, [21]), we deal with ultrarelativistic beams for which the
value of γ, in combination with the bunch length and the choice of the trajectory, may
be low enough so that the latter approximation fails. Moreover, recent research (see
[16] to [18]) has shown there is reason of concern about beam instabilities induced by
CSR in storage rings as well as in bunch compressors. In fact, as it has been discussed
earlier in Section 1.5, CSR has been shown to amplify small sinusoidal perturbations
of the bunch distribution during the evolution of the beam: once again, one should
make sure that the perturbation wavelength (in combination with the beam-energy
and the geometry of the magnetic system) satisfies the approximations above before
using results in [4] (or alternatively, for steady state regime, in [13]).

These observations demand a deeper investigation of CSR effects in such situations.
In this Section, and with the help of the method discussed in Section 3.1, the problem
of a Gaussian bunch crossing a transient between a straight path and a region of
constant bending radius in the low-energy region has been studied. Results show a
strong dependence of the CSR longitudinal force on the Lorentz factor.

Next, the formula in [4] for the rate of energy change of an electron has been
extended in such a way that it is valid independently of the choice of γ, and it is used
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to treat the same problem: a comparison between the two studies shows a very good
agreement.

In Section 3.2.2 the main results obtained in Section 3.1 is applied to a low-γ tran-
sient case. Then, in Section 3.2.3, an extension of the formula in [4] to the γ-dependent
region is presented and a perfect agreement is shown between such an extension and
the previous results in this article. Finally, Section 3.1.5 is dedicated to conclusions.

3.2.2 Small-angle approximation and its application to a
transient in the low-γ region

An expression for the rate of energy change of a test particle within a rigid, 1D
bunch with generic density distribution function moving along a generic trajectory has
been presented in Section 3.1. Such an expression was derived by means of a consistent
use of the paraxial approximation explained in Fig. 3.1. As it has been explained in
Section 3.1, such an approximation is applicable to a very wide class of trajectories.

Referring to Section 3.1, and therefore to the geometry in Fig. 3.1, z0 is defined,
again, as the present z-position of a test electron and z as the present z-position of a
source electron; moreover ∆z = z0 − z with ∆z > 0, the contributions to CSR effects
from the case ∆z < 0 being negligible (see Section 3.1, [4]). Then, always following
Section 3.1, the rate of energy change for a test particle can be written as

dE
d(ct)

� e2

4πε0c2

∫ z0

−∞
dz′{[C] + [R]}λ(∆z) , (3.33)

where λ is the bunch density. Here [C] and [R] stand for the terms due to Coulomb and
the Radiative parts of the retarded fields, already defined in Eq. (3.22) and Eq. (3.23)
respectively.

As already said in Section 3.1, a computer code has been developed in order to
integrate Eq. (3.33) at different positions of the test particle within the bunch and at
different locations of the bunch within the magnet, obtaining, therefore, the instanta-
neous rate of energy change of any particle within the bunch for different values of γ.
Let us make use of this code in order to deal with a particular case.

Consider, as in [4], a rigid, 1D bunch with Gaussian particle density distribution
λ(s) (s being the coordinate inside the moving bunch) entering a hard-edge bending
magnet after coming from an infinitely long straight section. The bunch standard
deviation will be indicated with σ = 50 µm, and the total charge will be q = 1 nC.
In the actual simulation the gaussian beam will be truncated at ±10 s/σ, where the
distribution is understood to be centered at s/σ = 0, that is

λ(s) = λ0e
−s2/2σ2

. (3.34)

The magnet has hard edges and a curvature radius R = 1.5 m.
The rate of energy change of an electron as a function of its position along the

Gaussian bunch and at several positions of the bunch after the beginning of the mag-
net have been plotted in Fig. 3.4. These positions cover all the transient phenomenon,
in which there are retarded sources both in straight section and bending magnet. Sim-
ulation results for different values of γ are plotted at every position. These values have
been chosen large enough to keep the system ultrarelativistic but at the same time
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Figure 3.4: Rate of energy change of an electron in MeV/m as a function of its
position along the Gaussian bunch s/σ entering a hard-edge magnet, as calculated
using our approach. Every picture shows results for different values of γ. Parameters
are R = 1.5 m, σ = 50 µm, q = 1 nC (a) 5 cm after the entrance; (b) 14 cm after the
entrance; (c) 18 cm after the entrance; (d) 25 cm after the entrance.
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small enough (in combination with the bunch length and the radius of curvature of
the magnet, as will be discussed in detail in Section 3.2.3) so that the usual regime of
applicability of the formula in [4], which has referred to in Section 3.2.1, is abandoned.

As one can see by inspection from Fig. 3.4, results are strongly dependent on the
beam energy. When γ grows enough (again, this statement will be specified quanti-
tatively in Section 3.2.3), the energy-dependent region is abandoned, and curves in
Fig. 3.4 converge to a γ-independent behavior. Note, in particular, that case (d) in
Fig. 3.4 already belongs to the steady state regime: therefore it can be said that the
study given up to now shows energy-dependence in both the transient and the steady
state.

3.2.3 Generalization and comparison

In order to describe, in the same situation presented in Section 3.2.2, the rate of
energy change of an electron within a Gaussian bunch entering a hard edge magnet,
the following approximated formula is used in [4]:

dE
d(ct)

� − 1

4πε0

2e2N

31/3(2π)1/2R2/3σ4/3

×
[
ρ−1/3

(
e−(ξ−ρ)2/2 − e−(ξ−4ρ)

2/2
)
+

∫ ξ

ξ−ρ

dξ′

(ξ − ξ′)1/3
d

dξ′
e−ξ′2/2

]
, (3.35)

where ξ = s/σ, ρ = Rφ3/24σ and φ is an angle fixing the position of the bunch inside
the magnet (see Fig. 3.5).

Figure 3.5: Geometry for the present position of a test particle T and the retarded
position of a source particle S. (a) S is in the straight line. (b) S is in the bend.

It is worth underlining, once again, the importance of Eq. (3.35) that (in its gen-
eralized form for any bunch density distribution function) has been used as a basis for
several CSR analysis and computations (see [15] to [20]).

Eq. (3.35) is completely independent of γ, as one can easily realize by inspection. A
comparison between the results that one can obtain by direct integration of Eq. (3.35)
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(these results are well known, and presented in [4]) and the results, obtained in this
Section, for the case γ = 320 (reproduced also in Fig. 3.4) is plotted in Fig. 3.6.

It has been pointed out in Sec. 3.2.2 that curves in Fig. 3.4 saturate, for high values
of the Lorentz factor, to a γ-independent behaviour: Fig. 3.6 shows that they reproduce,
asymptotically, i.e. for large values of γ, the behaviour predicted by Eq. (3.35). The
reason why the agreement is only asymptotic lies in the approximations used to derive
Eq. (3.35).

Moreover it is important to note that, as Fig. 3.4 and Fig. 3.6 directly show, an
acritical use of the energy-independent Eq. (3.35) may lead to an over-estimation of all
CSR longitudinal effects in the energy-dependent regime.

In the following, the hypothesis upon which Eq. (3.35), taken from [4], was built
will be briefly reviewed. By considering the transient phenomenon in toto, that is up
to saturation to the steady state regime (when all the retarded sources are in the bend)
it has been implicitly assumed that the bending magnet is long enough to allow the
entire bunch to enter such a regime. Besides this assumption, Eq. (3.35) was derived,
in [4], when the following condition is met:

R

γ3
dλ(s)

ds

 λ(s). (3.36)

This basically means that the bunch length is much larger than R/γ3. For a Gaussian
beam with characteristic length σ, Eq. (3.36) can be written as

γ �
(
Rs

σ2

)1/3
. (3.37)

Taking s � σ this means γ � 30.
Moreover, always in [4], the Gaussian beam is treated as a superposition of bunches

with rectangular density distribution satisfying the following condition

φ̂b � 1, (3.38)

where φ̂b is defined by the retardation condition

φ̂b

2
+

φ̂3b
24

=
γ3

R
lb, (3.39)

where lb is the bunch length. When equation (3.38) is satisfied, equation (3.39) reads(
24γ3lb

R

)1/3
� 1, (3.40)

or

γ �
(

R

24lb

)1/3
. (3.41)

Taking lb � σ this means γ � 10.
From the previous discussion it follows, as a conclusion, that Eq. (3.36) and Eq. (3.38)

set a lower limit (expressed, explicitly, by Eq. (3.37) and Eq. (3.41)) to the values of
γ above which Eq. (3.35) is valid. Note that such a limit is in agreement with the fact
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Figure 3.6: Comparison between analytical results from literature [4] and our results
shown in Fig. 3.4 for γ = 320. Rate of energy change of an electron in MeV/m as a
function of its position along the Gaussian bunch s/σ entering a hard edge magnet.
Parameters are R = 1.5 m, σ = 50 µm, q = 1 nC. The plots are γ-independent. (a)
5 cm after the entrance. (b) 14 cm after the entrance. (c) 18 cm after the entrance.
(d) 25 cm after the entrance.
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that simulation results approach the analytical expectation in [4] for high values of γ,
as has been already discussed above in this Section.

As one more comment, remember that recent research (see [16] to [18]) has shown
there is reason for concern about beam instabilities induced by CSR in storage rings as
well as in bunch compressors. In fact, CSR has been shown to amplify small sinusoidal
perturbations of the bunch distribution during the evolution of the beam in magnetic
systems: in all these cases, one should make sure that the perturbation wavelength (in
combination with the beam-energy and the geometry of the magnetic system) satisfies
Eq. (3.36) and Eq. (3.38) before actually using an energy-independent wake to describe
CSR effects.

An extension of Eq. (3.35) will be now sought that is valid regardless of whether
such conditions are met, with the intent of comparing it with results in Fig. 3.4. In
order to do so consider first Fig. 3.5, and the equations, also derived in [4], for the rate
of energy change of a test particle T at some point in the bend due to the interaction
with source particles S whose retarded position are in the straight line before the bend

dE
d(ct)

=
2e2γλ0
4πε0R

∫ ∞

0

dŷ

{
(φ̂+ ŷ)2 + φ̂3(3φ̂/4 + ŷ)

[(φ̂+ ŷ)2 + φ̂4/4]2
− (φ̂+ ŷ)2 + φ̂4/4

[(φ̂+ ŷ)2 + (φ̂3/12)(φ̂/4 + ŷ)]2

}
,

(3.42)
or inside the arc

dE
d(ct)

=
2e2γλ0
4πε0R

∫ φ̂

0

dû

(
1 +

û2

4

){
û2/4− 1

2(1 + û2/4)3
+

1

û2

[
1 + 3û2/4

(1 + û2/4)3
− 1

(1 + û2/12)2

]}
.

(3.43)
Eq. (3.42) and Eq. (3.43) are valid in the case of an infinitely long electron bunch with
constant particle density distribution λ0. Here, as in [4], φ̂ = γφ, ŷ = yγ/R and û = γu
being the meaning of y, φ and u explained in Fig. 3.5. Moreover, always in [4], we find
the following relations, that hold, respectively, when S is in the straight line

(ŝ− ŝ′) =
φ̂+ ŷ

2
+

φ̂3

24

φ̂+ 4ŷ

φ̂+ ŷ
, (3.44)

or in the bend

(ŝ− ŝ′) =
û

2
+

û3

24
, (3.45)

where (ŝ− ŝ′) = (s− s′)γ3/R, and (s− s′) is the curvilinear distance between the test
particle and a source at the same time.

By means of Eqs. (3.42) to (3.45), the following extension of Eq. (3.35) can be
written down for the total rate of energy change of an electron entering a bending
magnet as a function of its position along the Gaussian bunch:
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dE
d(ct)

=
2e2γλ0
4πε0R

{∫ ∞

0

dŷ

[
(φ̂+ ŷ)2 + φ̂3(3φ̂/4 + ŷ)

[(φ̂+ ŷ)2 + φ̂4/4]2
− (φ̂+ ŷ)2 + φ̂4/4

[(φ̂+ ŷ)2 + (φ̂3/12)(φ̂/4 + ŷ)]2

]

×e−

{
s− (R/γ3)(φ̂+ ŷ)/2 + (φ̂3/24)(φ̂+ 4ŷ)/(φ̂+ ŷ)

}2
2σ2

+

∫ φ̂

0

dû

(
1 +

û2

4

)[
û2/4− 1

2(1 + û2/4)3
+

1

û2

(
1 + 3û2/4

(1 + û2/4)3
− 1

(1 + û2/12)2

)

×e−

{
s− (R/γ3)(û/2 + û3/24)

}2
2σ2

]}
.

(3.46)

Note that the first and the second integral on the right side of Eq. (3.46) deal, re-
spectively, with retarded sources in the straight line and in the bend. The correct
contribution by a source to the rate of energy change of the test particle is given by the
integrands of Eq. (3.42) and Eq. (3.43) weighted with the particle density distribution
(expressed by Eq. (3.34)), where the latter is evaluated at the retarded position of the
source (Eq. (3.44) and Eq. (3.45), respectively).

Next, Eq. (3.46) is integrated, numerically, for the same positions of the beam in
the magnet and for the same values of γ that are reported in Fig. 3.4 and in Fig. 3.6.
Results are shown in Fig. 3.7.

Note that the main features of Fig. 3.4 (or Fig. 3.7) can be explained, in the high-γ
case, just by inspecting Eq. (3.35). For example, the behaviour of the maximum in the
rate of energy change, present in both simulation results (for γ = 320) and analytical
results (see Fig. 3.6) can be just understood observing that one gets the maximum
value at the right hand side of Eq. (3.35) when s = Rφ3/6. In fact, for that value of s,
one has λ(s− Rφ3/6) = e−(ξ−4ρ)

2/2 = 1 while the other terms get close to zero. When
R = 1.5 m and the bunch is 14 cm inside the bend the maximum is , therefore, at
s � 5σ; when the bunch is 18 cm inside the bend the maximum has moved at position
s � 8σ, in agreement with the plots. This explains the evolution of the maximum
in Fig. 3.4 for the high-γ case (or Fig. 3.6, or Fig. 3.7). By inspecting Fig. 3.4 and
Fig. 3.7, for the case of lower values of γ, one can see that the peak is still there, still
evolving towards the right hand side part of the plots, even if much less pronounced.

In order to get a quantitative evaluation of the agreement between the curves in
Fig. 3.4 and the respective twins in Fig. 3.7, points have been sampled from every
curve in Fig. 3.4 and in Fig. 3.7. Then, for every pair of corresponding sampled points
(referring to corresponding curves), the differences normalized to the values given by
Eq. (3.35) (shown in Fig. 3.7) have been taken. Next, the rms value of these quantities
has been considered as a measure of agreement between every pair of twin curves. For
every curve it has been found an agreement within 1 percent (this small difference is
ascribed to computational inaccuracies).

The very good matching between Fig. 3.4 and Fig. 3.7 reflects the fact that the gen-
eral small-angle approximation in Section 3.1 was successfully applied to the particular
case of a transient between a straight line and a bend: in other words, as expected,
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Figure 3.7: Rate of energy change of an electron in MeV/m as a function of its
position s/σ along the Gaussian Bunch entering a hard edge magnet, as calculated
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Eq. (3.33) reduces to Eq. (3.46) when that particular trajectory (straight line followed
by a bend) is selected. Of course, as it must be, both reduce to Eq. (3.35) as soon as
the conditions expressed in Eq. (3.36) and Eq. (3.38) are satisfied.

3.2.4 Conclusions

In the last few years, CSR longitudinal effects have been studied widely, both in
the framework of analytical and numerical investigations. Many of these studies are
based on Eq. (3.35), found in [4], that constitute an important result in CSR theory.

With a systematic use of a small-angle approximation we were able to derive, in
Section 3.1, an expression for the energy exchange between a test particle and the
bunch: this expression is closed, in the sense that all one needs to know in order to
evaluate it is the transverse velocity of the bunch as a function of the propagation
distance, which is directly determined by the external field configuration.

CSR longitudinal transient effects from a straight to a circular path have often been
studied under approximations Eq. (3.36) and Eq. (3.38), in which they are energy-
independent. With the help of the method described in Section 3.1, the case in which
these approximations are no longer valid is addressed instead. In this situation, results
(see Fig. 3.4) show a strong dependence of the CSR longitudinal force on the Lorentz
factor (both in the steady state and in the transient case) and an asymptotic agreement,
for large values of γ, with Eq. (3.35) (see Fig. 3.6). A conclusion is that, in such
energy-dependent regime, the use of the energy-independent Eq. (3.35) leads to an
overall over-estimation of all CSR longitudinal effects.

The study proposed in the present Section 3.2 is of practical interest for low-energy
injector design as well as in the framework of CSR-related instabilities: in the first case
one considers ultrarelativistic beams whose value of γ (in combination with the bunch
length and the choice of the trajectory) may be low enough not to fulfill Eq. (3.36)
and Eq. (3.38). Similarly, in the second case, when short wavelength perturbations
of the bunch distribution do not meet the requirements in Eq. (3.36) and Eq. (3.38),
one should use γ-dependent wake fields in order to model CSR interactions. Further
investigations may address these practical situations in a more quantitative way.

Results have been compared with an extension of the γ-independent formula in [4]
for the rate of energy change of an electron (Eq. (3.35)), and a very good agreement
between the two outcomes has been demonstrated. This reflects the fact that the
general approach in [14] perfectly succeeded in dealing with the particular case of a
transient. In other words Eq. (3.33), valid for any trajectory (under the constraint
of the paraxial approach explained in [14]), reduces to Eq. (3.46) when the correct
trajectory (straight line followed by a bend) is selected.
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Chapter 4

Transverse effects

Much of the theoretical analysis about transverse self-forces deals with the case of
a bunch moving along a circular orbit only, without considering the situation of a
bending magnet with a finite length. The need of understanding and cross-checking
results by the code TraFiC4 for the self-interaction in the transverse direction calls for
a thorough investigation of transverse self-interactions from a purely electrodynamical
viewpoint. After a general introduction in Section 4.1 we propose, in Section 4.2,
an analysis of transverse self-fields which originate, at the position of a test particle,
from an ultrarelativistic line of charges moving in an arc of a circle. The problem
will be first addressed within a two-particle system. We then extend our consideration
to a line bunch with a stepped density distribution, a situation which can be easily
generalized to the case of an arbitrary density distribution. Our approach turns out
to be also useful in order to get a better insight in the physics involved in the case of
simple circular motion. Further on, in Section 4.3, we treat an electron bunch with
a given vertical (i.e. perpendicular to the orbital plane) size by a generalization of
our previous work to the case of a test particle with vertical displacement interacting
with a line bunch. In fact, since a bunch with vertical extent can always be thought
of as a superposition of displaced charge lines, all the relevant physical aspects of the
problem are included in the study of that simple model. Our generalization results in a
physically meaningful and quantitative explanation of the main features of simulations
obtained with the code TraFiC4 as well as in successful cross-checking of the code.

Section 4.2 is based, in part, on the article:
Gianluca Geloni et al., DESY 02-48, ISSN 0418-9833, 2002

Section 4.3 is based, in part, on the article:
Gianluca Geloni et al., DESY 03-44, ISSN 0418-9833, 2003
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Figure 4.1: Radial force normalized to e2λ/(4πε0R), F̂ , felt by a particle with different
vertical displacements h positioned at the center of a line bunch 200 µm long as the
bunch enters a circle of radius R = 1m. Here γ = 100. These simulations were obtained
by means of the code TraFiC4.

4.1 Introduction

As already pointed out, in all self-interaction issues the equations for the field
form, together with the dynamical equations for the particle motion, a formidable
self-consistent problem. Its complete solution, that is the evolution of the bunch distri-
bution, is obtained only when one is able to solve simultaneously the equations for the
fields (electrodynamical problem) and the equations of motion (dynamical problem):
this task can be performed with the help of self-consistent computer simulations. An
example of such codes is given (see [1]) by the program TraFiC4, which has been briefly
discussed in Chapter 1 and of which results will be used throughout this Chapter.

TraFiC4 has been used to predict self-field related effects in the bunch compressor
chicanes to be used in front of the main linac for the XFEL at DESY and it is, at
the time being, the only fully developed code for XFEL modelling both at DESY and
SLAC. Results show that the projected transverse emittance of the bunch grows from
0.8 mm mrad after the injection to the significantly enhanced value of 2.6 mm mrad
after the compressor [2].

Transverse dynamics is addressed by the code in two steps: first, the transverse
electromagnetic forces, which are well defined and measurable physical quantities, are
calculated separately and, second, the equation of motion is solved in a self-consistent
way. However, numerical results alone are not sufficient in order to reach an under-
standing of how electromagnetic forces act. Consider for example the plot in Fig. 4.1,
obtained by using the electromagnetic solver of TraFiC4.

The figure shows the normalized radial force (i.e. the force normalized to e2λ/(4πε0R)
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in the direction orthogonal to the test particle velocity and still lying on the bending
plane) felt by a test particle entering into a hard-edge magnet. Here λ is the bunch
density while h is a vertical (orthogonal to the bending plane) displacement with re-
spect to the center of a one-dimensional bunch with rectangular density distribution
function.

The plot shows interesting characteristics: a very sharp feature at the injection
position, a transient and a steady state, which we can observe but for which there is no
intuitive physical explanation. The electromagnetic problem is, of course, only a part
of the evolution problem but its understanding is per se an important physical issue.

Self-forces in the transverse direction were first addressed, in the case of a circular
motion, and from an electrodynamical viewpoint, in [3]. Further analysis ([4] to [7])
considers, again, the case of circular motion both from an electrodynamical and a
dynamical viewpoint: transient collective phenomena have not been considered so far.

Analytical investigations of transient cases are therefore needed in order to see the
meaning of the simulation results (i.e. to explain the features of the electromagnetic
interaction), besides providing, from a more practical viewpoint, important cross-checks
with the code. In Section 4.2 we will restrict our attention to the simpler situation
of a rigid line bunch (whose particles are characterized by a vertical extent h = 0)
evolving through an arc of a circle, under the influence of the electromagnetic fields
generated by its own motion. In Section 4.3 we will eventually show that, through a
generalization of this kind of study, we can understand the features of Fig. 4.1 from a
physical viewpoint, deal with characteristic times and lengths and, as a very practical
result, validate the simulation results by producing analytical cross-checks.

4.2 Transverse self-fields within an electron

bunch moving in an arc of a circle

4.2.1 Introduction

In this Section we report, as a first step towards a quantitative explanation of
phenomena like those in Fig. 4.1, a fully electrodynamical analysis of transverse self-
fields originating, at the position of a test particle, from an ultrarelativistic line of
charges moving in an arc of a circle, thus extending the treatment of the basic situation
of circular motion to the case of a transient between a straight line and a hard-edge
magnet (and, viceversa, from a bend to a straight line).

Consistently with the choice to analyze the electrodynamical aspect of the problem
only, a zero energy-spread will be understood when considering the evolution of an
electron bunch. The results obtained can be directly applied only in the case in which
the zero energy-spread hypothesis is verified a posteriori.

First, a two-particle model is adopted in order to study the transverse force pro-
duced by a single particle and then, by summing up all the contributions from different
electrons, the case of a line-bunch model characterized by a rectangular density distri-
bution is analyzed: this can easily be generalized further to the situation of an arbitrary
density distribution.

Besides providing results in the case of a finite hard-edge bending magnet, our
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approach also turns out to be useful in order to get a better insight of the physics
involved in a simple circular motion.

The study is organized as follows. The transverse interaction between two electrons
moving on a circle is treated in Section 4.2.2. In Section 4.2.3 we deal with a stepped-
profile electron bunch interacting with a test particle again in a circle, and discuss
also the applicability region of the line model with respect to the transverse beam
size, h. Within such applicability limits, we find results which are independent of
the bunch transverse dimension. Transient behavior (from straight to circular path
and viceversa) for the transverse self-forces between two particles are then studied
in Section 4.2.4. Results for the transient of a stepped-profile bunch are given in
Section 4.2.5, where a treatment for the case of a more generic bunch density is also
proposed. A regularization technique for cancelling the singularity in the expression for
the transverse force (which always arises in the limit of a near-zero distance between
test particle and sources) is then applied. Finally, in Section 4.2.6, we come to a
summary of the results obtained and to conclusions.

4.2.2 Transverse interaction between two electrons moving
in a circle

Let us begin our study considering two electrons moving in a circle of radius R. The
case of the test particle following the source (tail-head interaction) has already been
treated in [3] (we will treat here too for the sake of completeness), while the case of
the test particle preceding the source (head-tail interaction) has always been neglected
before. The electro-magnetic force which one of the two particles (designated with
”T”, i.e. the test particle) feels, due to the interaction with the other one (designated
with ”S”, i.e. the source particle), is given by

F (rT, t) = eE(rT, t) + ecβT × B(rT, t), (4.1)

where rT is the position of the test particle, e is the electron charge with its own
(negative) sign, βT is the velocity of the test particle normalized to the speed of light,
c, while E(rT, t) and B(rT, t) are, respectively, the electric and the magnetic field
generated at a given time t by the source particle S, at the position of the test particle
T, given by the Liénard-Wiechert expressions discussed in Chapter 2 and Chapter 3
(see e.g. Eq. (3.12) and Eq. (3.13)).

The transverse direction (on the orbital plane) is, by definition, orthogonal to βT.
The transverse component of Eq. (4.1) can be written, in a similar fashion as the
longitudinal component, as the sum of contributions from the velocity (”C”, Coulomb)
and the acceleration (”R”, Radiation) fields, namely

F⊥(rT, t) = F⊥C(rT, t) + F⊥R(rT, t), (4.2)

where

F⊥C(rT, t) =
e2

4πε0

n⊥ (1− βS · βT)− β⊥S (1− n · βT)

γ2SR
2
ST (1− n · βS)

3 (4.3)
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Figure 4.2: Geometry for the two-particle system in the steady state situation, with
the test particle ahead of the source. Here T is the present position of the test particle,
S is the present position of the source, while S’ indicates the retarded position of the
source.

and

F⊥R(rT, t) =
e2

4πε0c

[
n⊥

(
n · β̇S

)
(1− βS · βT)− β⊥S

(
n · β̇S

)
(1− n · βT)

RST (1− n · βS)
3

−
β̇⊥S (1− n · βT) + n⊥

(
βT · β̇S

)
RST (1− n · βS)

2

]
. (4.4)

Let us first consider the case in which the test particle is in front of the source. In
this case, referring to Fig. 4.2, we can define with ∆s the curvilinear distance between
the present position of the test and of the source particle; φ will indicate, instead, the
angular distance between the retarded position of the source and the present position
of the test electron, and it will be addressed to as the retarded angle.

In the following we will assume βS = βT = β. This hypothesis will naturally lead,
further on, to the assumption of a zero energy-spread when one considers the evolution
of an electron bunch, and, as already discussed in Sec. 4.2.1, it is consistent with our
choice to analyze only the electrodynamical aspect of the problem. Therefore we can
write Eq. (4.3) and Eq. (4.4) in the following way:

F⊥C =
e2

4πε0

1 + β2 − 2β cos(φ/2)

4R2γ2 sin(φ/2)(1− β cos(φ/2))3
, (4.5)
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F⊥R =
e2

4πε0

β2

2R2

[
1

sin(φ/2) (1− β cos(φ/2))
− (1− β2) sinφ/2

(1− β cos(φ/2))3

]
. (4.6)

On the other hand, the retardation condition linking ∆s and φ (see [8]) can be readily
derived:

∆s = Rφ− 2βR sin
φ

2
, (4.7)

or its approximated form

∆s = (1− β)Rφ+
Rφ3

24
. (4.8)

As one can see by inspecting Eq. (4.7), when we impose reasonable values for
∆s 
 R we obtain corresponding values of φ 
 1. We will therefore assume φ 
 1
throughout this Section and verify a posteriori the validity of this assumption when
studying particular situations. Note that, by fixing φ 
 1 we keep open the possibility
of comparing φ with the synchrotron radiation formation angle 1/γ (a deflection angle
smaller or larger than 1/γ is characteristic of the cases, respectively, of undulator or
synchrotron radiation).

We can now expand Eq. (4.5) and Eq. (4.6) to the second non-vanishing order in φ
thus obtaining

F⊥C � e2γ3

4πε0R2
ΦC(φ̂) (4.9)

and

F⊥R � e2γ3

4πε0R2
ΦR(φ̂) , (4.10)

where we define ΦC and ΦR as

ΦC(φ̂) =
φ̂2

φ̂(1 + φ̂2/4)3
(4.11)

and

ΦR(φ̂) =
2− φ̂2 + φ̂4/8

φ̂(1 + φ̂2/4)3
. (4.12)

Here and above φ̂ = γφ. This normalization choice, already treated in [8], is quite
natural, 1/γ being the synchrotron radiation formation-angle at the critical wavelength.
In the derivation of Eq. (4.9) and Eq. (4.10) (and in the following, too) we understood
φ̂ � 1/γ, which is justified by the ultrarelativistic approximation.

The following expression can be then trivially derived, which is valid for the total
transverse force felt by the test particle

F⊥ � e2γ3

4πε0R2
Φ(φ̂) , (4.13)

where Φ is defined by
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Figure 4.3: Plot of Φ(∆ŝ)∆ŝ (solid line) and comparison with the asymptotic values,
1 and 1/3. The dashed line shows the acceleration contribution ΦR(∆ŝ)∆ŝ alone.

Φ(φ̂) =
2 + φ̂4/8

φ̂(1 + φ̂2/4)3
. (4.14)

Note that Eq. (4.14) is completely independent of the parameters of the system: it is
then straightforward to study the asymptotic behaviors of Φ.

It is evident that Φ(∆ŝ) → 1/(3∆ŝ) when φ̂ � 1 and Φ(∆ŝ) → 1/(∆ŝ) when φ̂ 
 1,
having introduced the normalized quantity ∆ŝ = (γ3/R)∆s. This normalization choice
is linked to the fact that the critical synchrotron radiation wavelength, R/γ3, is also
the minimal characteristic distance of our system: two particles nearer than such a
distance can be considered as a single one radiating, up to the critical frequency, with
charge 2e (see [8]).

The asymptotic behavior above suggests to study the function Φ(∆ŝ)∆ŝ. We plot-
ted such a function in Fig. 4.3 (together with the radiative contribution alone) for
values of ∆ŝ running from 0 to 5.

It is interesting to underline the fact that, as one can see from Fig. 4.3, the transverse
force is always centrifugal, for any distance between the two particles. This fact can
be explained by means of a simple relativistic argument which holds, qualitatively, for
all particle distances: in order to build the two-particle system, i.e. to bring them
together, one needs to work against the electromagnetic field. Then, the total mass of
the system accounts for this interaction energy too, and is therefore bigger than the
simple sum of the particles masses. Hence, also the equilibrium orbit radius must be
larger than R, and a centrifugal self-force is to be expected.

It is also worthwhile to note that ΦR has the same asymptotic behavior as Φ, and
that ΦC gives important contributions to Φ only for values between the two asymptotes
(see Fig. 4.3). This may find intuitive explanation in the following reasoning. As is
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S’
ST

R

∆s

φ

βS’

βT

RSTn

O

Figure 4.4: Geometry for the two-particle system in the steady state situation, with
the source particle ahead of the test one. Here T is the present position of the test
particle, S is the present position of the source, while S’ indicates the retarded position
of the source.

well known (see, for example, [9]), the velocity field of an ultrarelativistic electron is
radial, with respect to the ”virtual” position which the particle would assume if it
moved with constant velocity starting from the retarded point, but the line forces are
not isotropically distributed, and resemble more and more the plane wave configuration
as β → c. Therefore, the test particle is influenced by the velocity field of the source
particle only when such a field ”shines right on the test electron” (quoted from [10]),
which does not happen for asymptotic values of φ̂.

Let us now analyze, in the framework of our line model, the case in which the
source particle is in front of the test particle. The geometry is qualitatively sketched
in Fig. 4.4.

The difference with respect to the situation in which the test electron is in front of
the source is that the test electron ”runs against” the electromagnetic signal emitted
by the source, while in the other case it just ”runs away” from it. Therefore the relative
velocity between the signal and the test electron is equal to (1+β)c, instead of (1−β)c
in the other situation. Hence the retardation condition reads (here ∆s < 0):

| ∆s |= Rφ+ 2βR sin
φ

2
(4.15)

or, solved for φ in its approximated form,

φ � | ∆s |
R(1 + β)

. (4.16)
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In this situation, βS′ is almost parallel to (and equal to) βT and antiparallel to n: it
turns out that the only important contribution to the transverse force is given by the
second term on the right side of Eq. (4.4), and it is easy to check that

F⊥ � e2

4πε0R | ∆s | . (4.17)

It may be worthwhile to underline that the force in Eq. (4.17) is, evidently, of the same
magnitude as the force in Eq. (4.13).

An interpretation for the electromagnetic transverse forces from the viewpoint of
relativistic dynamics in the limit | ∆s |
 R/γ3 is given in Chapter 5.

4.2.3 Transverse interaction between an electron and a bunch
moving in a circle

In this Section we discuss the transverse force felt by an electron due to the interac-
tion with a line bunch (with rectangular density distribution) moving in a circle. The
geometry is described in Fig. 4.5, and will be considered rigid, i.e. fixed during the
entire evolution of the system.

Before beginning actual calculations, we provide here a discussion about the appli-
cability region of our line model. In the case of contributions from particles behind
the test particle, the region of applicability of the line model follows straightforwardly
from the retardation condition: one can easily check that the inclusion of a transverse
dimension of the bunch, already designated with h in Section 4.2.1, adds to Eq. (4.8) a
term of magnitude h2/(Rφ). Such a term is negligible with respect to the others in the
retardation condition, whenever h 
 R/γ2, which specifies the region of applicability
of our model as regards the transverse bunch size.

The situation becomes more complicated when one considers contributions from
electrons in front of the test particle. In fact, in the case ∆s < 0 (source particle in
front) and |∆s| < h, we have a situation in which the test electron overtakes the source
before it is reached by the electromagnetic signal: this means that, even if the test
particle is behind the source, the present position of the test particle is, anyway, in
front of the retarded position of the source. Then, the line model constitutes a valid
description of the situation only when |∆s| � h. The cases that do not verify such a
condition are studied in Section 4.3.

Now, in order to actually evaluate the transverse electromagnetic force which the
bunch exerts on the test particle one has to sum up the contributions from all the
retarded sources. Since the two-particle interaction has been calculated in Section 4.2.2
as a function of the retarded angle φ, it is convenient to switch the integration variable
from ∆s to φ,

d∆s

dφ
= R

(
1− β cos

φ

2

)
, (4.18)

being the Jacobian of the transformation. Therefore, from Eq. (4.5), Eq. (4.6) and
Eq. (4.18) one has
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Figure 4.5: Schematic of the test electron T and the stepped-profile bunch; ∆smin
indicates the distance between the electron and the head of the bunch; ∆smax is the
sum of the bunch length and ∆smin.

FB
⊥C = λ0

∫ φmax

φmin

F⊥C(φ) R (1− β cos(φ/2)) dφ

=
e2λ0
4πε0R

1

2γ2

[
− β

1− β cos(φ/2)
− ln(tan(φ/4))

]φmax

φmin

(4.19)

and

FB
⊥R = λ0

∫ φmax

φmin

F⊥R(φ) R (1− β cos(φ/2)) dφ

=
e2λ0
4πε0R

[
β2 ln(tan(φ/2)) +

β(1− β2)

1− β cos(φ/2)

]φmax

φmin

, (4.20)

where the superscript ”B” stands for ”bunch”, and λ0 is the constant linear density of
the bunch. If we now expand in φmin 
 1 and φmax 
 1 the trigonometric functions
in Eq. (4.19) and Eq. (4.20) we have

FB
⊥C � e2λ0

4πε0R

[
− 1

2γ2
ln

(
φmax
φmin

)
− 1

2γ2

(
1

1− β + βφ2max/8
− 1

1− β + βφ2min/8

)]
(4.21)

and

FB
⊥R � e2λ0

4πε0R

[
ln

(
φmax
φmin

)
+

1

γ2

(
1

1− β + βφ2max/8
− 1

1− β + βφ2min/8

)]
. (4.22)
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The second term on the right side of Eq. (4.21) is centrifugal, as well as the first one on
the right side of Eq. (4.22). The other ones are centripetal. Note that the logarithmic
term in Eq. (4.21) is unimportant (in the limit of large values for γ) with respect to
the one in Eq. (4.22), while the second term in Eq. (4.21) modifies for a factor 1/2 the
analogous centripetal term in Eq. (4.22). Therefore, the total transverse force on the
test electron is given by:

FB
⊥ � e2λ0

4πε0R

[
ln

(
φ̂max

φ̂min

)
+

(
4

4 + φ̂2max
− 4

4 + φ̂2min

)]
, (4.23)

which is the sum of a logarithmic centrifugal term and a centripetal term. It is easy to
check that Eq. (4.23) can be also obtained by direct integration of Eq. (4.13).

A natural assumption is to consider our bunch density such that there are many
particles within a distance R/γ3 which, as already underlined, is the minimal char-
acteristic distance of the system: if the test particle is to be considered at the head
of our bunch, then it is straightforward to assume ∆smin 
 R/γ3 which, by means
of the retardation condition Eq. (4.8), gives us back the condition: φmin 
 1/γ, the
non-linear term in φmin of Eq. (4.8) being, in this case, negligible.

Under the latter assumption we can easily investigate the two cases of a short bunch,
that is φmax 
 1/γ (in which the linear term in φmax of Eq. (4.8) dominates), and of
a long bunch, that is φmax � 1/γ (in which the linear term in φmax of Eq. (4.8) is
negligible). These two cases correspond, of course, to the asymptotic situations for the
two-particle interaction discussed in Section 4.2.2.

Let us consider first the case φmax 
 1/γ. Eq. (4.21), Eq. (4.22) and Eq. (4.23),
then, read

FB
⊥C � e2λ0

4πε0R

[
− 1

2γ2
ln

(
φ̂max

φ̂min

)
+

1

4
φ̂2max

]
� e2λ0

4πε0R

[
− 1

2γ2
ln

(
∆ŝmax
∆ŝmin

)
+∆ŝ2max

]
,

(4.24)

FB
⊥R � e2λ0

4πε0R

[
ln

(
φ̂max

φ̂min

)
− 1

2
φ̂2max

]
� e2λ0

4πε0R

[
ln

(
∆ŝmax
∆ŝmin

)
− 2∆ŝ2max

]
(4.25)

and

FB
⊥ � e2λ0

4πε0R

[
ln

(
φ̂max

φ̂min

)
− 1

4
φ̂2max

]
� e2λ0

4πε0R

[
ln

(
∆ŝmax
∆ŝmin

)
−∆ŝ2max

]
. (4.26)

From Eq. (4.26) we see that the centripetal term tends, asymptotically, to zero as
(γφmax)

2.
In the case φmax � 1/γ, instead, we have

FB
⊥C � e2λ0

4πε0R

[
− 1

2γ2
ln

(
φ̂max

φ̂min

)
+ 1

]
� e2λ0

4πε0R

[
− 1

2γ2
ln

(
(24∆ŝmax)

1/3

∆ŝmin

)
+ 1

]
,

(4.27)
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FB
⊥R � e2λ0

4πε0R

[
ln

(
φ̂max

φ̂min

)
− 2

]
� e2λ0

4πε0R

[
ln

(
(24∆ŝmax)

1/3

∆ŝmin

)
− 2

]
(4.28)

and

FB
⊥ � e2λ0

4πε0R

[
ln

(
φ̂max

φ̂min

)
− 1

]
� e2λ0

4πε0R

[
ln

(
(24∆ŝmax)

1/3

∆ŝmin

)
− 1

]
, (4.29)

which means that the centripetal term saturates to a constant value in the limit of a
long bunch.

Note that, in order to obtain Eq. (4.29), we had to integrate contributions from
φ̂ 
 1 to φ̂ � 1: we can give a simple explanation for the centripetal constant force
term just analyzing Eq. (4.13) and its asymptotic behaviors. The product of Eq. (4.13)
with the Jacobian (Eq. (4.18)) of the transformation between ∆ŝ and φ̂ is equal, in
the limits for φ̂ � 1 and φ̂ 
 1, to 1/φ̂: then we can conclude that the logarithmic
centrifugal term in Eq. (4.29) (or in Eq. (4.27) or in Eq. (4.28)) takes into account
the 1/φ̂-behavior of the transverse force for the two-particle system, while the constant
centripetal term brings information about the way in which the transverse force for a
two-particle system changes in the intermediate region between the limits φ̂ 
 1 and
φ̂ � 1. Note, however, that there is no physical ground to distinguish between the first
(centrifugal) and the second (centripetal) term in Eq. (4.29): the total force is always
centrifugal, and both terms are consequence of the integration of a unique expression
for the force between a two-particle system (which, of course, is always centrifugal too).

4.2.4 Transverse interaction between two electrons moving
in an arc of a circle

We will now discuss the case of a two-particle system during the passage from a
straight path to a circular one and from a circular path to a straight one. The four
possible cases are sketched in Fig. 4.6 for the case in which the test particle is in front
of the source.

The case in which both particles are in the bend, depicted in Fig. 4.6b, has already
been discussed in Section 4.2.2. Moreover, note that the situation in which the source
particle is ahead of the test electron can be treated immediately for all three (a, c
and d) transient cases in Fig. 4.6 (of course, with respect to the figure, test and source
particle exchange roles) on the basis of Eq. (4.17). In fact in such a case, we can assume
the retarded angle φ small enough (the test particle ”runs against” the electromagnetic
signal) so that the actual trajectory followed by the particles is not essential and one
can use Eq. (4.17) to describe also the transient cases. Now, the important contribution
from the source particle comes from the acceleration part of the Liénard-Wiechert fields.
Then, within our approximations, the only non-negligible contribution is constant and
identical to the one in Eq. (4.17), and it is present in the situation (again, with the roles
of test and source particle inverted) depicted in Fig. 4.6a only (Fig. 4.6b is the already
discussed steady-state case). We will discuss more extensively the consequences of this
fact in Section 4.2.5.

Let us now focus on the cases in which the source particle is behind the test particle
and, in particular, let us first deal with the case in Fig. 4.6a; such a situation occurs
when the following condition is met (see [8]):
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∆ŝ >
η̂

2
+

η̂3

24
. (4.30)

Let us designate with y the distance, along the straight line before the bend, be-
tween the retarded source particle and the beginning of the magnet. The retardation
condition, in its approximated form, reads (see [8]):

∆ŝ � η̂ + ŷ

2
+

η̂3

24

η̂ + 4ŷ

η̂ + ŷ
, (4.31)

where we introduced the normalized quantity ŷ = yγ/R, which is just y/R normalized
to the synchrotron radiation formation angle, 1/γ.

In the situation considered, the source particle is only responsible for a velocity
contribution, therefore F⊥ = F⊥C. By direct use of Eq. (4.3), one can find the exact
expression for F⊥:

F⊥ =
e2

4πε0γ2
β2R(1− cos η)− β sin η[(y +R sin η)2 +R2(1− cos η)2]1/2 +R−R cos η + y sin η{

[(y +R sin η)2 +R2(1− cos η)2]1/2 − βy −Rβ sin η)3
} .

(4.32)

Expanding the trigonometric functions in Eq. (4.32) and using normalized quantities
one finds:

F⊥ � e2

4πε0

4γ3

R2
η̂(ŷ + η̂)2

ŷ2 + ŷ (η̂ + η̂3/2) + η̂4/4

[(ŷ + η̂)2 + η̂4/4]3
. (4.33)

It can be easily verified that, as it must be, Eq. (4.33) reduces to Eq. (4.9) in the limit
y → 0.

It is now possible, by means of Eq. (4.33), to plot the normalized transverse force
F̂ = F⊥/[e2/(4πε0R∆s)] as a function of the position after injection (defined by the
entrance of the test particle in the hard-edge magnet) for different values of ∆ŝ =
∆sγ3/R. In Fig. 4.7 we compared such a plot with numerical results from the code
TraFiC4 (see [1]).

Note that, at the position which corresponds to the entrance of the retarded source
in the magnet there is a discontinuity in the plots. This is linked to our model choice,
and it is due to the abrupt (hard edge magnet) switching on of the acceleration fields.

As general remark to Fig. 4.7 (and to the following ones) it might be worthwhile to
stress that the perfect agreement (with graphical accuracy) between our calculations
and numerical results by TraFiC4 provides, per se, an excellent cross-check between
analysis and simulations, which enhance one’s level of confidence on both these ap-
proaches.

Let us now consider the case depicted in Fig. 4.6c, in which the source particle has
its retarded position inside the bend and the test particle has its present position in
the straight line following the magnet. We will define with x the distance, along the
straight line after the magnet, between the end of the bend and the present position
of the test particle. In this situation the following condition is verified (see [8]):
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η

Figure 4.6: Relative configuration of the retarded source point S’ and the test point
T for a system of two electron passing a bending magnet.
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Figure 4.7: Normalized transverse force (F̂ = F⊥/[e2/(4πε0R∆s)]) for a two-particle
system entering a hard-edge bending magnet as a function of the position after in-
jection. The solid lines show analytical results; the circles describe the outcome from
TraFiC4. We plotted several outcomes from different values of the normalized distance
between the two particles.

∆ŝ <
φ̂m + x̂

2
+

φ̂3m
24

φ̂m + 4x̂

φ̂m + x̂
, (4.34)

where φ̂m = γφm, φm being the angular extension of the magnet, and x̂ = γx/R (the
reason for this normalization choice for x is identical to that for y) .

The retardation condition reads

∆ŝ � ψ̂ + x̂

2
+

ψ̂3

24

ψ̂ + 4x̂

ψ̂ + x̂
. (4.35)

In contrast with the case of Fig. 4.6a, here we have contributions from both velocity
and acceleration field. Again, by direct use of Eq. (4.3) and Eq. (4.4) one can find the
exact expression for the transverse electromagnetic force exerted by the source particle
on the test particle

F⊥ = F⊥C + F⊥R , (4.36)

where

F⊥C =
e2

4πε0γ2

R(1− cosψ)(1− β2 cosψ)− β sinψ
[(
(x+R sinψ)2 +R2(1− cosψ)2

)1/2 − βx− βR sinψ
]

[
((x+R sinψ)2 +R2(1− cosψ)2)1/2 − βx cosψ − βR sinψ

]3
(4.37)
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and

F⊥R =
e2

4πε0
β2

R

{− cosψ
[(
(x+R sinψ)2 +R2(1− cosψ)2

)1/2 − βx− βR sinψ
]
− βR(1− cosψ) sinψ[

((x+R sinψ)2 +R2(1− cosψ)2)1/2 − βx cosψ − βR sinψ
]2

+
(R+ x sinψ −R cosψ)[

((x+R sinψ)2 +R2(1− cosψ)2)1/2 − βx cosψ − βR sinψ
]3
[
R(1− cosψ)(1− β2 cosψ)

−β sinψ
[(
(x+R sinψ)2 +R2(1− cosψ)2

)1/2 − βx− βR sinψ
] ]}

.

(4.38)

Expanding the trigonometric functions in Eq. (4.37) and Eq. (4.38), and using normal-
ized quantities one finds:
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Figure 4.8: Normalized transverse force (F̂ = F⊥/[e2/(4πε0R∆s)]) for a two-particle
system leaving a hard-edge bending magnet as a function of the position after the
ejection. The solid lines show analytical results; the circles describe the outcome from
TraFiC4. We plotted several outcomes from different values of the normalized distance
between the two particles.

F⊥C =
2e2γ3

4πε0R2
ψ̂(x̂+ ψ̂)2

−2x̂2 + x̂
(
ψ̂3 − 2ψ̂

)
+ ψ̂4/2[

(x̂+ ψ̂)2 + (ψ̂2/4)(2x̂+ ψ̂)2
]3 (4.39)

and
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F⊥R =
2e2γ3

4πε0R2
(x̂+ ψ̂)

{
x̂2 + x̂ψ̂(2− ψ̂2) + ψ̂2 − 3/4ψ̂4[
(x̂+ ψ̂)2 + (ψ̂2/4)(2x̂+ ψ̂)2

]2
+
(x̂+ ψ̂)(x̂+ ψ̂/2)ψ̂2

[
−2x̂2 + x̂ψ̂(−2 + ψ̂2) + ψ̂4/2

]
[
(x̂+ ψ̂)2 + (ψ̂2/4)(2x̂+ ψ̂)2

]3
}

. (4.40)

Similarly to the latter case, it can be easily verified that Eq. (4.39) and Eq. (4.40)
reduce to Eq. (4.9) and Eq. (4.10), respectively, in the limit x → 0. Again, it is
possible to plot the normalized transverse force F̂ (defined above) as a function of the
position after the ejection (defined by the exit of the test particle from the hard-edge
magnet) for different values of ∆ŝ = ∆sγ3/R. In Fig. 4.8 we compared such a plot
with numerical results from TraFiC4.

Again, at the position which corresponds to the exit of the retarded source from
the magnet there is a discontinuity in the plots. This is linked to our model choice,
and it is due to the fact that, for particles on axis, when the retarded source leaves the
magnet there is only Coulomb repulsion directed along the longitudinal direction.

(injection at s = 0.0 m)

Figure 4.9: Normalized transverse force (F̂ = F⊥/[e2/(4πε0R∆s)]) for a two-particle
system crossing a hard-edge bending magnet as a function of the position of the test
particle inside the magnet in the case of a short magnet φm 
 1. The solid lines show
analytical results; the circles describe the outcome from TraFiC4. Here the normalized
distance between the two particles is ∆ŝ = 0.2. We plotted several outcomes from
different values of the normalized magnet angle φ̂m = 0.1, 0.2, 0.3, 0.4, 0.5, 1.0.

The last case left to discuss is depicted in Fig. 4.6d; the source particle has its
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retarded position in the straight line before the bend, and the test particle has its
present position in the straight line following the magnet. This case occurs when

∆ŝ >
φ̂m + x̂

2
+

φ̂3m
24

φ̂m + 4x̂

φ̂m + x̂
. (4.41)

The retardation condition reads

∆ŝ � φ̂m + x̂+ ŷ

2
+

φ̂3m
24

φ̂m + 4(x̂+ ŷ) + 12x̂ŷ/φ̂m

φ̂m + x̂+ ŷ
. (4.42)

In this case we have only velocity contributions. The exact expression for the electro-
magnetic transverse force on the test particle is

F⊥ =
e2

4πε0γ2

{
(R + y sinφm −R cosφm)(1− β2 cosφm)− β sinφm

[(
2R2 + x2

+y2 + cosφm(2xy − 2R2) + 2R(x+ y) sinφm
)1/2 − β(x+ y cosφm +R sinφm)

]}
×
{ [

2R2 + x2 + y2 + 2 cosφm(xy −R2) + 2R(x+ y) sinφm
]1/2 − β cosφm

×(x+ y cosφm +R sinφm)− β sinφm(R + y sinφm −R cosφm)
}−3

. (4.43)

Expanding the trigonometric functions in Eq. (4.43) and using normalized quantities
one finds the following approximated expression for F⊥:

F⊥ � e2

4πε0R2
8γ3(x̂+ ŷ + φ̂m)

2φ̂m
{− x̂2/2 + ŷ2/2 + (φ̂2m/2)x̂ŷ

+x̂(φ̂3m/4− φ̂m/2) + ŷ(φ̂3m/4 + φ̂m/2) + φ̂4m/8
}{

(x̂+ ŷ + φ̂m)

×
[
x̂(1 + φ̂2m) + ŷ + φ̂m + φ̂3m/3

]
− (φ̂2m/12)[12x̂ŷ + 4(x̂+ ŷ)φ̂m + φ̂2m]

}−3
.

(4.44)

It is easy to verify that Eq. (4.44) reduces, respectively, to Eq. (4.9) when x = 0
and y = 0, to the transient case in Fig. 4.6a when x = 0 (Eq. (4.33)) and to the
transient case in Fig. 4.6c when y = 0 (Eq. (4.39)). Following the treatment of the
transient situations in Fig. 4.6a and in Fig. 4.6c it is possible to plot, for this case too,
a normalized expression for the transient force, i.e. the usual F̂ , as a function of the
curvilinear position of the test particle (s=0 indicates the entrance of the magnet) for
different values of ∆ŝ = ∆sγ3/R and for different magnet lengths. In Fig. 4.9, Fig. 4.10
and Fig. 4.11 we compared our analytical results with numerical results from TraFiC4,
for the cases ∆ŝ = 0.2, ∆ŝ = 1.0 and ∆ŝ = 5.0 respectively.

4.2.5 Transverse interaction between an electron and a bunch
entering a bend from a straight path

In the previous Section 4.2.4 we dealt with all the possible configurations for a two-
particle system moving in an arc of a circle. Now, one can consider a bunch moving
on the same trajectory and calculate the transverse force on a test particle as the sum
of contributions from all the source particles within the bunch.
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(injection at s=0.0 m)

Figure 4.10: Normalized transverse force (F̂ = F⊥/[e2/(4πε0R∆s)]) for a two-particle
system crossing a hard-edge bending magnet as a function of the position of the test
particle inside the magnet in the case of a short magnet φm 
 1. The solid lines show
analytical results; the circles describe the outcome from TraFiC4. Here the normalized
distance between the two particles is ∆ŝ = 1.0. We plotted several outcomes from
different values of the normalized magnet angle φ̂m = 0.1, 0.2, 0.5, 1.0, 1.5, 2.0.

As an example, we will study here the case of a bunch entering a long bending
magnet. Such a case is important, as mentioned before, for code benchmark purposes
and for direct application in restricted regions of parameters (negligible transverse
bunch size and bunch energy spread).

Head-Tail interaction. First we will analyze the case of a bunch with rectangular
density function, and we will assume the test particle to be behind the bunch. Such
an analysis will be performed using our line model and it is therefore valid only for
transverse dimension of the bunch much smaller than the distance between the test
particle and the bunch ∆smin. After the discussions, in Section 4.2.2 and 4.2.4, about
a two-particle system with the test particle behind the source electron, one is led to
conclude that, within an electron bunch, interactions between sources in front of the
test particle and the test particle itself are important and, in general, they must be
responsible, at the entrance and at the exit of the bending magnet, for sharp changes
in the transverse forces acting on the test electron. The quantitative change depends,
of course, on the position of the test particle inside the bunch: the extreme cases
are for the test particle at the head of the bunch, where there are just interactions
with electrons behind the test particle (no head-tail interactions), and for the test
particle at the tail of the bunch, where all the sources are in front of it (only head-tail
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(injection at s = 0.0 m)

Figure 4.11: Normalized transverse force (F̂ = F⊥/[e2/(4πε0R∆s)]) for a two-particle
system crossing a hard-edge bending magnet as a function of the position of the test
particle inside the magnet in the case of a short magnet φm 
 1.The solid lines show
analytical results; the circles describe the outcome from TraFiC4. Here the normalized
distance between the two particles is ∆ŝ = 5.0. We plotted several outcomes from
different values of the normalized magnet angle φ̂m = 0.5, 1.0, 2.0, 3.0, 4.0, 5.0.

interactions). It may be worthwhile to underline that the sharp jumps in the transverse
force are expected to take place in a space interval comparable, at most, with half of
the bunch length in the case of the test electron at the tail of the bunch. In order
to show this, one can easily calculate the transverse force acting on a test particle
behind a bunch with rectangular density distribution entering a hard-edge magnet. If,
as usual, we indicate with ∆smax the distance from the test particle to the head of the
bunch and with ∆smin the distance from the test particle to the tail of the bunch (both
understood as positive quantities), then one can easily derive such an expression from
Eq. (4.16) and Eq. (4.17):

FB
⊥ HT(y) �



0 y > ∆smax/(1 + β)

e2λ0

4πε0R
ln
[
∆smax

y(1+β)

]
∆smin/(1 + β) < y < ∆smax/(1 + β)

e2λ0

4πε0R
ln
[
∆smax

∆smin

]
y < ∆smin/(1 + β)

,

(4.45)
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where ”HT” stands for ”head-tail” and y is the (positive) distance of the test particle
from the magnet entrance.
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Figure 4.12: Normalized transverse force F⊥/f1 acting on a test particle behind a
bunch with rectangular density distribution. As the bunch enters a hard-edge bending
magnet we plot the normalized force as a function of the position of the test particle
inside the magnet (solid line) and we compare with results by TraFiC4 (circles). The
parameter choices are: bunch length = 100 µm, γ = 100, R = 1 m; the value of ∆smin
is 1 µm.

The following step is to actually plot the transverse force in Eq. (4.45). It is
convenient to choose, as normalization factor for the transverse force, the value f1 =
e2λ0/(4πε0R) ln[∆smax/∆smin]. Our results, compared once again with simulations by
TraFiC4, are shown in Fig. 4.12 for a bunch length ∆smax−∆smin = 100 µm, γ = 100,
R = 1 m and for ∆smin = 1 µm. This means that, according to the validity limits
of our model, this result can be applied only when h 
 1 µm. Nevertheless, this
simple example shows that the code TraFiC4 is actually able to account for head-tail
interactions. Note that, as expected, the transient has a spatial extent of about one
half of the bunch length (∆smax/(1 + β)).

Tail-Head interaction. We will now analyze the case of a bunch with rectangular
density function with the test particle in front of the bunch, as depicted in Fig. 4.5. In
the injection case we have contributions from retarded sources both in the bend and
in the straight line before the bend. The contribution from the retarded sources in the
magnet is given, basically, by Eq. (4.23), and reads

FB
⊥m � e2λ0

4πε0R

[
ln

(
φ̂max

φ̂min

)
+

4

4 + φ̂2max
− 4

4 + φ̂2min

]
, (4.46)
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where ”m” reminds that the contributions treated by Eq. (4.46) are all from the ”mag-
net”. All that is left to do now, is the investigation of the values which φ̂min and
φ̂max assume. Let us first define with φ̂∗ the solution of the retardation equation
∆ŝmin = φ̂∗/2+ φ̂∗3/24. Then let us remember that η̂ indicates the normalized angular
position of the test particle inside the bending magnet. If φ̂∗ < η̂, the retarded position
of the first source particle is in the bending magnet, and φ̂min = φ̂∗. On the other hand,
when φ̂∗ > η̂ there are no contributions to the transverse force from the bend. Next,
we define with φ̂∗∗ the solution of ∆ŝmax = φ̂∗∗/2 + φ̂∗∗3/24. Supposing φ̂∗ < η̂, if
φ̂∗∗ < η̂ too, then all the particles contribute from the bend, and φ̂max = φ̂∗∗. On the
other hand, when φ̂∗∗ > η̂, we have a mixed situation, in which part of the particles
contribute from the bend and others from the straight line before the magnet. In this
case φ̂max = η̂.

The contribution from the retarded sources in the straight path before the bend is
given by

FB
⊥s = λ0

∫ ∆ŝ2

∆ŝ1

R

γ3
F⊥(ŷ(∆ŝ, η̂), η̂)d∆ŝ , (4.47)

where ”s” stands for ”straight path”, and where the expression for F⊥ in the integrand
is given by Eq. (4.33). It is convenient, as done before, to switch the integration variable
from ∆ŝ to ŷ. The Jacobian of the transformation is given by

d∆ŝ

dŷ
� (η̂ + ŷ)2 + η̂4/4

2(η̂ + ŷ)2
. (4.48)

After substitution of Eq. (4.48) and Eq. (4.33) in Eq. (4.47), one can easily carry out
the integration, thus getting

FB
⊥s �

2e2λ0
4πε0R

[
η̂ (4ŷmin + 2η̂ + η̂3)

4ŷ2min + 8ŷminη̂ + 4η̂2 + η̂4
− η̂ (4ŷmax + 2η̂ + η̂3)

4ŷ2max + 8ŷmaxη̂ + 4η̂2 + η̂4

]
. (4.49)

As done before for φ̂min and φ̂max, we can now investigate the values of ŷmin and ŷmax.
Let us start with ŷmin. First, we define with ŷ∗ the solution of the retardation condition
∆ŝmin = (η̂+ ŷ∗)/2+ (η̂3/24)(4ŷ∗ + η̂)/(ŷ∗ + η̂). If ŷ∗ > 0, the retarded position of the
first source particle is in the straight line before bending magnet, and ŷmin = ŷ∗. On
the other hand, when ŷ∗ < 0, the retarded position of the first source particle is in the
bend, and ŷmin = 0.

Next, we define with ŷ∗∗ the solution of ∆ŝmax = (η̂ + ŷ∗∗)/2 + (η̂3/24)
×(4ŷ∗∗ + η̂)/(ŷ∗∗ + η̂). Consider the case ŷ∗∗ < 0: all the particles contribute from
the bend, that is we entered the steady-state situation. In this case ŷmax = ŷmin = 0.
On the other hand, when ŷ∗∗ > 0, we have again a mixed situation, in which part
of the particles contribute from the bend and others from the straight line before the
magnet. In this case ŷmax = ŷ∗∗.

The following step is to actually plot the transverse force on an electron from a
bunch with rectangular distribution entering a long bend. It is convenient to choose,
as normalization factor for the transverse force, the value f = e2λ0/(4πε0R) ln(∆ŝmax).
Our results, compared, once again, with simulations by TraFiC4, are shown in Fig. 4.13
for a bunch length of 100 µm, γ = 100, R = 1 m and for different values of ∆ŝmin.
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Figure 4.13: Normalized transverse force (F⊥/f) acting on a test particle from a
bunch with rectangular density distribution entering a hard-edge bending magnet as
a function of the position of the test particle inside the magnet. The solid lines
show analytical results; the circles describe the outcome from TraFiC4. We chose
∆smax = 100 µm, γ = 100, R = 1 m; graphs are plotted for several values of the
parameter ∆ŝmin.

It is interesting to calculate the asymptotic expression for FB
⊥s in the limit for a long

bunch (∆ŝmax � 1) and for a short distance between the test particle and the head of
the bunch (∆ŝmin 
 1). First let us indicate with φ̂b the solution of the retardation
condition for the circular motion, so that within our approximations φ̂b � (24∆ŝmax)

1/3.
By means Eq. (4.31) it is easy to prove that, when η̂ decreases, ŷmax takes bigger and
bigger values, with an upper limit ŷmax = 2∆ŝmax. On the other hand, when η̂ increases,
ŷmax takes always decreasing values, with a lower limit ŷmax = 0. Assuming ŷmin 
 1,
one may check that, in the long bunch limit, Eq. (4.49) reads

FB
⊥s �

{
e2λ0/(2πε0R) η̂/φ̂b < 2−2/3

0 η̂/φ̂b > 2−2/3
, (4.50)

which is a boxcar function. Note that in the passage from Eq. (4.49) to Eq. (4.50)
we used the fact that η̂ � 1. In order to visualize the limiting process we plotted, in
Fig. 4.14, FB

⊥s, as it is given in Eq. (4.49) and normalized to f = e2λ0/(4πε0R) ln(∆ŝmax)
(i.e. v = FB

⊥s/f , in the plot), as a function of the position after injection, normalized

to φ̂b (i.e. u = Rη̂/(γφ̂b), in the plot). The plots in Fig. 4.14a, b, c and d refer to
different bunch lengths (respectively 102µm, 103µm, 104µm and 105µm). For every
choice of the bunch length we show different outcomes for several choices of ∆ŝmin. As
one can see from Fig. 4.14, in the limit for ∆ŝmin 
 1 and ∆ŝmax � 1, one approaches
the boxcar function described by Eq. (4.50). Note that, here, the radius of the bend is
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R = 1 m and γ = 100, therefore we have 2−2/3R/γ � 6.3 · 10−3 m, while the maximum
value for v, due to the normalization choice, is given, from Eq. (4.50), by 2/ ln(∆ŝmax).
In the case of Fig. 4.14d, for example, we have 2/ ln(∆ŝmax) � 0.174 (in agreement, of
course, with the maximum value found in the plot).
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Figure 4.14: Plot of v = FB
⊥s/f as a function of u = Rη̂/(γφ̂b); here R = 1 m and

γ = 100. Case (a) the bunch length is 102 µm, (b) 103 µm, (c) 104 µm and (d) 105 µm.
Each case is parameterized with respect to different values of ∆ŝmin = γ3∆smin/R (see
the legends in the plots).

On the other hand, again in the same limits, one can find the asymptotic expression
for the contribution from particles with retarded position in the bend: this is given,
indeed, by Eq. (4.46), with the limit expressions for φ̂min in the case of a small distance
∆ŝmin, and for φ̂max in the long bunch limit. For φ̂min we have, from the retardation
condition in Eq. (4.8) φ̂min = 2∆ŝmin. For φ̂max, if ∆ŝmax < η̂3/24 we have, again from
the retardation condition, φ̂max = φ̂b = (24∆ŝmax)

1/3. Otherwise, when ∆ŝmax > η̂3/24
we obtain φ̂max = η̂.

By means of these results one can build an expression for the transverse force in
the case of a bunch with general density distribution λ, by considering it as a compo-
sition of rectangular bunches with length (s − s′) and linear density ds′dλ(s′)/ds′,
under the constraint that the important bunches for such a composition are long
enough to neglect all linear terms in the expression for the retardation condition (i.e.
λ(s)γ3/R � dλ(s′)/ds′, see [8]). In this case, the contribution from particles in the
straight line reads

F tot
⊥s �

∫ s−Rη3/6

−∞
FB
⊥s(η, s− s′)

dλ(s′)
ds′

ds′ =
e2

2πε0R
λ(s−Rη3/6) . (4.51)
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Note that the expression above does not depend on ∆smin. On the other hand the
contribution from particles in the bend is

F tot
⊥m �

∫ s−smin

−∞
FB
⊥m(η, s− s′)

dλ(s′)
ds′

ds′

=
e2

2πε0R

∫ s−smin

−∞

1

2

[
− 1 +

1

3
ln

(
24γ3

R
∆smax

)
− ln

(
2γ3

R
∆smin

)]
dλ(s′)
ds′

ds′ , (4.52)

which, instead, depends on ∆smin. It is very interesting to show that this dependence
on ∆smin cancels with the dependence on ∆smin of the steady-state force: in fact this
constitutes a general result independent from the choice of the position of the test
particle. In order to show this, let us first note that Eq. (4.52) can be written as

F tot
⊥m � e2

4πε0R

{∫ s−smin

s−η3R/24

[
−1 + ln(φ̂b(s

′))− ln(φ̂min)
] dλ(s′)

ds′
ds′

+

∫ s−η3R/24

−∞

[
−1 + ln(η̂)− ln(φ̂min)

] dλ(s′)
ds′

ds′
}

, (4.53)

while the steady state contribution is given by

F tot
⊥steady �

e2

4πε0R

∫ s−smin

−∞

[
−1 + ln(φ̂b(s

′))− ln(φ̂min)
] dλ(s′)

ds′
ds′ . (4.54)

Subtracting side by side Eq. (4.54) from Eq. (4.53), and adding the contribution from
the straight path, one finally gets the following ”regularized” expression for the tran-
sient transverse force:

F̃ tot
⊥ � e2

2πε0R

[
λ(s−Rη3/6)− 1

6

∫ s−Rη3/24

−∞
ln

(
24(s− s′)

Rη3

)
dλ(s′)
ds′

ds′
]

, (4.55)

which is completely independent from ∆smin and, therefore, free from singularity in the
limit ∆smin → 0. It might be worthwhile to remark that usual regularization techniques
take place, in the study of longitudinal (CSR) self-interactions (see Chapter 3 and [8])
at the stage of the two-particle system and before integration of the contributions
from all the retarded sources within the bunch. The situation is reversed here, where
regularization takes place after integration.

4.2.6 Summary and conclusions

In Section 4.2 we presented a fully electrodynamical study of transverse self-forces
within an electron bunch moving in an arc of a circle. Our analysis is based on a
line-bunch model. In the case of test particles in front of the source, our model is valid
whenever h 
 R/γ2, where h indicates the transverse beam size. On the other hand,
when the source electron is in front of the test electron, then the situation is more
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complicated and the model can be applied only for |∆s| � h. The cases that do not
fulfill these conditions are treated in the next Section.

In Section 4.2.2 we first studied the situation of a two-particle system moving on a
circular path, finding an approximated expression for the transverse self-forces which
is the product of a factor dependent on the parameters that specify the system setup
and a universal function (i.e. a function independent of such parameters): for every
distance between the particles we found a centrifugal force, which has a qualitative
explanation by means of simple arguments from relativistic dynamics. We concluded
that both the tail-head and head-tail interactions are important: in the first case the
velocity interaction plays a role besides the acceleration one, while in the second only
acceleration contributions are present.

Further on, in Section 4.2.3, after discussing the applicability region of our model,
we integrated the results for a two-particle system, thus finding an expression for the
transverse interaction between a line bunch and a particle in front of it. Such an
expression is structured as the sum of a centrifugal logarithmic part and a centripetal
term, of which we studied the asymptotic behaviors in the limit of short and long
bunch, both with a small distance between the test particle and the bunch head.

In particular, in the limit of a short bunch, we found that the centripetal force tends
to zero as (γφmax)

2, while in the limit of a long bunch we found results already well
known in literature. We were able to explain the constant centripetal term in the latter
case as an overall effect of the transient between the asymptotic behavior (identical in
φ, different in ∆s) of the transverse force in the two-particle system, respectively for
small or long distance between the two electrons. We concluded that the centripetal
term is therefore only of mathematical nature, and there is no physical ground to
distinguish it from the centrifugal term: from a physical viewpoint there is, in fact,
just an overall centrifugal force.

In Section 4.2.4, again within the region of applicability of our model, we extended
our considerations to a two-particle system moving in an arc of a circle, thus finding,
for the first time, both exact and approximated analytical expressions for the trans-
verse force in all the possible transient configurations (see Fig. 4.6), including the case
in which the source particle is in front of the test particle. Furthermore we plotted the
expression for the transverse force in several practical cases, which are important for a
quick evaluation of the magnitude of the effect and for cross-checks between computer
codes. In particular we report a very good agreement with TraFiC4, which demon-
strates that such a code can deal, from a numerical viewpoint, with the transverse
transient problem.

In Section 4.2.5, we analyzed the situation of the transverse interaction between a
line bunch and a test particle moving in an arc of a circle. We treated, in particular, the
case of the injection from a straight section into a hard-edge bending magnet. Firstly we
calculated both exact and approximated expressions for the transverse force; secondly,
following what we did in Section 4.2.4, we provided a few graphical examples; thirdly
we analyzed our expressions in the limit for a long bunch and a short minimal distance
between the test particle and the head of the bunch.

We showed that the contribution from the particles whose retarded positions are
in the straight line before the bend is well described, as a function of the normalized
angular position of the test particle inside the bend, by a boxcar function. By simple
composition of rectangular bunches we provided an expression for the calculation of
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the transverse interaction in the case of a long bunch with an arbitrary density distri-
bution. We showed that, in the chosen limits, the contribution from the particles in the
bend is independent from ∆smin and that, in contrast to this, the contribution from the
particles in the straight line is dependent on ∆smin. Finally we proved that such a de-
pendence can be removed by subtraction of the steady-state transverse self-interaction,
thus providing a ”regularized” expression for F⊥.

The case of injection provides a useful example for a quick evaluation of the trans-
verse self-field magnitude as well as for computer codes benchmark. By means of the
same approach one can analyze also the case of ejection, which is left to future work.

Before our study in Section 4.2 there was no explanation for the simulation results
shown in Fig. 4.1. The work in Section 4.2 provides a qualitative explanation of these
results: such qualitative character of the explanation is due to the fact that the model
therein is one-dimensional, and does not allow any quantitative investigation when (as
in Fig. 4.1) a vertical displacement is introduced. Still it was possible to demonstrate
that the sharp feature near the injection point is due to interactions of the test particle
with particles in front of it.

4.3 Transverse self-fields within an electron

bunch with vertical extent moving in an

arc of a circle

4.3.1 Introduction

In Section 4.2 we proposed a fully electrodynamical analysis of a bunch moving in
an arc of a circle where, for the reasons explained in Section 4.1, we were not interested
in the full evolution problem, but only in the electrodynamical one. We addressed the
issue of understanding the electromagnetic interactions only in the framework of a 1D
model.

In this Section we aim at an extension of the model proposed in Section 4.2 which
allows a fully electrodynamical analysis of a bunch endowed with a vertical dimension.
Since a bunch with vertical extent can be always thought of as a superposition of
displaced charge lines, all the relevant physical aspects of the problem are included in
the study of a simpler model, constituted by a one-dimensional line bunch and a test
particle with vertical displacement, which is the situation studied in Fig. 4.1. In this
Section, our explanation of the features in Fig. 4.1 will be refined to a quantitative
level.

The work is organized as follows. We first treat, in Section 4.3.2, the transverse
interaction between two particles moving in an arc of a circle, supposing that one of the
two particles has a vertical displacement h with respect to the source. By integration
of our results we consider, in Section 4.3.3, a stepped-profile electron bunch interacting
with a test particle with vertical displacement entering an arc of a circle and we discuss
all the characteristic lengths involved. Finally, in Section 4.3.4, we come to a summary
of the results obtained and to conclusions.
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4.3.2 Transverse interaction between two electrons

We will first address the case of two electrons moving in an arc of a circle of radius R
in such a way that one of the two is displaced, with respect to the reference trajectory,
by a quantity h in the vertical (perpendicular to the bending plane) direction. We will
see that, as concerns the interaction in the radial direction (in the bending plane) it
does not matter which particle is endowed with this displacement.

The electromagnetic force which one of the two particles (designated with ”T”, i.e.
the test particle) feels, due to the interaction with the other one (designated with ”S”,
i.e. the source particle), is given by Eq. (4.1).

In contrast to the case studied in Section 4.2, the transverse (by definition, orthog-
onal to βT) projection of F (rT, t) has now components both in the bending plane and
perpendicular to it. We will introduce, therefore, two unit vectors êh, in the direction
perpendicular to the bending plane, and êp, in the radial direction, i.e. orthogonal to
βT and lying in the bending plane. Of course, the transverse component of F (rT, t)
can still be written, following Section 4.2, as the sum of contributions from the velocity
(”C”, Coulomb) and the acceleration (”R”, Radiation) fields, namely

F⊥(rT, t) = F⊥C(rT, t) + F⊥R(rT, t), (4.56)

where

F⊥C(rT, t) =
e2

4πε0

n⊥ (1− βS · βT)− β⊥S (1− n · βT)

γ2SR
2
ST (1− n · βS)

3 (4.57)

and

F⊥R(rT, t) =
e2

4πε0c

[
n⊥

(
n · β̇S

)
(1− βS · βT)− β⊥S

(
n · β̇S

)
(1− n · βT)

RST (1− n · βS)
3

−
β̇⊥S (1− n · βT) + n⊥

(
βT · β̇S

)
RST (1− n · βS)

2

]
. (4.58)

Tail-Head interaction: case of two particles in circular motion. We will first
consider the situation in which the test particle is in front of the source. In this case,
one can refer to Fig. 4.6 for all the possible configurations of the present position of
the test electron and the retarded position of the source with respect to the arc. The
vertical displacement h of one of the two particles is to be imagined in the direction
perpendicular to the figure plane. Let us start with the steady state case in Fig. 4.6b.
We can define with ∆s the curvilinear distance between the present positions of the test
and of the source particle; φ will indicate the angular distance between the retarded
position of the source and the present position of the test electron, and it will be
designated as the retarded angle. Finally, h will be the vertical displacement.

We will assume βS = βT = β. Therefore we can write Eq. (4.57) and Eq. (4.58) in
the following way:

F⊥C =
e2

4πε0γ2
êh

[
h(1− β2 cosφ)

]
+ êp

[
2R sin2(φ/2)(1 + β2)− β sinφ(h2 + 4R2 sin2(φ/2))1/2

][
(h2 + 4R2 sin2(φ/2))1/2 − 2βR sin(φ/2) cos(φ/2)

]3 ,
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(4.59)

F⊥R =
e2β2

4πε0

{
− êh [hβ sinφ] + êp

[
βR sinφ− cosφ(h2 + 4R2 sin2(φ/2))1/2

]
R
[
(h2 + 4R2 sin2(φ/2))1/2 − 2βR sin(φ/2) cos(φ/2)

]2 + 2 sin2(φ/2)

× êh

[
h(1− β2 cosφ)

]
+ 2êp sin(φ/2)

[
R sin(φ/2)(1 + β2)− β cos(φ/2)(h2 + 4R2 sin2(φ/2))1/2

][
(h2 + 4R2 sin2(φ/2))1/2 − 2βR sin(φ/2) cos(φ/2)

]3
}
.

(4.60)

The retardation condition linking ∆s, h and φ reads

∆s = Rφ− β

[
h2 + 4R2 sin2

φ

2

]1/2
. (4.61)

As one can readily see by inspecting Eq. (4.61), when we impose reasonable values for
∆s 
 R and h 
 R we obtain corresponding values of φ 
 1. We will therefore assume
φ 
 1 throughout this Section, and verify a posteriori the validity of this assumption
when studying particular situations. Note that, as already pointed out in Section 4.2,
by fixing φ 
 1 we keep open the possibility of comparing φ with the synchrotron
radiation formation angle 1/γ (note that a deflection angle smaller or larger than 1/γ
is characteristic of the cases, respectively, of undulator or synchrotron radiation). We
can therefore expand Eq. (4.59) and Eq. (4.60) to the second non-vanishing order in φ
thus obtaining

F⊥C � e2γ3

4πε0R2
ΦC(φ̂) (4.62)

and

F⊥R � e2γ3

4πε0R2
ΦR(φ̂) , (4.63)

where we define ΦC and ΦR as

ΦC(φ̂) =
4êh

[
ĥ+ 2ĥ/φ̂2

]
+ êp

[
φ̂2 − 4ĥ2/φ̂2

]
φ̂
[
1 + φ̂2/4 + ĥ2/φ̂2

]3 (4.64)

and

ΦR(φ̂) =
êhφ̂

2ĥ
[
1− 4ĥ2/φ̂4

]
+ êp

[
2− φ̂2 + φ̂4/8− 3ĥ2 + 4ĥ2/φ̂2

]
φ̂
[
1 + φ̂2/4 + ĥ2/φ̂2

]3 . (4.65)

Here and above φ̂ = γφ. This normalization choice, already treated in [8], is quite
natural, 1/γ being the synchrotron radiation formation angle at the critical wavelength.
In the derivation of Eq. (4.62) and Eq. (4.63) (and in the following, too) we understood
φ̂ � 1/γ, which is justified by the ultrarelativistic approximation. Moreover we defined
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ĥ = hγ2/R; in order to understand this definition we first write down the retardation
condition Eq. (4.61) in an approximate form. Since we are already working in the
limit ∆s/R 
 1 and φ 
 1, in order to have ∆s > 0 it must be h < Rφ. We will
automatically recover from our results that the assumption h 
 Rφ is sufficiently good
for our purposes. Therefore Eq. (4.61) can be approximated with:

∆s = (1− β)Rφ+
Rφ3

24
− h2

2Rφ
. (4.66)

The latter can be written down in dimensionless form too as

∆ŝ =
φ̂

2
+

φ̂3

24
− ĥ2

2φ̂
, (4.67)

which explains the choice of the definition for ĥ.
The reader may easily check that Eq. (4.64), Eq. (4.65) and Eq. (4.67) (as well as

Eq. (4.59) and Eq. (4.60)) are generalizations of the expressions given in Section 4.2
by taking their limit for ĥ −→ 0.

The following expression, which is valid for the total transverse force felt by the
test particle can be then trivially derived

F⊥ � e2γ3

4πε0R2
Φ(φ̂) , (4.68)

where Φ is defined by

Φ(φ̂) = ΦR(φ̂) +ΦC(φ̂), (4.69)

Tail-Head interaction: case (a). Let us now consider the other cases depicted in
Fig. 4.6a, c and d. While the case in Fig. 4.6b deals with the steady state situation in
which the present position of the test and the retarded position of the source electron
are both in the bend, Fig. 4.6a, c and d deal with transient situations in which we can
find the retarded source and the present test particle in the straight line before and
after the bend too.

Consider the situation in Fig. 4.6a. In this case, under the assumption
h 
 (y +Rη), the retardation condition reads

∆ŝ � ŷ + η̂

2
− 1

2

ĥ2 − (η̂3/3)(ŷ + η̂/4)

ŷ + η̂
, (4.70)

where we introduced the normalized quantity ŷ = yγ/R, which is just y/R normalized
to the synchrotron radiation formation angle, 1/γ.

In this case the source particle is only responsible for a velocity field contribution,
therefore F⊥ = F⊥C. By direct use of Eq. (4.57), one can find the exact expression
for F⊥:

F⊥ =
e2

4πε0γ2
êh {h[1− β2 cos η]}+ êp {−RSTβ sin η + [R(1 + β2)(1− cos η) + y sin η]}

{RST − β(y +R sin η)}3 ,

(4.71)
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RST being given by

RST =
[
(y +R sin η)2 +R2(1− cos η)2 + h2

]1/2
. (4.72)
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Figure 4.15: Normalized radial force F̂ for a two-particle system entering a hard-edge
bending magnet as a function of the position after injection. Results for different values
of ĥ are shown. The solid lines show analytical results; the circles describe the outcome
from TraFiC4. Here ∆ŝ = 5.0.

Expanding the trigonometric functions in Eq. (4.71) and using normalized quantities
one finds:

F⊥ � e2

4πε0

4γ3

R2
(ŷ+η̂)2

{
êh

[
ĥ(ŷ + η̂)(2 + η̂2)

]
+ êp

[
ŷ2η̂ + ŷ(η̂2 + η̂4/2) + η̂5/4− ĥ2η̂

]}
[
(ŷ + η̂)2 + η̂4/4 + ĥ2

]3 .

(4.73)
It can be easily verified that, as it must be, Eq. (4.73) reduces to Eq. (4.62) in the
limit ŷ → 0. Also, the reader may check that in the limit ĥ → 0, Eq. (4.73) reduces to
already derived expressions in Section 4.2.

Let us now define the normalized radial force F̂ = Fp/[e
2/(4πε0R∆s)]. It is possible,

by means of Eq. (4.73), to plot F̂ as a function of the position after the injection
(defined by the entrance of the test particle in the hard-edge magnet) for a fixed value
of ∆ŝ = ∆sγ3/R = 5.0 and different values of h. In Fig. 4.15 we compare such a plot
with numerical results from the code TraFiC4 (see [1]).

Note that, as already pointed out in Section 4.2, at the position which corresponds
to the entrance of the retarded source in the magnet there is a discontinuity in the
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plots. This is linked to our model choice, and it is due to the abrupt (hard-edge
magnet) switching on of the acceleration fields.

As general remark to Fig. 4.15 and, in fact, to Fig. 4.16, Fig. 4.18 and Fig. 4.23, the
perfect agreement between our calculations and numerical results by TraFiC4 provides,
per se, an excellent cross-check between our analytical results (with their assumptions
and applicability region) and simulations.

Tail-Head interaction: case (c). We will now move to the case depicted in Fig. 4.6c,
in which the source particle has its retarded position inside the bend and the test par-
ticle has its present position in the straight line following the magnet. We will define
with x the distance, along the straight line after the magnet, between the end of the
bend and the present position of the test particle. Here φ̂m = γφm, φm being the an-
gular extension of the magnet, and x̂ = γx/R, the reason for this normalization choice
for x being identical to that for y.

The retardation condition reads

∆ŝ � ψ̂ + x̂

2
+

ψ̂3

24

ψ̂ + 4x̂

ψ̂ + x̂
− ĥ2

2(ψ̂ + x̂)
. (4.74)

In contrast with the case of Fig. 4.6a, here we have contributions from both velocity
and acceleration field. Again, by direct use of Eq. (4.57) and Eq. (4.58) one can find the
exact expression for the transverse electromagnetic force exerted by the source particle
on the test particle

F⊥ = F⊥C + F⊥R , (4.75)

where
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F⊥C =
e2

4πε0γ2

êh

[
(1− β2 cosψ)h

]
+ êp

[
R(1− cosψ)(1− β2 cosψ)− β sinψ (RST − βx− βR sinψ)

]
[RST − βx cosψ − βR sinψ]3

(4.76)

and

F⊥R =
e2β2

4πε0R

{[
êh

[
h(1− β2 cosψ)(R+ x sinψ −R cosψ)

]
[RST − βx cosψ − βR sinψ]3

+
êp

[
(R+ x sinψ −R cosψ)(R(1− cosψ)(1− β2 cosψ)− β sinψ(RST − βx− βR sinψ))

]
[RST − βx cosψ − βR sinψ]3

]

− êh [h sinψ] + êp [R(1− cosψ)β sinψ + cosψ(RST − βx− βR sinψ)]
[RST − βx cosψ − βR sinψ]2

}
,

(4.77)

RST being now

RST =
(
(x+R sinψ)2 +R2(1− cosψ)2 + h2

)1/2
. (4.78)

Expanding the trigonometric functions in Eq. (4.76) and Eq. (4.77), and using
normalized quantities one finds:
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Figure 4.16: Normalized radial force F̂ for a two-particle system leaving a hard-edge
bending magnet as a function of the position after the ejection. Results for different
values of ĥ are shown. The solid lines show analytical results; the circles describe the
outcome from TrafiC4. Here ∆ŝ = 5.0.
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F⊥C =
2e2γ3

4πε0R2
2êh

[
ĥ(2 + ψ̂2)(x̂+ ψ̂)3

]
+ êpψ̂(x̂+ ψ̂)2

[
−2x̂2 + x̂

(
ψ̂3 − 2ψ̂

)
+ ψ̂4/2− 2ĥ2

]
[
(x̂+ ψ̂)2 + (ψ̂2/4)(2x̂+ ψ̂)2 + ĥ2

]3 ,

(4.79)

and

F⊥R =
2e2γ3

4πε0R2
(x̂+ ψ̂)

{−2êh

[
ĥψ̂(x̂+ ψ̂)

]
+ êp

[
x̂2 + x̂ψ̂(2− ψ̂2) + ψ̂2 − (3/4)ψ̂4 + ĥ2

]
[
(x̂+ ψ̂)2 + (ψ̂2/4)(2x̂+ ψ̂)2 + ĥ2

]2 +

+
2êh(x̂+ ψ̂)2(2 + ψ̂2)(x̂+ ψ̂/2)ψ̂ĥ+ êp(x̂+ ψ̂)(x̂+ ψ̂/2)ψ̂2

[− 2ĥ2 − 2x̂2 + x̂ψ̂(−2 + ψ̂2) + ψ̂4/2
][

(x̂+ ψ̂)2 + (ψ̂2/4)(2x̂+ ψ̂)2 + ĥ2
]3

}
.

(4.80)

Similarly to the latter case, it can be easily verified that Eq. (4.79) and Eq. (4.80)
reduce to Eq. (4.62) and Eq. (4.63), respectively, in the limit x → 0. Moreover, in the
limit h → 0, they reduce to already known expressions given in Section 4.2. Again, one
can plot the normalized radial force F̂ as a function of the position after the ejection,
defined by the exit of the test particle from the hard-edge magnet, for different values
of ĥ and a fixed value of ∆ŝ = ∆sγ3/R = 5.0. In Fig. 4.16 we compare such a plot
with numerical results from TraFiC4.

At the position which corresponds to the exit of the retarded source from the magnet
there is a discontinuity in the plots. This, again, is linked to our model choice, and
it is due to the fact that, in the orbital plane, after the retarded source has left the
magnet there is only Coulomb repulsion along the longitudinal direction.

It is suggestive to notice the resemblance of the peaks shown in Fig. 4.16 with half
of the time pulse of the radial electric field from usual synchrotron radiation process
(see Fig. 4.17 and Chapter 5). This is not a coincidence. The test particle is, indeed,
far away from the source with respect to the formation length R/γ3 and the magnetic
field contribution to the Lorentz force can be expected to have the same behavior of
the electric field contribution, since B = (n × E)/c. The only difference is that the
observer is now ”running away” from the electromagnetic signal which will result in a
spreading of the pulse of about a factor (1 − β)−1. Since R = 1 m and γ = 100 we
expect the pulse to be long about (R/γ3)(1− β)−1 ∼ 10−2 m.

Tail-Head interaction: case (d). The last tail-head case left to discuss is depicted
in Fig. 4.6d; the source particle has its retarded position in the straight line before the
bend, and the test particle has its present position in the straight line following the
magnet. The retardation condition reads

∆ŝ � φ̂m + x̂+ ŷ

2
+

φ̂3m/24
[
φ̂m + 4(x̂+ ŷ) + 12x̂ŷ/φ̂m

]
− ĥ2/2

φ̂m + x̂+ ŷ
. (4.81)
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Figure 4.17: Time variation of a synchrotron radiation pulse generated by a highly
relativistic electron moving in a circle as seen by an observer in the orbital plane

In this case we have only velocity contributions. The exact expression for the electro-
magnetic transverse force on the test particle is

F⊥ =
e2

4πε0γ2
êh

[
sin θ(1− β2 cosφm)

]
+ êp

[
sin δ cos θ(1− β2 cosφm)− β sinφm(1− cos δ cos θ)

]
R2ST [1− β sinφm sin δ cos θ − β cosφm cos δ cos θ]3

,

(4.82)
where

sin θ =
h

RST

, (4.83)

cos θ =
(R2

ST − h2)1/2

RST

, (4.84)

sin δ =
R + y sinφm −R cosφm

RST cos θ
(4.85)

and

cos δ =
x+ y cosφm +R sinφm

RST cos θ
, (4.86)

where RST can be retrieved by the latter two equations and some trivial trigonometry.
Once again, expanding the trigonometric functions in Eqs. (4.82) to (4.85) and

using normalized quantities one finds the following approximated expression for F⊥:
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Figure 4.18: Normalized radial force F̂ for a two-particle system crossing a hard-edge
bending magnet as a function of the position of the test particle inside the magnet in
the case of a short magnet φm 
 1. Results are shown for different values of ĥ. The
solid lines show analytical results; the circles describe the outcome from TraFiC4. Here
the normalized distance between the two particles is ∆ŝ = 5, while φ̂m = 1.

F⊥ � e2

4πε0R2
4γ3(x̂+ ŷ + φ̂m)2φ̂m

×
êh

[
(2/φ̂m + φ̂m)(x̂+ ŷ + φ̂m)ĥ

]
+ êp

[
−x̂2 + ŷ2 + (φ̂2

m)x̂ŷ + x̂(φ̂3
m/2− φ̂m) + ŷ(φ̂3

m/2 + φ̂m) + φ̂4
m/4− ĥ2

]
{
(x̂+ ŷ + φ̂m)

[
x̂(1 + φ̂2

m) + ŷ + φ̂m + φ̂3
m/3

]
− (φ̂2

m/12)[12x̂ŷ + 4(x̂+ ŷ)φ̂m + φ̂2
m] + ĥ2

}3 .

(4.87)

It is easy to verify that Eq. (4.87) reduces, respectively, to the steady state (Eq. (4.62))
when x = 0 and y = 0, to the transient case in Fig. 4.6a when x = 0 (Eq. (4.73)) and
to the transient case in Fig. 4.6c when y = 0 (Eq. (4.76)). Moreover the reader may
verify that, in the limit h −→ 0, Eq. (4.87) reduces to already known results in Section
4.2. Following the treatment of the transient situations in Fig. 4.6a and in Fig. 4.6c
we plot, for this case too, a normalized expression for the transient force, i.e. the usual
F̂ , as a function of the curvilinear position of the test particle (s = 0 indicates the
entrance of the magnet) for different values of ĥ and a fixed value of ∆ŝ = ∆sγ3/R
and of φ̂m. In Fig. 4.18, we compare our analytical results with numerical results from
TraFiC4, for a fixed value of ∆ŝ = 5.0 and φ̂m = 1 and for different values of the
vertical displacement ĥ.

Head-Tail interaction. Finally we can deal with the situation in which the source
particle is ahead of the test electron, i.e. ∆s < 0; we will talk, in this case, of head-tail
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interaction. On the one hand it is evident that, when ∆s < 0, the source particle is
ahead of the test electron at any time; on the other hand it is not true that the retarded
position of the source particle is, in general, ahead of the present position of the test
particle. As already suggested in Section 4.2, if ∆s < 0 and, approximatively, |∆s| < h
the test particle overtakes the retarded position of the source before the electromagnetic
signal reaches it. In this case, although we may still talk about head-tail interaction,
since ∆s < 0, its real character is very much similar to the case ∆s > 0, in which the
electromagnetic signal has to catch up with the test particle. In order to understand
the physics involved in this situation it is sufficient to study the cases ∆s < 0 and
|∆s| > h. The case ∆s < 0 with |∆s| < h will be treated from a qualitative viewpoint
only: its quantitative analysis, which may be interesting to perform for the sake of
completeness, presents stronger mathematical difficulties and is left for future study.
Anyway a qualitative treatment of this situation is enough to reach a full understanding
of the interaction physics, which is our goal here.

Consider therefore the case ∆s < 0 with |∆s| > h. It is important to note that,
once the steady state case is studied, the situation in which the source particle is ahead
of the test electron can be treated immediately for all three (a, c and d) transient cases
in Fig. 4.6 (of course, with respect to the figure, test and source particle exchange
roles) on the basis of the steady state case alone. In fact in that situation, as it has
already been said in Section 4.2, we can assume the retarded angle φ small enough
(the test particle ”runs against” the electromagnetic signal) that the actual trajectory
followed by the particles is not essential and one can use the steady state expression to
describe also the transient cases. It can be shown that the only important contribution
from the source particle comes from the acceleration part of the Liénard-Wiechert
fields. Within our approximations, the only non-negligible contribution is present in
the situation (again, with the roles of test and source particle inverted) depicted in
Fig. 4.6a and Fig. 4.6b, the latter being just the steady state case.

Let us deal with the steady state case of the head-tail interaction when |∆s| > h.
As already discussed in Section 4.2, the difference with respect to the situation in which
the test electron is in front of the source is that the test electron ”runs against” the
electromagnetic signal emitted by the source, while in the other case it just ”runs away”
from it. Therefore the relative velocity between the signal and the test electron is equal
to (1+β)c, instead of (1−β)c as in the other situation. Hence the retardation condition
reads

| ∆s |� Rφ+ β
[
R2φ2 + h2

]1/2
(4.88)

or, solved for φ̂,

φ̂ �| ∆ŝ | −
[
∆ŝ2

(
1− 1

γ2

)
+ ĥ2

]1/2
. (4.89)

Note that, in the asymptotic for | ∆ŝ |� γĥ we recover the result in Section 4.2 for
the one-dimensional case.

In the general case, βS is almost parallel to (and equal to) βT and antiparallel
to the projection of n on the bending plane: it turns out that the only important
contribution to the radial force on the orbital plane is given by the second term on the
right side of Eq. (4.58), and it is easy to check that
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F⊥ � e2

4πε0R | ∆s | . (4.90)

It may be worthwhile to underline that the force in Eq. (4.90) is, structurally, identical
to the result in Section 4.2 although, of course, ∆s is now a function of h.

4.3.3 Transverse interaction between an electron and a bunch
entering a bend from a straight path

In Section 4.3.2 we dealt with all the possible configurations for a two-particle
system moving in an arc of a circle. Now we are ready to provide a quantitative
explanation of Fig. 4.1.

After the discussion, in Section 4.3.2, about head-tail interactions within a system
with the test particle behind the source electron, one is led to the qualitative conclusion
that, within an electron bunch, interactions between sources in front of the test particle
and the test particle itself are important and, in general, they must be responsible, at
the entrance and at the exit of the bending magnet, for sharp changes in the transverse
forces acting on the test electron. The quantitative change depends, of course, on the
position of the test particle inside the bunch: the extreme cases are for the test particle
at the head of the bunch, where there are just interactions with electrons behind the
test particle (no head-tail interactions), and for the test particle before the tail of the
bunch, at a distance ∆smin > h, where all the sources are in front of it (only head-tail
interactions in the regime |∆s| > h).

Head-Tail interaction. Consider now the situation in which a one-dimensional line
bunch interacts with a particle positioned at the center of the line but vertically dis-
placed by a quantity h. As already said we will discuss, analytically, the head-tail
interaction for |∆s| > h only. Since the trajectory followed by the bunch is not impor-
tant we can simply integrate Eq. (4.90) and find the contribution

FBp HT(y) �
{ 0 y > RΦ(h,∆smax)
e2λ0/(4πε0R) ln

[
∆smax/(y + β(y2 + h2)1/2)

]
RΦ(h, βh) < y < RΦ(h,∆smax)

e2λ0/(4πε0R) ln[∆smax/h] y < RΦ(h, βh)
,

(4.91)
where ”HT” stands for ”head-tail”, y is the distance between the test particle and
the beginning of the magnet and Φ(h, | ∆s |) is the solution, in φ, of Eq. (4.88) at
vertical displacement h and longitudinal distance | ∆s |, ∆smax being the (positive)
longitudinal distance between the test particle and the source at the bunch head.

When a bunch longer than the vertical displacement h enters the magnet, the parti-
cles in front of the bunch will interact with the test electron following Eq. (4.91), which
models the radial interaction on the basis of Eq. (4.90). Nevertheless, Eq. (4.90) cannot
describe the situation when the sources at a distance shorter than βh begin to interact
with the test electron. As a result the head-tail interaction has two characteristic for-
mation lengths. The first one indicates the distance that the test electron travels from
the moment it is reached by the electromagnetic signal from the first particle entering
the bend, till the moment it is reached by the electromagnetic signal emitted as the
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Figure 4.19: Normalized radial force F̂ from the head of the bunch (∆s < 0) to the
tail as the bunch progresses inside the bend (z = 0 corresponds to the injection of the
test particle in the magnet). Here R = 1 m, γ = 100, h = 10 µm and the bunch length
is 200 µm. The test particle is located in the middle of the bunch.

particle at ∆s = −βh enters the bend. This is given by L1 = βR(φ2 − φ1) = βRφ2,
φ2 and φ1 being the (non normalized) solutions of the retardation condition when
∆s = −∆smax and ∆s = −βh, respectively (the reader will recognize that φ1 = 0). In
the limit for h << ∆smax, Eq. (4.89), substituted in the expression for L1, gives the
rule of thumb L1 � ∆smax/2. The second characteristic length is given by the distance
that the test electron travels from the moment it is reached by the electromagnetic
signal from the particle at ∆s = −βh till the moment it is reached by the electromag-
netic signal emitted by the particle with ∆s = 0 as it enters the bend. This can be
estimated roughly to be equal to γh, at least when h is not too large. In fact, in order
to know the present angular position of the test particle when ∆s = 0 one should solve
the retardation condition in φ

Rφ = β
[
h2 + 4R2 sin2(φ/2)

]1/2
. (4.92)

In the limit in which sin(φ/2) � φ/2 we have φ � γh/R and L2 � γh.
This reasoning can explain pretty well the features in Fig. 4.19, where the nor-

malized radial force has been redefined as Fp/(e
2λ0/(4πε0R)) since, here and in the

following, we are dealing with a bunch and not with a two-particle system. The radial
force grows exactly as described in Eq. (4.91) starting from a curvilinear abscissa of
about s = −lb/4 = 50 µm until s = 0 (which is roughly the first formation length).
Note that the source located at ∆s = −βh corresponds to a retarded angle φ = 0,
which means that the electromagnetic signal emitted from this source at the magnet
entrance will reach the test particle when this is also entering the magnet, at s = 0.
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Figure 4.20: The same as Fig. 4.19 for a different range. Normalized radial force from
the head of the bunch (∆s < 0) to the tail as the bunch progresses inside the bend
(z = 0 corresponds to the injection of the test particle in the magnet). Here R = 1
m, γ = 100, h = 10 µm and the bunch length is 200 µm. The test particle is located
in the middle of the bunch. Curve A corresponds to the simulation by TraFiC4, curve
B is the contribution, given by Eq. (4.91), of the particles with | ∆s |> h; A-B is the
difference between the two curves, ascribed to the contribution from the particles with
| ∆s |< h.

After s = 0, the test particle begins to interact with the sources located at | ∆s |< h
while the ones at | ∆s |> h reach a steady state, in the sense that they keep on
interacting in the same way with the test electron.

This is illustrated by Fig. 4.20, where the normalized radial force F̂ is plotted in
a different range. The difference between the simulation results and the analytical
estimation in Eq. (4.91) gives, quantitatively, the radial interaction due to the sources
at | ∆s |< h. For h = 10 µm and γ = 100, as in our case, one expects a second
formation length equal to 10−3 m which is exactly what one gets: the actual data
show, in fact, that a maximum is reached when s = 0.001 m at F̂ � 7.098. Fig. 4.20
also shows the steady state regime, when all the particles in front of the test particle
interact with the latter from inside the bend. The solid line in Fig. 4.20 shows, once
again, the interaction with the sources located at | ∆s |> h. Finally, in Fig. 4.21 we
present the results from TraFiC4 for several values of h. Of course, when h � ∆smax,
i.e. h � 100 µm there are no sources characterized by | ∆s |> h at all.

One may expect that the system enters the steady state at z � γh, which is correct
for h = 1 µm, h = 10 µm and, by figure inspection, for h = 100 µm. Nevertheless, in
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Figure 4.21: Normalized radial force from the head of the bunch (∆s < 0) to the
tail as the bunch progresses inside the bend (z = 0 corresponds to the injection of the
test particle in the magnet). Here R = 1 m and γ = 100. Here we plot the results
from TraFiC4 for several values of ĥ. The bunch length is 200 µm. The test particle is
located in the middle of the bunch.

the case h = 1 mm and h = 10 mm the system enters the steady state at, respectively,
s � 0.054 m and s � 0.186 m, which are clearly smaller than γh. The reason for this
apparent discrepancy is due to the approximation sin(φ/2) � φ/2 which has been used
to derive the rule of thumb L2 � γh starting from Eq. (4.92). A comparison between
the rule of thumb proposed before (dashed line) and the real solution of the retardation
condition (solid line) is given in Fig. 4.22: one can easily see that, when h = 1 mm,
φ � 0.054. In the same way, at h = 10 mm, φ � 0.186 (remember that R = 1 m).

Tail-Head interaction. We will now analyze the tail-head part of the interaction
when ∆s > 0. In the case where the bunch enters the bend we have contributions from
retarded sources both in the bend and in the straight line before the bend. The contri-
bution from the retarded sources in the magnet can be obtained by simple integration
of Eq. (4.68), and reads

FB
⊥m � e2λ0

4πε0R

[
ln

(
φ̂max

φ̂min

)
+

4(2ĥ2 + φ̂2max)

4ĥ2 + 4φ̂2max + φ̂4max
− 4(2ĥ2 + φ̂2min)

4ĥ2 + 4φ̂2min + φ̂4min

]
, (4.93)

where ”m” is a reminder that the contributions treated by Eq. (4.93) are all from the
”magnet”. All that is left to do now, is to investigate the values which φ̂min and φ̂max
assume.
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Figure 4.22: Solution of the retardation condition (solid line) at ∆s = 0 as a function
of h and comparison with φ = γh (dashed line)

Let us first remember that η̂ indicates the normalized angular position of the test
particle inside the bending magnet. Now define with φ̂∗ the solution of the retardation
equation ∆ŝmin = φ̂∗/2 + φ̂∗3/24 − ĥ2/(2φ̂∗). If φ̂∗ < η̂, the retarded position of the
first source particle is in the bending magnet, and φ̂min = φ̂∗. On the other hand, when
φ̂∗ > η̂ there are no contributions to the radial force from the bend.

Next, we define with φ̂∗∗ the solution of ∆ŝmax = φ̂∗∗/2 + φ̂∗∗3/24 − ĥ2/(2φ̂∗∗) (in
our case ∆ŝmax will be equal to one half of the normalized bunch length). Supposing
φ̂∗ < η̂, if φ̂∗∗ < η̂ too, then all the particles contribute from the bend, and φ̂max = φ̂∗∗.
On the other hand, when φ̂∗∗ > η̂, we have a mixed situation, in which part of the
particles contribute from the bend and others from the straight line before the magnet:
in this case φ̂max = η̂.

The contribution from the retarded sources in the straight path before the bend is
given by

FB
⊥s = λ0

∫ ∆ŝ2

∆ŝ1

R

γ3
F⊥(ŷ(∆ŝ, η̂, ĥ), η̂)d∆ŝ , (4.94)

where ”s” stands for ”straight path”, and where the expression for F⊥ in the integrand
is given by Eq. (4.73). It is convenient, as done before, to switch the integration variable
from ∆ŝ to ŷ. The Jacobian of the transformation is given by

d∆ŝ

dŷ
� (η̂ + ŷ)2 + η̂4/4 + ĥ2

2(η̂ + ŷ)2
. (4.95)

After substitution of Eq. (4.95) and Eq. (4.73) in Eq. (4.94), one can easily carry out
the integration, thus getting
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Figure 4.23: Normalized radial force acting on a test particle from a bunch with
rectangular density distribution entering a hard-edge bending magnet as a function
of the position of the test particle inside the magnet. The solid lines show analytical
results; the circles describe the outcome from TraFiC4. We chose ∆smax = 100 µm,
γ = 100, R = 1 m; the graphs are plotted for several values of the parameter ĥ.

FB
⊥s �

2e2λ0
4πε0R

[
η̂ (4ŷmin + 2η̂ + η̂3)

4(ŷ2min + ĥ2) + 8ŷminη̂ + 4η̂2 + η̂4
− η̂ (4ŷmax + 2η̂ + η̂3)

(4ŷ2max + ĥ2) + 8ŷmaxη̂ + 4η̂2 + η̂4

]
.

(4.96)
As done before for φ̂min and φ̂max, we can now investigate the values of ŷmin and ŷmax.

Let us start with ŷmin. First, we define with ŷ∗ the solution of the retardation
condition ∆ŝmin = (η̂+ ŷ∗)/2+(η̂3/24)(4ŷ∗+ η̂)/(ŷ∗ + η̂)− ĥ2/(2ŷ∗+2η̂). If ŷ∗ > 0, the
retarded position of the first source particle is in the straight line before the bending
magnet, and ŷmin = ŷ∗. On the other hand, when ŷ∗ < 0, the retarded position of the
first source particle is in the bend, and ŷmin = 0.

Next, we define with ŷ∗∗ the solution of ∆ŝmax = (η̂ + ŷ∗∗)/2 + (η̂3/24)
×(4ŷ∗∗ + η̂)/(ŷ∗∗ + η̂)− ĥ2/(2ŷ∗∗ +2η̂) (again, in our case ∆ŝmax is just half the bunch
length normalized to R/γ3). Consider the case ŷ∗∗ < 0: all the particles contribute from
the bend, that is we entered the steady-state situation. In this case ŷmax = ŷmin = 0.
On the other hand, when ŷ∗∗ > 0, we have again a mixed situation, in which part
of the particles contribute from the bend and others from the straight line before the
magnet. In this case ŷmax = ŷ∗∗.

The following step is to actually plot the radial force exerted on an electron by
a bunch with rectangular distribution entering a long bend. Our results, compared,
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Figure 4.24: Normalized radial force (analytical result) acting on a test particle from
a bunch with rectangular density distribution entering a hard-edge bending magnet as
a function of the position of the test particle inside the magnet. We chose ∆smax =
100µm, γ = 100, R = 1 m; several curves for different values of ĥ are shown. A clear
discontinuity in the first derivative is visible.
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once again, with simulations by TraFiC4, are shown in Fig. 4.23 for ∆smax = 100 µm,
γ = 100, R = 1 m and for different values of ĥ. A perfect agreement is obtained with
the results by TraFiC4. A first characteristic length is obviously given by the solution
of the retardation condition with ∆s = ∆smax, and gives the position at which the
test particle begins to feel a steady interaction from the tail sources. There is a second
characteristic length more difficult to see, though: a careful inspection of Fig. 4.23
shows, in fact, a small irregularity (actually a discontinuity in the first derivative) in
the curve for ĥ = 1 at the position s � 1 cm. Such irregularities are present in all the
curves in Fig. 4.23, although one has to look carefully for them by magnifying parts of
the plots, as shown in Figs. 4.24a to 4.24d. It is this fact which actually suggests the
presence of a second formation length.

When the value of h is small the discontinuity is located, approximately, at s � γh:
for example when h = 1 µm, in Fig. 4.24a, we have a discontinuity in the first derivative
of the curve at s � 0.1 mm. Nevertheless, this value changes as we increase h. In fact,
when h = 1 mm, in Fig. 4.24c, the discontinuity is at s � 5.4 cm, while when h = 1 cm,
in Fig. 4.24d, we find a value of s � 18.6 cm: these are the same numerical values
found when discussing the entrance in the steady state of the head-tail interaction in
the previous subsection. The reader will remember that these are, in fact, the solutions
of Eq. (4.92). From a physical viewpoint, the solution of Eq. (4.92) is the position at
which the test particle begins to feel the electromagnetic signal from the source at
∆s = 0 entering the bend .

Before that point, the test particle feels interaction from particles behind it but only
due to velocity fields, since the retarded positions of all the electrons behind the test
one are not yet in the bend. After that particular point, the force on our test electrons
has a component due to the acceleration field too. This suggests that the physical
meaning of the presence of this second formation length is simply the switching on of
the contribution of the acceleration field. As a last remark it is interesting to note that
tail-head and head-tail interactions have a characteristic length in common, but for
completely different reasons.

4.3.4 Summary and conclusions

In Section 4.3 we presented a fully electrodynamical study of transverse self-forces
within an electron bunch moving in an arc of a circle in the case the test particle
is endowed with a vertical displacement h. We strived for a generalization of the
results obtained in Section 4.2 in order to obtain a better qualitative and quantitative
explanation of the physics involved in the problem and, in particular, to explain the
behavior of the self-interaction depicted in Fig. 4.1.

First we generalized the results in Section 4.2 in the case of a two-particle system.
Then, by integration of these results, the case of a line bunch and a test particle with
a vertical displacement was studied. This case includes all the relevant physics present
in the situation of a bunch with vertical size.

Besides allowing one to generalize results obtained in Section 4.2, our study aimed
at a physical understanding of the results by TraFiC4: we found that the bunch can
be divided into four separate regions (over which one can integrate the two-particle
interaction) corresponding to four different types of source-test interaction, namely
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head-tail with |∆s| < h, head-tail with |∆s| > h, tail-head with contributions from ve-
locity fields alone, and tail-head with contributions from both acceleration and velocity
field. These regions within the bunch correspond to four different contributions to the
transverse self-interaction force; these contributions are in one-to-one correspondence
with four characteristic formation lengths, which can be determined quantitatively by
simple analytical calculations.

For the first, the third, and the fourth region, we could use relatively simple analyt-
ical results in order to describe the situation and perform cross-checking with TraFiC4.
The perfect agreement we found gives us much information: this constitutes, in fact,
a reliable cross-check. Moreover, we have physical explanations of the self-interactions
in terms of formation-lengths and type of source-test interaction.

Because of mathematical difficulties linked with the structure of the retardation con-
dition we left the quantitative discussion of the second region (head-tail with
| ∆s |< h) for future work. Nevertheless we were able to understand the physical
meaning of this region and to determine its formation length.
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Chapter 5

On energy and momentum of an
ultrarelativistic unstable system

The issue of covariance of the energy-momentum pair for the classical model of the
electron was first raised a hundred years ago by Abraham and Lorentz, and solved by
Poincaré with the introduction of Poincaré stresses. He pointed out that covariance and
stability of a system are deeply related issues. Forty years ago Rohrlich, following an
early work by Fermi, proposed a fully covariant approach to describe a stable charged
particle which is in agreement with the work by Poincaré. However, the study by
Rohrlich was sometimes mistaken as a proof of the fact that stability and covariance are
unrelated matters. In this Chapter we revisit the problem using our study in Chapter 4.
An electron bunch is, indeed, a perfect example of an unstable electromagnetic system.
We make use of a paradox to show that, in the case of en electron bunch (or any other
unstable system), there is no mean to define, in a physically meaningful way, a total
energy-momentum four-vector: covariance of the energy-momentum pair follows from
the stability of the system and viceversa, as originally pointed out by Henry Poincaré.

Chapter 5 is based, in part, on the article:
Gianluca Geloni et al., DESY 02-201, ISSN 0418-9833, 2002
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5.1 Introduction

Nearly one hundred years have passed since Abraham and Lorentz calculated their
famous expressions for the energy and momentum of a purely electromagnetic, spheri-
cally symmetric distribution of charges [1, 2]. This distribution constitutes an attempt
to build a classical model of the electron: according to Lorentz’s initial idea, mass,
energy and momentum of the electron could, indeed, be of completely electromagnetic
nature.

Nevertheless, the energy (divided by the speed of light in vacuum, as we will un-
derstand through this Chapter) and momentum of such an electromagnetic electron
do not constitute a four-vector. In fact (as Abraham [3] pointed out already in 1904
probably, at that time, without a clear understanding of what a four-vector is), in a
frame moving with velocity v with respect to the system rest frame, we have

Ee = γU ′(1 + 1/3β2) (5.1)

and

Pe = 4/3γvU ′/c2, (5.2)

where the index e indicates the electromagnetic nature of the energy Ee and momentum
Pe, γ is the usual Lorentz factor, β is the velocity v/c (normalized to the speed of light
in vacuum c), and U ′ indicates the electromagnetic energy in the electron rest frame
[4],

U ′ = ε0/2

∫
E′2dV ′, (5.3)

ε0 being the free space permittivity. U ′ is purely an electrostatic quantity (in this
Chapter the prime will always indicate quantities calculated in the rest frame; therefore
E′ and dV ′ are, respectively, the electric field and the volume element in the rest frame
of the system).

It is worth to mention here that the factor 4/3 in Eq. (5.2) and the term proportional
to 1/3β2 in Eq. (5.1) depend on the choice of spherical symmetry made on the charge
distribution: had we chosen, for instance, an infinitely long line distribution in the
direction of v, we would have found

Ee2 = γU ′(1 + β2) (5.4)

and

Pe2 = 2γvU ′/c2, (5.5)

while, in the case of a line charge oriented perpendicularly to the direction of v,

Ee3 = γU ′ (5.6)

and

Pe3 = γvU ′/c2, (5.7)
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which only incidentally, due to the particular choice of the distribution, behaves as a
four-vector.

Henry Poincaré solved the problem of the lack of covariance shown in Eq. (5.1)
and Eq. (5.2) by introducing, in the electron model, energies and momenta of non-
electromagnetic nature [5]. These are actually due to non-electromagnetic interactions
which keep the electron together. By doing so he strongly related the covariance of
energy and momentum with the stability of the system: the electromagnetic energy-
momentum pair alone is not a four-vector, but the total energy-momentum pair, ac-
counting for the non-electromagnetic interaction, is a regular four-quantity.

In 1922, Enrico Fermi developed an original, early relativistic approach to the
4/3 problem [6]; about forty years later a redefinition of the energy-momentum pair
related to Fermi’s work was proposed by Rohrlich [7], which leaves untouched the total
energy-momentum vector, but splits it into electromagnetic and non-electromagnetic
contributions in such a way that covariance is granted for both the electromagnetic
and the non-electromagnetic part of the energy-momentum pair.

It is possible to show [8, 9] that the treatments by Poincaré and Rohrlich are not
in contradiction.

Nevertheless, the approach by Rohrlich [7] was sometimes taken (see e.g. [10]) as
the proof that stability and covariance are unrelated matters since, upon redefinition,
the electromagnetic part alone is a four-vector.

We will show here that such a conclusion is incorrect. The stability of the system is
related to the covariance of the total energy-momentum vector, according to the original
work by Poincaré: the redefinition procedure mentioned above is indeed acceptable only
in the case one is interested in the total energy-momentum vector of a stable system
(i.e. a system whose constituents are and stay at rest in a particularly chosen frame),
and not in the separate electromagnetic and non-electromagnetic part. Only in that
case the arbitrariness included in the recombination of these two contributions does
not affect the equation of motion for the system (which deals, in fact, with the total
energy-momentum vector).

In Chapter 4 we addressed the problem of describing the transverse self-fields orig-
inating within an ultrarelativistic electron bunch moving in a fixed trajectory.

This, as already discussed, is a particularly relevant problem in modern particle
accelerator physics, in view of the need for very high-peak current, low emittance beams
to be used, for example, in self-amplified spontaneous emission (SASE)-free-electron
lasers operating in the x-ray regime (see for example [11, 12]): in fact, the good quality
of the beam may be spoiled by self-interactions occurring within the bunch.

Besides practical relevance (which stresses how, after one hundred years, pure aca-
demical problems become relevant to applied physics too), an electron bunch is also
a very good example of an unstable system subject to purely electromagnetic inter-
actions. For such a system, the total (interaction) energy and the total momentum
in any frame, are just of electrodynamical nature. We will show that (according to
our previous statement about the relation between stability and covariance) there is
no way, in this case, to define the total energy-momentum pair in a covariant way. In
fact, in contrast to what happens for stable systems, there is no way to describe the
evolution of an unstable system without the knowledge of the (electromagnetic) field
theory governing the (self-)interactions between its constituents.
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5.2 A paradox and its solution

Let us consider a short electron bunch moving, in a given laboratory frame, in a
circular orbit. We can simplify the description of this system accounting only for two
electrons which will represent the head and the tail of our bunch.

Imagine that the two particles are moving, initially with the same Lorentz factor
γ � 1, in a circular orbit of radius R, and separated by a (curvilinear) distance
∆s 
 R/γ3.

In this situation the two electrons are near enough to be considered travelling with
the same velocity vector: indeed it can be shown [13], that they radiate as a single
particle of charge 2e (e being the electron charge) up to frequencies much above the
synchrotron radiation critical frequency (note that, from a quantitative viewpoint, the
expression ”much above” is trivially connected to ”how much” ∆s 
 R/γ3). The
requirements specified before consist, from a geometrical viewpoint, in assuming that
at the beginning of the evolution the two particle world-lines are very close: actually,
considering our resolution in space equal to R/γ3, they initially coincide.

This assumption justifies the presence of an inertial frame in which both particles
are, with good approximation, at rest during the initial part of their evolution. We will
refer to it simply as the rest frame. A quantitative definition of the initial part of the
evolution may be given when a choice is made about how close to zero are the velocities
of the particles in the rest frame. Note that the existence of the rest frame is central for
our study because, referring to it, one can easily analyze the energy and momentum of
the system constituted by the two particles together with their electromagnetic fields.

By means of a Lorentz transformation, then, we can recover the same quantities in
the laboratory frame.

Starting with the study in the rest frame we will refer, separately, to mechanical
and electromagnetic quantities.

Obviously, in the rest frame, the mechanical momentum of the system, P ′
ne, is zero,

and the mechanical energy, E ′
ne, is just equal to 2mc2, where m is the electron rest

mass.
The study of the electromagnetic contributions to energy and momentum is also

trivial. Since the electrons are at rest they produce electric field only. Therefore the
Poynting vector vanishes and P ′

e = 0. Moreover Ee is given, simply, by the work
U ′ done against the field to bring the two particles together (quasistatically) from a
situation in which they are separated by an infinite distance.

By doing so, of course, we are neglecting, in both P ′
e and E ′

e, the contributions from
the acceleration (self-)fields generated by the system.

This approximation is justified by the fact that we are discussing the asymptotic
behavior for the two particles separated by a very small distance: then, as it will be clear
from Eq. (5.16) and Eq. (5.20), we may assume that the acceleration field contribution
are unimportant, when compared with the Coulomb one. In fact acceleration effects
saturate in the asymptotic limit of small distance between the two particles (see [13]
and Chapter 3), while Coulomb ones are singular; once again it must be clear that
we are discussing the asymptotic case for small distance between the two particles.
Therefore we have:

E ′
e = U ′ = e2/(4πε0γ∆s) (5.8)
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and

P ′
e = 0. (5.9)

Summing up the electromagnetic and mechanical contributions one gets the total en-
ergy and momentum for the system:

E ′
tot = E ′

ne + E ′
e = 2mc2 + U ′ (5.10)

and

P ′
tot = P ′

ne + P ′
e = 0. (5.11)

As already said, one may now use a Lorentz transformation in order to calculate these
quantities in the laboratory frame. Again, since we are interested at the beginning of
the evolution, it follows from our assumptions that the two particles evolve with the
same four-velocity vector. Therefore a direction of motion (which we will designate with
z) is well defined for the system in the laboratory frame and the Lorentz transformation
from the rest frame is a simple boost in the −z direction (note that a good definition of
the z direction is equivalent to a good definition of the rest frame). We will represent
this boost with a matrix with components Λµ

ν with µ, ν = 0... 3 (where the third
component corresponds to the z direction):

Λµ
ν =


γ 0 0 βγ
0 1 0 0
0 0 1 0
βγ 0 0 γ

 . (5.12)

The use one makes of Λµ
ν is a critical point in our derivation. If one (erroneously)

assumes that energy and momentum constitute a four-vector, then he gets straightfor-
wardly:

(Etot/c,Ptot)
µ = Λµ

ν(E
′
tot/c,P

′
tot)

ν ; (5.13)

therefore

Etot = γ
(
2mc2 + U ′) , (5.14)

and

Ptot = γ
(
2m+ U ′/c2

)
βc , (5.15)

where Ptot is a scalar quantity, since we understand that Ptot is oriented along the z
direction.

We can now project the equation of motion, Fsyst = dPtot/dt, onto the transverse
direction (perpendicular to z and lying on the orbital plane) thus getting, within our
approximations:

F⊥syst = −2eBβc− e2

4πε0R∆s
. (5.16)
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As the reader will remember, we addressed the description of the transverse self-
fields originating within an electron bunch moving in a circle in Chapter 4. There,
an approach has been proposed which involves purely electrodynamical considerations,
based on the retarded Green function solution of Maxwell equations.

In particular, in part of Chapter 4 we treated the case of two particles separated
by a distance ∆s (non necessarily much smaller than R/γ3), moving rigidly in a circle
(see Fig. 4.2) of radius R. Those results are in disagreement with Eq. (5.16).

Let us briefly justify the latter statement. The total transverse force (orthogonal
to its velocity and lying on the orbital plane) felt by the head electron and due to the
tail electron source turned out to be given by Eq. (4.13), that is:

F⊥ � e2γ3

4πε0R2
Φ(φ̂) , (5.17)

where Φ is defined by Eq. (4.14), which, as already observed, is completely independent
on the parameters of the system.

In Chapter 4 we also plotted the function Φ(∆ŝ)∆ŝ as a function of ∆ŝ. This result
has been presented in Fig. 4.3. As it is seen from the figure, the contribution from the
velocity field is not important in the asymptotic limit for particles very nearby (as in
our case here) or very far away. When, in particular, ∆s 
 Rγ3 we can approximate
Eq. (5.17) by

F⊥ � e2

4πε0R∆s
. (5.18)

On the other hand, as regards the force felt by the tail particle (see Fig. 4.4), it is
easily seen (Chapter 4, or [13]) that the test electron, which now is the tail particle,
”runs against” the electromagnetic signal emitted by the source (while in the previous
case it just ”runs away” from it).

In this situation, βS is almost parallel (and equal) to βT and antiparallel to n (which
is the unit vector oriented as the line connecting the retarded source to the present
test particle): it turns out that the only important contribution to the transverse force
results from the acceleration field and is given by Eq. (4.17):

F⊥ � e2

4πε0R∆s
, (5.19)

where ∆s is considered as a positive distance, as everywhere in this Chapter. In the
case under study, since ∆s 
 R/γ3, the total self-force acting on the system is given
by the sum of Eq. (5.18) and Eq. (5.19):

F⊥ � 2
e2

4πε0R∆s
, (5.20)

which is in disagreement of a factor 2 with respect to the self-force term in Eq. (5.16).
In other words, had we erroneously assumed covariance, we would have encountered
a paradox. Again, note that we are treating the asymptotic limit of a small distance
between the two electrons: in this limit we can neglect the contribution from the accel-
eration field in the equation of motion Eq. (5.16). In fact this contribution saturates
for small distance between the two particles (see [13] and Chapter 3), while the term
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missing by comparison between Eq. (5.16) and Eq. (5.20) is singular (and, therefore,
dominating) in the limit when ∆s goes to zero.

This situation should not be too much surprising for the reader familiar with the
works [1, 2, 3] which led to Eq. (5.1) and Eq. (5.2): the derivation of Eq. (5.16) is, in
fact, performed under the explicit assumption that energy and momentum constitute
a four-vector.

As we will immediately see, in the case of unstable systems (like the one we are
dealing with), the use of correct transformation laws for the electromagnetic stress
tensor solves the problem but spoils the covariance of the energy-momentum pair.

The energy and momentum of an electromagnetic system in the laboratory frame
is given by

E =

∫
T ′µνΛ0µΛ

0
ν

dV ′

γ
(5.21)

and

P i =
1

c

∫
T ′µνΛi

µΛ
0
ν

dV ′

γ
, (5.22)

where T ′µν are the components (in the rest frame) of the electromagnetic stress tensor of
the system, which contain all the information about the (electromagnetic) field theory
governing the interactions between the particles. The process of lowering and raising
indexes is governed in the usual way by the metric tensor. Here the latin index i runs
from 1 to 3 and, as already said, the quantities with prime refer to the rest frame. In
our case we will consider the only important component, i.e. the third (along z).

Note that the integrals in Eq. (5.21) and Eq. (5.22) include both a single-particle
term and an interaction term (compare also with [9]). Here we are interested in the
interaction term alone: in fact we will treat the (trivial) mechanical contributions to
the energy-momentum pair separately and, once again, we will neglect the acceleration-
field contributions. Therefore, in the following, we will understand that T ′ refers to
the interaction term alone.

Then, since the mechanical energy-momentum pair of a single particle is a 4-vector,
one gets:

(Ene/c, Pne)
µ = Λµ

ν(E
′
ne/c, P

′
ne)

ν , (5.23)

hence

Ene = 2γmc2 (5.24)

and

Pne = 2βγmc, (5.25)

while

Ee = β2γ

∫
T ′33dV ′ + γU ′, (5.26)

Pe = γβU ′/c+ γβ/c

∫
T ′33dV ′. (5.27)
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We should note, here (but this is a valid methodological remark also as regards the
previous, incorrect approach), that the particles are subject to a long-range interaction
(the electromagnetic interaction) and, therefore, a covariant definition of the total
energy and momentum is not straightforward even when one is considering the two
particles alone, without including (as we did, instead) the electromagnetic fields in the
system. Therefore, strictly speaking, one may object that Eq. (5.23) does not make
any sense at all.

Indeed, if the interaction occurred at a single point in space-time (short-range
scattering case), the particle velocities would have been constant, in the view of any
inertial observer, before and after the scattering took place. Then, if two observers
related by a Lorentz boost compared their judgments about the particles velocities,
they would have found that these are linked by a Lorentz transformation, the same
which transforms from one observer to the other. Nevertheless, this is a particular
case. We must remember that in general, according to the theory of relativity, the
concept of simultaneity depends on the observer. Therefore, when (as in the situation
under study) one deals with a long-range interaction, the velocities of the particles, in
the judgment of the two observers above, are not related by a Lorentz transformation
anymore (see [14]): the objection about the correct definition of the mechanical energy-
momentum vector follows directly from this observation.

However this objection does not concern us here since, as already implicit in the
definition of the z direction, we discuss about that region of space-time in which the two
particles world-lines are very close and are roughly characterized by the same Lorentz
factor, that is, once again, at the beginning of the evolution.

Then we can use Eqs. (5.23) to (5.27) to get, by summation, the total energy and
momentum of the system in the laboratory frame and in the direction of motion (see
also [4] and [15]):

Etot = γ

(
2mc2 + U ′ + β2

∫
T ′33 dV ′

)
, (5.28)

and

Ptot = γ

(
2m+ U ′/c2 +

1

c2

∫
T ′33 dV ′

)
βc . (5.29)

Note that Eq. (5.28) and Eq. (5.29) can be used to obtain Eq. (5.1) and Eq. (5.2), as
well as Eqs. (5.4) to (5.7): different distributions of charge give different expressions
for the electromagnetic stress tensor and for the electromagnetic energy.

In our case of two electrons we already know the explicit expression for U ′. In fact
we remind that, as has already been said, the electromagnetic interaction energy is
simply given by the work done against the field to bring the two particles together,
quasistatically, from a situation in which they are separated by an infinite distance:

U ′ � e2

4πε0γ∆s
. (5.30)

On the other hand it is easy to calculate T ′33 (in the rest frame, since we need to
integrate over V ′). To this purpose we remind that, in the rest frame (and at short
distance γ∆s 
 R/γ2, so that the acceleration field contributions are unimportant),
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the space-space components of the total (comprehensive of both single-particle and
interaction part) symmetric energy-momentum tensor read (see Chapter 1 or [4]):

T ′ij
tot = −ε0(E

′iE ′j − δijE ′2/2) , (5.31)

where, here, i, j = 1... 3. The discussion above shows that, for us, the only interesting
component is T ′33. With the help of [9] it can be proven that the interaction part alone
is just ∫

T ′33 dV ′ = U ′ . (5.32)

Note that Eq. (5.32) describes also the case of a charged line distribution oriented in
the direction of motion (in the case of a charged line, of course, the single-particle term
is not present at all).

The equations for the energy and the momentum of the system in the laboratory
frame now read:

Etot = γ
[
2mc2 + U ′(1 + β2)

]
(5.33)

and

Ptot = γ
(
2m+ 2U ′/c2

)
βc , (5.34)

whose electromagnetic parts are the same of Eq. (5.4) and Eq. (5.5).
From the transverse component of the equation of motion for the system one gets

F⊥syst � −2eBβc− 2
e2

4πε0R∆s
. (5.35)

Eq. (5.35) is now in perfect agreement with our result in Eq. (5.20). Both the terms
on the right hand side of Eq. (5.35) are centripetal as well as the ones in Eq. (5.16)
(although, of course, Eq. (5.16) and Eq. (5.35) are in disagreement as concerns the
magnitude of the self-interaction term); the first is due to an external magnetic field,
while the second is linked with the presence, in the system, of electromagnetic fields: an
extra centripetal (external) force is needed, if one wants to keep the system moving in
a circle of radius R, compensating for the centrifugal self-field contributions calculated
in Chapter 4 (or in Eq. (5.20)).

5.3 Discussion

In order to reach the agreement between Eq. (5.20) and Eq. (5.35), one has to give
up the covariance of the energy-momentum pair of our system, as it is seen directly
from Eq. (5.33) and Eq. (5.34).

We can sum up the discussion in Section 5.2 by saying that the assumption of covari-
ance for the transformation of the energy-momentum pair of an unstable system leads
to a paradox. Such a paradox can be solved introducing the correct transformation laws
for the energy-momentum tensor. In this way, it is seen that the energy-momentum
pair for an unstable system (particles and electromagnetic field) is not a four-vector.
We already mentioned in Section 5.1, that the non-covariant character of energy and
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momentum is also present when one discusses some classical problems which involve
the relativistic dynamics of a charged particles stable system. Nevertheless, in these
cases, covariance can be always restored by introducing non-electromagnetic stresses
which keep the system together or, equivalently, by redefinition (see [7]) of the energy-
momentum pair. In particular we can refer to the 4/3 problem in the classical electron
model (as done above in Section 5.1) but also to other problems like, for example,
the explanation of the Trouton-Noble paradox, which has been treated extensively in
literature (see [8], [16] to [19]) all over the last century.

As we already said in Section 5.1, there is one major difference with respect to our
case, though: our system, in contrast with the latter ones, is unstable by nature; there
is no reference frame such that its components are and stay at rest. This fact leads to
a major difference in the treatment of the total energy and momentum.

In the case of a stable system, the total energy and momentum of the system
(including non-electromagnetic binding forces) constitute a four-vector, a well-defined
geometrical entity.

On the contrary, in the case of an unstable system, this pair of quantities has no
geometrical meaning, although it is possible to give, of course, separate definitions of
total energy and momentum in the judgment of any observer.

In the situation discussed in Section 5.2 this is a direct consequence of the fact that
we deal with a fully electrodynamical system and there is no way to introduce, in a
straightforward way, an analogue of Poincaré stresses. As a result we must conclude
that stability of the system and covariance of the energy-momentum pair are bound
together.

Let us discuss the latter statements in detail, starting with a review of well-known
arguments for stable systems.

Stable systems are characterized by a zero (total self-) four-force density. When
the four-force density can be derived from an energy-momentum tensor T µν , the latter
property is equivalent to (see [4]):

∂µT
µν = 0 , (5.36)

which is the requirement for a zero-divergency energy-momentum tensor.

However, Eq. (5.36) refers to the total energy-momentum tensor, while the electro-
magnetic part of it is not divergenceless at all (its divergence is, simply, the Lorentz
four-force density).

On the other hand, since stability is characterized by a zero total four-force density,
non-electromagnetic stresses must be present (Poincaré stresses), which balance the
Lorentz four-force density, thus insuring stability for the system. Poincaré stresses also
insure covariance for the energy-momentum pair which is, therefore, a well-defined four-
vector: to prove this, one can remember the definition of the total energy-momentum
pair (see [4, 8]):

P µ =
1

c

∫
σ

T µνdσν , (5.37)

where the integration is carried out over any hypersurface at t = constant (actually σ
may be, more generally, any spacelike surface, see [8]) for any inertial observer.
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It can be easily proved (see [8]) that Eq. (5.37) is independent from the choice of
the integration hypesurface. Such a proof is based on Eq. (5.36).

The choice of different inertial observers is equivalent to the choice, on the space-
time manifold, of different time-like unit vectors. The different families of hypersurfaces
orthogonal to these vectors represent the physical space at a certain time in the judge-
ment of different observers. From the independence of the definition in Eq. (5.37) of
the choice of the integration hypersurface follows, therefore, the independence of P µ

on the reference frame used to evaluate it, and this constitutes the proof that P µ is a
well-defined four-vector.

Since P µ is independent from the choice of the integration hypersurface, we are free
to choose the one which helps better in solving problems. Historically, two choices have
been used in explaining, for example, the Trouton-Noble paradox. The first (see [8])
consists in considering the surface at t = constant for any observer. This leads to
the usual expressions for the electromagnetic energy and momentum in a given frame
(see [4]):

Ee

c
= P 0

e =
1

2c

∫ (
ε0E

2 +
B2

µ0

)
dV (5.38)

and

Pe =
1

µ0c2

∫
(E × B) dV, (5.39)

where µ0 is the free space permeability.
While Eq. (5.38) and Eq. (5.39) do not constitute a four-vector, one can straight-

forwardly solve the problem of the lack of covariance by introducing Poincaré stresses.
The second choice consists in selecting t = constant in the rest frame of the system

(see [4, 20]):

Ee

c
= P 0

e =
γ2

2c

∫ (
ε0E

2 − B2

µ0

)
dV (5.40)

and

Pe =
γ2β

2c

∫ (
ε0E

2 − B2

µ0

)
dV ; (5.41)

the electromagnetic part of the total energy-momentum pair is, then, a four-vector (see
[4]). This is, in fact, the same redefinition of the four-momentum that Rohrlich used
to deal with the electron problem [7]. One can easily check (see [8]) that, in this case,
the non-electromagnetic part of the total energy-momentum pair is zero.

All this illustrates the well-known fact that the introduction of Poincaré stresses or
the Rohrlich redefinition of energy and momentum are, in fact, equivalent in essence.
The choice of the integration hypersurface is a matter of taste for stable systems,
since the only important quantity from a geometrical viewpoint is the total energy-
momentum four-vector, given by the sum of the electromagnetic and the
non-electromagnetic part; this sum, by definition, is independent from such a choice.
In other words, different choices of the hypersurface just split the same total quan-
tity onto two parts (electromagnetic and non-electromagnetic) in distinct ways but,
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as quoted from [8]: ”The split into electromagnetic and non-electromagnetic parts is
quite arbitrary”.

Our point is that this situation is completely different in the case of unstable sys-
tems, where only electromagnetic forces are present and Poincaré stresses are not. In
the case of unstable systems there is no way one can define the total energy-momentum
four-vector. This statement is justified, from a mathematical viewpoint, by the follow-
ing inequality:

∂µT
µν
tot = ∂µT

µν
e �= 0 ; (5.42)

in fact, from the previous discussion, we know that divergenceless is an essential ingre-
dient for the independence of the total energy-momentum pair from the choice of the
integration hypersurface.

Note that Eq. (5.42) means that there is a non-vanishing four-force density field
over the space-time. In the case discussed in Section 5.2 we gave a practical example
of the statements above.

Of course, also for unstable systems we may consider an observer and find out
the energy and the momentum of the system with respect to that observer, but this
quantities will not be covariant, nor we can recover covariance by integrating the energy-
momentum tensor over a suitable hypersurface (as done with stable systems), since the
electromagnetic energy-momentum pair (which coincides now with the total energy-
momentum pair) would change Eq. (5.33) and Eq. (5.34), thus giving an unphysical
result on the second term of Eq. (5.35), when compared with Eq. (5.20). The latter
discrepancy, to our view, is similar to the one encountered in [9]. In that paper a
system composed by two electron is studied too and a comparison is proposed between
energy-derived mass mu (electrostatic energy divided by c2), momentum-derived mass
mp (momentum divided by γv, being v the system velocity) and self-force-derived mass
ms (self-force divided by γ3a, a being the system acceleration). The authors of [9] point
out that ms = mp �= mu and that the inequality between mp and mu can be solved
by redefining, following Rohrlich (see [7]) the energy-momentum pair. Nevertheless, in
this case, one is left with a discrepancy between ms and mu. This fact is perceived by
the authors of [9] as an unsolved paradox. Actually, the derivation of Eq. (5.16) (or
equivalently, of mu, treated with Rohrlich’s method) is performed under the explicit
assumption that energy and momentum constitute a four-vector, which is true only in
the case of a stable system. As a result, by comparing Eq. (5.16) and Eq. (5.20) or,
which is the same, mu (treated by Rohrlich’s method or, equivalently, by introducing
Poincaré stresses) with ms, one is comparing quantities which refer to a stable system
with quantities which refer to an unstable one, thus giving a paradoxical result.

Consider, as a last example, an unstable system formed by different subsystems
initially at rest in a certain frame (as in the case discussed in Section 5.2). In gen-
eral, while dealing with unstable systems, the knowledge of dynamical quantities for
the subsystems cannot bring any information about the behavior of the system as a
whole, unless we have knowledge of the (electromagnetic) field theory governing the
interactions (which make the system unstable).

In our example of Section 5.2, even if we can measure, in a certain frame, the
particle velocities when they are far away from each other (thus no more interacting)
and if we know their rest masses, we cannot say anything about the energy and the
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momentum of the total system without the knowledge of the stress tensor, and the
reason for this is the presence of a non-zero four-force density field (which we can
account for only knowing the stress tensor, i.e. the interaction theory) on that part of
the four-dimensional manifold on which we want to have information.

Suppose our system was stable (think about an ideal ”rope” responsible for Poincaré
stresses, or think, instead of the case of two electrons, about a nuclear fission process
in which electromagnetic fields are, before the fission event, balanced by the strong
interaction). Put ourselves in the laboratory frame and imagine that, at a certain
moment, for a certain reason (a collision with a neutron, for example) the Poincaré
stresses are not present anymore. Thus the system becomes unstable, it breaks in two
subsystems and the electromagnetic interaction (if you are thinking about the nucleus
imagine we are talking about a charged ion) takes over. If we wait for enough time
the two particles will get far away from each other and we can consider them no more
interacting.

At this point, the kinetic energy of the particles is equal to the energy previously
stored in the electromagnetic field when the system was stable: thus we are able to
get information about the total energy-momentum vector of the stable system even
if we do not know anything about the stress tensor and the theory of the interaction
between the subsystems. In fact, the sum of the momenta of the two free particles and
the sum of their energies will give us, respectively, the energy and the momentum of
the stable system, which form a four-vector again.

The reason is, simply, that there is no four-force density field in that part of the
space-time on which we want to have information: from a general viewpoint we can
conclude that the presence of a four-force density, which characterizes unstable systems,
spoils without remedy the covariance of the energy-momentum pair. The only way to
recover such covariance would be to introduce a balancing four-force density, i.e. to
make the system stable.

In other words, in agreement with Poincaré, from the stability of the system fol-
lows the covariance of the system and, viceversa, from covariance follows stability:
the energy-momentum pair of an unstable system does not constitute a four-vector.
This conclusion may seem, at first glance, of academical importance only. It has
very practical consequences in modern electron beam physics. Energy and momen-
tum of an electron bunch are measurable quantities and an electron bunch itself is
a practical example of an unstable system. Nowadays, technology allows the pro-
duction of ultra-high brightness, intense electron beams to be used, for example, in
self-amplified spontaneous emission (SASE)-free-electron lasers operating in the x-ray
regime. The production of such bunches is one of the most challenging activities for
particle accelerators physicists. The description of these systems would be completely
incorrect without accounting for self-interactions in the right way. We can conclude
that any simulation code or analytical consideration relying on the covariance of the
energy-momentum pair would give, a priori, wrong results which may be immediately
confuted by experiment. Technological developments often transform, as in this case,
purely methodological issues into very practical ones.
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Chapter 6

Applications of Coherent
Synchrotron Radiation

In this Chapter we discuss subjects related to possibilities and limits under which CSR
can be employed as a radiation source or as a diagnostic method for monitoring the
longitudinal structure of very short, high-peak current, ultrarelativistic bunches. We
first characterize the CSR pulse from an electron bunch moving in an arc of a circle
and then we present a systematic discussion about the limits of validity of the famous
Schwinger formulas, which are widely used in synchrotron radiation and CSR theory
and usually considered universally valid. It turns out that the standard theory of
synchrotron radiation uses several approximations whose applicability limits are too
often forgotten. Any attempt to set up a CSR source or a bunch diagnostics system
based on CSR detection should take into account these considerations.

Chapter 5 is based, in part, on the article:
Gianluca Geloni et al., DESY 03-31, ISSN 0418-9833, 2003
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6.1 Introduction

The application of CSR as a powerful far-infrared source, especially in the Terahertz
(THz) spectral range, has been considered in several facilities around the world, and
first experiments have been performed or proposed [1, 2, 3]. This kind of application is
particularly interesting for the community in that, compared with currently available
THz sources, CSR sources are characterized by a radiative power several order of
magnitude higher.

Besides its utilization as a radiation source, CSR is also a promising tool for bunch
diagnostics. As discussed in the previous Chapters, the bunch length for XFEL applica-
tions is of the order of 100 femtoseconds. Since detailed understanding of longitudinal
dynamics in this new domain of accelerator physics is of paramount importance for
FEL performance, experiments on this subject are planned in test facilities. The fem-
tosecond time scale is beyond the range of standard electronic display instrumentation
and the development of nondestructive methods for the measurement of the longitu-
dinal beam current distribution in such short bunches is undoubtedly a challenging
problem. As a general remark, coherent radiation has the advantage to get simpler
to be measured as the bunch shortens, since the minimum coherent wavelength is of
the order of the bunch length. In particular, CSR has already been used as a tool
to monitor bunch length variations (see [4]) but never to achieve longitudinal bunch-
distribution measurements in the femtosecond time scale, as it has been proposed in [5]
for the DESY case.

Whenever one plans to use CSR as a far-infrared source or as a tool for bunch
diagnostics, one has to carefully characterize the CSR pulse. In this Chapter we discuss
topics related to CSR pulse characterization from dipole magnets in the time domain.

In Section 6.2 we first introduce synchrotron radiation theory in the time domain,
with special emphasis on the case of radiation from a finite bending magnet. In fact,
while Schwinger formulas are valid in order to describe radiation from a dipole in the
X-ray range, their long wavelength asymptote is not valid, in general. Analytical study
of this matter was first performed in the 80’s [6], but since synchrotron radiation users
are normally interested in the high frequency range, Schwinger formulas are often
considered as always directly applicable. This is not true in the case of CSR from
a dipole magnet, because the interesting wavelength range is in the far-infrared. In
Section 6.3 we provide a new expression which gives an analytical characterization of
the CSR pulse from a bunch moving in an arc of a circle. We use a synthetic approach
to present the material: the simpler situation of a circular motion is studied first, and
then generalized to the case of an arc. Standard theory of synchrotron radiation relies
upon other approximations too, and it is important to pay attention to their region
of applicability. To be specific, two important limitations are discussed in Section 6.4.
First, it is usually assumed that the observer is located at infinite distance from the
source. Second, in real experimental conditions, the radiation is seen by the detector
through some limited aperture. Both finite distance effects and diffraction effects are
usually ignored. The aperture sizes and the distances are such that these effects must
be accounted for in practical situations. Finally, in Section 6.5, we come to some
summing up and conclusions.
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Figure 6.1: Geometry for synchrotron radiation production from a bending magnet.

6.2 Single-particle radiation from a dipole

magnet

The typical textbook treatment of single-particle synchrotron radiation (see for ex-
ample [7, 8, 9]) consists in finding the expression for the synchrotron radiation spectrum
from an electron moving in a circle. However, no attention is usually paid to the region
of applicability of the derived expressions. For instance, the standard extension of the
theory to the case of radiation from a dipole magnet is based on the assumption that
the energy spectrum formula is equivalent to the famous Schwinger formula [10]. While
this formula is valid for the X-ray range, it does not provide a satisfactory description
in the long wavelength asymptotic [6], which is the only region of interest as regards
CSR phenomena. In view of its application to CSR theory in the next Section, it is
therefore useful to review, here, how a single electron radiates as it moves in a dipole
magnet.

Fig. 6.1 shows the relationship between the observer at a fixed point P , whose co-
ordinates are (r0, t), and the radiating electron at (R, t′), t′ being the emission (or
retarded) time. The fundamental laws of electrodynamics tell that the electric field
of a charge e moving along an arbitrary trajectory is given by the Liénard-Wiechert
fields.

As already discussed, these consist of two terms. The first is inversely proportional
to the square of the distance between radiation source and observer, depends only on
the charge velocity and is known as velocity or Coulomb field. The second is inversely
proportional to the distance from the charge, depends also on the charge acceleration
and is known as acceleration or radiation field. At large distances from the moving
electron, the acceleration-related term dominates, and is usually associated to the
electromagnetic radiation of the charge. The region of space where the radiation field
dominates is called far (or wave) zone and the radiative electric field in the far-zone is
given by the formula
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Figure 6.2: Time variation of a synchrotron radiation field-pulse generated by a highly
relativistic electron moving in a circle as seen by an observer in the orbital plane.

Er(t) =
e

4πε0c | r0 |

[
n × [(n − β)× β̇]

(1− n · β)3
]
r

. (6.1)

The usual theory of synchrotron radiation is based, after Schwinger, on the assumption
that the electron is moving on a circle and radiation is observed from the whole circular
trajectory, so that in each cycle we get a sharp pulse of electric field. A far-field
computation of the predicted time-dependence of the synchrotron radiation from an
electron in circular motion (of radius R) is presented in Fig. 6.2.
The horizontal component of the electric field is plotted versus the normalized variable
ωct, where ωc = 3γ3c/(2R) is the critical frequency of synchrotron radiation. The field
in the orbital plane has a zero around t = ω−1

c . Numerically, from Fig. 6.2 one obtains

∞∫
−∞

Er d t = 0 . (6.2)

It is interesting to stress the fact that Eq. (6.2) is strictly related to the well-known
result that a uniformly charged ring does not radiate. In fact, starting from Eq. (6.2)
one can show that a system of N identical equidistant charges q moving with constant
velocity v along a circle does not radiate in the limit for N → ∞ and qN = constant,
and that the electric and the magnetic fields of the system are the usual static values.

It is important to realize that Eq. (6.2) is valid only when the electron is moving on
a closed trajectory. By inspecting Figs. 6.3 to 6.5, one can see that when the electron
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Figure 6.3: Time variation of a synchrotron radiation pulse generated by a highly
relativistic electron moving along an arc of a circle. The normalized bending angle is
φ̂m = γφm = 2.5.

Figure 6.4: Time variation of a synchrotron radiation pulse generated by a highly
relativistic electron moving along an arc of a circle. The normalized bending angle is
φ̂m = γφm = 1.5.
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Figure 6.5: Time variation of a synchrotron radiation pulse generated by a highly
relativistic electron in a short bending magnet. The normalized bending angle is
φ̂m = γφm = 0.5.

moves in arcs of circle with different angular extensions φm, the time-average of the
electric field is non-zero.

Let us consider for a moment (in parallel with what has been done in the case
of a circle) a system of N uniformly distributed charges moving with constant (in
magnitude) velocity v in an arc of a circle preceded and followed by infinite straight
paths in the limit of N → ∞ and qN = constant, as in Fig. 6.6. The fact that
the average electric field from a single particle is different from zero means that the
acceleration field from our infinite circuit (arc and straight paths) must be different
from zero too. Then we have to deal with an intriguing paradox, since it is a well
known result that a uniform electron current does not radiate, not only in the case of
circular motion, but independently from the trajectory.

It is possible to explain this contradiction in very simple terms as follows. First of
all the velocity (electric) field from a line current (including our case) is proportional
to 1/ | r⊥ |, where | r⊥ | is the distance of the observer from the line charge. Second,
in our case the acceleration part of the electric field is proportional to 1/ | r |, where
| r | is the distance of the observer from the magnet (since the acceleration field sources
are strictly limited to the particles in the magnet only). The situation is depicted in
Fig. 6.6: the ratio | r⊥ | / | r | is finite for any position of the observer; therefore there
is no region in space where the acceleration field dominates. This last observation
solves our paradox since, in the case of infinite charge current in an arc of a circle, we
cannot talk about far-zone at all, although a non-zero acceleration field is present.
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Figure 6.6: Geometry for a uniform current progressing through an arc of a circle
and relative position of an observer.

6.3 CSR field in the time domain

We can now start to discuss the shape of the coherent synchrotron radiation field
pulse associated with different particle trajectories. What we have been dealing with
before is simply a far field analysis of the single-particle radiation field. When a large
number of electrons move together, the total field will be a linear superposition of the
individual particle fields. Of course the result depends upon the longitudinal distribu-
tion of the electrons.

6.3.1 ”Short” magnet limit case

One aspect of the problem that we can immediately deal with is the coherent syn-
chrotron radiation production from a ”short” magnet, i.e. in the asymptotic limit
φm 
 1/γ. We can assert that the field appears as shown in Fig. 6.7. In fact the
time-dependence of the field has, for every electron, approximatively, the shape shown
in Fig. 6.5 and the total field emitted by the electron bunch is represented by a sum
of these pulses, one for each radiating electron. In the limit for short magnets, the
time profile of the electron bunch density is linearly encoded onto the electric field
of the radiation pulse. The width of the temporal profile of the electric field corre-
sponds directly to the electron bunch length, and the shape of the temporal profile is
proportional to the longitudinal bunch distribution.

We have just argued that the bunch density is linearly encoded onto the electric
field as in Fig. 6.7; nevertheless, in Fig. 6.7, we illustrate small fluctuations which occur
in the field amplitude too. The reason for this is that the electron bunch is composed
of a large number of electrons, thus fluctuations always exist in the electron beam
density due to shot noise effects. For any synchrotron radiation beam there is some
characteristic time, which determines the time scale of the random field fluctuations.
This characteristic time is called coherence time τc of synchrotron radiation and its
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Figure 6.7: Coherent synchrotron radiation production from a ”short” magnet. The
time profile of the electron bunch density is linearly encoded onto the electric field of
the radiation pulse. The spikes correspond to spontaneous radiation, and the average
value of the electric field corresponds to CSR. The width of the temporal profile of the
electric field corresponds directly to the electron bunch length, and the shape of the
temporal profile is proportional to the longitudinal distribution within the bunch.

magnitude is of the order of the pulse duration from one electron. The physical signif-
icance of these fluctuations is that there is a short wavelength radiation component of
the radiation in the range of the inverse pulse duration from a single electron. Simple
physical considerations show that the energy spectrum of this hard radiation compo-
nent is order of P (ω) � Np(ω). This explains the relation between small fluctuations
of the radiation field amplitude and spontaneous (incoherent) emission of synchrotron
radiation.

6.3.2 Circular motion case

Up to this point we only talked about coherent radiation from a ”short” magnet
(i.e. in the limit φm 
 1/γ). Ultimately we want to relax the assumption φm 
 1/γ
and consider CSR production from an arc of a circle in a more generic case. A first
step in this direction consists in the analysis of the CSR time pulse from a circular
motion. It is possible, indeed, to derive a new, simple analytical expression for the
CSR pulse from a bunch with an arbitrary distribution of the linear density satisfying
the following condition:

R

cγ3
dF (t)

d t

 F (t) . (6.3)

This condition simply tells that the characteristic length of the bunch is much longer
than R/γ3. Let us express the total CSR pulse as a superposition of single particle
fields:
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ECSR(t) =

∞∫
−∞

Er(t− τ)NF (τ) d τ , (6.4)

where we calibrated the observer time in such a way that, when F (τ) = δ(τ), the
single particle radiation pulse has its maximum at t = 0. To calculate the integral in
Eq. (6.4) one should take into account the property Eq. (6.2) of the kernel Er(t − τ)
which has been discussed above. Using Eq. (6.2) and condition (6.3) one can simplify
Eq. (6.4) in the following way. The integral in Eq. (6.4) is written down as a sum of
three integrals

ECSR(t) =

t−δ1∫
−∞

Er(t− τ)NF (τ) d τ

+

t+δ2∫
t−δ1

Er(t− τ)NF (τ) d τ +

∞∫
t+δ2

Er(t− τ)NF (τ) d τ , (6.5)

where δ(1,2) satisfy the following conditions:

δ(1,2) � R

cγ3
, δ(1,2)

dF (t)

d t

 F (t) . (6.6)

The limitations (6.6) define a ”slowly” varying function of the time and we simply take
F (τ) outside the integral sign and call it F (t) when calculating the second integral of
Eq. (6.5):

t+δ2∫
t−δ1

Er(t− τ)NF (τ) d τ � NF (t)

t+δ2∫
t−δ1

Er(t− τ) d τ . (6.7)

Then we remember that the average of the electric field over time is zero when an
electron is moving in a circle. As a result, we can write:

t+δ2∫
t−δ1

Er(t− τ) d τ = −
 t−δ1∫
−∞

Er(t− τ) d τ +

∞∫
t+δ2

Er(t− τ) d τ

 . (6.8)

Taking into account Eq. (6.7) and Eq. (6.8), the expression for the CSR pulse becomes

ECSR(t) =

t−δ1∫
−∞

Er(t− τ)NF (τ) d τ −NF (t)

t−δ1∫
−∞

Er(t− τ) d τ

+

∞∫
t+δ2

Er(t− τ)NF (τ) d τ −NF (t)

∞∫
t+δ2

Er(t− τ) d τ . (6.9)
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Figure 6.8: Geometry for synchrotron radiation from circular motion.

Integrating by parts, the first pair of integrals on the right hand side of Eq. (6.9) can
be joined in a single one; the same can be done with the second pair:

ECSR(t) = −
t−δ1∫

−∞

Φ [Er] (t− τ)N
dF (τ)

d τ
d τ

−
∞∫

t+δ2

Φ [Er] (t− τ)N
dF (τ)

d τ
d τ , (6.10)

where Φ [Er] is a primitive of Er. What is left to do now is to evaluate a primitive of
the radiation field from one electron.

To calculate the primitive of Er we use Eq. (6.1) and we note that the electric field
is expressed in terms of quantities at the retarded time t′. The calculation is simplified
if we use the following consideration: since (see [7]), in general, d t/ d t′ = (1 − n · β)
and

d

d t′

[
n × [(n × β)]

(1− n · β)
]
=

[
n × [(n − β)× β̇]

(1− n · β)2
]

, (6.11)

we also have

d

d t

[
n × [(n × β)]

(1− n · β)
]
=

[
n × [(n − β)× β̇]

(1− n · β)3
]

. (6.12)

Thus we can write ECSR(t) as
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ECSR(t) =
−e

4πε0c | r0 |

t−δ1∫
−∞

[
n × [(n × β)]

(1− n · β)
]
(t−τ)

N
dF (τ)

d τ
d τ

+
−e

4πε0c | r0 |

∞∫
t+δ2

[
n × [(n × β)]

(1− n · β)
]
(t−τ)

N
dF (τ)

d τ
d τ , (6.13)

where the quantity in brackets must be evaluated at the retarded time
t′ = (t − τ) − 1

c
| r(t′) |. Since the conditions (6.6) hold, we can substitute the

function in brackets in both integrals on the right hand side of Eq. (6.13) with its
asymptotic behavior at | τ |� R/(cγ3). Because the angles are very small and the
relativistic factor γ is very large, it is useful to express Eq. (6.13) in a small angle
approximation. The triple vector product is calculated from Fig. 6.8:

n × [n × β] = ω0t
′ex + θey . (6.14)

Here θ is the vertical angle, ω0 = βc/R is the revolution frequency and ex,y are unit
vectors directed along the x and y axis of the fixed Cartesian coordinate system (x, y, z)
shown in Fig. 6.8. The definition of n and R can be used to compute the scalar product
in the denominators in Eq. (6.13) so that

n · β = β cos θ cosω0t
′ � β(1− θ2/2)(1− (ω0t

′)2/2) . (6.15)

We assume, here, that the vertical angle is small enough so that we can leave out the
cosine factor. We can now write ECSR(t) as

ECSR(t) =
−2e

4πε0c | r0 |


t−δ1∫

−∞

[
(ω0t

′ex + θey)

(ω0t′)2

]
(t−τ)

N
dF (τ)

d τ
d τ

+

∞∫
t+δ2

[
(ω0t

′ex + θey)

(ω0t′)2

]
(t−τ)

N
dF (τ)

d τ
d τ

 . (6.16)

Part of the integrand in Eq. (6.16) is still expressed as a function of t′, which has to
be converted into a function of t− τ using the explicit dependence

t− τ = t′ +
1

c
| r(t′) |= t′ +

| r0 |
c

− R

c
cos θ sinω0t

′ . (6.17)

Since we assume the vertical angle is very small, we may use again the replacement
cos θ � 1. We can therefore approximate t− τ by

t′ +
1

c
| r(t′) |= | r0 |

c
+ t′(1− β) +

ω20(t
′)3

6
. (6.18)

We conventionally fixed Er(0) as the maximum value of the field (in time) and we are
interested in the asymptote for | τ |� R/(cγ3) only, therefore we can simply write
t− τ = ω20(t

′)3/6 . The solution of this equation allows us to write Eq. (6.16) as
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ECSR(t) =
−2eN

4πε0c | r0 |


∞∫

t+δ2

[
[6ω0(t− τ)]1/3ex + θey

]
[6ω0(t− τ)]2/3

dF (τ)

d τ
d τ

+

t−δ1∫
−∞

[
[6ω0(t− τ)]1/3ex + θey

]
[6ω0(t− τ)]2/3

dF (τ)

d τ
d τ

 . (6.19)

Limitations in (6.6) indicate that the contribution from the integrands in the right
hand side of Eq. (6.19) are negligible in the region (t− δ1, t+ δ2) and therefore we can
rewrite Eq. (6.19) in its final form, which is a new and elegant result:

ECSR(t) = − 2eN

4πε0c | r0 |

∞∫
−∞

[
ε(t− τ)ex

[6ω0 | t− τ |]1/3 +
θey

[6ω0 | t− τ |]2/3
]
dF (τ)

d τ
d τ , (6.20)

where

ε(t− τ) = 1 for 0 < (t− τ) < ∞ , (6.21)

ε(t− τ) = −1 for −∞ < (t− τ) < 0 . (6.22)

It might be worth to remark that the ultimate reason for using the auxiliary times δ(1,2)
in the derivation of Eq. (6.20) is that they help recognizing the validity of the asymp-
totic substitution, since otherwise a direct integration by parts of Eq. (6.4) would
immediately give

ECSR(t) =
−e

4πε0c | r0 |

∞∫
−∞

[
n × [(n × β)]

(1− n · β)
]
(t−τ)

N
dF (τ)

d τ
d τ . (6.23)

Under the accepted limitation on the axial gradient of the beam current expressed by
conditions (6.6), this equation transforms to Eq. (6.20).

As an example we show how to use Eq. (6.20) in order to calculate the CSR pulse.
Let us concentrate on the CSR radiation produced in the orbital plane. In this case
θ = 0 and it is obvious that the radiation for an observer in that plane is horizontally
polarized. To be specific, we consider an electron beam with a Gaussian axial profile
of the current density

F (t) =
1√
2πσT

e

(
− t2

2σ2
T

)
, (6.24)

where σT is the rms electron pulse duration. The rms is assumed to be large,
σT � R/(cγ3). When θ = 0 and the bunch profile is Gaussian, we can write Eq. (6.20)
in the form

Ex(t) =
2eN

4πε0(2π)1/261/3σ3Tω
1/3
0 c | r0 |

∞∫
−∞

ε(t− τ)τ

| t− τ |1/3 e
(
− τ2

2σ2
T

)
d τ . (6.25)
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Figure 6.9: Time structure of a CSR pulse from a Gaussian electron bunch moving in a
circle. Here θ = 0. The circles represent the results obtained from direct superposition
of single particle pulses, while the solid line corresponds to the shape calculated by
means of Eq. (6.25). The rms bunch duration is σT = 100λc/c, where λc = 4πR/(3cγ3).

Fig. 6.9 presents comparative results obtained by means of analytical calculations (solid
curve, calculated with Eq. (6.25)) and numerical results (circles, calculated by direct
superposition of single pulses from Eq. (6.4)). These plots constitute a simple cross-
check between numerical (full Liénard-Wiechert espressions) and analytical results.

It is relevant to make some remarks about the region of applicability of Eq. (6.20).
Eq. (6.20) is valid only when the electrons are moving in a circle and the observer is
located in such a way that both the velocity term in Liénard-Wiechert formula can be
neglected and the unit vector n can be considered constant. Another basic assumption
is that the current density changes slowly on the scale of R/γ3. This condition is well
satisfied in the majority of practical cases, although not for very short bunches at low
energies, like the ones produced by the RF photogun in Eindhoven [13], characterized
by σT ∼ 100 fs and γ ∼ 10. It should also be mentioned that the above expressions
are good approximations for small enough vertical angles (even though they may be
immediately generalized). In fact we used the replacement cos θ � 1 in the retardation
equation and, in practice, such an assumption is valid for the range θ2 
 (σ/R)2/3,
where σ is the characteristic length of electron bunch.
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6.3.3 Arc of a circle case

Let us now extend the previous results to the case of an arc of a circle, relaxing
the assumption φm 
 1/γ made in Section 6.3.1. We will focus only on the radiation
seen by an observer located at large distance from the sources, on the tangent to the
electrons orbit at the middle point of the magnet. In this case we can continue to use
the fixed coordinate system (x, y, z) shown in Fig. 6.8. The observation point and the
vector n are within the (y, z)-plane and the radiation is emitted at an angle θ with
respect to the z-axis. Let us start expressing the total CSR pulse as a superposition of
single particle fields at a given position in the far-zone. In the case of an arc of a circle
Eq. (6.4) modifies as follows:

ECSR(t) =

t+T∫
t−T

Er(t− τ)NF (τ) d τ . (6.26)

Here the time T in the integration limits is in loco of a window function in the integrand,
in order to cut the contributions of the single particle radiation pulse when the electron
is not in the arc. This expression contains the observation time interval T , which should
be replaced by the retarded time interval t′e. The two times are related by

2T = 2t′e +
1

c
| r(t′e) | −

1

c
| r(−t′e) | , (6.27)

where t′e = φm/(2ω0), φm being the bending magnet angular extension. Our analy-
sis focuses on the case of a long bending magnet, γφm � 1. Using Eq. (6.2) and
condition (6.3), the field of the CSR pulse is readily shown to be

ECSR(t) =

t−δ∫
t−T

Er(t− τ)NF (τ) d τ −NF (t)

t−δ∫
−∞

Er(t− τ) d τ

+

t+T∫
t+δ

Er(t− τ)NF (τ) d τ −NF (t)

∞∫
t+δ

Er(t− τ) d τ . (6.28)

As we have already done previously, we assume that δ satisfies conditions (6.6). Adding
and subtracting suitable edge terms one can still perform integration by parts, thus
obtaining:

ECSR(t) = NF (t+ T )

t+T∫
−∞

Er(t− τ) d τ −NF (t− T )

t−T∫
−∞

Er(t− τ) d τ

−
t−δ∫

t−T

Φ [Er] (t− τ)N
dF (τ)

d τ
d τ −

t+T∫
t+δ

Φ [Er] (t− τ)N
dF (τ)

d τ
d τ . (6.29)

Since conditions (6.6) hold for δ we may substitute the 3rd and the 4th integral in
Eq. (6.29) with a single integral in which the primitive, Φ [Er], is replaced by its
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asymptote for large values of the argument, Φ
[
EA
r

]
. Under the assumption of a long

bunch (ωcT � 1) the 1st and the 2nd integral can be expressed by means of the
asymptote of the primitive too. Moreover, we can perform a change of variables in all
the integrals t− τ → τ . As a result Eq. (6.29) can be written in the form:

ECSR(t) = NF (t+ T )

∞∫
−T

EA
r (τ) d τ +NF (t− T )

T∫
∞

EA
r (τ) d τ

−
T∫

−T

Φ
[
EA
r

]
(τ)N

dF (t− τ)

d τ
d τ . (6.30)

Using the ultrarelativistic approximation we can calculate a primitive Φ [Er] using
Eq. (6.14) and Eq. (6.15). Again we assume that the vertical angle is very small so
that we may use the replacement cos θ � 1. In this situation we have again:

n × [(n × β)]

(1− n · β) � ω0t
′ex + θey

(ω0t′)2/2
. (6.31)

This quantity must be evaluated at the retarded time t′ � [6τ/ω20]
1/3. Substitution of

these expressions in Eq. (6.30) gives

ECSR(t) =
−2eN

4πε0c | r0 |


T∫

−T

[
ε(τ)ex

[6ω0 | τ |]1/3 +
θey

[6ω0 | τ |]2/3
]
dF (t− τ)

d τ
d τ

+ [F (t+ T ) + F (t− T )]
ex

(6ω0T )1/3

− [F (t+ T )− F (t− T )]
θey

(6ω0T )2/3

}
, (6.32)

where T = φ3m/(48ω0). Eq. (6.32) is a new result, which generalizes Eq. (6.20) to the
case of a bunch moving in an arc of a circle.

As an example of the application of this expression, consider the situation when
θ = 0 and the bunch profile is a Gaussian. According to Eq. (6.32) the CSR field in
this case is given by

Ex(t) = G1(t) +G2(t) (6.33)

where

G1 =
2eN

4πε0(2π)1/261/3σ3Tω
1/3
0 c | r0 |

T∫
−T

ε(τ)(t− τ)

| τ |1/3 e

(
− (t−τ)2

2σ2
T

)
d τ , (6.34)

G2 =
−2eN

4πε0(2π)1/261/3σT(ω0T )1/3c | r0 |

[
e

(
− (t+T )2

2σ2
T

)
+ e

(
− (t−T )2

2σ2
T

)]
. (6.35)
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Figure 6.10: Time structure of the CSR pulse from a Gaussian electron bunch moving
along an arc of a circle. Here θ = 0, ρ̂ = φ3m/(24ω0σT) = 4. The physical meaning of
the magnet length parameter ρ̂ will be clear after reading Section 6.4. Circles present
the results obtained from direct superposition of single particle pulses. The solid line
corresponds to the shape calculated by means of Eq. (6.33).

Fig. 6.10 presents the results of calculations obtained using Eq. (6.33). As expected, a
simple cross-check with numerical results shows a very good agreement. Note how the
finite magnet length chosen in Fig. 6.10, ρ̂ = φ3m/(24ω0σT) = 4, modifies the shape of
the CSR pulse with respect to Fig. 6.9: the tails shrink and the integral of the total
field deviates from zero (which is the expected result for the circular case). This can
be directly ascribed to the fact that Schwinger formulas can not be used to describe
the long wavelength asymptote of the single particle radiation.

6.4 Limitations of standard results

As already anticipated in Section 6.1, besides failing in the long wavelength limit
for the dipole magnet case, Schwinger’s approach relies on several other assumptions:
first, the observer is located in such a way that the velocity term in the Liénard-
Wiechert formula can be completely neglected and that the unit vector n can be
considered constant throughout the electron evolution. Second, a circular trajectory
is postulated. Finally, no aperture limitation is considered at all. These assumptions
must be analyzed in order to understand how the CSR pulse is altered in realistic
situations. In this Section we will deal separately with all of them.

Let us imagine that our electron bunch moves along an arc of a circle and that
there is no aperture limitation. We can take into account, then, effects as a finite dis-
tance between source and observer, a finite magnet length and the presence of velocity
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fields by means of Eq. (6.4), where the expression for the electric field is given by the
strict Liénard-Wiechert formula. Analytical methods are of limited use in the study of
CSR in the near-zone, and numerical calculations must be selected. The application of
similarity techniques will allow us to present numerical results in such a way that they
are both general and directly applicable to the calculation of specific device situations.
This technique not only allows one to reduce the number of parameters of the problem
but also helps to reformulate it in terms of variables possessing a clear physical inter-
pretation. Each physical factor influencing the CSR production is matched by its own
reduced parameter. For the effect under study this reduced parameter is a measure
of the corresponding physical effect. When some effect becomes less important for
coherent radiation, it simply falls out of the number of the parameters of the problem.

For our present purposes we will concentrate on the temporal structure of a CSR
pulse and we will consider the case of an electron beam with a Gaussian axial profile
of the current density. The behavior of the CSR pulse profile as a function of dimen-
sionless parameters provides information on the spectrum distortion. When compar-
ing the temporal structure of CSR pulses in different conditions, it is convenient to
use a normalized field amplitude. The rms electron pulse duration is assumed to be
σT � R/(cγ3) and we focus on the radiation pulse seen along the tangent to the orbit
at the middle point of the magnet. When the vertical angle θ = 0, the normalized
coherent field amplitude Ex(t)/Emax is a function of six dimensional parameters:

t , v , R , φm , σT , | r0 | . (6.36)

It is relevant to note that only two dimensions (length and time) are sufficient for a
full description of the field profile. After appropriate normalization it is a function of
four dimensionless parameters only:

Ex(t)/Emax = Êx = D(t̂, σ̂, ρ̂, r̂0) , (6.37)

where t̂ = t/σT is the dimensionless time, σ̂ = ω0σTγ
3 is the dimensionless electron

pulse duration, r̂0 =| r0 | (cσT)−1/3R−2/3 is the dimensionless distance between source
and observer and ρ̂ = φ3m/(24ω0σT) is the magnet length parameter. In the general
case the universal function D should be calculated numerically by means of strict
Liénard-Wiechert formulas.

The changes of scale performed during the normalization process imply that we are
measuring time, bunch length, distance from the source and magnet length as multiples
of ”natural” CSR units. There is a physical reason for being able to write the field
profile as in Eq. (6.37): let us explain this fact beginning with a qualitative analysis of
the radiation from an electron moving in a circle, in the long wavelength asymptote.
Synchrotron radiation is emitted from a rather small area and we need to determine
this area for observers whose detection systems collect information over a long time
period σT. The radiation pulse length is equal to the time taken for the electron to
travel along any arc AB, reduced by the time taken for the radiation to travel directly
from A to B. Between point A and point B we have a deflection angle φ, so that
σT � Rφ/(βc) − 2R sin(φ/2)/c, and sin(φ/2) can be approximated by sin(φ/2) �
φ/2 − φ3/48 for small angles. Then the pulse duration reduces to σT � Rφ3/(24c).
The radiation source extends over some finite length Rφ ∼ Lf = (cσT)

1/3R2/3 along the
particle path. We see that the reduced distance can be expressed as r̂0 =| r0 | /Lf . One
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can find that the ratio (Rφm)
3/(24L3f ) is equal to ρ̂, which we use now as a measure of

finite magnet length effects.

6.4.1 Diffraction effects

In realistic situations, the long wavelength synchrotron radiation from bending
magnets passes through many different vacuum chamber pieces with widely varying
apertures. For example, in the presence of a vacuum pipe, the SR will be collected
out of an aperture a couple of centimeters away from the source at most, and this will
perturb the CSR spectrum.

Consider an electron moving in a circle, as in Fig. 6.11. Between the observer and
the source there is an aperture with a characteristic dimension d. Qualitatively, an
observer looking at a single electron is presented with a cone of radiation characterized
by an aperture angle of order θ � √

2d/R. Fig. 6.11 shows part of the trajectory of
an electron travelling along an arc of a circle of radius R. The presence of a finite
aperture introduces diffraction effects specific to the geometry and clearly dependent
on the wavelength. For structures such as pinholes it is found that these diffraction
patterns propagate away at angles of order θd � λ/d, where d is the characteristic
aperture dimension. The region of applicability for the far diffraction zone is given by
the relation Lp � Ld � d2/λ, where Lp is the distance between observer and aperture
and Ld the typical diffraction distance. When the wavelength is about Rθ3/24 �√
2(d3/R)1/2/12, the latter condition transforms to Lp � Ld � 6Rθ. The significance

of the discussed limitation cannot be fully appreciated until we determine typical values
of the parameters that can be expected in practice. For example, if R = 3 m and
λ = 100 µm, θ � 0.08, a 1 cm diameter hole will significantly perturb the SR spectrum
at wavelengths in this region for distances greater than about 1 m. In order to solve
the diffraction problem we must characterize the field at the aperture position: since
the aperture is expected to be only a couple of centimeters away from the sources finite
distance effects play an important role in the overall determination of the CSR pulse
at the detector position.

6.4.2 Finite distance effects

Let us now imagine that our electron bunch moves in a real circle and there is no
aperture limitation. We can first consider the contribution given by the acceleration
field alone and then focus on the contributions by the velocity field.

Acceleration field effects. When the electron bunch radiates from a circle the spec-
trum is obviously independent of the ρ̂ parameter. In the long wavelength asymptote
(σ̂ � 1) the acceleration field is described by one dimensionless parameter only: r̂0.

The region of applicability of Schwinger formulas requires the dimensionless distance
to have a value r̂0 � 1. In fact, as previously explained, the radiation source extends
over some finite length Rφ ∼ Lf , and this length corresponds to a transverse size of the
radiation source d ∼ Rφ2. The vector n changes its orientation between point A and
point B by an angle of order d/r0, where r0 is the distance between source and observer.
Our estimates show that in the case d/r0 
 φ, the vector n in the Liénard-Wiechert
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Figure 6.11: Depiction of the effects of an aperture limitation.

formula is almost constant when the electron moves along the formation length Rφ.
Thus, we can conclude that the unit vector n can be considered constant throughout
the electron evolution only if r0 � Lf .

The results of numerical calculations for several values of r̂0 are presented in Fig. 6.12.
Calculations have been performed using the strict Liénard-Wiechert formula. The plots
in Fig. 6.12 give an idea of the region of validity of the far-zone approximation con-
sidered above. At large distance the CSR pulse profile is simply the far-zone profile
Eq. (6.25). One can see that Eq. (6.25) works well at r̂0 = 100. Then, at r̂0 = 3,
the CSR pulse envelope is visibly modified. As the distance is decreased, the differ-
ence between the approximate and the strict pulse profile becomes significant. From
a practical point of view this set of plots covers all the region of interest for the dis-
tance between observer and sources. Note that, for example, for a rms bunch length of
about 100 µm and a radius R = 3 m, the value r̂0 = 3 corresponds to r0 � 30 cm. If
we detect CSR in vacuum at a distance smaller than 30 cm this effect must be taken
into account. Also, if we have an aperture at a distance smaller than 30 cm (which is
practically always the case), and we want to solve the diffraction problem, this effect
must be taken into account: in fact, as already said, in this case one needs to calculate
the fields at the aperture position and these will differ from the behavior predicted by
Schwinger formulas.

To check that no mistakes have been made in our similarity techniques we evaluated
the normalized CSR pulse profile for several sets of parameters. The reduced distance
was held constant r̂0 = 0.15 or r̂0 = 15. The plots were calculated numerically, using
the strict Liénard-Wiechert formula. Fig. 6.13 and Fig. 6.14 show our results. It is
seen that there is a good agreement with the prediction that the acceleration field from
a circle in the long wavelength asymptote is a function of the reduced distance only.

Velocity field effects. Usual theory of synchrotron radiation is based on the as-
sumption that the acceleration field dominates: all the results presented above refer,
in fact, to the case when there is no influence of the velocity field on the detector. Yet,



134 Applications of Coherent Synchrotron Radiation

-4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

E
x
(A.U.)

(σ/c)
-1
 t  

 

 Analytical results

 r
0
 =        L

f

 r
0
 = 2     L

f

 r
0
 = 3     L

f

 r
0
 = 5     L

f

 r
0
 = 10   L

f

 r
0
 = 100 L

f

Figure 6.12: Time structure of a CSR pulse from a Gaussian electron bunch moving
in a circle at different reduced distance between source and observer. Here θ = 0. The
dashed curve is calculated within the far-zone approximation Eq. (6.25). Numerical
calculations have been performed with the strict Liénard-Wiechert formula.

the acceleration field dominates in the far-zone only, and we want to study near-zone
effects too. The physics of coherent effects studied by means of general expressions for
the Liénard-Wiechert fields is much richer than that of the simplified radiation field
model considered above. In the long wavelength asymptote the velocity part of the
coherent electric field from a particle in a circle is a function of two dimensionless pa-
rameters: the reduced distance parameter r̂0 and the reduced electron pulse duration
parameter σ̂:

Ev(t)/Emax = Êv = D(t̂, σ̂, r̂0) , (6.38)

where the normalization of the velocity field is performed with respect to the maximal
acceleration field amplitude.

To show that this is correct we can perform a simple check. In Fig. 6.15 we present
numerical calculation results for the velocity field for different sets of parameters. The
reduced distance and the reduced electron pulse duration are held constant. It is seen
that all numerical results agree rather well.

Fig. 6.16 and Fig. 6.17 show the dependence of the normalized velocity field am-
plitude on the value of the reduced electron pulse duration for different values of the
reduced distance. Using these plots we can give a quantitative description of the region
of applicability of the radiation field model. It is seen from the plots in Fig. 6.17 that
in the near-zone we can not neglect the influence of the velocity field on the detector.
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Figure 6.13: Illustration of similarity techniques. Time structure of a CSR pulse
from a Gaussian electron bunch moving in a circle for various sets of parameters. The
reduced distance is held constant, r̂0 = 15. The solid curve is calculated within the
far-zone approximation Eq. (6.25). Numerical calculations have been performed with
strict Liénard-Wiechert formula.

Let us now estimate the importance of the velocity field effect. Let us start consid-
ering the total velocity field pulse as a superposition of single particle fields at a given
position in the far-zone. To calculate the integral one should take into account the
property of its kernel. In the far-zone the velocity field from one electron is close to an
antisymmetric function and the average of the electric field over time is close to zero.
The approach used in Section 6.3 can be also used to compute the coherent velocity
field. Under the ”smooth” electron bunch condition the kernel (velocity field from one
electron) can be substituted by its asymptotic behavior. If we wish to estimate the
normalized amplitude of the coherent velocity field we can get it simply by dividing
the asymptotic behavior of the velocity field kernel by the asymptotic behavior of the
acceleration field kernel, so that, in the far-zone, the normalized velocity field is of
order Ev/Eacc ∼ R/(γ2θr0), where θ � (cσT/R)1/3 is the natural synchrotron radiation
opening angle for a frequency ω � σ−1

T 
 cγ3/R. Using normalized variables we get

Êv ∼ r̂−10 σ̂−2/3 for σ̂, r̂0 � 1 . (6.39)

As we can see from Fig. 6.16, numerical calculations in the far-zone confirm this simple
physical consideration. The value of Êv is found remembering that, in the example
given in Fig. 6.16, r̂0 = 100, σ̂ = 100; therefore the normalized velocity field would be
about 0.0004, which is the same order of magnitude as results of numerical calculations
(0.0002). Also, Êv varies roughly as σ̂−2/3.

The normalized velocity field amplitude decreases, as we see from our estimations,
linearly with distance, which means that if we are in the near-zone at r̂0 = 1 there will
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Figure 6.14: Illustration of similarity techniques. Time structure of a CSR pulse
from a Gaussian electron bunch moving in a circle for various sets of parameters.
The reduced distance is held constant, r̂0 = 0.15. Numerical calculations have been
performed with strict Liénard-Wiechert formula.

be Êv � 0.04. A numerical calculation of the precise fields, presented in Fig. 6.17,
shows that, at the value r̂0 = 1, we have Êv = 0.2: in the case for R = 3 m and bunch
length of 100 µm, this means that the velocity field contributes 20% of the total field
at r0 � 10 cm. Our approximate treatment of the coherent velocity field breaks down
once source and observer get as close as they are at r̂0 � 1: this is not surprising, since
we derived Eq. (6.39) in the limit for r̂0 � 1. There is an intuitive explanation for
this discrepancy: in fact, in addition to the antisymmetric part of the kernel we have
just described, there is also a symmetric part. When source and observer are far apart
the observer sees only the antisymmetric part and the average of the electric field from
one electron is close to zero. At very close distances there begins to be some extra
symmetric contribution to the kernel. This symmetric field, which also varies with the
separation, should, of course, be included in more precise estimates.

6.4.3 Finite magnet length effects

Until now we have considered the case in which electrons move in a circle. Here
we will study the case where the electrons move along an arc of a circle by means
of Eq. (6.33). Normalizing Eq. (6.33), we obtain that, under the far-field approx-
imation, the CSR pulse profile is a function of only one dimensionless parameter
ρ̂ = φ3m/(24ω0σT), where φm is the magnet angular extension. The applicability of
Schwinger formulas require ρ̂ � 1. Using the plots presented in Fig. 6.18, one can
characterize quantitatively the region of applicability of the circular motion model.
Note that the tail in Fig. 6.18 is completely modified for ρ̂ = 6 which, for our example
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Figure 6.15: Illustration of similarity techniques. Electric field pulse due to the
velocity term from a Gaussian electron bunch moving in a circle for various sets of
parameters. The reduced distance and reduced bunch length are held constant, r̂0 = 1
and σ̂T = 100 respectively. Numerical calculations have been performed with strict
Liénard-Wiechert formula.

of R = 3 m and rms bunch length of 100 µm translates to φm � 0.17. This means that
a 50 cm magnet is short enough to give spectral distortions.

6.5 Conclusions

In this Chapter we treated subjects related to both longitudinal bunch diagnostics
and CSR sources characterization. We found a new, simple analytical expression to
describe the CSR pulse from a bunch moving in an arc of a circle. Our expression
depends on the long wavelength asymptotic of Schwinger formula for the electric field
from a particle in a circle, and the magnet length plays a crucial role here, since it
substantially modifies, with respect to the case of circular motion, the behavior of the
field at long wavelengths. Our formula applies for a generic bunch density distribution
and can be used for a quick estimation of the CSR field pulse from a bunch moving
in a dipole magnet. Yet, in almost any practical application, where the radiation
pulse is collected through a finite aperture, one has to take into account diffraction
effects too. Since the solution of the diffraction problem involves the knowledge of
the field at the aperture position, which is usually at short distance from the sources,
we have to take into account finite distance effects. We treated these effects from a
quantitative viewpoint in the framework of a similarity technique which provided very
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Figure 6.16: Electric field pulse due to the velocity term from a Gaussian electron
bunch moving in a circle at different reduced bunch lengths. The reduced distance is
held constant, r̂0 = 100. Here θ = 0 and the normalization is performed with respect
to the maximal acceleration field amplitude.

general results, immediately applicable at any practical parameter range. By doing
this, we produced the basis elements for numerical simulations of the full behavior of
the CSR fields in realistic situations.

For a more complete investigation of bunch diagnostics techniques and CSR, in-
cluding the use of undulators as an alternative to bending magnets and constrained
deconvolution techniques to recover information on the bunch density function, we refer
to [5].
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Figure 6.17: Electric field pulse due to the velocity term from a Gaussian electron
bunch moving in a circle at different reduced bunch lengths. The reduced distance is
held constant, r̂0 = 1. Here θ = 0 and the normalization is performed with respect to
the maximal acceleration field amplitude.
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Summary

The production of high brightness, ultrarelativistic electron beams to be used, for
example, in X-ray Free-Electron-Lasers is a challenge for accelerator physicists. One
of the effects which may spoil the characteristics of such beams is constituted by the
interactions between particles and electromagnetic fields produced by the particles
themselves during their motion.

This work is devoted to the study of theoretical aspects of self-interactions within
ultrarelativistic electron bunches induced by transverse acceleration. The problem of
a full quantitative determination of the electron bunch behavior belongs to a class of
self-consistent issues which can be solved only with the help of numerical methods. In
this thesis, though, we limited ourselves to the characterization of the self-interactions
from an electrodynamical viewpoint (i.e. without considering the dynamical problem).
This appears to be possible analytically: we performed such a task with in mind the
double purpose of providing knowledge and understanding of the self-field interaction
and of creating cross-checks and benchmarks for numerical computations.

Self-interactions can be naturally divided in a longitudinal component (parallel
to the particle velocities) and a transverse component. We studied the longitudinal
component first. We provided a new, flexible expression for the fields which can be
both used as a basis for the development of a numerical code and for new theoretical
investigations: with the help of our expression we were, in fact, able to study from a
quantitative viewpoint the energy-dependence of the longitudinal self-fields, which is
particularly relevant in the low-energy region of any injector for a large accelerator.

Next we dealt with the transverse component of the self-interaction. We profited,
in this study, of a fruitful collaboration with DESY (Hamburg), where these problems
are particularly important in relation to the XFEL project. A preliminary analysis of
the self-forces by means of the code TraFiC4 shows unexplained and counterintuitive
features which we were able to understand, both qualitatively and quantitatively, only
by means of thorough analytical investigations. We found that the electron bunch can
be divided, in relation to the self-interaction issue, in different zones. In each zone, the
electrons are sources of self-interactions with peculiar characteristics. In particular we
were able to explain the sudden jump of the self-force at the entrance of a magnetic
system in terms of the interaction between the head and the tail of the bunch. We
also discovered that this has a local character and that, although completely neglected
in the analysis of simulation results of the last two decades, it is of the same order of
magnitude of the total self-interaction field. Our study has, moreover, the practical
feature of providing the first quantitative benchmark for numerical studies of transient
transverse effects.

From a very fundamental viewpoint, we found that the results of our study are
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related to the nature of the energy-momentum pair: we showed that, in the case under
study, this pair does not constitute a four-vector. This result can be explained in very
simple terms by the fact that, within an electron bunch, the electromagnetic forces
are not compensated by any other kind of interaction (as, for example, happens in an
atomic nucleus). In other words, the system is intrinsically unstable.

In the last Chapter we considered the Coherent Synchrotron Radiation (CSR) from
a bend. The longitudinal self-fields are responsible, in the wave-zone, for CSR phe-
nomena, and CSR may be used both as a radiation source and as a tool for monitoring
the longitudinal distribution of an electron bunch. Both these applications call for
a thorough characterization of the CSR pulse. We derived analytically, for the first
time, the CSR field pulse from an arc of a circle and we pointed out the presence
of spectral distortions caused by finite distance effects between sources and observer
and by diffraction effects. We provided a first quantitative study of these by means of
numerical calculations, using a similarity technique to present our results which are,
thus, in form of universal plots valid at any parameter range. Our study provides the
first description of the physical phenomena responsible for spectral distortions which
must be accounted for in the characterization of a CSR source or in the development
of a diagnostic system based on CSR.



Samenvatting

De productie van zeer heldere, ultrarelativistische elektronenbundels, die bijvoorbeeld
in vrije-elektronenlasers in het röntgengebied toegepast kunnen worden, vormt een
uitdaging voor versnellerfysici. En van de effecten die de eigenschappen van zo’n bun-
del kunnen verslechteren vindt zijn oorzaak in de wisselwerking tussen deeltjes en
het electromagnetische veld dat door de elektronen zelf tijdens hun beweging wordt
opgewekt.

Dit proefschrift is gewijd aan de studie van theoretische aspecten van zelfinterac-
tie binnen korte ultrarelativistische elektronenpakketjes (’bunches’) ten gevolge van
transversale versnelling. Het probleem van een volledige kwantitatieve bepaling van
het elektronenbunch gedrag behoort tot een klasse van zelfconsistente problemen die
slechts met behulp van numerieke methoden kan worden opgelost. In dit proefschrift,
beperken we ons echter tot de beschrijving van de zelfinteractie vanuit een electrody-
namisch gezichtspunt, dus zonder het dynamische probleem te beschouwen. Dit blijkt
analytisch mogelijk: deze taak werd uitgevoerd met voortdurend het dubbele doel voor
ogen kennis en begrip te verschaffen van de zelf-veld wisselwerking en tevens kruiscon-
troles en referentiestandaarden voor numerieke berekening te creren.

Zelf-interactie kan op natuurlijke wijze worden verdeeld in een longitudinale com-
ponent, parallel aan de deeltjessnelheid, en een transversale component. Als eerste
bestudeerden we de longitudinale component. We vonden een nieuwe flexibele uit-
drukking voor het veld, die zowel als basis kan dienen voor een numeriek programma
als voor nieuw theoretisch onderzoek: met behulp van onze uitdrukking waren we in
feite in staat de energieafhankelijkheid van longitudinale zelf-velden vanuit kwantitatief
oogpunt te bestuderen, hetgeen in het bijzonder van belang is in het lage-energie gebied
van injectoren zoned die bij van grote deeltjesversnellers gebruikt worden.

Vervolgens behandelden we de transversale component van de zelf-interactie.Hierbij
profiteerden we van de vruchtbare samenwerking met DESY (Hamburg), waar deze
problemen bijzonder belangrijk zijn bij het XFEL project. Een voorlopige analyse van
de zelf-krachten met het programmaTrafic

4 laat onverklaarde en zelfs tegen de intutie
indruisende verschijnselen zien, die wij evenwel toch zowel kwalitatief als kwantitatief
konden verklaren met behulp van gedegen analytische studie. We vonden dat, met
betrekking tot het zelf-interactie vraagstuk, de elektronen bunch in verschillende zones
kan worden ingedeeld. In iedere zone zijn de elektronen bronnen van zelf-interactie met
speciale karakteristieken. In het bijzonder konden we de plotselinge sprong van de zelf-
kracht aan de ingang van een magnetisch systeem verklaren in termen van wisselwerking
tussen voor- en achterkant van de bunch. Ook ontdekten we dat dit een lokaal karakter
heeft en dat dit, hoewel volledig genegeerd in de analyse van simulatieresultaten van
de afgelopen twintig jaar, van de zelfde orde van grootte is als het totale zelf-interactie
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veld. Onze studie verschaft bovendien het praktische nut voor het eerst kwantitatief
vergelijkingsmateriaal te leveren voor numerieke studies van transversale effecten.

Vanuit een zeer fundamenteel gezichtspunt vonden we dat de resultaten van onze
studie verbonden zijn met het wezen van het energie-impuls paar: we toonden aan dat
in ons geval dit paar niet een viervector is. Dit resultaat kan worden verklaard in heel
simpele termen door het feit dat binnen een elektronen bunch de elektromagnetische
krachten niet worden gecompenseerd door enige andere wisselwerking (zoals dit bi-
jvoorbeeld gebeurt in een atoomkern). Met andere woorden, het systeem is intrinsiek
instabiel.

In het laatste hoofdstuk beschouwden we Coherente Synchrotron Straling (CSR)
in een buigmagneet. De longitudinale zelf-krachten zijn in het ’verre veld’ verant-
woordelijk voor CSR verschijnselen, en CSR kan worden gebruikt zowel als bron van
straling alswel als middel om de longitudinale dichtheidsverdeling van een elektronen
bunch te meten. We karakteriseerden analytisch, en voor de eerste keer, de CSR veld-
puls vanuit een cirkelboog en we merkten de aanwezigheid op van spectrale vervormin-
gen ten gevolge van eindige-afstands effecten tussen bron en waarnemer en tengevolge
van diffractie-effecten. We gaven een eerste kwantitatieve studie van deze effecten met
behulp van numerieke berekeningen, waarbij we een vergelijkingstechniek gebruikten
in de vorm van universele grafieken met een geldigheid voor ieder bereik van de param-
eters. Onze studie geeft de eerste beschrijving van fysische verschijnselen die verantwo-
ordelijk zijn voor spectrale vervormingen waarmee rekening gehouden moet worden bij
de karakterisatie van een CSR-bron of bij de ontwikkeling van een diagnostisch systeem
gebaseerd op CSR.
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